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Abstract. Themost common asphalt pavement surface distress is cracking,mani-
fested in various forms, such as transverse, longitudinal, and reflective cracks, gov-
erned by different initiation and propagation mechanisms. Being able to timely
detect and classify different types of cracks provides critical information for
properly maintaining and managing our invaluable road assets. In this paper, a
series of classic image processing techniques were applied to pavement surface
images to delineate crack patterns. The processed images were projected to a
low-dimensional feature space through principal component analysis (PCA). A
K-means algorithm is then applied to cluster images in the low-dimensional feature
space. The results revealed a meaningful correlation between the crack patterns
and the clusters derived.
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1 Introduction

Accurate pavement condition assessment of a road network is vital for managing main-
tenance and rehabilitation (M&R) efforts to ensure its continued functionality. Early
detection and repair of pavement defects can prevent further degradation and reduce the
overall road M&R expenditure. As such, efficient and timely road inspection is one of
the key elements of a successful pavement management system. Nevertheless, periodic
road condition surveys tend to be costly and time-consuming if being carried out in the
conventional fashion, i.e., by human visual inspection.

Good road conditions are important in supporting the proper functions of a country’s
economy, andmany leading civil engineering organizations across the world, such as the
American Society of Civil Engineers (ASCE), continue to emphasize the importance of
maintaining the good conditions of the roads and other civil infrastructures. However,
the existing situation is not optimistic. According to [1], approximately half of the major
roads in the U.S. are currently considered as in poor conditions.

Pavement surface condition assessment has historically been conducted manually
by state and/or local transportation agencies, which is still the predominant practice
in most developing countries. This resource-demanding and time-consuming process
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has motivated the development of various automatic road condition assessment tech-
niques and systems. With the growing interest in automating the pavement condition
survey and rapid advancement in computer vision and deep learning, the past decade
has witnessed an emerging popularity of automatic image-based road surface distress
assessment systems. However, many existing automatic image-based systems still suf-
fer from variation in environmental conditions, such as lighting condition, shadow cast
by nearby objects, rainy weather, etc., and reliability issues associated with underlying
image-based cracks detection algorithms, ranging from simple pixel level filtering to
complex deep convolutional neural networks [2].

Automating the detection and classification of pavement surface cracks has been a
challenging task due to multifaceted crack patterns arising from a multitude of factors
underlying different crack initiation and propagation mechanisms, such as traffic load-
ing spectrums, weather-induced material properties, pavement design, etc. Many local
agencies still rely on the traditional visual inspection method for assessment of their
local road networks.

In this study,we aim to leverage the availability of pavement surface images collected
as part of the pavement survey process and apply unsupervised learning techniques (e.g.,
PCA and cluster analysis) to cluster similar crack types/patterns. Being able to identify
different classes of cracks in an unsupervised fashion helps to understand the local
dominant crack types and potential contributing factors, and to infer proper treatment
strategies. For conceptual proof of this idea, the surface images collected by a survey
vehicle from three local roads in Athens, Georgia were utilized.

2 Literature Review

Automated detection of distresses from pavement images is a challenging problem that
has been studied by the computer vision research community formore than three decades.
The challenges associated with 2D pavement image-based method include variations
in image sources (digital cameras, smartphones, unmanned aerial vehicles, etc.), non-
uniformity of cracks, surface texture, lack of sufficient background illumination, and the
presence of other features such as joints, among others.

Traditional image analysis approaches rely on hand-crafted features. For example,
a novel local binary pattern (LBP) based operator for pavement crack detection was
introduced in [3] and a crack detection method using Gabor filter was presented in [4].
An automatic crack detection method referred to as CrackTree is developed in [5]. An
integratedmodel for crack detection and characterization is presented in [6] and a variety
of image processing algorithms aimed at detecting and characterizing road surface crack
distresses are described in [7].

The recent advancement in machine learning (ML), especially in deep learning (DL)
with vision tasks (e.g., object detection and classification), has reignited the research
in image-based pavement distress detection and classification. In a recent study, Hoang
et al. [8] developed a multiclass support vector machine model optimized by artificial
bee colony algorithm to achieve an over 96% overall accuracy in classifying longitu-
dinal crack, transverse crack, alligator crack, and no crack. A review on deep learning
applications in pavement image analysis and distress detection was conducted by [9].
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Specifically, Zhang et al. [10] developed a crack detection method where the discrim-
inative features are learned from raw image patches using ConvNets. Likewise, [11]
proposed a deep architecture of CNNs for detecting concrete cracks. More recently,
Maeda et al. [12] evaluated Single Shot MultiBox Detector (SSD) with Inception V2
and MobileNet architectures, for detection eight different road damage types.

However, most previous studies on crack detection and classification relied on hand-
crafted features or were conducted in supervised learning settings. In contrast, our study
focuses on clustering pavement surface images that are congruous with the underlying
pavement distress classes in an unsupervised fashion through cluster analysis in a low-
dimensional feature space of processed images.

3 Data Set

Pavement surface images (800-by-600) were acquired through a dash camera mounted
on a survey vehicle. The dataset used in our experiment consists of 1,125 pavement
surface images collected from three local roads in Athens, GA, USA.

4 Analysis

Given the complexity of asphalt pavement images,which are typically endowedwith var-
ious patterns of micro-texture, nonuniform color arising from the mixture of pavement
materials, pavement markings, and shadows casted by nearby utility poles, vegetation,
etc., preprocessing of the images is usually required to remove noises and highlight
cracks. In this study, a series of image processing techniques, including logarithmic
transformation, bilateral filters, Canny edge detector [13], and morphological opera-
tions, were applied, resulting in “cleaner” images with more distinct crack patterns. The
resultant images were further processed by Principal Component Analysis (PCA) to
reduce dimensionality of the feature space, followed by a K mean algorithm [14, 15] to
cluster the images in the low-dimensional feature space.

4.1 Image Processing

The interference of the image taking with the dynamic environment often induces
unwanted noises. Therefore, it is desirable to apply image preprocessing operations
first to remove environmental interference as much as possible. In this study, the open-
source computer vision library, OpenCV [16] was utilized, which implemented many
popular and commonly used image processing and computer vision algorithms. In our
experiment, the images were processed in several steps as described below.

First, the originally captured RGB images were resized from 800-by-600 to 100-by-
100 to reduce unnecessary resolution as well as computational footprint and converted to
grayscale images since colors do not contribute much to crack features (Fig. 1a). Then,
the logarithmic transformation was applied, resulting in the range of darker pixels being
expanded while brighter pixels being compressed (Fig. 1b).

Random noise is one of the main problems which may affect the results. Due to
pavement physical characteristics, the naturally captured images aremore or less affected
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by random noises (e.g., induced by uneven micro-texture) and/or uniform noise (e.g., a
result of shadow), which need to be removed. A bilateral filter was applied to smooth
images without losing edge precision. Figure 1c shows the result of the same image after
applying the bilateral filtering. Finally, a canny edge detector was applied, followed by
morphological operations (erosion and dilation) to highlight crack tracks (Fig. 1d).

a) Grayscale image b) Logarithmic transformation

c)  Bilateral filter d) Canny edge detector &
morphological operations

Fig. 1. Image processing.

4.2 Dimension Reduction

With the previously processed images, principal component analysis (PCA) was applied
for dimension reduction and feature extraction. In PCA, the high-dimensional features
are linearly projected to a low-dimensional space without losing much information.
In other words, PCA aims to find a linear subspace of the original feature space that
captures the most data variance. In PCA, the principal components (PCs) are created
in a descending order of the amount of data variation and all PCs are orthogonal to
one another. The eigenvectors of covariance matrix reveal the PC directions while the
eigenvalues provide the relativemagnitudes of variance explained by corresponding PCs.
A limitation of PCA lies in its linearity, which can be addressed by extending the linear
kernel to nonlinear kernels through the kernel trick, referred to as kernel PCA [17]. After
applying PCA to our dataset, the cumulative variance explained was plotted against the
number of components, as shown in Fig. 2. The top 700 PCs, which explained over 80%
of the total variance, were retained for cluster analysis.
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Fig. 2. Cumulative variance explained versus the number of principal components.

4.3 Cluster Analysis

A variety of cluster analysis methods have been developed with K-means (Lloyd 1957;
MacQueen 1967) being the most popular one that is flexible and works well in many
settings. In K-means, the number of clusters, K, needs to be prespecified. The elbow
method has been typically used to determine the K value that corresponds to the point of
the maximum curvature in the inertia plot. Given a dataset, the goal of K-means is to find
the K clusters with the minimal within-cluster variation. Using the Euclidean distance as
the proximity measure, K-means algorithm can be expressed as an optimization problem
in Eq. 1.

minimize
C1,...,Ck

{∑K

k=1

1

|Ck |
∑

i,i′∈Ck

∑p

j=1

(
xij − xi′j

)2} (1)

where, xij = the jth feature of observation i; p = the number of features; |Ck | = the
number of observations in the kth cluster.

The within-cluster sum-of-squares in Eq. 1 is often referred to as inertia. Applying
K-means to our dataset in the reduced feature space, the resulting inertia is plotted against
the number of clusters (K) in Fig. 3. Per the elbow method, three clusters (K = 3) were
chosen.

For visualization purposes, the cluster results are plotted in the 2D plane formed by
the first two principal components (see Fig. 4).

The clusters are indicated by colors in Fig. 4. Cluster 0 (blue) represents multi-
directional cracks, Cluster 1 (orange) coincideswith longitudinal crack, Cluster 2 (green)
contains mainly images without cracks. Exemplar images from each cluster are shown
in Fig. 5.
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Fig. 3. Inertia versus number of clusters (K).

Fig. 4. The results of cluster analysis (K = 3).
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a) Cluster 0 (multi-directional cracks) 

b) Cluster 1 (longitudinal cracks) 

c) Cluster 2 (no apparent cracks) 

Fig. 5. Exemplar images in each cluster.

5 Conclusions

As a popular nonintrusive technology, research in image-based pavement condition
assessment has recently regained momentum by leveraging modern machine learning
methods and techniques. This paper presents preliminary results from an ongoing study,
demonstrating the use of simple unsupervised machine-learning methods (i.e., PCA for
feature extraction and K-means for cluster analysis) for clustering pavement surface
distresses. The results revealed a meaningful correlation between derived clusters and
crack types. The simple approach could be used to help local jurisdictions understand
their predominant pavement distress types and plan for M&R activities. The cluster
outcome can also be used as a pre-step to assist with image annotation for developing
supervised classification models. Given the limitation of PCA in its linear projection,
further studies should consider nonlinearity in feature extraction, such as through kernel
PCA, variational autoencoders, etc.

Besides the pavement surface images, modern pavement survey practices also tend
to capture subsurface profiles using the ground penetrating radar (GPR) technology.
Surface images emphasize functional failure while subsurface GPR scan images can
reveal structural failure. For effective diagnosis of pavement structure, surface images



8 A. Abdelmawla et al.

and GPR scan images can be jointly used to enrich the feature space through feature
engineering techniques to properly capture the complementary aspects of pavement
structure.
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