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Abstract. In this paper, we prove that the general CNF satisfiability
problem can be solved in O∗(1.0646L) time, where L is the length of
the input CNF-formula (i.e., the total number of literals in the formula),
which improves the current bound O∗(1.0652L) given by Chen and Liu 12
years ago. Our algorithm is a standard branch-and-search algorithm ana-
lyzed by using the measure-and-conquer method. We avoid the bottle-
neck in Chen and Liu’s algorithm by simplifying the branching operation
for 4-degree variables and carefully analyzing the branching operation for
5-degree variables. To simplify case-analyses, we also introduce a general
framework for analysis, which may be able to be used in other problems.
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1 Introduction

Propositional Satisfiability is the problem of determining, for a formula of the
propositional calculus, if there is an assignment of truth values to its variables for
which that formula evaluates to true. By SAT, we mean the problem of propo-
sitional satisfiability for formulas in conjunctive normal form (CNF) [5]. The
SAT problem is the first problem proved to be NP-complete [4] and it plays an
important role in computational complexity and artificial intelligence [1]. There
are numerous investigations on this problem in different fields, such as approxi-
mation algorithms, randomized algorithms, heuristic algorithms, and exact and
parameterized algorithms. In this paper, we study parameterized algorithms for
SAT parameterized by the input length.

To measure the running time bound for the SAT problem, there are three
frequently used parameters: the number of variables n, the number of clauses m,
and the input length L. The input length L is defined as the sum of the number
of literals in each clause. The number of variables n should be the most basic
parameter. The simple brute force algorithm to try all 2n possible assignments
of the n variables will get the running time bound of O∗(2n).1 After decades of
1 The O∗ notation supervises all polynomial factors, i.e., f(n) = O∗(g(n)) means

f(n) = O(g(n)nO(1)).

c© Springer Nature Switzerland AG 2021
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Table 1. Previous and our upper bound for SAT

Running time bounds References

O∗(1.0927L) Van Gelder 1988 [16]

O∗(1.0801L) Kullmann and Luckhardt 1997 [12]

O∗(1.0758L) Hirsch 1998 [9]

O∗(1.074L) Hirsch 2000 [10]

O∗(1.0663L) Wahlström 2005 [17]

O∗(1.0652L) Chen and Liu 2009 [2]

O∗(1.0646L) This paper 2021

hard work, no one can break this trivial bound. The Strong Exponential Time
Hypothesis conjectures that the SAT problem cannot be solved in time O∗(cn) for
some constant c < 2 [11]. For a restricted version, the k-SAT problem (the length
of each clause in the formula is bounded by a constant k), better results have been
developed. For example, 3-SAT can be solved in O∗(1.3279n) time [13], 4-SAT
can be solved in O∗(1.4986n) time [13], and k-SAT can be solved in O∗(c(k)n)
time for some value c(k) depending on k [13]. When it comes to the parameter
m, Monien et al. first gave an algorithm with time complexity O∗(1.260m) in
1981 [14]. Later, the bound was improved to O∗(1.239m) by Hirsch in 1998 [9],
and then improved to O∗(1.234m) by Yamamoto in 2005 [19]. Now the best
result is O∗(1.2226m) obtained by Chu, Xiao, and Zhang [3].

The input length L is another important and frequently studied parameter.
It is probably the most precise parameter to describe the input CNF-Formula.
From the first algorithm with running time bound O∗(1.0927L) by Van Gelder
in 1988 [16], the result was improved several times. In 1997, the bound was
improved to O∗(1.0801) by Kullmann and Luckhardt [12]. In 1998, the bound
was improved to O∗(1.0758L) by Hirsch [9], and improved again by Hirsch to
O∗(1.074L) in 2000 [10]. Then Wahlström gave an O∗(1.0663L)-time algorithm
in 2005 [17]. In 2009, Chen and Liu [2] used the measure-and-conquer method to
analyze the running time bound and further improved the result to O∗(1.0652L).
We list the major progress and our result in Table 1.

Our algorithm, as well as most algorithms for the SAT problem, is based
on the branch-and-search process. The idea of branch-and-search is simple and
practical: for a given CNF-formula F , we iteratively branch on a variable or
literal x into two branches by assigning value 1 or 0 to it. Let Fx=1 and Fx=1 be
the resulted CNF-formula by assigning value 1 and 0 to x, respectively. It holds
that F is satisfiable if and only if at least one of Fx=1 and Fx=1 is satisfiable.
To get a running time bound, we need to analyze how much the parameter L
can decrease in each branch. To break some bottlenecks in direct analysis, some
references [2,17] analyzed the algorithm based on some other measures and gave
the relation between the new measure and L. The current best result [2] was
obtained by using the measure-and-conquer method, which is also to use a new
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measure. This is the first time to bring the measure-and-conquer method to
this research line. In this paper, we further improve the running time bound
by still using the measure-and-conquer method. Similar to many measure-and-
conquer algorithms, our algorithm and the algorithm in [2] deal with variables
from high degree to low degree. The algorithm in [2] carefully analyzed branching
operations for variables of degree 4. Our algorithm will simplify the branching
operation for 4-degree variables and carefully analyze the branching operation
for 5-degree variables. Finally, we can improve the bound to O∗(1.0646L).

Due to the limited space, the proofs of some lemmas marked with (*) are
omitted, which can be found in the full version of this paper [15].

2 Preliminaries

Let V = {x1, x2, ..., xn} denote a set of n boolean variables. Each variable xi

(i ∈ {1, 2, ..., n}) has two corresponding literals: positive literal xi and negative
literal xi (we use x to denote the negation of a literal x, and x = x). A clause
on V consists of some literals on V . Note that we allow a clause to be empty. A
clause {z1, z2, . . . , zq} is also simply written as z1z2 . . . zq. Thus, we use zC to
denote the clause containing literal z and all literals in clause C. We also use
C1C2 to denote the clause containing all literals in clauses C1 and C2. We use C
to denote a clause that contains the negation of every literal in clause C. That
is, if C = z1z2...zq, then C = z1z2...zq. A CNF-formula on V is the conjunction
of a set of clauses F = {C1, C2, ..., Cm}. When we say a variable x is contained
in a clause (or a formula), it means that the clause (at least one clause of the
formula) contains a literal x or its negative x.

An assignment for V is a map A : V → {0, 1}. A clause Cj is satisfied by
an assignment if and only if there exists at least one literal in Cj such that the
assignment makes its value 1. A CNF-formula is satisfied by an assignment A if
and only if each clause in it is satisfied by A. We say a CNF-formula is satisfiable
if it can be satisfied by at least one assignment. We may assign value 0 or 1 to a
literal, which is indeed to assign a value to its variable to make the corresponding
literal 0 or 1.

A literal z is called an (i, j)-literal (resp., an (i+, j)-literal or (i−, j)-literal)
in a formula F if z appears i (resp. at least i or at most i) times and z appears
j times in the formula F . Similarly, we can define (i, j+)-literal, (i, j−)-literal,
(i+, j+)-literal, (i−, j−)-literal, and so on. Note that literal z is an (i, j)-literal
if and only if literal z is a (j, i)-literal. A variable x is an (i, j)-variable if the
positive literal x is an (i, j)-literal. For a variable or a literal x in formula F ,
the degree of it, denoted by deg(x), is the number of x appearing in F plus the
number of x appearing in F , i.e., deg(x) = i + j for an (i, j)-variable or (i, j)-
literal x. A d-variable (resp., d+-variable or d−-variable) is a variable with the
degree exactly d (resp., at least d or at most d). The degree of a formula F is
the maximum degree of all variables in F . For a clause or a formula C, the set
of variables whose literal appears in C is denoted by var(C).

The length of a clause C, denoted by |C|, is the number of literals in C. A
clause is a k-clause or k+-clause if the length of it is k or at least k. We use
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L(F) to indicate the length of a formula F . It is the sum of the lengths of all
clauses in F , which is also the sum of the degrees of all variables in F . A formula
F is called k-CNF formula if each clause in F has a length of at most k.

In a formula F , a literal x is called a neighbor of a literal z if there is a clause
containing both z and x. The set of neighbors of a literal z in a formula F is
denoted by N(z,F). We also use N (k)(x,F) (resp., N (k+)(z,F)) to denote the
neighbors of z in k-clauses (resp., k+-clauses) in F , i.e., for any z′ ∈ N (k)(z,F)
(resp., z′ ∈ N (k+)(z,F)), there exists a k-clause (resp., k+-clause) containing
both z and z′.

3 Branch-and-Search and Measure-and-Conquer

Our algorithm is a standard branch-and-search algorithm, which first applies
some reduction rules to reduce the instance as much as possible and then searches
for a solution by branching. The branching operations may exponentially increase
the running time. We will use a measure to evaluate the size of the search
tree generated in the algorithm. For the SAT problem, the number of variables
or clauses of the formula is a commonly used measure. More fundamentals of
branching heuristics about the SAT problem can be found in [1].

We use T (μ) to denote the maximum size or number of leaves of the search
tree generated by the algorithm for any instance with the measure being at
most μ. For a branching operation that branches on the current instance into l
branches with the measure decreasing by at least ai in the i-th branch, we get a
a recurrence relation

T (μ) ≤ T (μ − a1) + T (μ − a2) + · · · + T (μ − al).

The recurrence relation can also be simply represented by a branching vector
[a1, a2, . . . , al]. The largest root of the function f(x) = 1 − ∑l

i=1 x−ai is called
the branching factor of the recurrence. If the maximum branching factor for
all branching operations in the algorithm is at most γ, then T (μ) = O(γµ). If
on each node of the search tree, the algorithm runs in polynomial time, then
the total running time of the algorithm is O∗(γµ). For two branching vectors
a = [a1, a2, . . . , al] and b = [b1, b2, . . . , bl], if ai ≥ bi holds for all i = 1, 2 . . . , l,
then the branching factor of a is not greater than that of b. For this case, we
say b dominates a. This property will be used in many places to simplify some
arguments in the paper. More details about analyzing recurrences can be found
in the monograph [8].

The measure-and-conquer method [7] is a powerful tool to analyze branch-
and-search algorithms. The main idea of the method is to adopt a new measure
in the analysis of the algorithm. For example, instead of using the number of
variables as the measure, it may set weights to different variables and use the
sum of all variable weights as the measure. This method may be able to catch
more structural properties and then get further improvements. Nowadays, the
fastest exact algorithms for many NP-hard problems were designed by using this
method. In this paper, we will also use the measure-and-conquer method.
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We introduce a weight to each variable in the formula according to the degree
of the variable, w : Z+ → R

+, where Z
+ and R

+ denote the sets of nonnegative
integers and nonnegative reals, respectively. Let wi denote the weight of a vari-
able with degree i. A variable with lower degree will not receive a higher weight.
i.e., wi ≥ wi−1. In our algorithm, the measure of a formula F is defined as

μ(F) =
∑

x

wdeg(x). (1)

In other words, μ(F) is the sum of the weight of all variables in F . Let ni denote
the number of i-variables in F . Then we also have that μ(F) =

∑
i wini.

One important step is to set the value of weight wi. Different values of wi

will generate different branching vectors and factors. We need to find a good
setting of wi so that the worst branching factor is as small as possible. We
will get the value of wi by solving a quasiconvex program after listing all our
branching vectors. However, we pre-specify some requirements of the weights to
simplify arguments. Some similar assumptions were used in previous measure-
and-conquer algorithms. We set the weight such that

w1 = w2 = 0,

0 < w3 < 2, w4 = 2w3, and
wi = i for i ≥ 5.

(2)

We use δi to denote the difference between wi and wi−1 for i > 0, i.e., δi =
wi − wi−1. By (2), we have

w3 = δ3 = δ4. (3)

We also assume that
δi ≤ δi−1 for i ≥ 3, and
w3 ≥ δ5.

(4)

Under these assumptions, it holds that wi ≤ i for each i. Thus, we have

μ(F) ≤ L(F). (5)

This tells us that if we can get a running time bound of O∗(cµ(F)) for a real
number c, then we also get a running time bound of O∗(cL(F)) for this prob-
lem. To obtain a running time bound in terms of the formula length L(F), we
consider the measure μ(F) and show how much the measure μ(F) decreases in
the branching operations of our algorithm and find the worst branching factor
among all branching vectors.

4 The Algorithm

We will first introduce our algorithm and then analyze its running time bound
by using the measure-and-conquer method. Our algorithm consists of reduc-
tion operations and branching operations. When no reduction operations can be
applied anymore, the algorithm will search for a solution by branching. We first
introduce our reduction rules.



A Fast Algorithm for SAT in Terms of Formula Length 441

4.1 Reduction Rules

We have ten reduction rules. They are well-known and frequently used in the
literature (see [2,17] for examples). So we may omit the proofs of the correctness
of some rules. We introduce the reduction rules in the order as stated and a
reduction rule will be applied in our algorithm only when all previous reduction
rules can not be applied on the instance.

R-Rule 1 (Elimination of duplicated literals). If a clause C contains
duplicated literals z, remove all but one z in C.

R-Rule 2 (Elimination of subsumptions). If there are two clauses C and
D such that C ⊆ D, remove clause D.

R-Rule 3 (Elimination of tautology). If a clause C contains two opposite
literals z and z, remove clause C.

R-Rule 4 (Elimination of 1-clauses and pure literals). If there is a 1-
clause {x} or a (1+, 0)-literal x, assign x = 1.

Davis-Putnam Resolution, proposed in [6], is a classic and frequently used
technology for SAT. Let F be a CNF-formula and x be a variable in F . Assume
that clauses containing literal x are xC1, xC2, ..., xCa and clauses containing lit-
eral x are xD1, xD2, ..., xDb. A Davis-Putnam resolution on x is to construct a
new CNF-formula DPx(F) by the following method: initially DPx(F) = F ;
add new clauses CiDj for each 1 ≤ i ≤ a and 1 ≤ j ≤ b; and remove
xC1, xC2, ..., xCa, xD1, xD2, ..., xDb from the formula. It is known that

Proposition 1 ([6]). A CNF-formula F is satisfiable if and only if DPx(F) is
satisfiable.

In the resolution operation, each new clause CiDj is called a resolvent. A resol-
vent is trivial if it contains both a literal and the negation of it. Since trivial
resolvents will always be satisfied, we can simply delete trivial resolvents from the
instance directly. So when we do resolutions, we assume that all trivial resolvents
will be deleted.

R-Rule 5 (Trivial resolution). If there is a variable x with at most one
non-trivial resolvent, then apply resolution on x.

R-Rule 6 ([2]). If there are a 2-clause z1z2 and a clause C containing both z1
and z2, then remove z2 from C.

R-Rule 7. If there are two clauses z1z2C1 and z1z2C2, where literal z2 appears
in no other clauses, then remove z1 from clause z1z2C1.

Lemma 1. (*) Let F be a CNF-formula and F ′ be the resulting formula after
applying R-Rule 7 on F . Then F is satisfiable if and only if F ′ is satisfiable.

R-Rule 8 ([2]). If there is a 2-clause z1z2 and a clause z1z2C such that literal
z1 appears in no other clauses, remove the clause z1z2 from F .
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R-Rule 9 ([2]). If there is a 2-clause z1z2 such that either literal z1 appears
only in this clause or there is another 2-clause z1z2, then replace z1 with z2 in
F and then apply R-Rule 3 as often as possible.

R-Rule 10 ([2]). If there are two clauses CD1 and CD2 such that |D1|, |D2| ≥ 1
and |C| ≥ 2, then remove CD1 and CD2 from F , and add three new clauses xC,
xD1, and xD2, where x is a new 3-variable.

This is like the Davis-Putnam resolution in reverse and thus it is correct.

Definition 1 (Reduced formulas). A CNF-formula F is called reduced, if
none of the above reduction rules can be applied on it.

Our algorithm will first iteratively apply above reduction rules in the order
to get a reduced formula. We will use R(F) to denote the resulting reduced
formula obtained from F . Next, we show some properties of reduced formulas.

Lemma 2. (*) In a reduced CNF-formula F , all variables are 3+-variables.

Lemma 3. (*) In a reduced CNF-formula F , if there is a 2-clause xy, then no
other clause in F contains xy, xy, or xy.

Lemma 4. (*) In a reduced CNF-formula F , if there is a clause xyC, then

(i) no other clause contains xy;
(ii) no other clause contains xy or xy if x is a 3-variable.

Lemma 5. (*) In a reduced CNF-formula F , if there is (1, i)-literal x and xC
is the only clause containing x, then

(i) |C| ≥ 2;
(ii) all variables in C are different from all variables in N (2)(x, F ), that is, if

y ∈ N (2)(x, F ), then y, y /∈ C.

4.2 Branching Rules and the Algorithm

After getting a reduced formula, we will search for a solution by branching. In a
branching operation, we will generate two smaller CNF-formulas such that the
original formula is satisfiable if and only if at least one of the two new formulas
is satisfiable. The two smaller formulas are generated by specifying the value of
a set of literals in the original formula.

The simplest branching rule is that we pick up a variable or literal x from
F and branch into two branches Fx=1 and Fx=0, where Fx=1 and Fx=0 are the
formulas after assigning x = 1 and x = 0 in F , respectively. When the picked
literal x is a (1, 1+)-literal, we will apply a stronger branching. Assume that xC
is the only clause containing x. Then we branch into two branches Fx=1 & C=0

and Fx=0, where Fx=1 & C=0 is the resulting formula after assigning 1 to x and
0 to all literals in C in F . The correctness of this branching operation is also
easy to observe. Only when all literals in C are assigned 0, we need to assign 1
to x.
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Algorithm 1: SAT(F)
Input: a CNF-formula F
Output: 1 or 0 to indicate the satisfiability of F
Step 1. If F = ∅, return 1. If F contains an empty clause, return 0.
Step 2. If F is not a reduced CNF-formula, iteratively apply the reduction
rules to reduce it.
Step 3. If there is a d-variable x with d ≥ 6, return SAT(Fx=1)∨SAT(Fx=0).
Step 4. If there is a (1, 4)-literal x (assume xC is the only clause containing x),
return SAT(Fx=1 & C=0)∨SAT(Fx=0).
Step 5. If there is a 5-variable x contained in a 2-clause, return
SAT(Fx=1)∨SAT(Fx=0).
Step 6. If there is a 5-variable x contained in a 4+-clause, return
SAT(Fx=1)∨SAT(Fx=0).
Step 7. If there is a clause containing both a 5-variable x and a 4−-variable,
return SAT(Fx=1)∨SAT(Fx=0).
Step 8. If there are still some 5-variables, then F = F∗ ∧ F ′, where F∗ is a
3-CNF with var(F∗) be the set of 5-variables in F and var(F∗) ∩ var(F ′) = ∅.
We return SAT(F∗) ∧ SAT(F ′) and solve F∗ by using the 3-SAT algorithm by
Liu [13].
Step 9. If there is a (1, 3)-literal x (assume xC is the only clause containing x),
return SAT(Fx=1 & C=0)∨SAT(Fx=0).
Step 10. If there is a (2, 2)-literal x, return SAT(Fx=1)∨SAT(Fx=0).
Step 11. Apply the algorithm by Wahlström [18] to solve the instance.

The main steps of our algorithm for the SAT problem are given in Algo-
rithm 1. The algorithm will execute one step only when all previous steps can
not be applied. In Step 2, the algorithm first reduces the formula by applying
the reduction rules. Step 3 will branch on a variable of degree ≥ 6 if it exists.
Steps 4–8 deal with 5-variables. Note that if Steps 1–7 do not apply, then F can
be written as F = F∗ ∧ F ′, where F∗ is a 3-CNF with var(F∗) be the set of
5-variables in F and var(F∗) ∩ var(F ′) = ∅. So we can do Step 8. Steps 9–10
deal with 4-variables. When the algorithm comes to the last step, all variables
must have a degree of 3 and the algorithm deals with this special case.

We compare our algorithm with the previous algorithm by Chen and Liu [2].
We can see that they used a simple and uniform branching rule to deal with vari-
ables of degree at least 5 and used careful and complicated branching rules for 4-
variables. Their bottlenecks contain one case of branching on (2, 3)-variables (or
(3, 2)-variables) and one case of dealing with 4-variables. To get further improve-
ments, we carefully design and analyze the branching rules for 5-variables to
avoid one previous bottleneck, and also refine the branching rules for 4-variables.

5 Framework of the Analysis

We use the measure-and-conquer method to analyze the running time bound
of our algorithm, and adopt μ(F) defined in (1) as the measure to construct
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recurrence relations for our branching operations. Before analyzing each detailed
step of the algorithm, we first introduce the general framework of our analysis.

In each sub-branch of a branching operation, we assign value 1 or 0 to some
literals and remove some clauses and literals. If we assign value 1 to a literal x in
the formula F , then we will remove all clauses containing x and all x literals from
the clauses containing x. The assignment and removing together are called an
assignment operation. We may assign values to more than one literal and we do
assignment operations for each literal. Let S be a subset of literals. We use FS=1

to denote the resulting formula after assigning 1 to each literal in S and doing
assignment operations. Note that FS=1 may not be a reduced formula and we
will apply our reduction rules to reduce it. We use F ′

S=1 to denote the reduced
formula obtained from FS=1, i.e., F ′

S=1 = R(FS=1). We analyze how much we
can reduce the measure in each branch by establishing some lower bounds for

ΔS = μ(F) − μ(F ′
S=1).

We also define
ξ
(1)
S = μ(F) − μ(FS=1);

ξ
(2)
S = μ(FS=1) − μ(F ′

S=1).

Thus, ΔS = ξ
(1)
S + ξ

(2)
S .

In a branching operation, we will branch into two sub branches. Assume that
the set of literals in S1 are assigned the value in the first sub branch and the set
of literals in S2 are assigned the value in the second sub branch. If we can show

min(ΔS1 ,ΔS2) ≥ a and ΔS1 + ΔS2 ≥ b,

then we can always get a branching vector covered by one of

[a, b − a] and [b − a, a].

This technique will be frequently used in our analysis.

5.1 Some Lower Bounds

Next, we show some detailed lower bounds for ΔS (as well as for ΔS1 + ΔS2).
We first consider ξ

(1)
S and ξ

(2)
S .

According to the assignment operation, we know that all variables of the
literals in S will be deleted in FS=1. So we have a trivial bound

ξ
(1)
S ≥

∑

v∈S

wdeg(v). (6)

To get better bounds, we first define some notations. For a literal x in a
reduced formula F , we define:

– ni(x): the number of i-variables whose literals appear in N(x,F);
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– n′
i(x): the number of i-variables whose literals appear in N (2)(x,F);

– n′′
i (x): the number of i-variables whose literals appear in N (3+)(x,F).

Note that by the definition, we always have that ni(x) = n′
i(x) + n′′

i (x).
Next, we give some lower bounds on ξ

(1)
S , ξ

(2)
S , and ΔS1 + ΔS2 , which will be

used to prove our main results.

Lemma 6. (*) Assume that F is a reduced CNF-formula. Let S = {x}, where
x is a literal in F . It holds that

ξ
(1)
S ≥ wdeg(x) +

∑

i≥3

ni(x)δi. (7)

Lemma 7. (*) Assume that F is a reduced CNF-formula of degree d. Let S =
{x}, where x is a (j, d − j)-literal in F . It holds that

ξ
(1)
S ≥ wd + jδd. (8)

Lemma 8. (*) Assume that F is a reduced CNF-formula of degree d. Let S =
{x}, where x is a literal in F . It holds that

ξ
(2)
S ≥ n′

3(x)w3 +
∑

4≤i≤d

n′
i(x)wi−1. (9)

Lemma 9. (*) Assume that F is a reduced CNF-formula of degree d. Let S1 =
{x} and S2 = {x}, where the corresponding variable of x is a d-variable in F .
It holds that

ΔS1+ΔS2 ≥ 2wd+2dδd+(n′
3(x)+n′

3(x))(2w3−2δd)+
∑

4≤i≤d

(n′
i(x) + n′

i(x))(wi − 2δd). (10)

Lemma 10. (*) Assume that F is a reduced CNF-formula of degree d. Let x be
a (1, d−1)-literal and xC be the only clause containing x in F . Let S = {x}∪C.
It holds that

ΔS ≥ wd + 2w3 +
∑

3≤i≤d

n′
i(x)wi. (11)

Lemma 11. (*) Assume that F is a reduced CNF-formula of degree d. Let x be
a (1, d−1)-literal and xC be the only clause containing x in F . Let S1 = {x}∪C
and S2 = {x}. It holds that

ΔS1 + ΔS2 ≥ 2wd + 2w3 + 2(d − 1)δd. (12)

Lemma 12. (*) Assume that F is a reduced CNF-formula of d = 5. Let S1 =
{x} and S2 = {x}, where the corresponding variable of x is a 5-variable in F . If
all clauses containing x or x are 3+-clauses, it holds that

ΔS1 + ΔS2 ≥ 2w5 + (
∑

3≤i≤5

(ni(x) + ni(x)))δ5 + (
∑

3≤i≤4

(ni(x) + ni(x)))(w3 − δ5).

(13)
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6 Step Analysis

Equipped with the above lower bounds, we are ready to analyze the branching
vector of each step in the algorithm.

6.1 Step 2

In this step, we do not branch and only apply reduction rules to reduce the for-
mula. However, it is still important to show that the measure will never increase
when applying reduction rules, and reduction operations use only polynomial
time.

Lemma 13. (*) For any CNF-formula F , it holds that

μ(R(F)) ≤ μ(F).

Lemma 14. (*) For any CNF-formula F , we can apply the reduction rules in
polynomial time to transfer it to R(F).

6.2 Step 3

In this step, we branch on a variable x of degree at least 6. The two sub-branches
are: S1 = {x}; S2 = {x}. We have the following result:

Lemma 15. The branching vector generated by Step 3 is covered

[w6 + δ6, w6 + 11δ6] or [w6 + 11δ6, w6 + δ6]. (14)

Proof. Since R-Rule 4 is not applicable, both x and x are (1+, 1+)-literals. By
the condition of this case, we have d ≥ 6 and δd = δ6 by (2).

By Lemma 7, we can get that ΔS1 ≥ ξ
(1)
S1

≥ wd + jδd ≥ w6 + δ6 since x is a
(j, d−j)-literal with j ≥ 1. Also, we can get ΔS2 ≥ w6 +δ6 by the same method.

By Lemma 9, we have that ΔS1 +ΔS2 ≥ 2wd +2dδd +(n′
3(x)+n′

3(x))(2w3 −
2δd) +

∑
4≤i≤d (n′

i(x) + n′
i(x))(wi − 2δd) ≥ 2w6 + 12δd since w3 > δd and wi >

2δd for 4 ≤ i ≤ d.
With min(ΔS1 ,ΔS2) ≥ w6 + δ6 and ΔS1 + ΔS2 ≥ 2w6 + 12δ6, we can know

that the branching vector of this case is covered by [w6 + δ6, w6 + 11δ6] or
[w6 + 11δ6, w6 + δ6]. ��

6.3 Step 4

In this step, the algorithm will consider a (1, 4)-literal x. Assume that xC is the
only clause containing x. The two sub-branches are: S1 = {x} ∪ C; S2 = {x}.
We have the following result:

Lemma 16. The branching vector generated by step 4 is covered by

[w5 + 2w3, w5 + 8δ5] or [w5 + 8δ5, w5 + 2w3]. (15)
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Proof. By Lemma 10, we get that ΔS1 ≥ wd+2w3+
∑

3≤i≤d n′
i(x)wi ≥ w5+2w3.

By Lemma 7, we have that ΔS2 ≥ ξ
(1)
S2

≥ wd + jδd = w5 + 4δ5 since x is a (4, 1)-
literal.

By Lemma 11, we can get that ΔS1 + ΔS2 ≥ 2wd + 2w3 + 2(d − 1)δd =
2w5 + 2w3 + 8δ5.

Since w3 < 2 and w5 = 5 by (2), we have 2w5 > 5w3, i.e., 2w5 − 4w3 >
w3. Since w4 = 2w3 by (4), we have 2w5 − 2w4 > w3 ⇒ 2δ5 > w3. So
min(ΔS1 ,ΔS2) ≥ w5 + 2w3. Since ΔS1 + ΔS2 ≥ 2w5 + 2w3 + 8δ5, we know
that the branching vector of this case is covered by [w5 + 2w3, w5 + 8δ5] or
[w5 + 8δ5, w5 + 2w3]. ��

6.4 Step 5

In this step, we branch on a 5-variable x such that either x or x is in a 2-clause.
The two sub-branches are: S1 = {x}; S2 = {x}. We have the following result:

Lemma 17. The branching vector generated by step 5 is covered by one of

[w5 + 2δ5, w5 + 4w3 + 4δ5], [w5 + 4w3 + 4δ5, w5 + 2δ5],
[w5 + 3δ5, w5 + 2w3 + 5δ5], and [w5 + 2w3 + 5δ5, w5 + 3δ5].

Proof. We will consider two subcases:
Case 1. There are at least two 2-clause containing literal x or x. Now it

holds that
∑

3≤i≤d n′
i(x) + n′

i(x) ≥ 2. By Lemma 7, we get that ΔS1 ≥ ξ
(1)
S1

≥
wd + jδd ≥ w5 + 2δ5 since x is a (2, 3)-literal or (3, 2)-literal. In a similar way,
we can get that ΔS2 ≥ w5 + 2δ5.

By Lemma 9, we have ΔS1 + ΔS2 ≥ 2wd + 2dδd + (n′
3(x) +

n′
3(x))(2w3 − 2δd) +

∑
4≤i≤d (n′

i(x) + n′
i(x))(wi − 2δd) ≥ 2w5 + 10δ5 +∑

3≤i≤5 (n′
i(x) + n′

i(x))(2w3 − 2δ5) ≥ 2w5+10δ5+2(w3−2δ5) ≥ 2w5+4w3+6δ5
since w4, w5 ≥ 2w3 and

∑
3≤i≤5 n′

i(x) + n′
i(x) ≥ 2.

By min(ΔS1 ,ΔS2) ≥ w5 + 2δ5 and ΔS1 + ΔS2 ≥ 2w5 + 4w3 + 6δ5, we know
that the branching vector of this case is covered by [w5 + 2δ5, w5 + 4w3 + 4δ5]
or [w5 + 4w3 + 4δ5, w5 + 2δ5].

Case 2. There is only one 2-clause containing literal x or x. Note that∑
3≤i≤d n′

i(x) + n′
i(x) = 1. For literal x, it is contained in at least two clauses

and at most one of them is 2-clause. So
∑

3≤i≤d ni(x) ≥ 3 holds.

By Lemma 6, we get that ΔS1 ≥ ξ
(1)
S1

≥ w5 +
∑

3≤i≤d ni(x)δi ≥
w5 + (

∑
3≤i≤d ni(x))δ5 ≥ w5 + 3δ5. Similarly, we also can get that ΔS2 ≥

w5 + 3δ5. By Lemma 9, we get that ΔS1 + ΔS2 ≥ 2wd + 2dδd +
(n′

3(x) + n′
3(x))(2w3 − 2δd) +

∑
4≤i≤d (n′

i(x) + n′
i(x))(wi − 2δd) ≥ 2w5 + 10δ5 +∑

3≤i≤5 (n′
i(x) + n′

i(x))(2w3 − 2δ5) ≥ 2w5+10δ5+(2w3−2δ5) ≥ 2w5+2w3+8δ5
since w4, w5 ≥ 2w3 and

∑
3≤i≤d n′

i(x) + n′
i(x) = 1.

Since min(ΔS1 ,ΔS2) ≥ w5 +3δ5 and ΔS1 +ΔS2 ≥ 2w5 +2w3 +8δ5, we know
that the branching vector of this subcase is covered by [w5 +3δ5, w5 +2w3 +5δ5]
or [w5 + 2w3 + 5δ5, w5 + 3δ5].

These two cases complete the proof. ��
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6.5 Step 6

In this step, all clauses containing a 5-variable are 3+-clauses now. We branch
on a 5-variable x contained in a 4+-clause. The two sub-branches are: S1 = {x};
S2 = {x}. We have the following result:

Lemma 18. The branching vector generated by step 6 is covered by

[w5 + 4δ5, w5 + 7δ5] or [w5 + 7δ5, w5 + 4δ5]. (16)

Proof. Literal x is contained in at least two 3+-clauses. So
∑

3≤i≤d ni(x) ≥ 4

holds. By Lemma 6, we get that ΔS1 ≥ ξ
(1)
S1

≥ w5+(
∑

3≤i≤d ni(x))δd ≥ w5+4δ5.
Similarly, we get that ΔS2 ≥ w5 + 4δ5.

Let m4 be the number of 4+-clauses containing x. We have that∑
3≤i≤5 ni(x) + n′

i(x) ≥ 2(5 − m4) + 3m4 ≥ 10 + m4 ≥ 11 since m4 ≥ 1.
By Lemma 12, We get that ΔS1 + ΔS2 ≥ 2w5 + (

∑
3≤i≤5 (ni(x) + ni(x)))δ5 +

(
∑

3≤i≤4 (ni(x) + ni(x)))(w3 − δ5) ≥ 2w5 + 11δ5 since w3 ≥ δ5.
Since min(ΔS1 ,ΔS2) ≥ w5 + 4δ5 and ΔS1 + ΔS2 ≥ 2w5 + 11δ5, we know

that the branching vector of this case is covered by [w5 + 4δ5, w5 + 7δ5] or
[w5 + 7δ5, w5 + 4δ5]. ��

6.6 Step 7

In Step 7, all clauses containing a 5-variable are 3-clauses. We branch on a 5-
variable x whose literal and a literal of a 4−-variable are in the same clause. The
two sub-branches are: S1 = {x}; S2 = {x}. We have that

Lemma 19. The branching vector generated by step 7 is covered by

[w5 + 4δ5, w5 + w3 + 5δ5] or [w5 + w3 + 5δ5, w5 + 4δ5]. (17)

Proof. There is at least one 4−-variable whose literal is in N(x,F) ∪ N(x,F).
So it holds that

∑
3≤i≤4(ni(x) + ni(x)) ≥ 1.

For literal x, it is contained in at least two 3-clauses, which means that
∑

3≤i≤d ni(x) ≥ 4 holds. By Lemma 6, we get that ΔS1 ≥ ξ
(1)
S1

≥ w5 +∑
3≤i≤5 ni(x)δi ≥ w5 + (

∑
3≤i≤d ni(x))δ5 = w5 + 4δ5. Similarly, we can get

that ΔS2 ≥ w5 + 4δ5.
By Lemma 12, we get that ΔS1 +ΔS2 ≥ 2w5 +(

∑
3≤i≤5 (ni(x) + ni(x)))δ5 +

(
∑

3≤i≤4 (ni(x) + ni(x)))(w3−δ5) ≥ 2w5+w3+9δ5 since
∑

3≤i≤4 ni(x)+ni(x) ≥
1.

Since min(ΔS1 ,ΔS2) ≥ w5 +4δ5 and ΔS1 +ΔS2 ≥ 2w5 +2w3 +8δ5, we know
that the branching vector is covered by [w5 + 4δ5, w5 + w3 + 5δ5] or [w5 + w3 +
5δ5, w5 + 4δ5]. ��
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6.7 Step 8

In Step 8, the literals of all 5-variables form a 3-SAT instance F∗. We apply
the O∗(1.3279n)-time algorithm in [13] for 3-SAT to solve our problem, where
n is the number of variables in the instance. Since w5 = 5, we have that n =
μ(F∗)/w5 = μ(F∗)/5. So the running time for this part will be

O∗(1.3279µ(F
∗)/w5) = O∗(1.0584µ(F

∗)).

6.8 Step 9

In this step, we branch on a (1, 3)-literal x. The two sub-branches are: S1 = {x};
S2 = {x}. We have the following result:

Lemma 20. (*) The branching vector generated by step 9 is covered by

[w4 + 2w3, w4 + 6δ4] or [w4 + 6δ4, w4 + 2w3]. (18)

6.9 Step 10

In this step, we branch on a (2, 2)-literal x. The two sub-branches are: S1 = {x};
S2 = {x}. We have the following result:

Lemma 21. The branching vector generated by step 10 is covered by

[w4 + 2δ4, w4 + 6δ4] or [w4 + 6δ4, w4 + 2δ4]. (19)

Proof. By Lemma 7, we get that ΔS1 ≥ ξ
(1)
S1

≥ wd + jδd = w4 + 2δ4 since x is a
(2, 2)-literal. Similarity, we can get that ΔS2 ≥ w4 + 2δ4.

By Lemma 9, we have ΔS1 + ΔS2 ≥ 2wd + 2dδd + (n′
3(x) + n′

3(x))(2w3 −
2δd) +

∑
4≤i≤d (n′

i(x) + n′
i(x))(wi − 2δd) = 2w4 + 8δ4 + (n′

3(x) + n′
3(x))(2w3 −

2δ4) + (n′
4(x) + n′

4(x))(w4 − 2δ4) = 2w4 + 8δ4.
Since min(ΔS1 ,ΔS2) ≥ w4 + 2δ4 and ΔS1 + ΔS2 ≥ 2w4 + 8δ4, we know that

the branching vector is covered by [w4 + 2δ4, w4 + 6δ4] or [w4 + 6δ4, w4 + 2δ4].
��

6.10 Step 11

All variables are 3-variables now. We apply the O∗(1.1279n)-time algorithm by
Wahlström [18] to solve this special case, where n is the number of variables.
For this case, we have that n = μ(F)/w3. So the running time of this part is

O∗((1.12791/w3)µ(F)).
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7 The Final Result

Each one of the branching vectors above will generate a constraint in our quasi-
convex program to solve the best value for w3 and w4. Let αi denote the branch-
ing factor for branching vector (i) where 14 ≤ i ≤ 21. We want to find the mini-
mum value α such that α ≤ αi and α ≤ 1.12791/w3 (generated by Step 11) under
the assumptions (2) and (4). By solving this quasiconvex program, we get that
α = 1.0646 by letting w3 = 1.9234132344759123 and w4 = 3.8468264689518246.
Note that α = 1.0646 is greater than 1.0584 the branching factor generated in
Step 8. So 1.0646 is the worst branching factor in the whole algorithm. By (5),
we get the following result.

Theorem 1. Algorithm 1 solves the SAT problem in O∗(1.0646L) time.

Table 2. The weight setting

w1 = w2 = 0

w3 = 1.9234132344759123 δ3 = 1.9234132344759123

w4 = 3.8468264689518246 δ4 = 1.9234132344759123

w5 = 5 δ5 = 1.1531735310481754

wi = i(i ≥ 6) δi = 1(i ≥ 6)

Table 3. The branching vector and factor for each step

Steps Branching vectors Branching factors

Step 3 [w6 + δ6, w6 + 11δ6] 1.0636

Step 4 [w5 + 2w3, w5 + 8δ5] 1.0632

Step 5 [w5 + 3δ5, w5 + 2w3 + 5δ5] 1.0618

[w5 + 2δ5, w5 + 4w3 + 4δ5] 1.0636

Step 6 [w5 + 4δ5, w5 + 7δ5] 1.0636

Step 7 [w5 + 4δ5, w5 + 5δ5 + w3] 1.0646

Step 8 O∗((1.32791/w5)µ) 1.0584

Step 9 [w4 + 2w3, w4 + 6δ4] 1.0646

Step 10 [w4 + 2δ4, w4 + 6δ4] 1.0646

Step 11 O∗((1.12791/w3)µ) 1.0646

We also show the whole weight setting in Table 2 and the branching vector
of each step under the setting in Table 3. From Table 3, we can see that we have
four bottlenecks: Steps 7, 9, 10, and 11. In fact, Steps 9, 10, and 11 have the
same branching vector [4w3, 8w3] under the assumption that w4 = 2w3 (for Step
11, the worst branching vector in [18] is [4, 8]). The branching factor for these
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three steps will decrease if the value of w3 increases. On the other hand, the
branching factor for Step 7 will decrease if the value of w3 decreases. We set the
best value of w3 to balance them. If we can either improve Step 7 or improve
Steps 9, 10, and 11 together, then we may get a further improvement. However,
the improvement is very limited and several other bottlenecks will appear.

8 Concluding Remarks

In this paper, we show that the SAT problem can be solved in O∗(1.0646L) time,
improving the previous bound in terms of the input length obtained more than 10
years ago. Nowadays, improvement becomes harder and harder. However, SAT
is one of the most important problems in exact and parameterized algorithms,
and the state-of-the-art algorithms are frequently mentioned in the literature.
Furthermore, in order to give a neat and clear analysis, we introduce a general
analysis framework, which can even be used to simplify the analysis for other
similar algorithms based on the measure-and-conquer method.
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