
Scheduling Reach Mahjong Tournaments
Using Pseudoboolean Constraints

Martin Mariusz Lester(B)

University of Reading, Reading, UK
m.lester@reading.ac.uk

Abstract. Reach mahjong is a gambling game for 4 players, most pop-
ular in Japan, but played internationally, including in amateur tourna-
ments across Europe. We report on our experience of generating tour-
nament schedules for tournaments hosted in the United Kingdom using
pseudoboolean solvers. The problem is essentially an extension of the
well-studied Social Golfer Problem (SGP) in operations research. How-
ever, in our setting, there are further constraints, such as the positions
of players within a group, and the structure of the tournament graph,
which are ignored in the usual formulation of the SGP. We tackle the
problem primarily using the SAT/pseudoboolean solver clasp, but some-
times augmented with an existing local search-based solver for the SGP.

Keywords: Social Golfer Problem · Mahjong · Tournament
scheduling · Pseudoboolean constraints

Reach mahjong (or riichi mahjong) is a gambling game for 4 players. A game
(or hanchan) is played over several rounds. In each round, players seated at a
table sequentially draw and discard tiles in an attempt to form a winning hand
of 14 tiles. At the end of the round, the losing players pay a number of points to
the winner, according to the value of his hand. The player with the most points
at the end of the game is the winner.

Reach mahjong is most popular in Japan, although it is played throughout
the world. In Europe, a few hundred amateur players compete in tournaments
arranged throughout the year and around the continent. Tournaments are typi-
cally organised locally, but run following rules published by the European Mahjong
Association (EMA) [1], which has approved and ranked tournaments since 2008.
This raises the question of how best to schedule games in a tournament.

We report on our experience of using the pseudoboolean (PB) solver clasp [8]
to generate tournament schedules (such as Table 1) for tournaments run in the
United Kingdom since 2013. This includes generating a schedule for 128 players
over 10 sessions for the 2016 European Riichi Mahjong Championship (ERMC),
which satisfied a complex combination of constraints. Our software CoMaToSe
(Constraint Mahjong Tournament Scheduler) and benchmarks are online [13].

In Sect. 1 we describe some details of the tournament scheduling problem and
the constraints that they lead to. Then, in Sect. 2, we describe how we encode those
c© Springer Nature Switzerland AG 2021
C.-M. Li and F. Manyà (Eds.): SAT 2021, LNCS 12831, pp. 349–358, 2021.
https://doi.org/10.1007/978-3-030-80223-3_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80223-3_24&domain=pdf
http://orcid.org/0000-0002-2323-1771
https://doi.org/10.1007/978-3-030-80223-3_24

350 M. M. Lester

constraints. The scheduling problem is essentially an extension of the Social Golfer
Problem (SGP), which is amenable to solution using SAT solvers [9,12], but we
found that for larger tournaments, and with our extended set of constraints, a PB
formulation was more tractable. To our knowledge, there is no previous published
work considering mahjong tournament scheduling; our encoding of the constraints
extending the SGP is original. We evaluate our approach in Sect. 3. Finally, in
Sect. 4 we discuss related work on the SGP, and more generally on tournament
scheduling for games with more than 2 players, before concluding.

1 Problem Description

Size, length and format. A number of practical constraints and conventions have
arisen over time that essentially fix the format of a tournament. Tournaments typ-
ically take place at the weekend, so usually last 1–2 days. Players may travel to a
tournament and expect to play throughout; tournament rules specify that all play-
ers should play the same number of games and, after adding up each player’s score
in every game, the player with the highest score should be the winner. Games are
played to a time limit in a session of 90 min. Allowing time for breaks and so on, it
is usual to have 3–5 sessions in a day, for a total of 4–10 sessions in a tournament.
A 2-day tournament might typically attract around 48 players. Every 3 years, a
European Championship (ERMC) is held, which lasts longer and attracts more
players. The main phase of the 2016 championship in the UK had 128 players over
10 sessions; the 2019 championship in the Netherlands had 140 players over 12 ses-
sions. A tournament venue usually has enough tables and equipment to allow all
participants to play simultaneously, although this may be variable in quality.

Wind Allocation. During each round, each player is allocated a different com-
pass point (East, South, West or North) as his wind. The East player is the dealer.
When he wins, he gets 50% more points and stays as dealer for the next round.
If he does not win, the wind allocations rotate. He becomes North for the next
round, the South player becomes East, and so on. In a full game, each player
gets to be East twice; being North initially (and hence East last) may be an
advantage because it confers some control over when the game ends. However,
if a game is curtailed because of a tournament time limit, being North or West
initially puts one at a disadvantage, as one often misses a second turn as dealer.

Table 1. A tournament schedule for 24 players and 5 sessions (SGP 6-4-5) with d = 10.

Table 1 2 3 4 5 6
Session E S W N E S W N E S W N E S W N E S W N E S W N

1 1 3 2 4 7 8 5 6 11 12 10 9 14 13 15 16 17 20 18 19 24 22 23 21
2 9 23 7 17 3 19 10 15 16 6 24 2 8 18 21 12 22 5 1 14 20 11 4 13
3 11 18 14 24 21 1 13 17 20 7 3 22 10 4 6 23 2 15 9 8 12 16 19 5
4 15 21 6 20 4 22 16 9 19 23 8 14 2 17 11 5 3 24 12 13 18 10 1 7
5 13 8 22 10 23 2 20 12 5 15 4 18 19 9 24 1 7 16 21 11 6 14 17 3

Scheduling Reach Mahjong Tournaments Using Pseudoboolean Constraints 351

The core problem is thus how best to schedule 4–12 sessions of a 4-player
game for 16–140 players. Initial wind allocations for a table can be included in
the schedule, or they can be drawn at random by the players before the game.
Players might feel aggrieved if they have a disadvantageous wind allocation, even
if it was produced at random. Balanced allocation of winds in the schedule avoids
this and reduces setup time at the start of the game.

1.1 Constraints

The following have been suggested as desirable properties in a schedule:

Socialisation: Players want to play as many different opponents as possible.
Wind balance: In order to share the potential penalty of not getting a second

turn as dealer across all players, each player should be allocated each starting
wind position roughly an equal number of times. Obviously, this is not possible
when the number of sessions is not a multiple of 4 and even then, it may not
always be possible.

Table movement: To reduce the chances of cheating, and to share the incon-
venience of playing on a table with low-quality equipment, a player should
not play on the same table twice.

Of these, most players consider socialisation most important. With just this
requirement, tournament scheduling is an instance of the well-studied SGP. With
the relatively low ratio of players to sessions in many tournaments, satisfying
just this requirement leaves relatively little scope for changing who plays who in
each round. However, in larger tournaments, we may also wish to consider what
properties are desirable in the tournament graph of “who plays who”. Intuitively,
we can view a tournament as a process by which points flow along edges from
losing players to winning players. We then expect that the final scores of players
are indicative of a linear ordering of their skill, but this depends on there being
adequate potential for points to flow between any two players. This leads to the
following desirable properties of the tournament graph:

Graph connectedness: The tournament graph should be connected.
Graph diameter: The diameter of the tournament graph (greatest distance

between any pair of players) of the tournament should be as low as possible. In
our setting, this usually means 2. This is a stronger version of the requirement
that the graph be connected, with the same motivation. If two players cannot
face each other directly, points can still flow between them via other players,
but we would like the route to be as short as possible.

Multiple short paths: If two players in the tournament graph are not adja-
cent, there should be multiple paths between them, ideally of length 2. This
increases the potential for indirect flow of points between them.

For a tournament graph with diameter 2, we will refer to the minimum num-
ber of paths of length 2 between any two non-adjacent players in the tournament
graph as d. Necessarily, d ≥ 1. For the schedule in Table 1, we used graph con-
straints to enforce d = 10; prior to this, the schedule had d = 9.

352 M. M. Lester

2 Problem Encoding

As the most important constraint is socialisation, we start with a PB encoding
for the SGP, then add our other constraints in a monolithic formulation. By
convention, we refer to an SGP instance as g-p-w with:

– g — the number of groups playing simultaneously
– p — the number of players in a group (always 4 for mahjong)
– w — the number of sessions (weeks in the SGP)

We chose our solver by evaluating participants in the SAT and PB [4] compe-
titions of 2012, which were the most recent competitions at the time. Of these,
we found that clasp [8] was most effective, particularly when run with the crafty
preset for combinatorially hard problems.

Initially, we had focused on the use of SAT, as Triska had developed an
effective SAT encoding of the SGP [18]. However, his socialisation constraint
is O(g4p2w2). For large numbers of players, we found that just generating the
constraints was too slow, so starting with the 2016 European Championship
(SGP 32-4-10), we adopted a PB formulation.

We had assumed that, while a PB might not find an optimal solution, if it
ceased to make progress, it would at least have found a locally optimal solution.
However, a tournament organiser told us he had been able to improve wind
balance in a generated schedule by shuffling wind allocations of two tables. We
found that, using an encoding that considered only wind balance, we could fine-
tune the schedule generated from the monolithic encoding and automate this.

Although the SAT/PB method for solving SGP instances is competitive, the
best automated method currently known is Triska’s heuristic-guided local search
algorithm [17]; an implementation by Rezaei is available online [15]. Therefore,
for tournament schedules that correspond to hard instances of the SGP, we can
import a solution to the SGP instance and just tune the wind balance. While
fixing group allocations in this way may remove the best solutions from the space
considered by the solver, in practice it allows us to find better solutions than
using a constraint solver in isolation. In all cases we considered, we were able to
find an optimal wind allocation this way.

2.1 Monolithic Constraint Encoding

We now present our monolithic PB constraint encoding of the problem. We set
n = g.p as the number of players. The constraints range over the following
Boolean variables, where h, i, j ∈ [1, n] with j > i, h �= i and h �= j, k ∈ [1, g],
l ∈ [1, w] and s ∈ [1, p]:

– Pi,k,l — true just if i plays in group k in session l
– Si,k,l,s — true just if i plays in group k in session l in seat position s
– Mi,j,l — true if i and j meet in session l
– Ci,j — true only if i and j meet (compete) in any session
– Di,j,h — true only if i and j both meet h (compete indirectly)

Scheduling Reach Mahjong Tournaments Using Pseudoboolean Constraints 353

We encode East as position 1, South as 2 and so on. Constraint sets are as follows;
quantification (∀,

∑
) of indices is always implicitly over the ranges above.

Each group must have exactly p players:

∀k, l.∑i Pi,k,l = p (1)

Each player must play in exactly one group in each session:

∀i, l.∑k Pi,k,l = 1 (2)

Optionally, to break symmetries, order players sequentially in the first session:

∀i.Pi,�i/g�,1 = 1 (3)

If i and j play in the same group in the same session, then they must meet in
that session:

∀i, j, k, l.−P i,k,l + −P j,k,l + Mi,j,l ≥ −1 (4)

and they must meet at most once over all sessions:

∀i, j.∑l −M i,j,l ≥ −1 (5)

i and j competed only if they played in the same group in any session:

∀i, j.−Ci,j +
∑

k,l Pi,k,lPj,k,l ≥ 0 (6)

i and j competed indirectly via h only if they both competed with h:

∀i, j, h.Cmin(i,h),max(i,h) + Cmin(h,j),max(h,j) + −2Di,j,h ≥ 0 (7)

i and j must compete directly, or compete indirectly d times (d configurable):

∀i, j.d · Ci,j +
∑

h Di,j,h ≥ d (8)

Each player must play in each group at most once over all sessions:

∀i, k.∑l −P i,k,l ≥ −1 (9)

If i sits in a position in a group, he must play in that group:

∀i, k, l, s.−Si,k,l,s + Pi,k,l ≥ 0 (10)

If i plays in a group, he must sit in one of its positions:

∀i, k, l.−P i,k,l +
∑

s Si,k,l,s ≥ 0 (11)

Exactly one player must sit in every seat:

∀k, l, s.∑i Si,k,l,s = 1 (12)

354 M. M. Lester

Each player must play in each position (roughly) the same number of times:

∀i, s.∑k,l Si,k,l,s ≥ �w/p� ∀i, s.∑k,l −Si,k,l,s ≥ −�w/p	 (13)

Constraints 1–5 follow Walser [20]; the rest are original. The constraint sets
are largely orthogonal: any of 4–5 (socialisation), 6–8 (enforcing d), 9 (table
movement) and 10–13 (wind balance) can be removed independently. Note con-
straints 6 are non-linear. Concerning size: 4–5 is O(g2p2w) (O(g2w) smaller than
Triska’s SAT encoding); 6–8 is O(g3p3); 10–13 is O(g2p2w).

In practice, it may not always be possible to satisfy all constraints simulta-
neously, whether because there is no solution, or because the solver cannot find
one. In these cases, constraint sets 5, 8, 9 or 13 can be made soft, turning the
problem into a Weighted Boolean Optimisation (WBO) instance.

Apart from the obvious symmetry breaking of fully specifying session 1, most
existing symmetry breaking techniques for the SGP violate the extra constraints
in our problem. For example, putting players 1–4 on tables 1–4 in later rounds,
or requiring that the tables are ordered by lowest numbered player on the table,
violates table movement. Formulations of the pure SGP that encode a table as an
ordered list usually benefit from breaking symmetry in the ordering of players.
In the PB formulation, native cardinality constraints make it easy to encode a
table as an unordered set, so there is no symmetry to break. Of course, when
one adds wind allocation, ordering of players at a table is no longer a symmetry.

2.2 Wind Balancing Constraint Encoding

Our constraint encoding for fine-tuning wind allocations uses variables Wi,l,s,
which are true just if player i is in position s in session l. The constraints depend
on a fixed allocation of players to groups, which we refer to using values of P
variables from the monolithic encoding; tuning can only change a player’s seat
at a table. Our encoding is as follows. Each player must have a seat:

∀i, l.∑s Wi,l,s = 1 (14)

Exactly one player in a group can take each seat:

∀k, l, s.∑{i|Pi,k,l} Wi,l,s = 1 (15)

Each player must play in each position (roughly) the same number of times:

∀i, s.∑l Wi,l,s ≥ �w/p� ∀i, s.∑l −W i,l,s ≥ −�w/p	 (16)

3 Evaluation

We have used our encoding to generate schedules for the 2016 ERMC and several
smaller tournaments in the UK. Timings were generated on a machine running

Scheduling Reach Mahjong Tournaments Using Pseudoboolean Constraints 355

Debian Linux 10 with a 3.4 GHz Intel Core i5-7500 CPU and 64 GB of RAM.
We used clasp 3.3.4 with crafty preset and Rezaei’s local search SGP solver [15].

For the 2016 ERMC (32-4-10), we used our monolithic encoding, incremen-
tally turning on constraints to obtain the best schedule possible. Enforcing just
socialisation took 18 s. We turned on table movement and wind balance, tight-
ening the wind constraints (13) to give each player 2 turns in each seat plus 1
turn as East or South and 1 turn as West or North; solving this took 2 m 10 s.
The schedule’s tournament graph already had diameter 2, but d = 1. Adding
the constraint d = 2, it took 14 m to solve. Changing to d = 3, clasp found no
solution in 1 h. So finally, keeping the hard constraint d = 2 and adding a soft
constraint d = 3, with a timeout of 1 h, we generated a schedule violating only
122 of

(
128
2

)
= 8128 soft constraints. Overall, the instance had 1.3M variables

and 3.9M constraints. Appendix A shows benchmarks for similar instances.
For comparison, solving the SGP instance with local search and balancing

the winds using our constraint formulation yielded a solution in less than 1s.
The tournament graph had diameter 2, but with d = 1, and there is no easy way
to tune the graph while maintaining socialisation.

For the smaller tournaments, the tournament graph was necessarily low diam-
eter, so we did not enforce it with constraints. 1-day tournaments usually had
5 sessions and ranged from 24 to 52 players (6-4-5 to 13-4-5). 2-day tourna-
ments usually had 8 sessions and ranged from 32 to 68 players (8-4-8 to 17-4-8).
We benchmarked our monolithic encoding on these intervals, setting a solver
time limit of 10m and making wind balance a soft constraint. For instances in
the 1-day interval, it took less than 0.5 s to solve constraints for a schedule with
maximal socialisation, table movement and wind balance, except for 6-4-5, which
took 3.6 s. For the 2-day interval (see Table 2), the 8-4-8 instance is significant
as it is the original formulation of the SGP, and remains out of reach for SAT-
and PB-based methods, including ours, so we imported a solution to balance.
For 9-4-8 and 10-4-8, clasp solved the constraints only with wind balance turned
off. For the rest of the interval, clasp found solutions with 2–21 wind constraint
violations. In all cases, whether using schedules generated by our monolithic
encoding, or importing schedules generated by local search, we were able to
tune wind balance perfectly, satisfying all constraints, usually in under 2 s.

Table 2. Benchmarks applying monolithic encoding to 2-day tournaments (g-4-8).

Groups 8 9 10 11 12 13 14 15 16 17

Variables 14k 18k 22k 27k 32k 37k 44k 50k 57k 64k

Constraints 43k 60k 81k 105k 134k 168k 207k 252k 304k 361k

Socialisation only time (s) − 53 0.52 0.46 0.56 0.77 0.94 1.2 1.5 1.7

Constraints violated after 10m − − − 2 3 3 3 13 11 21

Total wind constraints − − − 176 192 208 224 240 256 272

Wind balance tuning time (s) 0.045 1.2 0.094 0.15 0.17 0.030 1.5 0.13 15 9.5

356 M. M. Lester

Table 3. Comparison of NLC WBO solvers. Constraints violated after 10 m (g-4-8).

Groups 8 9 10 11 12 13 14 15 16 17

clasp - - - 2 3 3 3 13 11 21

SAT4J - - - 36 9 8 10 16 20 28

NaPS - - - - 38 30 46 67 49 73

ToySat - - - - - - - - - -

Groups 8 9 10 11 12 13 14 15 16 17

SAT4J-cutting - - - - - - - - 65 69

SAT4J-rounding - - - - - - - 100 - 86

SAT4J-partial - - - - - - - - - 76

To confirm that clasp was still an appropriate choice of solver, we compared
up-to-date versions of entrants in the relevant track (WBO SOFT-SMALLINT-
NLC) of the most recent PB Competition (2016), as well as experimental versions
of SAT4J using the cutting planes and rounding SAT techniques. Table 3 shows
the comparison. Although the standard SAT4J solver is competitive, clasp is
still best. Some new PB solvers have participated in the more active MaxSAT
Evaluation competition, but none supports WBO with non-linear clauses.

Summary: For large instances, where the tournament graph structure was of
concern, our monolithic constraint encoding allowed the graph to be optimised
at the same time as allocating wind positions. For hard SGP instances, we neces-
sarily had to import an SGP solution, but our wind encoding successfully tuned
this. In other cases, there was little difference between the quality of schedules
generated: using our monolithic encoding, then tuning wind allocations if nec-
essary; and using a local search SGP solver, followed by tuning wind allocation.
However, the latter was considerably faster.

4 Related Work and Conclusions

The SGP was posted on the Usenet group sci.op-research in 1998. The origi-
nal SGP, to find the highest w for which 8-4-w is solvable, is problem 10 in
CSPLib [10]. Optimal solutions of the SGP are entry A107431 in OEIS [2].
Walser suggested a PB encoding [20]. Later, Gent and Lynce proposed a SAT
encoding [9]. Much work on solving SGP instances focuses on breaking symme-
tries [3,6,7,11]. Triska studied the problem extensively [16–18].

Recently, Lardeux and others revisited the SAT encoding, exploring effi-
cient, correct translation of set constraints [12]; they seem unaware of PB prob-
lems/solvers. Liu and others investigated solving SGP instances in parallel [14].

We found no previous research specifically on scheduling a mahjong tourna-
ment. Bridge and whist are 4-player games, but played by 2 co-operating pairs,
not 4 competing individuals. Individual bridge tournaments [19] were played in
the past, but are currently not popular. Whist games are shorter than mahjong
games, and partnership is still significant, which leads to different goals [5].

We have shown how to generate good tournament schedules for reach
mahjong tournaments run according to the conventions of the European Mahjong
Association. Since 2013, our approach has been used to generate schedules for
several tournaments hosted in the UK, including the 2016 ERMC. Our experi-
ence reaffirms the message that SAT/PB solvers are an effective and convenient

Scheduling Reach Mahjong Tournaments Using Pseudoboolean Constraints 357

but imperfect tool for solving complex problems that arise in real life. We think it
is likely that a custom local search algorithm that considered all our constraints
simultaneously would outperform our approach. However, this would have been
far less convenient than applying an existing solver.

A Benchmarks for Large Instances

Table 4. Benchmarks applying monolithic encoding to large tournaments (g-4-10).

Groups 28 29 30 31 32 33 34 35 36

Soc. + wind time (s) 2.7 3.1 4.2 3.3 131 5.3 102 76 241
Soc. + wind + d = 2 time (s) 46 46 38 100 847 664 1189 - -

With d = 3 soft: Variables 0.9M 1.0M 1.1M 1.2M 1.3M 1.4M 1.5M 1.7M 1.8M
Constraints 2.6M 2.9M 3.2M 3.5M 3.8M 4.2M 4.6M 5.0M 5.5M

Constraints violated after 1h 0 62 61 1 122 196 - 327 -

References

1. European Mahjong Association. http://mahjong-europe.org/
2. The on-line encyclopedia of integer sequences. https://oeis.org/A000108, sequence

A000108
3. Azevedo, F.: An attempt to dynamically break symmetries in the social golfers

problem. In: Azevedo, F., Barahona, P., Fages, F., Rossi, F. (eds.) CSCLP 2006.
LNCS (LNAI), vol. 4651, pp. 33–47. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-73817-6 2

4. Balint, A., Belov, A., Järvisalo, M., Sinz, C.: Overview and analysis of the SAT
challenge 2012 solver competition. Artif. Intell. 223, 120–155 (2015). https://doi.
org/10.1016/j.artint.2015.01.002

5. Berman, D.R., McLaurin, S.C., Smith, D.D.: Ranking whist players. Discret. Math.
283(1–3), 15–28 (2004). https://doi.org/10.1016/j.disc.2004.01.005

6. Cotta, C., Dotú, I., Fernández, A.J., Van Hentenryck, P.: Scheduling social golfers
with memetic evolutionary programming. In: Almeida, F., et al. (eds.) HM 2006.
LNCS, vol. 4030, pp. 150–161. Springer, Heidelberg (2006). https://doi.org/10.
1007/11890584 12

7. Dotú, I., Van Hentenryck, P.: Scheduling social golfers locally. In: Barták, R.,
Milano, M. (eds.) CPAIOR 2005. LNCS, vol. 3524, pp. 155–167. Springer, Heidel-
berg (2005). https://doi.org/10.1007/11493853 13

8. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: clasp: a conflict-driven
answer set solver. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS
(LNAI), vol. 4483, pp. 260–265. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-72200-7 23

9. Gent, I.P., Lynce, I.: A SAT encoding for the social golfer problem. In: In
IJCAI2005 Workshop on Modelling and Solving Problems with Constraints (2005).
https://www.inesc-id.pt/ficheiros/publicacoes/2516.pdf

10. Harvey, W.: CSPLib problem 010: Social golfers problem. http://www.csplib.org/
Problems/prob010

http://mahjong-europe.org/
https://oeis.org/A000108
https://doi.org/10.1007/978-3-540-73817-6_2
https://doi.org/10.1007/978-3-540-73817-6_2
https://doi.org/10.1016/j.artint.2015.01.002
https://doi.org/10.1016/j.artint.2015.01.002
https://doi.org/10.1016/j.disc.2004.01.005
https://doi.org/10.1007/11890584_12
https://doi.org/10.1007/11890584_12
https://doi.org/10.1007/11493853_13
https://doi.org/10.1007/978-3-540-72200-7_23
https://doi.org/10.1007/978-3-540-72200-7_23
https://www.inesc-id.pt/ficheiros/publicacoes/2516.pdf
http://www.csplib.org/Problems/prob010
http://www.csplib.org/Problems/prob010

358 M. M. Lester

11. Harvey, W., Winterer, T.: Solving the MOLR and social golfers problems. In: van
Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 286–300. Springer, Heidelberg (2005).
https://doi.org/10.1007/11564751 23

12. Lardeux, F., Monfroy, E., Crawford, B., Soto, R.: Set constraint model and auto-
mated encoding into SAT: application to the social golfer problem. Ann. Oper.
Res. 235(1), 423–452 (2015). https://doi.org/10.1007/s10479-015-1914-5

13. Lester, M.M.: CoMaToSe: Constraint Mahjong Tournament Scheduler (May 2021).
https://doi.org/10.5281/zenodo.4764650

14. Liu, K., Löffler, S., Hofstedt, P.: Social golfer problem revisited. In: van den Herik,
J., Rocha, A.P., Steels, L. (eds.) ICAART 2019. LNCS (LNAI), vol. 11978, pp.
72–99. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-37494-5 5

15. Rezaei, A.: Golfer: A toolkit for solving social golfer problem (2015). https://
github.com/arezae4/golfer

16. Triska, M.: Solution methods for the social golfer problem (2008). https://www.
metalevel.at/mst.pdf, Master’s thesis

17. Triska, M., Musliu, N.: An effective greedy heuristic for the social golfer prob-
lem. Ann. Oper. Res. 194(1), 413–425 (2012). https://doi.org/10.1007/s10479-
011-0866-7

18. Triska, M., Musliu, N.: An improved SAT formulation for the social golfer prob-
lem. Ann. Oper. Res. 194(1), 427–438 (2012). https://doi.org/10.1007/s10479-010-
0702-5

19. English Bridge Union: Individual competitions. https://www.ebu.co.uk/
documents/cmh/Individuals.pdf

20. Walser, J.P.: AMPL model of ‘maximum socializing on the golf course’ (1998).
https://www.csplib.org/Problems/prob010/models/AMPLmodel.txt.html

https://doi.org/10.1007/11564751_23
https://doi.org/10.1007/s10479-015-1914-5
https://doi.org/10.5281/zenodo.4764650
https://doi.org/10.1007/978-3-030-37494-5_5
https://github.com/arezae4/golfer
https://github.com/arezae4/golfer
https://www.metalevel.at/mst.pdf
https://www.metalevel.at/mst.pdf
https://doi.org/10.1007/s10479-011-0866-7
https://doi.org/10.1007/s10479-011-0866-7
https://doi.org/10.1007/s10479-010-0702-5
https://doi.org/10.1007/s10479-010-0702-5
https://www.ebu.co.uk/documents/cmh/Individuals.pdf
https://www.ebu.co.uk/documents/cmh/Individuals.pdf
https://www.csplib.org/Problems/prob010/models/AMPLmodel.txt.html

	Scheduling Reach Mahjong Tournaments Using Pseudoboolean Constraints
	1 Problem Description
	1.1 Constraints

	2 Problem Encoding
	2.1 Monolithic Constraint Encoding
	2.2 Wind Balancing Constraint Encoding

	3 Evaluation
	4 Related Work and Conclusions
	A Benchmarks for Large Instances
	References

