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Abstract. Recently, there has been an interest in studying non-uniform
random k-satisfiability (k-SAT) models in order to address the non-
uniformity of formulas arising from real-world applications. While uni-
form random k-SAT has been extensively studied from both a theoretical
and experimental perspective, understanding the algorithmic complexity
of heterogeneous distributions is still an open challenge. When a suffi-
ciently dense formula is guaranteed to be satisfiable by conditioning or a
planted assignment, it is well-known that uniform random k-SAT is easy
on average. We generalize this result to the broad class of non-uniform
random k-SAT models that are characterized only by an ensemble of dis-
tributions over variables with a mild balancing condition. This balancing
condition rules out extremely skewed distributions in which nearly half
the variables occur less frequently than a small constant fraction of the
most frequent variables, but generalizes recently studied non-uniform k-
SAT distributions such as power-law and geometric formulas. We show
that for all formulas generated from this model of at least logarithmic
densities, a simple greedy algorithm can find a solution with high prob-
ability.

As a side result we show that the total variation distance between
planted and filtered (conditioned on satisfiability) models is o(1) once
the planted model produces formulas with a unique solution with prob-
ability 1−o(1). This holds for all random k-SAT models where the signs
of variables are drawn uniformly and independently at random.
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1 Introduction

Propositional satisfiability is one of the most intensively studied topics in the-
oretical computer science and artificial intelligence. Motivated by the desire to
understand the hardness of typical propositional formulas, random satisfiability
models were developed [23]. The archetype of these random structures is uni-
form random k-SAT: a family of distributions over formulas, parameterized by
length, in conjunctive normal form with k literals in each clause. A vast number
of compelling algorithmic hardness results both theoretical [13–16] and experi-
mental [32,35] has developed from this field.

Despite bringing our understanding of the working principles of SAT solvers
into sharper focus, a major drawback of the uniform random model is that it does
not typically produce formulas that are similar to ones that come from applica-
tions. Thus it is not always clear how hardness results on the uniform random
model might translate to other distributions. Recently, an effort has emerged
to bridge this gap between the homogeneity of uniform random formulas and
heterogeneous models of random satisfiability [2,9,10,17,34]. Moreover, specific
properties of industrial instances have been identified, and non-uniform distri-
butions have been subsequently introduced to produce such structures. Notable
examples include the community attachment model [27] to address modularity,
and the popularity-similarity model [28] to address locality.

Ansótegui et al. [5] studied the constraint graphs of industrial propositional
formulas, and found that many reveal a power law degree distribution, while the
variable degrees of formulas drawn from the uniform random k-SAT model are
distributed binomially. To address this, they introduced a non-uniform random
power law model that induces power law degree distributions. Other researcher
have also noted that real-world formulas (especially those derived from bounded
model checking) exhibit such heavy-tailed degree distributions [9]. Moreover,
empirical results suggest that solvers specialized for industrial instances tend
to perform better on formulas drawn from a power law model than on formu-
las drawn from a uniform model [3–6,8]. Non-uniform random k-SAT models
for which the degree distribution follows a geometric law have also been intro-
duced [6].

It is often difficult to understand how algorithmic results on uniform distri-
butions translate to non-uniform models. We use a general variable distribution
framework: random k-SAT models are described by an arbitrary ensemble of vari-
able distributions (�pn)n∈N and the clauses are constructed by drawing variables
from �pn. This framework has recently gained interest in the SAT community. For
example, it was shown that under some mild conditions on �pn, the well-known
sharpness result of Friedgut [24] generalizes to the non-planted version of this
framework [26]. This line of work can help us understand if k-SAT instances with
non-uniform variable distributions are easier to solve. If so, which distributions
make them easier and why? If not, which other features of industrial instances
are important to make them easily solvable?
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Results. In this paper, we show that a result for uniform planted SAT models, in
which a satisfying assignment is hidden, generalizes to a planted version of the
non-uniform framework described earlier. In particular, we generalize an early
result of Koutsoupias and Papadimitriou [30] to non-uniform planted SAT dis-
tributions. We also improve their lower bound on the density threshold by an
n/ log n factor. Distributions for which our results hold include recently intro-
duced non-uniform random satisfiability models such as those with power law
degree distributions and geometric degree distributions [6]. For those two models
in particular only Ω (n log n) clauses suffice to find a satisfying assignment with
a simple greedy algorithm with high probability.

Furthermore, we investigate the relation between planted and filtered mod-
els. Here, filtered means any random SAT model, where we condition on the
generated formulas to be satisfiable. We show a result for all k-SAT models in
which the signs of variables are chosen uniformly and independently at ran-
dom for each clause. This result states that, if the planted model asymptotically
almost surely1 generates formulas with a unique solution (the planted solution)
at some constraint density m/n, then the total variation distance between the
planted and the filtered model at that density is o(1). This means, our results
for non-uniform planted SAT transfer to the corresponding filtered models.

1.1 Planted k-SAT

Planted distributions are a common modification to average-case problem dis-
tributions for combinatorial problems in which instances are generated together
with a solution. A motivation for studying planted distributions is that if no
efficient algorithms exist for solving an instance, then the instance-solution pairs
comprise a one-way function [22], which has important implications for cryptog-
raphy.

The planted 3-SAT model has been studied in the context of the warning
propagation algorithm, and noted for its similarity to low-density parity check
codes [19]. The authors show that warning propagation can solve planted 3-SAT
formulas with constant constraint density. Berthet [7] considers the problem of
detecting whether a formula is drawn from the uniform or the planted distribu-
tion in the context of hypothesis testing.

Achlioptas, Jia, and Moore [1] analyze a 2-planted model, where two sat-
isfying assignments are hidden at maximum distance from each other. They
experimentally show that in their setting the runtime of local search algorithms
is comparable to the runtime on completely random instances. Hu, Luo, and
Wang introduce a planted version of community attachement [29] and study it
experimentally. Feldman, Perkins, and Vempala [20] study planted k-SAT with
different distributions on the signs of clauses.

We consider the greedy algorithm (Algorithm 1) originally introduced by
Koutsoupias and Papadimitriou [30] who proved its success on uniform planted

1 We say that an event E holds asymptotically almost surely (a. a. s.) if, over a sequence
of sets, Pr (E) = 1. In the context of this paper, this means Pr (E) = 1 − o(1).



Solving Non-uniform Planted and Filtered Random SAT Formulas Greedily 191

formulas with at least linear constraint density, i.e., the ratio of clauses to vari-
ables is Ω(n). Bulatov and Skvortsov [11] proved a phase transition in the uni-
form model for this algorithm. In particular, for constraint densities above 7

6 ln n,
Algorithm 1 succeeds with high probability. On the other hand, the algorithm
fails w.h.p. on formulas with uniformly positive constraint densities below this
threshold. More sophisticated algorithms based on spectral techniques have been
shown to be successful down to constant densities with high probability [21] and
in expected polynomial time [31] on the uniform planted model.

Algorithm 1: Greedy algorithm [30]
1 α ← an assignment chosen uniformly at random;

2 while ∃ i ∈ [n] such that changing αi increases the number of satisfied clauses do

3 α[i] ← 1 − α[i];

4 return α

2 Non-uniform Planted k-SAT

In this section we will introduce our model and relevant notation formally. We
denote the Boolean variables by x1, . . . , xn. A k-clause is a disjunction of k
literals �1 ∨ . . . ∨ �k, where each literal is a variable or its negation. For a literal
�i let |�i| denote the index of its variable. A formula Φ in conjunctive normal
form is a conjunction of clauses C1 ∧ . . . ∧ Cm. We interpret a clause C both as
a Boolean formula and as a set of literals. We say that Φ is satisfiable if there
exists an assignment of its variables such that the formula evaluates to 1.

Definition 1 (Non-Uniform Random k-SAT). Let (�pn)n∈N be a set of prob-
ability distributions where �pn = (p1, p2, . . . , pn) is a probability distribution over
n Boolean variables with Pr(X = xi) = pi. The random model D(n,m, �pn, k)
can be described as follows.

1. for j ← 1 to m:
(a) Sample k variables from the distribution �pn without repetition.
(b) Choose one of the 2k negation patterns uniformly at random.

Definition 2 (Non-Uniform Planted k-SAT). Let (�pn)n∈N be a set of prob-
ability distributions where �pn = (p1, p2, . . . , pn) is a probability distribution
over n Boolean variables with Pr(X = xi) = pi. The random planted model
F(n,m, �pn, k) can be described as follows.

1. Select a planted assignment α� ∈ {0, 1}n uniformly at random
2. for j ← 1 to m:

(a) Sample k variables from the distribution �pn without repetition.
(b) Choose one of the 2k − 1 negation patterns that force the resulting j-th

clause to evaluate to true under α� uniformly at random.
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We will show in Sect. 3 that the greedy algorithm is successful on non-uniform
planted k-SAT if the clause-variable ratio is high enough and if the variable
probability distribution is well-behaved in some sense. Moreover, we will relate
the two models in Sect. 4, which allows us to conclude that the greedy algorithm
also succeeds on satisfiable instances of non-uniform random k-SAT. Our results
in Sect. 4 hold for more general versions of those models, which are defined as
follows.

Definition 3 (Random k-SAT with Independent Signs). Let N denote
any random k-SAT model where m clauses are drawn and the signs of variables
for each clause are drawn independently and uniformly at random among the 2k

possibilities. Let F ∼ N denote a random formula F drawn in the model N .
This means the probability to draw a certain k-CNF f is

Pr
F∼N

(F = f) = pf · 2−k·m,

where pf denotes the probability to draw the sets of variables that the clauses of
f consist of. We call such a model a random k-SAT model with independent
signs.

Definition 4 (Corresponding Planted Model). Let N be a random k SAT
model with independent signs. Now let P be the following planted model: First
draw a planted assignment with probability 2−n, then we draw m clauses in the
same way as in N , and draw the signs of variables for each clause indepen-
dently and uniformly at random among the 2k − 1 possibilities that make the
planted assignment satisfy the clause. If X(f) denotes the number of satisfying
assignments of a k-CNF f , then the probability to draw f is

Pr
F∼P

(F = f) = pf · X(f)
2n

·
(

1
2k − 1

)m

.

We call P the corresponding planted model of N .

Note that the definition of a random k-SAT model with independent signs
is very general. It encompasses random k-SAT models where formulas with m
clauses over n variables are drawn according to any distribution, as long as the
sign of each literal is drawn independently at random with probability 1/2. This
includes the community attachment model by Giráldez-Cru and Levy [27] and
the approach with given variable degrees of Omelchenko and Bulatov [33] and
Levy [12]. Furthermore, it is easy to see that non-uniform random k-SAT is
a random k-SAT model with independent signs and that non-uniform planted
k-SAT is its corresponding planted model.

Throughout the paper, we will assume that k ≥ 3 is a constant. Note that
according to our models clauses can be drawn repeatedly. Furthermore, to sim-
plify the proofs, we assume the variables are sampled with replacement. However,
we remark that for k constant and pn bounded away from 1 by a constant, this
changes the clause probabilities by at most a constant factor (see, e.g., [25]).
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In this setting, the probability to draw a legal clause C = (�1 ∨ . . . ∨ �k) is
k!

2k−1
· ∏k

j=1 p|�j |.
We denote [n] := [1, n] ∩ N. For a discrete probability distribution �p =

(p1, . . . , pn) we assume p1 ≤ p2 ≤ · · · ≤ pn. For a particular F(n,m, �pn, k),
we define the parameter γ(ε) := Pr(i ≤ (1/2 − ε) · n − (k − 1)). Here, i is a
random variable with Pr(i = j) = pj for j ∈ [n]. We will denote the Hamming
distance between two assignments α, β ∈ {0, 1}n by d(α, β) and simply refer to
it as the “distance”.

3 The Greedy Algorithm on Non-uniform Planted k-SAT

In this section, we will show that for sufficiently high constraint densities Algo-
rithm 1 asymptotically almost surely finds a satisfying assignment of non-
uniform planted k-SAT if a condition on the probability distribution of the model
is fulfilled. The condition that has to be satisfied is that there are constants
ε ∈ (0, 1/2) and ε′ ∈ (0, ε) such that

Pr (i ≤ (1/2 − ε′) · n − (k − 1)) > c + Pr (i > (1/2 + ε) · n) (1)

for some c = Ω
((

n · p1 · γ(ε)3(k−1)/ ln n
)1/2k

)
. If a probability distribution

�p satisfies this condition, we call it “well-behaved”. Formally, we show the
following.

Theorem 11. For a formula F drawn from F(m,n, �p, k) with a well-behaved
probability distribution �p with parameters ε and ε′, and m ≥ C lnn

γ(ε)3(k−1)p1
, where

k ≥ 3 is a constant and C > 0 is some sufficiently large constant, Algorithm 1
succeeds with high probability.

Note that the choice of ε in the well-behavedness condition influences the
value of γ(ε) in the number of clauses necessary for the algorithm to succeed. It
generally holds that the more uniform the probability distribution is, the smaller
we can choose ε and a smaller ε results in a smaller lower bound on the number
of clauses.

We call an assignment α ∈ {0, 1}n good if it satisfies all clauses or if there
is an assignment β with |{i : αi 
= βi}| = 1 and β satisfies strictly more clauses
than α. We will show that a. a. s. all assignments that Algorithm 1 finds are
good. Thus, the assignment it returns must be satisfying. To this end we consider
assignments at distances (1/2+ε′)·n and (1/2+ε)·n from the planted assignment
α�. Here, ε′ and ε are the parameters of the well-behavedness condition with
0 < ε′ < ε < 1/2. There are five ingredients to the proof: (1) two technical
lemmas, Lemmas 6 and 7, (2) Lemma 8, which states that all assignments within
distance (1/2+ε) ·n of α� are good, (3) Lemma 9, which states that the random
starting assignment is at distance at most (1/2 + ε′) · n from α�, (4) Lemma 10,
which states that any assignment at distance (1/2 + ε′) · n from α� satisfies at
least as many clauses as any assignment at distance (1/2 + ε) · n from α�, and
(5) Theorem 11, which puts these ingredients together.
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Fig. 1. Sketch of the assignment space with the planted assignment α� and the prop-
erties we show. (2) Lemma 8: All assignments within distance (1/2 + ε) · n of α� are
good, (3) Lemma 9: The random starting assignment is at distance at most (1/2+ε′)·n
from α�, (4) Lemma 10: any assignment at distance (1/2 + ε′) · n from α� satisfies at
least as many clauses as any assignment at distance (1/2 + ε) · n from α�

The argument now works as follows. Since the local search algorithm always
picks an assignment that strictly increases the number of satisfied clauses, (4)
implies that from an assignment at distance (1/2 + ε′) · n, it will never reach
one at distance (1/2+ ε) ·n. Due to (3) the algorithm starts with an assignment
within distance (1/2+ε′) ·n of α�. Thus, all assignments found by the algorithm
must remain within distance (1/2+ε) ·n of α�. Since all assignments within that
distance to α� are good due to (2), all assignments found by the algorithm are
good and the final assignment must be satisfying. Figure 1 visualizes the idea of
the proof. Furthermore, Corollary 12 shows that some natural probability dis-
tributions are well-behaved for certain constants ε, ε′, which result in a constant
γ(ε). For instances of non-uniform planted k-SAT with these input distributions
Algorithm 1 already works for logarithmic densities.

The efficiency of the greedy algorithm depends on the probability of sampling
clauses over certain subsets of variables. We capture the probability of sampling
a certain subset of variables in the following definition.

Definition 5. Given any index set I ⊆ [n], let Pl(I) = {J ⊆ I : |J | = l}
denote the cardinality-l elements of the power set of I and define Ql(I) :=∑

J∈Pl(I)

∏
j∈J pj to be the probability of selecting l elements of I over �p.

Ql(I) is the probability of choosing l variables with indices only from I. Note
that Ql(I) ≥ Ql′(I) for l ≤ l′. We want to lower-bound the probability Ql(I) for
|I| ≥ (1/2−ε) ·n. In the uniform planted model a lower bound would be roughly
(1/2 − ε)l, where 0 < ε < 1/2 is a constant. However, in our setting, where
variable probabilities are non-uniform, Ql(I) depends on the total probability
mass of the (1/2 − ε) · n − (l − 1) least probable variables. We underestimate
and capture this probability mass in the parameter γ(ε) = Pr(i ≤ (1/2 − ε) ·
n− (k − 1)). The following lemma now provides us with a lower bound on Ql(I)
depending on γ(ε).
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Lemma 6. If γ(ε) > 0 for some constant 0 < ε < 1/2, then for any index set I

with |I| ≥ (1/2 − ε) · n and any natural number l ≤ k, we have Ql(I) ≥ γ(ε)l

l! .

Proof. We can express Ql(I) as the following nested sum

Ql(I) =
1
l!

∑
i1∈I

∑
i2∈I\{i1}

. . .
∑

il∈I\{i1,...,il−1}

l∏
j=1

pij

=
1
l!

∑
i1∈I

pi1

∑
i2∈I\{i1}

pi2 . . .
∑

il∈I\{i1,...,il−1}
pil

.

This sum essentially captures the choices of elements we have for each term
in Ql(I), where ij is the j-th chosen element. Since we only forbid repetitions
of elements, the j-th element can be anything from I \ {i1, i2, . . . , ij−1}. Since
|I| ≥ (1/2− ε) ·n, we can always choose from at least (1/2− ε) ·n− (l −1) many
elements. It holds that

Ql(I) ≥ 1
l!

⎛
⎝(1/2−ε)·n−(l−1)∑

i=1

pi

⎞
⎠

l

=
1
l!

Pr(i ≤ (1/2 − ε) · n − (l − 1))l ≥ γ(ε)l

l!
.

as we assume the pi to be in ascending order. �
The following technical lemma bounds the probability of making a random

clause satisfied or unsatisfied by decreasing the Hamming distance to the planted
solution. These bounds especially hold if the distance is decreased by only one,
i. e. we flip the assignment of a single variable. The statements of this lemma
will be used in order to show that assignments close to the planted solution are
good.

Lemma 7. Fix an assignment α ∈ {0, 1}n at Hamming distance d(α, α�) <
(1/2+ε)·n from the planted solution. For any assignment β with {i : αi = α�

i } ⊆
{i : βi = α�

i }, denote παβ as the probability over F(n,m, �p, k) that a clause is
false under α and true under β. Analogously, we let πβα denote the probability
that a clause is false under β and true under α. With I = {i : αi 
= βi ∧βi = α�

i }
it holds that

1. πβα ≤ (1 − γ(ε)k−1

(k−1)! ) · παβ, and

2. παβ ≥ k·γ(ε)k−1·|I|·p1
2k−1

.

Proof. In addition to I, we will denote the set J := {i : αi = α�
i }. Note that

|I| = d(α, β) ≤ d(α, α�) and that d(α, α�) = n−|J |. A clause changes from false
to true between α and β if it (1) contains any variable indexed in I, and (2) the
literals in the clause are set such that it evaluates to false under x. Note that the
first condition implies α 
= β and α 
= α�. This is necessary in order for a clause
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to evaluate to false under α and to evaluate differently under β. The probability
for these events to occur is

παβ =
k!

2k − 1

k∑
�=1

Q�(I) · Qk−�([n] \ I)

We have the same for πβα. Again, the clause must contain a variable from
I for α and β to be different and this time the literals must evaluate to false
under β. Additionally, we must take care that clauses that are false under α�

are not allowed. In particular, if a clause contains only variables from I ∪ J , i. e.
only variables where β and α� do not differ, then the clause cannot evaluate to
false under β. Thus, we must exclude such clauses from the probability mass. In
particular,

πβα =
k!

2k − 1

k∑
�=1

Q�(I) · (Qk−�([n] \ I) − Qk−�(J))

≤ k!
2k − 1

k∑
�=1

Q�(I)Qk−�([n] \ I) − k!
2k − 1

k∑
�=1

Q�(I)Qk−�([n] \ I)Qk−�(J)

≤
(

1 − γk−1

(k − 1)!

)
παβ .

The final inequality comes from Lemma 6 and the fact that |J | = n−d(α, α�) ≥
(1/2 − ε) · n, which allows us to bound Qk−�(J) ≥ Qk−1(J) ≥ γ(ε)k−1

(k−1)! .
The second statement holds since

παβ ≥ k!
2k − 1

Q1(I) · Qk−1([n] \ I) =
k!

2k − 1

∑
i∈I

pi · Qk−1([n] \ I)

≥ k! · |I| · p1
2k − 1

· Qk−1([n] \ I) ≥ k · γ(ε)k−1 · |I| · p1
2k − 1

.

The final inequality comes from Lemma 6 and the fact that |[n] \ I| = n −
d(α, β) ≥ (1/2 − ε) · n. �

We will now show that w. h. p. assignments close to the planted assignment
α� are good. This is the second ingredient of our argument. Remember that we
call an assignment α ∈ {0, 1}n good if it satisfies all clauses or if there is an
assignment β at distance one which satisfies strictly more clauses.

Lemma 8. Let F be a formula drawn from F(m,n, �p, k), let ε ∈ (0, 1/2) be a
constant, and let m ≥ C lnn

γ(ε)3(k−1)p1
, where k ≥ 3 is a constant and C > 0 is some

sufficiently large constant. Then all assignments α within distance (1/2 + ε) · n
of the planted assignment α� are good with high probability.

Proof. Fix an assignment α with d(α, α�) < (1/2 + ε) · n. Denote the random
variable Xij that indicates that the j-th clause is false under α, but becomes
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true by flipping the i-th variable. Similarly, denote as Yij the random variable
that indicates that the j-th clause is true under α but becomes false by flipping
the i-th variable. Define X =

∑
i:αi �=α�

i

∑m
j=1 Xij and Y =

∑
i:αi �=α�

i

∑m
j=1 Yij .

By Lemma 7, E[Xij ] = παβ and E[Yij ] = πβα, where α and β differ only on
I = {i}. Thus, E[Y ] ≤ (1 − γ(ε)k−1

(k−1)! )E[X].
We want to use Chernoff bounds to show that the values of X and Y are

concentrated around their expected values. First, we argue why Chernoff bounds
can be applied. X and Y only consider assignments β that differ from α in one
variable and are closer to α�. Let Xj =

∑
i : αi �=α�

i
Xij and Yj =

∑
i : αi �=α�

i
Yij .

Xj denotes the number of those assignments, which make a clause true that
is false under α, while Yj denotes the number of those assignments that make
a clause false that is true under α. It holds that Yj ≤ 1. If a clause is false
under one assignment β, it must be true under all assignments that differ on
that clause’s variables. We know that the clause is true under α and since all
other assignments β′ 
= β we consider differ from α in exactly one variable,
as soon as they differ from α on one of the clause’s variables, they must also
differ from β on the clause’s variables. Thus, the clause must be satisfiable on
all assignments β 
= β′ we consider. Yj ≤ 1 implies that we can use a Chernoff
bound on Y =

∑m
j=1 Yj , since the Yj are independent random variables with

values in [0, 1]. Similarly, Xj ≤ k, because if a clause is false under α, then
all assignments that differ on that clause’s variables will make the clause true.
Thus, this holds for all assignments β that differ on one of the clause’s variables.
However, since we only consider those assignments β that differ from α by at
most one variable, there are at most k such assignments, one for each variable of
the k-clause. Xj ≤ k implies that we can use a Chernoff bound after resizing the
variables Xj with a factor of 1/k. This yields random variables whose values are
independently distributed in [0, 1]. However, it means that the expected value
in the exponent also has to be multiplied with 1/k.

Applying the Chernoff bounds as stated, for any δ ∈ (0, 1), we have Pr(X ≤
(1 − δ)E[X]) ≤ e−δ2E[X]/(2·k). For Y we choose δ′ such that (1 + δ′)E[Y ] =
(1 + δ)(1 − γ(ε)k−1

(k−1)! )E[X]. Then, δ′ ≥ δ and δ′ · E[Y ] ≥ δ · (1 − γ(ε)k−1

(k−1)! )E[X]. We
can now apply a Chernoff bound to get

Pr (Y ≥ (1 + δ′)E[Y ]) ≤ e−δ′2E[Y ]/(2+δ′) ≤ e−δ2(1− γ(ε)k−1

(k−1)! )E[X]/(2+δ).

Taking a union bound, the probability of event {X ≤ (1 − δ)E[X]} ∪ {Y ≥
(1+δ)

(
1 − γ(ε)k−1

(k−1)!

)
E[X]} is at most exp(−δ2

(
1 − γ(ε)k−1

(k−1)!

)
E[X]/(k ·((2+δ))+

ln 2). Setting δ = κ/(2 − κ) with κ = γ(ε)k−1

(k−1)! , the event {X > Y } occurs with
probability at least

1 − exp
(

− (1 − κ) · κ2

k · (2 − κ)(4 − κ)
E[X] + ln 2

)
. (2)

Remember that X only considers assignments which differ from α in one vari-
able αi 
= α�

i . Hence, |I| = 1 for α and any such assignment β. Thus, according
to Lemma 7,
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E[X] ≥ m · d(α, α�) · k · γ(ε)k−1 · p1
2k − 1

= m · d(α, α�) · k! · κ · p1
2k − 1

.

Substituting this into Eq. (2) and using 0 ≤ κ = γ(ε)k−1

(k−1)! ≤ 1
(k−1)! we get

(1−κ)·κ3

(2−κ)(4−κ) ≥ (1− 1/(k − 1)!) ·γ(ε)3k−3/(2 · (k − 1)!)3 = Ω(γ(ε)3(k−1)). Thus, the
event {X > Y } occurs for assignment α with probability at least

1 − exp
(
−Ω

(
γ(ε)3(k−1) · p1 · d(α, α�) · m

))
.

This means the average count of clauses that go from false to true minus the
count that go from true to false by flipping assignments in {i : αi 
= α�

i } is
positive, and we can conclude that there exists at least one such flip that increases
the total count of satisfied clauses. Hence, α is good with the above probability.

Taking a simple union bound over all
(
n
d

) ≤ nd assignments α at distance
d = d(α, α�), all assignments at this distance are good with probability at least

1 − nd exp
(
−Ω

(
γ(ε)3(k−1) · p1 · d · m

))
≥ 1 − exp(−Ω(d log n)) = 1 − n−C′d

for some constant C ′ by choosing m ≥ C·lnn
γ(ε)3(k−1)·p1

with constant C large enough.
A subsequent union bound over all such radius-d spheres yields that all assign-
ments within distance (1/2+ε)·n of the planted solution are good with probabil-
ity at least 1−∑�(1/2+ε)n�

d=1 n−C′d ≥ 1− 1/
(
nC′ − 1

)
, i. e. with high probability.

�
Now we are going to show the third ingredient of our argument, i. e. that

the random starting assignment is close to the planted assignment with high
probability.

Lemma 9. For any constant ε′ ∈ (0, 1/2) the random starting assignment is
within distance at most (1/2 + ε′) · n of the planted assignment α� with high
probability.

Proof. Since the starting assignment α = (α1, α2, . . . , αn) is generated uniformly
at random, each αi differs from α�

i with probability 1/2 independently at random.
Let Xi denote the random variable indicating that αi 
= α�

i and let X =
∑n

i=1 Xi.
We can see that d(α, α�) = X. It holds that E[X] = n/2 and

Pr(d(α, α�) > (1/2 + ε′) · n) = Pr(X > (1 + 2 · ε′) · E[X]) ≤ e− 2·ε′2·n
2+2·ε′

due to a Chernoff bound. �
The last ingredient of our argument is to show that any assignment β at

distance (1/2+ε′) ·n from α� satisfies at least as many clauses as any assignment
α at distance (1/2 + ε) · n from α�. In order to show this result, we require the
variable probability distribution of our random model to be well-behaved. For β
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and α well-behavedness essentially states that it is more probable to randomly
sample a variable on which α� and β agree than it is to sample a variable on
which α� and α agree. For a uniform probability distribution this is trivially
true, since the number of those variables is much larger in β than it is in α due
to β’s smaller Hamming distance to α�. However, for a non-uniform probability
distribution, the property must be ensured. We will later see in Corollary 12
that uniform, power-law and geometric distributions are well-behaved.

Lemma 10. Let k ≥ 3 be a constant and let �p be a probability distribution
that is well-behaved for constants ε ∈ (0, 1/2) and ε′ ∈ (0, ε). Further, let m ≥

C lnn
γ(ε)3(k−1)p1

for a sufficiently large constant C > 0, and let F be a formula drawn
from F(m,n, �p, k). Then with high probability any assignment α with d(α, α�) =
(1/2 + ε) · n satisfies at most as many clauses of F as any assignment β with
d(β, α�) = (1/2 + ε′) · n.

Proof Sketch. The idea of the proof is to lower-bound the difference παβ − πβα,
where παβ is the probability that a random clause is not satisfied by α and
satisfied by β. This difference depends on the probabilites of variables in I,
the set of variables on which α and β differ. More precisely, it depends on the
difference between the probability of sampling a variable from I for which α
and α� disagree and the probability of sampling a variable from I for which α
and α� agree. In the worst case the prior set of variables are those of minimal
probabilities, while the latter are those of maximal probabilities according to
the probability distribution �p. If we pessimistically assume this, the difference is
minimized if I is of maximum size. Then, there are (1/2 − ε′) · n variables in I
on which α and α� disagree and (1/2− ε) ·n variables on which the assignments
agree. However, the difference of the probabilites to sample those variables is
lower bounded by c = Ω

((
n · p1 · γ(ε)3(k−1)/ ln n

)1/2k
)

by the well-behavedness
of �p (Eq. 1).

By using a Chernoff bound, we can now show that the probability that α
satisfies at least as many clauses as β is upper bounded by ∼ exp(−m · c2k) ∼
2−Ω(n). Via a union bound we get that the probability is still exponentially small
in n for all pairs of assignments α and β if C is sufficiently large. �

We can now put the ingredients of our argument together to get our main
theorem.

Theorem 11. For a formula F drawn from F(m,n, �p, k) with a well-behaved
probability distribution �p with parameters ε and ε′, and m ≥ C lnn

γ(ε)3(k−1)p1
, where

k ≥ 3 is a constant and C > 0 is some sufficiently large constant, Algorithm 1
succeeds with high probability.

Proof. All statements in the proof hold with high probability. Lemma 9 tells us
that the random starting assignment is within distance (1/2+ε′)·n of the planted
assignment α�. The local search algorithm now considers assignments within
Hamming distance one of the currently best assignment found. Furthermore,
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the algorithm only accepts a new best assignment if it satisfies strictly more
clauses than the previous best assignment. Thus, to reach an assignment α at
distance (1/2 + ε) · n from α�, it first has to accept an assignment β at distance
(1/2+ ε′) ·n from α� and α has to satisfy strictly more clauses than β. However,
Lemma 10 tells us that this is not possible. Therefore, any assignment found by
the algorithm has to be within distance (1/2 + ε) · n of α�. Lemma 8 states that
all those assignments are good. Thus, all assignments found by the algorithm
are good and the final assignment must be satisfying. �

The γ(ε) term in our proofs is a penalty incurred from having a potentially
pathologically “light” tail in the variable distribution. If γ(ε) = o(1), this means
that most of the probability mass is concentrated around the (1/2 + ε) · n most
frequent variables, and the tail vanishes very quickly. In some sense, if the tail
is at least as heavy as the uniform distribution, then γ = Θ(1). This is the case
for most proposed classes of non-uniform variable distributions, as we formalize
in Corollary 12.

The well-behavedness of the variable distribution intuitively states something
similar. It also requires that not too much probability mass is concentrated
around the most frequent variables. Note that ε denotes the same value in both
requirements. We can see that increasing ε and decreasing ε′ makes it easier to
satisfy this prerequisite. However, increasing ε decreases γ(ε) and thus increases
the lower bound on the clause-variable ratio for which our main theorem holds.

Theorem 11 implies that the greedy algorithm already works at some log-
arithmic density if the variables of the planted model follow three well-known
probability distributions: uniform, power-law, or geometric. We show this in the
following corollary.

Corollary 12. The greedy algorithm is successful over a 1 − o(1) fraction of
planted
1. uniform random k-SAT formulas,
2. power-law random k-SAT formulas with power-law exponent β > 2,
3. geometric random k-SAT formulas2 with a base b > 1,

with m
n ≥ C ln n, for constant k ≥ 3 and a sufficiently large constant C.

Proof. The statement follows by application of Theorem 11, so it suffices to verify
the minimum variable probability p1, the γ term, and the well-behavedness of
the distribution for each of the stated models.

1. Uniform: In the uniform k-SAT distribution, p1 = pi = 1/n for all i ∈ [n].
Therefore, γ(ε) = (1/2 − ε) − (k − 1)/n = Θ(1) and

Pr (i ≤ (1/2 − ε′) · n − (k − 1)) = (1/2 − ε′) − (k − 1)/n

≥ c + (1/2 − ε) = c + Pr (i > (1/2 + ε) · n)

for c = ε− ε′ − (k − 1)/n. Thus, Algorithm 1 succeeds w. h. p. for clause-variable
ratios m

n ≥ C · lnn
n·γ(ε)3(k−1)·p1

= C · ln n for some sufficiently large constant C > 0.

2 We refer to the geometric degree-distribution model introduced by Ansótegui et
al. [6].
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2. Power law: For the power-law distribution, p1 = (1/
∑n

i=1

(
n
i

) 1
β−1 ) = Ω(1/n)

and pn = Θ(n−(β−2)/(β−1)). Thus, γ(ε) = Pr(i ≤ (1/2 − ε) · n − (k − 1)) = Θ(1),
since Pr(i ≤ (1/2 − ε) · n − (k − 1)) ≥ (1/2 − ε) · n · p1 − (k − 1) · pn = Ω(1).
In order to validate the well-behavedness of the distribution, we can estimate
Pr(i > (1/2 + ε) · n) ≤ (1/2 − ε)(β−2)/(β−1) and, equivalently

Pr(i ≤ (1/2 − ε′) · n − (k − 1)) = 1 − Pr(i > (1/2 − ε′) · n − (k − 1))

≥ 1 − (1/2 + ε′ + (k − 1)/n)(β−2)/(β−1).

Thus, for any ε′ ∈ (0, 1/2) we can choose ε > max (ε′, ε0), where ε0 is the solution
of

1 − (1/2 + ε′ + (k − 1)/n)(β−2)/(β−1) = (1/2 − ε)(β−2)/(β−1).

Note that this lower bound on ε is always in (0, 1/2) and thus satisfies our
requirements. As in the uniform case, this results in a lower bound of m

n ≥ C ·ln n
for some sufficiently large constant C > 0 in order for Algorithm 1 to succeed
with high probability.

3. Geometric: In geometric random k-SAT, pi = 1−b−1/n

b−1 ·bi/n. It now holds that∑(1/2−ε)n
i=1 pi = b1/2−ε−1

b−1 and thus γ(ε) = b1/2−ε−(k−1)/n−1
b−1 = Θ(1). Furthermore,

p1 =
b1/n − 1

b − 1
=

eln(b)/n − 1
b − 1

≥ 1 + ln(b)/n − 1
b − 1

=
ln(b)
b − 1

· 1
n

.

For the requirement from Eq. 1, we get

Pr(i > (1/2 + ε) · n) = 1 − Pr(i ≤ (1/2 + ε) · n) = 1 − b1/2+ε − 1
b − 1

.

This means, we need to ensure b1/2−ε′−(k−1)/n−1
b−1 > 1 − b1/2+ε−1

b−1 or, equivalently,
b1/2+ε > b+1− b1/2−ε′−(k−1)/n. Note that b1/2−ε′−(k−1)/n > 1. Thus, the right-
hand side is a constant smaller than b. If we make ε ∈ (0, 1/2) sufficiently large,
we can make the left-hand side by a constant bigger than the right-hand side.
This is sufficient for the requirement from inequality 1. Again, we get that the
greedy algorithm succeeds w. h. p. for m

n ≥ C · ln n and C > 0 sufficiently large.
�

4 Relationship Between Planted and Filtered Instances

One interesting question is if the behavior of the greedy algorithm is an artifact
of the instances being planted or if the same behavior emerges for satisfiable
instances of the corresponding non-planted model. Thus, we now look at random
k-SAT models with independent signs and their corresponding planted models.
We show the following theorem, which is a generalization of a result by Doerr,
Neumann, and Sutton [18].
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Theorem 13. Let P = F(n,m, �pn, k) be a non-uniform planted k-SAT model
and let N be a non-uniform random k-SAT model on the same input parameters.
Then for m ≥ (1+ε)·(2k−1)

p1
· ln n with any constant ε > 0 and for any event E it

holds that PrF∼N (E | X(F ) ≥ 1) = PrF∼P (E) ± o(1).

Proof Sketch. The proof follows the same lines as the one in [18]. We first show
that for a random k-SAT model with independent signs and its planted equiva-
lent the conditional probability to sample a certain formula is the same in both
models if we condition on there being exactly one satisfying assignment. Then,
we show that the probability to have exactly one satisfying assignment in the
filtered model (conditioned on formulas being satisfiable) is at least as high as
in the planted model. These two statements already imply a total variation dis-
tance that tends to zero as soon as the probability to have a unique satisfying
assignment tends to one in the planted model. The last step of the proof consists
of finding a number of clauses m for which formulas generated with non-uniform
planted k-SAT a. a. s. only have one satisfying assignment. A first oder bound
shows that this is case if m ≥ (1+ε)·(2k−1)

p1
· ln n for any constant ε > 0. �

Theorem 13 asserts that Theorem 11 also holds for the filtered non-uniform
random k-SAT model. That means, for satisfiable formulas drawn from the non-
uniform random k-SAT model the greedy algorithm also succeeds with proba-
bility 1 − o(1).
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Fig. 2. Fraction of formulas solved by Algorithm 1 on the planted uniform 3-SAT
distribution as a function of constraint density m/n for various n.

5 Experiments

We performed a number of experiments for the example distributions we consider
in Corollary 12 to argue that the logarithmic lower bound in constraint density



Solving Non-uniform Planted and Filtered Random SAT Formulas Greedily 203

for Algorithm 1 is likely to be tight asymptotically, and that the leading con-
stants are small. For the uniform planted 3-SAT model, we sampled formulas at
n ∈ {100, 200, 500} with densities 1 ≤ m/n ≤ n2/2. For each n and m, we sam-
pled 100 formulas and determined whether they could be solved by the greedy
algorithm. We report the results as the fraction of formulas solved depending on
the constraint density in Fig. 2.

As expected, above constraint densities of roughly Θ(log n), the proportion
of formulas solved by Algorithm 1 quickly goes to one. We see success rates of
70–90% already at (5/2) ln n for each n, but a more detailed analysis would be
needed to get an accurate estimate for the true leading constant.

Non-uniform distributions typically have more parameters, and we are inter-
ested in the influence of these parameters on the success of the greedy algorithm.
In particular, other than the minimum variable probability p1, and the γ term for
tail lightness, no other distribution parameter appears in our bound. To quantify
the effect of constraint density and distribution parameter on geometric random
3-SAT and power-law random 3-SAT, we sampled 100 formulas for each value
of the parameters across a range. We measured the proportion of these formulas
that were solved by the greedy algorithm, and display the results in heat maps
in Fig. 3. On the left, the fraction solved is shown as a function of density and
base parameter b for the geometric distribution. On the right, the fraction solved
is shown as a function of density and power law exponent β for power-law for-
mulas. As reflected in our theoretical bounds, for the most part there is little
influence of the distribution parameters b and β on the constraint density above
which Algorithm 1 is successful. In the power law model, there appears to be
a regime of the power law exponent β near 2 that seems to be influencing the
lower bound. This might be due to hidden constant factors which depend on the
power law exponent β. However, it is not clear how or whether this effect scales
with n, and this is an avenue for future work. Of course, we cannot claim that
our lower bound on the constraint density is tight for all possible well-behaved
distributions. As we stated before, our lower bound only considers the smallest
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Fig. 3. Fraction of formulas solved by Algorithm 1 on geometric 3-SAT distribution as
a function of constraint density m/n and base parameter b (left) and power law 3-SAT
distribution as a function of constraint density m/n and power law exponent β (right)
for n = 200 variables.
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variable probability p1, and the γ term, whereas the actual bound might have a
more intricate relation to other distribution parameters.

6 Conclusions

Non-uniform k-SAT models have gained increased attention in recent years. With
this paper, we contribute to the theoretical understanding of SAT problems with
such non-uniform distributions by studying a greedy local search algorithm. We
have shown that this algorithm is highly effective on planted SAT formulas drawn
from k-SAT models realized by choosing variables from an arbitrary variable
distribution, provided that the clauses are generated independently and that
the variable distribution is not too skewed. Models with these properties include
geometric and power-law random k-SAT [6].

Our experimental results reveal that for geometric and power-law distribu-
tions the exact parameters of the variable degree distribution have little influ-
ence on the success of the local search algorithm, at least in the planted setting.
Moreover, our rigorous lower bounds on the clause-variable ratio necessary for
the algorithm to succeed with high probability are asymptotically the same as for
uniform planted k-SAT. This is somewhat surprising, as for state-of-the-art SAT
solvers it is typically assumed that the non-uniform distributions we consider
make instances easier to solve [5].

We also show that there is a correspondence between non-uniform planted k-
SAT distributions and their filtered analogues, i.e., the non-planted distribution
conditioned on satisfiability. We show that for large enough clause-variable ratios
the total variation distance for events in filtered and their corresponding planted
models vanishes in the limit. This result actually holds for all random k-SAT
models, where the signs of literals are chosen independently at random without
bias. It allows us to transfer our results for the greedy local search algorithm to
filtered non-uniform models.
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