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Abstract A short review of expansion by regions is presented. It is a well-known
strategy to obtain an expansion of a given multiloop Feynman integral in a given
limit where some kinematic invariants and/or masses have certain scaling measured
in powers of a given small parameter. Prescriptions of this strategy are formulated
in a simple geometrical language and are illustrated through simple examples.

1 Historiographical Notes

Expansion by regions is a universal strategy to obtain an expansion of a given
Feynman integral in a given limit, where kinematic invariants and/or masses
essentially differ in scale. For simplicity, let us consider a Feynman integral
G�(q2,m2) depending on two scales, for example, q2 and m2, and let the limit
be t = −m2/q2 → 0. Experience tells us that the expansion at t → 0 has the form

G�(t, ε) ∼ (−q2)ω
∞∑

n=n0

2h∑

k=0

cn,k(ε) tn logk t , (1)

where ω = 4h − 2
∑

ai is the degree of divergence, with al powers of the
propagators, h is the number of loops and ε = (4 − d)/2 is the parameter of
dimensional regularization. The expansion is often called asymptotic, in the sense
that the remainder of expansion has the order o(tN ) after keeping terms up to tN .
However, every power series at a power of logarithm in expansions in various limits
of momenta and masses has a non-zero radius of convergence which is determined
usually by the nearest threshold.
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There can be different reasons to consider some limit and the corresponding
expansion. Typically, different scaling of kinematic invariants and/or masses
involved is dictated by a phenomenological situation. Moreover, experience
obtained when expanding Feynman integrals in some limit can show a way
to construct the corresponding effective theory. At the level of individual
Feynman integrals, expanding a complicated Feynman integral in some limit can
approximately substitute the analytic evaluation of the integral.

One can use various techniques in order to obtain an expansion of a given
Feynman integral in some limit: one can start with a parametric representation, or
apply the method of Mellin–Barnes representation, or obtain an expansion within
the method of differential equations. However, the general strategy of expansion by
regions provides the possibility to write down a result for the expansion immediately
once relevant regions are known. Such a result looks similar to (1) but now
exponents of the expansion parameter depending linearly on ε are not yet expanded
in ε,

G�(t, ε) ∼ (−q2)ω
∞∑

n=n0

h∑

k=0

h∑

j=0

c′
n,j,k(ε)t

n−jε logk t (2)

and the coefficients in the expansion can be represented in terms of integrals over
loop momenta or over Feynman parameters. These integrals on the right-hand
side of the expansion are constructed according to certain rules starting from the
Feynman integral or a parametric integral for the initial Feynman integrals G� . This
means that expansion by regions reduces the problem to the evaluation of integrals
present in (2).

Logarithms in (2) within dimensional regularization do not appear in limits
typical of Euclidean space such as the off-shell large momentum limit and the large
mass limit. Rather, they are typical for limits typical of Minkowski space such as
the Regge limit and various versions of the Sudakov limit. In fact, one can avoid
such logarithms by introducing an auxiliary analytic regularization which can be
introduced as additional complex numbers in the exponents of the propagators. One
can say that, after this, the various scales in the problem become separated so that
the expansion becomes only in powers of the expansion parameter. After turning off
this regularization, spurious poles in the auxiliary analytic parameters cancel giving
rise to the logarithms, and this happens to be an important consistency check. A
lot of examples illustrating this phenomenon can be found, e.g., in [1]. We will
come back to this point in Section 2 when discussing the geometrical formulation
of expansion by regions.

According to the first formulation of expansion by regions [2] one analyzes
various regions in a given integral over loop momenta and, in every region, expands
the integrand in parameters which are there small. Then the integration in the
integral with so expanded propagators is extended to the whole domain of the
loop momenta and, finally, one obtains an expansion of the given integral as the
corresponding sum over the regions. Although these recipes were formulated in a
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Fig. 1 A one-loop graph

suspicious mathematical language, expansion by regions was successfully applied
in numerous calculations.

A very simple example is given by the Feynman integral corresponding to the
graph depicted in Fig. 1,

G(q2,m2; d) =
∫

ddk

(k2 − m2)2(q − k)2
(3)

in the limit m2/q2 → 0.
The relevant regions are the region of small loop momenta, k ∼ m, and the region

of large loop momenta, k ∼ q. According to the above prescriptions, in the first
region, the first propagator is unexpanded and the second propagator is expanded in
a Taylor series in k. In the second region, the first propagator is expanded in a Taylor
series in m the second propagator is unexpanded. The leading terms of expansion
give

G(q2,m2; d) ∼
∫

ddk

(k2)2(q − k)2 + 1

q2

∫
ddk

(k2 − m2)2 + . . . (4)

The integrals involved can be evaluated by Feynman parameters, with the following
result

G(q2,m2; d) ∼ iπd/2
(

�(1 − ε)2�(ε)

�(1 − 2ε)(−q2)1+ε
+ �(ε)

q2(m2)ε
+ . . .

)
(5)

Although the initial Feynman integral is finite at d = 4, there are simple poles
above: an infrared pole in the first term and an ultraviolet term in the second term.
They are successfully canceled, with the following result

iπd/2
(

log

(−q2

m2

)
+ . . .

)
. (6)

Such an interplay of various divergences is a typical feature of expansions
in momenta and masses. Only in rare situations, such as an expansion in the
small momentum limit of a Feynman integral without massless threshold in the
corresponding channel, there is no such phenomenon. Let me also point out that the
first term in (4) is convergent at Re(ε) < 0 while the second term in (4) is convergent
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at Re(ε) > 0. This can be seen from an analysis of convergence of the corresponding
integrals over Feynman parameters. Thus, there is no domain in the complex plane
of ε where both terms are given by convergent integrals. In fact, using auxiliary
subtraction operators, it is possible to write down the result of expansion in such a
way that both terms on the right-hand side will be convergent in some domain of ε.
However. I prefer to follow the prescription which is implied in practice: to evaluate
every term in the result for expansion in a domain of ε where it is convergent and
then analytically continue the corresponding result to some desirable domain.

Expansion by regions has the status of experimental mathematics. Usually,
when studying a given limit, one starts from one-loop examples, checks results
by independent methods and, finally, one understands which regions are relevant
to the limit and that one obtains reliable expansion within this strategy. Beneke
provided a one-parametric example showing explicitly how expansion by regions
works. The example was used in Chapter 3 of [1]. Guided by this example, Jantzen
[3] provided detailed explanations of how this strategy works in several two-loop
examples by starting from regions determined by some inequalities and covering
the whole integration space of the loop momenta, then expanding the integrand and
then extending integration and analyzing all the pieces which are obtained, with
the hope that ‘readers would be convinced that the expansion by regions is a well-
founded method’.

However, there is an important class of limits for which there is a mathematical
proof. These are limits typical of Euclidean space: for example, the off-shell large
momentum limit and the large mass limit. In [4] (see also Appendix B of [1]) that
the remainder of such expansion constructed with the help of an operator which has
the structure of the R-operation (i.e. renormalization at the diagrammatical level)
has the desirable order with respect to the parameter of expansion. This proof was
for a general h-loop graph. It was similar to proofs of results on the R-operation and
was based on sector decompositions and a resolution of singularities in parametric
integrals, with power counting of sector variables.

For this class of limit, the expansion of a given Feynman integral corresponding
to a graph � is given [4–6] (see also [7] and Chapter 9 of [8]) by the following
simple formula:

G� ∼
∑

γ

G�/γ ◦ Tqγ ,mγ Gγ . (7)

which is written for the off-shell large-momentum limit, i.e. where a momentum Q

is considered large and momenta qi as well as the masses mj are small. The sum runs
over subgraphs γ of � which can be called asymptotically irreducible (AI): they are
one-particle irreducible after identifying the two external vertices associated with
the large external momentum Q. Moreover, T is the operator of Taylor expansion
in internal masses and external momenta of a subgraph γ , the symbol ◦ means the
insertion of the polynomial obtained after this Taylor expansion into the vertex of
the reduced graph �/γ to which γ is reduced.
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In the case of limits typical of Euclidean space, there is a natural one-to-
one correspondence between AI subgraphs and regions in the description of the
expansion within expansion by regions, so that we obtain an indirect justification of
expansion by regions for such limits. The set of relevant regions exactly corresponds
to the set of AI subgraphs. There are two kind of regions for each loop momentum:
small and large. For a given AI subgraph γ , the corresponding region is defined by
considering each loop momentum of γ as large and the rest of the loop momenta
of � (i.e. loop momenta of �/γ ) as small. For example, two subgraphs are AI for
Fig. 1: the graph � and the subgraph consisting of the massless line. As a result, we
obtain the same contributions as above.

For limits typical of Minkowski space, to reveal the set of relevant regions is not
so simple. For example, for the threshold limit in the case where the threshold in
the q channel is at q2 = 4m2 and the small expansion parameter is introduced by
y = m2 − q2/4 → 0, the following four kind of regions for a loop momentum are
relevant [2]:

(hard), k0 ∼
√

q2 , k ∼
√

q2 ,

(soft), k0 ∼ √
y , k ∼ √

y ,

(potential), k0 ∼ y/

√
q2 , k ∼ √

y ,

(ultrasoft), k0 ∼ y/

√
q2 , k ∼ y/

√
q2 .

where q = (q0, 0).
An alternative version of expansion by regions was formulated and illustrated

via examples in [9] within the well-known Feynman parametric representation. This
representation in the case of propagators with −k2 propagators with general indices
ai (powers of the propagators) is

G(q1, . . . , qn; d) =
(
iπd/2

)h �(
∑

a − hd/2)∏
i �(ai)

×
∫ ∞

0
. . .

∫ ∞

0
δ
(∑

xi − 1
) ∏

x
ai−1
i Ua−(h+1)d/2Fhd/2−adx1 . . . dxn (8)

where n is the number of lines (edges), a = ∑
ai , h is the number of loops of the

graph,

F = −V + U
∑

m2
l xl , (9)

and U and V are two basic functions (Symanzik polynomials, or graph polynomials)
for the given graph,

U =
∑

T ∈T 1

∏

l 	∈T

xl , (10)
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V =
∑

T ∈T 2

∏

l 	∈T

xl

(
qT

)2
. (11)

In (10), the sum runs over trees of the given graph, and, in (11), over 2-trees, i.e.
subgraphs that do not involve loops and consist of two connectivity components;
±qT is the sum of the external momenta that flow into one of the connectivity
components of the 2-tree T . The products of the Feynman parameters involved are
taken over the lines that do not belong to a given tree or a 2-tree T . As is well known,
one can choose the sum in the argument of the delta-function over any subset of
lines. In particular, one can choose just one Feynman parameter, xl , and then the
integration will be over the other parameters at xl = 1. The functions U and V are
homogeneous with respect to Feynman parameters, with the homogeneity degrees
h and h + 1, respectively.

One can consider quite general limits for a Feynman integral which depends on
external momenta qi and masses and is a scalar function of kinematic invariants and
squares of masses, si , and assume that each si has certain scaling ρκi where ρ is a
small parameter.

An algorithmic way to reveal regions relevant to a given limit was found in
[10]. It is based on the geometry of polytopes connected with the basic functions
U and F in (8). This was a real breakthrough, both in theoretical and practical sense
because, on the one hand, it became possible to formulate expansion by regions in
an unambiguous mathematical language and, on the other hand, the authors of [10]
presented also a public code asy.m which was later successfully applied in various
problems with Feynman integrals.

Ironically, this algorithm and the code didn’t find, in this first version, the
potential region for the threshold expansion. Later, this algorithm was updated and,
in its current version, it can reveal potential region as well as Glauber region. This
was done by introducing an additional decomposition of the integration domain
and introducing new variables. Consider, for example, one-loop diagram with two
massive lines in the threshold limit y = m2 − q2/4 → 0

G(q2, y) = iπd/2 �(ε)

∫ ∞

0

∫ ∞

0

(x1 + x2)
2ε−2 δ (x1 + x2 − 1) dx1dx2[

q2

4 (x1 − x2)2 + y(x1 + x2)2 − i0
]ε . (12)

The code asy.m in its first version revealed only the contribution of the hard
region, i.e. xi ∼ y0. To make the potential region visible, let us decompose
integration over x1 ≤ x2 and x2 ≤ x1, with equal contributions. In the first domain,
let us turn to new variables by x1 = x′

1/2, x2 = x′
2 + x′

1/2 and arrive at

iπd/2 �(ε)

2

∫ ∞

0

∫ ∞

0

(x1 + x2)
2ε−2 δ (x1 + x2 − 1) dx1dx2[

q2

4 x2
2 + y(x1 + x2)2 − i0

]ε .
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Now we observe two regions with the scalings (0, 0) and (0, 1/2). The second
one, with x1 ∼ y0, x2 ∼ √

y, gives

iπd/2 �(ε)

2

∫ ∞

0

dx2(
q2

4 x2
2 + y

)ε = iπd/2 1

2
�(ε − 1/2)

√
πy

q2 y−ε .

Taking into account that we have two identical contributions after the above
decomposition, we obtain a result for the potential contribution equal to the previous
expression with omitted 1/2.

Observe that the expression for the function F in the Feynman parametric
representation is non-negatively defined and only some individual terms are negative
but this brings problems when looking for potential contributions. In the current
version [11] of the code asy.m, one can get rid of the negative terms due to
additional decompositions and introduction of new variable. Let me emphasize that
this code can work successfully also in situations with a function F not positively
defined even without additional decompositions—see, e.g. [12, 13].

For completeness, let me refer to [14, 15] where two specific ways of dealing
with expansion by region were applied.

Let us realize that the very word ‘region’ is used within the strategy under
discussion in a physical rather mathematical way. By region, we mean some
scaling behaviour of parameters involved. I will present expansion by regions in
a mathematical language in the next section using another form of parametric
representation, rather than (8) and illustrate it through simple examples.

2 Geometrical Formulation

Lee and Pomeransky [16] have recently derived another form of parametric
representation which turns out to be preferable in certain situations

G(q1, . . . , qn; d) =
(
iπd/2

)h �(d/2)

�((h + 1)d/2 − a)
∏

i �(ai)

×
∫ ∞

0
. . .

∫ ∞

0

∏

i

x
ai−1
i P −δdx1 . . . dxn , (13)

where δ = 2 − ε and P = U + F . One can obtain (8) from (13) by [16] inserting
1 = ∫

δ(
∑

i xi − η)dη, scaling x → ηx and integrating over η.
The parametric representation takes now a very simple form: up to general

powers of the integration variables, there is only one polynomial raised to a general
complex power. I believe that the fact that this function is the sum of the two basic
functions in Feynman parametric representation is not crucial and expansion by
regions holds for any polynomial.



494 V. A. Smirnov

Let us formulate, following [17], expansion by regions for integral (13) with
a polynomial with positive coefficients in the case of limits with two kinematic
invariants and/or masses of essentially different scale, where one introduces one
parameter, t , which is the ratio of two scales and is considered small. These can
be such limits typical of Minkowski space as the Regge limit, with t � s and
various versions of the Sudakov limit. Then the polynomial in Eq. (13) is a function
of Feynman parameters and t ,

P(x1, . . . , xn, t) =
∑

w∈S

cwx
w1
1 . . . xwn

n twn+1 , (14)

where S is a finite set of points w = (w1, . . . , wn+1) and cw > 0.
By definition, the Newton polytope NP of P is the convex hull of the points w

in the n + 1-dimensional Euclidean space R
n+1 equipped with the scalar product

v · w = ∑n+1
i=1 viwi . A facet of P is a face of maximal dimension, i.e. n.

TheMain Conjecture (Expansion by Regions) The expansion of (13) in the limit
t → +0 is given by

G(t, ε) ∼
∑

γ

∫ ∞

0
. . .

∫ ∞

0

[
Mγ (P (x1, . . . , xn, t))

−δ
]

dx1 . . . dxn , (15)

where the sum runs over facets of the Newton polytope NP of P , for which the
normal vectors rγ = (r

γ

1 , . . . , r
γ
n , r

γ

n+1), oriented inside the polytope have r
γ

n+1 >

0. Let us normalize these vectors by r
γ

n+1 = 1. Let us call these facets essential.

The contribution of a given essential facet is defined by the change of variables
xi → t r

γ
i xi in the integral (13) and expanding the resulting integrand in powers of t .

Let us write this procedure explicitly. For a given essential facet γ , the polynomial
P is transformed into

P γ (x1, . . . , xn, t) = P(tr
γ
1 x1, . . . , t

r
γ
n xn, t) ≡

∑

w∈S

cwx
w1
1 . . . xwn

n tw·rγ

. (16)

The scalar product w · rγ is proportional to the projection of the point w on the
vector rγ . For w ∈ S, it takes a minimal value for all the points belonging to the
considered facet w ∈ S ∩ γ . Let us denote it by L(γ ).

The polynomial (16) can be represented as

tL(γ )
(
P

γ

0 (x1, . . . , xn) + P
γ

1 (x1, . . . , xn, t)
)

, (17)

where

P
γ

0 (x1, . . . , xn) =
∑

w∈S∩γ

cwx
w1
1 . . . xwn

n , (18)
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P
γ

1 (x1, . . . , xn, t) =
∑

w∈S\γ
cwx

w1
1 . . . xwn

n tw·rγ −L(γ ) . (19)

The polynomial P
γ

0 is independent of t while P
γ

1 can be represented as a linear
combination of positive rational powers of t with coefficients which are polynomials
of x.

For a given facet γ , let us define the operator

Mγ (P (x1, . . . , xn, t))
−δ = t

∑n
i=1 r

γ
i −L(γ )δTt

(
P

γ

0 (x1, . . . , xn) + P
γ

1 (x1, . . . , xn, t)
)−δ

= t
∑n

i=1 r
γ
i −L(γ )δ

(
P

γ

0 (x1, . . . , xn)
)−δ + . . . (20)

where Tt performs an expansion in powers of t at t = 0.

Comments
• An operator Mγ can equivalently be defined by introducing a parameter ργ ,

replacing xi by ρr
γ
i xi , pulling an overall power of ργ , expanding in ργ and setting

ργ = 1 in the end.
• The leading order term of a given facet γ corresponds to the leading order of the

operator M0
γ :

∫ ∞

0
. . .

∫ ∞

0

[
M0

γ (P (x1, . . . , xn, t))
−δ

]
dx1 . . . dxn

= t−L(γ )δ+∑n
i=1 r

γ
i

∫ ∞

0
. . .

∫ ∞

0

(
P

γ

0 (x1, . . . , xn)
)−δ

dx1 . . . dxn . (21)

• In fact, with the above definitions, we can write down the equation of the
hyperplane generated by a given facet γ as follows

wn+1 = −
n∑

i=1

r
γ

i wi + L(γ ) . (22)

• Let us agree that the action of an operator Mγ on an integral reduces to the action
of Mγ on the integrand described above. Then we can write down the expansion
in a shorter way,

G(t, ε) ∼
∑

γ

Mγ G(t, ε) (23)

• In the usual Feynman parametrization (8), the expansion by regions in terms
of operators Mγ is formulated in a similar way, and this is exactly how it is
implemented in the code asy.m [10]. The expansion can be written in the same
form (23) but the operators Mγ act on the product of the two basic polynomials U
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Fig. 2 The Newton polytope
for (24)

and F raised to certain powers present in (8). Now, each of the two polynomials
is decomposed in the form (17) and so on.

• Of course, prescriptions based on representation (13) are algorithmically prefer-
able because the degree of the sum of the two basic polynomials is smaller than
the degree of their product UF (previously used in asy.m) so that looking for
facets of the corresponding Newton polytope becomes a simpler procedure.1

Therefore, the current version of the code asy.m included in FIESTA [18]
(called with the command SDExpandAsy is now based on this more effective
procedure.

• It is well known that dimensional regularization might be insufficient to regular-
ize individual contributions to the asymptotic expansion. As it was explained in
the discussion after Eq. (2), the natural way to overcome this problem is to intro-
duce an auxiliary analytic regularization, i.e. to introduce additional exponents
λi to powers of the propagators. This possibility exists in the code asy.m [10]
included in FIESTA [18]. One can choose these additional parameters in some
way and obtain a result in terms of an expansion in λi followed by an expansion in
ε. If an initial integral can be well defined as a function of ε then the cancellation
of poles in λi in the sum of contributions of different regions serves as a good
check of the calculational procedure, so that in the end one obtains a result in
terms of a Laurent expansion in ε up to a desired order.

To illustrate the above prescriptions let us consider a very simple example of the
integral

G(t, ε) =
∫ ∞

0
(x2 + x + t)ε−1dx (24)

in the limit t → 0. The polynomial involved is P(x, t)= ∑
(w1,w2)∈S c(w1,w2)x

w1 tw2 .
The corresponding Newton polytope (triangle) is shown in Fig. 2.

1In fact, this step is performed within asy.m with the help of another code qhull. It is most
time-consuming and can become problematic in higher-loop calculations.
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There are two essential facets γ1 and γ2 with the corresponding normal vectors
r1 = (0, 1) and r2 = (1, 1). For the facet γ1, we obtain the contribution given by
expanding the integrand in t . In the leading order, we have

∫ ∞

0
(x2 + x)ε−1dx = �(1 − 2ε)�(ε)

�(1 − ε)
. (25)

For the facet γ2, we obtain t times the integral of the integrand with x → tx

expanded in powers of t . In the leading order, we have

tε
∫ ∞

0
(x + 1)ε−1dx = − tε

ε
. (26)

The sum of the two contributions in the leading order gives

G(t, ε) ∼ − log t + O(ε) . (27)

Let us now consider again the example of Fig. 1. The two basic functions of
Feynman parameters are

F = x1(t (x1 + x2) + x2) , U = x1 + x2 . (28)

The set S involved in the definition (14) consists of the vertices

A(2, 0, 1), B(1, 1, 1), C(1, 1, 0),D(1, 0, 0), E(0, 1, 0)

of the Newton polytope for the polynomial P = U + F , as it is shown in Fig. 3.
There are two essential facets. The first one is CDE which belongs to the plane

w3 = 0 and has the normal vector (0, 0, 1). It gives the contribution obtained by
expanding the integrand in t .

The second essential facet is ACD which belongs to the plane w1 − w3 = 1 and
has the normal vector (−1, 0, 1). It gives t−ε times the integral

�(2 − ε)

�(1 − 2ε)

∫ ∞

0

∫ ∞

0
x1

[
x1 + x2

1 + x1x2 + tx2 + tx1x2

]ε−2
dx1dx2

Fig. 3 The Newton polytope
for Fig. 1
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with the integrand expanded in t . Taking the leading orders in both contributions we
reproduce (5).

3 Conclusion

As it was argued in [17], the more general parametric representation (13), with a
general polynomial not necessarily related to Feynman integrals, looks mathemat-
ically more natural for the proof of expansion by regions. Moreover, first steps of
analysis of convergence of integrals (13) were made and expansion by regions was
proven in a partial case in the leading order of expansion. Hopefully, expansion
by regions will be sooner or later mathematically justified in the case of a general
polynomial P .

Practically, expansion by regions is a very important strategy which is suc-
cessfully applied for several purposes. Let me, finally, point out that one can use
expansion by regions in various ways.

• One can apply the code asy.m included in FIESTA [18] (i.e. the command
SDExpandAsy) to obtain an expansion in some limit treating all the involved
parameters numerically. In particular, one can check analytic results.

• One can use SDExpandAsy with the option OnlyPrepareRegions =
True in order to reveal relevant regions and to construct contributions to the
expansion as parametric integrals which can then analytically be evaluated.
Here the method of Mellin-Barnes representation can serve as an appropriate
additional technique.

• One can study expansion in multiscale limits, applying asy.m several times, in
various orders.
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