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Preface

The analytic calculation of Feynman amplitudes, and in particular the evaluation
of Feynman integrals, is a challenging task within elementary particle physics.
In particular, the simplification of such often large-scale expressions in terms of
special functions and constants plays a decisive role to improve the prediction and to
obtain a deeper understanding of these predictions of renormalizable quantum field
theories of elementary particle physics for experimental precision measurements.
The main focus of the book Anti-Differentiation and the Calculation of Feynman
Amplitudes is put on sophisticated and efficient symbolic methods and related tools
from mathematics and theoretical physics to support this task. Special focus is put
on the manipulation and simplification of non-trivial Feynman integrals, and more
generally of rather general classes of multi-integrals and connected multi-sums that
are relevant in many other research areas of natural and technical science.

Among many fascinating techniques in symbolic computation and special
functions, the book addresses the following key aspects that become important in
the up-to-date calculations of Feynman amplitudes:

• Advanced symbolic integration and summation tools are carved out that
support in the task to explore and simplify multiple integrals and sums to special
functions and constants.

• Sophisticated special function techniques are elaborated that explore impor-
tant properties of major functions (e.g., integrals over elliptic functions and
related sums).

• Efficient technologies, like Integration-By-Parts (IBP) methods, are worked
out that enable one to represent physical expressions in terms of (coupled
systems) of linear differential equations.

• Highly general computer algebra methods are introduced that support in the task
to solve linear differential and difference equations efficiently.

This book brings together sophisticated tools from pure mathematics, computer
algebra, and the theoretical particle physics community that are combined non-
trivially or that have strong potentials for future interaction. In particular, we expect
that the following tools presented in this book will be crucial for challenging
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vi Preface

calculations that will be fundamental for ongoing and future experiments at the
Large Hardron Collider (LHC) and its planned successor at CERN, the FCC.

In Analytic Integration Methods in QFT (Johannes Blümlein), a general overview
of the mathematical and symbolic computation methods for the treatment of Feyn-
man integrals is elaborated. In particular, the chapters of this book are introduced
accordingly in this general presentation.

In Extensions of the AZ-algorithm and the Package MultiIntegrate (Jakob
Ablinger) an extension of the (continuous) multivariate Almkvist-Zeilberger algo-
rithm is introduced that can compute linear difference and differential equations of
Feynman integrals. Special focus is also put on solving the found equations in terms
of nested sums and integrals.

In Empirical Determinations of Feynman Integrals Using Integer Relation
Algorithms (Kevin Acres and David Broadhurst) efficient algorithms (in particular,
PSLQ and LLL) are presented and applied to evaluate and explore sophisticated
Feynman integrals in terms of special constants.

In N = 4 SYM Gauge Theories: The 2 → 6 Amplitude in the Regge Limit
(Jochen Bartels) the Regge limit of scattering amplitudes is utilized, which is
based upon unitarity, energy discontinuity, and the analytic structure of the arising
Feynman amplitudes.

In Direct Integration for Multi-Leg Amplitudes: Tips, Tricks, and When They Fail
(Jacob L. Bourjaily, Yang-Hui He, Andrew J. McLeod, Marcus Spradlin, Cristian
Vergu, Matthias Volk, Matt von Hippel, and Matthias Wilhelm) it is demonstrated
how the hyperlogarithmic integration method in interaction with new techniques can
be used to transform certain Feynman integrals to hyperlogarithms.

In A Geometrical Framework for Amplitude Recursions: Bridging Between Trees
and Loops (Johannes Brödel and André Kaderli) it is illustrated how scattering
amplitudes, mostly coming from string theory, can be expressed in terms of (elliptic)
multiple zeta values by manipulating iterated integrals on Riemann surfaces with
boundaries.

In Differential Galois Theory and Integration (Thomas Dreyfus and Jacques-
Arthur Weil) an important simplification step of coupled systems of linear differ-
ential equations is presented that supports the solving task and may deliver extra
knowledge of algebraic relations between integrals.

In Top-Down Decomposition: A Cut-Based Approach to Integral Reductions
(Hjalte Frellesvig) an alternative approach of the well-established IBP methods is
introduced to find linear relations between Feynman integrals.

In Hypergeometric Functions and Feynman Diagrams (Mikhail Kalmykov,
Vladimir Bytev, Bernd Kniehl, Sven-Olaf Moch, Bennie F. L. Ward, and Scott
A. Yost) various relevant tools, such as the calculation of ε-expansions, for
hypergeometric function and more generally Appell function representations of
certain classes of Feynman integrals are elaborated.
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In Differential Equations and Feynman Integrals (Anatoly V. Kotikov) it is shown
how linear differential equations for Feynman integrals can be extracted by using
IBP methods. In addition, methods are presented that are currently used to solve
such equations in the setting of Feynman integrals.

In Holonomic Anti-Differentiation and Feynman Amplitudes (Christoph
Koutschan) the holonomic system approach is applied to compute linear differential
equations of Feynman integrals. In particular, hypergeometric functions and sunrise
integrals are considered in more details.

In Outer Space as a Combinatorial Backbone for Cutkosky Rules and Coactions
(Dirk Kreimer) a co-action of bridge-free graphs (that extends the known definition
for simple graphs) is connected non-trivially to Feynman integrals.

In Integration-by-Parts: A Survey (Peter Marquard) an overview of IBP methods
in particular of Laporta’s algorithm is given. Special emphasis is put on complexity
aspects and different tactics how one might handle them.

In Calculating Four-Loop Corrections in QCD (Sven-Olaf Moch and Vitaly
Magerya) the main working flow is presented how the calculations of perturbative
corrections in QCD at four loops can be accomplished by using computer algebra
programs such as Form.

In Contiguous Relations and Creative Telescoping (Peter Paule) a complete
list of constructive theorems is carved out, which predict whether a finite set of
hypergeometric series whose summands are similar satisfies a contiguous relation.
In particular, an enhanced version of the package fastZeil is presented that can
compute the predicted relations explicitly.

In Nested Integrals and Rationalizing Transformations (Clemens G. Raab) a
general overview of symbolic methods for the treatment of nested integrals is given.
In particular, a comprehensive list of univariate rationalizing transformations is
explored.

In Term Algebras, Canonical Representations and Difference Ring Theory for
Symbolic Summation (Carsten Schneider) a general summation framework for the
existing difference ring and field algorithms is developed that is relevant for the
simplification of Feynman integrals.

In Expansion by Regions: An Overview (Vladimir A. Smirnov) different tech-
niques are addressed that can calculate expansions of a given multi-loop Feynman
integral in a given limit where some kinematic invariants and/or masses have certain
scaling measured in powers of a given small parameter.

In Some Steps Towards Improving IBP Calculations and Related Topics (J. A.
M. Vermaseren) interesting aspects of IBP reductions and their major bottlenecks
are discussed with potential future techniques how they could be overcome with
computer algebra.

In Iterated Integrals Related to Feynman Integrals Associated to Elliptic Curves
(Stefan Weinzierl) the mathematical background of elliptic curves (and the con-
nected elliptic integrals and modular forms) is introduced in the context of Feynman
integrals.
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The volume reflects and summarizes the state of the art having been obtained so
far. As it is shown, intense developments have taken place in this field during the
last 25 years. Many more extensions lay ahead and are necessary to be performed to
reach the level of ultimate precision at the theory side to cope with the accuracies to
be reached at the FCC collider.

Zeuthen, Germany Johannes Blümlein
Linz, Austria Carsten Schneider
April 2020
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Analytic Integration Methods in
Quantum Field Theory: An Introduction

Johannes Blümlein

Abstract A survey is given on the present status of analytic calculation methods
and the mathematical structures of zero- and single scale Feynman amplitudes
which emerge in higher order perturbative calculations in the Standard Model of
elementary particles, its extensions and associated model field theories, including
effective field theories of different kind.

1 Introduction

Analytic precision calculations for the observables in renormalizable quantum field
theories have developed during the last 70 years significantly. These methods
have helped to put the Standard Model of elementary particles to tests of an
unprecedented accuracy, requested by the scientific method [1]. Present and future
high luminosity experiments [2, 3] will demand even higher precision predictions
at the theory side. This goes along with mastering large sets of analytic data by
methods of computer algebra and special mathematical methods to perform the
corresponding integrals analytically.

Here analytic integration is understood as antidifferentiation. In this context
the first question going to arise is: which is the space to represent a certain class
of integrals in an irreducible manner. As history showed, this question is usually
answered in an iterative way. Often not all the existing relations in a given class
of functions can be revealed right from the beginning. It is even so that in some
cases it remained unclear over many decades whether all relations are already found
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2 J. Blümlein

or not. One example for this are the multiple zeta values [4]. The development of
physics applications is of course not stopped by this, as also partial solutions are
of great help in reducing the large complexity to be dealt with. The application of
quite different techniques has often to be combined to finally tackle these cutting
edge problems. Moreover, it is this process which delivers new insights and is able
to produce even more refined technologies.

The problem of analytic integration of Feynman diagrams is nowadays a
field of research requesting to join fundamental ideas from theoretical physics,
computer algebra and computing technology, as well as of a growing number
of fields in pure mathematics. The topics are so challenging that the experts in
all these different fields are attracted by them in the solution of the different
problems.

The present interdisciplinary workshop, organized by the Wolfgang-Pauli Center,
arose from the idea to get scientists working in the field of Quantum Field
Theory, computer algebra and pure mathematics together to review the status
of the analytic solution of Feynman integrals reached and to prepare for further
developments.

The topics of the workshop included both techniques to reduce the number of
Feynman diagrams by physical relations, such as the integration by parts relations
[5–7] as well as the mathematical methods to compute these integrals analytically.
The latter include the method of generalized hypergeometric functions [8] and
the general theory of contiguous relations [9], the methods of integer relations
[10], guessing methods of one-dimensional quantities, hyperlogarithms [11], the
solution of master-integrals using difference and differential equations [12–15],
Risch algorithms on nested integrals and rationalization algorithms [16], holonomic
integration [17], the multivalued Almkvist-Zeilberger algorithm [18], expansion by
regions [19], elliptic integrals and related topics [20, 21], cutting techniques [22],
and special multi-leg applications [23–25]. In different precision calculations these
technologies are applied.1

In this paper we give a brief introduction into the topic,2 covering the main steps
in multi-loop perturbative calculations in Sect. 2. Then we turn to the different
symbolic integration techniques of Feynman parameter integrals in Sect. 3 and
describe the associated function spaces in Sect. 4. All these technologies serve the
purpose to reach a higher theoretical precision for many observables in Quantum
Field Theory to cope with the experimental precision data and to either confirm
the Standard Model of elementary particles to higher accuracy or to find signals
of new physics. Some aspects of this are discussed in Sects. 5 and 6 contains the
conclusions.

1For a summary on recent massless calculations, see [26].
2For other recent surveys on integration methods for Feynman integrals see [27–32].
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2 Principle Computation Steps for Feynman Diagrams

In any large scale calculation there is the need to generate the Feynman diagrams
in an automated way. One of the important packages to provide this is QGRAF [33],
for which the corresponding physics file containing the Feynman rules has to be
provided. Necessary group-theoretic calculations, as e.g. the color algebra in QCD,
can be carried out using the package Color [34]. Finally, there is the necessity to
perform the Dirac- and Lorentz-algebra, in an efficient manner, which is provided
by Form [35].

Next, the integration by parts reduction [36] has to be performed. For
many processes up to three loops in QCD the Laporta algorithm [37] in its
different implementations [5, 38–43] is sufficient. At even higher orders the
complexity becomes larger and larger and it is necessary to combine different
methods or to device algorithms tailored to the particular problem to be
solved [5–7]. There will be certainly more developments in this field in the
future.

After this reduction one obtains the master integrals, which represent the quantity
to be finally calculated, and it has to be decided in which way the computation shall
be put forward. One way, if it can be pursued, is to calculate the individual master
integrals to the necessary depth in the dimensional parameter ε = D−4, with D the
dimension of the space-time using the analytic calculation technologies described in
Sect. 3. At lower orders in the coupling constant up to moderate complexity in the
involved mass scales this is possible. It may even be that a single technology, like the
calculation of the master integrals by solving the associated differential equations
provides the full solution.

However, in particular in massive calculations it is possible, that the master
integrals contain elliptic parts at 3-loop order, but the quantity to be calculated
is known to be free of these contributions. In such a case one may use the
method of arbitrarily high Mellin moments for single scale quantities [44] to
express the moments of the master integrals. Here the elliptic structures are
fully encoded in just rational coefficients. One forms the observable to be cal-
culated which are given as series of Mellin moments weighted by ζ - and color
factors and here the elliptic or hyperelliptic contributions cancel. The method
of guessing [45, 46] will then enable one to find the recurrence relation for
the complete result. This method requires a large number of moments, which,
however, can be algorithmically provided [44]. Recent applications are [47–
50]. The solution of the recurrences provided by guessing is using difference
ring theory [51] implemented in the package Sigma [52, 53] in the case that
the recurrences factorize to first order. Other cases are discussed in Sects. 3
and 4.

Let us now turn to the specific antidifferentiation methods for Feynman integrals.
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3 Symbolic Integration of Feynman Parameter Integrals

Most of the analytic methods described in this section have more general applica-
tions than just to be used for the evaluation of Feynman integrals and were developed
even without knowing of this particular application. Still the challenges to integrate
also involved Feynman diagrams have refined many of these methods significantly.
Non of these methods is universal and it is often an appropriate combination of
these methods leading to optimal solutions of a project at hand, w.r.t. the necessary
computational requests such as memory, storage and computational time in the case
of the high end calculations.

Many of the problems can be cast into discrete formulations, allowing to make
use of methods of difference ring theory. Here the packages Sigma [52, 53],
EvaluateMultiSums and SumProduction [54–56], see also [57], can be
used.

In the following we describe the PSLQ method for zero-dimensional quantities,
hypergeometric functions and their generalizations, analytic solutions using Mellin–
Barnes integrals, hyperlogarithms, guessing techniques, the method of difference
and differential equations, and the Almkvist-Zeilberger algorithm.

3.1 PSLQ: Zero-Dimensional Integrals

In expanding perturbatively in the coupling constant several physical quantities are
zero-dimensional, i.e. they can be represented by numbers only. A recent example
consists in the QCD β-function, now known to 5-loop order [58]. The respective
expressions are given by the color factors of the gauge group, rational terms and
special numbers, as e.g. multiple zeta values [4, 59]. If one knows the potential
pool of all the contributing special numbers one may try to determine the rational
coefficients of the whole problem by providing enough numerical digits for the
corresponding quantity. One method to obtain such an experimental result is PSLQ
[60].

One example is given by determining the integral

I1 =
∫ 1

0
dx

Li2(x)

1+ x
≈ 0.3888958461681063290997435080476931009885, (1)

where Li2(x) denotes the classical dilogarithm [61]. I1 is a weight w = 3 multiple
zeta value [4] for which the basis is known. It is spanned by

{ln3(2), ζ2 ln(2), ζ3}. (2)
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PSLQ delivers the following representation

I1 = ln3(2)− 5

8
ζ3, (3)

which is also obtained by a direct analytic calculation. In any case it is important
to have enough digits available. If a result has been obtained, it should be verified
by an even larger number of digits. The results usually remain experimental. In
many complex applications it is difficult to prove the result analytically. Advanced
applications of these and similar methods are discussed in [10]. PSLQ methods can
be used also to determine the constants discussed in Sect. 4.5.

3.2 Generalized Hypergeometric Functions and Their
Extensions

The integrands of multi-dimensional Feynman parameter integrals are hyperex-
ponential, i.e. given by products of multivariate polynomial expressions raised to
real powers, implied by the dimensional parameter ε. These types of functions
correspond to the integrands defining the (generalized) hypergeometric functions
[62–64] and their generalizations such as the Appell-, Kampe-De-Feriet- and related
functions [65–77]. The advantage of these integral representations is that they
usually have a lower dimensional series representation compared to their integral
representations and a part of the original integrals can be performed in this way. The
simplest function is Euler’s Beta-function implying the series of p+1Fp functions

B(a1, a2) =
∫ 1

0
dt ta1−1(1− t)a2−1 (4)

3F2(a1, a2, a3; b1, b2; x) = Γ (b2)

Γ (a3)Γ (b2 − a3)

∫ 1

0
dt ta3−1(1− t)−a3+b2−1

×2F1(a1, a2; b1; tx). (5)

Up to the level of the massless and massive two-loop calculations for single-scale
quantities in QCD these representations are usually sufficient [78–81]. In the case of
three-loop ladder graphs also Appell-functions [82, 83] contribute. A survey on the
status of this method has been given in [8]. In relating the different special functions
of this kind contiguous relations play an essential role, which has been discussed in
[9] in detail. One ends up with a series of infinite sum representations, for which
the ε-expansion is performed. These sums have to be further dealt with by using
summation methods, cf. Sect. 3.6.
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3.3 The Analytic Mellin–Barnes Technique

Only the simpler hyperexponential integrands can be represented by the higher
transcendental functions described in Sect. 3.2. One major problem to proceed are
the structures of some of the hyperexponential factors, for which the contributing
variables cannot be cast into a form required in the previous case. Here the use of
Mellin–Barnes integrals [84, 85] is of help, which are defined by

1

(a + b)α
= 1

Γ (α)

1

2πi

∫ i∞

−i∞
dzΓ (α + z)Γ (−z)

bz

aα+z
, α ∈ R, α > 0, (6)

cf. e.g. [86]. Here the contour integral is understood to be either closed to
the left or the right surrounding the corresponding singularities. Note that also
the functions in Sect. 3.2 have representations in terms of Pochhammer–Umlauf
integrals [62, 87, 88] and therefore Mellin–Barnes integral representations. The
different Mellin–Barnes integrals can be turned into a number of infinite series
by the residue theorem, leading to nested sums to be dealt with further by the
summation technologies implemented in the package Sigma [52, 53]. Here it is not
a priori clear that all the sums can be solved, which will turn out by working through
the algorithm. One is advised therefore not to use the Mellin–Barnes splitting of the
integrands extensively, although being possible [89]. On the other hand, one may
apply the packages for Mellin–Barnes integrals [90–93] to obtain numerical results
for comparisons, to check the final analytic results. One reason that a summation
problem cannot be solved completely is related to the fact, that the associated
recurrences are not first order factorizing and other technologies have to be applied.
Mellin–Barnes integrals do significantly extend the methods described in Sect. 3.2
and may lead to new higher transcendental functions not known yet in the literature.

3.4 Hyperlogarithms

The idea behind the method of hyperlogarithms is that for certain multivariate
Feynman parameter integrals an order of integrations can be found in which the
respective parameters to be integrated over always occur in linear form (Fubini
sequence) [94]. In this way the corresponding integrals are cast into iterative
Kummer–Poincaré integrals [95–99]. Originally the method could only be applied
to non-singular integrals in the dimensional parameter ε and an extension has been
worked out in [100] to the singular case. An implementation of the algorithm
has been given in [101]. The method has first been applied to massless Feynman
integrals. A generalization for massive integrals, also containing local operator
insertions, has been given in [102, 103], where multi-linearity is broken in part, still
yielding analytic results. The method is interesting but of limited use, since it applies
to structurally simple cases only and requires more than just first order factorization
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of the associated differential equations or the related nested sum representations,
through the application of which much more general cases can be solved.

3.5 The Method of Guessing

The integral transform

M[f (x)](N) =
∫ 1

0
dxxN−1f (x) (7)

defines the Mellin transform, which will often appear in the following. If single-
variate multiple Feynman parameter integrals f (x) in QCD processes are viewed
in terms of their Mellin moments {a(N)|∞N=1} for fixed values of N , one obtains
series of rational numbers weighted by color factors and multiple zeta values or
other special numbers, cf. [104–107]. It turns out in very many practical cases that
the general N solution generating the individual moments a(N) obey recursion
relations. This is the case e.g. for (massive) operator matrix elements [108] but also
for single-scale Wilson coefficients, [109].

One would like now to determine this recurrence on the basis of a (large) number
of these moments algorithmically. The corresponding algorithms are called guessing
methods [46], which are also available in Sage [110], exploiting the fast integer
algorithms available there. The method returns the wanted difference equation,
and tests it by a larger series of further moments. This method has been applied
in [45] to obtain from more than 5000 moments the massless unpolarized three-
loop anomalous dimensions and Wilson coefficients in deep-inelastic scattering
[109, 111]. More recently, the method has been applied ab initio in the calculation
of three-loop splitting functions [47, 49, 112] and the massive two- and three-loop
form factor [113, 114]. The largest systems solved in this context were massive
operator matrix elements needing∼ 8000 moments [48] to derive the corresponding
recurrences.

One then tries to solve these recurrences with the package Sigma [52, 53],
which will either find the solution or does at least factor off all the first order
factors, separating the remaining part to be solved using other techniques. The large
number of moments needed is generated using the method described in [44]. This
algorithm will play a central role in many upcoming calculations in the singlevariate
case.

Other algorithms such as Mincer [115], MATAD [116] or Q2E [117, 118] do also
provide Mellin moments. However, the number of moments which can be obtained
with these formalisms is rather low. Still these packages play a very essential role
in higher order calculations, since they provide independent tests and they are used
both for predicting intermediary and final results for indispensable comparisons.
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3.6 Difference Equations and Summation Methods

Many of the problems occurring in analytic Feynman integral calculation can be
mapped to summation problems and the solution of difference equations. Infinite
and finite sums appear in binomial and Mellin–Barnes decompositions and also in
the expansion of Pochhammer symbols depending on the dimensional parameter
ε into the associated Laurent series. Moreover, ordinary differential equations in
a variable x can be transformed into recursions in the variable N by a Mellin
transform [119]. Furthermore, structures in x-space can be expanded into formal
Taylor series, the N th coefficient of which, a(N), also obeys a certain recurrence.

Nested sums over hypergeometric terms h(k), with h(k + 1)/h(k) ∈ K(k),
for some field K that contains the rational numbers Q, will form the basis of the
summation problems we briefly consider in the following. One first considers finite
sums, i.e. those terminating at an upper integer for all summation quantifiers. The
corresponding sums are then cast into the form

Sb,a(N; c) =
N∑
k=1

hb(k; c)Sa(k; c). (8)

Here {c} denotes a finite set of constants, which has to be added to the ground field of
the difference ring and hb(k; c) is a hypergeometric term. The ci’s are also given by
certain physical parameters in multi-scale processes. Infinite sums can be dealt with
by considering limiting procedures implemented in the package HarmonicSums
[120–128]. In solving a summation problem at hand the associated sum-algebra
is built and the corresponding sums appearing in the final result are simplified
accordingly.

All summation problems which lead to first order factorizing recurrences can
be solved using difference ring theory [51] implemented in the package Sigma
[52, 53]. This concerns a rather wide class of cases. By the systematic use of
these techniques, harmonic sums [120, 121] generalized harmonic sums [122, 129],
cyclotomic harmonic sums [123], and finite binomial and inverse-binomial sums
[124] can be dealt with. A part of these function spaces has been found and
systematically explored by these techniques. Recent developments in this field are
summarized in [12].

These methods also apply to cases, which are not factorizing to first order, as e.g.
in [48]. Here all first order factors are separated from a remainder non-factorizing
recurrence. The latter one can be further dealt with using different techniques.

3.7 Differential Equations

The IBP-relations [36] do naturally imply systems of differential equations for the
master integrals. In the case of single-scale quantities these are systems of ordinary



Analytic Integration Methods in Quantum Field Theory: An Introduction 9

differential equations, Eq. (9), which have to be solved, providing the necessary
boundary conditions. Early investigations following this approach were [130–133].

d

dx

⎛
⎜⎝

f1
...

fn

⎞
⎟⎠ =

⎛
⎜⎝

A11 . . . A1,n
...

...

An1 . . . An,n

⎞
⎟⎠
⎛
⎜⎝

f1
...

fn

⎞
⎟⎠+

⎛
⎜⎝

g1
...

gn

⎞
⎟⎠ , (9)

One way to solve the system (9) consists in decoupling it using the methods of
[134, 135] encoded in Oresys [136]. In this way one obtains one scalar differential
equation of higher order

n∑
k=0

pn−k(x)
dn−k

dxn−k
f1(x) = g(x), (10)

with pn �= 0, and (n − 1) equations for the remaining solutions, which are fully
determined by the solution f1(x). One also may transform Eq. (9) into Mellin space,
decouple there and solve using the efficient methods of the package Sigma, cf. [83].

In the case of first order factorization the decoupled differential operator of (10)
can be written in form of a combination of iterative integrals, cf. Sect. 4.2,

f1(x) =
n+1∑
k=1

γkgk(x), γk ∈ C, (11)

gk(x) = h0(x)

∫ x

0
dy1h1(y1)

∫ y1

0
dy2h2(y2) . . .

∫ yk−2

0
dyk−1hk−1(yk−1)

×
∫ yk−1

0
dykqk(yk), (12)

with qk(x) = 0 for 1 ≤ k ≤ m. Further, γm+1 = 0 if ḡ(x) = 0 in (10), and
γm+1 = 1 and qm+1(x) being a mild variation of ḡ(x) if ḡ(x) �= 0.

Starting with master integrals appearing in quantum field theories one obtains lin-
ear differential equations with rational coefficients. Thus looking for d’Alembertian
solutions [137] by factorizing the differential operator into linear factors, one finds
all solutions that are expressible in terms of iterative integrals of the form (12)
where the letters hi(x) are hyperexponential, i.e., d

dx
hi(x)/h(x) ∈ K for some

field K containing Q. Such solutions can be computed, e.g., with the package
HarmonicSums.

Liouvillian solutions [138] can also be calculated with HarmonicSums utiliz-
ing Kovacic’s algorithm [139]. This algorithm has been applied in various massive
three-loop calculations so far, cf. [48, 83, 140]. A solution algorithm for first order
systems has also been presented in [113]. In these algorithms no specific choice of
a basis is necessary and the different contributions in the ε-expansion are obtained
straightforwardly.
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In the multivariate case, the so-called ε-representation of a linear system of
partial differential equations

∂mf (ε, xn) = Am(ε, xn)f (ε, xn) (13)

is important, as has been recognized in [141, 142], see also [143]. The matrices An

can now be transformed in the non-Abelian case by

A′m = B−1AmB − B−1(∂mB), (14)

as well-known [144, 145]. One then intends to find a matrix B to transform (13) into
the form

∂mf (ε, xn) = εAm(xn)f (ε, xn), (15)

if possible. This then yields solutions in terms of iterative integrals. Here a
formalism for the basis change to the ε-basis has been proposed in [146] and
implemented in the singlevariate case in [147, 148] and in the multivariate case
in [149]. All these methods apply only if the systems are first order factoriz-
able.

In the solution of differential equations it is often important to rationalize roots as
much as possible [16, 150, 151]. The corresponding algorithms are important for the
derivation of iterated root-valued integrals also in the multivariate case [152, 153].
The corresponding structures do then allow expansions in small parameters to
obtain even more compact analytic results, since normally the iterated integrals with
various involved root-valued letters turn out to form very large expressions. Recent
developments have been summarized in [16]. General aspects on the solution of
differential equation systems were summarized in [14], while aspects of differential
Galois theory were discussed in [13]. In the solution of ordinary differential
equations emerging in the context of Feynman diagrams holonomic integration often
provides a powerful tool, see [17].

3.8 Multivalued Almkvist-Zeilberger Algorithm

Singlevariate Feynman parameter integrals I (x, ε) are integrals over {xi |n1=1} ∈[0, 1]n with one more free parameter x ∈ [0, 1] and the dimensional parameter
ε. A Mellin transform leads to the function Î (N, ε). The Almkvist–Zeilberger
algorithm [154, 155] provides a method to either find an associated differential
equation for I (x) or a difference equation for I (N), the coefficients of which are
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either polynomials in {x, ε} or {N, ε},
m∑
l=0

Pl(x, ε)
dl

dxl
I (x, ε) = N(x, ε) (16)

m∑
l=0

Rl(N, ε)I (N + l, ε) = M(N, ε). (17)

Both equations may be inhomogeneous, where the inhomogeneities emerge as
known functions from lower order problems. An optimized and improved algo-
rithm for the input class of Feynman integrals has been implemented in the
MultiIntegrate package [83, 127]. It can either produce homogeneous equa-
tions of the form (16, 17) or equations with an inhomogeneity formed out of
already known functions. The method extends successively the structural form of
the difference or differential equation for the functions Î or I unless a solution is
found.

This algorithm is of great use in specific cases in which either direct summation
problems or the solution of associated differential equations becomes to voluminous
or in the case of very long computation times. Like also in the case of guessing the
corresponding recurrences turn out to be well homogeneized, which makes their
solution easier.

4 The Function Spaces

The solution of the different massless and massive higher loop calculations for
zero-, single-, and multiscale problems induce specific function spaces, which also
form algebras. These structures have been revealed in more detail after 1997 along
with performing more and more involved computations. Before it has been known
that specific numbers play a role in Feynman integral calculations, see e.g. [156],
and in the one-dimensional case Nielsen integrals [157], generalizing the classical
polylogarithms [61], were in use.

The first generalizations of these functions led to nested sum structures on the
one hand [120, 121], and iterative integrals over certain alphabets on the other hand
[128]. These structures do also apply to not too involved multi-scale problems.
Iterative non-iterative integrals occurred with the advent of complete elliptic
integrals in letters, or more generally higher transcendental functions for whose
integral representation the variable to be integrated over cannot be transformed in
one of the integration boundaries only. Synonymous objects appear in the associated
sums.
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In the following we describe the hierarchies of spaces for iterated integrals
and nested sums, which contribute in Feynman diagram calculations. Beyond
these structures there are also problems leading to non first order factorizable
recurrences and differential operators. In all calculations special numbers occur,
which have representations by iterated integrals at x = 1 or through nested
sums in the limit N → ∞. Even others appear in the context of the quantities
discussed in Sect. 4.4. Finally, we will also discuss numerical representations of
all these functions, including the analytic continuation of nested sums to N ∈
C.

4.1 Nested Sums

Considering the singlevariate case sum representations have the form given in
Eq. (8). Very often finite sums of another type have first to be brought into
this representation using the algorithms encoded in the package Sigma [52, 53].
Furthermore, also infinite sums have to be handled, which are usually considered as
the limit N →∞ of the associated finite sums.

The sums obey quasi-shuffle relations [158, 159], see Sect. 4.3. The
simplest structures are the finite harmonic sums [120, 121], where gb(k) =
(sign(b))k/k|b|, b ∈ N\{0}. A generalization is obtained in the cyclotomic case
[123]. Here the characteristic summands are ga,b,c(k) = (±1)k/(ak + b)c, with
a, b, c ∈ N\{0}. Further, the generalized harmonic sums have letters of the type
bk/kc, with c ∈ N\{0}, b �= 0, b ∈ R, [122]. A generalization of the last two
classes of sums are those generated by the Mellin transform of iterative integrals
with letters induced by quadratic forms [160], see Sect. 4.2. Another generalization
are nested finite binomial and inverse-binomial sums, containing also other sums
discussed before. An example is given by

N∑
i=1

1

(2i + 1)
(2i
i

)
i∑

j=1

(
2j

j

)
(−1)j

j3 = 1

2

∫ 1

0

(−x)N − 1

x + 1

x√
x + 1

4

H∗
w14,0,0

(x)

−
H∗
−1
4 ,0,0

(0)

2π

∫ 1

0
dx

(
x
4

)N − 1

x − 4

x√
1− x

,

(18)

see [124]. Here the indices wk label specific letters given in [124] and the iterated
integrals H∗ are defined over the support [x, 1]. Infinite binomial and inverse-
binomial sums have been considered in [161, 162]. Given the general structure of (8)
many more iterated sums can be envisaged and may still appear in even higher order
calculations.
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4.2 Iterated Integrals

Iterated integrals are of the form

Hb,a(x) =
∫ x

0
dyfb(y)Ha(y), H∅ = 1, fc ∈ A, x ∈ [0, 1], (19)

where fc are real or complex-valued functions and are the letters of the alphabet A.
For certain letters regularizations are required since otherwise the corresponding
integrals do not exist. This occurs if the letters have poles in x ∈ [0, 1].
Iterated integrals obey shuffle relations [159, 163] which allows one to represent
them over a basis of fewer integrals; for further details the reader is referred to
Sect. 4.3.

The simplest iterative integrals having been considered in quantum field theory
are the Nielsen integrals for the two-letter alphabets {1/x, 1/(1−x)} or {1/x, 1/(1+
x)} [157], covering also the polylogarithms [61]. This class has later been extended
to the harmonic polylogarithms [128] built over the alphabet {1/x, 1/(1−x), 1/(1+
x)}.

A further extension is to the real representations of the cyclotomic polylog-
arithms, with {1/x, 1/Φk(x)} [123], where Φk(x) denotes the kth cyclotomic
polynomial. Another extension is given by Kummer–Poincaré iterative integrals
over the alphabet {1/(x− ai), ai ∈ C}, [95–99]. Properties of these functions have
been studied in [122, 129]. One can avoid integrals defined over complex numbers
by allowing the more flexible definition of integrals with denominator polynomials
P(x), which one can factor into

P(x) =
n∏

k=1

(x − ak)

m∏
l=1

(x2 + blx + cl), ak, bl, cl ∈ R (20)

in real representations. One then performs partial fractioning for 1/P (x) and forms
iterative integrals out of the obtained letters in

AR =
{

1

x − ai
,

1

x2 + bix + ci
,

x

x2 + bix + ci

∣∣∣∣ ai, bi, ci ∈ R, 4ci ≥ bi

}
,

(21)

cf. [160].
The iterated integrals (19) can be analytically continued from x ∈ [0, 1] to the

complex plane by observing their respective cuts. For the harmonic polylogarithms
this has been described in [164]. For the other cases the corresponding algorithm is
implemented in HarmonicSums, see also [165].
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Further classes are found for square-root valued letters as studied e.g. in [124].
In multi-scale problems, cf. e.g. [152, 153, 166], further root-valued letters appear,
like also the Kummer-elliptic integrals [153], which are iterative integrals, because
the elliptic structure is due to incomplete elliptic integrals.

The occurrence of several masses or additional external non-factorizing scales in
higher order loop- and phase-space integrals leads in general to rational and root-
valued letters with real parameter letters in the contributing alphabet, cf. [152, 153,
166]. In the case of the loop integrals one obtains letters of the kind

1

1− x(1− η)
,

√
x(1− x)

η + x(1− η)
,
√
x(1− η(1− x), η ∈ [0, 1]. (22)

The iterative integrals and constants which appeared in [166, 167] could finally
be all integrated to harmonic polylogarithms containing complicated arguments, at
least up to one remaining integration, which allows their straightforward numerical
evaluation.

In the case of phase space integrals with more scales, e.g. [152], also letters
contribute, which may imply incomplete elliptic integrals and iterated structures
thereof. The integrands could not be rationalized completely by variable transfor-
mations, see also [150]. Contributing letters are e.g.

x√
1− x2

√
1− k2x2

,
x√

1− x2
√

1− k2x2(k2(1− x2(1− z2))− z2)
, (23)

with k, z ∈ [0, 1]. The corresponding iterative integrals are called Kummer-elliptic
integrals. They are derived using the techniques described in [124, 168, 169].

4.3 General Properties of Nested Sums and Iterated Integrals

Iterated integrals obey shuffle relations

Ha1,...am(z) · Hb1,...bn(z) = Ha1,...an(z)

∃ Hb1,...bn(z)

=
∑

ci∈{a1,...am

∃

b1,...bn}
Hci (z). (24)

Here the order of the letter sequences of the quantities to be shuffled is preserved.
The associated algebras are called shuffle algebras [159, 163]. The counting of the
basis elements in the respective class [170] may be done by counting its Lyndon
words [171] or using the Witt-formulae [172].
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Likewise, nested sums over hypergeometric terms form quasi-shuffle or stuffle
[59] algebras [158]. The stuffling relations are obtained by [129, 159]

Sa1,...,an(N) · Sb1,...,bm(N) =
N∑

l1=1

sign(a1)
l1

l
|a1|
1

Sa2,...,an(l1) · Sb1,...,bm(l1)

+
N∑

l2=1

sign(b1)
l2

l
|b1|
2

Sa1,...,an(l2) · Sb2,...,bm(l2)

−
N∑
l=1

(sign(a1)sign(b1))
l2

l|a1|+|b1| Sa2,...,an(l) · Sb2,...,bm(l)

(25)

for harmonic sums and similar for the sums in extended spaces, see [122–124, 126,
173, 174]. These algebraic relations allow one to reduce the number of contributing
functions already significantly.

In the case of the iterated integrals different classes of mappings of the main
argument may be used, which are helpful in many cases. The most important ones
are

k · z → z, k ∈ Q, 1− z → z,
1

z
→ z,

1− z

1+ z
→ z. (26)

Depending on the class of iterative integrals to be considered, not all of these
relations map inside this class, but can lead to functions in respective extensions.
In these cases one just considers the wider space. Iterated integrals also obey the
differentiation relation

d

dz
Hb,a(z) = fb(z)Ha(z). (27)

Beyond the quasi-shuffle relations, also nested sums obey further relations if con-
sidering their analytic continuation to N ∈ Q,R or C, cf. [122–124, 126, 173, 174].
These relations are called structural relations, cf. [126]. The double- [4] and multiple
arguments relations and the differential relations, applied to the associated Mellin
transforms, belong to this class. The simplest double argument relation reads

Sn1,...,np (N) = 2n1+n2+...np−p
∑
±

S±n1,...,±np (2N) , (28)
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for the harmonic sums. Examples for the differential relation are

d

dN
Sk(N) = (−1)k−1

(k − 1)!ψ
(k)(N + 1) = −k(Sk+1(N)− ζk+1) (29)

d

dN
S−k(N) = (−1)k−1

(k − 1)! β
(k)(N + 1) = −k

[
S−(k+1)(N)+

(
1− ζk+1

2k

)]
, (30)

with β(N) = [ψ((N + 1)/2)− ψ(N/2)] /2. Therefore all single harmonic sums
fall into a single equivalence class under differentiation for N , which is represented
by the harmonic sum S1(N). The number of elements in the respective classes after
applying the structural relations can also be counted by Witt-like formulae.

4.4 Solutions in the Case of Non First Order Factorizable
Recurrences and Differential Operators

Non-first order factorizing systems of differential or difference equations for the
master integrals, cf. Sect. 3.6, occur at a certain order in massive Feynman
diagram calculations. Well-known examples for this are the sun-rise integral,
cf. e.g. [175–181], the kite integral [182–184], the three-loop QCD-corrections to
the ρ-parameter [185–187], and the three-loop QCD corrections to the massive
operator matrix element AQg [48]. In the case of the ρ-parameter a Heun equation
[188] remains after separating the first order factorizing terms. Its solution can be
given in terms of 2F1-functions with a certain rational argument [187, 189] and
rational parameters. These structures will later turn out not to occur accidentally.
Next one may investigate whether these solutions can be expressed in terms of
complete elliptic integrals. This can be checked algorithmically using the triangle
group [190].

In the examples mentioned one can find representations in terms of complete
elliptic integrals of the first and second kind, K and E, cf. [191, 192]. Here the
question arises whether an argument transformation allows for a representation
through only K. It turns out that this in not possible in the present case according to
the criteria given in [193, 194].

The homogeneous solution of the Heun equations are given by 2F1-solutions
ψ

(0)
k (x), k = 1, 2, at a specific rational argument. However, these integrals cannot

be represented such that the variable x just appears in the boundaries of the integral.
The inhomogeneous solution reads

ψ(x) = ψ
(0)
1 (x)

[
C1 −

∫
dxψ

(0)
2 (x)

N(x)

W(x)

]
+ {1 → 2}, (31)

with N(x) and W(x) the inhomogeneity and the Wronskian. C1,2 are the integration
constants. Through partial integration the ratio N(x)/W(x) can be transformed into
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an iterative integral. Since ψ
(0)
k (x) cannot be written as iterative integrals, ψ(x) is

obtained as an iterative non-iterative integral [187, 195] of the type

Ha1,...,am−1;am,Fm(r(ym)),am+1,...aq (x) = (32)
∫ x

0
dy1fa1(y1)

∫ y1

0
dy2 . . .

∫ ym−1

0
dymfam(ym)Fm[r(ym)]Ham+1,...,aq (ym),

with r(x) a rational function and Fm a non-iterative integral. In general, usually
more non-iterative integrals will appear in (32). Fm denotes any non-iterative
integral, implying a very general representation, cf. [187].3 In [197] an ε-form for
the Feynman diagrams of elliptic cases has been found recently. Here transcendental
letters contribute. This is in accordance with our earlier finding, Eq. (32), which,
as well is an iterative integral over all objects between the individual iterations
and to which now also the non-iterative higher transcendental functions Fm[r(ym)]
contribute. One may obtain fast convergent representations of H(x) by overlapping
series expansions around x = x0 outside possible singularities, see [187] for details.

Now we return to the elliptic case. Here one one may transform the kinematic
variable x occurring as K(k2) = K(r(x)) into the variable q = exp[iπτ ]
analytically with

k2 = r(x) = ϑ4
2 (q)

ϑ4
3 (q)

, (33)

by applying a cubic order Legendre–Jacobi transformation, where ϑl, l = 1, . . . , 4
denote Jacobi’s ϑ-functions and Im(τ ) > 0. In this way Eq. (31) is rewritten in
terms of the new variable. The integrands are given by products of meromorphic
modular forms, cf. [198–200], which can be written as a linear combination of ratios
of Dedekind’s η-function

η(τ) = q
1

12

∞∏
k=1

(1− q2k) . (34)

Depending on the largest multiplier k ∈ N, km, of τ in the argument of the η-
function, the solution transforms under the congruence subgroup Γ0(km) and one
can perform Fourier expansions in q around the different cusps of the problem,
cf. [201, 202].

For holomorphic modular forms, one obtains representations in Eisenstein
series with character, while in the meromorphic case additional η-factors in the
denominators are present. In the former case the q-integrands can be written in

3This representation has been used in a more specific form also in [196] later.
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terms of elliptic polylogarithms in the representation [179, 180]

ELin,m(x, y) =
∞∑
k=1

∞∑
l=1

xk

kn

yl

lm
qkl (35)

and products thereof, cf. [180]. The corresponding q-integrals can be directly per-
formed. The solution (31) usually appears for single master integrals. Other master
integrals are obtained integrating further other letters, so that finally representations
by H(x) occur. Iterated modular forms, resp. Eisenstein series, have been also
discussed recently in [203–205].

Returning to the example of the ρ-parameter we find that it cannot be represented
in terms of elliptic polylogarithms only because of the emergence of the complete
elliptic integral E, for which the singularity in q implies Dedekind η-functions
appearing in the denominator. These factors have no (known) closed form q-
expansion, cf. [206]. Let us also remark that the corresponding non-iterative
solutions are sometimes found mapping first into the non-physical region. In the end
one has to perform an analytic continuation back to the physical case, which requires
to have closed form expressions. Recent developments in the field of Feynman
integrals and elliptic structures are discussed in [20, 21].

Let us mention that in some applications also non-factorizable differential
equations of 3rd order and higher can occur. The higher the order the less is known
about the analytic structure of the solutions in the general case. In the future one will
be confronted with these cases and practical solutions for them have to be found,
including highly precise numerical representations in the physical cases. This issue
is presently under study.

4.5 Spaces of Special Numbers

For the sums of Sect. 4.1 which are convergent in the limit N → ∞ and the
iterated integrals of Sect. 4.2 which can be evaluated at x = 1 one obtains two
sets of special numbers. They span the solution spaces for zero-scale quantities and
appear as boundary values for single-scale problems. Examples for these special
numbers are the multiple zeta values [4], associated to the harmonic sums and
harmonic polylogarithms, special generalized numbers [122] like Li2(1/3) and
Lik(−1/2), cf. [160], associated to generalized sums and to Kummer–Poincaré
iterated integrals, special cyclotomic numbers [123] like Catalan’s number, special
binomial numbers [124], as e.g. arccot(

√
7), and special constants in the elliptic

case [187, 207]. The latter numbers are given by integrals involving complete
elliptic integrals at special rational arguments and related functions. In general these
numbers obey more relations than the finite sums and iterated integrals. One may
use the PSLQ-method to get a first information on relations between these numbers
occurring in a given problem and prove the conjectured relations afterwards.
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4.6 Numerical Representations

Physical observables based on single scale quantities can either be represented in
Mellin N -space or x-space. Many of these representations are given in terms of
either nested sums or iterative integrals. However, there are also contributions due
to iterative non-iterative integrals.

Representations in Mellin N -space allow the exact analytic solution of evolution
equations [208] and scheme-invariant evolution equations can be derived in this
way [209, 210]. The x-space representation is then obtained by a single numerical
integral around the singularities of the respective quantity for N ∈ C, cf. [208],
requiring to know the complex representation of the integrand in N -space.

In the case of harmonic sums semi-numerical representations were given in [211,
212]. Furthermore, it is known that the basic harmonic sums, except of S1(N), which
is represented by the Digamma function, and its polynomials, have a representation
by factorial series [213, 214], which has been used in [126, 173] for their asymptotic
representation, see also [215].

The asymptotic representation of these quantities is thus given to arbitrary
precision and one may use the recurrence relations of these quantities to analytically
continue (8) from integer values of N to N ∈ C. Here it is important to observe the
crossing relations for the respective process [216, 217] which either implies the
analytic continuation from the even or from the odd integers. These steps also apply
to the other types of sums which were described in [122–124, 160] analogously,
appearing in certain physical problems, cf. [83, 102].

In the case that the corresponding relations are not given in tabulated form, they
can be calculated using the package HarmonicSums. Relations for harmonic sums
are also implemented in summer [120], and for generalized harmonic sums in
nestedsums [218], Xsummer [219], and PolyLogTools [220].

In other applications one may want to work in x-space directly. Here numerical
representations are available for the Nielsen integrals [157], the harmonic polylog-
arithms [164, 165, 221, 222], the Kummer–Poincaré iterative integrals [165], the
cyclotomic harmonic polylogarithms [113], and those implied by quadratic forms
[160]. These representations are also useful to lower the number of numerical
integrations for more general problems, e.g. in the multivariate case. The relations
for the corresponding quantities are implemented for the harmonic polylogarithms
in [128, 221] and for all iterative integrals mentioned, including general iterative
integrals, in the package HarmonicSums. Moreover, the packages summer [120],
the multiple zeta values data mine [4], and HarmonicSums also provide extensive
lists of special numbers in various tabulated basis representations allowing quick
numerical evaluation. Dynamical numerical evaluations are provided by the package
described in [165] and by HarmonicSums for non tabulated cases.

Finally, we remark that numerical evaluations of a series of elliptic integral
solutions were given in [223, 224].



20 J. Blümlein

5 Precision Goals in Testing the Standard Model

I would like to finally discuss the application of the mathematical methods described
to precision predictions for dedicated observables in Quantum Field Theory, which
are measured at high precision both in low energy experiments and at present and
future colliders.

At low energies central quantities are (g − 2)e,μ [225], for which the O(α5)

contributions have been computed numerically [226] and the O(α4) contributions
and parts of O(α5) terms have been calculated analytically [207, 227–231].
For various years there is a discrepancy between the experimental data and the
theoretical prediction. For massive calculations also the on-shell renormalization
and decoupling constants are important. At present highest loop order they were
given in [232].

In massless QCD the level of 3-loop corrections for the anomalous dimensions
and Wilson coefficients has been reached [48, 49, 109, 111, 112]. The corrections to
the β-function [58] are available at five loop order. The heavy flavor corrections
to deep-inelastic structure functions reached the level of 3-loop corrections [48,
108, 166, 167, 233] and are on the way to be completed. Furthermore, there are
also analytic 3-loop corrections to the inclusive Higgs production rate [234] and the
Drell-Yan process [235, 236], while the NNLO corrections for the t t̄-production in
hadronic collisions [237] has been computed numerically, because of the presence
of more involved integrals, still to be solved analytically.

All these processes are essential to pin down the accuracy of the parton distribu-
tion functions in the region of a clear twist-2 dominance [238], also accounting for
jet production cross sections in pp → Z+ jet at NNLO [239, 240] and in ep two-jet
production [241].

The final goal is here the precision measurement of the strong coupling constant
αs(M

2
Z) in a widely unique manner. This can also be achieved using the method

of scheme-invariant evolution equations [242] for which the initial conditions are
measured directly. Furthermore, one would like to determine at least the charm
quark mass, mc [243], in a correlated way with the parton densities and αs(M

2
Z).

Here one wants to reach relative accuracies of the order of 1% and better. It finally
may be necessary to study QCD evolution at the level of N3LO [244], in particular if
one wants to include small x effects and check the analytic predictions of the BFKL
formalism [245].

Facing future colliders such as the FCC_ee [3] a measurement of the fine
structure constant α(M2

Z) is possible at very high accuracy by using the forward–
backward asymmetry [246] and one needs to know precision predictions on the
QED radiative corrections [247]. This measurement may yield an independent
access to the size of the hadronic contributions to α. In studying the Z resonance
at the FCC_ee one expects precisions of ∼ 100 keV for MZ and the width of the
Z boson, ΓZ , which requires refined QED corrections. Those for the initial state
radiation have been calculated in [152] using a wide host of methods described in
this article. There are more goals, as e.g. the precision understanding of the top-
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threshold, cf. e.g. [248–254], the measurement of sin2θW [255], and the precision
measurement of the W -boson mass.

Beyond the more inclusive measurements we have described, there is a large
list of hard exclusive reactions needed in the analysis of the experimental data at
the LHC and at future colliders. These corrections require a lot more numerical
technologies, because of the number of different scales present. For a recent
summary of the status see [256].

Effective field methods can also be applied to classical gravity to derive higher
order post-Newtonian corrections for the inspiraling process of two massive objects.
With these methods currently the level of the 5th post-Newtonian order has been
reached [257].

6 Conclusions

With the progress in analytic precision calculations in Quantum Field Theory
more and more mathematical technologies are used to solve the corresponding
integrals analytically. The classical and Nielsen polylogarithms turned out to be not
sufficient any more to represent intermediary and the final results in the late 1990ies.
Moreover, the method of hypergeometric functions, which has fully provided the
corresponding integral representations up this point failed to cover more involved
structures. This applied already to massless and massive calculations for single
scale quantities in QCD at 3-loop order. The first indication for this was that the
arguments appearing in the 2-loop Nielsen integral representations became more
and more complicated. At this time it has also been discovered that Mellin-space
representations lead to essential compactifications [120, 121] and later it turned out
that all the single-scale 2-loop results can be written in terms of just six harmonic
sums [174, 258, 259].

The iterative integral structure has been known from the classical polylogarithms
[61] and Nielsen integrals [157] and led to the harmonic polylogarithms [128].
During the following years more and more of these structures have been revealed.
Here the difference ring techniques [12, 51–53] played an essential role, since the
corresponding structures were found constructively, mostly in massive calculations.
The Mellin transform of these quantities allowed then to find the associated iterated
integrals.

For some years now also iterative non-iterative integrals are known and were
widely studied in the case of complete elliptic integrals. However, we expect more
involved structures to emerge. Possible new structures of this kind could be Abel-
integrals [260], integrals related to K3-surfaces [261], and Calabi–Yau structures
[262].

In massive calculations [48, 50] we observe a growing number of non first
order factorizable recurrences, probably already containing structures beyond the
elliptic level. Their solution calls for a general method, which might provide
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semi-analytic numerical representations in the end, which can be tuned to any
precision. Yet one is also interested in the concrete mathematical structures of these
cases. Global methods like the recurrences or the method of differential equations
will have a hard time to reveal those. It is rather important here to analyze the
multidimensional integrands first, which is provided by applying cutting techniques
in a systematic manner, performing various Hilbert-transforms [263–265]. This has
been successfully practiced at one-loop order, see e.g. [266], and also revealed in a
nice manner the emergence of elliptic integrals.4 The method has been advocated
early by M. Veltman in his PhD thesis [267], see also [268].

In the future we will see an intense cooperation of theoretical physicists,
mathematicians and computer scientists working on large scale computer algebra
on the topic of the calculation of Feynman integrals by antidifferentiation. The field
will conquer new horizons, one never thought of. All the participating fields will
enormously profit from this work and new masterpieces of the esprit humain will be
seen.
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Extensions of the AZ-Algorithm and the
Package MultiIntegrate

Jakob Ablinger

Abstract We extend the (continuous) multivariate Almkvist-Zeilberger algorithm
in order to apply it for instance to special Feynman integrals emerging in renor-
malizable Quantum field Theories. We will consider multidimensional integrals
over hyperexponential integrals and try to find closed form representations in
terms of nested sums and products or iterated integrals. In addition, if we fail to
compute a closed form solution in full generality, we may succeed in computing
the first coefficients of the Laurent series expansions of such integrals in terms
of indefinite nested sums and products or iterated integrals. In this article we
present the corresponding methods and algorithms. Our Mathematica package
MultiIntegrate, can be considered as an enhanced implementation of the
(continuous) multivariate Almkvist Zeilberger algorithm to compute recurrences or
differential equations for hyperexponential integrands and integrals. Together with
the summation package Sigma and the package HarmonicSums our package
provides methods to compute closed form representations (or coefficients of the
Laurent series expansions) of multidimensional integrals over hyperexponential
integrands in terms of nested sums or iterated integrals.

1 Introduction

The Almkvist-Zeilberger was first formulated by Apagodu and Zeilberger [14, 31]
and has later been refined and generalized [1, 23–25, 28]. It attracted attention in
renormalizable Quantum Field Theory in the frame of the calculation of Feynman
integrals.

In the following we briefly want to summarize the structure of those integrals.
The very general class of Feynman integrals which are, for instance, considered
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in [18] are of relevance for many physical processes at high energy colliders, such
as the Large Hadron Collider and others. The considered integrals are two-point
Feynman integrals in D-dimensional Minkowski space with one time- and (D − 1)
Euclidean space dimensions, ε = D − 4 and ε ∈ R with |ε| � 1 of the following
structure:

I(ε,N, p) =
∫

dDp1

(2π)D
. . .

∫
dDpk

(2π)D
N(p1, . . . pk;p;m1 . . . mk;�,N)

(−p2
1 +m2

1)
l1 . . . (−p2

k +m2
k)

lk

∏
V

δV .

(1)

They can be shown to obey difference equations with respect to N, see, e.g., [17].
In (1) the external momentum p and the loop momenta pi denote D-dimensional
vectors, mi > 0,mi ∈ R are scalars (masses), mi ∈ {0,M}, k, li ∈ N, k ≥ 2, li ≥ 1,
and � is a light-like D-vector, �.� = 0. The numerator function N is a polynomial
in the scalar products p.pi, pi .pk and of monomials (�.p(i))

ni , ni ∈ N, ni ≥ 0.
N ∈ N denotes the spin of a local operator stemming from the light cone expansion,
see, e.g., [26] and references therein, which contributes to the numerator function
N with a polynomial in �.pi of maximal degree N , cf. [15]. Furthermore it is
assumed for simplicity that only one of the loops is formed of massive lines. The
δV occurring in (1) are shortcuts for Dirac delta distributions in D dimensions δV =
δ(D)

(∑k
l=1 aV,lpl

)
, aV,l ∈ Q.

These integrals are mathematically well defined and in [18] it is shown how they
can be mapped onto integrals on the m-dimensional unit cube with the following
structure:

I(ε,N) = C(ε,N,M)

∫ 1

0
dy1 . . .

∫ 1

0
dym

∑k
i=1

∏ri
l=1[Pi,l(y)]αi,l (ε,N)

[Q(y)]β(ε) , (2)

with k ∈ N, r1, . . . , rk ∈ N and where β(ε) is given by a rational function in ε,
i.e., β(ε) ∈ R(ε), and similarly αi,l(ε,N) = ni,lN + αi,l for some ni,l ∈ {0, 1}
and αi,l ∈ R(ε), see also [20] in the case no local operator insertions are present.
C(ε,N,M) is a factor, which depends on the dimensional parameter ε, the integer
parameter N and the mass M . Pi(y),Q(y) are polynomials in the remaining
Feynman parameters y = (y1, . . . , ym) written in multi-index notation. In (2)
all terms which stem from local operator insertions were geometrically resumed;
see [15]. In [18] it was already mentioned that after splitting the integral (2), the
integrands fit into the input class of the multivariate Almkvist-Zeilberger algorithm.
Hence, if the split integrals are properly defined, they obey homogeneous recurrence
relations in N due to the theorems in [14]. In [18] the integrals of (2) are transformed
further to a multi-sum representation, while in this article (and also in [1, 9, 11]) we
want to tackle them directly by looking on integrals of the form

I(n) = I(ε, n) =
∫ od

ud

. . .

∫ o1

u1

F(n; x1, . . . , xd ; ε) dx1 · · · dxd, (3)
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with d, n ∈ N, F(n; x1, . . . , xd ; ε) a hyperexponential term, ε > 0 a real parameter
and ui, oi ∈ R ∪ {−∞,∞}.
In [1] we only considered a discrete variable n but here we will also consider
continuous variables, i.e., we will also deal with integrals of the form

I(x) = I(ε, x) =
∫ od

ud

. . .

∫ o1

u1

F(x; x1, . . . , xd ; ε) dx1 · · · dxd, (4)

with d ∈ N, x ∈ R, F(x; x1, . . . , xd ; ε) a hyperexponential term, ε > 0
a real parameter and ui, oi ∈ R ∪ {−∞,∞}. We will use our package
MultiIntegrate1 [1, 11] that can be considered as an enhanced imple-
mentation of the multivariate Almkvist Zeilberger algorithm to compute
recurrences/differential equations for the integrands and integrals. For solving
recurrences MultiIntegrate relies on the solver implemented in the
packages Sigma1 [37–39] and EvaluateMultiSums1 [38, 39], while for
solving differential equation it relies on the solver implemented in the package
HarmonicSums1 [1, 2, 6, 8, 10].

Throughout this article K denotes a field with Q ⊆ K (e.g., K = Q(ε) forms a
rational function field) in which the usual operations can be computed.

The remainder of this article is structured in two main sections. In Sect. 2 we
will recall the multi-variate Almkvist-Zeilberger algorithm and its modifications as
presented in [1] to solve integrals of the form (3), while in Sect. 3 we will present
a method based on the continuous Almkvist-Zeilberger algorithm to solve integrals
of the form (4). The reason for Sect. 2 is its similarity to the continuous case in
Sect. 3, in addition it allows us to present a complete picture of the functionality of
the package MultiIntegrate. However, in order to keep Sect. 2 short, we omit
examples in this section and refer to [1, 9, 11] for further illustrations.

2 A Fine-Tuned Multi-Variate Almkvist-Zeilberger
Algorithm

In this section we will recall a method (presented in [1] and [11]) to compute
integrals of the form (3), that is based on slight modifications of the multi-variate
Almkvist-Zeilberger algorithm [14] and implemented in the package MultiInte-
grate. The method relies on finding and solving recurrences.
In general, consider the integrand

F(n; x1, . . . , xd) = P(n; x1, . . . , xd) ·H(n; x1, . . . , xd), (5)

1The Mathematica packages MultiIntegrate, HarmonicSums, Sigma and
EvaluateMultiSums can be downloaded at https://risc.jku.at/software.

https://risc.jku.at/software
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with a multivariate polynomial P(n; x1, . . . , xd) ∈ K[n, x1, . . . , xd ] and

H(n; x1, . . . , xd) = e
a(x1,...,xd )
b(x1,...,xd ) ·

⎛
⎝ P∏

p=1

Sp(x1, . . . , xd)
αp

⎞
⎠ ·

(
s(x1, . . . , xd)

t (x1, . . . , xd)

)n

,

where a(x1, . . . , xd) and b(x1, . . . , xd) �= 0, s(x1, . . . , xd) and t (x1, . . . , xd) �=
0 and Sp(x1, . . . , xd) ∈ K[x1, . . . , xd ], and αp ∈ K. Such integrands have the
property that the logarithmic derivatives are rational, i.e.,

DxiH(n; x1, . . . , xd)

H(n; x1, . . . , xd)
= qi(x1, . . . , xd)

ri(x1, . . . , xd)

for some qi(n, x1, . . . , xd), ri(n, x1, . . . , xd) ∈ K[n, x1, . . . , xd ] and are called
hyperexponential in xi . Note that this class of integrands covers a big class of
Feynman integrals (by choosing the rational function field K = Q(ε)) that contains
at most one mass [18, 42].
Then due to [14] there exists a non-negative integer L, there exist e0(n), . . . , eL(n) ∈
K[n] (or equivalently from K(n)), not all zero, and there also exist Ri(n; x1, . . . , xd)

∈ K(n, x1, . . . , xd) such that

Gi(n; x1, . . . , xd) := Ri(n; x1, . . . , xd)F (n; x1, . . . , xd) (6)

satisfy the integrand recurrence

L∑
i=0

ei(n)F (n+ i; x1, . . . , xd) =
d∑

i=1

DxiGi(n; x1, . . . , xd), (7)

where Dxi stands for the derivative w.r.t xi .

2.1 The General Method

The proof of the existence, and in particular a method to compute such an integrand
recurrence (7), is based on the following observation [14]. Fix a non-negative integer
L (with the role given above) and define

H(n; x1, . . . , xd) := e
a(x1,...,xd )
b(x1,...,xd ) ·

⎛
⎝ P∏

p=1

Sp(x1, . . . , xd)
αp

⎞
⎠ · s(x1, . . . , xd)

n

t (x1, . . . , xd)n+L
,
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Then we have

L∑
i=0

ei(n)F (n+ i; x1, . . . , xd) = h(x1, . . . , xd)H(n; x1, . . . , xd),

where h(x1, . . . , xd) is a polynomial i.e.,

h(x1, . . . , xd) :=
L∑

i=1

ei(n)P (n+ i, x1, . . . , xd)
s(x1, . . . , xd)

i

t (x1, . . . , xd)i−L
.

and, by construction, the logarithmic derivatives of H(n; x1, . . . , xd) are a rational
functions in the xi , i.e., we have that

DxiH(n; x1, . . . , xd)

H(n; x1, . . . , xd)
= qi(x1, . . . , xd)

ri(x1, . . . , xd)

for explicitly given qi(n, x1, . . . , xd), ri(n, x1, . . . , xd) ∈ K[n, x1, . . . , xd ].
For i = 1, . . . , d we make the general ansatz

Gi(n; x1, . . . , xd) = H(n; x1, . . . , xd) · ri(n, x1, . . . , xd) ·Xi(n; x1, . . . , xd).

(8)

Then it turns out that for L chosen sufficiently large2 there exist polynomials
Xi(n; x1, . . . , xd) ∈ K[n][x1, . . . , xd ] with 1 ≤ i ≤ L and polynomials ei(n) ∈
K[n] (not all zero) such that (7) holds. Motivated by this fact, one searches for these
unknowns Xi and ei as follows. Note that the ansatz (7) is equivalent to (see [14])

d∑
i=1

[Dxi ri(x1, . . . , xd)+ qi(x1, . . . , xd)] ·Xi(n; x1, . . . , xd)

+ ri(x1, . . . , xd) ·DxiXi(n; x1, . . . , xd)

=
L∑

i=0

ei(n) P (n; x1, . . . , xd) s(x1, . . . , xd)
i t (x1, . . . , xd)

L−i . (9)

We choose appropriate degree bounds w.r.t. the x1, . . . , xd for the Xi (1 ≤ i ≤
d) and plug the polynomials with unknown coefficients from K[n] (from K(n))
into (9). By coefficient comparison this yields a linear system in K(n) with the
unknowns ei(n) and the unknown coefficients of the polynomials Xi . Finally,

2There exist upper bounds for a particular input. But usually, these bounds are too high and one
tries smaller values.
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we can seek for a non-trivial solution for (9) and thus for (7). To optimize the
search for a non-trivial solution we make use of homomorphic image computations
in our implementation. More precisely, we plug in some concrete integers for
the parameters and reduce all integer coefficients modulo a prime. If there is no
solution in the homomorphic setting, there is no solution in the general setting.
By choosing these values sufficiently generically we can also minimize the risk
of obtaining a homomorphic solution that does not extend to a general solution.
In the end, we clear denominators in n such that the ei(n) turn to polynomi-
als.
If F(n; . . . , xi−1, ui, xi+1, . . . ) = 0 and F(n; . . . , xi−1, oi, xi+1, . . . ) = 0 then

I(n) :=
∫ od

ud

. . .

∫ o1

u1

F(n; x1, . . . , xd)dx1 . . . dxd,

satisfies the homogeneous linear recurrence equation with polynomial coefficients

L∑
i=0

ei(n)I(n+ i) = 0. (10)

The general method now is straightforward: Given an integrand of the form (5), we
can set L = 0, look for degree bounds for Xi(x1, . . . , xd) and try to find a solution
of (10) by coefficient comparison. If we do not find a solution of (10) with not all
ei(n)’s equal to zero (we stop the calculation if the homomorphic image check fails),
we increase L by one, look for new degree bounds for Xi(x1, . . . , xd) and try again
to find a solution of (10). Again, if we do not find a solution with not all ei(n)’s
equal to zero, we increase L by one and repeat the process.

The discrete multiple Almkvist-Zeilberger algorithm is implemented in the
command mAZ of MultiIntegrate.

Once we found a recurrence we exploit algorithms from [12, 32, 34, 36] which
can constructively decide if a solution with certain initial values is expressible in
terms of indefinite nested products and sums. This covers harmonic sums [16, 40],
S-sums [8, 30], cyclotomic sums [6] and binomial sums [10, 27] as special cases. In
our implementation we make use of the algorithms implemented in the summation
package Sigma. For details on which solutions can be found using Sigma, we
refer to [18].
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2.2 Dealing with Non-Standard Boundary Conditions

Unfortunately, in many cases the integrand (5) does not vanish at the integration
bounds and we end up in a linear recurrence with a non-trivial inhomogeneous part
which can be written as a linear combination of integrals with at least one integral
operator less. In the following we will deal with non-standard boundary conditions
in two different ways, see [1].

2.2.1 Dealing with Inhomogeneous Recurrences

In [1] a method that deals with the inhomogeneous recurrence similar to [18] can
be found. It gives rise to a recursive method. To be more precise, we consider the
integral

I(n) :=
∫ od

ud

· · ·
∫ o1

u1

F(n; x1, . . . , xd)dx1 . . . dxd .

Suppose that we found

L∑
i=0

ei(n)F (n+ i; x1, . . . , xd) =
d∑

i=1

DxiGi(n; x1, . . . , xd) (11)

where at least one Gi(n; x1, . . . , xd) does not vanish at the integration limits.
By integration with respect to x1, . . . , xd we can deduce that I(n) satisfies the
inhomogeneous linear recurrence equation

L∑
i=0

ei(n)I(n+ i) =

d∑
i=1

∫ od

ud

· · ·
∫ oi−1

ui−1

∫ oi+1

ui+1

· · ·
∫ o1

u1

Oi(n)dx1 . . . dxi−1dxi+1 . . . dxd

−
d∑

i=1

∫ od

ud

· · ·
∫ oi−1

ui−1

∫ oi+1

ui+1

· · ·
∫ o1

u1

Ui(n)dx1 . . . dxi−1dxi+1 . . . dxd

with

Ui(n) := Gi(n; x1, . . . , xi−1, oi, xi+1 . . . , xd)

Oi(n) := Gi(n; x1, . . . , xi−1, ui, xi+1 . . . , xd).
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Note that the inhomogeneous part of the above recurrence equation is a sum of 2 · d
integrals of dimension d − 1, which fit again into the input class of the multiple
Almkvist-Zeilberger algorithm. Hence we can apply the algorithms to the 2 · d
integrals recursively until we arrive at the base case of one-dimensional integrals
for which we have to solve an inhomogeneous linear recurrence relation where the
inhomogeneous part is free of integrals. Given the solutions for the one-dimensional
integrals we can step by step find the solutions of higher dimensional integrals until
we finally find the solution for I(n) by solving again an inhomogeneous linear
recurrence equation and combining it with the initial values. Note that we have to
calculate initial values with respect to n for all the integrals arising in this process.

Summarizing, with these algorithms we use the following strategy (note that
we assume that we are able to compute the initial values for the arising integrals);
compare [1, 18]:

Divide and Conquer Strategy

1. BASE CASE: If I(n) has no integration quantifiers, return I(n).
2. DIVIDE: As worked out above, compute a recurrence relation

a0(n)I(n)+ · · · + ad(n)I(n+ d) = h(n) (12)

with polynomial coefficients ai(n) ∈ K[n], am(n) �= 0 and the right side h(n)

containing a linear combination of hyperexponential multi-integrals each with
less than d integration quantifiers.

3. CONQUER: Apply the strategy recursively to the simpler integrals in h(n). This
results in an indefinite nested product-sum expressions h̃(n) with

h̃(n) = h(n), ∀n ≥ δ for some δ ∈ N. (13)

If the method fails to find the h̃(n) in terms of indefinite nested product-sum
expressions, STOP.

4. COMBINE: Given (12) with (13), compute, if possible, Ĩ(n) in terms of nested
product-sum expressions such that

Ĩ(n) = I(n), ∀n ≥ δ for some δ ∈ N. (14)

by solving the recurrence.
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This divide and conquer strategy is implemented in the command mAZInte-
grate of MultiIntegrate.

Remark 1 We remark that this approach works nicely, if the initial values of the
integrals in the inhomogeneous part can be calculated efficiently. Further details on
this approach are given in [1, 7]. We remark further that similar approaches have
been explored in [18, 19] and [7] based on [41, 43] and [35], respectively, in order
to derive recurrences for hypergeometric multi-sums.

2.2.2 Adapting the Ansatz to Find Homogeneous Recurrences

In order to avoid the difficulties of inhomogeneous recurrences we adapt the ansatz.
Namely, we can always obtain a homogeneous recurrence of the form (10) by
changing (8) to

Gi(n; x1, . . . , xd) =
H(n; x1, . . . , xd) · ri(x1, . . . , xd) ·Xi(x1, . . . , xd)(xi − ui)(xi − oi),

(15)

i.e., the Gi are forced to vanish at the integration bounds. Then with this Ansatz (9)
the underlying linear system turns into

d∑
i=1

[Dxi ri(x1, . . . , xd)+ qi(x1, . . . , xd)] ·Xi(x1, . . . , xd)(xi − ui)(xi − oi)

+ri(x1, . . . , xd) ·DxiXi(x1, . . . , xd)(xi − ui)(xi − oi)

=
L∑

i=0

ei(N) P (N; x1, . . . , xd) s(x1, . . . , xd)
i t (x1, . . . , xd)

L−i . (16)

The general method now is straightforward: Given an integrand of the form (5),
we can set L = 0, look for degree bounds for Xi(x1, . . . , xd) and try to find a
solution of (16) by coefficient comparison. If we do not find a solution of (16) with
not all ei(n)’s equal to zero, we increase L by one, look for new degree bounds
for Xi(x1, . . . , xd) and try again to find a solution of (16). Again, if we do not find
a solution with not all ei(n)’s equal to zero, we increase L by one and repeat the
process.
Once we found a recurrence we can use the recurrence solver implemented in the
summation package Sigma to try to solve it.
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This strategy is implemented in the command mAZDirectIntegrate of
MultiIntegrate.

Remark 2 The advantage of this approach is, that we do not have to deal with
integrals (and initial conditions) recursively, since the recurrence is homogenous,
however the additional conditions on the ansatz might increase the order of the
recurrence drastically. In particular, the routine is more robust: no abortion can occur
due to problematic integral arising from the recursion.

2.3 Computing Series Expansions of the Integrals

Due to time and memory limitations, not finding all solutions of the recurrences
or due to missing initial values (in full generality) we might fail to process certain
integrals using the methods described in the previous subsection. Therefore, inspired
by [18], a method which computes ε-expansions of integrals of the form (3) was
developed in [1]. In the following we recall this method. We assume that the integral
I(ε, n) from (3) has a Laurent expansion in ε for each n ∈ N with n ≥ λ for some
λ ∈ N and thus it is an analytic function in ε throughout an annular region centered
by 0 where the pole at ε = 0 has some order K ∈ Z. Hence we can write it in the
form

I(ε, n) =
∞∑

k=−K

εkIk(n). (17)

In the following we try to find the first coefficients It (n), It+1(n), . . . , Iu(n) in terms
of indefinite nested product-sum expressions of the expansion

I(ε, n) = It (n)ε
t + It+1(n)ε

t+1 + It+2(n)ε
t+2 + . . . (18)

with t = −K ∈ Z. We start by computing a recurrence for I(ε, n) in the form

a0(ε, n)J (ε, n)+ a1(ε, n)J (ε, n+ 1)+ · · · + ad(ε, n)J (ε, n+ d)

= h−K(n)ε−K + h−K+1(n)ε
−K+1 + · · · + hu(n)ε

u + . . . (19)

In order to accomplish this task, we can use the methods presented in the previous
section. Given the recurrence we exploit an algorithm from [18] which can
constructively decide if a formal Laurent series solution with certain initial values is
expressible (up to a certain order) in terms of indefinite nested products and sums.
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This algorithm is implemented in the package Sigma and can be summarized as
follows (see [18] and compare [1, 11]).

Suppose we are given the linear recurrence (19) of order d where the ai(ε, n) are
polynomials in n and ε and where the inhomogeneous part can be expanded in ε up
to order u. Consider a function which has a Laurent series expansion

I(ε, n) = Ft(n)ε
t + Ft+1(n)ε

t+1 + . . . (20)

and which is a solution of the given recurrence for all n ≥ n0 for some n0 ∈ N.
Then together with the d initial values Fj (n0), . . . , Fj (n0 + d − 1) with t ≤ j ≤ u,
all values Ft(n), . . . , Fu(n) with n ≥ n0 can be computed provided that the
values hi(n) for all i with t ≤ i ≤ u and all integers n with n ≥ n0 can
be computed. In addition, if the ht (n), . . . , hu(n) are given explicitly in terms of
indefinite nested product-sum expressions, there is an algorithm which decides
constructively if the Ft(n), . . . , Fu(n) can be given in terms of indefinite nested
product-sum expressions.

Having such a Laurent series recurrence solver in hand we can combine it with
the methods from the previous sections. Let I(ε, n) be a multi-integral of the
form (3) and assume that I(ε, n) has a series expansion (18) for all n ≥ λ for
some λ ∈ N. If we succeed in finding a homogeneous differential equation, for
instance by using the method form Sect. 2.2.2 we can directly apply the Laurent
series recurrence solver, supposing that we can handle the initial values. This has
been exploited in the frame of [11].

This strategy is implemented in the command mAZExpandedDirect-
Integrate of MultiIntegrate.

Of course we can again think of a recursive method to compute the first coefficients
(compare [1, 18]), say Ft(n), . . . , Fu(n) of (18). Note that we have the same
advantages and disadvantages as mentioned for the recursive method in Sect. 2.2.1,
but if we assume that we can handle the initial values we can use the following
strategy.

Divide and Conquer Strategy

1. BASE CASE: If I(ε, n) has no integration quantifiers, compute the expansion
by standard methods.

2. DIVIDE: As worked out before, compute a recurrence relation

a0(ε, n)I(ε, n)+ · · · + ad(ε, n)I(ε, n+ d) = h(ε, n) (21)
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with polynomial coefficients ai(ε, n) ∈ K[ε, n], am(ε, n) �= 0 and the right side
h(ε, n) containing a linear combination of hyperexponential multi-integrals each
with less than d integration quantifiers.

3. CONQUER: Apply the strategy recursively to the simpler integrals in h(ε, n).
This results in an expansion of the form

h(ε, n) = ht (n)+ h1(n)ε + · · · + hu(n)ε
u +O(εu+1); (22)

if the method fails to find the ht (n), . . . , hu(n) in terms of indefinite nested
product-sum expressions, STOP.

4. COMBINE: Given (21) with (22), compute, if possible, the Ft(n), . . . , Fu(n)

of (18) in terms of nested product-sum expressions by using Sigma.

This divide and conquer strategy is implemented in the command mAZ-
ExpandedIntegrate of MultiIntegrate.

3 A Fine-Tuned Continuous Multi-Variate
Almkvist-Zeilberger Algorithm

In this section we present a method to compute integrals of the form (4), that is
based on slight modifications of the continuous multi-variate Almkvist-Zeilberger
algorithm [14] and implemented in the package MultiIntegrate. Unlike in the
discrete case, this method relies on finding and solving differential equations. In
general, consider the hyperexponential integrand

F(x; x1, . . . , xd) = P(x; x1, . . . , xd) ·H(x; x1, . . . , xd), (23)

with a multivariate polynomial P(x; x1, . . . , xd) ∈ K[x, x1, . . . , xd ] and

H(x; x1, . . . , xd) = e
a(x,x1,...,xd )
b(x,x1,...,xd ) ·

⎛
⎝ P∏

p=1

Sp(x, x1, . . . , xd)
αp

⎞
⎠ ,

where a(x, x1, . . . , xd), b(x, x1, . . . , xd) and Sp(x, x1, . . . , xd) ∈ K[x, x1, . . . , xd ],
with b(x, x1, . . . , xd) �= 0, and αp ∈ K. Then due to [14] there exists a non-negative
integer L, there exist e0(x), e1(x), . . . , eL(x) ∈ K[x] (or equivalently from K(x)),
not all zero, and there also exist Ri(x; x1, . . . , xd) ∈ K(x, x1, . . . , xd) such that

Gi(x; x1, . . . , xd) := Ri(x; x1, . . . , xd)F (x; x1, . . . , xd) (24)
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satisfy the integrand differential equation

L∑
i=0

ei(x)D
i
xF (x; x1, . . . , xd) =

d∑
i=1

DxiGi(x; x1, . . . , xd). (25)

3.1 The General Method

The proof of the existence, and in particular a method to compute such a differential
equation (25), is based on the following observation [14]. Fix a non-negative
integer L (with the role given above), define

H(x; x1, . . . , xd) := e
a(x,x1,...,xd )
b(x,x1,...,xd )

b(x, x1, . . . , xd)2L
·
⎛
⎝ P∏

p=1

Sp(x, x1, . . . , xd)
αp

⎞
⎠ ,

Then we have

L∑
i=0

ei(x)D
i
xF (x; x1, . . . , xd) = h(x, x1, . . . , xd)H(x; x1, . . . , xd).

for some polynomial h(x, x1, . . . , xd) that can be determined and, by construction,
the logarithmic derivatives of H(x; x1, . . . , xd) are rational functions in the xi , i.e.,
we have that

DxiH(x; x1, . . . , xd)

H(x; x1, . . . , xd)
= qi(x, x1, . . . , xd)

ri(x, x1, . . . , xd)

for explicitly given qi(x, x1, . . . , xd), ri(x, x1, . . . , xd) ∈ K[x, x1, . . . , xd ].
For i = 1, . . . , d we make the general ansatz

Gi(x; x1, . . . , xd) = H(x; x1, . . . , xd) · ri(x, x1, . . . , xd) ·Xi(x; x1, . . . , xd).

(26)

Then it turns out that for L chosen sufficiently large3 there exist polynomials
Xi(x; x1, . . . , xd) ∈ K[x][x1, . . . , xd ] with 1 ≤ i ≤ L and polynomials ei(x) ∈
K[x] (not all zero) such that (25) holds. Motivated by this fact, one searches for

3There exist upper bounds for a particular input. But usually, these bounds are too high and one
tries smaller values.
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these unknowns Xi and ei as follows. Note that the ansatz (25) is equivalent to
(see [14])

d∑
i=1

[Dxi ri(x, x1, . . . , xd)+ qi(x, x1, . . . , xd)] ·Xi(x; x1, . . . , xd)

+ ri(x, x1, . . . , xd) ·DxiXi(x, x1, . . . , xd) = h(x, x1, . . . , xd). (27)

Finally, we choose appropriate degree bounds w.r.t. the x1, . . . , xd for the Xi

(1 ≤ i ≤ d) and plug the polynomials with unknown coefficients from K[x] (from
K(x)) into (27). By coefficient comparison this yields a linear system in K(x) with
the unknowns ei(x) and the unknown coefficients of the polynomials Xi . Finally,
we can seek a non-trivial solution for (27) and thus for (25). In the end, we clear
denominators in x such that the ei(x) turn to polynomials.
If F(x; . . . , xi−1, ui, xi+1, . . . ) = 0 and F(x; . . . , xi−1, oi, xi+1, . . . ) = 0 then

I(x) :=
∫ od

ud

. . .

∫ o1

u1

F(x; x1, . . . , xd)dx1 . . . dxd,

satisfies the homogeneous linear differential equation with polynomial coefficients

L∑
i=0

ei(x)D
i
xI(x) = 0. (28)

The general method now is straightforward: Given an integrand of the form (23),
we can set L = 0, look for degree bounds for Xi(x, x1, . . . , xd) and try to find
a solution of (28) by coefficient comparison. If we do not find a solution of (28)
with not all ei(x)’s equal to zero (with homomorphic image testing to decide
non-existence efficiently), we increase L by one, look for new degree bounds for
Xi(x, x1, . . . , xd) and try again to find a solution of (28). Again, if we do not find
a solution with not all ei(x)’s equal to zero, we increase L by one and repeat the
process.

The continuous Almkvist-Zeilberger algorithm is implemented in the com-
mand cmAZ of MultiIntegrate.

Once we found a differential equation we can make use of the differential
equation solver implemented in HarmonicSums. This solver finds all solutions
of holonomic differential equations that can be expressed in terms of iterated
integrals over hyperexponential alphabets [3, 12, 13, 22, 32] (with harmonic poly-
logarithms [33], cyclotomic polylogarithms [6] and iterated integrals over root-
valued alphabets [10] as special cases); these solutions are called d’Alembertian
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solutions [12], in addition for differential equations of order two it finds all solutions
that are Liouvillian [4, 29].

Example 1 (cmAZ) The following problem, which was already solved in [21], was
communicated to us by D. Broadhurst. The goal is to find a differential equation
satisfied by

Y (h) =
∫ 1

0

∫ 1

u

1√
uv(1− u)(1− v)(1− uh)(1− (1− v)h)

dvdu. (29)

In order to fit (29) to the requirements of the AZ-algorithm we transform it using
the substitution v → u/(1+ (u− 1)z), which leads to

∫ 1

0

∫ 1

0

1√
(1− hu)(z− 1)(1+ (u− 1)z)(h(u− 1)(z− 1)+ z− uz− 1)

dzdu.

(30)

Now we can apply our implementation:

In[1]:= cmAZ
[

1√
(1 − hu)(z − 1)(1 + (u − 1)z)(h(u − 1)(z − 1) + z − uz − 1)

, h, {u, z},

AddFactors →
{
(1 − u)3(1 − z)6, (1 − z)3

}]

Out[1]= −1+ 2h+ 2
(

1− 7h+ 7h2
)
Dh + 6(−1+ h)h(−1+ 2h)D2

h + 2(−1+ h)2h2D3
h

Note that in this example the integrand is not vanishing at the integration bounds,
still we could derive a homogeneous differential equation, for details we refer to the
next session. However, here the right hand side can be computed easily and we find
the following differential equation, which is equivalent to the one found in [21]:

(
(h− 1)2h2D3

h + 3(h− 1)h(2h− 1)D2
h + (1− 7h+ 7h2)Dh + h− 1

2

)

Y (h) =
(
h2+4h−4

)
√

1−h(2−h)2 .

In a similar way this was already proven by D. van Straten.

3.2 Dealing with Non-Standard Boundary Conditions

Unfortunately, in many cases the integrand (23) does not vanish at the integration
bounds and we end up in a linear differential equation with a non-trivial inhomo-
geneous part which can be written as a linear combination of integrals with at least
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one integral operator less. In the following we will deal with non-standard boundary
conditions in two different ways, similar to the discrete case of Sect. 2.

3.2.1 Dealing with Inhomogeneous Differential Equations

In the previous section a method that deals with the inhomogeneous recurrences
was stated, here we will use similar considerations that will give rise to a recursive
method. To be more precise, we consider the integral

I(x) :=
∫ od

ud

· · ·
∫ o1

u1

F(x; x1, . . . , xd)dx1 . . . dxd .

Suppose that we found

L∑
i=0

ei(x)D
i
xF (x; x1, . . . , xd) =

d∑
i=1

DxiGi(x; x1, . . . , xd) (31)

where at least one Gi(x; x1, . . . , xd) does not vanish at the integration limits.
By integration with respect to x1, . . . , xd we can deduce that I(x) satisfies the
inhomogeneous linear differential equation

L∑
i=0

ei(x)D
i
xI(x) =

d∑
i=1

∫ od

ud

· · ·
∫ oi−1

ui−1

∫ oi+1

ui+1

· · ·
∫ o1

u1

Oi(x)dx1 . . . dxi−1dxi+1 . . . dxd

−
d∑

i=1

∫ od

ud

· · ·
∫ oi−1

ui−1

∫ oi+1

ui+1

· · ·
∫ o1

u1

Ui(x)dx1 . . . dxi−1dxi+1 . . . dxd

with

Ui(x) := Gi(x; x1, . . . , xi−1, oi, xi+1 . . . , xd)

Oi(x) := Gi(x; x1, . . . , xi−1, ui, xi+1 . . . , xd).

Note that the inhomogeneous part of the above differential equation is a sum of 2 ·d
integrals of dimension d − 1, which fit again into the input class of the continuous
multiple Almkvist-Zeilberger algorithm. Hence we can apply the algorithms to the
2·d integrals recursively until we arrive at the base case of one-dimensional integrals
for which we have to solve an inhomogeneous differential equation where the
inhomogeneous part is free of integrals. Given the solutions for the one-dimensional
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integrals we can step by step find the solutions of higher dimensional integrals until
we finally find the solution for I(x) by solving again an inhomogeneous linear
differential equation and combining it with the initial conditions. Note that we have
to calculate the initial conditions with respect to x for all the integrals arising in this
process.
Summarizing, we use the following strategy (note that we assume that we are able
to compute the initial conditions for the arising integrals):

Divide and Conquer Strategy

1. BASE CASE: If I(x) has no integration quantifiers, return I(x).
2. DIVIDE: As worked out above, compute a differential equation

a0(x)I(x)+ a1(x)DxI(x)+ · · · + ad(x)D
d
xI(x) = h(x) (32)

with polynomial coefficients ai(x) ∈ K[x], am(x) �= 0 and the right side h(x)

containing a linear combination of hyperexponential multi-integrals each with
less than d integration quantifiers.

3. CONQUER: Apply the strategy recursively to the simpler integrals in h(x). This
results in an iterated integral expressions h̃(x) with

h̃(x) = h(x). (33)

If the method fails to find the h̃(x) in terms of iterated integral expressions, STOP.
4. COMBINE: Given (32) with (33), compute, if possible, Ĩ(x) in terms of iterated

integral expressions such that

Ĩ(x) = I(x) (34)

by solving the differential equation.

This divide and conquer strategy is implemented in the command cmAZ-
Integrate of MultiIntegrate.

Remark 3 We remark that this approach works nicely, if the initial conditions of the
integrals in the inhomogeneous part can be calculated efficiently.
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Example 2 (cmAZIntegrate) We consider the integral

∫ 1

−1

∫ 1

−1

∫ 1

−1

∫ 1

−1
e−x(w1w2+w3w4)dw4dw3dw2dw1 : (35)

In[2]:= cmAZIntegrate[e−x(w1w2+w3w4), x, {{w1, −1, 1}, {w2, −1, 1}, {w3, −1, 1}, {w4, −1, 1}}]

Out[2]=

8
(

G
(
e−τ

τ
, e−τ

τ
; x
)
− G

(
e−τ

τ
, eτ

τ
; x
)
− G

(
eτ

τ
, e−τ

τ
; x
)
+ G

(
eτ

τ
, eτ

τ
; x
))

x2

Note that the iterated integrals are defined recursively by

G (f1(τ ), f2(τ ), · · · , fk(τ ); x) =
∫ x

0
f1(τ1)G (f2(τ ), · · · , fk(τ ); τ1) dτ1,

with the special case G(x) = 1, compare e.g., [5].
Here, in a first step the differential equation

2f (x)+ xDxf (x) =
∫ 1

−1

∫ 1

−1

∫ 1

−1
ex(−w1w2+w4)dw4dw2dw1 +

∫ 1

−1

∫ 1

−1

∫ 1

−1
e−x(w1w2+w4)dw4dw2dw1

+
∫ 1

−1

∫ 1

−1

∫ 1

−1
e−x(w2+w3w4)dw4dw3dw2 +

∫ 1

−1

∫ 1

−1

∫ 1

−1
ex(w2−w3w4)dw4dw3dw2

is computed. The procedure is applied recursively to all the integrals on the right
hand side, which leads to

2f (x)+ xf ′(x) = −
8e−x

(
e2x − 1

) (
G
(
e−τ

τ
; x
)
− G

(
eτ

τ
; x
))

x2

Finally, solving this differential equation and combining with initial conditions
yields the result.

3.2.2 Adapting the Ansatz to Find Homogeneous Differential Equations

In order to avoid the difficulties of inhomogeneous differential equations we adapt
the ansatz. Namely, we can always obtain a homogeneous differential equation of
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the form (28) by changing (26) to

Gi(x; x1, . . . , xd) =
H(x; x1, . . . , xd) · ri(x1, . . . , xd) ·Xi(x1, . . . , xd)(xi − ui)(xi − oi),

(36)

i.e., the Gi are forced to vanish at the integration bounds. Then with this ansatz (27)
the underlying linear system turns into

d∑
i=1

[Dxi ri (x1, . . . , xd )+ qi(x1, . . . , xd )] ·Xi(x1, . . . , xd )(xi − ui)(xi − oi) (37)

+ ri (x, x1, . . . , xd ) ·DxiXi(x1, . . . , xd )(xi − ui)(xi − oi) = h(x, x1, . . . , xd ).

The general method now is straightforward: Given an integrand of the form (23),
we can set L = 0, look for degree bounds for Xi(x, x1, . . . , xd) and try to find
a solution of (37) by coefficient comparison. If we do not find a solution of (37)
with not all ei(x)’s equal to zero (again homomorphic image testing is used for
speedups), we increase L by one, look for new degree bounds for Xi(x, x1, . . . , xd)

and try again to find a solution of (37). Again, if we do not find a solution with not
all ei(x)’s equal to zero, we increase L by one and repeat the process.
Once we found a differential equation we can use the differential equation solver
implemented in the package HarmonicSums to try to find a closed form solution.

This strategy implemented in the command cmAZDirectIntegrate of
MultiIntegrate.

Remark 4 The advantage of this approach is, that we do not have to deal with
integrals (and initial conditions) recursively, since the differential equation is
homogenous, however the additional conditions on the ansatz might increase the
order of the differential equation drastically.

Example 3 (cmAZDirectIntegrate) We consider again the integral given in (35):

In[3]:= cmAZDirectIntegrate[e−x(w1∗w2+w3∗w4) , x, {{w1, −1, 1}, {w2, −1, 1}, {w3, −1, 1},
{w4, −1, 1}}]

Out[3]=

8
(

G
(
e−τ

τ
, e−τ

τ
; x
)
− G

(
e−τ

τ
, eτ

τ
; x
)
− G

(
eτ

τ
, e−τ

τ
; x
)
+ G

(
eτ

τ
, eτ

τ
; x
))

x2
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Here the differential equation

0 = 32
(

4x − 16x3 + 9x5
)
f (x)− 4

(
27− 148x2 + 598x4 − 63x6

)
f ′(x)

− 4
(

117x − 568x3 + 556x5 − 9x7
)
f ′′(x)−

(
478x2 − 2919x4 + 603x6

)
f (3)(x)

− 5
(

34x3 − 247x5 + 9x7
)
f (4)(x)−

(
23x4 − 189x6

)
f (5)(x)−

(
x5 − 9x7

)
f (6)(x)

is derived. Solving and combing it with the initial condition yields the result given
in Out[3].

3.3 Computing Series Expansions of the Integrals

Due to time and memory limitations, not finding all solutions of the differential
equations or due to missing initial conditions (in full generality) we might fail to
process certain integrals using the methods described in the previous subsection.
Therefore, inspired by the previous section we are seeking a method which
computes ε-expansions of integrals of the form (4).
Again we assume that the integral I(ε, x) from (4) has a Laurent expansion in ε for
x ∈ R with xα < x < xβ for some xα < 0, xβ > 0 ∈ R and thus it is an analytic
function in ε throughout an annular region centered by 0 where the pole at ε = 0
has some order K ∈ Z. Hence we can write it in the form

I(ε, x) =
∞∑

k=−K

εkIk(x). (38)

In the following we try to find the first coefficients It (x), It+1(x), . . . , Iu(x) in terms
of iterated integral expressions of the expansion

I(ε, x) = It (x)ε
t + It+1(x)ε

t+1 + It+2(x)ε
t+2 + . . . (39)

with t = −K ∈ Z. Assume that we managed to compute a differential equation
satisfied by I(ε, x) in the form

a0(ε, x)J (ε, x)+ a1(ε, x)DxJ (ε, x)+ · · · + ad(ε, x)D
d
x J (ε, x)

= h−K(x)ε−K + h−K+1(x)ε
−K+1 + · · · + hu(x)ε

u + . . . . (40)

In order to find such a differential equation we can use the methods presented
in the previous subsections. In the package HarmonicSums we implemented an
algorithm that tries to find (39), given a differential equation (40) and suitable initial
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conditions given as power series expansions about x = 0 starting from some s ∈ Z:

It (x) = It,sx
s + It,s+1x

s+1 + · · · + It,s+2x
s+d−1 +O(xs+d)

It+1(x) = It+1,sx
s + It+1,s+1x

s+1 + · · · + It+1,s+2x
s+d−1 +O(xs+d)

...

Iu(x) = Iu,sx
s + Iu,s+1x

s+1 + · · · + Iu,s+2x
s+d−1 +O(xs+d)

(41)

In the following we will illustrate the basic calculation steps of this algorithm, which
can be considered as the continuous version of the algorithm presented in [18]; see
Sect. 2.3. Inserting the ansatz (39) into (40) yields

a0(ε, x)
[
It (x)ε

t + It+1(x)ε
t+1 + It+2(x)ε

t+2 + . . .
]
+

a1(ε, x)
[
DxIt (x)ε

t +DxIt+1(x)ε
t+1 +DxIt+2(x)ε

t+2 + . . .
]

+ · · ·+
ad(ε, x)

[
Dd

x It (x)ε
t +Dd

x It+1(x)ε
t+1 +Dd

x It+2(x)ε
t+2 + . . .

]

= ht (x)ε
t + ht+1(x)ε

t+1 + · · · + hu(x)ε
u + . . . .

(42)

Since two Laurent series agree if they agree coefficient-wise, we obtain the
following constraint for It (x) by coefficient comparison:

d∑
k=0

ak(0, x)D
k
xIt (x) = ht (x), (43)

with the initial condition given in (41). We are now in the position to try to find an
explicit representation using HarmonicSums’s differential equation solver [3, 4].
We assume that we could find an iterated integral representation Ĩt (x) such that
Ĩt (x) = It (x) for all x ∈ (xα, xβ). In order to obtain the next coefficient of the
Laurent series in ε, we insert Ĩt (x) into (42), which yields

a0(ε, x)
[
It+1(x)ε

t+1 + It+2(x)ε
t+2 + It+3(x)ε

t+3 + . . .
]
+

a1(ε, x)
[
DxIt+1(x)ε

t+1 +DxIt+2(x)ε
t+2 +DxIt+3(x)ε

t+3 + . . .
]

+ · · ·+
ad(ε, x)

[
Dd

x It+1(x)ε
t+1 +Dd

x It+2(x)ε
t+2 +Dd

x It+3(x)ε
t+3 + . . .

]

= h̃t+1(x)ε
t+1 + h̃t+2(x)ε

t+1 + · · · + h̃u(x)ε
u + . . .

(44)
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with h̃i (x) = hi(x)− gi(x), where the gi(x) satisfy

a0(ε, x)Ĩt (x)+ a1(ε, x)DxĨt (x)+ · · · + ad(ε, x)D
d
x Ĩt (x)

= ht (x)ε
t + gt+1(x)ε

t+1 + · · · + gu(x)ε
u + . . . .

Now we repeat the above procedure: by coefficient comparison we obtain the
following constraint for It+1(x):

d∑
k=0

ak(0, x)D
k
xIt+1(x) = h̃t+1(x). (45)

Assuming that we can find a solution Ĩt+1(x) of (45) in terms of iterated integrals
that satisfy the initial condition from (41) such that Ĩt+1(x) = It+1(x) for all x ∈
(xα, xβ) we can update the ansatz (44):

a0(ε, x)
[
It+2(x)ε

t+2 + It+3(x)ε
t+3 + It+4(x)ε

t+4 + . . .
]
+

a1(ε, x)
[
DxIt+2(x)ε

t+2 +DxIt+3(x)ε
t+3 +DxIt+4(x)ε

t+4 + . . .
]

+ · · ·+
ad(ε, x)

[
Dd

x It+2(x)ε
t+2 +Dd

x It+3(x)ε
t+3 +Dd

x It+4(x)ε
t+4 + . . .

]

= ˜̃
ht+2(x)ε

t+2 + ˜̃
ht+3(x)ε

t+3 + · · · + ˜̃
hu(x)ε

u + . . .

(46)

with ˜̃hi(x) = h̃i (x)− g̃i (x), where the g̃i (x) satisfy

a0(ε, x)Ĩt+1(x)+ a1(ε, x)DxĨt+1(x)+ · · · + ad(ε, x)D
d
x Ĩt+1(x)

= h̃t+1(x)ε
t + g̃t+2(x)ε

t+2 + · · · + g̃u(x)ε
u + . . . .

We can repeat this process as long as we can compute solutions and as long as
needed. The illustrated calculation steps can be summarized with the following
theorem.

Theorem 1 Suppose we are given a linear differential equation

a0(ε, x)J (ε, x)+ a1(ε, x)DxJ (ε, x)+ · · · + ad(ε, x)D
d
x J (ε, x)

= hk(x)ε
k + hk+1(x)ε

k+1 + · · · + hu(x)ε
u + . . .
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of order d where the ai(ε, x) are polynomials in x and ε and where the inhomoge-
neous part can be expanded in ε up to order u in terms of expressions in iterated
integrals over hyperexponential alphabets. Consider a function which has a Laurent
series expansion

J (ε, x) = Fk(x)ε
k + Fk+1(x)ε

k+1 + . . .

and which is a solution of the given differential equation for all x ∈ R with xα <

x < xβ for some xα < 0, xβ > 0 ∈ R. Then together with the initial conditions

Fj (x) = Fj,sx
s + Fj,s+1x

s+1 + · · · + Fj,s+2x
s+d−1 +O(xs+d)

with k ≤ j ≤ u, all Fk(x), . . . , Fu(x) with xα < x < xβ can be computed in terms
of expressions in iterated integrals over hyperexponential alphabets provided that
the values hj (x) for all j with k ≤ i ≤ u and xα < x < xβ can be computed in
terms of expressions in iterated integrals over hyperexponential alphabets.

This algorithm is implemented in the package HarmonicSums and with this
implementation in hand we can try to find Laurent series solutions of integrals of the
form (4). Let I(ε, n) be a multi-integral of the form (4) and assume that I(ε, x) has a
series expansion (39) for all x ∈ R with xα < x < xβ for some xα < 0, xβ > 0 ∈ R.
If we succeed in finding a homogeneous differential equation, for instance by using
the method form Sect. 3.2.1 we can directly apply the Laurent series differential
equation solver, supposing that we can handle the initial conditions.

This strategy is implemented in the command cmAZExpandedDirect-
Integrate of MultiIntegrate.

Example 4 (cmAZExpandedDirectIntegrate) We consider the integral

I (ε,w) =
∫ 1

0

∫ 1

0

∫ 1

0
exyw((1− w)x(1− y))

ε
2 ((1− w)y(1− x)z(1− z))dzdydx

(47)

with the given initial condition

I (ε,w) = 8

3(2+ ε)2(4+ ε)2 −
4w(28+ ε(12+ ε))

3(2+ ε)(4+ ε)2(6+ ε)2

+w2(−1664+ ε(12+ ε(12+ ε))(72+ ε(16+ ε)))

3(2+ ε)(4+ ε)2(6+ ε)2(8+ ε)2︸ ︷︷ ︸
init :=

+O(w3).
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We want to find the first two terms of the ε−expansion of I (ε,w), i.e., we want to
compute I0(w) and I1(w) such that I (ε,w) = I0(w) + εI1(w) + O(ε2). This can
be achieved by using our implementation:

In[4]:= cmAZExpandedDirectIntegrate[I(ε, w), w, {ε, 0, 1}, {{x, 0, 1}, {y, 0, 1}, {z, 0, 1}},
InitValues → init]

Out[4]=

{{
1

6
− 1

6w
−

G
(

1−ετ

τ
;w
)

6w2 +
G
(

1−ετ

τ
;w
)

6w
,− 1

12w2 +
εw

12w2 +
1

12w
− εw

12w

−
G
(

1
1−τ

;w
)

12
+

G
(

1
1−τ

;w
)

12w
−

G
(

1−ετ

τ
;w
)

12
−

G
(

1−ετ

τ
;w
)

12w2 +
G
(

1−ετ

τ
;w
)

6w

+
G
(

1
1−τ

, 1−ετ

τ
;w
)

12w2 −
G
(

1
1−τ

, 1−ετ

τ
;w
)

12w
−

G
(

1
τ
, 1−ε−τ

τ
;w
)

12w2 +
G
(

1
τ
, 1−ε−τ

τ
;w
)

12w

+
G
(

1
τ
, 1−ετ

τ
;w
)

12w2 −
G
(

1
τ
, 1−ετ

τ
;w
)

12w
+

G
(

1−ετ

τ
, 1

1−τ
;w
)

12w2 −
G
(

1−ετ

τ
, 1

1−τ
;w
)

12w

+
G
(

1−ετ

τ
, 1−ε−τ

τ
;w
)

12w2 −
G
(

1−ετ

τ
, 1−ε−τ

τ
;w
)

12w

}
, {0, 1}

}

Of course we can again think of a recursive method to compute the first coefficients,
say Ft(n), . . . , Fu(n) of (39). Note that we have the same advantages and disadvan-
tages as mentioned for the recursive method in Sect. 3.2.2, but if we assume that we
can handle the initial conditions we can use to following strategy.

Divide and Conquer Strategy

1. BASE CASE: If I(ε, x) has no integration quantifiers, compute the expansion
by standard methods.

2. DIVIDE: As worked out before, compute a differential equation

a0(ε, x)I(ε, x)+ · · · + ad(ε, x)D
d
xI(ε, x) = h(ε, x) (48)

with polynomial coefficients ai(ε, x) ∈ K[ε, x], am(ε, x) �= 0 and the right side
h(ε, x) containing a linear combination of hyperexponential multi-integrals each
with less than d integration quantifiers.

3. CONQUER: Apply the strategy recursively to the simpler integrals in h(ε, x).
This results in an expansion of the form

h(ε, x) = ht (x)+ h1(x)ε + · · · + hu(x)ε
u +O(εu+1); (49)

if the method fails to find the ht (x), . . . , hu(x) in terms of iterated integral
expressions, STOP.
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4. COMBINE: Given (48) with (49), compute, if possible, the Ft(n), . . . , Fu(n)

of (39) in terms of iterated integral expressions by using HarmonicSums.

This divide and conquer strategy is implemented in the command cmAZ-
ExpandedIntegrate of MultiIntegrate.

Example 5 (cmAZExpandedIntegrate) Again we consider the integral given in (47)
with the same initial condition. In order to compute the first two terms of the ε-
expansion of I (ε,w), we can also use the following function call:

In[5]:= cmAZExpandedIntegrate[I(ε, w), w,{ε, 0, 1}, {{x, 0, 1}, {y, 0, 1}, {z, 0, 1}},
InitValues → init]

Out[5]=

{{
1

6
− 1

6w
−

G
(

1−ετ

τ
;w
)

6w2 +
G
(

1−ετ

τ
;w
)

6w
,− 1

12w2 +
εw

12w2 +
1

12w
− εw

12w

−
G
(

1
1−τ

;w
)

12
+

G
(

1
1−τ

;w
)

12w
−

G
(

1−ετ

τ
;w
)

12
−

G
(

1−ετ

τ
;w
)

12w2 +
G
(

1−ετ

τ
;w
)

6w

+
G
(

1
1−τ

, 1−ετ

τ
;w
)

12w2 −
G
(

1
1−τ

, 1−ετ

τ
;w
)

12w
−

G
(

1
τ
, 1−ε−τ

τ
;w
)

12w2 +
G
(

1
τ
, 1−ε−τ

τ
;w
)

12w

+
G
(

1
τ
, 1−ετ

τ
;w
)

12w2 −
G
(

1
τ
, 1−ετ

τ
;w
)

12w
+

G
(

1−ετ

τ
, 1

1−τ
;w
)

12w2 −
G
(

1−ετ

τ
, 1

1−τ
;w
)

12w

+
G
(

1−ετ

τ
, 1−ε−τ

τ
;w
)

12w2 −
G
(

1−ετ

τ
, 1−ε−τ

τ
;w
)

12w

}
, {0, 1}

}

4 Conclusion

In this paper we summarize the theoretical background of our package Multi-
Integrate which can be downloaded at https://risc.jku.at/software and which
provides several methods to deal with multiple integrals over hyperexponential
integrands.
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Empirical Determinations of Feynman
Integrals Using Integer Relation
Algorithms

Kevin Acres and David Broadhurst

Abstract Integer relation algorithms can convert numerical results for Feynman
integrals to exact evaluations, when one has reason to suspect the existence of
reductions to linear combinations of a basis, with rational or algebraic coefficients.
Once a tentative reduction is obtained, confidence in its validity is greatly increased
by computing more decimal digits of the terms and verifying the stability of the
result. Here we give examples of how the PSLQ and LLL algorithms have yielded
remarkable reductions of Feynman integrals to multiple polylogarithms and to
the periods and quasi-periods of modular forms. Moreover, these algorithms have
revealed quadratic relations between Feynman integrals. A recent application con-
cerning black holes involves quadratic relations between combinations of Feynman
integrals with algebraic coefficients.

1 Introduction

The mathematical problem at hand is easy to state: given numerical approximations
to n > 2 real numbers, xk , is there at least one probable relation

∑n
k=1 zkxk = 0

with integer coefficients zk , at least two of which are non-zero? If so, produce such
a relation.

By way of example, in 1985 Broadhurst studied periods coming from 6-loop
counterterms [7] in φ4 theory and found, with good confidence, the relations

P6,1 = 168ζ9, P6,2 = 1063

9
ζ9 + 8ζ 3

3 , 16P6,3 + P6,4 = 1440ζ5ζ3 (1)
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between the periods P6,k , as labeled in the later census by Schnetz [25], and
Riemann zeta values ζs = ∑

n>0 1/ns . There was a strong intuition that P6,3 and
P6,4 might involve the multiple zeta value (MZV)

ζ5,3 =
∑

m>n>0

1

m5n3 = 0.03770767298484754401130478 . . . (2)

along with ζ8 and the product ζ5ζ3. Yet such relations were not discovered, at the
level of accuracy then attainable.

A decade later, Broadhurst and Kreimer [8] solved this problem, by improving
accuracy for the periods and using the PSLQ algorithm developed by Ferguson and
Bailey [18], which identified

P6,3 = 36

5

(
12ζ5,3 − 29ζ8

)+ 252ζ5ζ3. (3)

Moreover, they found ζ3,5,3, with weight 11 and depth 3, in some 7-loop periods.
Much experimenting with PSLQ led to the Broadhurst-Kreimer conjecture [9]

that the number N(w, d) of primitive MZVs of weight w and depth d is generated
by

∏
w>2

∏
d>0

(1− xwyd)N(w,d) = 1− x3y

1− x2 +
x12y2(1− y2)

(1− x4)(1− x6)
(4)

with a final term inferred by relating MZVs to alternating sums.

2 PSLQ and LLL

PSLQ came from work by Helaman Ferguson and Rodney Forcade [17] in 1977,
implemented in multiple-precision FORTRAN by David Bailey in 1992, improved
and parallelized by Bailey and Broadhurst [2] in 1999, and used extensively in the
study of Feynman integrals since then.

The algorithm proceeds as follows. First we initialize:

1. For j := 1 to n: for i := 1 to n: if i = j then set Aij := 1 and Bij := 1 else set
Aij := 0 and Bij := 0; endfor; endfor.

2. For k := 1 to n: set sk := sqrt
(∑n

j=k x
2
j

)
; endfor. Set t = 1/s1.

For k := 1 to n: set yk := txk; sk := tsk; endfor.
3. For j := 1 to n− 1: for i := 1 to j − 1: set Hij := 0; endfor;

set Hjj := sj+1/sj ; for i := j + 1 to n: set Hij := −yiyj /(sj sj+1); endfor;
endfor.
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4. For i := 2 to n: for j := i − 1 to 1 step −1: set t := round(Hij /Hjj ); yj :=
yj + tyi ; for k := 1 to j : set Hik := Hik − tHjk; endfor;
for k := 1 to n: set Aik := Aik−tAjk , Bkj := Bkj+tBki ; endfor; endfor; endfor.

Thus the numerical data, in the vector x, is converted to a vector y, by taking square
roots of partial sums of squares. Then the matrices H , A and B are created, with a
crucial rounding in Step 4.

Then we proceed by iteration:

1. Select m such that (4/3)i/2|Hii | is maximal when i = m. Swap the entries of y
indexed m and m+1, the corresponding rows of A and H , and the corresponding
columns of B.

2. If m ≤ n − 2 then set t0 := sqrt(H 2
mm + H 2

m,m+1), t1 := Hmm/t0 and t2 :=
Hm,m+1/t0; for i := m to n: set t3 := Him, t4 := Hi,m+1, Him := t1t3 + t2t4 and
Hi,m+1 := −t2t3 + t1t4; endfor; endif.

3. For i := m + 1 to n: for j := min(i − 1,m + 1) to 1 step −1: set t :=
round(Hij /Hjj ) and yj := yj + tyi ; for k := 1 to j : set Hik := Hik − tHjk;
endfor; for k := 1 to n: set Aik := Aik − tAjk and Bkj := Bkj + tBki ; endfor;
endfor; endfor.

4. If the largest entry of A exceeds the precision, then fail, else if a component
of the y vector is very small, then output the relation from the corresponding
column of B, else go back to Step 1.

The constant 4/3 in the swap of Step 1 of the iteration ensures that the algorithm will
find a relation, provided that one exists and the data have been specified to sufficient
accuracy. In practice, reliable results may be obtained with a smaller constant.

For big problems, parallelized PSLQ [2] has been vital, especially for the
magnetic moment of the electron [21]. For smaller problems, there is an alternative.

2.1 LLL

In 1982, Arjen Lenstra, Hendrik Lenstra and László Lovász gave the LLL algo-
rithm [22] for lattice reduction to a basis with short and almost orthogonal
components. An extension of this underlies the lindep procedure in Pari-GP [24],
which we here apply to the problem of determining the period P6,3.

P63=107.71102484102;\\ only 14 digits specified
V=[P63,zetamult([5,3]),zeta(8),zeta(5)*zeta(3)];
for(d=11,16,U=lindep(V,d);U*=sign(U[1]);print([d,U~]));
[11, [4, -827, 173, -460]]
[12, [4, -827, 173, -460]]
[13, [4, -827, 173, -460]]
[14, [5, -432, 1044, -1260]]
[15, [5, -432, 1044, -1260]]
[16, [196, 1652, -9045, -9701]]

In this case, using 14 good digits of P6,3, we happen to obtain the correct
result (3). In practice, one would need several more digits, for better confidence.
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In what follows, all claimed relations have been checked using at least 100 more
digits than were needed for the discoveries, making the probability of a mistake less
than 1/10100.

2.2 Improvement and Parallelization of PSLQ

Multi-level improvement: perform most operations at 64-bit precision, some at
intermediate precision (Bailey and Broadhurst [2] chose 125 digits) and only the
bare minimum of the most delicate operations at full precision (more than 10,000
digits, for some big problems).

Multi-pair improvement: swap up to 0.4n disjoint pairs of the n indices at each
iteration. In this case, it is not proven that the algorithm will succeed, but it has not
yet been found to fail.

Parallelization: distribute the disjoint-pair jobs; for each pair, distribute the full-
precision matrix multiplication in the outermost loop.

2.3 Examples

Bailey and Broadhurst [2], working at 10,000 digits, found that the constant
associated with the fourth bifurcation of the logistic map is the root of a polynomial
of degree 240.

They tested a conjecture on alternating sums of the form

ζ

(
σ1, σ2 · · · σd
s1, s2 · · · sd

)
=

∑
k1>k2>···>kd>0

σ
k1
1

k
s1
1

σ
k2
2

k
s2
2

· · · σ
kd
d

k
sd
d

(5)

where σj = ±1 are signs and sj > 0 are integers, namely that at weight w =∑j sj
every convergent alternating sum is a rational linear combination of elements of a
basis of size Fw+1 = Fw + Fw−1, i.e. the Fibonacci number with index w + 1. At
w = 11, many integer relations of size F12 + 1 = 145 were found, at 5000-digit
precision.

For weights w ≤ 20, inverse binomial sums [6] of the form

S(w) =
∞∑
n=1

1

nw
(2n
n

) (6)

were reduced to multiple polylogarithms of the sixth root of unity [10], with S(20)
given by 106 terms.
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2.4 Relations in the Multiple Zeta Value Data Mine

The Broadhurst-Kreimer conjecture (4) came from the PSLQ discovery that

25 · 33ζ4,4,2,2 = 214
∑

m>n>0

(−1)m+n

(m3n)3 + 25 · 32 ζ 4
3 + 26 · 33 · 5 · 13 ζ9 ζ3

+ 26 · 33 · 7 · 13 ζ7 ζ5 + 27 · 35 ζ7 ζ3 ζ2 + 26 · 35 ζ 2
5 ζ2

− 26 · 33 · 5 · 7 ζ5 ζ4 ζ3 − 28 · 32 ζ6 ζ
2
3 −

13177× 15991

691
ζ12

+ 24 · 33 · 5 · 7 ζ6,2 ζ4 − 27 · 33 ζ8,2 ζ2 − 26 · 32 · 112ζ10,2 (7)

which shows that, at weight 12, a depth 4 MZV is reducible to terms of depth d ≤ 2,
and their products, if one allows an alternating double sum in the basis.

When constructing the MZV data mine, Blümlein, Broadhurst and Ver-
maseren [4] proved this, by massive use of computer algebra. It would be much
harder to prove an LLL discovery at weight 21 and depth 7, where

81ζ6,2,3,3,5,1,1 + 326
∑

j>k>l>m>n>0

(−1)k+m

(jk2lm2n)3 (8)

was reduced to 150 terms containing MZVs of depths d ≤ 5.

3 Counterterms at 7 Loops

Broadhurst found reductions to MZVs for a pair of 7-loop periods [11]

P7,8 = 22383

20
ζ11 + 4572

5

(
ζ3,5,3 − ζ3ζ5,3

)− 700ζ 2
3 ζ5

+ 1792ζ3

(
9

320

(
12ζ5,3 − 29ζ8

)+ 45

64
ζ5ζ3

)
(9)

P7,9 = 92943

160
ζ11 + 3381

20

(
ζ3,5,3 − ζ3ζ5,3

)− 1155

4
ζ 2

3 ζ5

+ 896ζ3

(
9

320

(
12ζ5,3 − 29ζ8

)+ 45

64
ζ5ζ3

)
(10)

that had been expected to involve alternating sums.
These results were later proven, one by the methods of Erik Panzer [23]

and the other by the methods of Oliver Schnetz [26]. Their methods yielded
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complicated combinations of alternating sums, which were then reduced to the
MZV formulas (9, 10) by use of proven results in the MZV data mine [4].

The period P7,11 in the census of Schnetz [25] is much more demanding.
All other periods up to 7 loops reduce to MZVs; only P7,11 requires multiple
polylogarithms of sixth roots of unity, of the form (5) with σ 6

j = 1.

Panzer evaluated
√

3P7,11 in terms of 4589 such sums, each of which he
evaluated to 5000 digits. Then he found an empirical reduction to a 72-dimensional
basis. The rational coefficient of π11 in his result was [23]

C11 = − 964259961464176555529722140887

2733669078108291387021448260000
(11)

whose denominator contains 8 primes greater than 11, namely 19, 31, 37, 43, 71,
73, 50909 and 121577.

Using LLL, it was possible to find a much better basis, with no prime greater 3
in the denominator of any coefficient. Let A = d log(x), B = −d log(1 − x) and
D = −d log(1 − exp(2π i/6)x) be letters, forming words W that define iterated
integrals Z(W). Let

Wm,n =
n−1∑
k=0

ζ k3

k! A
m−2kDn−k, (12)

Pn = (π/3)n/n!, In = Cln(2π/3) and Ia,b = �Z(Ab−a−1DA2a−1B). Using

I2,9 = 91(11T2,9)− 898T3,8 + 11I4,7 − 292P11 (13)

I3,8 = 24(11T2,9)+ 841T3,8 − 190I4,7 − 255P11 (14)

to transform to T2,9 and T3,8, the result becomes

√
3P7,11 = −10080�Z(W7,4 +W7,2P2)+ 50400ζ3ζ5P3

+
(

35280�Z(W8,2)+ 46130

9
ζ3ζ7 + 17640ζ 2

5

)
P1

− 13277952T2,9 − 7799049T3,8 + 6765337

2
I4,7 − 583765

6
I5,6

− 121905

4
ζ3I8 − 93555ζ5I6 − 102060ζ7I4 − 141120ζ9I2

+ 42452687872649

6
P11. (15)
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4 Periods and Quasi-Periods in Electrodynamics

The magnetic moment of the electron, in Bohr magnetons, has quantum electrody-
namic contributions

∑4
L=0 aL(α/π)

L given up to L = 4 loops by [21]

a0 = 1 [Dirac, 1928] (16)

a1 = 0.5 [Schwinger, 1947] (17)

a2 = −0.32847896557919378458217281696489239241111929867962 . . .

(18)

a3 = 1.18124145658720000627475398221287785336878939093213 . . .

(19)

a4 = −1.91224576492644557415264716743983005406087339065872 . . .

(20)

In 1957, corrections by Petermann and by Sommerfield resulted in

a2 = 197

144
+ ζ2

2
+ 3ζ3 − 2π2 log 2

4
. (21)

In 1996, Laporta and Remiddi obtained

a3 = 28259

5184
+ 17101ζ2

135
+ 139ζ3 − 596π2 log 2

18

− 39ζ4 + 400U3,1

24
− 215ζ5 − 166ζ3ζ2

24
. (22)

The 3-loop contribution contains a weight-4 depth-2 alternating sum

U3,1 =
∑

m>n>0

(−1)m+n

m3n
= ζ4

2
+ (π2 − log2 2) log2 2

12
− 2

∑
n>0

1

2nn4 . (23)

Equally fascinating is the Bessel moment [14]

B = −
∫ ∞

0

27550138t + 35725423t3

48600
I0(t)K

5
0 (t)dt (24)

in the evaluation by Laporta [21], at 4800 digits, of

a4 = P + B + E + U ≈ 2650.565− 1483.685− 1036.765− 132.027 ≈ −1.912
(25)
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where P comprises multiple polylogs, E comprises integrals whose integrands
contain logs and products of elliptic integrals and U comes from 6 light-by-light
integrals, still under investigation.

4.1 Bessel Moments and Modular Forms

Gauss noted on 30 May 1799 that the lemniscate constant

∫ 1

0

dx√
1− x4

= (�(1/4))2

4
√

2π
= π/2

agm(1,
√

2)
(26)

is given by the reciprocal of an arithmetic-geometric mean. This is an example of
the Chowla-Selberg formula at the first singular value [5]. In 1939, Watson [27]
encountered the sixth singular value, in work on integrals from condensed matter

physics. Here,
(∑

n∈Z exp(−√6πn2)
)4

gives the product of �(k/24) with k =
1, 5, 7, 11, as observed by Glasser and Zucker [20] in 1977. In 2007, Broadhurst
and Laporta identified a Feynman period at the fifteenth singular value [3], where(∑

n∈Z exp(−√15πn2)
)4

gives the product of �(k/15) with k = 1, 2, 4, 8.

With N = a + b Bessel functions and c ≥ 0, we define moments

M(a, b, c) =
∫ ∞

0
I a0 (t)K

b
0 (t)t

cdt (27)

that converge for b > a ≥ 0. Then the 5-Bessel matrix

[
M(1, 4, 1) M(1, 4, 3)
M(2, 3, 1) M(2, 3, 3)

]
=
⎡
⎢⎣π2C π2

(
2
15

)2 (
13C − 1

10C

)
√

15π
2 C

√
15π
2

(
2
15

)2 (
13C + 1

10C

)
⎤
⎥⎦ (28)

involves a single new constant

C = π

16

(
1− 1√

5

)( ∞∑
n=−∞

exp(−√15πn2)

)4

= 1

240
√

5π2

3∏
k=0

�

(
2k

15

)

(29)

and its reciprocal. The determinant 2π3/
√

3355 of matrix (28) is an algebraic
multiple of π . This is an example of an all-loop result discovered by Broadhurst
and Mellit [12] and proven by Yajun Zhou [28].
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The L-series for N = 5 Bessel functions comes from a modular form of weight
3 and level 15:

ηn = qn/24
∏
k>0

(1− qnk), q = exp(2π iτ), (30)

f3,15(τ ) = (η3η5)
3 + (η1η15)

3 =
∑
n>0

A5(n)q
n (31)

L5(s) =
∑
n>0

A5(n)

ns
for s > 2 (32)

L5(1) =
∑
n>0

A5(n)

n

(
2+

√
15

2πn

)
exp

(
− 2πn√

15

)
(33)

= 5C = 5

π2

∫ ∞

0
I0(t)K

4
0 (t)tdt . (34)

4.2 Periods and Quasi-Periods for the Laporta Problem

Laporta’s 4-loop work [21] engages the first row of the 6-Bessel determinant

det

[
M(1, 5, 1) M(1, 5, 3)
M(2, 4, 1) M(2, 4, 3)

]
= 5ζ4

32
(35)

associated to a modular form f4,6(τ ) = (η1η2η3η6)
2 with weight 4 and level

6 [11, 29]. At top left we have M(1, 5, 1), from the on-shell 4-loop sunrise
diagram, in two spacetime dimensions. Below it, M(2, 4, 1) comes from cutting an
internal line. The second column comes from differentiating the first, with respect
to the external momentum, to produce quasi-periods associated with a weakly
holomorphic modular form

f̂4,6(τ ) = μf4,6(τ ), μ = 1

32

(
w + 3

w

)4

− 9

16

(
w + 3

w

)2

, w = 3η4
3η

2
2

η4
1η

2
6

.

(36)

With s = 1, 2, we computed compute 10,000 digits of the Eichler integrals

�s

(2π)s
=
∫ ∞

1/
√

3
f4,6

(
1+ iy

2

)
ys−1dy,

�̂s

(2π)s
=
∫ ∞

1/
√

3
f̂4,6

(
1+ iy

2

)
ys−1dy.

(37)
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4.3 Laporta’s Intersection Number

LLL readily gave 4 linear relations

2

π2

[
4M(1, 5, 1) 36

5 (M(1, 5, 1)+M(1, 5, 3))
5
3M(2, 4, 1) 3 (M(2, 4, 1)+M(2, 4, 3))

]
=
[−�2 �̂2

−�1 �̂1

]
(38)

between Feynman integrals, the periods �1,2 and the quasi-periods �̂1,2.
The intersection number is the determinant of this matrix, namely 1/12. Broad-

hurst and Roberts [14] converted this into a quadratic relation between 4 hypergeo-
metric series:

Fa = 4F3( 1/2, 2/3, 2/3, 5/6; 7/6, 7/6, 4/3; 1)
Fb = 4F3( −1/2, 1/6, 1/3, 4/3; −1/6, 5/6, 5/3; 1)
Fc = 4F3( 1/6, 1/3, 1/3, 1/2; 2/3, 5/6, 5/6; 1)
Fd = 4F3( −7/6, −1/2, −1/3, 2/3; −5/6, 1/6, 1/3; 1)

(39)

namely

7FaFb + 10FcFd = 40, (40)

which was later proven by Yajun Zhou [30].

5 Quadratic Relations

In this section, we give quadratic relations between Feynman integrals, recently
discovered by using the LLL algorithm. If one has n integrals, there are n(n+ 1)/2
products to consider, in linear combinations with rational or algebraic coefficients,
which may give a rational or algebraic multiple of a power of π . This problem soon
explodes. We begin with a conjecture obtained after intensive use of LLL and tested
with up to n = 100 Feynman integrals.

Conjecture (Broadhurst and Roberts [14]) With the Feynman, de Rham and Betti
matrices below,

FNDNF tr
N = BN. (41)

The elements of the Feynman matrices FN are the Bessel moments

F2k+1(u, a) = (−1)a−1

πu
M(k + 1− u, k + u, 2a − 1) (42)

F2k+2(u, a) = (−1)a−1

πu+1/2 M(k + 1− u, k + 1+ u, 2a − 1) (43)
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with u and a, as well as later indices v and b, running from 1 to k. F tr
N is the

transpose of FN .
The Betti matrices BN have rational elements given by

B2k+1(u, v) = (−1)u+k2−2k−2(k + u)!(k + v)!Z(u+ v) (44)

B2k+2(u, v) = (−1)u+k2−2k−3(k + u+ 1)!(k + v + 1)!Z(u+ v + 1) (45)

Z(m) = 1+ (−1)m

(2π)m
ζm. (46)

For the de Rham matrices DN , let vk and wk be the rationals generated by

J 2
0 (t)

C(t)
=
∑
k≥0

vk

k!
(
t

2

)2k

= 1− 17t2

54
+ 3781t4

186624
+ . . . (47)

2J0(t)J1(t)

tC(t)
=
∑
k≥0

wk

k!
(
t

2

)2k

= 1− 41t2

216
+ 325t4

186624
+ . . . (48)

where J0(t) = I0(it), J1(t) = −J ′0(t) and

C(t) = 32(1− J 2
0 (t)− tJ0(t)J1(t))

3t4
= 1− 5t2

27
+ 35t4

2304
− 7t6

9600
+ . . . (49)

Construct rational bivariate polynomials Hs = Hs(y, z) by the recursion

Hs = zHs−1 − (s − 1)yHs−2 −
s−1∑
k=1

(
s − 1

k

)
(vkHs−k − wkzHs−k−1) (50)

for s > 0, with H0 = 1 and H−1 = 0. Use these to define

ds(N, c) = Hs(3c/2, N + 2− 2c)

4ss! . (51)

Finally, construct de Rham matrices with the rational elements

DN(a, b) =
a∑

c=−b

da−c(N,−c)db+c(N, c)cN+1. (52)

The discovery of formula (52) for the coefficients of these quadratic relations
involved intensive use of LLL, at high numerical precision. At 20 loops, there
are 100 Feynman integrals to consider, with 5050 products. Javier Fresán, Claude
Sabbah and Jeng-Daw Yu [19] have verified that our formulas hold up to 20 loops,
after which they ran out of computing power. They encountered subtleties when N
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is divisible by 4. These are entirely avoided by our uniform formula (52). Yajun
Zhou [31] has given an illuminating classical proof, with generalizations.

5.1 Quadratic Relations at Weight 6 and Level 24

Here we establish relations between Bessel moments (27) with a + b = 6, c =
0, 2, 4, and Eichler integrals of modular forms of weight 6 and level 24, constructed
from eta quotients. This connection was suggested by the discovery of the linear and
quadratic relations

M(0, 6, 0)

M(2, 4, 0)
= 3M(0, 6, 2)− 8M(0, 6, 4)

3M(2, 4, 2)− 8M(2, 4, 4)
= 3π2, (53)

det

[
M(0, 6, 0) 3M(0, 6, 2)− 8M(0, 6, 4)
M(1, 5, 0) 3M(1, 5, 2)− 8M(1, 5, 4)

]
= 5π6

16
. (54)

We begin by defining three eta quotients, subject to two algebraic relations:

r =
(
η2η12

η4η6

)6

= s − t

st
= 9t − 8s = q − 6q3 + 15q5 +O(q7), (55)

s =
(
η4η12

η2η6

)3

= q + 3q3 + 6q5 +O(q7), (56)

t =
(
η6η12

η2η4

)2

= q + 2q3 + 7q5 +O(q7). (57)

The moments M(0, 6, 0) and M(1, 5, 0) are related to periods of the modular form

f1(τ ) = (η2η4η6η12)
3
(

1

s2 − 64s2
)
= q − 9q3 − 34q5 − 240q7 + 81q9 +O(q11).

(58)

To find its quasi-periods, we form a column vector of 5 cusp forms

f(τ ) = (η2η4η6η12)
3

⎡
⎢⎢⎢⎢⎢⎣

1/s2 − 64s2

1/s2 + 64s2

1/r2 − r2

1/t2 − 81t2

1/t2 + 81t2 + 54

⎤
⎥⎥⎥⎥⎥⎦
= T

⎡
⎢⎢⎢⎢⎢⎣

q

q3

q5

q7

q9

⎤
⎥⎥⎥⎥⎥⎦
+O(q11), (59)
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T =

⎡
⎢⎢⎢⎢⎢⎣

1 −9 −34 −240 81
1 −9 94 144 81
1 9 38 120 81
1 −7 −74 −24 −383
1 47 −74 −24 697

⎤
⎥⎥⎥⎥⎥⎦
, (60)

with the Hecke matrix T recording the first 5 non-vanishing Fourier coefficients
of the 5 modular forms. The first three components of f are new forms, while the
remaining two are old forms.

Since there are 16 cusp forms of weight 6 and level 24, we began our
investigation with a far more fearsome 16-dimensional problem. After intensive
study of the relationship between Rademacher sums [1] and the determinants and
permanents [15] of matrices of periods and quasi-periods of modular forms, we were
able to reduce the Bessel-moment problem to the 5-dimensional problem presented
here.

For each of the 5 cusp forms fk , we seek a weakly holomorphic form f̂k , such
that the periods of fk and quasi-periods of f̂k yield a determinant that is a rational
multiple of a power of π . For k = 1, this will solve the Bessel-moment problem.

To construct 5 weakly homomorphic modular forms, we define a column vector

g(τ ) =
(

η5
12

η4η
2
6

)6

⎡
⎢⎢⎢⎢⎢⎣

1
a + 35
a2 + 40a + 646
a3 + 45a2 + 840a + 8352
a4 + 50a3 + 1059a2 + 12308a + 84817

⎤
⎥⎥⎥⎥⎥⎦
, a = 72

η4η
5
12

η5
2η6

,

(61)

with monic polynomials in a = O(q2), determined by the requirement that

−27

τ 6 gk

(
− 1

24τ

)
= 1

q2k−1 +O(q), (62)

which records the singular behaviour near the cusp of gk(τ ) at τ = 0. We avoid this
singularity by taking Eichler integrals from τ = 1

4 to τ = i∞, with extremely good
behaviour of gk(τ ) at the end-points.

The Fourier expansion of gk begins at q11. Thus we may add, to any combination
of the weakly holomorphic forms in g, a combination of the cusp forms in f, since
the latter are determined by their expansions up to q9, recorded in the Hecke matrix
T. Our Ansatz for the weakly homomorphic partners in f̂ has the form

f̂ = T̃−1(Ug+ VT−1f), U = 182

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 35 0 0 0
0 0 55 0 0
0 0 0 75 0
0 0 0 0 95

⎤
⎥⎥⎥⎥⎥⎦
, (63)
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which uses inverses of T and its transpose T̃. The diagonal matrix U reflects the
singular behaviour (62) of the weakly holomorphic modular forms gk near τ = 0.

Our final challenge is to determine the matrix V, which we expect, from previous
work, to be symmetric, with a vanishing first row and column. Here we give our
eventual result

V = 62

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 0
0 −4 54 648 5995
0 54 2916 77508 1150848
0 648 77508 3039444 64431936
0 5995 1150848 64431936 1865595908

⎤
⎥⎥⎥⎥⎥⎦
, (64)

with explanation of how it was obtained, empirically, by integer-relation searches.
We define periods, quasi-periods and determinants as follows:

[
Pk(s)

P̂k(s)

]
= −i

∫ ∞

0

[
fk((1+ iy)/4)
f̂k((1+ iy)/4)

]
ys−1dy,

Dk(s, t) = Pk(s)P̂k(t)− Pk(t)P̂k(s), (65)

with k = 1, 2, 3, 4, 5 and s = 1, 2, 3, 4, 5. The Eichler integrals are from τ = 1
4

to τ = i∞, along the vertical line where the real part of τ is 1
4 and hence

q = exp(2π iτ) is pure imaginary. Since fk and f̂k have Fourier expansions in odd
powers of q, they too are pure imaginary. Hence the periods and quasi-periods are
real.

Our criteria for the elements of V are the determinant conditions

Dk(1, 3) = Dk(1, 5) = Dk(2, 4) = 0, Dk(1, 2) = dk

π5 , (66)

where dk is a rational number. The first three conditions ensure the matching of
the period polynomial of fk with the quasi-period polynomial of f̂k . The fourth
condition encodes a non-trivial quadratic relation between periods and quasi-
periods. Moreover, we were able to use Rademacher sums [1] and Petersson inner
products [24] to show that dk = 21

2 ,− 135
14 ,− 15

2 , 15
2 ,− 6

7 , for k = 1, 2, 3, 4, 5.
Thus we have 5 × 4 = 20 integer-relation conditions with which to determine

4 + 3 + 2 + 1 = 10 independent elements of V, giving us great confidence in our
results.

Here we record the relations between periods, quasi-periods and Bessel moments
at k = 1, which have been checked at 1000-digit precision:

P1(1) = 21P1(3) = 9P1(5) = 28
M(0, 6, 0)

π6 , (67)

P1(2) = 3P1(4) = 8
M(1, 5, 0)

π5 , (68)
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P̂1(1) = 21P̂1(3) = 9P̂1(5) = 7
17M(0, 6, 0)+ 48(3M(0, 6, 2)− 8M(0, 6, 4))

80π6 ,

(69)

P̂1(2) = 3P̂1(4) = 2
17M(1, 5, 0)+ 48(3M(1, 5, 2)− 8M(1, 5, 4))

80π5
.

(70)

5.2 Quadratic Relations at Levels 14 and 34

In 2019, Philip Candelas, Xenia de la Ossa, Mohamed Elmi and Duco van Straten
announced a discovery of a family of Calabi-Yau manifolds with rank-2 attractor
points [16].

They compactified a 10-dimensional supergravity theory on a Calabi-Yau three-
fold with complex structure, to obtain 4-dimensional black holes, with event
horizons whose areas are determined by their electric and magnetic charges and
by ratios of periods of modular forms of weight 4 and levels 14 or 34.

Hearing of this on a visit to Oxford in November 2019, Broadhurst observed
that their Calabi-Yau periods come from solutions to a homogeneous differential
equation associated with 4 loop sunrise integrals, namely

Mm,n(z) =
∫ ∞

0
I0(xz)[I0(x)]m[K0(x)]5−mx2n+1dx (71)

Nm,n(z) = z

∫ ∞

0
I1(xz)[I0(x)]m[K0(x)]5−mx2n+2dx (72)

with m ∈ {0, 1, 2}, integers n ≥ 0 and real z2 < (5 − 2m)2. The uncut diagram
M0,0(z) satisfies an inhomogeneous differential equation.

The external mass is z. At z = 1 we obtain Laporta’s on-shell periods, for
the magnetic moment of the electron at 4 loops, coming from the modular form
f4,6(τ ) = (η1η2η3η6)

2 with level 6. With mass z = √
17 − 4, we obtain level-34

periods. At the space-like point z = √−7, we obtain level-14 periods.
At each of the levels 14 and 34, Candelas et al. considered 16 Calabi-Yau periods,

coming from 4 solutions to a homogeneous fourth-order differential equation,
together with the first 3 derivatives of each solution. They were unable to identify
all of these 16 periods.

Using LLL we found that 8 Feynman integrals, at each level, suffice to solve
their problem, completely. These 8 integrals determine a pair of periods and a pair
of quasi-periods, at each of the weights 2 and 4. Hence they satisfy two quadratic
relations. At level 34, the coefficients in these relations are algebraic numbers in
Q(
√

17).
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5.3 Level 14, at Space-Like Momentum

At level 14, with z = √−7, we identified

f4,14(τ ) = (η2η7)
6

(η1η14)2 − 4(η1η2η7η14)
2 + (η1η14)

6

(η2η7)2 (73)

as the relevant modular form of weight 4. Its periods are critical values of the L-
function L(f4,14, s) = ((2π)s/�(s))

∫∞
0 f4,14(iy)ys−1dy, with

L(f4,14, 3) = M1,0(
√−7) =

∫ ∞

0
J0(
√

7x)I0(x)K
4
0 (x)xdx = π2

7
L(f4,14, 1)

(74)

1

2
L(f4,14, 2) = M2,0(

√−7) =
∫ ∞

0
J0(
√

7x)I 2
0 (x)K

3
0 (x)xdx. (75)

There is also a modular form of weight 2 to consider, f2,14(τ ) = η1η2η7η14. This
provides a modular parametrization of a quartic elliptic curve, namely

d2 = (1+ h)(1+ 8h)(1+ 5h+ 8h2), (76)

h =
(
η2η14

η1η7

)3

= q + 3q2 + 6q3 + 13q4 +O(q5), (77)

d = q

f2,14

dh

dq
= 1+ 7q + 27q2 + 92q3 + 259q4 +O(q5), (78)

yielding an L-value and a j-invariant:

L(f2,14, 1) = ω+
3

, j

(
ω+ + iω−

2ω+

)
=
(

5× 43

28

)3

, (79)

with periods determined by arithmetic-geometric means

ω± = 2π

agm
(√

29/2 ± 13, 211/4
) (80)

and also by Feynman integrals:

ω+
2
= 3M2,0(

√−7)+ 4N2,0(
√−7), (81)

πω−
2

= 3M1,0(
√−7)+ 4N1,0(

√−7). (82)
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The quasi-periods at weight 2 are ω̂±, with

3ω̂+
16

= 7M2,0(
√−7)+ 8N2,0(

√−7)+ 28M2,1(
√−7), (83)

3πω̂−
16

= 7M1,0(
√−7)+ 8N1,0(

√−7)+ 28M1,1(
√−7). (84)

Suppressing the argument z = √−7, we obtain the quadratic relation

det

[
3M2,0 + 4N2,0 M2,0 + 28M2,1

3M1,0 + 4N1,0 M1,0 + 28M1,1

]
= −3π2

32
(85)

from Legendre’s relation for complete elliptic integrals.
At weight 4 we found

det

[
M2,0 39N2,0 − 427M2,1 − 112N2,1

M1,0 39N1,0 − 427M1,1 − 112N1,1

]
= 3π2

32
(86)

as the quadratic relation between the periods and quasi-periods of f4,14.
We define the weight-4 periods and quasi-periods as

Gm = Mm,0, Ĝm = 7(35Mm,0 − 122Mm,1)+ 2(39Nm,0 − 112Nm,1), (87)

for m = 1, 2 and z = √−7. The quasi-periods come from Eichler integrals of a
weakly holomorphic form obtained by multiplying f 2

2,14 by a polynomial that is
quartic in h and linear in d/h. For one of the quasi-periods, the dependence on d/h

is irrelevant. We used LLL to determine that

Ĝ2 = 5π2
∫ ∞

1/
√

7
g

(
1+ iy

2

)
ydy (88)

g(τ) = (253+ 645h+ 1446h2 + 2064h3 + 1024h4)f 2
2,14. (89)

Then the other quasi-period comes from the determinant G2Ĝ1 −G1Ĝ2 = 3(π/4)2.

5.4 Level 34, with Mass
√

17 − 4

At level 34, with z = u = √
17 − 4, we used Pari-GP to identify the modular form

of weight 4. Let χ(n) be the Dirichlet character defined for prime p by χ(17) = 0
and otherwise by χ(p) = ±1 according as whether p is or is not a square modulo
17. Pari-GP declares that there are 12 cusp forms of level 34 and weight 4 with this
character. Feynman integrals choose a pair of new forms whose Fourier coefficients,
A4(n) and A4(n), are Gaussian integers, related by complex conjugation.
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Let L4(s) be the analytic continuation of

L4(s) =
∑
n>0

A4(n)

ns
= 1

1+ 21−s

∏
p>2

1

1− A4(p)p−s + χ(p)p3−2s (90)

with the choice of sign A4(3) = 2i. For prime p, A4(p) is real if χ(p) = +1 and
imaginary if χ(p) = −1, while A4(17)/17 = 1− 4i is truly complex.

Feynman integrals determine the critical L-values at weight 4:

L4(3) =
(

13− u+ (1+ 13u)i

17

)
M1,0(u), (91)

L4(2) = 4

(
5− 3u+ (3+ 5u)i

17

)
M2,0(u), (92)

L4(1) =
(

7− 11u+ (11+ 7u)i

π2

)
M1,0(u). (93)

At weight 2 they determine the periods and quasi-periods of the elliptic curve

y2 =
(
x + 5− u

8

)(
x + 5+ u

8

)(
x + 3+ u

2

)
(94)

whose real and imaginary periods are

ω1 = 4π

agm
(√

4u,
√

14+ 10u
) , ω2 = −4π i

agm
(√

14+ 6u,
√

14+ 10u
) . (95)

The elliptic periods ω1,2 and quasi-periods ω̂1,2 are determined by

ω1

4
= P2 = (2+ 3u)M2,0(u)+ 4(4+ u)N2,0(u) (96)

π iω2

4
= P1 = (2+ 3u)M1,0(u)+ 4(4+ u)N1,0(u) (97)

3ω̂1

8(1+ u)
= P̂2 = M2,0(u)+ 2(5+ u)N2,0(u)+ 2u(3+ u)(4+ u)M2,1(u)

(98)

3π iω̂2

8(1+ u)
= P̂1 = M1,0(u)+ 2(5+ u)N1,0(u)+ 2u(3+ u)(4+ u)M1,1(u)

(99)

with Legendre’s condition giving P1P̂2 − P2P̂1 = 3(π/4)2/(1+ u).
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At weight 4, the periods Hm = Mm,0(u) and quasi-periods

Ĥm = 81Mm,0(u)+ 3(2+ u)(u− 6)Nm,0(u)

+ u2(2+ u)(4+ u)(96+ 11u)Mm,1(u)+ 136(1− u)Nm,1(u) (100)

yield the intersection number H1Ĥ2 −H2Ĥ1 = 3(π/8)2/u.

The numbers which remained unidentified in [16] are now easy to determine.
They involve the permanents [15] of the matrices of Feynman integrals whose
determinants yield intersection numbers that are algebraic multiples of powers of π .

6 Summary

PSLQ and LLL have enlivened quests for analytical results, provided strong tests on
conjectures and condensed huge expressions. Parallel PSLQ was of the essence in
Laporta’s work in electrodynamics. LLL led to a conjecture on quadratic relations
for all loops, to determinations of quasi-periods at weight 6 and level 24 and to
exact results for black-hole problems that involve modular forms of levels 14 and
34. Our new results at levels 14, 24 and 34 were obtained from extending methods
developed in our work on eta quotients [1]. The permanents which were lacking
in [16] yield Rademacher sums [1] that are sums of products of Bessel functions
and Kloosterman sums [13] .
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N = 4 SYM Gauge Theories: The 2 → 6
Amplitude in the Regge Limit

Jochen Bartels

Abstract In this contribution we discuss the Regge limit of scattering amplitudes
in N = 4 SYM in the planar approximation. The analysis is based upon unitarity
and energy discontinuities, and the analytic structure plays a vital role. We first
summarize the lessons learned from the study of the remainder functions of the
2 → 4 and the 2 → 5 scattering amplitudes and then present new results for the
2 → 6 amplitude.

1 Introduction

Interest in N = 4 supersymmetric gauge theory (SYM) [1–6] is connected with
the hope that one can find a simple connection between weak and strong coupling
which, in particular, allows to understand high order perturbation theory corrections
[7–14]. Ultimately this may allow to find also higher order corrections in Quantum
Chromodynamics (QCD). In recent years progress has been made in computing,
in the planar approximation and for the Regge limit, next-to-leading order (NLO)
corrections and, in a few cases, even all order corrections for parts of the remainder
functions [12], and new methods are being developed. In the present contribution
we also focus on the Regge limit, and we present new results which are based upon
energy discontinuities and unitarity relations. We limit ourselves to the leading-
order (LO) approximation, and particular attention will be given to the 2 → 6
amplitude.
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2 General Remarks

Let us start with a remark on the role of the Regge limit. Experience from studies
of quantum field theories (QED, QCD) shows that, in the Regge limit, scattering
amplitudes exhibit a simple factorizing structure which is valid to all orders in
perturbation theory. As an example, for the 2 → 3 process in Fig. 1 the amplitude
in the Regge limit has the form

T (s1, s2, t1, t2, κ) = �(t1)
ξ1s

α(t1)
1

t1
V (t1, t2, κ)

ξ2s
α(t2)
2

t2
�(t2), (1)

where each element (�(ti), V (t1, t2, κ) and α(ti)) can be written as a power
expansion in the coupling constant (here ti are the squares of the exchange momenta,
ξi = e−iπα(ti ) + τi the signature factors). Therefore, if one computes LO, NLO,
NLLO . . . corrections to the scattering amplitude, these corrections have to be
decomposed into corrections to �(t) etc. This type of factorization holds for general
2 → n amplitudes, and can easily be generalized also to contributions with Regge
cuts in the complex angular momentum plane.

So far much of the analysis of the scattering amplitudes has been done in the
planar approximation (large-Nc limit, where Nc denotes the number of colors).
In general, Regge theory is defined for signatured amplitudes which are linear
combinations of different kinematic regions. In the planar approximation, on the
other hand, each kinematic region has to be studied separately. An example is
given in Fig. 1. In the left diagram all energies are positive, in the right one the
two produced particles have been crossed, i.e. the subenergies s1 and s3 have
become negative. Equivalently one can say that the t1 and t2 channels have been
twisted. In the following we will use the notation were the kinematic region for
the right-hand side (rhs) will be noted as τ1τ3, i.e. the kinematic region will be
labeled by the twisted t channels. The use of this planar approximation leads to
a few special features. First, planar amplitudes have a quite different structure of
Regge cuts. In Fig. 2, the left-hand side (lhs) amplitude is completely planar and
has only Regge poles, whereas the right one has a Regge cut in the t2-channel.
For a more detailed discussion of this structure we refer to the appendix of [15].
Another feature of the planar approximation is the appearance of singularities in
the Regge pole contributions: in exactly those kinematic regions where (in the
planar approximation) also Regge cuts appear, the Regge pole contributions contain

Fig. 1 The 2 → 3 amplitude:
factorization

s 1 s 2

t 1 t 2
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Fig. 2 Two different
kinematic regions of the
2 → 4 amplitude

s 1 s 2 s 3

ss 1 s 3< 0 < 0s 2> 0

t 1 t 2 t 3 t 1 t 3t 2

twisted t 1  and t 3  channels

... roro

Fig. 3 The analytic structure
of the 2 → 3 amplitude in the
Regge limit: the upper line
shows the two allowed terms,
the lower one a forbidden
double discontinuity

+

unphysical singularities which have to be removed by subtractions of the Regge cut
contributions. This will be discussed in more detail in the following section.

As it has already been said, the calculations presented in this paper are based
upon energy discontinuities and unitarity. One of the most important constraints
comes from the Steinmann relations [16]: they exclude ‘simultaneous discontinu-
ities in overlapping channels’. A simple example is given in Fig. 3. In the upper
line we have the two allowed double discontinuities, below a double discontinuity
which is forbidden. It is straightforward to generalize this, for the maximal number
of simultaneous energy discontinuities, to 2 → n scattering amplitudes. The total
number of terms equals Cn−1 where Cn are the Catalan numbers with Cn =
1, 1, 2, 5, 14, 42, . . . (n = 1, 2, 3, . . .) and

Cn+1 =
n∑

i=0

CiCn−i . (2)

So far our remarks have been general. Now let us turn to the planar approximation
of the Regge limit of N= 4 SYM gauge theories. What has been found is that for all
energies being positive the amplitude is described by the all order BDS formula [1]:

T = TBDS. (3)
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In the Regge limit there are only Regge pole contributions. However, if some t-
channels are twisted (and energies become negative) the BDS formula is incomplete
and requires corrections, the so-called remainder functions:

T = TBDS · R. (4)

Here the remainder function R depends upon the kinematic region, is infrared finite
and conformal invariant. In the Regge limit, R consists of Regge cut contributions.
To find this remainder function is the main task: which type of Regge cuts appear in
which kinematic region? One of the most promising features of these Regge cuts is
integrability: the kernels for a Regge cut being a bound state of n reggeized gluons
are equivalent to an integrable string consisting of n sites [15].

So far, existing studies of the 2 → 4, 2 → 5 cases have discussed only Regge
cuts consisting of two reggeized gluons. For 2 → n amplitudes the analysis [12]
has been restricted to a special kinematic region which is also described only by this
type of Regge cuts. The case 2 → 6 is of particular interest since it contains, for
the first time, also a three reggeon cut. It requires the calculation of multiple energy
discontinuities. Results for this process will be one of the main points of the present
contribution.

3 A Few Features of the 2 → 4 and 2 → 5 Amplitudes

In order to explain in more detail some technical aspects which appear in the Regge
limit in the planar approximation, we first briefly summarize aspects of the 2 → 4
and the 2 → 5 amplitudes.

3.1 The 2 → 4 Amplitude

Starting with the analytic structure of the 2 → 4 scattering amplitude (Fig. 4)
we have five terms which have the maximal number of non-overlapping energy
discontinuities and are in agreement with the Steinmann relations. Here the letters
RR etc. refer to the two produced particles: the first letter stands for the left produced
particle, the second one to the right one. R or L indicate on which side of the
produced particle the energy cut enters.

In [2, 3, 17] in was found that the BDS-amplitude suggested by Bern, Dixon
and Smirnov [1] in certain kinematic regions needs corrections which are given by
Regge cuts. In the region where all energies are positive, only Regge poles contribute
and the BDS-amplitude suggested by Bern, Dixon and Smirnov is complete. When
analytically continuing into the region where the two produced particles have
negative energies, the expression derived from the BDS amplitude is incomplete and
needs a remainder function consisting of a two-reggeon Regge cut in the t2-channel:
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++

+ +

a b a b a b

a b a b

RLLLRR

)2(RL)1(RL

Fig. 4 The five terms of the 2 → 4 scattering amplitude: the dashed lines indicate the energy
variables with a non-vanishing discontinuity

This cut is obtained from the discontinuity in s2 and therefore can contribute only to
the last two terms in Fig. 4, LR(1) and LR(2). For the result it is convenient to use
the conformal spin representation. In leading order we have

fω2 = (5)

αsNc

4π

∑
n

(−1)n
∫

dν�L

(
q∗3k∗a
k∗bq∗1

)iν− n
2
(

1

ω′2 − ω(ν, n)
− 1

ω′2

)(
q3ka

kbq1

)iν+ n
2

�R,

where ω′2 denotes the angular momentum of the t2-channel, ka and kb are the
momenta of the produced particles a and b, qi the momenta of the exchange
channels, and we have used the complex notation of the two dimensional momentum
k = (kx, ky): k = kx + iky , k∗ = kx − iky . Furthermore

ω(ν, n) = g2Nc

8π2

(
2ψ(1)− Rψ(1+ iν + n

2
)− Rψ(1+ iν − n

2

)
, (6)

where ψ(x) denotes the ψ-function, and R stands for ‘real part’. In (5) we see the
factorization pattern with the two impact factors

�L = 1

iν + n
2

, �R = 1

iν − n
2

. (7)

Next we address the issue of subtractions which we have mentioned before. As
it was already said in Sect. 2, in contrast to signatured Regge amplitudes which
are linear combinations of all different kinematic regions, the planar approximation
considers each different region separately. As shown in [4, 17], starting from the
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factorizing form of the signatured Regge pole amplitude and then expanding into
the sum of all different regions one finds that certain regions have unphysical
singularities, and it is the appearance of these singularities which have to be removed
by subtractions of the Regge cut amplitudes. As the simplest example, we start from
Fig. 2: the planar kinematic region on the lhs of Fig. 2 is completely regular, and
there are no Regge cuts in this region. On the other hand, in the twisted region τ1τ3
on the rhs of Fig. 2 the Regge pole contribution contains a singularity:

s
ω1
1 (−s2)

ω2s
ω3
3

[
eiπ(ωa+ωb) − 2ieiπω2

�a�b

�2

]
, (8)

which we can also write as

s
ω1
1 (−s2)

ω2s
ω3
3

[
cosπωab − 2i

(
−1

2
sinπ(ωa + ωb)+ cosπω2

�a�b

�2

)]
. (9)

Here

ωi = −− γK

4
ln
|qi |2
λ2 , i = 1, 2, 3

γK = 4a, a = αsNc

2π
= g2Nc

8π2

�2 = sinπω2, (10)

i.e. ωi denotes the gluon trajectory function in the ti-channel, and

�a = −γK

8
ln
|q1|2|q2|2
|ka|2λ2 (11)

stands for the production vertex of particle a, and λ2 denotes the square of the
infrared cutoff. In (9) it is the round brackets, in particular the terms proportional to
1/�2, which are unphysical and have to be removed.

At the same time it is known that there exist Regge cut contributions, and one
easily sees that, in the planar approximation, the two reggeon cut in the t2 channel
appears just in the twisted kinematic region on the rhs of Fig. 2. It has the general
form:

2isω1
1 s

ω3
3

∫
dω′2
2πi

(−s2)
ω′2W(ω′2), (12)

where W(ω′2) has a left hand cut in the ω′2 plane. In particular, the singular part of
the pole term in (9) has the same phase structure and thus can be removed by adding
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ba ba

G 2

p 1 p 2(a) (b)

Fig. 5 The two reggeon cut in the 2 → 4 scattering amplitude. (a) Illustration of the energy
discontinuity obtained from the unitarity integral. (b) Graphical illustration of the leading order
remainder function fω2 in momentum space: the two production vertices and the blob which stands
for the sum of the two gluon ladder graphs

the subtraction term

δW = 2isω1
1 (−s2)

ω2s
ω3
3

(
−1

2
sinπ(ωa + ωb)+ cosπω2

�a�b

�2

)
. (13)

A similar analysis applies to the region τ1τ2τ3 where also the two reggeon cut
contributes. As we have seen, for the 2 → 4 amplitude it is rather straightforward
to determine the necessary subtraction of the Regge cut. For the 2 → 5 and 2 → 6
cases this is a much more difficult task.

This completes our brief summary of the simplest case, the 2 → 4 amplitude
in leading order. All aspects discussed so far are relevant also for all higher order
amplitudes, 2 → 5 etc.

Several comments are to be added:

(1) the impact factors �L and �R in (7) are given in the conformal (ν, n)

representation. When going back to the momentum representation (see Fig. 5b)
these impact factors are not pointlike. For this reason, for the attached two gluon
state in the color octet representation the bootstrap property of the BFKL ladder
does not apply, and the two reggeon cut survives.

(2) As we have said before, in the planar approximation (large Nc limit) the two
gluon Regge cut contributes only in the kinematic regions τ1τ3 and τ1τ2τ3. The
first one corresponds to the region where the produced particles a and b have
negative energies. The absence of the Regge cuts in all other regions can be
explained also in another way, namely by the planarity of Feynman diagrams
[15]. Consider in Fig. 5b the loop on the left hand side of the two reggeon
Green’s function, and introduce Sudakov variables:

k′ = α′p1 + β ′p2 + k′. (14)
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Then the α′ integration picks up poles from the propagator of the left impact
factor and from the energy factor of the reggeon in the t1 channel: as long as
this reggeon is untwisted, both the energy cut singularity and the pole of the
propagator lie on the same side of the α′-integration contour, and the integral
vanishes. If on the other hand we twist the t1 channel, the α′-integration is
nonzero.

Since the appearance of [2, 3] where only the leading log approximation had been
used several refinements have been made, e.g. [7, 11, 17, 18], First, higher order
corrections of the impact factors have been calculated and NLO corrections and
NNLO corrections of the BFKL kernel have been obtained. Also, the generalization
to the 3 → 3 has been found [19]. The connection between Regge and collinear
limits has been addressed in [20].

For the BFKL kernel of the two gluon Regge cut it has been shown [15] that it
is part of an integrable open spin chain: the two gluon system belongs to a chain
consisting two spins, a three reggeon cut (see below) provides the three spin chain
etc.

3.2 The 2 → 5 Amplitude

The investigation of the 2 → 4 amplitude described in the previous section has
been extended to the 2 → 5 amplitude [4–6]. Compared to the 2 → 4 scattering
amplitude, the new piece of the remainder function is a ‘long’ Regge cut extending
over the two t-channels (Fig. 6): t2 and t3.

Beginning again with the analytic structure, we now have 14 terms. In Fig. 7 we
show those four terms which contain this new long cut: We note that LLR(1) in
the upper line and LRR(1) in the lower line have the same discontinuity structure
except for the shortest discontinuities in s3 = sbc and s2 = sab. This indicates that
the production vertex for particle b consists of two distinct pieces, VL and VR . The
same argument applies to LLR(2) in the upper line and LRR(2) in the lower line
of Fig. 7.

a b ca b ca b c

(a) (b)

Fig. 6 Long Regge cut extending over the t2 and t3 channel. (a) unitarity integral and (b) leading
order remainder function
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LLR(2)

a b c

LLR(1)

LRR(1) LRR(2)

V L

V R:

:

Fig. 7 Terms containing the long cut

As to the kinematic regions, in the region where all produced particles have
positive energies again only Regge poles contribute, and the amplitude is fully
described by the BDS formula. Now let us continue this pole contribution to other
kinematic regions and describe in more detail how the singularities appear. As we
have already seen for the 2 → 4 amplitude, this analysis is necessary for finding the
subtractions of the Regge cut amplitudes. As discussed in detail in [4], the signatured
2 → n+ 1 production amplitude can be written in the factorized form:

A
τiτj ...τn
2→n+1

�(t1)�(tn)
= |s1|ω1ξ1V

τ1τ2;a1 |s2|ω2ξ2V
τ2τ3;a2 |s3|ω3ξ3 × . . .

×|sn−1|ωn−1ξn−1V
τn−1τn;an−1 |sn|ωnξn, (15)

where

ξi = e−iπωi − τi ; ξij = e−iπωij + τiτj ; ξji = e−iπωji + τiτj (16)

with

ωij = ωi − ωj , τi = ±1 (17)

denote the given signature factors, and

V τiτj ;aj = ξij

ξi
c
ij ;ai
R + ξji

ξj
cij ;ai (18)

stands for the complex-valued production vertex of the particle aj .



92 J. Bartels

As it has been said before, the planar approximation is obtained as an expansion
in monomials of signatures τi , and in this expansion each terms belongs to the planar
approximation continued to a particular kinematic region. For this expansion it is
convenient to write

Ṽ τ1τ2;a1 = ξ1V
τ1τ2;a1ξ2 (19)

and

A
τiτj ...τn
2→n+1

�(t1)|s1|ω1 |s2|ω2 . . . |sn|ωn�(tn)
= Ṽ τ1τ2;a1

1

ξ2
Ṽ τ2τ3;a2

1

ξ3
. . .

1

ξn−1
Ṽ τn−1τn;an−1 .

(20)

In order to obtain this representation we observe that the production vertex can be
expanded as:

Ṽ τ1τ2;a = e−iπω1c
12;a1
R + e−iπω2c

12;a1
L − τ1e

−iπω1
(
e−iπω1c

12;a1
R + e−iπω2c

12;a1
L

)

−τ2e
−iπω2

(
e−iπω1c

12;a1
R + e−iπω2c

12;a1
L

)
+ τ1τ2

(
e−iπω2c

12;a1
R + e−iπω1c

12;a1
L

)
,

(21)

and the propagator can be written in the form:

1

ξ2
= 1

e−iπω2 − τ2
= e−iπω2 + τ2

−2i sin(πω2)e−iπω2
. (22)

Note the appearance of the nonphysical poles ∼ 1/ sinπω2 which should be
canceled by the Regge cut contributions.

In this way one can determine the Regge pole contributions in all different
kinematic regions, labeled by products of τi factors. In particular one finds that in
all regions containing the product τ1τ4 the Regge pole terms are most singular and
contain double poles of the form ∼ 1/(sinπω2 sinπω3). In particular, in the region
τ1τ4 the Regge pole term has the form

|s1|ω1(−s2)
ω2(−s3)

ω3 |s4|ω4

·
[
eiπ(ωa+ωb+ωc) − 2ieiπ(ω2+ω3)

sin(πωa) sin(πωb) sin(πωc)

sin(πω2) sin(πω3)

]
. (23)

A complete list of all kinematic regions can be found in [4].
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The same result can also be obtained in a different way. Instead of (15), we
can start from the analytic representation consisting of 14 terms. For each term the
Regge pole contribution has a particular form, e.g. for the first term LLR(1) in Fig. 7
in the region where all energies are positive:

(−s1)
ω1(−s2)

ω2(−s3)
ω3(−s4)

ω4F
pole

LLR(1)

= (−s1)
ω1(−s2)

ω2(−s3)
ω3(−s4)

ω4
�1

�3

�34

�14

VL(a)

�21

VL(b)

�32

VR(c)

�34
, (24)

where

�i = sinπωi, �ij = sinπ(ωi − ωj ), ωij = ωi − ωj . (25)

When inserting, for each kinematic region, the corresponding phases of the energy
factor, one simply computes the sum of the 14 terms. For the kinematic region τ1τ4
one obtains, after some algebra, the above result (23).

Turning to the Regge cut contributions we start with the ansatz for the long cut
in the region of all positive energies, e.g. for the first term in Fig. 7:

∫
dω′2

∫
dω′3

∫
dω′4(−s3)

ω′3−ω′2(−s123)
ω′2−ω1(−s0123)

ω1−ω4(−s)ω4FLLR(1)

(26)

with

FLLR(1) = Wω2ω3;R
�32�14

. (27)

With this ansatz (and analogous ones for the 3 remaining terms) one finds that this
Regge cut appears in all regions where the t1 and t4 channels are twisted, i.e. in the
regions τ1τ4, τ1τ2τ4, τ1τ3τ4 and τ1τ2τ3τ4. These are exactly the same regions where
also the pole terms are most singular, with double poles as in (23).

Based upon this Regge pole structure it is possible to determine the necessary
subtraction terms for the Regge cut contributions, in analogy with the 2 → 4 case
described above. Without going into details which are described in [5] we only
list the results for the long cut. Introducing the trigonometric factors of the long
cut, generalizing (27) we find, as expected, that the long cut appears in all regions
containing the product τ1τ4, i.e. just in those regions where the Regge poles are
most singular. From the general analytic representation we find, for the Regge cut
contribution in the region τ1τ4,

2i|s1|ω1 |s2|ω2 |s3|ω3 |s4|ω4
(
e−iπω2W̃ω2ω3;R + e−iπω3W̃ω2ω3;L

)
, (28)
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where we have introduced the following combinations of long cut and short cuts:

W̃ω2ω3;L =
Wω2ω3;L
�32

+ �a

�2
Wω3 (29)

W̃ω2ω3;R =
Wω2ω3;R
�23

+Wω2

�c

�3
. (30)

Here Wω2ω3;L and Wω2ω3;R denote the cut terms of the upper and lower lines of
Fig. 7, resp. We define

Wω2ω3;L = δWω2ω3;L +W
reg

ω2ω3;L
Wω2ω3;R = δWω2ω3;R +W

reg

ω2ω3;R, (31)

where the subtraction terms are found to be

�23δW̃ω2ω3;L =
�a�b�c

�3
(32)

−1

2

[
cosπ(ω3 − ωb) cosπ(ωa − ωc)− cosπ(ω3 − ωa − ωb − ωc)

]

�32δW̃ω2ω3;R = �a�b�c

�2
(33)

−1

2

[
cosπ(ω2 − ωb) cosπ(ωa − ωc)− cosπ(ω2 − ωa − ωb − ωc)

]
.

With these subtractions we find for the scattering amplitude in the region τ1τ4 the
regular expression:

|s1|ω1 |s4|ω4

[
(−s2)

ω2(−s3)
ω3eiπωbcosπωac

+2i
(
e−iπω3W̃

reg

ω2ω3;L + e−iπω2W̃
reg

ω2ω3;R
) ]

.

(34)

So far the given expressions are valid to all orders of the coupling constant.
However, when computing, from unitarity, the partial waves Wω2ω3;L and Wω2ω3;R ,
we first will restrict ourselves to the leading approximation. This implies that,
in (34), we will approximate the phase factors by unity and hence deal with the
sum W

reg

ω2ω3;L + W
reg

ω2ω3;R . The energy discontinuity �123 in leading order is given
by:

�123 = W̃
reg

ω2ω3;L + W̃
reg

ω2ω3;R −Wreg
ω3

−Wreg
ω2

, (35)
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where Wreg
ω2 , Wreg

ω3 denote the regular parts of the short cuts of the t2 and t3 channels,
and the unitarity integral which determines the energy discontinuity �123 in leading
order has the form:

�123 = |s1|ω1 |s2|ω2 |s3|ω3 |s4|ω4
(
fω2ω3 +

π

2
δ14 − fω2 −

π

2
δ13 − fω3 −

π

2
δ24

)
,

(36)

fω2ω3 =
a

2

∑
n1,n2

(−1)n1+n2 (37)

·
∫ ∫

dν1dν2

(2π)2
�L

(
k∗aq∗3
q∗1k∗b

)iν1+ n1
2
(
kaq3

q1kb

)iν1− n1
2
(
s12

s02

)ω(ν1,n1)

·B(ν1, ν2, n1.n2)

(
s23

s03

)ω(ν2,n2)
(
k∗bq∗4
q∗2k∗c

)iν2+ n2
2
(
kbq4

q2kc

)iν2− n2
2

�R|sub

and

δ14 = V14 + π(ωa + ωc), Vik = γk

4
ln

|qi |2|qk|2
|qi − qk|2λ2

. (38)

V14 denotes the one loop approximation of the long cut which is contained already
in the BDS formula. fω2ω3 is illustrated in Fig. 6. In (37) we have carried out the
ω-integrals. The impact factors for particles a and c are the same as in the 2 → 4
amplitude. B(ν1, ν2, n1, n2) denotes the new (leading order) production vertex of
particle b (see Fig. 6b). The subscript |sub indicates that we have subtracted the one
loop contribution.

Combining (35) with (36) we find

W
reg

ω2ω3;L +W
reg

ω2ω3;R =
(
fω2ω3 +

π

2
δ14

)
, (39)

and the amplitude becomes:

|s1|ω1(−s2)
ω2(−s3)

ω3 |s4|ω4
[
eiπωb cosπωac + 2i

(
fω2ω3 +

π

2
δ14

) ]
. (40)

Here the energy factors together with the phase eiπ(δ14+ωb) are contained in the BDS
amplitude.

Finally we have to discuss the production vertex of particle b. These results
are new, and details are given in [21, 22]. In (37) B(ν1, ν2, n1, n2) denotes the
leading order vertex illustrated in Fig. 6b. This result was obtained from the (single)
discontinuity in s123 (Fig. 8a) which, in leading order, leads to the sum of the two
partial waves (35). To see the full structure we need to compute W

reg

ω2ω3;L and
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a b c

(a)
a b c a b c

(b)

Fig. 8 Single and double discontinuities

W
reg

ω2ω3;R separately, not only the sum. As it can be seen from Fig. 7, in order to
discriminate between the first and the second line, we need to compute the double
discontinuities �12�123 and �23�123 (Fig. 8b): This has been done recently in
[21, 22], and we summarize the results. Writing down the leading order equations
for the double discontinuities and evaluating the corresponding unitarity equations,
one finds

W̃
reg
ω2ω3;R =

πω′2fω2ω3 − f
(b)
ω2ω3

π(ω′2 − ω′3)
(41)

and

W̃
reg
ω2ω3;L =

πω′3fω2ω3 − f
(b)
ω2ω3

π(ω′3 − ω′2)
(42)

(for simplicity, we have disregarded the one and two loop terms). Both partial waves,
W̃

reg
ω2ω3;R and W̃

reg
ω2ω3;L, consist of two terms. If we would disregard the second terms

and take the sum of the first ones we simply are back to the previous result of the
single discontinuity. So it is the second piece which is new and can be obtained only
via the double discontinuities. The first equation (41) is illustrated in Fig. 9.

The new vertex contained in f
(b)
ω2ω3 can be found in [21, 22] and is illustrated in

Fig. 10.
It is important to stress that in (41) and (42) both terms are of the same order in

g2. As we have already said, in the leading term of the scattering amplitude where
we disregard all phases, in (39) only the sum Wω2ω3;L + Wω2ω3;R appears which
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Fig. 9 Graphical illustration of the two terms of W̃23;R
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− −=

− − + +

Fig. 10 The new piece of the production vertex

equals the sum of the two first terms only and cancels the second terms. Only if we
expand the phases contained in the energy factors also these second terms show up:

2ie−iπ(ω2+ω3)

∫
2

∫
3
s
ω′2
12 s

ω′3
23

(
eiπω

′
2W̃

reg
ω2ω3;R + eiπω

′
3W̃

reg
ω2ω3;L

)

≈ e−iπω5eiπωd

∫
2

∫
3
s
ω′2
12 s

ω′3
23

·
(
W̃

reg

ω2ω3;R + W̃
reg

ω2ω3;L − iπω′2W̃
reg

ω2ω3;R − iπω′3W̃
reg

ω2ω3;L
)

≈ 2ie−iπ(ω2+ω3+ω5)eiπωd

∫
2

∫
3
s
ω′2
12 s

ω′3
23

(
fω2ω3 + if (b)

ω2ω3

)
. (43)

The ‘≈’ sign indicates that we have expanded the phase factors, and our equations
are valid only up to the first order in iπ . It should be emphasized that the second
terms in (41) and (42) still belong to the same leading approximation of the partial
waves as the first ones, although in the scattering amplitude they appear proportional
to ∼ iπ as ‘next-to-leading-order’.

As illustrated in Fig. 9, in both W̃
reg
ω2ω3;L and W̃

reg
ω2ω3;R the production vertex for

particle b factorizes; in fω2ω3 the vertex is given by B(ν1ν2, n1, n2), in f
(b)
ω2ω3 by

V b. When writing in (43) the scattering amplitude, the combination fω2ω3 + if
(b)
ω2ω3

appears and the production vertex is given by the complex valued combination B +
iV b. We therefore still have factorization, but the production vertex has become
complex-valued.
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It will be important to compare these results with those of [8, 12]: in these
papers the 2 → 5 amplitude beyond LO (and even the generalization to 2 → n)
has been studied in the kinematic regions τ1τ4, and expressions for the production
vertex have been derived. So far, a comparison with our results cannot be carried
out: our expression have been derived im momentum space (as it is natural when
using energy discontinuities and unitarity), and it will be necessary to perform the
transformation to the conformal (ν, n) representation. This will be done in a separate
paper. Also in [7, 11] the multiregge limit of the 2 → n amplitude has been studied.
Here a comparison is even more complicated and requires a closer investigation.

4 The 8 Point Function

We now turn to the next step, the generalization to the 2 → 6 production process.
This process is of special interest since it contains new Regge cut pieces. We
illustrate these new Regge cuts by their unitarity integrals in Figs. 11 and 12. First,
there is a longer cut extending over 3 different t-channels (Fig. 11). More important,
for the first time it also contains the product of two short two-reggeon cuts (Fig. 12a)
and a Regge cut consisting of three reggeized gluons (Fig. 12b).

The analytic decomposition of the 2 → 6 amplitude now contains 42 terms. In
Fig. 13 we show those terms which contain the double cuts.

For the 3 reggeon cut we have the four terms shown in Fig. 14.
The kinematic regions where these cuts appear are, again, determined by

combining the trigonometric factors of the Regge poles and of the Regge cut
amplitudes with the phases of the energy factors (the results are in accordance with
the argument given in the appendix of [15]). In particular, the very long Regge cut
extending over the t2, t3, and t4 channels appears in all those kinematic regions

Fig. 11 The single
discontinuity in s1234

a b c d

Fig. 12 Double
discontinuities (a) in s12 and
s34, (b) in s23 and s1234

a b c d

a b c d

(a)

(b)
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LRLR

a b c d

Fig. 13 The five terms containing the double cut

LLRR

3

4

1

2

Fig. 14 The four terms containing the 3 reggeon cut

(a)
(b)

1 5
1 2 4 5

Fig. 15 Kinematic regions for (a) the very long cut and (b) for the three reggeon cut

where the t1 and t5 channels are twisted; in our notation, all regions containing
the product of τ1 and τ5. This includes, in particular, the region τ1τ5, where the
four produced particles have negative energies (Fig. 15a). The same applies to the
product of the two short cuts. The three reggeon cut appears only in the region where
particles a and d have negative energies, particles b and c positive energy (Fig. 15b):
τ1τ2τ4τ5 and τ1τ2τ3τ4τ5.
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a b c d

Fig. 16 The very long cut in the leading approximation

Details of this study are given in [21], and here we only quote the main results.
In order to find the subtractions we, again, first have to determine the Regge pole
contributions in all kinematic regions. This follows the procedure described in the
previous section, and the results are listed in one of the appendices of [21]. In the
next step one has to find the subtractions: this turns out to be a rather complicated
task. As an important test, we have to show that not only the scattering amplitudes
but also their single and multiple discontinuities are free from the Regge pole
singularities. This is described in detail in [21], and the derivation is too lengthy
to be described here.

From Fig. 12 we immediately see that for the two new contributions we need
to consider double discontinuities. This provides a new test of the correct analytic
structure in all energy variables, in accordance with the Steinmann relations.
Furthermore, both the double cut and the three reggeon cut contributions are of
the order (iπ)2, in contrast to the two reggeon cut contributions in 2 → 4, 2 → 5
and the very long cut in Fig. 11, for which the leading order is of the order (iπ).
However, in our discussion of the production vertex of the 2 → 5 amplitude we
also had to extend our analysis to double discontinuities of the order (iπ)2. We
therefore conclude that, starting with 2 → 5, double and even higher order energy
discontinuities need to be taken into account..

Below we list a few results. Beginning with the very long cut, we have to
generalize our analysis of the long cut obtained in the 2 → 5 case. There are four
terms which we denote by WLL, WLR , WRL, and WRR . Starting with the leading
contribution for the scattering amplitude where all phases of the energy factors are
neglected, only the sum appears: WLL +WLR +WRL +WRR , and for this sum we
can use the single energy discontinuity in s1234. The result is illustrated in Fig. 16
which nicely generalizes Fig. 6b. The scattering amplitude in the region τ1τ5 then
has the form:

e−iπ(ω2+ω3+ω4)
[
eiπ(ωb+ωc) cosπ(ωa − ωd)

+2i
[
fω2ω3ω4 +

π

2
δ15

−i

(
fω2 +

π

2
δ13 − π(ωa − ωb)

2

)(
fω4 +

π

2
δ35 − π(ωd − ωc)

2

) ]]
, (44)
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where the long cut is contained in fω2ω3ω4 . In addition to the very long cut we also
have the double cut which comes as a product of the short cuts in the t2 and t4
channels. The remainder function for the very long cut, fω2ω3ω4 , has the form:

fω2ω3ω4 =
a

2

∑
n2,n3,n4

(−1)n2+n3−n4 (45)

·
∫ ∫

dν2dν3dν4

(2π)3

[
�L

(
k∗aq∗3
q∗1k∗b

)iν2+ n2
2
(
kaq3

q1kb

)iν2− n2
2

·
(
s12

s02

)ω(ν2,n2)

· B(ν2, ν2, n3.n3)

(
k∗bq∗4
q∗2k∗c

)iν3+ n3
2
(
kbq4

q2kc

)iν3− n3
2
(
s23

s03

)ω(ν3,n3)

·B(ν3, ν4, n3, n4)

(
k∗c q∗5
q∗3k∗d

)iν4+ n4
2
(
kcq5

q3kd

)iν4− n4
2
(
s34

s04

)ω(ν4,n4)

�R

]
|sub.

The vertex functions �L and �R for the produced particles a and d are the same as
those in the 2 → 4 and 2 → 5 amplitudes. The production vertex functions B(ν.n)

belong to the pointlike vertices shown in Fig. 16, and they are the same as in (37).
In (44) we have not yet written the complete answer, i.e. we have not yet included
terms proportional to (iπ)2.

From the 2 → 5 amplitude we know that this is not the yet the final answer. Each
production vertex for particles b and c consists of two pieces, VL and VR . In order
to determine the partial waves WLL, WLR , WRL, and WRR separately, we need to
compute multiple discontinuities. An example, �12�1234, is shown in Fig. 17.

The simplest way to find WLL etc. is the following: the double discontinuity
�12�1234 determines the sum WRL + WRR; similarly, the double discontinuity
�34�1234 gives the sum WRL+WLL. Finally, the triple discontinuity �12�34�1234
determines WRL, and from the single discontinuity �1234 we have the sum of all
four terms. This then allows to find the four terms WLL, WLR , WRL, and WRR

separately (in leading order). Without going into detail we illustrate the result for
W̃

reg
RR in Fig. 18. Analogous results hold for the other terms, W̃ reg

RL etc.

a b cd

Fig. 17 Illustration of the double discontinuity �12�1234
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Fig. 18 Illustration of W̃ reg
RR : factorization of the production vertices

Similar to the 2 → 5 case, we still have factorization of the production vertex: in
W̃

reg
RR etc we have combinations of B and V b (Fig. 18) for both produced particles.

When writing down the amplitude and expanding the phases of the energy factors up
to the order iπ , we find—for the region τ1τ5—the combination fω2ω3ω4+if b

ω2ω3ω4
+

if c
ω2ω3ω4

, in agreement with the product of the two complex valued production
vertices which were found for 2 → 5. This demonstrates factorization: in the
product of the two production vertices b and c each term agrees with the structure
of the VR vertex of the 2 → 5 amplitude shown Fig. 9. Further details can be found
in [21]. The factorization of production vertices for the general 2 → n case has
also been established in [12]. However, for a closer comparison we refer to our
discussion at the end of Sect. 3.

As to the product of the two short reggeon cuts in the t2 and t4 channels we only
mention that they are obtained from the double discontinuity �12�34 (Fig. 12a).
Each factor agrees with the partial wave obtained for the 2 → 4 vertex.

Finally we come to the 3 reggeon cut appearing in the region τ1τ2τ4τ5 (Fig. 12b):
it is obtained from the double discontinuity �23�1234. The full amplitude in the
region τ1τ2τ4τ5 consists of several pieces which in leading order are given by:

e−iπω3
(
eiπ(ωb+ωc−ωa−ωd) + 2i

[π
2
δ1245

+fω2ω3ω4 − if b
ω2ω3ω4

− if cω2ω3ω4)−
(
fω2ω3 + if b

ω2ω3

)
−
(
fω3ω4 + if b

ω3ω4

)

+fω3 − i

(
fω2 +

π

2
δ13 − π(ωa − ωb)

2

)(
fω4 +

π

2
δ35 − π(ωd − ωc)

2

)

+2if3-reggeon

])
. (46)

The three reggeon cut term is given by

f3-reggeon = �d 1

ω′′2 −Koctet
V b 1

ω′′3 −K3;octet V
c 1

ω′′4 −Koctet
�d |more than two loops

+two loop terms . (47)
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Fig. 19 The 3 reggeon cut in
the leading approximation

a b c d

Fig. 20 The 2-reggeon →
3-reggeon transition

−

a
a

Here f3-reggeon in the momentum representation is illustrated in Fig. 19. For the
produced particles a and d the impact factors �L,R are the same as before (e.g.
in the long cut or very long cut amplitudes). A new element is the transition
2 reggeons → 3 reggeons at the production of particle b. It is illustrated in
Fig. 20. We note that it consists of two terms. In order to obtain this vertex in the
conformal (ν, n) representation one has to convolute it with BFKL eigenfunctions:
from the left with the two reggeon wavefunction, from the right with the three
reggeon wavefunction. The result will be published in a separate paper.

For completeness we illustrate in momentum space the leading order 3 → 3
BFKL kernel for the 3 reggeon cut:

K3−octet (k1,k2,q3 − k1 − k2;k′1,k′2,q3 − k′1 − k′2)

= −a

2
ln

k2
1(q3 − k1 − k2)

2

q2
3q2

3

+ 1

2

(
K(1)(k1,k2; (k′1,k′2)

+K(1)(k2,q3 − k1 − k2;k′2,q3 − k′1 − k′2)
)
. (48)

In Fig. 21a it is a sum of two infrared finite color singlet BFKL kernels K(1). It is
this 3-gluon kernel which defines the open string Hamiltonian consisting of three
sites. This result has been obtained so far only in the leading approximation. The
BFKL kernel for two reggeized gluons is known also in higher order, but beyond
leading order there exist also another higher order kernel, the interactions of three
reggeized gluons [23] (Fig. 21b).
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Fig. 21 Kernel of the 3-gluon octet state

The 3 reggeon cut contains a first generalization of the open spin chain [15]
mentioned before: whereas the BFKL kernel of the two reggeon cut represents the
spin chain of two sites, the kernel of the three reggeon cut has three sites. The
diagram in Fig. 21b thus provides a new building block of the integrable structure
contained in the 2 → n scattering amplitudes in the multi-Regge limit and, to our
knowledge, needs further investigation.

5 Summary and Future Steps

In this paper we have outlined how unitarity and energy discontinuities can be used
to compute, for the Regge limit, multiparticle amplitudes. An essential ingredient is
the analytic structure: the amplitude is written as a sum of several terms, and each
term has the maximal number of non-overlapping energy discontinuities. For the
study of N= 4 SYM gauge theories one usually deals with the planar approximation
(large Nc limit): this approximation, however, requires a few special considerations.

After the simpler cases of the 2 → 4 and 2 → 5 amplitudes new results have
been obtained for the 2 → 6 amplitude. There are two novel features: the product
of shorter Regge cuts and, for the first time, the appearance of a three reggeon cut.

Based upon the results known so far, it is tempting to make more general
predictions for the planar approximation of the 2 → n case. First, for sufficiently
large n, we expect to find more general products of Regge cuts. An example is
shown in Fig. 22.

a b c d

. . .

y z

Fig. 22 Product of short cuts
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Fig. 23 The 4-reggeon cut

Next we expect Regge cuts consisting of n reggeized gluons (Fig. 23): as an
example, the bound state of four reggeized gluons is expected to appear first in
the 2 → 8 amplitude.

In these examples all elements are known, at least in leading order in momentum
space. Using the methods outlined in this paper, also higher order corrections
can be obtained by inserting, in the unitarity equations which are used for the
discontinuities, higher order production amplitudes. An important task, however
remains, namely the transformation to conformal variables ν and n. Also, the
generalization from 2 → n to m→ n amplitudes is an interesting future step.

As we have mentioned before, in recent years new and elegant methods are being
developed which may allow to compute more easily higher order corrections. We
consider this as an important development. Our results described in this paper may
be seen as being complementary to this. In particular, they may help to find also the
explicit connection with scattering amplitudes and cross sections. A comparison of
the results obtained by different methods will be an important task.
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Direct Integration for Multi-Leg
Amplitudes: Tips, Tricks, and When
They Fail
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Cristian Vergu, Matthias Volk, Matt von Hippel, and Matthias Wilhelm

Abstract Direct hyperlogarithmic integration offers a strong alternative to differ-
ential equation methods for Feynman integration, particularly for multi-particle
diagrams. We review a variety of results by the authors in which this method,
employed with some care, can compute diagrams of up to eight particles and four
loops. We also highlight situations in which this method fails due to an algebraic
obstruction. In a large number of cases the obstruction can be associated with a
Calabi-Yau manifold.

J. L. Bourjaily
Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark

Institute for Gravitation and the Cosmos, Department of Physics, Pennsylvania State University,
University Park, PA, USA
e-mail: bourjaily@psu.edu

A. J. McLeod · C. Vergu · M. Volk · M. von Hippel (�) · M. Wilhelm
Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
e-mail: amcleod@nbi.ku.dk; c.vergu@nbi.ku.dk; mvolk@nbi.ku.dk; mvonhippel@nbi.ku.dk;
matthias.wilhelm@nbi.ku.dk

Y.-H. He
Department of Mathematics, University of London, London, UK

Merton College, University of Oxford, Oxford, UK

School of Physics, NanKai University, Tianjin, P.R. China
e-mail: hey@maths.ox.ac.uk

M. Spradlin
Department of Physics, Brown University, Providence, RI, USA
e-mail: marcus_spradlin@brown.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
J. Blümlein, C. Schneider (eds.), Anti-Differentiation and the Calculation
of Feynman Amplitudes, Texts & Monographs in Symbolic Computation,
https://doi.org/10.1007/978-3-030-80219-6_5

107

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80219-6_5&domain=pdf
mailto:bourjaily@psu.edu
mailto:amcleod@nbi.ku.dk
mailto:c.vergu@nbi.ku.dk
mailto:mvolk@nbi.ku.dk
mailto:mvonhippel@nbi.ku.dk
mailto:matthias.wilhelm@nbi.ku.dk
mailto:hey@maths.ox.ac.uk
mailto:marcus_spradlin@brown.edu
https://doi.org/10.1007/978-3-030-80219-6_5


108 J. L. Bourjaily et al.

1 Introduction

Several methods are available for evaluating Feynman integrals in terms of hyper-
logarithms. Of these, direct hyperlogarithmic integration is perhaps surprisingly
a bit of a dark horse. The method, which in rough outline consists of partial-
fractioning rational functions and re-expressing hyperlogarithms in the integration
variable, applying the definition of the hyperlogarithm, and careful treatment of
boundary values [1, 2], has been implemented in computer packages [3, 4], but
remains less popular than differential equation methods [5–10] or methods based
on the Mellin-Barnes representation [11–13].

In part, this lack of popularity is due to the method’s dependence on linear
reducibility. At each integration step, it must be possible to express the integrand
in terms of rational functions and hyperlogarithms in the integration parameter. If
there is no integration order such that this is possible then we say that the integral
is not linearly reducible. This can happen, for example, if partial-fractioning in a
previous integration step gives rise to irreducible algebraic roots in a later integration
variable. If this happens then direct hyperlogarithmic integration is obstructed.

Despite this potential for obstruction, direct hyperlogarithmic integration has
several advantages. Differential equation and Mellin-Barnes methods both have
difficulty in problems with a large number of scales. In contrast, provided linear
reducibility is preserved the number of scales has little impact on the difficulty of
direct hyperlogarithmic integration. As such, it is particularly well-suited for multi-
leg scattering amplitudes. These are especially relevant in the context of planar
N = 4 super Yang-Mills, where amplitudes with five particles and fewer are fully
captured by the BDS ansatz [14].

In this talk, we present several direct integrations of multi-leg Feynman integrals
by the authors, mostly in the context of planar N = 4 super Yang-Mills [15–21]. We
observe that obstructions to linear reducibility can be postponed or avoided entirely
via a variety of techniques and best-practices. In some cases, integration can be
performed to completion, resulting in an expression in terms of hyperlogarithms
with rational arguments [17]. In others, integration can still be completed, but the
resulting hyperlogarithms depend manifestly on algebraic roots in the kinematics. In
several cases presented here, it is possible to show that this dependence is spurious,
and the singularities of the result are in fact all rational in the kinematics [20, 21]. In
still other cases, integration cannot be completed, and there is unavoidable algebraic
dependence on the integration parameters at an intermediate stage. These cases
have an intriguing commonality of structure: in each case, the obstructions to direct
integration can be characterized in terms of Calabi-Yaus [15, 16, 18, 19].
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2 Tips and Tricks for a Rational Result

As an illustrative example, consider the following direct integration, which should
be thought of as the first step in a longer calculation:
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If
√
f 2 − g happens to be a perfect square, the result will contain no irreducible

roots and direct integration can proceed happily. If it is not, direct integration is
obstructed. Our goal then is to avoid obstructions of this kind. Sometimes this can be
accomplished simply by choosing a different order of variables in which to integrate:
these orders can be found systematically via compatibility graph reduction [1, 2,
22, 23]. In other cases there is no integration order free of these obstructions and
they must be dealt with in another way. Sometimes this can be done via a change of
variables which rationalizes the square root, which have been studied systematically
in [24].

These systematic methods are often useful, but they do not suffice to avoid
every possible obstruction. Going beyond them requires re-thinking our starting
assumptions. If we begin with a different representation for the integrand, integrals
can be linearly reducible that were not in the original parametrization. This freedom
of reparametrization is much less understood. In the following we discuss a few
approaches which have been particularly helpful in our calculations of multi-
leg diagrams, in which a different framing of a problem can make a seemingly
obstructed integral reducible.

2.1 Loop-by-Loop Parametrization

It is a widely believed conjecture that, for L-loop Feynman integrals in four
dimensions, any hyperlogarithms that appear are of maximum weight 2L. With this
in mind, one would expect it to be possible to write any such integral as a 2L-fold
integral over a rational function. This is not typically true of the standard Feynman
parameter representation, which has a variable for each propagator, potentially
leading to many more than 2L integration variables. In practice, this dependence on
extra variables can obscure linear reducibility. Heuristically, the more integrations
need to be performed the greater the chance that one will introduce a spurious
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algebraic root. As such, it is wise to begin with a representation depending on as
few integration variables as possible, preferably only 2L.

A method that can achieve this goal in many cases, and approach it in others,
is loop-by-loop Feynman parametrization. This method is in some ways analogous
to the loop-by-loop approach to the Baikov representation [25], but less general: it
is particularly applicable to planar diagrams with massless propagators. In these
cases it is often possible to Feynman parametrize one loop at a time, treating
the other loop momenta as external. As the diagram is planar, it can be written
so that only one propagator depends on a given one of the remaining loop
momenta. Then after Feynman parametrizing the first loop, one can integrate in
the Feynman parameter corresponding to that propagator, isolating the dependence
on the next loop momentum in a “propagator-like” form. This then allows the
next loop to be integrated in the same way, while at the same time reducing the
number of integration parameters in the final result. This method was used more
or less straightforwardly to obtain 2L- or 2L + 1-parameter integrands for L-loop
diagrams in [15–17, 20, 21]. It was discussed in a bit more detail in [26]. More
complicated cases requiring more involved changes of variables were considered in
[19], including a six-parameter representation of a three-loop integral and a nine-
parameter representation of a four-loop integral.

2.2 Momentum Twistors

Much as it is wise to use as few integration parameters as possible, it is also wise
to use as few kinematic parameters as possible. For planar integrals, a particularly
natural way to do so is by employing momentum twistor space [27]. To define this
space for an n-point diagram, we can first consider the dual space defined by dual
x-coordinates pa = xa+1 − xa , with xn+1 = x1. These coordinates automatically
enforce momentum conservation. For massless external momenta, we then have
the additional constraint that (xa+1 − xa)

2 = 0, so the dual points are light-like
separated.1 To make this manifest, we go to momentum twistor space, in which
each dual point xa is assigned to a line span{za−1, za} in P

3.
In addition to being a natural minimal set of kinematic parameters, momentum

twistors also have an additional advantage: they rationalize many of the kinematic
square roots that would otherwise occur in scattering amplitudes. Construct the
following n× n matrix of kinematic invariants:

G = {Ga
b = (xa − xb)

2} . (2)

1For massive external momenta, we can represent each in terms of a pair of massless external
momenta, so this discussion still applies.
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In momentum twistors, the invariant (xa − xb)
2 is proportional to the determinant

det{za−1, za, zb−1, zb}. Thus, this matrix is linear in each of the momentum twistors.
One can represent each pair za−1∧za and zb−1∧zb as a six-component vector, which
shows that this matrix is in fact a Gramian matrix, with rank at most six. This means
that all 7× 7 minors of the matrix should vanish. Expressed in terms of (xa − xb)

2

or conformal cross-ratios, this will give rise to relations which are quadratic in each
such variable, with solutions involving algebraic roots of 7 × 7 determinants of G.
These appear quite generically when attempting direct integration of seven- and
higher-point amplitudes in xa variables or in cross-ratios. Because G is manifestly
linear in the pairs za−1∧za and zb−1∧zb, in these variables these algebraic roots are
rationalized. Thus momentum twistors serve to rationalize a particularly common
class of algebraic roots, permitting direct integration smoothly in more cases.

The combination of loop-by-loop parametrization and momentum twistors is
already quite powerful. In [17], these methods sufficed to compute hyperlogarithmic
representations for several classes of integrals, including the six-point “double
penta-ladder” integrals of [28], seven-point integrals referred to as “Heptagon A”
and “Heptagon B”, and an eight-point family of integrals referred to as “Octagon
A”, all through four loops. Another eight-point integral in [17], referred to there
as “Octagon B”, could be computed at two loops through the same methods,
resulting in hyperlogarithms which depend on an algebraic square root, arising from
a kinematic configuration related to the four-mass box which will be discussed in
Sect. 3. Finally, of the sixteen two-loop six-point integrals computed in [26] and
the five seven-point two-loop integrals computed in [21], all but one were computed
using essentially the above methods, augmented by a few minor tricks.

2.3 Splitting the Integration Path

While loop-by-loop Feynman parametrization and momentum twistors make many
planar integrals linearly reducible, they do not fix all obstructions to linear reducibil-
ity. In cases when they fail, it is sometimes possible to perform direct integration
regardless, via the expedient of splitting the integration path.

There are two distinct versions of this trick, corresponding to two distinct
situations. In the first, an integrand may be linearly irreducible due to the occurrence
of two polynomials (either in denominators of rational functions or singularities
of hyperlogarithms) that do not have a common order in which they can be
integrated. In such a situation, it is sometimes the case that the terms containing
these polynomials can be separated: the integrand can be written as a sum of terms
depending on one polynomial, terms depending on the other, and terms depending
on neither. In these situations one can then split the integration, integrating one set
of terms with one integration order and the other set of terms with another, so that
each set of terms continues to be linearly reducible.
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In the second situation, the integrand already contains algebraic roots. A single
square root of a quadratic polynomial can always be rationalized via a rational
change of variables. If there are multiple such square roots then simultaneously
rationalizing them is a nontrivial task. The methods of [24] provide criteria to
distinguish cases which can be rationalized from cases which cannot. However,
it may not always be necessary to simultaneously rationalize all of the algebraic
roots occurring in an integrand. This is because these roots, much like the mutually
incompatible polynomials of the first situation, may appear only in separate terms of
the integrand. Then by separating the integrand into terms each containing only one
distinct square root of a quadratic polynomial, it is possible to group the integrand
into pieces that can individually be rationalized by distinct changes of variables,
thus allowing integration to continue.

The first of these situations held in the fifth integral considered in [21], which
was successfully integrated using this method. The integrals considered in [20] were
more complicated: these required both methods at different stages of the calculation,
with the integrand first split into two pieces that integrate rationally along different
orders and then split again into pieces that could be rationalized by distinct changes
of variables.

3 Kinematic Square Roots at Symbol Level

The methods described in the preceding section allowed in several cases for
integration to proceed all the way to a hyperlogarithmic expression. However,
these expressions themselves may be expressed in terms of algebraic roots in kine-
matic parameters, even when written with rational parametrizations of momentum
twistors.

In general, one expects some algebraic roots that appear in this way to be
spurious, artifacts of our integration procedure that are not required to express
the integral, while others may be unavoidable. The latter should be “physically
meaningful” in some sense: it should be possible to characterize them in terms of
Landau singularities [29], for example. In the case of planar diagrams with massless
internal lines, these roots can originate from Gramian determinants smaller than the
6 × 6 determinants that momentum twistors rationalize, such as 4 × 4 Gramian
determinants. These are the origin of the square root appearing in the four-mass
box [30–32], which indeed is not rationalized with momentum twistors alone. This
same kinematic behavior is responsible for the square root observed in the integral
referred to as Octagon B in [17], as well as for the square roots that were expected
for the integrals considered in [20].

Ideally we would like to represent an integral using whichever algebraic roots are
necessary and no more, eliminating any spurious arguments in our hyperlogarithms.
If our hyperlogarithms depended on rational arguments we could do this by going
to a uniquely specifiable basis called a fibration basis [2, 33]. However, this is not
possible when the arguments of the hyperlogarithms contain algebraic roots. When
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a root can be rationalized by another change of variables it is sometimes possible
to go to a fibration basis after doing so and then transform back to show that the
root does not contribute. This method was used in [26]. When this is not possible,
sometimes one can propose a plausible ansatz of hyperlogarithms without algebraic
roots, then match series expansions at a sufficient depth to be convincing. If neither
of those are possible, then one generally cannot find an explicit hyperlogarithmic
form without roots, but one may still be able to identify some roots as spurious at
the level of the symbol [34].

Before discussing this, we should clear up some common misunderstandings
regarding the symbol map. In particular, there are two slogans that are often
repeated: “The symbol trivializes all identities” and “The symbol of a constant
vanishes”. Both of these slogans are useful in the proper context, but neither is
strictly true.

The symbol results from maximal iteration of the coaction on a hyperlogarithm,
resulting in a tensor product of logarithms. If these are all logarithms of rational
numbers and functions then the symbol will indeed trivialize all identities: one
simply needs to factor the argument of each logarithm and expand. However, if
any of the numbers or functions involved are algebraic then this procedure will
not typically be unique, and thus will not trivialize all identities. This is because
algebraic extensions of the rationals are in general not unique factorization domains.

To give a simple example, consider the integers extended by
√−5. The number

nine can be factorized in this ring in two different ways:

9 = 3× 3 = (2+√−5)× (2−√−5) . (3)

As neither 3, (2+√−5), or (2−√−5) can be factorized further in this ring (more
precisely they are irreducible elements), this shows that there are numbers which
cannot be uniquely factorized.

In order to make the symbol useful in the presence of algebraic roots, then, we
need to find a basis of symbol letters that is truly linearly independent, preferably
where as few letters as possible are algebraic. If there are few enough algebraic
letters this can be done by inspection, or almost as easily. This was the case for
the fifth integral considered in [21]: its symbol depended on only one algebraic
root, which appeared in 22 distinct letters. It was reasonably straightforward to
find relations between these letters, expressing them in a basis of just five algebraic
letters (as well as assorted rational letters). When the symbol was expanded in this
basis all dependence on the five remaining algebraic letters dropped out, resulting
in a purely rational symbol alphabet.

If there are many algebraic letters, especially of higher degree, then a more
systematic approach is desirable. We will discuss such an approach below, employ-
ing software implementations of algebraic extensions of the integers. In order to
do this we will have to consider constant symbol letters, which brings us to the
second misleading slogan, the claim that the symbol of a constant vanishes. This
slogan may seem plausible to readers used to calculations in planar N = 4 super
Yang-Mills, where the constants of interest at well-behaved kinematic points are
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typically multiple zeta values. As each term in the symbol of a multiple zeta value
contains at least one entry equal to one, and ln 1 = 0, it is true that the symbol
of a multiple zeta value vanishes. However, we do not need to choose a well-
behaved kinematic point. Choosing instead a generic kinematic point results in a
non-vanishing constant symbol, with all of the properties that make symbols useful
for non-constant functions.

With the above in mind, we integrated the eight-point integrals investigated in
[20] at a particular, generic kinematic point, computed their symbols. These symbols
were initially particularly complicated: one of the two integrals considered had a
symbol with 8,367,616 terms in 2,024 letters, while the other had 9,941,483 terms
in 2,156 letters. These initially involved very complicated algebraic numbers, in
some cases up to degree 16. The most complicated letters had a common structure:
they were of the form ρ − σ , where σ was a root of a fourth-order polynomial
and ρ was a linear combination of at most two square roots and an integer. By
grouping these letters according to the roots appearing in ρ and σ , it was possible
to search for combinations that do not involve higher than square roots. This search
was accomplished with the use of SageMath [35], in particular its Pari [36]
functionality. The relations found in this way were sufficient to remove all higher
roots from the symbols, leaving letters that were linear combinations of at most two
square roots.

These letters still satisfy many nontrivial relations. To find them, we employ
factorization in prime ideals. We sketch the method below:

The ideal generated by a number is defined as the set of its integer multiples. We
use the following notation:

(p) ≡ {mp|m ∈ Z} . (4)

An ideal generated by a single element is called a principal ideal. We can also
consider ideals generated by more than one element:

(a, b) ≡ {ma + nb|m, n ∈ Z} . (5)

Ideals of this kind can be multiplied, with (a, b)(c, d) = (ac, ad, bc, bd). With
these concepts in place, we can return to our earlier example. Suppose we wish to
factor, not the number 9, but the ideal (9). Then the factorization in equation 3 can be
further refined, by factoring principal ideals into ideals generated by two elements.
We have,

(9) = (3)× (3) = (2+√−5)× (2−√−5) = (3, 1+√−5)2(3, 1−√−5)2 (6)

This factorization is now unique: the ideals (3, 1+√−5) and (3, 1−√−5) are not
merely irreducible, but prime.

Taking into account some subtleties regarding the unit element, and a general-
ization to fractional ideals (both of which we will not discuss here), factorization
into prime ideals allowed for all remaining symbol letters in these integrals to
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be represented in terms of a truly multiplicatively independent basis. Writing the
symbol in this basis, we found that all roots that were expected to be spurious
cancel: the only surviving roots in each integral are those identified as “physically
meaningful”. Out of the original over 2000 symbol letters for each integral we find
both integrals can be expressed in a common basis of just 35 symbol letters, leading
to symbols that are 5216 and 5245 terms in length, three orders of magnitude smaller
than our initial results. Remarkably, we find that in the combination that these two
integrals appear in the physical amplitude the remaining algebraic letters actually
cancel, and only integer letters remain. This result was later confirmed via other
methods [37].

4 Parametric Square Roots: Elliptic and Beyond

Even with the methods of Sect. 2, some integrals are not linearly reducible. This
happens when partial-fractioning or fibration gives rise to an algebraic root in the
remaining integration variables that cannot be rationalized. As a square root of a
quadratic polynomial can always be rationalized by a rational change of variables,
the first nontrivial case involves cubic or quartic polynomials in a single variable.
These polynomials define elliptic curves, and there is a growing literature on the
Feynman integrals that contain them [38–60]. Via direct integration, we found that
the two-loop ten-particle N3MHV amplitude in planar N = 4 super Yang-Mills has
a supercomponent with this property: linear reducibility is obstructed by an elliptic
curve [15].

In other cases, linear reducibility is obstructed by an algebraic root in more than
one variable, for example

√
Q(x1, x2, . . .). There has been much less progress on

Feynman integrals of this kind, but what progress exists has focused on analyzing
the geometric properties of the algebraic varieties defined by these roots (for
example, by the equation y2 = Q(x1, x2, . . .)). In particular, the most productive
cases thus far have involved varieties that define Calabi-Yaus [1, 16, 18, 19, 60–70].

One way a variety may define a Calabi-Yau is if it can be embedded consistently
in a weighted projective space, such that the sum of the coordinate weights is equal
to the overall degree of the polynomial [71]. By “embedded consistently” we mean
that it must scale uniformly under weighted rescaling of the coordinates. In the
following subsections, we will describe several diagrams and classes of diagram
that give rise to varieties with this property under direct integration. These examples
will have a common structure: they can all be embedded in k-dimensional weighted
projective space WP

1,...,1,k (where all coordinate weights except one have weight 1,
and the remaining coordinate has weight k). The origin of this property will be clear
for the first class of diagrams we discuss, and more mysterious for the second.
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4.1 Scalar Marginal Integrals

For our first set of examples, we consider scalar diagrams, writing them in the well-
known Symanzik representation. For an L-loop Feynman diagram I with E internal
edges {ei} with masses mi in D dimensions, we write:

I = �(E − LD/2)
∫
xi≥0

[dE−1xi]U
E−(L+1)D/2

FE−LD/2 , (7)

where the graph polynomials U and F are defined by:

U ≡
∑

{T }∈T1

∏
ei /∈T

xi, F ≡
[ ∑
{T1,T2}∈T2

sT1

( ∏
ei /∈T1∪T2

xi

)]
+ U

∑
ei

xim
2
i . (8)

The U polynomial is a sum over spanning trees T1 of the graph, while the F

polynomial includes a sum over disconnected pairs of trees that together span the
graph (denoted T2). sT1 is the square of the sum of momenta flowing in to tree T1,
while [dE−1xi] denotes projective integration over the E variables {xi}.

There are two cases where this representation simplifies dramatically, making it
easier to probe its geometry. In the first, consider a case where E = LD/2. The
function �(E−LD/2) diverges in this case, but if there are no subdivergences then
the rest of the integral can be convergent in integer dimensions:

Ī =
∫
xi≥0

[dE−1xi] 1

UD/2
. (9)

Integrals of this form have no kinematic dependence, so they are simply numbers.
They are referred to in the mathematical literature as Feynman periods. These
diagrams give rise to Calabi-Yaus upon direct integration [1].

Next, consider a case where E = (L + 1)D/2. We considered cases of this
form in [18], this subsection reviews our discussion there. Here �(E − LD/2) =
�(D/2) is finite. Provided the integral is otherwise convergent we refer to this class
as marginally convergent, or “marginal”. In integer dimensions we find:

I = �(D/2)
∫
xi≥0

[dE−1xi] 1

FD/2 . (10)

Because of the kinematic dependence of F this is now not merely a number, but a
function.

In two dimensions, scalar marginal integrals consist of the comparatively well-
studied higher-loop sunrise diagrams [60, 61, 63–65, 68–70]. In higher dimensions
there are many more such diagrams.

All marginal integrals share common features, which ensure that if linear
reducibility is obstructed the obstruction will define a Calabi-Yau. The Symanzik
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representation of these integrals depends on only the F polynomial. This polynomial
is homogeneous and has degree L + 1, so the denominator in the Symanzik
representation FD/2 has degree (L + 1)D/2 = E, the same as the number of
variables. Direct integration preserves this property: each integration will decrease
the number of variables and the overall degree of the denominator by one. If at some
stage partial-fractioning introduces a square root of a polynomial in the remaining
m integration parameters

√
Q(xi), the polynomial Q(xi) will be homogeneous and

have overall degree 2m. The equation y2 = Q(xi) defines a variety. By assigning
weight m to y and weight 1 to each of the xi we may consistently embed this variety
in a weighted projective space. A quick count shows that the sum of these coordinate
weights is equal to the degree of our variety, showing that all such varieties will
define Calabi-Yaus.

Specializing to graphs with massless particles in four dimensions, we can further
prove a bound on the dimension of these spaces. Starting once again with the
Symanzik representation,

I =
∫
xi≥0

[d2L+1xi] 1

F2 , (11)

as F is linear in each variable when all propagators are massless we can integrate in
any variable. Integrating in xj and writing F = F

(j)

0 + xjF
(j)

1 , we obtain

I =
∫
xi≥0

[d2Lxi] 1

F
(j)

0 F
(j)

1

. (12)

Each of F(j)

0 and F
(j)

1 is separately linear in each remaining integration variable, so

we can once again integrate in any remaining xk . Writing F
(j)
i = F

(j,k)

i,0 + xkF
(j,k)

i,1 ,
we have

I =
∫
xi≥0

[d2L−1xi]
log
(
F
(j,k)

0,0 F
(j,k)

1,1

)
− log

(
F
(j,k)

0,1 F
(j,k)

1,0

)

F
(j,k)

0,0 F
(j,k)

1,1 − F
(j,k)

0,1 F
(j,k)

1,0

. (13)

The denominator of the integrand is now at most quadratic in each variable, while
the arguments of the logs are products of polynomials which are linear in each
variable. We are thus able to integrate once more, but this time potentially at a cost
of introducing a square root of a polynomial in the remaining 2L−1 variables. If this
polynomial is irreducibly quartic or cubic in each remaining integration parameter
then the root cannot be rationalized by a rational change of variables. This is thus
the first integration step at which direct integration can potentially be obstructed, in
cases when there is no integration order that avoids an irreducibly quartic or cubic
root. As such, the varieties that characterize this obstruction represent the highest-
dimension Calabi-Yaus that can occur for this class of diagrams, demonstrating that
Calabi-Yau dimension is bounded with loop order, at a maximum of 2L− 2.
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Fig. 1 The tardigrade
diagrams, defined at even
loops

Fig. 2 The paramecium
diagrams, defined at odd
loops

Fig. 3 The amoeba
diagrams, defined at odd
loops ≥ 5

It turns out that this bound is saturated. There are Feynman diagrams at each loop
order for which every integration order is obstructed, and the obstruction defines a
Calabi-Yau of dimension 2L − 2. We characterize three infinite families of such
diagrams. For even loops we find what we refer to as the tardigrade diagrams,
depicted in Fig. 1. For odd loops we find two infinite families, which we refer
to as paramecia and amoebas, depicted in Figs. 2 and 3 respectively. The amoeba
diagrams are not maximally obstructed in this fashion at three loops, but otherwise
saturate the bound at each higher order.

We have investigated a broader set of marginal diagrams in four dimensions. We
find as the loop order increases, the majority of diagrams have maximal dimension
obstructions of this kind.

4.2 More General Examples

The previous argument clarifies why Calabi-Yaus appear during direct integration of
marginal diagrams. We have also found several examples of non-marginal diagrams
that also give rise to Calabi-Yaus.

In each case discussed here, our starting point will be a 2L-fold integral over a
rational function. While such a representation is easy to obtain from the Symanzik
form for marginal integrals (see Eq. (12) where this is manifest), for non-marginal
integrals it is easier to find these representations via loop-by-loop parametrization
(see Sect. 2.1). Heuristically, we believe that starting with a 2L-fold will ensure that
no integration is in any sense spurious, in analogy with the polylogarithmic case of
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transcendental weight 2L at L loops. In particular, since the integrals we consider
occur in planar N = 4 super Yang-Mills we expect uniform transcendentality: the
integral should require exactly 2L parameters to express the integrand rationally,
and no fewer.

The marginal integrals which were maximally obstructed manifested their
obstructions after three integrations, at which point their integrand contained a
dilogarithm. The integrals considered here will typically be less obstructed than
this, involving Calabi-Yaus of dimension lower than 2L − 2 at L loops. As such,
it is in many cases quite cumbersome to perform a full direct integration up to the
point it becomes obstructed, particularly for the higher-loop cases. As a proxy for
this integration we instead typically took maximal codimension residues, which
in rough terms probes whether the integrands can be iteratively partial-fractioned
in the integration variables, but may not be sensitive to whether the resulting
polylogarithms can at each stage be written in an appropriate fibration basis.

The first non-marginal diagrams which we found to give rise to Calabi-Yaus
were the traintrack diagrams, higher-loop analogues to the elliptic double-box [16].
Depicted in Fig. 4, these diagrams, much like the higher-loop sunrise diagrams,
increase in Calabi-Yau dimension at each loop order, with dimension L − 1 at L
loops. In [19] we showed that the Calabi-Yau arising from the three-loop traintrack
can be written, much like the marginal integrals, as a variety embedded in WP

1,...,1,k

(where there k = 3). Later, [72] analyzed the leading singularity structure of these
integrals to all orders in twistor space, finding Calabi-Yau geometry at each order.

The three-loop wheel diagram (depicted in Fig. 5) was also analyzed in [19], and
gives rise to a variety which can be embedded in WP

1,1,1,1,4, corresponding to a
Calabi-Yau threefold. In this case the embedding is slightly more subtle to derive,
involving a deprojectivization and a particular choice of reprojectivization.

Fig. 4 The traintrack
diagrams. These diagrams are
planar, and we label here their
dual coordinates

Fig. 5 The three-loop wheel
diagram. This diagram is
planar, and we label here its
dual coordinates
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There thus appears to be a common structure in each Calabi-Yau that has been
observed in a Feynman diagram in the literature: all cases can be described with
varieties embedded in WP

1,...,1,k . In [19] we went into some detail analyzing the
properties of a generic Calabi-Yau defined in this space, including Hodge numbers
and Euler characteristics. It is an open question whether this structure is universal,
and if so what it can teach us about these diagrams.

5 Conclusions

We reviewed a variety of applications of direct hyperlogarithmic integration in the
context of multi-leg scattering amplitudes. We presented tricks that allow one to
avoid certain obstructions, but we also highlighted the structure of the obstructions
that remain once these tricks are employed: obstructions which in a surprisingly
varied set of cases define Calabi-Yaus.

It would be extremely interesting to go beyond the tips and tricks discussed here,
and find a systematic algorithm that can find a hyperlogarithmic expression for any
Feynman integral for which such an expression exists. One possibility is that such a
method might arise from a motivic understanding of these integrals [73].

Along related lines, it will be important to understand which aspects of the
Calabi-Yau geometries characterized in this work are universal, and which are
specific to particular representations. The results of [72] suggest that such common
features exist, but it still may be the case that one can express a single integral
with multiple geometries (see for example the role of isogeny in [58]), or that the
obstructions found here need to be augmented with other information for a full
characterization.

Finally, it is worth investigating under what conditions Calabi-Yaus can arise
from Feynman integrals. As the work reviewed here shows, they are more common
than one might naively assume.
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A Geometrical Framework
for Amplitude Recursions: Bridging
Between Trees and Loops

Johannes Broedel and André Kaderli

Abstract Various methods for the recursive evaluation of scattering amplitudes
in quantum field theory and string theory have been put forward during the last
couple of years. In these proceedings we describe a geometrical framework, which
is believed to be capable of treating many of these recursions in a unified way.
Our recursive framework is based on manipulating iterated integrals on Riemann
surfaces with boundaries. A geometric parameter appears as variable of a differential
equation of KZ or KZB type. The parameter interpolates between two associated
regularized boundary values, which contain iterated integrals closely related to
scattering amplitudes defined on two different geometries.

1 Introduction

The calculation of scattering amplitudes in perturbative quantum field theories relies
on the evaluation of Feynman integrals associated to Feynman graphs, which in turn
are a combinatorial representation of Feynmann’s path integral formalism. A typical
Feynman integral associated to an �-loop process reads

(μ2)ν−
�D
2

∫ �∏
r=1

dDkr

iπD/2

n∏
j=1

1

(−qj 2 +m2
j )

νj
, ν =

n∑
j=1

νj . (1)

where ki are the loop momenta, qj and mj label the momenta and masses along the
n (internal and external) propagators. The quantity D is the (spacetime) dimension
and the integral shall usually be evaluated in four dimensions.

From the Feynman formalism, a multitude of different types of integrals can arise
[1–3]. A first step towards treating the integrals in a uniform way is to introduce
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Feynman parameters xi , which amounts to a clever substitution of the momentum
integrations in the Feynman integral (1). Leaving out a constant prefactor, one
obtains an integral of the following type:

∫
xj≥0

δ
(
1−

n∑
j=1

xj
)( n∏

j=1

dxj

)
I(x1, . . . , xn,D) . (2)

Integration is constrained to a simplex by the condition xj ≥ 0 and the δ

distribution. Every simplex, however, can be parametrized iteratively. Consequently,
each Feynman integral can be rewritten as a linear combination of iterated integrals.

The type of iterated integral, on the other hand, is determined by the differential
form I, which shall to be integrated over. This differential form can have singulari-
ties in the Feynman parameters. The singularity structure can be explored by writing
the integrand as

I(x1, . . . , xn) = N
D

(3)

where the integrand becomes singular, whenever the denominator polynomial D
has a zero.1 The zero locus of this polynomial defines an algebraic curve, which can
be taken as starting point for the definition of suitable differentials incorporating
the symmetries of the Feynman diagram. From those differentials, one can then
build iterated integrals. Once the differential forms and associated iterated integrals
are known, it is usually possible to write down a differential equation for a set of
master integrals. The resulting (matrix) equation should hopefully be translatable
into typical differential equations for a set of master integrals as used heavily in
modern Feynman as well as string-theoretic calculations [4–9].

While this mathematical account sounds very straightforward, it is peppered
with practical difficulties: identification of suitable differential forms—that is, a
cohomology—for a given algebraic curve is for example possible only for the
simplest Feynman graphs.

Therefore, in these proceedings, we will take the two simplest algebraic curves,
Riemann surfaces with boundary of genus zero and genus one, as examples. The
corresponding differential forms generate iterated integrals, which are polylog-
arithms (genus zero) or elliptic analogues thereof (genus one). Whereas actual
Feynman integrals might imply more complicated differential forms, almost all final
results turn out to be expressible in terms of these simple iterated integrals and
special values thereof: multiple zeta values (MZVs) and elliptic multiple zeta values
(eMZVs). The only structural ingredient we need to add is an extra parameter, with
respect to which a differential equation governing the recursion is established. For
Feynman integrals, this would be an additional Feynman parameter, while for string

1The polynomials N and D are very closely related to the Symanzik polynomials.
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configuration-space integrals the parameter describes an additional vertex insertion
point.

So the recursive algorithms discussed in these proceedings are to be seen as
prototypes for more complicated recursions. They are simple and thus mathe-
matically very clean: they turn out to precisely describe recursions for ampli-
tudes in open string theory at tree level (genus zero) and one-loop level (genus
one).

While Feynman integrals have to be regularized case-by-case (which is usually
done with dimensional regularization), for the classes of iterated integrals con-
sidered in these proceedings a standard way of regularization is available. Thus,
one will not have to find a suitable regularization for each Feynman integral
separately, but can rather rely on a general regularization scheme for all integrals
occurring.

Pursuing this line of thoughts further, result for a scattering amplitude evaluated
in the Feynman formalism is usually provided as loop expansion in the parameter
� and as expansion in the parameter ε of dimensional regularization. On the
other hand, string scattering amplitudes defined as iterated integrals on Riemann
surfaces are result in a genus expansion (parameter g) and an expansion in α′, the
inverse string tension. This suggestive correspondence might be substantiated by
understanding “stringyness” once again as a simple regulating mechanism, which
after all is a very old idea.

The whole subject is comparably involved algebraically, that is, there is a price to
pay for the formalization. As a reward, the formalism is applicable to many different
situations and is expected to lead to recursion relations for various types of iterated
integrals and thus scattering amplitudes during the next couple of years.

2 Genus Zero

2.1 Iterated Integrals and Multiple Zeta Values

Let us review the most straightforward implementation of polylogarithms on a
genus-zero Riemann surface. Consider the one-form2

ωa = dx

x − a
, x, a ∈ R (4)

2For simplicity, we consider real integration paths here exclusively. More general quantities a, for
example complex functions of complex parameters, will lead to the hyperlogarithms discussed in
Erik Panzer’s talk.
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and define iterated integrals [10]

G(a1, . . . ., ar ; x) =
∫ x

0

dt

t − a1
G(a2, . . . , ar ; t) =

∫ z

0
ωar · · ·ωa1 , G(; z) = 1 ,

(5)

where a1 �= z and ar �= 0. Given the iterated structure above, the integrals are
subject to shuffle relations:

G(a1, a2, . . . , aj ; x)G(b1, b2, . . . , bk; x)
= G

(
(a1, a2, . . . , aj ) (b1, b2, . . . , bk); x

)
(6)

and the differential forms in Eq. (4) imply that different integrands in Eq. (5) are
related by partial fraction:

1

xi − xk

1

xj − xk
= 1

xi − xj

1

xj − xk
+ 1

xj − xi

1

xi − xk
. (7)

If the case ar = 0 was allowed, the integrals G(a1, . . . , ar ; x) would not be well-
defined, since they would diverge due to the simple pole at the lower integration
boundary. This can be regularized by the convention

G(0, . . . , 0︸ ︷︷ ︸
n

; x) = logn x

n! , (8)

such that integrals G(a1, . . . , ar ; x) associated to arbitrary labels a1, . . . , ar �= x,
including ar = 0, can be defined as follows: the shuffle identity (6) is used
to formally write and define the (a priori ill-defined) integral G(a1, . . . , ar ; x)
as an expansion in the well-defined integrals Eq. (5) and powers of logarithms
G(0, . . . , 0; x). This regularization scheme is called shuffle regularization
and is compatible with (e.g. it preserves) the shuffle product. The integrals
G(a1, . . . , ar ; z) are called multiple polylogarithms (MPLs).

For the purpose of exploring open-string amplitudes at tree level, it is sufficient
to confine ourselves to labels ai ∈ {0, 1}. Choosing x = 1 leads to representation of
multiple zeta values (MZVs) in terms of iterated integrals:

ζ (n1, . . . , nr ) = (−1)rG(0 . . . 01︸ ︷︷ ︸
nr

. . . 0 . . . 01︸ ︷︷ ︸
n1

; 1)

= (−1)r
∫ 1

0
ω1ω

n1−1
0 ω1ω

n2−1
0 . . . ωrω

nr−1
0

=
∑

1≤k1<···<kr

1

k
n1
1 . . . k

nr
r

, (9)
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for nr > 1. As before, this definition can be extended to arbitrary labels
n1, . . . , nr ≥ 1 and integrals G(a1, . . . , ar ; 1) with a1 = 1, respectively, by a shuffle
regularization with the conventions

ζ (1) = −G(1, 1) = 0 as well as G(0; 1) = log 1 = 0 . (10)

Multiple zeta values inherit shuffle relations from the polylogarithms; in addition
there are the shuffle relations (best palpable in the sum representation in the last
line of (9)). After considering all relations, a basis of MZVs at each conjectured
transcendentality can be chosen, the mathematically most beautiful being the
Hoffman basis [11].

2.2 Selberg Integrals and Open-String Configuration-Space
Integrals

Selberg integrals serve as generating series for the iterated integrals introduced in the
previous subsection. At the same time they contain the configuration-space integrals
appearing in open-string tree-level amplitudes. The full scattering amplitude in
open superstring theories at tree level can be calculated as correlation function
of vertex operators inserted on the boundary of a genus-zero Riemann surface.
Upon evaluation, those correlators separate into a polarization part (which can be
calculated straightforwardly) and the so-called configuration-space integrals [12–
14]. The best known example is the four-point Veneziano amplitude [15], which
reads

∫ 1

0
dx3 x

s13
3 (1− x3)

s23
s13

x3
= �(1+ s13)�(1+ s23)

�(1+ s13 + s23)
. (11)

The complex parameters

si1...ir = α′(ki1 + . . .+ kir )
2 (12)

are Mandelstam variables built from the momenta of the external particles. In these
proceedings, these variables shall be assumed to be chosen such that all integrals
considered are convergent [16, 17]. In contrast to the usual Mandelstam variables, a
parameter α′ is supplemented here, which serves as counting parameter and will be
identified with the inverse string tension only later on.

The N -point configuration-space integrals in genus-zero open-string amplitudes
are examples of Selberg integrals [18], which can be constructed as follows:
consider the (L+1)-punctured Riemann sphere with fixed points

(x1, x2, xL+1) = (0, 1,∞) . (13)
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Writing

xij = xi,j = xi − xj , (14)

the corresponding Selberg integrals are iteratively defined by

S[ik+1, . . . , iL](x1, . . . , xk) =
∫ xk

0

dxk+1

xk+1,ik+1

S[ik+2, . . . , iL](x1, . . . , xk+1) ,

(15)

and the empty Selberg integral (or Selberg seed) is defined as3

S[](x1, . . . , xL) =
∏

0≤xi<xj≤1

|xij |sij . (16)

Definition (15) presumes that the so-called admissibility condition

1 ≤ ip < p ∀p ∈ {k + 1, . . . , L} (17)

is met. The integral in Eq. (15) is referred to as of type (k, L+1). It is, for fixed sij ,
defined on M0,k+1. Accordingly, these integrals form a basis of the twisted de Rham
cohomology of the configuration space of (L+1)-punctured Riemann spheres with
k + 1 fixed punctures with respect to the pull-back of the connection d + d log S
[19]. Integrals with at least one label ip = 1 may be reduced to this basis using
integration by parts and partial fractioning.

2.3 Recursion for Open-String Amplitudes at Genus Zero

Aomoto [19] and Terasoma [20] showed that Selberg integrals of type (2, L) can be
obtained algebraically from those of type (2, L−1): one starts from a basis vector
S(x3) for Selberg integrals of type (3, L+1), which contain an auxiliary point x3
in contrast to the integrals of type (2, L) and (2, L−1), respectively. Taking the
derivative with respect to x3 leads to an equation of Knizhnik–Zamolodchikov (KZ)
type [21]

d

dx3
S(x3) =

( e0

x3
+ e1

x3 − 1

)
S(x3) , (18)

3We use the notation
∏

xa≤xi<xj≤xb =
∏

i,j∈{1,2,...,L}: xa≤xi<xj≤xb .
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where the (braid) matrices e0 and e1 have entries which are homogeneous polyno-
mials of degree one in the parameters sij . The regularized boundary values

C0 = lim
x3→0

x−e0 S(x3) , C1 = lim
x3→1

(1− x3)
−e1 S(x3) . (19)

of the differential equation (18) are Selberg integrals of type (2, L− 1) and (2, L),
respectively. They can be shown to be related by the Drinfeld associator [22, 23]

C1 = �(e0, e1) C0, (20)

which is the generating series of multiple zeta values [24],

�(e0, e1) =
∑
w≥0

∑
k1,...,kw≥1

e
kw−1
0 e1 . . . e

k2−1
0 e1e

k1−1
0 e1ζ(k1, k2, . . . , kw)

= 1− ζ(2)[e0, e1] − ζ(3) ([e0, [e0, e1]] − [[e0, e1], e1])+ . . . . (21)

What makes this construction useful for physicists is the fact that the (N−1)-
point and the N -point configuration-space integrals at genus zero can be identified
(upon proper assignment of the Mandelstam variables) as linear combinations of
the components of C0 and C1 respectively, where N=L. This relationship has
been used to derive a recursive construction for all configuration-space integrals
on genus zero: it provides an analogue of the Parke–Taylor formula [25] for
string theory [26, 27]. The precise relation of the above formalism to open-
string configuration-space integrals at genus zero has been discussed thoroughly
in ref. [28] (Fig. 1).

0

τ τ + 1

1

Im(z)

Re(z)

Fig. 1 The torus and its fundamental domain. The ratio of the lengths ωB and ωA of the B- and
A-cycle respectively yields the modular parameter: τ = ωB/ωA
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3 Genus One

3.1 Iterated Integrals at Genus One and Elliptic Multiple Zeta
Values

While there is a large collection of literature [29–31] on how to define homotopy-
invariant integrals on an elliptic curve (or torus), we are going to focus here
on what is one of the simplest approaches and simultaneously the best fit for a
canonical generalization of the iterated integrals on a genus-zero surface introduced
in Eq. (5). We will parametrize the elliptic curve by the modular parameter τ (or
its exponentiated version q = exp(2πiτ)) and name the red and blue boundaries
of the fundamental domain A- and B-cycle respectively. An (infinite) set of
differential forms on the elliptic curve can be defined starting from the Kronecker
series

F(z, η, τ ) = θ ′1(0, τ )θ1(z+ η, τ)

θ1(z, τ ) θ1(η, τ )
, (22)

where θ1 is the odd Jacobi function and the tick denotes a derivative with respect
to the first argument. The Kronecker series is symmetric in z and η, but only
quasiperiodic in the variable z:

F(z+ 1, η, τ ) = F(z, η, τ ), F (z+ τ, η, τ ) = e−2πiηF (z, η, τ ) . (23)

In addition, Fay’s trisecant equation [32] implies the Fay identity

F(z1, η1, τ )F (z2, η2, τ )

= F(z1, η1 + η2, τ )F (z2 − z1, η2, τ )+ F(z2, η1 + η2, τ )F (z1 − z2, η1, τ ) .

(24)

Expanding the Kronecker form in the second argument, one obtains an infinite set
of differential forms

ηF(z, η, τ )dz =
∞∑
n=0

g(n)(z, τ ) ηndz, (25)

satisfying

g(n)(−z, τ )dz = (−1)ng(n)(z, τ )dz. (26)
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They are only quasi-periodic

g(n)(z+ 1, τ ) = g(n)(z, τ ) (27a)

g(1)(z+ τ, τ ) = g(1)(z, τ )− 2πi (27b)

g(2)(z+ τ, τ ) = g(2)(z, τ )− 2πig(1)(z, τ )− 1
2 (2πi)

2 (27c)

...

and satisfy the (expanded) form of Fay relations:

g(n1)(t − z, τ )g(n2)(t, τ ) = −(−1)n1g(n1+n2)(z, τ )

+
n2∑
j=0

(
n1 − 1+ j

j

)
g(n2−j)(z, τ )g(n1+j)(t − z, τ )

+
n1∑
j=0

(
n2 − 1+ j

j

)
(−1)n1+j g(n1−j)(z, τ )g(n2+j)(t, τ ).

(28)

Taking the differential forms g(n)(z, τ ) as starting point, one defines the following
iterated integrals:

�̃
(
n1, n2, ..., nr
a1, a2, ..., ar ; z, τ

) =
∫ z

0
dz′ g(n1)(z′ − a1, τ )�̃

(
n2, ..., nr
a2, ..., ar ; z, τ

)
, (29)

for (n1, a1) �= (1, z) and (nr , ar ) �= (1, 0), which naturally obey shuffle relations

�̃(A1, A2, . . . , Aj ; z, τ )�̃(B1, B2, . . . , Bk; z, τ )
= �̃

(
(A1, A2, . . . , Aj ) (B1, B2, . . . , Bk); z, τ

)
(30)

in terms of the combined letters Ai = ni
ai .

The function g(1) has a simple pole at zero: it thus qualifies as genus-one
generalization of 1

z
at genus zero. The integral over g(1) will be of particular

interest below: it is the (A-cycle) generalization of the natural logarithm. Similar
to the prescription in Eq. (8), the integral �̃

(
1
0 ; z, τ

)
is a priori not well-defined

and requires regularization because it exhibits an endpoint divergence at the lower
integration boundary. Throughout the article, we are going to employ tangential
basepoint regularization [33, 34]. In short, this amounts to subtracting the endpoint
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divergence by defining4

�̃( 1
0 ; z, τ ) = lim

ε→0

∫ z

ε

dz g(1)(z, τ )+ log(1− e2πiε)

= log(1− e2πiz)− πiz+ 4π
∑
k,l>0

1

2πk
(1− cos(2πkz)) qkl . (31)

In particular, when placing the branch cut of the logarithm such that log(−1) = πi,
one finds the following asymptotic behavior for z → 0

�̃( 1
0 ; z, τ ) ∼ log(−2πiz) (32)

and z → 1

�̃( 1
0 ; z, τ ) ∼ log(−2πi(1− z)) . (33)

The remaining integrals �̃
(
n1, n2, ..., nr
a1, a2, ..., ar ; z, τ

)
with (nr , ar ) = (1, 0) are then

defined by shuffle regularization, similar to the genus-zero integrals from Eq. (5):
they are defined by the well-defined iterated integrals from Eq. (29), the shuffle
identity (30) and the regularized integral �̃( 1

0 ; z, τ ). This regularization procedure
is compatible with the shuffle product, i.e. an algebra homomorphism. For the
remainder of those proceedings, the τ -dependence will be mostly kept implicit for
all integration kernels g(n) and all iterated elliptic integrals �̃. The latter are called
elliptic multiple polylogarithms (eMPLs).

3.2 Elliptic Multiple Zeta Values

In the same way, as multiple zeta values can be represented as values of a special
class of MPLs at one, so-called A-cycle elliptic multiple zeta values (eMZVs) [35–
37] are defined as values of regularized eMPLs at one:

ω(n1, n2, . . . , nr ) = �̃
( nr , ..., n1

0, ..., 0 ; 1
)
, n1 �= 1. (34)

In order to extend the definition (34) to the cases n1 = 1, eMZVs need to be
further regularized in a shuffle-compatible way. While a thorough discussion of the
regularization procedure starting from the regulated integral in (31) can be found in
ref. [40], regularization of A-cycle eMZVs practically amounts to defining

ω(1) = 0 (35)

4The limit ε → 0 is assumed to be taken within the unit interval.
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and using shuffle relations (inherited from (30))

ω(n1, n2, . . . , nr )ω(k1, k2, . . . , ks) = ω
(
(n1, n2, . . . , nr ) (k1, k2, . . . , ks)

)
,

(36)
to identify and isolate all those contributions. Furthermore, (26) implies

ω(n1, n2, . . . , nr−1, nr ) = (−1)n1+n2+...+nr ω(nr , nr−1, . . . , n2, n1) . (37)

The two types of relations above by far do not exhaust all relations between elliptic
multiple zeta values; in particular does the Fay identity (28) imply many more
relations. A thorough discussion can be found in ref. [38] and a list of relations
on the associated website [39].

3.3 Generalized Selberg Integrals at Genus One

In order to investigate a genus-one analogue of the genus-zero recursive construction
in Sect. 2, we need a suitable analogue of genus-zero Selberg integrals (15): let
L ≥ 2, 0 = z1 < zL < . . . < z2 < 1 and τ the modular parameter of the torus
C/(Z+ τZ). Let the empty genus-one Selberg integral (or genus-one Selberg seed)
be

Sτ = Sτ
[ ]

(z1, . . . , zL) =
∏

0=z1≤zi<zj≤z2

exp
(
sij �̃j i

)
. (38)

where �̃j i = �̃( 1
0 ; zj − zi, τ ). Genus-one Selberg integrals of weight w =∑L

i=k+1 ni and type (k, L) are then defined recursively by

Sτ
[
nk+1, ..., nL
ik+1, ..., iL

]
(z1, . . . , zk)

=
∫ zk

0
dzk+1 g

(nk+1)

k+1,ik+1
Sτ
[
nk+2, ..., nL
ik+2, ..., iL

]
(z1, . . . , zk+1) . (39)

where we use the shorthand notation

g
(n)
ij = g

(n)
i,j = g(n)(zi − zj , τ ) . (40)

Moreover, the so-called admissibility condition 1 ≤ ip < p is required for all
p ∈ {k + 1, . . . , L}, which is the genus-one analogue of Eq. (17).
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To build a recursion following the structure of the genus-zero recursion reviewed
in Sect. 2.3, we need to find a suitable class of genus-one Selberg integrals: to
achieve this, we fix the symmetries of the torus by z1 = 0, supplement one
unintegrated auxiliary point z2, such that k = 2 punctures are fixed and integrate
over the remaining L − 2 punctures, but keep the number L of insertion points
variable. The resulting class of genus-one Selberg integrals reads

Sτ
[
n3, ..., nL
i3, ..., iL

]
(z1 = 0, z2) =

∫

0=z1<zL<zL−1<···<z2

L∏
i=3

dzi Sτ
L∏

k=3

g
(nk)
k,ik

. (41)

Again, we would like to identify a basis in the above class of integrals with
respect to integration by parts and partial fractioning. While there was only one
type of differential form in the genus-zero situation (which one could have assigned
weight one), we have an infinite number here: all combinations of n3, . . . , nL can
appear and for each of those combinations (almost) all admissible values can occur.
This combinatorial problem can be solved [40] and we collect all basis elements in
a vector Sτ

w(z2) of definite weight w and combine all those vectors into an infinitely
large vector:

Sτ (z2) =

⎛
⎜⎜⎜⎝

Sτ
0(z2)

Sτ
1(z2)

Sτ
2(z2)
...

⎞
⎟⎟⎟⎠ . (42)

The resulting vector Sτ (z2) is the analogue if the genus-zero Selberg vector S(x3),
which satisfies the KZ Eq. (18).

3.4 Selberg Recursion at Genus One

In this subsection, it will be argued that the derivative of the vector Sτ (z2) defined
in Eq. (42) with respect to the auxiliary point z2 can be written in the form

∂

∂z2
Sτ (z2) =

∑
n≥0

g
(n)
21 x(n)Sτ (z2) , (43)

where the non-vanishing entries of the matrices x(n) turn out to be homogeneous
polynomials of degree one in the parameters sij . The resulting system is of elliptic
KZB-type, whose solution will be described below.

Proving the above statement is elaborate and is spelt out in detail in ref. [40]. The
proof is constructive and relies on formal explicit evaluation of the derivative for
each entry of the vector Sτ (z2). Performing the derivative on the Selberg seed will
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bring down various terms of the form

∂

∂zi
Sτ =

∑
k �=i

sik g
(1)
ik Sτ , (44)

whereas all other derivatives can be rewritten using integration by parts as to act
on the Selberg seed exclusively. Thus one is left with Selberg integrals of definite
length containing products of functions g(n)ij . Organizing these products in so-called

chains (e.g. g
(n1)
ij g

(n2)
jk g

(n3)
kl ) allows to translate the application of Fay identities

into graphical operations. Employing the (graphical analogue of) Fay identities
algorithmically, one can show that in each of those integrands a factor g

(n)
21 can

be isolated. Pulling this factor out of the integral (as neither the point z1 or z2 are
integrated over) renders the remaining integral a basis integral, that is, a component
of the original vector Sτ (z2). Accordingly, the Mandelstam variables arising from
Eq. (44) can then be collected in the matrices x(n), yielding the closed system in
Eq. (43) [40].

What remains, is to solve Eq. (43). In the same way as this has been done for the
KZ-system in Sect. 2.3, one can solve the system by considering regularized bound-
ary values, which are related by the elliptic KZB associator [41, 42]. Regularized
boundary values for the KZB system in Eq. (43) are defined as

Cτ
1 = lim

z2→1
(−2πi(1−z2))

−x(1)Sτ (z2) and Cτ
0 = lim

z2→0
(−2πiz2)

−x(1)Sτ (z2) .

(45)

These two boundary values are related (see e.g. [40]) by the elliptic KZB associator
�(x(0), x(1), x(2), . . .) via

Cτ
1 = �(x(0), x(1), x(2), . . .)Cτ

0 , (46)

whereas the KZB associator is—in analogy to the KZ associator in Eq. (21)—a
generating series for A-cycle eMZVs:

�τ = 1+ x(0) − 2ζ(2)x(2)

+ 1

2
x(0)x(0) − (x(0)x(1) − x(1)x(0))ω(0, 1; τ)− ζ(2)(x(0)x(2) + x(2)x(0))

+ (x(1)x(2) − x(2)x(1)
)(
ω(0, 3; τ)− 2ζ(2)ω(0, 1; τ))+ 5ζ(4)x(2)x(2) + · · ·

(47)

Equation (46) is the main tool in the recursive construction at genus one. What
remains to be done before it can be applied, is the investigation of the boundary
values Cτ

0 and Cτ
1 pictured in Fig. 2. Careful evaluation of the boundary values

is beyond the scope of these proceedings, but is performed in detail in [40]. The
analysis relies on evaluating the matrix exponential in Eq. (45), and thus requires
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Fig. 2 Limits of the auxiliary point z2 correspond to approaching the point z1 = 0 ≡ 1—the
origin of the fundamental domain—along the real line from the left and from the right. While the
limit z2 → 1 describes a smooth merging of z2 with the point 1, in the limit z2 → 0 the other
points zi are squeezed in the vanishing interval close to zero

consideration of eigenspaces and eigenvalues of the braid matrix x(1). Furthermore,
when calculating results for Selberg integrals using Eq. (46), one has to limit the size
of the system: the infinitely long vector Sτ (z2) has to be cut to finite length, i.e. one
needs to consider entries up to a certain weight wmax only. The maximal weight,
in turn depends on the order in α′ the expansion of the Selberg integral shall be
calculated. Dependencies and the process of cutting the system to finite size is again
carefully examined in ref. [40], but will be used in the example in Sect. 3.5 below.

Similarly to the previous genus-zero section, the regularized boundary value
Cτ

1 can be shown to contain (L−1)-point configuration-space integrals at genus
one [37, 43–45] whereas Cτ

0 contains (L+1)-point configuration-space integrals
at genus zero. Accordingly, the N -point configuration-space integrals appearing
in open-string amplitudes at genus one can be calculated from the (N+2)-point
integrals at genus zero via Eq. (46), with N=L−1. This is going to be exemplified
in the next subsection.

3.5 Recursive Evaluation of Two-Point Open-String Integrals
at Genus One

The successful concept for the calculation of genus-zero string-integrals from
Selberg integrals, will be extended to genus one here. One-loop open-string
amplitudes are calculated on a genus-one Riemann surface with boundary. Setting
up the string correlation function, the problem can be divided in a polarization part
and configuration-space integrals. Omitting the (rather straightforward) polarization
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part, we will furthermore limit our attention to those configuration-space integrals
where points are inserted on one boundary only.

Instead of developing the full theory here, let us present the easiest nontrivial
example: the two-point case, which we would like to calculate to second order in α′.
The two-loop correction yields non-trivial results only, if the Mandelstam variables
sij are treated as independent parameters of the integrals, which do not satisfy any
constraints like momentum conservation.

The two-point configuration-space integral reads [45]

S
1-loop
2-point(s̃13) =

∫ 1

0
dz3 exp

(
s̃13�̃31

)
=
∑
n≥0

s̃n13 ω(1, . . . , 1︸ ︷︷ ︸
n

, 0) , (48)

where the Mandelstam variable s̃13 is associated to the loop momentum. Requiring
two vertex insertion, the appropriate genus-one Selberg integral with an extra
insertion point z2 has length L = 3 and the insertion points on the cylinder boundary
are ordered as

0 = z1 < z3 < z2 < 1 ≡ z1 mod Z . (49)

In the limit z2 → 1, the punctures z2 and z1 merge, leaving us with two punctures
for the one-loop string corrections. Accordingly, we are advised to consider the
integrals

Sτ
[
n3
i3

]
(0, z2) =

∫ z2

0
dz3 Sτ g

(n3)
3i3

, 1 ≤ i3 < 3 ,

Sτ = exp
(
s13�̃31 + s12�̃21 + s23�̃23

)
. (50)

In the same way as the components of the vector Sτ (z2) are ordered by weight,
so are the vectors Cτ

1 and Cτ
0. While the two-point one-loop correction is contained

in the weight-zero entry, the tree-level correction can be found in the weight-one
component. Sorting out the details, the goal of calculating up to second order in α′
implies maximal weight two in the KZB system.

At this point, we would like to refer the reader to ref. [40] for (actually a lot of)
careful derivation and write down the explicit two-point realization of Eq. (46) right
away:

⎛
⎜⎜⎜⎝
S

1-loop
2-point(s̃13)

∗
∗
∗

⎞
⎟⎟⎟⎠+ O

(
(α′)3

)
= �τ

3(x
(n)
≤2 )

⎛
⎜⎜⎜⎝

0
1
s13

�(1+s13)�(1+s23)
�(1+s13+s23)

0
0

⎞
⎟⎟⎟⎠ , (51)

where s̃13 = s13 + s23 and only a finite part of the associator (cf. Eq. (47)) has to be
determined. As indicated by the subscript of the associator in Eq. (51), to calculate
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the one-loop configuration-space integral up to the second order in α′, products of
at most three (cut) matrices x(n) have to be included, which are given by:

x
(0)
≤2 =

⎛
⎜⎜⎝

0 s13 0 0
0 0 −s23 −s23

0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , x

(1)
≤2 =

⎛
⎜⎜⎝
s12 0 0 0
0 s123 0 0
0 0 s12 + s23 −s23

0 0 −s13 s12 + s13

⎞
⎟⎟⎠ (52)

and

x
(2)
≤2 =

⎛
⎜⎜⎝

0 0 0 0
−s23 0 0 0

0 s13 0 0
0 s13 0 0

⎞
⎟⎟⎠ . (53)

Putting everything together, the relevant subpart of the matrix Eq. (51) reads

S
1-loop
2-point(s̃13)+ O

(
(α′)3

)

= �τ
3

(
x
(n)
≤2

)
0,1

1

s13

�(1+ s13)�(1+ s23)

�(1+ s13 + s23)

= 1+ (s13 + s23)ω(1, 0)+ (s13 + s23)
2ω(1, 1, 0)+ O

(
(α′)3

)
,

(54)

where the subindex on the associator � specifies the appropriate matrix component.
Nicely enough, this reproduces indeed the two-point one-loop string correction
S

1-loop
2-point(s̃13) given in Eq. (48) with the effective Mandelstam variable s̃13 = s13+s23

up to second order in α′.

3.6 Geometric Interpretation

What is the geometric meaning of the two limits z2 → 0 and z2 → 1 in the genus-
one case? The latter limit has an easy explanation: the merging of the point z2 with
the point 0 ≡ 1 happens in exactly the right way as to yield a finite result from two
competing processes: the regularization of the boundary value and the behavior of
the function �̃ for z2 close to one. The resulting geometry is just the same as one
has been starting with: just a point less. More involved is the other limit: when z2
tends to zero, all other insertion points z3 to zL are squeezed in the (infinitesimal)
interval (0, z2). Effectively, this limit amounts to shortening the elliptic A-cycle:
this implies that the modular parameter τ , which is the ratio of the lengths of B-
and A-cycle becomes very large (cf. Fig. 1). Simultaneously, as can be justified by
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Fig. 3 Step by step morphing of the Riemann sphere to the torus by joining infinitesimal circles
at north- and south pole. The reverse process is modeled by the limit τ → i∞

an integral transformation [40], from the perspective of the Riemann sphere the red
line (which used to be the A-cycle before) becomes infinitely long, resulting in half
a great circle (the positive real axis) on the Riemann sphere (see Fig. 3).

4 General Framework and Outlook

4.1 What Does It Need for a General Recursion?

The two recursive algorithms reviewed above have several structural commonalities,
however, are rather different when considering limits of the respective associated
differential equations.

In both formalisms, an algebraic variety is taken as starting point and an
integrable connection is associated. This connection is built from differential
forms with at most simple poles, thus leading to logarithmic singularities after
iterated integration. The differential forms incorporate the periodicities/cycles of the
algebraic variety in question. Symmetries of the variety, for example the choice of
origin, are implemented by fixing a couple of positions in the Selberg integral, which
simultaneously singles out a canonical path for the integration using homotopy
invariance.

In a next step, a differential equation with respect to an auxiliary point shall be
established. For simplicity, let us assume the iterated integration to happen in the
interval [0, 1], which is divided by several insertion points. (This is the case for both
recursions discussed above.) In both scenarios, the auxiliary point is placed between
the largest insertion point and one.
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Once the auxiliary point, which is a parameter not to be integrated over, has been
supplemented in a set of integrals, one can now identify a basis set of integrals and
determine the derivative. It is not yet clear, what a necessary or sufficient condition
for closure of this system of differential equations is: in the two scenarios above we
have just been lucky (or standard enough).

To this end, one shall consider the boundary values. In an intricate interplay
between regularization of the integrals, the regularization of the boundary values
one can relate iterated integrals without auxiliary point featuring different numbers
of insertion points and thus integrations.

While all of the above considerations have been fairly general, the geometric
interpretation finally depends on the particular surface in question, on particular
on its cycles. The geometric picture incorporated by taking the two limits of the
differential equation in the genus-one case are discussed in Sect. 3.6 above.

While there are several further examples, where a similar approach has been
successful, let us here mention the recent calculation of the maximal cut of multiloop
banana amplitudes in refs. [46, 47]. The ingredients here are very similar: there is
a (slightly more complicated) algebraic variety: a Calabi-Yau manifold, a Picard-
Fuchs type differential equation (this time without auxiliary point), a basis set of
integrals determined from the cohomology of the Calabi-Yau manifold. As turns out,
the ideal of this Picard-Fuchs is a Gelfand–Kapranov–Zelevinsky(GKZ)-system,
which delivers the desired result.

A final remark is in place here: Feynman integrals are associated to graphs
with edges, while string amplitudes are expressed as correlation functions on two-
dimensional worldsheets. Considering the results, however, there is always a way
to replace the Feynman expression with a set of iterated integrals naturally defined
on a Riemann surface. Even more: when taking (dimensional) regularization into
account, the result of calculating a particular scattering process using the Feynman
formalism will be a double expansion: the topological expansion in the number of
loops � and the expansion in the parameter ε of dimensional regularization. On the
contrary, evaluating a string correlator in order to model string scattering, the result
will be again a double-expansion: the topological expansion parametrized by the
string coupling gS and the expansion in the inverse string tension α′. It remains to
be explored throughout the next years, whether those two double expansions can
be related. Clearly, individual Feynman diagrams lead to divergent integrals, whose
divergences cancel in the final, physical result only. This not being the case for string
amplitudes points into the direction of a singular transformation. However, the idea
of interpreting/identifying “stringyness” simply as a regulating mechanism, which
comes across very naturally, is rather appealing.
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Differential Galois Theory and
Integration

Thomas Dreyfus and Jacques-Arthur Weil

Abstract In this chapter, we present methods to simplify reducible linear dif-
ferential systems before solving. Classical integrals appear naturally as solutions
of such systems. We will illustrate the methods developed in Dreyfus and Weil
(Computing the Lie algebra of the differential Galois group: The reducible case,
ArXiv 1904.07925 2019) on several examples to reduce the differential system. This
will give information on potential algebraic relations between integrals.

Keywords Ordinary differential equations · Differential Galois theory ·
Computer algebra · Integrals · Lie algebras · D-finite functions

1 Introduction

In this chapter, we will review properties of block triangular linear differential
systems and their use to compute properties of integrals.

Let k = C(x) and A ∈ Mat(n,k). We will study the corresponding linear
differential system [A] : ∂xY = AY . More generally, we might consider linear
differential systems over a differential field (k, ∂) of characteristic zero, that is a
field k equipped with an additive morphism ∂ satisfying the Leibniz rule ∂(ab) =
a∂(b)+ ∂(a)b.

The Galois theory of linear differential equations aims at understanding what are
the algebraic relations between the solutions of [A]. We attach to [A] a group that
measures the relations. The computation of this differential Galois group is a hard
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task in full generality. The goal of this chapter is to illustrate on examples the method
described in [1] that focuses on the reduction of block-triangular linear differential
systems. This approach is powerful enough to understand the desired relations on
the solutions.

Given an invertible matrix P ∈ GL(n,k), the linear change of variables Y = PZ

produces a new differential system denoted Z′ = P [A]Z where

P [A] := P−1AP − P−1P ′.

Two linear differential systems [A] and [B] are called (gauge) equivalent over k if
there exists a gauge transformation, an invertible matrix P ∈ GL(n,k), such that
B = P [A]. A linear differential system is called reducible (over k) when it is gauge
equivalent to a linear differential system in block triangular form:

[A] : ∂Y = AY, with A =
(
A1 0
S A2

)
∈ Mat(k). (1)

It turns out that computing properties of integrals of D-finite functions1 or of
some types of iterated integrals may be reduced to computing solutions of such
reducible linear differential systems. Computing the differential Galois groups of
block triangular systems gives, in turn, information on properties of their solutions.
This idea was promoted by Bertrand [2] or Berman and Singer [3] who showed how
to compute Galois groups of some reducible systems and how this would reveal
algebraic properties of integrals.

Our aim, in this chapter, is to show how to compute such algebraic properties.
The underlying theory is developed in [1] and [4]; general references for differential
Galois theory are for example [5–7]; general references for constructive theory of
reduced forms of differential systems are [8–12]. We will rely on many examples
rather than on cumbersome theory and provide references for interested readers.
For example, we will consider the dilogarithm function Li2 defined by Li′2(x) =
− ln(1−x)

x
and our 4-dimensional example (in the next sections) will provide a simple

algorithmic proof that it is not only transcendent but algebraically independent of
ex, ln(x) and ln(1−x); the proof will only use rational solutions of linear first order
differential equations.

The chapter is organized as follows. We begin by some examples to illustrate
what the method will provide. Then we give a review of differential Galois theory
and reduced forms of differential systems. We finish by explaining the strategy of [1]
on two examples that are chosen so that almost all calculations can be reproduced
easily.

1A function is D-finite when its is a solution of a linear differential equations with coefficients in
k.
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2 Examples

2.1 A First Toy Example

We consider two confluent Heun2 functions

f1(x) = exp

(√
3

12
x

)
HeunC

(√
3

6
,−1

3
,−1

3
,

1

48
,

11

48
; x
)

= 1− 7

96
x − 719

46080
x2 − 127307

10616832
x3 − 82319293

10192158720
x4 +O

(
x5
)

and

f2(x) = exp

(√
3

12
x

)
3
√
xHeunC

(√
3

6
,

1

3
,−1

3
,

1

48
,

11

48
; x
)

= x
1
3

(
1+ 25

192
x + 8977

129024
x2 + 1099183

26542080
x3 +O(x4)

)
.

They form a basis of solutions of the second order linear differential equation

L(y) := d2

dx2 y (x)+ 2

3

(
1

x
+ 1

x − 1

)
d

dx
y (x)−

(
3 x2 − 6 x + 7

)
144 x (x − 1)

y (x) = 0

The Wronskian relation gives us the algebraic relation (f1f
′
2 − f ′1f2)

3 = x2(x −
1)2. The equation has order two so the Kovacic algorithm [14–16] can be used to
compute the differential Galois group and we find that no other algebraic relations
exist between f1, f2, f ′1 and f ′2. Now let Fi(x) :=

∫ x
fi(t)dt be a primitive. We

want to determine whether F1 and F2 are algebraically independent of the fi and
f ′i or not. The techniques explained below will show that this question reduces to
asking whether there is a rational solution to the linear differential system

Z′ =
(

0 −3 x2+6 x−7
144 x(x−1)

−1 1
3

4 x−2
x(x−1)

)
· Z +

(
1
0

)

or, equivalently, whether the following linear differential equation (the left hand side
turns out to be the adjoint operator of L) has a rational solution:

−g′′(x)+ 2

3

(2 x − 1)

x (x − 1)
g′(x)+

(
3 x4 − 9 x3 − 179 x2 + 185 x − 96

)
144 x2 (x − 1)2

g (x) = 1.

2See https://dlmf.nist.gov/31.12 or [13]. The notation HeunC is the syntax in MAPLE.

https://dlmf.nist.gov/31.12
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It can be seen directly or with a computer algebra system that this equation has
no rational solution. The underlying theoretical tools are from the constructive
differential Galois theory. However, in operational terms, it is rather easy to compute
and check: no hard theory is required for the calculation. Let us unveil a corner of
the underlying tools.

We have in fact studied the differential Galois group of the differential system
[A] with

A =
⎛
⎜⎝

0 1 0
3 x2−6 x+7

144 (x−1)3x2 − 2
3

(
1

x−1 + 1
x

)
0

1 0 0

⎞
⎟⎠

which admits the fundamental solution matrix

U :=
⎛
⎝ f1(x) f2(x) 0

f ′1(x) f ′2(x) 0∫ x
f1(t)dt

∫ x
f2(t)dt 1

⎞
⎠ .

Our calculation of rational solution above shows (with the tools displayed below)
that the differential Galois group of the system [A] will have dimension 5. This
in turn shows that the integrals

∫ x
fj (t)dt are algebraically independent of f1, f2

and their derivatives. In fact, it even shows that both integrals are algebraically
independent.

2.2 A Second Toy Example

Recall that the hypergeometric function is given by the formula

2F 1([a, b], [c])(x) =
∞∑
n=0

(a)n(b)n

(c)n

xn

n! , with (a)0 = 1, (a)n = a(a+ 1) . . . (a+ n− 1).

We now take two hypergeometric functions (with nice modular properties)

f1(x) = 2F1

([
−1

3
,

1

12

]
,

[
7

12

])
(x)

and

f2(x) = x5/12
2F1

([
1

12
,

1

2

]
,

[
17

12

])
(x).
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The vectors Yi := (fi, f
′
i )

T are solutions of Y ′ = A1Y below. To study properties
of their integrals, we set Y := (f, f ′,

∫ x
f (t)dt)T and we have Y ′ = AY where

A1 =
(

0 1
1

36
1

x(x−1) − 7
12 x

− 1
6(x−1)

)
and A =

(
A1 0
1 0 0

)
.

We will see in the sequel how we may find a suitable change of variables

Q :=
⎛
⎝ 1 0 0

0 1 0
− 15

44 + 45 x
44 − 9 x(x−1)

11 1

⎞
⎠

such that

Q[A] =
(
A1 0
0 0 0

)
.

This shows that
∫ x

fi (t) dt = − 9

11
x (x − 1) f ′i (x)+

15

44
(3 x − 1) fi (x)+ci, ci ∈ C,

and the differential Galois group of [A] has dimension 3. We note that none of these
two examples is new and that efficient methods to handle these questions have been
developed by Abramov and van Hoeij in [17, 18].

2.3 Integrals via Reducible Systems

These two examples have shown how, by augmenting the dimension of a linear
differential system, we can study integrals of its solutions. Conversely, block
triangular systems give rise to integrals via variation of constants; we review this
for clarification. For a factorized reducible system [A] of the form

A =
(
A1 0
S A2

)
= Adiag + Asub,

with Adiag :=
(
A1 0
0 A2

)
and Asub :=

(
0 0
S 0

)
, we have a fundamental solution

matrix of the form

U =
(

U1 0
U2V U2

)
=
(
U1 0
0 U2

)(
Idn1 0
V Idn2

)
.
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Once U1 and U2 are known, V is given by integrals: ∂V = U−1
2 SU1. So it may seem

that no further theory is required. However, U1 and U2 are fundamental solution
matrices for systems ∂Ui = AiUi so the relation ∂V = U−1

2 SU1 may involve
integrals of complicated D-finite functions.

Our approach will be to first “reduce” S as much as possible, using manipulations
with rational functions, to prepare the system for easier solving. In return, we will
obtain algebraic information on all (possibly iterated) integrals that may occur in
the relation ∂V = U−1

2 SU1.
We note, for the record, that factorized differential operators also correspond to

block triangular differential systems.

2.4 Example of Situations Involving Reducible Linear
Differential Systems

2.4.1 Operators from Statistical Physics and Combinatorics

In many models attached to statistical mechanics, quantities are expressed as
multiple integrals depending on a parameter. They are generally holonomic in this
parameter, meaning that they are D-finite, i.e. they are solutions to linear differential
operators (for example, the so-called Ising operators). A description of this setting
may be found in the books of Baxter [19] and McCoy [20] (notably Chapters 10 and
12) or in the surveys [21, 22] (and references therein). Similarly, in combinatorics,
sequences that satisfy recurrence relations may be studied through their generating
series, which are often D-finite.

Experimentally (see, for example, [23–28] or [29–32]), it turns out that many
differential operators coming from these processes are factored into a product of
smaller order factors—and the corresponding companion systems are reducible.

Other cases of reducible systems are the ones admitting reducible monodromies
such as [33] or in the works of Kalmykov on Feynman integrals via Mellin-Barnes
integrals [34–38]; about differential equations for Feynman integrals, one may
consult the works of Smirnov [39, 40].

Finally, we mention the paper [41] with other examples of integrals where
the techniques presented below may offer alternative approaches for some of the
computations.

2.4.2 Variational Equations of Nonlinear Differential Systems

Another natural source of reducible systems is the old method of variational
equations of nonlinear differential systems along a given particular solution φ.
One can form the linear differential equation describing perturbations along this
solution φ. The general principle is that obstructions to integrability of the nonlinear
system can be read on this linear differential system. Ziglin [42] linked non-
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integrability to non-commutations in the monodromy group with concrete versions
given e.g. in [43] and [44]. It was generalized in the theory of Morales-Ruiz and
Ramis and extended with Simó [45, 46] for Hamiltonian systems; they prove that
a Hamiltonian system is completely integrable only if all its variational equations
have a virtually abelian differential Galois group. Extensions to nonhamiltonian
differential equations can be found in [4, 47]. Applications to specific problems have
been occasions to establish effective criteria. For example: the three body problem
[48, 49], n-body problems [50, 51], Hill systems (movements of the moon) [52, 53]
or a swinging Atwood machine [54].

These variational equations can be written in the form of reducible linear
differential systems of big dimension. The simplification techniques outlined below
are hence particularly relevant to make computation on such systems practical (see
[10]).

We note that the Morales-Ramis theory has had a spectacular recent develop-
ment, initiated in [55] where this variational approach is applied to path integrals
thus establishing a beautiful and unexpected bridge with the previous subsection.

Reducible linear differential systems appear naturally in another type of perturba-
tive approach: in ε-expansions of solutions for perturbed systems d

dx
Y = B(x, ε)Y

like the ones that appear in works of J. Blümlein, C. Raab, C. Schneider, J. Henn
and others for example.

3 Reduced Forms of Linear Differential Systems

3.1 Ingredient #1: Differential Galois-Lie Algebra

In what follows, (k, ∂) is a differential field of characteristic 0. We outline a
brief exposition of the Galois theory of linear differential equations, see [5–7] for
expositions with proofs. We consider a linear differential system

[A] : ∂Y = AY, A ∈ Mat(n,k). (2)

Let C be the field of constants of the differential field k, that is C := {a ∈ k|∂(a) =
0}. We will assume that C is algebraically closed, i.e, every non constant polynomial
equation has a solution in C.

A Picard-Vessiot extension is a field K = k(U), where U is a fundamental
solution matrix3 of [A], such that the field of constants of K is still C. This can be
constructed algebraically; alternatively, when k is a field of meromorphic functions,
one may consider a local matrix of power series solutions at a regular point and
this gives a Picard-Vessiot extension. A Picard-Vessiot extension is unique modulo
differential field isomorphisms.

3An invertible n× n matrix U such that U ′ = AU .
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The differential Galois group G := Aut∂ (K/k) is the set of automorphisms of
K which leave the base field k fixed and commute with the derivation. Let σ ∈ G.
By construction, σ(U) is also a fundamental solution matrix in K and we find that
there exists a matrix [σ ] ∈ GL(n,C) such that σ(U) = U · [σ ]. The map σ �→
[σ ] provides a faithful representation of G as a subgroup of GL(n,C), actually a
linear algebraic group. If we change the fundamental solution, we obtain a conjugate
representation.

We recall that, given an invertible matrix P ∈ GL(n,k), the linear change of
variables Y = PZ produces a new differential system denoted ∂Z = P [A]Z where

P [A] := P−1AP − P−1∂P.

We note that such a gauge transformation P [A], with P ∈ GL(n,k), does not
change the Galois group.

Given a Picard-Vessiot extension K = k(U), the polynomial relations among all
entries of U (over k) form an ideal I . The Galois group G can then be viewed as the
set of matrices which stabilize this ideal I of relations. Thus the computation of G is
strongly related to the understanding of the algebraic relations among the solutions.

The Galois-Lie algebra of [A] is the Lie algebra g of the differential Galois
group G. It is defined as the tangent space of G at the identity Id. The dimension of
g measures the transcendence degree of K over k, that is

dimC g = trdeg(K/k).

One way of computing the Lie algebra [5] is the following: g is the set of matrices
N such that Id + εN ∈ G(C[ε]) with ε2 = 0. In other terms, Id + εN satisfies the
defining equations of the group modulo ε2. For example, SL(n,C) (set of M such
that det(M) = 1) gives the Lie algebra sl(n,C) of matrices N such that Tr(N) = 0.
The symplectic group Sp(2n,C) is the set of M such that MT · J ·M = J ; its Lie
algebra sp(n,C) is found to the set of N such that NT J + JN = 0, with J =(

0 Id
−Id 0

)
. The additive group Ga :=

{(
1 a

0 1

)
, a ∈ C

}
admits the Lie algebra

ga = SpanC

{(
0 1
0 0

)}
; the multiplicative group Gm =

{(
a 0
0 1

a

)
, a ∈ C∗

}
admits

the Lie algebra gm = SpanC

{(
1 0
0 −1

)}
.

The reduction technique exposed in this chapter aims at computing directly the
Galois-Lie algebra g before computing G itself. Although the theory is not obvious,
the resulting calculations are reasonably simple.

3.2 Ingredient #2: Lie Algebra Lie(A) Associated to A

The Lie algebra Lie(A) associated to the matrix A is defined as follows. Let
a1, . . . , as ∈ k be a basis of the C-vector space generated by the coefficients of
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A. We can then decompose A as A = ∑s
i=1 aiMi where the Mi are constant

matrices. Now, we consider the smallest Lie algebra containing all the Mi : this is
the vector space generated by the Mi and all their iterated Lie brackets ([M,N ] :=
MN −NM); then we take its algebraic envelope.

Definition 1 The Lie algebra Lie(A) associated to the matrix A is the smallest
algebraic4 Lie algebra containing all the Mi .

The decomposition A =∑s
i=1 aiMi is not unique but the vector space generated by

the Mi is unique. Thus, the associated Lie algebra Lie(A) does not depend on the
chosen decomposition.

This Lie algebra Lie(A) appears in works of Magnus [57] or Feynman who use
the Baker-Campbell-Hausdorff formula to write solutions of ∂Y = AY as (infinite)
products of exponentials constructed with Lie brackets. Wei and Norman give in
[58, 59] a finite formula to solve the system when Lie(A) is solvable. This formula
is well-known in physics and control theory but not as well among mathematicians.
The terminology of Lie algebra associated to A appears5 in [58, 59] (in there, it
is defined as the Lie algebra generated by all values of A(z0) for z0 spanning all
constants minus singularities and the algebraic envelope is missing). In the sequel,
we will study a 4-dimensional example and an 8-dimensional example where our
technique will have some relations to the Wei-Norman approach; namely, we will
change A to obtain an associated Lie algebra Lie(A) of minimal dimension so that
solving formulas become optimal in some sense.

Example 1 (A 4-Dimensional Example) Let

A :=

⎛
⎜⎜⎜⎝

1 1
x

1
x−1 0

0 1 0 1
x−1

0 0 1 − 1
x

0 0 0 1

⎞
⎟⎟⎟⎠ .

Note that this system is upper triangular, contrary to (1). This will illustrate that
our method can be equivalently applied to upper and lower triangular systems. We
obtain a Wei-Norman decomposition A = M1 + 1

x
M2 + 1

x−1M3, where

M1 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ , M2 :=

⎛
⎜⎜⎝

0 1 0 0
0 0 0 0
0 0 0 −1
0 0 0 0

⎞
⎟⎟⎠ , M3 :=

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ .

4A Lie algebra is called algebraic when it is the Lie algebra of a linear algebraic group. When the
Mi are given, this can be computed, see [56], Section 3, or [1], Section 6.
5For this reason, some authors, including ourselves, call the decomposition A = ∑s

i=1 aiMi a
Wei-Norman decomposition of A.
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We have

M4 := [M2,M3] =

⎛
⎜⎜⎝

0 0 0 2
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ .

All the other brackets in 〈M1,M2,M3,M4〉 are zero and we find that Lie(A) =
〈M1,M2,M3,M4〉. It is solvable of depth 2: the first derived algebra (the set of all
matrices in Lie(A) which can be written as a Lie bracket) is 〈M4〉 and the second
derived algebra is {0}. We will continue below with this example. �

3.3 Linear Differential Systems in Reduced Form

We now turn to the link between Lie(A) and differential Galois theory, based
on two important results of Kolchin and Kovacic. Proofs can be found in [5],
Proposition 1.31 and Corollary 1.32; see also [60], Theorem 5.8, and [8], § 5.3
after Remark 31. Let A ∈ Mat(n,k); let G be the differential Galois group of [A]
and g its Lie algebra, the Galois-Lie algebra of the system [A]. The first result is

g ⊂ Lie(A).

So, the Lie algebra associated to A, an object which is very easy to compute,
provides an “upper bound” on g. When we perform a gauge transformation P ∈
GL(n,k) to obtain a new system P [A], G and g are invariant while Lie(P [A])
may vary. This shows that g is a lower bound on all Lie(P [A]), for all gauge
transformations P ∈ GL(n,k). The second result of Kolchin and Kovacic is that
this lower bound is reached. By definition, Lie(A) is the Lie algebra of an algebraic
connected group H . Then there exists a gauge transformation6 P ∈ H(k) such that
g = Lie(P [A]). Furthermore, if G is connected and under the very mild additional
condition that k is a C1-field7 then we may choose P ∈ H(k) (no algebraic
extension).

Definition 2 A system ∂Y = AY is in reduced form when the Lie algebra Lie(A)

associated to A is equal to the Lie algebra of the differential Galois group of ∂Y =
AY .

6The notation H(k) denotes matrices whose entries are in k and satisfy all the equations defining
the algebraic group H .
7 A field k is a C1-field when every non-constant homogeneous polynomial P over k has a non-
trivial zero provided that the number of its variables is more than its degree. For example, C(x) is
a C1-field and any algebraic extension of a C1-field is a C1-field (Tsen’s theorem).
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The results of Kolchin and Kovacic show that a reduced form always exists. We
provide, in the sequel, constructive methods to obtain them when the systems are in
block-triangular form. They will be illustrated on our 4-dimensional example in the
next section.

Example 2 (4-Dimensional Example, Continued) We will show, in the next section,
that [A] is in reduced form. This system is easily integrated step by step and we find
a fundamental solution matrix

U = ex

⎛
⎜⎜⎝

1 ln (x) ln (x − 1) 2 dilog (x)+ ln (x − 1) ln (x)

0 1 0 ln (x − 1)
0 0 1 − ln (x)

0 0 0 1

⎞
⎟⎟⎠

where dilog is defined by dilog′(x) = ln(x)
1−x

. We may take dilog(x) = Li2(1 −
x). When computing U , the terms requiring one integration (ln(x) and ln(x − 1))
correspond to the terms in M2 and M3 in the Wei-Norman decomposition of A. The
term dilog comes from the existence of M4, the Lie bracket of M2 and M3 in Lie(A).

The corresponding Galois group is a semi-direct product of a 1-dimensional torus
(giving rise to the exp(x) in the solution) and of a vector group generated by M2,
M3 (giving rise to the terms in ln) and M4 (giving rise to the dilog). Its Lie algebra
is Lie(A). �

The ideas behind this notion of reduced form have been used for inverse problems
in differential Galois theory: given an algebraic group G, construct a differential
system [A] having G as its differential Galois group. It is also a technique known
in differential geometry. Its use for direct problems in differential Galois theory
is more recent. A remark in [5] suggests that this would be a good idea. In the
context of Lie-Vessiot systems, Blazquez and Morales exploit this idea in [60]. It
is developed in [10, 53, 61] in order to study variational equations in the context of
integrability of Hamiltonian systems and the Morales-Ramis-Simó theory (and later
in [4] to study algebraic properties of Painlevé equations). For irreducible systems
(or systems in block diagonal form), a criterion for reduced forms is established in
[8] with a decision procedure. Another, much more efficient approach is given in
[11, 12] together with generalizations of the criterion of [8].

The approach described below allows, given the above results, to compute a
reduced form of a block triangular linear differential system (the last case remaining
after all the above contributions). It is based upon these works, notably [4], and is
constructed in [1].
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4 How to Compute a Reduced Form of a Reducible System

Assume now that k = C(x), where C is algebraically closed of characteristic zero
where the derivation ∂ acts trivially. It is in particular a C1-field. We consider a block
triangular system over the differential field C(x) in the same form as (1), that is

[A] : ∂Y = AY, with A =
(
A1 0
S A2

)
∈ Mat(n,k).

Let Adiag :=
(
A1 0
0 A2

)
. In what follows, we will assume that the block diagonal

part Adiag is in reduced form and we will show how to find a gauge transformation
P such that P [A] is in reduced form. By [1], Lemma 2.7, the differential Galois
group is connected and the reduction matrix we are looking for has coefficients
in k. Instead of reproving all the theory (which, in this case, can be mostly found
in [1]), we will work out in details a simple example where most of the required
algorithmic elements appear. This may help convince the reader of how the method
works (the details in [1] may be technical, at least in a first reading).

4.1 Shape of the Gauge Transformation

Let hsub be the set of off-diagonal constant matrices of the form

(
0 0
S 0

)
(same

sizes as in relation (1)). We will extend the scalars to hsub(k) := hsub ⊗C k, the
off-diagonal matrices with coefficients in k. Our first step is that we may find a
reduction matrix in a very particular shape.

Lemma 1 ([10], Lemma 3.4) There exists a gauge transformation P ∈
{

Id +
B,B ∈ hsub(k)

}
such that ∂Y = P [A]Y is in reduced form.

The following is based on an observation from [53, 61]. Let P = Id + B, B ∈
hsub(k). Suppose that, for all Q ∈ {Id+ B,B ∈ hsub(k)}, we have Lie(P [A]) ⊆
Lie(Q[P [A]]); then, P [A] is in reduced form. In other terms, no rational gauge
transformation can turn it into a system with a smaller associated Lie algebra. In
this case, Lie(P [A]) will be the Lie algebra of the differential Galois group and this
will give us transcendence relations and algebraic relations on the solutions; this
will be seen on the main example of this section.

More generally, as we can see in [1], Section 5, if our method can reduce a system
with two diagonal blocks then we can iterate this method to obtain a reduced form
of a block-triangular system with an arbitrary number of blocks on the diagonal. Let
us illustrate this iteration on a system with three diagonal blocks of the form
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⎛
⎝ A1 0 0

S2,1 A2 0
S3,1 S3,2 A3

⎞
⎠

where the block diagonal part is in reduced form (see [11, 12] for this). We will first
reduce the south-east part (which is of the same form as (1)) into a form

(
A2 0
S A3

)

Let P1 be the reduction matrix. By [1], Lemma 5.1, the following system is
automatically in reduced form

Ad :=
⎛
⎝A1 0 0

0 A2 0
0 S A3

⎞
⎠ .

Now we perform the gauge transformation

(
Id 0
0 P1

)
to obtain a system of the form

⎛
⎝ A1 0 0

S̃2,1 A2 0
S̃3,1 S A3

⎞
⎠

(the Si,j may have changed after the first reduction step). We now see that this
system in the same form as (1) with Ad as the block diagonal matrix. So a second
reduction of a two-blocks triangular system allows to reduce the initial three-blocks
triangular system.

This iteration is well seen in our 4-dimensional example below.

Example 3 (4-Dimensional Example, Continued) Let

A :=

⎛
⎜⎜⎜⎝

1 0 1
x

0
1

x−1 1 0 − 1
x

0 0 1 0
0 0 1

x−1 1

⎞
⎟⎟⎟⎠ .

A simple application of a factorization algorithm shows that it is reducible. Indeed,
letting

P :=

⎛
⎜⎜⎝

0 0 −1 0
−1 0 0 0
0 0 0 1
0 1 0 0

⎞
⎟⎟⎠ ,
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we have

P [A] =

⎛
⎜⎜⎜⎝

1 1
x

1
x−1 0

0 1 0 1
x−1

0 0 1 − 1
x

0 0 0 1

⎞
⎟⎟⎟⎠ .

This example is, of course, particularly simple. We use it to show how to apply the
iteration procedure and Lemma 1 to simplify the system or prove that it cannot be
simplified further.

Since we consider an upper triangular system, we start with the “north-west”
corner. We let

B :=
(

1 1
x

0 1

)
.

The diagonal part is in reduced form (solutions are ex and cannot be simplified using
rational functions). The associated Lie algebra Lie(B) has dimension 2. Reduction
would imply to have dimension 1. By Lemma 1, a reduction matrix would have the
form

P :=
(

1 f (x)

0 1

)
.

The north-east coefficient of P [B] is 1
x
− f ′(x). The coefficient 1

x
− f ′(x) could

never be constant (the equation f ′(x) = 1
x

has no rational solution, the simple pole
1
x

cannot be canceled by the derivative of a rational function). For any choice of
f , Lie(P [B]) will have dimension 2. It follows that [B] is in reduced form. So we
iterate.

We now pick a bigger matrix B:

B :=
⎛
⎜⎝

1 1
x

1
x−1

0 1 0
0 0 1

⎞
⎟⎠ and Bdiag :=

⎛
⎝ 1 1

x
0

0 1 0
0 0 1

⎞
⎠ .

By [1], Lemma 5.1, and by the above calculation, we find that [Bdiag] is in reduced
form. Lemma 1 thus shows that a reduction matrix would have the simple form

P :=
⎛
⎝1 0 f (x)

0 1 g(x)

0 0 1

⎞
⎠ .

Now Lie(Bdiag) has dimension 2 and Lie(B) has dimension 3. A reduction matrix
should therefore map B to a matrix with an associated Lie algebra of dimension 2.
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We have P [B]2,3 = −g′(x) so there should exist constants g1, g2 and a rational
function g(x) such that −g′(x) = g1 + g2

1
x

. A necessary condition is g2 = 0 and
g(x) = g0−g1x. Similarly, there should exist constants f1, f2 such that P [B]1,3 =
f1 + f2

1
x

. We now plug our condition on g into this relation and find that there
should be a rational function f such that

f ′(x) = −f1 − g1 + (g0−f2)
1

x
+ 1

x − 1
.

Now, because of the pole of order 1 at x = 1, this can never have a rational solution
(whatever the values of the unknown constants). It follows that, for any choice of f ,
Lie(P [B]) will have dimension 3. So P is in reduced form.

Note that our main ingredient here has been to look for a rational solution
of an inhomogeneous linear differential equation whose right-hand side contains
parameters. There exist algorithms to compute conditions on the parameters (from
the right-hand side) so that such an equation has rational solutions, see Sect. 4.2.2
below or [62], and this will be the key to what follows.

We continue iterating the reduction process. Now we will have

B :=

⎛
⎜⎜⎜⎝

1 1
x

1
x−1 0

0 1 0 1
x−1

0 0 1 − 1
x

0 0 0 1

⎞
⎟⎟⎟⎠ , Bdiag :=

⎛
⎜⎜⎝

1 1
x

1
x−1 0

0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ and P :=

⎛
⎜⎜⎝

1 0 0 f1 (x)

0 1 0 f2 (x)

0 0 1 f3 (x)

0 0 0 1

⎞
⎟⎟⎠ .

Using again [1], Lemma 5.1, we see that Bdiag is in reduced form. Furthermore,
Lie(Bdiag) has dimension 3 and Lie(B) has dimension 4. We compute P [B].

P [B] =

⎛
⎜⎜⎜⎝

1 1
x

1
x−1

f2(x)
x

+ f3(x)
x−1 − d

dx f1 (x)

0 1 0 1
x−1 − d

dx f2 (x)

0 0 1 − 1
x
− d

dx f3 (x)

0 0 0 1

⎞
⎟⎟⎟⎠ .

The relation P [B]3,4 = c1,3 + c2,3
1
x
+ c3,3

1
x−1 gives conditions c3,3 = 0, c2,3 =

−1 and f3 (x) = −c1,3x + c0,3. The same study on P [B]2,4 gives us f2 (x) =
−c1,2x + c0,2. Without finishing with the last coefficient, we see that Lie(P [B])
contains matrices of the following forms (respectively because of terms in 1

x
and

1
x−1 ):

M2 :=

⎛
⎜⎜⎝

0 1 0  

0 0 0 0
0 0 0 −1
0 0 0 0

⎞
⎟⎟⎠ and M3 :=

⎛
⎜⎜⎝

0 0 1  

0 0 0 1
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠
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whose Lie bracket is

M4 := [M2,M3] =

⎛
⎜⎜⎝

0 0 0 2
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ .

So we see that, whatever our future choices may be, Lie(P [B]) will contain M4 and
hence have dimension 4. This shows that our system cannot be reduced so it is in
reduced form. Furthermore, this suggests that our reduction conditions might have
been stronger: requiring P [B]3,4 = c1,3 + c2,3

1
x
+ c3,3

1
x

was not enough. We could
have imposed P [B]3,4 = 0 and P [B]2,4 = 0. Both these relations are easily seen to
be impossible to fulfill with rational functions so our system is again seen to be in
reduced form. �
To summarize what this example suggests: we need to “cancel” terms in the
purely triangular part; this reduces to finding rational solutions of linear differential
equations with parametrized right-hand sides. And the order of the computations
matters: here, one needs to study the relations on f2 and f3 before studying relations
on f1. We will show, in the sequel, how to systematize these ideas, using an
isotypical decomposition and an adapted flag structure, and how to make them
algorithmic so that a computer algebra system may perform the calculations.

In this example, we had seen that a fundamental solution matrix could be written
using ex, ln(x), ln(x − 1) and dilog(x). As [B] is in reduced form, Lie(B) is the
Lie algebra of the Galois group and it has dimension 4. This shows that these four
functions are transcendent and algebraically independent. So our calculation above
(long but not hard) gave us a simple proof that dilog(x) is algebraically independent
of ex, ln(x), ln(x − 1).

4.2 The Adjoint Action of the Diagonal

We recall our notations so far. We have ni × ni matrices Ai with coefficients in k
and

A =
(
A1 0
S A2

)
∈ Mat(n,k), Adiag :=

(
A1 0
0 A2

)
.

If we take two off-diagonal matrices B1 and B2 in hsub, we have B1.B2 = 0. This
allows two simple calculations. First, let P := Id+∑i fiBi , with fi ∈ k, Bi ∈ hsub.
Then

P [A] = A+
∑
i

fi[Adiag, Bi] −
∑
i

∂(fi)Bi. (3)
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Furthermore, [Adiag, Bi] ∈ hsub(k). These two calculations show that reduction will
be governed by the adjoint action ! : X �→ [Adiag, X] of the block diagonal part
Adiag on hsub(k). This adjoint action ! is a linear map. Its matrix, on the canonical
basis of hsub, is

! = A2 ⊗ Idn1 − Idn2 ⊗ AT
1 .

When ∂Y = AdiagY has an abelian Lie algebra we may easily compute a Jordan
normal form of ! : X �→ [Adiag, X]. Furthermore the eigenvalues of ! belong to
k. This is the idea behind [10]. In our case, we will need a more subtle structure, an
isotypical decomposition into !-invariant subspaces of hsub.

Example 4 (An 8-Dimensional Example) We consider a matrix A given by

A :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1
x

0 0 0 0 0
1

x−1 1 0 − 1
x

0 0 0 0
0 0 1 0 0 0 0 0
0 0 1

x−1 1 0 0 0 0

    1 0 1
x

0
    1

x−1 1 0 − 1
x

    0 0 1 0
    0 0 1

x−1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The block diagonal part is given by two copies of our 4-dimensional example A1
(here, A2 = A1) and we have shown that it was in reduced form. The off-diagonal
part is given by

⎛
⎜⎜⎜⎝

−3x+4
4x2

x−4
4x2 − 1

2(x−1) + 2x−2
x2 − 1

x
1

2(x−1) + −2x+5
x2

x−4
4x2

2
x−1 + 4

x2
1

2(x−1) + 2x−2
x2

−1
4(x−1) 0 3x−4

4x2
x+4
4x2

− 1
2(x−1)

1
4(x−1)

1
2(x−1) + 2x−7

x2
−x+4

4x2

⎞
⎟⎟⎟⎠ .

As A2 = A1, the matrix of the adjoint action of the diagonal on hsub is a (sparse)
16× 16 matrix given by ! = A1 ⊗ Id4 − Id4 ⊗ AT

1 . �

4.2.1 Isotypical Decomposition

Recall that hsub is the C-vector space of off-diagonal matrices. We now show how
the adjoint action ! of the diagonal will govern the reduction strategy on hsub.

Definition 3 A vector space W ⊂ hsub will be called a !-space if !(W) ⊂ W ⊗C
k.

The importance of these !-spaces is stated in the following lemma.
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Lemma 2 ([1], Lemma 2.11) Let A :=
(
A1 0
S A2

)
and assume that ∂Y = AY is

in reduced form. Then, Lie(A) ∩ hsub is a !-space.

So our reduction strategy will be to try to project onto the smallest possible !-space
using rational gauge transformations. In [1], we provide references to algorithms
to decompose and factor into !-spaces. This is obtained using an isotypical
decomposition (eigenring methods) and a flag structure.

Lemma 3 (Krull-Schmidt) The C-vector space hsub admits a unique isotypical
decomposition

hsub =
κ⊕

i=1

Wi

where

• each Wi is a !-space;
• Wi " νiVi , a direct sum of νi !-spaces that are all isomorphic to an

indecomposable !-space Vi which admits a flag decomposition

Vi = V
[μ]
i � V

[μ−1]
i � · · · � V

[1]
i � V

[0]
i = {0}

and V
[j ]
i /V

[j−1]
i is a sum of isomorphic irreducible !-spaces for 1 ≤ j ≤ μ;

• For i �= j , the !-spaces Vi ⊂ Wi and Vj ⊂ Wj are not isomorphic.

Once this decomposition and flag structure are computed, we perform, at each
stage, a projection on a minimal !-subspace in V

[j ]
i . For some vectors bi ∈ kN

and a matrix Ei,j with coefficients in k (obtained by linear algebra), this reduces to
computing all tuples (F, c1, . . . , cs), with F ∈ kN and ci constants, such that

F ′ = Ei,j · F +
∑
i

cibi .

The resulting system P [A] will be “minimal”: it will be in reduced form. The
proof of this result is technical and can be found in [1]. We will illustrate the process
on our main example.

Example 5 (8-Dimensional Example, Continued) In this example, hsub decomposes
as a direct sum hsub = h1 ⊕ h5 ⊕ h10 of three indecomposable !-spaces.
We first study the adjoint action ! = [Adiag, •] of Adiag on h5. We find (see [63])
an adapted basis given by off-diagonal matrices N2, . . . , N6 with south-west blocks

⎡
⎢⎢⎣

0 0 0 0
2 0 0 0
0 0 0 0
0 0 −2 0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0 0 −2 0
0 0 0 −2
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0 −1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦ .
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The matrix of the adjoint action ! on this basis of h5 is

!5 :=

⎛
⎜⎜⎜⎜⎜⎝

0 0 1
x−1 0 0

0 0 1
x

0 0
0 0 0 1

x
1

x−1
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

.

The flag structure on h5 suggests the following reduction path. Try to remove
elements in 〈N5, N6〉 if possible; then in 〈N4〉; then in 〈N2, N3〉. How to do this
will be made clear in the next section; the flag structure guides the order in which
computations should be handled.

We turn to h10. We find (see [63]) a basis adapted to the flag structure given by
off-diagonal matrices N7, . . . , N16 whose south-west blocks are:

⎡
⎢⎢⎣

0 0 0 0
0 0 2 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0 0 0 0
−1 0 0 0
0 0 0 0
0 0 −1 0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0 0 1 0
0 0 0 −1
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
2 0 0 0
0 − 1

2 0 0
0 0 1

2 0
0 0 0 − 1

2

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
2 0 0 0
0 1

2 0 0
0 0 − 1

2 0
0 0 0 − 1

2

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0 0 0 −1
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
1
2 0 0 0
0 − 1

2 0 0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0 − 1
2 0 0

0 0 0 0
0 0 0 − 1

2
0 0 0 0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 − 1

2 0 0
0 0 0 0

⎤
⎥⎥⎦

The matrix of the adjoint action ! on this adapted basis N7, . . . , N16 is:

!10 :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
x

1
x−1 0 0 0 0 0 0 0

0 0 0 1
x
− 1

x−1 0 0 0 0 0
0 0 0 0 0 − 1

x
1

x−1 0 0 0

0 0 0 0 0 0 0 1
x−1 0 0

0 0 0 0 0 0 0 0 1
x−1 0

0 0 0 0 0 0 0 1
x

0 0
0 0 0 0 0 0 0 0 1

x
0

0 0 0 0 0 0 0 0 0 1
x−1

0 0 0 0 0 0 0 0 0 1
x

0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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4.2.2 Intermezzo: Reduction and Rational Solutions

Before we continue, let us make a quick excursion into our main algorithmic

toolbox. we start with a simple case. We look for a condition on P := Id+
(

0 0
β 0

)

to have

A =
(
A1 0
S A2

)
−→ P [A] =

(
A1 0
0 A2

)
.

A simple calculation shows that β should be a rational solution of the matrix
linear differential system β ′ = A2β − βA1+S. If we let vec denote the operator
transforming a matrix into a vector by stacking its rows, we find (see [1]) that
vec(β)′ = ! ·vec(β)−vec(S), where ! is again the adjoint action of the diagonal
defined above. So reduction will be governed by computing rational solutions of
linear differential systems. When k = C(x), a computer algebra algorithm for this
task has been given by Barkatou in [64], see [65] for a generalization to linear partial
differential systems and a Maple implementation.

Now, our general tool (also found in the above references) will be an apparently
more complicated problem. Given a matrix ! and vectors b1, . . . , bs , we will look
for tuples (F, c1, . . . , cs), with F ∈ kN and ci constant, such that F ′ = ! · F +∑

i cibi . Such tuples form a computable vector space and the algorithms in [64, 65]
provide this when k = C(x). Results and algorithms for general fields k can be
found in [62].

We now pick concrete coefficients to show how to perform the reduction on
our 8-dimensional example. A Maple worksheet8 with this example and the chosen
coefficients may be found at [63].

4.2.3 Reduction on h5 (8-Dimensional Example)

To remove all of h5, it would be enough to have a rational solution to the system

Y ′ = !5.Y + b with b =

⎛
⎜⎜⎜⎜⎜⎝

3
x2 − 1

x
1
x2 − 1

x
1
x2 − 1

2 x

0
1
x2

⎞
⎟⎟⎟⎟⎟⎠

and !5 is given in Example 5 (page 162). This gives us reduction equations

8The reader may also find a pdf version at
http://www.unilim.fr/pages_perso/jacques-arthur.weil/DreyfusWeilReductionExamples.pdf.

http://www.unilim.fr/pages_perso/jacques-arthur.weil/DreyfusWeilReductionExamples.pdf
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(W [3]) :
{
f ′3,1 (x) = 1

x2

f ′3,2 (x) = 0

(W [2]) :
{
f ′2,1 (x) = 1

x−1f3,1 (x)+ 1
x
f3,2 (x)+ 1

x2 − 1
2 x

(W [1]) :
{
f ′1,1 (x) = 1

x
f2,1 (x)+ 1

x2 − 1
x

f ′1,2 (x) = 1
x−1f2,1 (x)+ 3

x2 − 1
x

The first two equations correspond to the highest level W [3] of the flag. To remove
an element from W [3], there should be a rational solution to the equation y′ =
c1.

1
x2 + c2.0. The C-vector space of pairs (c1, c2) ∈ C2 such that there exists f ∈ k

with f ′ = c1.
1
x2 +c2.0 is found to be 2-dimensional; for c = (1, 0), we have f3,1 :=

− 1
x
+c3,1; for c = (0, 1), we have f3,2 := c3,2, where the c3,i are arbitrary constants

(their importance will soon be visible). Our gauge transformation is P [3] = Id +
f3,1N6 + f3,2N5 and A[2] := P [3][A] does not contain any terms from W [3].

Now W [2] is 1-dimensional. The equation for the reduction on W
[2]
2 is now

y′ = 1
x−1f3,1 (x)+ 1

x
f3,2 (x)+ 1

x2 − 1
2 x

= 1
2

2 c3,2+1
x

+ c3,1−1
x−1 + 1

x2 .

We have necessary and sufficient conditions on the parameters c3,i to have a rational
solution, namely c3,1 = 1, c3,2 = − 1

2 and then a general rational solution f2,1 :=
−1
x
+ c2,1. Our new gauge transformation is P [2] = Id+ (− 1

x
+ c2,1)N4 and A[1] :=

P [2][A[2]] does not contain any term from W [2] any more.
Finally, we look for all (c1, c2) ∈ C2 such that c1f1,1 + c2f2,2 is rational: we

look for non-zero pairs (c1, c2) ∈ C2 such that there exists a rational solution f ∈ k
of

y′ = c1

(
1

x

(
−1

x
+ c2,1

)
+ 1

x2
− 1

x

)
+ c2

(
1

x − 1

(
−1

x
+ c2,1

)
+ 3

x2
− 1

x

)

= 3 c2

x2 + c1
(
c2,1 − 1

)
x

+ c2
(
c2,1 − 1

)
x − 1

.

This integral is rational if and only if both residues are zero. As the solution c1 =
c2 = 0 is not admissible, we see that a necessary and sufficient condition is c2,1 = 1.
The set of desired pairs (c1, c2) is of dimension 2. For c = (1, 0), we have f1,1 :=
c1,1, for c = (0, 1), we have f1,2 := − 3

x
+ c1,2, where the c1,i are constants and

can be chosen arbitrarily. So our last gauge transformation matrix will be P [1] =
Id− 3

x
N2 and the reduction matrix on h5 is

P5 := P [3]P [2]P [1] = Id− 3

x
N2 +

(
1− 1

x

)
N4 − 1

2
N5 +

(
1− 1

x

)
N6.

The resulting matrix Ã := P5[A] contains no terms from h5.
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4.2.4 Reduction on h10 (8-Dimensional Example)

The matrix !10 is given in Example 5 page 162. The reduction equations are now

(W [5]) :
{
f ′5,1 (x) = 0

(W [4]) :
{
f ′4,1(x) = 1

x
f5,1(x)− 1

2x
f ′4,2(x) = 1

x−1f5,1(x)− 1
2(x−1)

(W [3]) :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f ′3,1(x) = 1
x
f4,1(x)+ 1

x

f ′3,2(x) = 1
x
f4,2(x)− 1

2 x

f ′3,3(x) = 1
x−1f4,1(x)

f ′3,4(x) = 1
x−1f4,2(x)− 1

2 (x−1)

(W [2]) :
{
f ′2,1(x) = 1

x−1f3,1(x)− 1
x
f3,2(x)− 1

2 (x−1)

f ′2,2(x) = − 1
x−1f3,3(x)+ 1

x
f3,4(x)+ 1

x2 − 1
2 (x−1)

(W [1]) :
{
f ′1,1(x) = 1

x−1f2,1(x)+ 1
x
f2,2(x)+ 2

x2 + 1
(x−1) .

We will let the reader solve this iteratively following the method from the previous
section. This will give the following successive reductions

where the green denotes parts that have been successfully removed. However, we
reach an obstruction when trying to remove N11 (once the equation for f3,1 has a
rational solution, the equation for f3,3(x) cannot have a rational solution).

The reduction matrix is

P10 := Id+
(
c1,1 − 1

x

)
N7− 1

x
N8−N9− 1

2
N11+ 1

2
N13+ 1

2
N14−N15+ 1

2
N16
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and we obtain the reduced form Ared := P10[P5[A]]:

Ared :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1
x

0 0 0 0 0
1

x−1 1 0 − 1
x

0 0 0 0
0 0 1 0 0 0 0 0
0 0 1

x−1 1 0 0 0 0

− 1
2 (x−1) 0 0 0 1 0 1

x
0

0 1
2 (x−1) 0 0 1

x−1 1 0 − 1
x

0 0 − 1
2 (x−1) 0 0 0 1 0

0 0 0 1
2 (x−1) 0 0 1

x−1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The associated Lie algebra is spanned by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
− 1

2 0 0 0 0 0 0 0
0 1

2 0 0 1 0 0 0
0 0 − 1

2 0 0 0 0 0
0 0 0 1

2 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This gives us the Lie algebra g = Lie(Ared) of the differential Galois group.
Note that, during the reduction process, we found the two incompatible equations
f ′3,1(x) = c4,1+1

x
and f ′3,3(x) = c4,1

x−1 , where c4,1 is a constant. There were two
mutually exclusive paths: either remove N11 or remove N13. We removed N13 here
by setting c4,1 = −1; the choice of removing N11 (by setting c4,1 = 0) gives a
different reduced form whose associated Lie algebra is conjugated to the one we
just found. We refer to [1] for the computations in that other path. We also remark
that two of the matrices that could not be removed from hsub are “absorbed” as lower
triangular parts of matrices coming from Adiag. It is 5-dimensional, whereas the Lie
algebra Lie(A) associated to the original matrix A had dimension 14. This shows
that the Picard-Vessiot extension is obtained from the Picard-Vessiot extension Kdiag
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for [Adiag] by adding only one integral and the system has indeed been transformed
into a form where solving is much simpler than before—and we also have proofs of
transcendence properties for the remaining objects.
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the Calculation of Feynman Amplitudes for stimulating exchanges and lectures. We specially thank
the referee for many observations and precisions that have enhanced the quality of this text.

References

1. T. Dreyfus, J.-A. Weil, Computing the Lie algebra of the differential Galois group: The
reducible case (2019). ArXiv 1904.07925

2. D. Bertrand, Unipotent radicals of differential Galois group and integrals of solutions of
inhomogeneous equations. Math. Ann. 321(3), 645–666 (2001)

3. P.H. Berman, M.F. Singer, Calculating the Galois group of L1(L2(y)) = 0, L1, L2 completely
reducible operators. J. Pure Appl. Algebra 139(1–3), 3–23 (1999). Effective methods in
algebraic geometry (Saint-Malo, 1998)

4. G. Casale, J.-A. Weil, Galoisian methods for testing irreducibility of order two nonlinear
differential equations. Pacific J. Math. 297(2), 299–337 (2018)

5. M. van der Put, M.F. Singer, Galois Theory of Linear Differential Equations. Grundlehren der
Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 328
(Springer, Berlin, 2003)

6. T. Crespo, Z. Hajto, Algebraic Groups and Differential Galois Theory. Graduate Studies in
Mathematics, vol. 122 (American Mathematical Society, Providence, 2011)

7. M.F. Singer, Introduction to the Galois theory of linear differential equations, in Algebraic
Theory of Differential Equations. London Mathematical Society Lecture Note Series, vol. 357
(Cambridge University Press, Cambridge, 2009), pp. 1–82

8. A. Aparicio-Monforte, É. Compoint, J.-A. Weil, A characterization of reduced forms of linear
differential systems. J. Pure Appl. Algeb.217(8), 1504–1516 (2013)

9. C. Mitschi, M.F. Singer, Solvable-by-finite groups as differential Galois groups. Ann. Fac. Sci.
Toulouse Math. 11(3), 403–423 (2002)

10. A. Aparicio-Monforte, T. Dreyfus, J.-A. Weil, Liouville integrability: an effective Morales–
Ramis–Simó theorem. J. Symb. Comput. 74, 537–560 (2016)

11. M. Barkatou, T. Cluzeau, L. Di Vizio, J.-A. Weil, Reduced forms of linear differential systems
and the intrinsic Galois-Lie algebra of Katz. SIGMA Symmetry Integra. Geom. Methods Appl.
16(054), 13 (2020)

12. M. Barkatou, T. Cluzeau, J.-A. Weil, L. Di Vizio, Computing the lie algebra of the differential
galois group of a linear differential system, in Proceedings of the ACM on International
Symposium on Symbolic and Algebraic Computation (2016), pp. 63–70

13. O.V. Motygin, On evaluation of the confluent heun functions, in 2018 Days on Diffraction
(DD) (IEEE, Piscataway, 2018), pp. 223-229

14. J.J. Kovacic, An algorithm for solving second order linear homogeneous differential equations.
J. Symbolic Comput. 2(1), 3–43 (1986)

15. F. Ulmer, J.-A. Weil, Note on Kovacic’s algorithm. J. Symbolic Comput. 22(2), 179–200 (1996)
16. M. van Hoeij, J.-A. Weil, Solving second order differential equations with Klein’s theorem,

in ISSAC ’05: Proceedings of the 2005 International Symposium on Symbolic and Algebraic
Computation (Beijing) (ACM, New York, 2005)

17. S.A. Abramov, M. van Hoeij, Integration of solutions of linear functional equations. Integral
Transform. Spec. Funct. 8(1–2), 3–12 (1999)



Differential Galois Theory and Integration 169

18. S.A. Abramov, M. van Hoeij, A method for the integration of solutions of Ore equations, in
Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation
(Kihei, HI) (ACM, New York, 1997), pp. 172–175

19. R.J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic [Harcourt Brace
Jovanovich Publishers], London, 1982)

20. B.M. McCoy, Advanced Statistical Mechanics. International Series of Monographs on Physics,
vol. 146 (Oxford University Press, Oxford, 2010)

21. B.M. McCoy, J-M. Maillard, The importance of the ising model. Prog. Theor. Phys. 127 (2012),
791–817 (2012)

22. B.M. McCoy, M. Assis, S. Boukraa, S. Hassani, J.-M. Maillard, W.P. Orrick, N. Zenine, The
saga of the Ising susceptibility, in New Trends in Quantum Integrable Systems (World Scientific
Publishing, Hackensack, 2011), pp. 287–306

23. S. Boukraa, S. Hassani, J.-M. Maillard, B.M. McCoy, J.-A. Weil, N. Zenine, Fuchs versus
Painlevé. J. Phys. A 40(42), 12589–12605 (2007)

24. A. Bostan, S. Boukraa, S. Hassani, J.-M. Maillard, J.-A. Weil, N. Zenine, Globally nilpotent
differential operators and the square Ising model. J. Phys. A 42(12), 125206, 50 (2009)

25. A. Bostan, S. Boukraa, S. Hassani, J.-M. Maillard, J.-A. Weil, N. Zenine, N. Abarenkova,
Renormalization, isogenies, and rational symmetries of differential equations. Adv. Math.
Phys. 2010, 44p (2010)

26. A. Bostan, S. Boukraa, S. Hassani, M. van Hoeij, J.-M. Maillard, J.-A. Weil, N. Zenine, The
Ising model: from elliptic curves to modular forms and Calabi-Yau equations. J. Phys. A Math.
Theor. 44(4), 045204, 44 (2011)

27. S. Boukraa, S. Hassani, J.-M. Maillard, J.-A. Weil, Differential algebra on lattice green and
calabi-yau operators. J. Phys. A: Math. Theor. 47(9), 095203 (2014)

28. S. Boukraa, S. Hassani, J.-M. Maillard, J.-A. Weil, Canonical decomposition of irreducible
linear differential operators with symplectic or orthogonal differential galois groups. J. Phys.
A: Math. Theor. 48(10), 105202 (2015)

29. S. Hassani, Ch. Koutschan, J.-M. Maillard, N. Zenine, Lattice Green functions: the d-
dimensional face-centered cubic lattice, d = 8, 9, 10, 11, 12. J. Phys. A 49(16), 164003, 30
(2016)

30. C. Koutschan, Lattice Green functions of the higher-dimensional face-centered cubic lattices.
J. Phys. A 46(12), 125005, 14 (2013)

31. Y. Abdelaziz, S. Boukraa, C. Koutschan, J.-M. Maillard, Heun functions and diagonals of
rational functions. J. Phys. A 53(7), 075206, 24 (2020)

32. Y. Abdelaziz, S. Boukraa, C. Koutschan, J.-M. Maillard, Diagonals of rational functions,
pullbacked 2F1 hypergeometric functions and modular forms. J. Phys. A 51(45), 455201, 30
(2018)

33. T.M. Sadykov, S. Tanabé, Maximally reducible monodromy of bivariate hypergeometric
systems. Izv. Ross. Akad. Nauk Ser. Mat. 80(1), 235–280 (2016)

34. M.Yu. Kalmykov, Gauss hypergeometric function: reduction, ε-expansion for integer/half-
integer parameters and Feynman diagrams. J. High Energy Phys. 2006(4), 056, 21 (2006)

35. V.V. Bytev, M.Yu. Kalmykov, B.A. Kniehl, Differential reduction of generalized hypergeomet-
ric functions from Feynman diagrams: one-variable case. Nuclear Phys. B 836(3), 129–170
(2010)

36. M.Yu. Kalmykov, B.A. Kniehl, Mellin-Barnes representations of Feynman diagrams, linear
systems of differential equations, and polynomial solutions. Phys. Lett. B 714(1), 103–109
(2012)

37. M.Yu. Kalmykov, B.A. Kniehl, Counting the number of master integrals for sunrise diagrams
via the Mellin-Barnes representation. J. High Energy Phys. 2017(7), 031 (2017). front
matter+27

38. M.Yu. Kalmykov, B.A. Kniehl, Counting master integrals: integration by parts vs. differential
reduction. Phys. Lett. B 702(4), 268–271 (2011)

39. V.A. Smirnov, Analytic tools for Feynman integrals, in Springer Tracts in Modern Physics, vol.
250 (Springer, Heidelberg, 2012)



170 T. Dreyfus and J.-A. Weil

40. R.N. Lee, A.V. Smirnov, V.A. Smirnov, Solving differential equations for Feynman integrals
by expansions near singular points. J. High Energy Phys. 2018(3), 008 (2018). front matter+14

41. J. Ablinger, J. Blümlein, C.G. Raab, C. Schneider, Iterated binomial sums and their associated
iterated integrals. J. Math. Phys. 55(11), 112301, 57 (2014)

42. S.L. Ziglin, Branching of solutions and nonexistence of first integrals in hamiltonian mechan-
ics. I, Function. Analy. Appl. 16(3), 181–189 (1982)

43. R.C. Churchill, D.L. Rod, On the determination of Ziglin monodromy groups. SIAM J. Math.
Anal. 22(6), 1790–1802 (1991)

44. V. Salnikov, Effective algorithm of analysis of integrability via the Ziglin’s method. J. Dyn.
Control Syst. 20(4), 465–474 (English) (2014)

45. J.-J. Morales-Ruiz, J.-P. Ramis, Galoisian obstructions to integrability of Hamiltonian systems.
I, II. Methods Appl. Anal. 8(1), 33–95, 97–111 (2001)

46. J.-J. Morales-Ruiz, J.-P. Ramis, C. Simo, Integrability of Hamiltonian systems and differential
Galois groups of higher variational equations. Ann. Sci. École Norm. Sup. 40(6), 845–884
(2007)

47. M. Ayoul, N. Tien Zung, Galoisian obstructions to non-Hamiltonian integrability. C. R. Math.
Acad. Sci. Paris 348(23–24), 1323–1326 (2010)

48. A. Tsygvintsev, The meromorphic non-integrability of the three-body problem. J. Reine
Angew. Math. 537, 127–149 (2001)

49. D. Boucher, J.-A. Weil, Application of J.-J. Morales and J.-P. Ramis’ theorem to test the non-
complete integrability of the planar three-body problem, in From Combinatorics to Dynamical
Systems. EMS IRMA Lectures in Mathematics and Theoretical Physics, vol. 3 (de Gruyter,
Berlin, 2003), pp. 163–177

50. J.-J. Morales-Ruiz, S. Simon, On the meromorphic non-integrability of some N-body prob-
lems. Discrete Contin. Dyn. Syst. 24(4), 1225–1273 (2009)

51. T. Combot, Non-integrability of the equal mass n-body problem with non-zero angular
momentum. Celestial Mech. Dynam. Astronom. 114(4), 319–340 (2012)

52. J.-J. Morales-Ruiz, C. Simó, S. Simon, Algebraic proof of the non-integrability of Hill’s
problem. Ergodic Theory Dynam. Syst. 25(4), 1237–1256 (2005)

53. A. Aparicio-Monforte, J.-A. Weil, A reduced form for linear differential systems and its
application to integrability of Hamiltonian systems. J. Symb. Comput. 47(2), 192– 213 (2012)

54. O. Pujol, J.-P. Pérez, J.-P. Ramis, C. Simó, S. Simon, J.-A. Weil, Swinging Atwood Machine:
experimental and numerical results, and a theoretical study. Physica D: Nonlinear Phenomena
239(12), 1067–1081 (2010)

55. J.-J. Morales-Ruiz, A differential Galois approach to path integrals. J. Math. Phys. 61(5),
052103, 12 (2020)

56. C. Fieker, W.A. de Graaf, Finding integral linear dependencies of algebraic numbers and
algebraic Lie algebras. LMS J. Comput. Math. 10, 271–287 (2007)

57. W. Magnus, On the exponential solution of differential equations for a linear operator. Comm.
Pure Appl. Math. 7, 649–673 (1954)

58. J. Wei, E. Norman, Lie algebraic solution of linear differential equations. J. Math. Phys. 4,
575–581 (1963)

59. J. Wei, E. Norman, On global representations of the solutions of linear differential equations
as a product of exponentials. Proc. Amer. Math. Soc. 15, 327–334 (1964)

60. D. Blázquez-Sanz, J.-J. Morales-Ruiz, Differential Galois theory of algebraic Lie-Vessiot sys-
tems, in Differential Algebra, Complex Analysis and Orthogonal Polynomials. Contemporary
Mathematics, vol. 509 (American Mathematical Society, Providence, 2010), pp. 1–58

61. A. Aparicio-Monforte, J.-A. Weil, A reduction method for higher order variational equations of
Hamiltonian systems, in Symmetries and Related Topics in Differential and Difference Equa-
tions, Contemporary Mathematics, vol. 549 (American Mathematical Society, Providence,
2011), pp. 1–15

62. M.F. Singer, Liouvillian solutions of linear differential equations with Liouvillian coefficients.
J. Symb. Comput. 11(3), 251–273 (1991)



Differential Galois Theory and Integration 171

63. T. Dreyfus, J.-A. Weil, Maple worksheet with the examples for this paper: http://www.unilim.
fr/pages_perso/jacques-arthur.weil/DreyfusWeilReductionExamples.mw, (2020)

64. M.A. Barkatou, On rational solutions of systems of linear differential equations. J. Symb.
Comput. 28(4–5), 547–567 (1999)

65. M.A. Barkatou, T. Cluzeau, C. El Bacha, J.-A. Weil, Computing closed form solutions of
integrable connections, in Proceedings of the 36th International Symposium on Symbolic and
Algebraic computation (New York, NY), ISSAC ’12 (ACM, New York, 2012)

http://www.unilim.fr/pages_perso/jacques-arthur.weil/DreyfusWeilReductionExamples.mw
http://www.unilim.fr/pages_perso/jacques-arthur.weil/DreyfusWeilReductionExamples.mw


Top-Down Decomposition: A Cut-Based
Approach to Integral Reductions

Hjalte Frellesvig

Abstract In this contribution we will discuss a new approach to the derivation of
linear relations between Feynman integrals. This new approach uses the mathemat-
ical object known as the intersection number to define what amounts to an inner
product between Feynman integrals, which can be used to project directly unto
the basis of master integrals. In particular we will discuss one perspective to this
intersection-based method, which we name the top-down approach. This approach
can be seen as an integral level version of the algorithms based on integrand
reduction and generalized unitarity cuts, that were revolutionizing NLO scattering
computations in the early 2000s.

1 Introduction

The derivation of linear relations between Feynman integrals is a major bottleneck
in state of the art two-loop scattering amplitude calculations in the Standard Model.
Following the text-book approach of writing down the Feynman diagrams, and
performing the Dirac and color algebra, will give a set of O(10000) scalar Feynman
integrals to evaluate. Thankfully such integrals are related through linear relations,
that allow them all to be written in terms of a minimal set of linearly independent
objects called master integrals, which rather number a more manageable O(100).
The traditional way of deriving such relations uses Integration-By-Parts (IBP)
relations [2] systematized by Laporta’s algorithm [3]. This algorithm has been
implemented in a number of public codes, with names such as AIR [4], FIRE [5],
Reduze [6], LiteRed [7], and Kira [8]. These codes are all highly optimized, and
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the community is benefiting from the competition between the research groups
concerning the speed with which the integral reductions are done. Without these
codes (or their private counterparts) multi-loop scattering amplitude computations
with number of loops and legs that is the standard today, would not be possible. Yet
no matter the amount of optimization that is put in, approaches based on Laporta’s
algorithm have as an intermediate step the solution of a very large linear system
relating the various Feynman integrals, so an approach to the derivation of the
linear relations that omits this step would be highly desirable. Such an approach
was found in ref. [9], and consists of a projection in the vector space formed by the
Feynman integrals, with the intersection number playing the role of an inner product
between them. At one-loop (corresponding to the next-to leading order (NLO) in the
perturbative expansion) the situation is different, particularly because the Feynman
integrals all are known. Historically, the main bottleneck there has been the step
of the Feynman diagram generation and Dirac algebra, which even at one-loop is
hard to do in “real time” in the context of cross-section computations. This problem
has however been solved using methods of integrand reduction and generalized
unitarity cuts [10–22] which together form what is occasionally known as the OPP
method after the authors of ref. [13]. The introduction of these techniques lead to the
“NLO revolution” which took place around 2012, after which all one-loop scattering
amplitudes may be considered known. The purpose of this document is to discuss
an approach to integral decomposition using intersection numbers, which utilize
insights from the OPP method, with the aim of combining these two aspects of a
scattering amplitude computation, the integrand decomposition and the derivation
of the integral relations, into one unified step.

2 Integrand Decomposition and the OPP Method

In this section we will discuss the OPP method and integrand reduction. For the
one-loop case, these developments were made during the 1990s and early 2000s in
a series of papers, of which refs. [10–22] probably is a non-exhaustive list.

For one-loop scattering amplitudes, the numerator may schematically1 be written
as a sum of numerators of one-loop diagrams with 4, 3, 2, and 1 propagators
respectively. That is

(1)

1Equation (1) is brushing a lot under the rug. Besides the spurious terms discussed below, it does
not include the rational term R containing the contributions not captured by four-dimensional cuts,
nor does it include the extraction of pentagon-terms.
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From Feynman diagrams an expression of this form can be obtained by identify-
ing terms in the numerator of the LHS as combinations of propagators and objects
that integrate to zero, but a better approach that does not require the computation
of loop-level Feynman diagrams, consists of applying generalized unitarity cuts.
In this context a generalized unitary cut may be seen as a δ-function insertion, or
alternatively as a contour deformation into a complex loop around the pole formed
by the propagator, that is

1

D
→ 2πiδ(D) or

∫
C

f (k)dk

D(k)
→
∮

f (k)dk

D(k)
(2)

Let us start by extracting the box-coefficients di of Eq. (1). For each di this can
be done by performing the quadruple-cut (that is four generalized unitarity cuts)
corresponding to the four propagators of the corresponding box integral:

(3)

since the cut puts the lower terms to zero. The cut of the box on the RHS is 1,
while the cut of the general integrand on the LHS may be identified as a product of
tree-level amplitudes:

di =
∑

A(0)
i1 A(0)

i2 A(0)
i3 A(0)

i4 (4)

where the four tree-level amplitudes correspond to the four “pieces” the LHS of
Eq. (3) gets cut into, and the sum goes over the various spin and flavour states the
propagating particles may carry. When all the di-coefficients have been found, the
triangle-coefficients cj are next. They may be isolated on triple cuts:

(5)

where again the LHS may be identified as a product of tree level amplitudes. The
same procedure may be repeated for the bubble and tadpole coefficients b and a.

Yet writing the expansion as in Eq. (1) swipes something under the rug. There
is indeed only one coefficient contributing to the physical amplitude for each term
on the RHS. But at the integrand level there are additional terms, which, however,
all integrate to zero. For instance a fully reduced box-integral is in full generality
written as

∫
C

d + d̃ k ·η
P1(k)P2(k)P3(k)P4(k)

dDk (6)
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with

ημ ∝ εμν1ν2ν3p1ν1p2ν2p3ν3 (7)

defined to be perpendicular to the external momenta of the box (of which only
p1,p2,p3 are independent) such that the corresponding integral integrates to zero.
This means that the coefficient d̃ doesn’t contribute to any physics, and such a term
is known as a spurious term. Yet it is necessary to extract it, since it will contribute
to the subtraction needed to extract the triangle-coefficients cj . For the triangles the
situation is even worse since the most general irreducible integral is

∫
C

�tri(k)

P1(k)P2(k)P3(k)P4(k)
dDk (8)

with

�tri = c + c̃10 (k ·η1) + c̃01 (k ·η2) + c̃11 (k ·η1)(k ·η2) + c̃12 (k ·η1)(k ·η2)
2

+ c̃21 (k ·η1)
2(k ·η2) + c̃20;02 ((k ·η1)

2 − (k ·η2)
2) (9)

where η1 and η2 are defined to be perpendicular to the external momenta of the
triangle, and to each other. Again the tilded c-coefficients multiply terms that
integrate to zero, so this means that for the triangles there are 6 spurious term for
each genuine triangle coefficient. A similar explosion of terms take place for the
bubbles and the tadpoles.

Another potential issue of the expansion of Eq. (1) is that we may end up
computing coefficients of integrals that are not independent. For instance in the
fully mass-less case the triangle and bubble integrals are related through the well-
known relation

(10)

meaning that it is redundant to discuss triangle-coefficients and bubble-coefficients
as distinct objects.

Yet of course none of these issues—the presence of spurious terms and the
potential over-counting—are real obstacles at the one-loop level and none of it
prevented the NLO revolution.

At the two-loop level the situation is however different. The computation of
Feynman integrals is so much harder at the multi-loop level, that this is where the
main obstacles are for such computations rather than at the integrand reduction step.
Yet still there have been attempts as generalizing the procedure outlined above to the
multi-loop case [23–43]. And while such an approach has proven useful for actual
NNLO scattering amplitude computations, it has not brought about any “NNLO
revolution”. The reason for this is that the two problems outlined above get a lot
worse at the multiloop level. Let us limit ourselves to the fully massless double-
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box. There an integrand reduction similar to Eq. (1) may be written as

(11)

We have not written prefactors in front of the terms on the RHS, and that is because
in the multiloop case there is not just one term per integral sector. For the double-box
the irreducible numerator may be written as

�d-box = c1 + c2(k2 ·p1) + . . . + c32(k1 ·p4)(k2 ·p1)
3(k2 ·η) (12)

with 32 terms in total of which half are spurious and the other half not. This means
there will be 16 double-box terms contributing to the physics. Compare this with
the fact that the double-box has two master-integrals in its highest sector, meaning
we end up with eight times the minimal number of coefficients. For the next two
terms on the RHS of Eq. (11) the situation is even worse [44]. The second integral
has 10 + 10 terms in its irreducible numerator, and the third has 35 + 34, but none
of these two integrals have any master integrals at all in their highest sector, so an
ideal approach would not be considering them at all.

These examples should motivate why it is worthwhile to search for a different
approach that reduce the integrand directly unto master integrals, omitting the two
issues of spurious and redundant terms—an approach that might be thought of as
integral level OPP.

3 Integral Reduction and Intersection Theory

As discussed in the introduction, the reduction of Feynman integrals unto a minimal
basis of master integrals, is a major bottleneck in modern day scattering amplitude
computations. Writing a Feynman integral in terms of master integrals

I =
ν∑
i

ciIi (13)

with ν denoting the number of master integrals, seems reminiscent of writing
a vector in terms of as set of basis-vectors. And indeed that correspondence is
not merely metaphorical, it is not hard to realize that Feynman integrals through
their linear relations do form a vectorspace. For vector spaces endowed with an
inner product, extracting the coefficients of the basis vectors can be done with a
projection:

〈v| = 〈v|vj 〉
(
C−1)

j i
〈vi | with Cij = 〈vi |vj 〉

=
∑
i

ci〈vi | with ci = 〈v|vj 〉
(
C−1)

j i
(14)
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The case of an orthonormal basis may be more familiar, there

〈vi |vj 〉 = δij ⇒ ci = 〈v|vi〉 (15)

If this was possible to do for Feynman integrals, it would be possible to get around
the IBP relations and the associated large linear system that have to be inverted in
the traditional method of integral reduction. But to do this requires the introduction
of an object which may play the role of an inner product between Feynman integrals.

To get there we have to introduce a parametric representation for Feynman inte-
grals. We will focus on the Baikov representation [45] (see also [46–51]), but many
of the following steps would be possible also with more traditional parametrizations
such as Schwinger or Feynman parameters. In the Baikov representation, a Feynman
integral is expressed as

I =
∫

dDk1

πD/2 · · ·
dDkL

πD/2

N(k)
P1(k)a1 · · · PP(k)aP

= K

∫
C

N(x)Bγ (x) dnx

x
a1
1 · · · xaP

P

(16)

Here γ = d − E − L − 1 where E is the number of independent external
momenta, and K (which we leave out in the following) additionally a function of
the kinematics. B is the Baikov polynomial defined as

B = detG
({

k1, · · · , kL, p1, · · · , pE

})
(17)

with the Gram matrix G being defined as the matrix of scalar product of its argument
vectors with themselves. B will be a polynomial function of the Baikov variables xi
which equal the propagators. The integration contour C equals the area in which the
Baikov polynomial is positive, and the ai are integers. There is also a loop-by-loop
version of Baikov parametrization [50] where the Baikov polynomial of Eq. (16)
is replaced with a product of polynomials raised to different powers

∏2L−1
i=1 Bγi

i

trading some simplicity for a smaller number of integration variables.
We may write the integral of Eq. (16) as

I =
∫
C
uφ with u = Bγ and φ = N(x) dnx

x
a1
1 · · · xaP

P

(18)

where the u is a multivalued function and φ a differential form with rational
prefactor. In fact φ and C may be thought of as not just a form and a contour, but as
a representative of an equivalence-class of forms and contours respectively which
share the property that the integral of Eq. (18) gives the same result. In this context
C is known as a twisted cycle, and φ as a twisted cocycle. With this notation we may
further write I as a pairing between a twisted cycle and cocycle, I = 〈φ|C] with
the multivalued function u being implicit. It is likewise possible to define a dual
integral [C|ϕ〉 = ∫

Cu
−1ϕ showcasing the definition of the dual cycle and cocycle.

And from this we have all the ingredients needed to define the intersection number
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as a different kind of pairing, not between a cycle and a cocycle but rather between
a cocycle and a dual cocycle 〈φ|ϕ〉. This object plays exactly the role of an inner
product between Feynman integrals needed in order to be able to use Eq. (14) to
extract coefficients of master integrals. Writing all the integrals as Ii = 〈φi |C] the
relation becomes

I =
ν∑
i

ciIi with ci = 〈φ|ϕj 〉
(
C−1)

j i
with Cij = 〈φi |ϕj 〉 (19)

The exact mathematical definition of the intersection number will not be given
here. For this the reader should regard the mathematical literature [53–55]. Rather
we will discuss how to compute it. In the univariate case (that is when the φi are
univariate differential forms) the intersection number is given as

〈φ|ϕ〉 =
∑
p∈P

Resz=p(ψϕ) with (d+ ω)ψ = φ (20)

Here ω ≡ dlog(u) is known as the twist, and P is the set of poles of ω. ψ has to
be found by solving the differential equation on the right of Eq. (20). But since the
result only has to be used inside the residue function, it is not necessary with an
exact solution. It is enough to make a series ansatz around the pole p as ψ → ψp =∑max

i=min ψ
(i)
p zi where min and max have to be chosen such that all powers that may

contribute to the residue are included.
With the loop-by-loop version of Baikov representation briefly discussed above,

it is possible to get quite a few Feynman integrals to a form that is univariate on
the maximal cut, such that univariate intersection theory applies. This allows us to
extract integral relations valid on the maximal cut, which corresponds to extracting
the coefficients of master integrals in the highest sector. In ref. [52] we did this for
quite a few Feynman integrals, illustrated in Fig. 1.

Yet to get the complete reduction of a Feynman integral, a multivariate intersec-
tion number is needed. One approach to the computation of multivariate intersection
numbers [1, 56, 57], is given by the following set of equations:

n〈φ(n)|ϕ(n)〉 =
∑
p∈Pn

Reszn=p

(
ψ

(n)
i n−1〈e(n−1)

i |ϕ(n)〉
)

(21)

(
δij ∂zn + �̂

(n)

j i

)
ψ

(n)
j = φ̂

(n)
i (22)

dznvi = �
(n)
ij vj vi =

∫
Cn−1

u e
(n−1)
i (23)

�̂
(n)

ij = n−1〈(∂zn+ω̂n)e
(n−1)
i |h(n−1)

k 〉(C−1
(n−1)

)
kj

(24)
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Fig. 1 Univariate examples from ref. [52] where they are reduced on the maximal cut. Please note
the presence of L-loop and n-leg examples, something that would not be directly reducible with
the public IBP-based codes

φ
(n)
i = n−1〈φ(n)|h(n−1)

j 〉(C−1
(n−1)

)
j i

(25)

C(n−1)
ij = n−1〈e(n−1)

i |h(n−1)
j 〉 (26)

We will not go through in detail how to interpret or use these formulae, merely
discuss a few of their features. n〈∗|∗〉 denotes an n-variate intersection number. We
see from Eq. (21) that the n-variate intersection number is given in terms of n−1-
variate intersection numbers. This makes the formula recursive, and the recursion
will end since we know how to compute the univariate intersection number. We also
see that the intersection number is given as a sum of residues as in the univariate
case, and that a ψ appears in the argument of the residue which is defined as a
solution to a differential equation (22), a property also shared by the univariate case.
The main difference from the univariate case is the presence of the connection-
matrix � which replaces the ω of Eq. (20). � is defined through Eq. (23), and we
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Fig. 2 Multivariate examples from ref. [1]

see that for n = 1 vi = u and �(1) = d log(u) is a solution, but in general � is not
given as a d log of anything and must be computed using Eq. (24).

With the multivariate intersection number we are able to perform the full
reduction of a number of Feynman integrals at one and two loops. See Fig. 2.
In refs. [1, 57] we developed a number of different approaches to this complete
reduction. The “straight decomposition” consist of the direct use of Eq. (19).
The “bottom-up decomposition” consist of performing the reduction on a set of
“spanning cuts” which together allows for the extraction of all the master integral
coefficients. Finally there is the “top-down decomposition” which is the subject of
the following section.

But before discussing the top-down approach, let us show an example of a
reduction done in the “straight decomposition” approach. This will also be the
example we will discuss in the context of top-down in the following section. The
example is that of a one-loop massless box-integral reduced unto the set of master
integrals consisting of a box and an s and a t-channel bubble. The dots on the LHS
denote higher propagator powers.

(27)

Performing the Baikov parametrization yields

u(x) = ((st−sx4−tx3)
2 − 2tx1(s(t+2x3−x2−x4)+tx3)

+ s2x2
2 + t2x2

1 − 2sx2(t (s−x3)+x4(s+2t))
)D−5

2 (28)

with u = Bγ as given by Eq. (16). The integrals are then given as Ii =
∫
C uφ̂id4x

with

φ̂ = 1

x3
1x

2
2x3x4

, φ̂1 = 1

x1x2x3x4
, φ̂2 = 1

x1x3
, φ̂3 = 1

x2x4
. (29)

From the u of Eq. (28) we may compute ω = d log(u), but then we encounter a
problem: For the theory to be valid, it is a requirement that there are no poles of the
φi that are not poles of ω. But the xi = 0 poles of the φi are not present in ω so this
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assumption is violated! A solution to this is to regulate omega by performing

u→ u x
ρ
1 x

ρ
2 x

ρ
3 x

ρ
4 (30)

where ρ is a regulator that can be put to zero at the end of the computation. This
replacement corresponds to ω → ω+∑i ρ/xi and therefore no illegal poles are left.
With this regulator in place we may go ahead and apply Eq. (19). To do so requires
the computation of 12 4-variate intersection numbers. That is between the four φi of
Eq. (29) and the three members of a dual basis ϕi which can be chosen arbitrarily.
We will not here write the individual intersection numbers, but combining them
according to Eq. (19) and taking the ρ → 0 limit, gives the result

c1 = −(D−7)(D−6)(D−5)

2s2t
, c2 = 2(D−7)(D−5)(D−3)

s4t
,

c3 = 2(D−7)(D−5)(D−3)(2s+(D−8)t)

(D−8)s2t4 (31)

for the three master integral coefficients, a result which is in agreement with that
produced by standard IBP-codes such as FIRE [58].

4 The Top-Down Decomposition Approach

Let us try to redo the reduction of Eq. (27) with the top-down decomposition
approach, which is best explained through an example. The philosophy is to try to
emulate the integrand-level reduction as given by Eq. (1). Performing the maximal
cut isolates the box-coefficient as in Eq. (3), since the bubble-terms vanish as the
cut corresponds to taking a residue where none is present. That is

(32)

Using the u of Eq. (28), this gets evaluated2 as
∮

u

x3
1x

2
2x3x4

= c1

∮
u

x1x2x3x4
⇔ 1

2∂
2
x1
∂x2u

∣∣
xi→0 = c1u

∣∣
xi→0 ⇔

c1 =
1
2∂

2
x1
∂x2u

u

∣∣∣
xi→0

= −(D−7)(D−6)(D−5)

2s2t
(33)

in agreement with Eqs. (31).

2We note that this step has nothing to do with intersection theory, and was done for instance in
ref. [45].
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Next we do the double-cut corresponding to the s-channel bubble. We may move
the now known box-coefficient to the LHS of the equation (as in Eq. (5)), giving

(34)

The LHS may be put together as one expression

( 1
2∂

2
x1
u

x2
2x4

− c1u

x2x4

)∣∣∣∣
x1,3→0

= �ubub (35)

where ubub is u on the bubble-cut

ubub = u|x1,x3→0 = B(D−5)/2
bub (36)

Bbub =
(
st2 + s(x2−x4)

2 − 2t (s(x2+x4)+2x2x4)
)

(37)

and � = �̂ dx2 ∧ dx4 is a rational two-form

�̂ =
1
2∂

2
x1
u

ux2
2x4

∣∣∣
x1,x3→0

− c1

x2x4
= P(x2, x4)

x2
2x4B2

bub

(38)

where P is a polynomial in x2 and x4. We want to reduce this unto the bubble which
on the cut has φ̂bub = 1. But once again we encounter the problem that � has
poles (in x2 and x4) which are not present in ωbub = d log(ubub). As in the previous
section we could fix this by introducing regulators ubub → ububx

ρ
2 x

ρ
4 which would

introduce the poles and make the procedure of Eq. (19) go through. But to do so
would invalidate the point of performing the subtractions in the first place, since
their entire purpose is to remove these poles as it happened in the integrand-level
computation in Sect. 2. But of course there is no guarantee that these poles will
cancel explicitly as we see. Rather what is guaranteed is that the resulting � is in
the same equivalence class as a �̃ without the poles, that is there exist a ξ such that

�̃ = �− (d+ ωbub)ξ = P̃(x2, x4)

B2
bub

dx2 ∧ dx4 (39)

where �̃ is guaranteed to describe the same integral as the original �. P̃ is another
polynomial which will be different from P. Our approach will be to find such a ξ
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explicitly. We make an ansatz

ξ =
∑2,2

i=−1,j=−1 κ1ij x
i
2x

j

4 dx2 + ∑2,2
i=−2,j=0 κ2ij x

i
2x

j

4 dx4

Bbub
(40)

We may then insert it in Eq. (39), and impose that ˆ̃�B2
bub =

∑
ij qij x

i
2x

j

4 has all
qij with either i < 0 or j < 0 vanishing. Doing so will fix the κ-coefficients of the
ansatz,3 and result in a �̃ without the left-over poles from the box-propagators.

With this in place we may now directly apply Eq. (19) to extract the bubble-
coefficient without the need for any regulators:

c2 = 〈�̃|1〉
〈1|1〉 =

2(D−7)(D−5)(D−3)

s4t
(41)

in agreement with Eqs. (31). The other bubble-coefficient c3 may be extracted
from the other bubble-cut in a similar fashion, resulting in all the master integral
coefficients being known.

We see that the top-down approach to integral decomposition in this example
required the calculation of 4 2-variable intersection numbers, as opposed to the 12 4-
variate intersection numbers needed for the straight approach to the decomposition
discussed in the previous section. Thus the top-down approach is an improvement
in all respects. The trade-of is the need for solving the linear system of equations
that impose the vanishing of the poles from �̃, which is somewhat reminiscent of
the linear systems that have to be solved in the traditional IBP-based approach to
integral decomposition.

Let us finish the section by describing the top-down approach as an algorithm
in the general case. Starting from the sectors with the most propagators we may
compute

�̃ = φ −
∑

i∈higher

ciφi − (d+ ω)ξ (42)

where ω is computed from the u of that sector, and where ξ should be fitted such
that all unwanted poles of �̃ vanish. Then we may compute the coefficients of the
masters in that sector with Eq. (19):

ci = 〈�̃|ϕj 〉(C−1)ji with Cij = 〈φi |ϕj 〉 (43)

3We note that had we replaced the subtraction of the box-coefficient in Eq. (38) with a free
subtraction term (c1 → κ1), this κ-fitting step would give a solution only if κ1 = c1, so treating κ1
on equal footing with the other κs, is another approach to fixing the box-coefficient.
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This procedure should be repeated sector by sector until all master integral
coefficients ci are known.

5 Discussion

For now, the most efficient intersection-based approach to integral-decomposition,
is the bottom-up approach described in detail in refs. [1, 57]. Despite the fact that
the bottom-up approach computes higher sector coefficients several times, it beats
the top-down approach due to the step involving the fitting of the coefficients of ξ
that makes the higher sector poles vanish. This has to be done for each sector, and
can be highly involved in low sectors of multi-loop amplitudes. If there were a way
to identify a suitable ξ without this fitting-step the situation would be very different,
but if this is possible is a good open question.

Yet the main bottleneck to intersection-based integral decomposition is not
specific to the top-down approach. It involves the multivariate intersection number,
which in our approach is computed using Eqs. (21–26). That approach has a number
of subtle issues and open questions (partially discussed in refs. [1, 57]) and to find
a different approach to computing the multivariate intersection number would be of
both theoretical interest and practical use. It is known that much simpler formulae
exist for the special case of all φi having d log-form [55], and to find a formula of
similar complexity for the multivariate intersection number valid for general ω and
φ would be a huge improvement. (See ref. [59] for some work in that direction.)

As we saw above the top-down approach avoids the introduction of the regulators
ρ discussed around Eq. (30). But another approach to this may be to define the
cohomology-theory relative to the location of the unwanted poles. This is known
as “relative cohomology” and is discussed mathematically in the univariate case in
ref. [60]. To turn this into a form where it is directly applicable, and to generalize it
to the multivariate case, would be a worthwhile research direction.

In these proceeding and in most of the work of refs. [1, 52, 57] we focused on
general Feynman integrals. Yet it is very possible that simplifications occur for
integrals with special “nice” properties that one might be interested in in other
contexts as well. This refers mainly to integrals of uniform transcendentality [61, 62]
(see refs. [63, 64] for developments in that direction), but also for instance finite
integrals may be worth studying in the context of intersection theory. As a related
question, also an investigation into connections between the intersection number
and the pole- and branch cut-structure of the integral seems worthwhile. (See also
ref. [65]).

At the moment the intersection number-based approach to integral decomposi-
tion is not a competitor in terms of speed or applicability to the highly optimized
public [4–8] or private codes based on the IBP approach and Laporta’s algorithm.
This is due to the issues discussed above, particularly the intricateness of the
multivariate intersection algorithm. The authors of refs. [1, 52, 57] have their private
implementation of the multivariate algorithm as given by Eqs. ((21)–(26)), but
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that algorithm and the implementation still requires some amount of tweaking
for individual cases. How satisfactory these issues will be solved in the future is
of course unknown, but I believe that due to its mathematical simplicity—being
merely projections in the vector space of Feynman integrals—the intersection-based
algorithm has the potential to become a serious competitor to IBP-based approaches.

As we saw on the previous pages, it is possible to extend a lot of the structure
of the OPP method to the integral level. This has been made possible thanks to
the introduction of the intersection number as an effective inner product between
Feynman integrals. If these developments are going to bring about progress
comparable to the NLO revolution of the early 2000s is a question for the future.
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Hypergeometric Functions and Feynman
Diagrams

Mikhail Kalmykov, Vladimir Bytev, Bernd A. Kniehl, Sven-Olaf Moch,
Bennie F. L. Ward, and Scott A. Yost

Abstract The relationship between Feynman diagrams and hypergeometric func-
tions is discussed. Special attention is devoted to existing techniques for the
construction of the ε-expansion. As an example, we present a detailed discussion of
the construction of the ε-expansion of the Appell function F3 around rational values
of parameters via an iterative solution of differential equations. As a by-product,
we have found that the one-loop massless pentagon diagram in dimension d =
3 − 2ε is not expressible in terms of multiple polylogarithms. Another interesting
example is the Puiseux-type solution involving a differential operator generated by
a hypergeometric function of three variables. The holonomic properties of the FN

hypergeometric functions are briefly discussed.

1 Introduction

Recent interest in the analytical properties of Feynman diagrams has been motivated
by processes at the LHC. The required precision demands the evaluation of a
huge number of diagrams having many scales to a high order, so that a new
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branch of mathematics emerges, which we may call the Mathematical Structure of
Feynman Diagrams [1, 2], which includes elements of algebraic geometry, algebraic
topology, the analytical theory of differential equations, multiple hypergeometric
functions, elements of number theory, modular functions and elliptic curves,
multidimensional residues, and graph theory. This mathematical structure has been
extensively developed, studied and applied. For a more detailed discussion of the
oldest results and their relation to modern techniques, see Refs. [3, 4]). One of these
approaches is based on the treatment of Feynman diagrams in terms of multiple
hypergeometric functions [5]. For example, in the series of papers [6–8], the one-
loop diagrams have been associated with the R-function (a particular case of the
FD-function [9–11]).

1.1 Mellin–Barnes Representation, Asymptotic Expansion,
NDIM

A universal technique based on the Mellin–Barnes representation of Feynman
diagrams has been applied to one-loop diagrams in Ref. [12, 13] and to two-loop
propagator diagrams in Ref. [14–18].1 The multiple Mellin–Barnes representation
for a Feynman diagram in covariant gauge can be written in the form

�(A,B;C,D; z) =
∫ +i∞
−i∞

φ(t)dt =
∫ +i∞
−i∞

∏
a,b,c,r

�(
∑m

i=1 Aai ti+Ba)

�(
∑r

j=1 Cbj tj+Db)
dtcz

∑
l αkl tl

k
,

(1)

where zk are ratios of Mandelstam variables and A,B,C,D are matrices and
vectors depending linearly on the dimension of space-time n and powers of the
propagators. Closing the contour of integration on the right (on the left), this integral
can be presented around zero values of z in the form

�(A,B;C,D; z) =
∑
α

fαH(A,B;C,D; z)z α , (2)

where the coefficients fα are ratios of �-functions and the functions H are
Horn-type hypergeometric functions [22] (see Sect. 2 for details). The analytic con-
tinuation of the hypergeometric functions H(z) into another region of the variables z
can be constructed via the integral representation (when available) [23, 24], H(z)→
H(1 − z). However, for more complicated cases of Horn-type hypergeometric
functions, this type of analytic continuation is still under construction [25, 26].

1Several programs are available for the automatic generation of the Mellin–Barnes representation
of Feynman diagrams [19–21].
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A major set of mathematical results (see, for example, [27–29]) is devoted to
the construction of the analytic continuation of a series around zj = 0 to a series
of the form zA

zB
: H(z) → H(zA

zB
), where the main physical application is the

construction of an expansion about Landau singularities L(z): H(z) → H(L(z)).
For example, the singular locus L of the Appell function F4(z1, z2) is L =
{(z1, z2) ∈ C

2|z1z2R(z1, z2) = 0}∪L∞ where R(z1, z2) = (1−z1−z2)
2−4z1z2, and

the physically interesting case of an expansion around the singularities corresponds

to an analytical continuation F4(z1, z2)→ F4

(
R(z1,z2)

z1
,
R(z1,z2)

z2

)
.

A similar problem, the construction of convergent series of multiple Mellin–
Barnes integrals in different regions of parameters, has been analyzed in detail
for the case of two variables [30–32]. However, to our knowledge, there are no
systematic analyses of the relation between these series and the singularities of
multiple Mellin–Barnes integrals.

It was understood long ago that there is a one-to-one correspondence between the
construction of convergent series from Mellin–Barnes integrals and the asymptotic
expansions; see Ref. [33] for example. The available software, e.g. Ref. [34], allows
the construction of the analytical continuation of a Mellin–Barnes integral in the
limit when some of the variables z go to 0, or ∞. These are quite useful in the
evaluation of Feynman diagrams, but do not solve our problem. The current status
of the asymptotic expansions is discussed in Ref. [35, 36].

Another technique for obtaining a hypergeometric representation is the so-called
“Negative Dimensional Integration Method” (NDIM) [37–42]. However, it is easy
to show [43] that all available results follow directly from the Mellin–Barnes
integrals [12].

For some Feynman diagrams, the hypergeometric representation follows from a
direct integration of the parametric representation, see Ref. [44–52].

We also mention that the “Symmetries of Feynman Integrals” method [53–55]
can also be used to obtain the hypergeometric representation for some types of
diagrams.

1.2 About GKZ and Feynman Diagrams

There are a number of different though entirely equivalent ways to describe
hypergeometric functions:

• as a multiple series;
• as a solution of a system of differential equations (hypergeometric D-module);
• as an integral of the Euler type;
• as a Mellin–Barnes integral.

In a series of papers, Gel’fand et al. [56–58] (to mention only a few of their series
of papers devoted to the systematic development of this approach) have developed
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a uniform approach to the description of hypergeometric functions.2 The formal
solution of the A-system is a so-called multiple �-series having the following form:

∑
(l1,··· ,lN )∈L

z
l1+γ1
1 · · · zlN+γM

N

�(l1 + γ1 + 1) · · ·�(lN + γN + 1)
,

where � is the Euler �-function and the lattice L has rank d. When this formal
series has a non-zero radius of convergence, it coincides (up to a factor) with a
Horn-type hypergeometric series [58] (see Sect. 2). Any Horn-type hypergeometric
function can be written in the form of a �-series by applying the reflection formula
�(a + n) = (−1)n �(a)�(1−a)

�(1−a−n)
. Many examples of such a conversion—all Horn-

hypergeometric functions of two variables—have been considered in Ref. [62].
The Mellin–Barnes representation was beyond Gelfand’s consideration. It was

worked out later by Fritz Beukers [63]; see also the recent paper [64]. Beukers
analyzed the Mellin–Barnes integral

∫
#N

i=1�(−γi − bis)v
γi+bis
i ds ,

and pointed out that, under the assumption that the Mellin–Barnes integral con-
verges absolutely, it satisfies the set of A-hypergeometric equations. The domain
of convergence for the A-hypergeometric series and the associated Mellin–Barnes
integrals have been discussed recently in Ref. [65].

Following Beuker’s results, we conclude that any Feynman diagram with a
generic set of parameters (to guarantee convergence, we should treat the powers of
propagators as non-integer parameters) could be treated as an A-function. However
our analysis has shown that, typically, a real Feynman diagram corresponds to an
A-function with reducible monodromy.

Let us explain our point of view. By studying Feynman diagrams having a
onefold Mellin–Barnes representation [66], we have found that certain Feynman
diagrams (Eq

1220, B
2
1220, V

q

1220, J
q

1220 in the notation of Ref. [66]) with powers
of propagator equal to one (the so-called master-integrals) have the following
hypergeometric structure (we drop the normalization constant for simplicity):

�(n, 1; z) = 3F2(a1, a2, a3; b1, b2; z)+ zσ 4F3(1, c1, c2, c3;p1, p2, p3; z) , (3)

where the dimension n of space-time [67] is not an integer and the difference
between any two parameters of the hypergeometric function also are not integers.
The holonomic rank of the hypergeometric function pFp−1 is equal to p, so that the
Feynman diagram is a linear combination of two series having different holonomic

2The detailed discussion of A-functions and their properties is beyond our current consideration.
There are many interesting papers on that subject, including (to mention only a few) Refs. [59–61].
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rank. What could we say about the holonomic rank of a Feynman diagram �? To
answer that question, let us find the differential equation for the Feynman diagram
�(n, 1; z) starting from the representation Eq. (3). This could be done by the
Holonomic Function Approach [68] or with the help of a programs developed by
Frederic Chyzak [69] (it is a MAPLE package) or by Christoph Koutschan3 [70]
(it is MATHEMATICA package). We used a private realization of this approach
based on ideas from the Gröbner basis technique. Finally, we obtained the result
that the Feynman diagram � satisfies the homogeneous differential equation of the
hypergeometric type of order 4 with a left-factorizable differential operator of order
1:

(θ + A) [(θ + B1)(θ + B2)(θ + B3)+ zθ(θ + C1)(θ + C2)]�(n, 1; z) = 0 ,

(4)

where none of the Bj and Ca are integers and θ = z d
dz

.
It follows from this differential equation that the holonomic rank of the Feynman

diagram � is equal to 4, and factorization means that the space of solutions splits
into a direct sum of two spaces of dimension one and three: �dim = 4 = 1⊗ 3. As
it follows from [71], the monodromy representation of Eq. (4) is reducible and there
is a one-dimensional invariant subspace. Consequently, there are three non-trivial
solutions (master-integrals) and the one-dimensional invariant subspace corresponds
to an integral having a Puiseux-type solution (expressible in terms of �-functions).

We pointed out in Ref. [66] that a Feynman diagram can be classified by
the dimension of its irreducible representation. This can be evaluated by the
construction of differential equations or by using the dimension of the irreducible
representation of the hypergeometric functions entering in the r.h.s. of Eq. (2).
Indeed, in the example considered in Eq. (3), the dimension of the irreducible
representation 4F3(1, c;p; z) is equal to 3 [71], so that the dimension of the
irreducible space of the Feynman diagram � is equal to 3, see Eq. (4), and � is
expressible via the sum of a series (see Eq. (3)) with an irreducible representation of
dimension 3.

The results of the analysis performed in Ref. [66], are summarized in the
following proposition:

Proposition A Feynman diagram can be treated as a linear combination of Horn-
type hypergeometric series where each term has equal irreducible holonomic rank.

Examining this new “quantum number,” irreducible holonomic rank, we dis-
cover, and can rigorously prove, an extra relation between master-integrals [72].
In many other examples we found a complete agreement between the results
of differential reduction and and the results of a reduction based on the IBP
relations [73, 74].

3See Koutschan’s paper in the present volume.
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The Feynman diagram J considered in Ref. [72] satisfies the differential equation

(
θ− n

2
+I1

)
(θ−n+I2)

[
θ

(
θ−n+ 1

2
+I3

)
+ z

(
θ− 3n

2
+I4

)]
J = 0 , (5)

where I1, I2, I3, I4 are integers, n is the dimension of space-time and θ = z d
dz

.
The dimension of J is 4 and there are two one-dimensional invariant subspaces,
corresponding to two first-order differential operators: Jdim = 4 = 1 ⊗ 1 ⊗ 2.
Indeed, after integrating twice, we obtained

[
θ

(
θ−n+ 1

2
+I3

)
+ z

(
θ− 3n

2
+I4

)]
J = C1z

n/2−I1 + C2z
n−I2 .

Surprisingly, this simple relation has not been not reproduced (as of the end of 2016)
by any of the powerful programs for the reduction of Feynman diagrams (see the
discussion in Chapter 6 of Ref. [75]). In [76], it was shown that the extra relation
[72] could be deduced from a diagram of more general topology by exploring a
new relation derived by taking of the derivative with respect to the mass with a
subsequent reduction with the help of IBP relations. However, it was not shown that
the derivative with respect to mass can be deduced from derivatives with respect to
momenta, so that the result of Ref. [76] could be considered as an alternative proof
that, in the massive case, there may exist an extra relation between diagrams that
does not follow from classical IBP relations.

Finally, we have obtained a very simple result [77]: Eq. (4) follows directly from
the Mellin–Barnes representation for a Feynman diagram. (See Sect. 2 and Eq. (12)
for details.) Based on this observation and on the results of our analysis performed in
Ref. [66], and extending the idea of the algorithm of Ref. [78], we have constructed
a simple and fast algorithm for the algebraic reduction of any Feynman diagram
having a onefold Mellin–Barnes integral representation to a set of master-integrals
without using the IBP relations. In particular, our approach and our program cover
some types of Feynman diagrams with arbitrary powers of propagators considered
in Refs. [79–81].

In a similar manner, one can consider the multiple Mellin–Barnes representation
of a Feynman diagram [75, 82]. In contrast to the one variable case, the factorization
of the partial differential operator is much more complicated. The dimension of the
Pfaff system4 related to the multiple Mellin–Barnes integral can be evaluated with
the help of a prolongation procedure (see the discussion in Sect. 2). However, in this
case, there may exist a Puiseux type solution even for a generic set of parameters
(see for example Sect. 3.1.2).

4Rigorously speaking, this system of equations is correct when there is a contour in Cn that is not
changed under translations by an arbitrary unit vector, see Ref. [83], so that we treat the powers of
propagator as parameters.
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Exploring the idea5 presented in Ref. [71], one possibility is to construct an
explicit solution of the invariant subspace (see [75] and Sect. 3.1.2) and find the
dimension of the irreducible representation. Our results presented in [75] were
confirmed by another technique in Ref. [84].

Let us illustrate the notion of irreducible holonomic rank (or an irreducible
representation) in an application to Feynman diagrams. As follows from our analysis
of sunset diagrams [75], the dimension of the irreducible representation of two-loop
sunset with three different masses is equal to 4. There is only one hypergeometric
function of three variables having holonomic rank 4, the FD function. Then we
expect that there is a linear combination of four two-loop sunsets and the product
of one-loop tadpoles that are expressible in terms of a linear combination of the FD

functions.
Another approach to the construction of a GKZ representation of Feynman

Diagrams was done recently in the series of papers in Refs. [85–87]. Based on
the observation made in Ref. [88] about the direct relation between A-functions
and Mellin transforms of rational functions, and exploring the Lee-Pomeransky
representation [89], the authors studied a different aspect of the GKZ representation
mainly considering the examples of massless or one-loop diagrams. Two non-trivial
examples have been presented in Ref. [86]: the two-loop sunset with two different
masses and one zero mass, which corresponds to a linear combination of two Appell
functions F4 (see Eq. (3.11) in [90])6 and a two-loop propagator with three different
masses related to the functions FC of three variables [15].

A different idea on how to apply the GKZ technique to the analysis of Feynman
Diagrams has been presented in [91] and has received further development in [92,
93].

1.3 One-Loop Feynman Diagrams

Let us give special attention to one-loop Feynman diagrams. In this case, two elegant
approaches have been developed [94, 95] that allow us to obtain compact hyperge-
ometric representations for the master-integrals. The authors of the first paper [94]
explored the internal symmetries of the Feynman parametric representation to get a
onefold integral representation for one-loop Feynman diagrams (see also [96, 97]).
The second approach [95] is based on the solution of difference equations with
respect to the dimension of space-time [98] for the one-loop integrals. In spite of

5The monodromy group is the group of linear transformations of solutions of a system of
hypergeometric differential equations under rotations around its singular locus. In the case when
the monodromy is reducible, there is a finite-dimensional subspace of holomorphic solutions of the
hypergeometric system on which the monodromy acts trivially.
6It is interesting to note, that on-mass shell z = 1, this diagram has two Puiseux type solutions that
do not have analytical continuations.
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different ideas on the analysis of Feynman diagrams, both approaches, [94] and
[95], produce the same results for one-loop propagator and vertex diagrams [99–
101]. However, beyond these examples, the situation is less complete: it was shown
in Ref. [95] that the off-shell one-loop massive box is expressible in terms of a
linear combination of FS Horn-type hypergeometric functions of three variables (see
also discussions in Refs. [102–105]), or in terms of FN Horn-type hypergeometric
functions of three variables [106] (see Sect. 3.1.1).

Recently, it was observed [107–109] that massive conformal Feynman diagrams
are invariant under a Yangian symmetry that allows to get the hypergeometric
representation for the conformal Feynman diagrams.

1.4 Construction of ε-Expansion

For physical applications, the construction of the analytical coefficients of the
Laurent expansions of hypergeometric functions around particular values of param-
eters (integer, half-integer, rational) is necessary. Since the analytic continuations
of hypergeometric functions is still an unsolved problem, the results are written
in some region of variables in each order of the ε-expansion in terms of special
functions like classical or multiple polylogarithms, [110–116], and then these
functions are analytically continued to another region. For this reason, the analytical
properties of special functions were analyzed in detail [117–123]. Also, tools for
the numerical evaluation of the corresponding functions are important ingredients
[124–137].

Each of the hypergeometric function representations (series, integral, Mellin–
Barnes, differential equation) can be used for the construction of the ε-expansion,
and each of them has some technical advantages or disadvantages in comparison
with the other ones. The pioneering ε-expansion of the hypergeometric function
pFp−1 around z = ±1 was done by David Broadhurst [138, 139]. The expan-
sion was based on the analysis of multiple series and it was interesting from
a mathematical point of view [140] as well as for its application to quantum
field theory [141]. The integral representation was mainly developed by Andrei
Davydychev and Bas Tausk [142, 143], so that, finally, the all-order ε-expansion for
the Gauss hypergeometric functions around a rational parameter, a case that covers
an important class of diagrams, has been constructed [144] in terms of generalized
log-sine [110] functions or in term of Nielsen polylogarithms [145, 146].

The integral representation was also the starting point for the construction of the
ε-expansion of pFp−1 hypergeometric functions, [147, 148], and also the F1 [40]
and FD functions around integer values of parameters [149–152].

Purely numerical approaches [153–155] can be applied for arbitrary values of the
parameters. However, this technique typically does not produce a stable numerical
result in regions around singularities of the hypergeometric functions.

A universal technique which does not depend on the order of the differential
equation is based on the algebra of multiple sums [156–158]. For the hypergeomet-
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ric functions7 for which the nested-sum algorithms [156] are applicable, the results
of the ε-expansion are automatically obtained in terms of multiple polylogarithms.

The nested-sum algorithms [156] have been implemented in a few packages [161,
162] and allow for the construction of the ε-expansion of hypergeometric functions
pFp−1 and Appell functions F1 and F2 around integer values of parameters.8 How-
ever, the nested-sum approach fails for the ε-expansion of hypergeometric functions
around rational values of parameters and it is not applicable to some specific classes
of hypergeometric functions (for example, the F4 function, see [165]).

In the series of papers [166, 167], the generating function technique [168, 169]
has been developed for the analytical evaluation of multiple sums. Indeed, the series
generated by the ε-expansion of hypergeometric functions has the form

∑
k c(k)z

k ,

where the coefficients c(k) include only products of the harmonic sums [170, 171]
#a,bSa(k − 1)Sb(2k − 1) and Sa(k) = ∑k

j=1
1
ja

. The harmonic sums satisfy the
recurrence relations

Sa(k) = Sa(k − 1)+ 1

ka
, Sa(2k + 1) = Sa(2k − 1)+ 1

(2k + 1)a
+ 1

(2k)a
,

so that the coefficients c(k) satisfy the first order difference equation:9

P(k + 1)c(k + 1) = Q(k)c(k)+ R(k) ,

where P and Q are polynomial functions that can be defined from the original
series. This equation could be converted into a first order differential equation for
the generating function F(z) =∑k c(k)z

k ,

1

z
P

(
z
d

dz

)
F(z)− P(1)C(1)z = Q

(
z
d

dz

)
F(z)+

∑
k=1

R(k)zk .

One of the remarkable properties of this technique, that the non-homogeneous part
of the differential equation, the function R(k), has one-unit less depth in contrast
to the original sums, so that, step-by-step, all sums could be evaluated analytically.
Based on this technique, all series arising from the ε-expansion of hypergeometric
functions around half-integer values of parameters have been evaluated [166] up
to weight 4. The limits considered were mainly motivated by physical reasons (at
O(NNLO) only functions of weight 4 are generated) and, in this limit, only one new
function [111] H−1,0,0,1(z) was necessary to introduce. These results [166] allow

7It was shown in [159, 160] that multiple Mellin–Barnes integrals related to Feynman diagrams
could be evaluated analytically/numerically at each order in ε via multiple sums, without requiring
a closed expression in terms of Horn-type hypergeometric functions.
8 See also Refs. [163, 164] for an alternative realization.
9In general, it could be a more generic recurrence,

∑k
1=0 pk+j (k + j)c(k + j) = r(k).
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us to construct the ε-expansion of the hypergeometric functions pFp−1 around half-
integer values of parameters, see [172, 173].

Other results and theorems relevant for the evaluation of Feynman diagrams
are related with the appearance of a factor 1/

√
3 in the ε-expansion of some

diagrams [174] expressible in terms of hypergeometric functions10 were derived
in Refs. [146, 178, 179].11

Let us consider typical problems arising in this program. We follow our analysis
presented in Ref. [181], see also the closely related discussion in Ref. [182]. First,
the construction of the difference equation for the coefficient functions c(z) is not
an easy task [183–185]. In the second step, the differential operator(s) coming from

the difference equation P
(
z d
dz

)
− zQ

(
z d
dz

)
should be factorized into a product of

differential operators of the first order,

P

(
z
d

dz

)
− zQ

(
z
d

dz

)
= #k=1

[
pk(z)

d

dz
− qk(z)

]
,

where pk(z) and qk(z) are rational functions. Unfortunately, the factorization of
differential operators into irreducible factors is not unique [186]:

(
d2

dx2 −
2

x

d

dx
+ 2

x2

)
=
(

d

dx
− 1

x

)(
d

dx
− 1

x

)
=
(

d

dx
− 1

x(1+ ax)

)(
d

dx
− (1+ 2ax)

x(1+ ax)

)
,

where a is a constant.
However, the following theorem is valid (see [187]): Any two decompositions of

a linear differential operator L(p) into a product (composition) of irreducible linear
differential operators

L(p) = L
(a1)
1 L

(a2)
2 · · ·L(am)

m = P
(r1)
1 P

(r2)
2 · · ·P (rk)

k

have equal numbers of components m = k and the factors Lj and Pa have the same
order of differential operators: La = Pj (up to commutation). In the application
to the ε-expansion of hypergeometric functions this problem has been discussed in
Ref. [188].

After factorization, the iterated integral over rational functions (which is not
uniquely defined, as seen in the previous example) would be generated that in
general is not expressible in terms of hyperlogarithms. Indeed, the solution of the
differential equation

[
R1(z)

d

dz
+Q1(z)

] [
R2(z)

d

dz
+Q2(z)

]
h(z) = F(z) .

10Recent results on the analytical evaluation of inverse binomial sums for particular values of the
arguments have been presented in [175–177].
11The appearance of 1/

√
3 in RG functions in seven loops was quite intriguing [122, 180].
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has the form

h(z) =
∫ z dt3

R2(t3)

[
exp

− ∫ t3
0

Q2(t4)
R2(t4)

dt4

] ∫ t3 dt1

R1(t1)

[
exp

− ∫ t1
0

Q1(t2)
R1(t2)

dt2

]
F(t1) .

From this solution it follows [189] that the following conditions are enough to
convert the iterated integral into hyperlogarithms: there are new variables ξ and
x so that

∫ z Qi(t)

Ri(t)
dt = ln

Mi(ξ)

Ni(ξ)
⇒ dt

Ri(t)

∣∣∣∣
t=t (ξ)

Ni(ξ)

Mi(ξ)
= dx

Ki(x)

Li(x)
,

where Mi,Ni,Ki, Li are polynomial functions.
The last problem is related to the Abel-Ruffini theorem: the polynomial is

factorizable into a product of its primitive roots, but there are not solutions in
radicals for polynomial equations of degree five or more. The last problem got a very
elegant solution by the introduction of cyclotomic polylogarithms [158], with the
integration over irreducible cyclotomic polynomials �n(x). The first two irreducible
polynomials (see Eqs. (3.3)–(3.14) in [158]) are �7 and �9 (the polynomial of order
6). Two other polynomials of order 4, �5 and �10: (x4±x3+x2±x+1), have non-
trivial primitive roots. But up to now, all these polynomials were not generated by
Feynman diagrams. Surprisingly, by increasing the number of loops or number of
scales, other mathematical structures are generated [190, 191]. Detailed analyses
of properties of the new functions have been presented in Refs. [192, 193] and
automated by Jakob Ablinger [194–196]. The problem of integration over algebraic
functions (typically square roots of polynomials) was solved by the introduction
of a new type of functions [197], intermediate between multiple and elliptic
polylogarithms.

The series expansion is not very efficient for the construction of the ε-expansion,
since the number of series increases with the order of the ε-expansion and increases
the complexity of the individual sums. Let us recall that the Laurent expansion of a
hypergeometric function contains a linear combination of multiple sums. From this
point of view, the construction of the analytical coefficients of the ε-expansion of
a hypergeometric function can be carried out independently of existing analytical
results for each individual multiple sum. The “internal” symmetry of a Horn-
type hypergeometric function is uniquely defined by the corresponding system of
differential equations. While exploring this idea, a new algorithm was presented in
Refs. [198, 199], based on factorization, looking for a linear parametrization and
direct iterative solution of the differential equation for a hypergeometric function.
This approach allows the construction of the analytical coefficients of the ε-
expansion of a hypergeometric function, as well as obtaining analytical expressions
for a large class of multiple series without referring to the algebra of nested sums.

Based on this approach, the all-order ε-expansion of the Gauss hypergeometric
function around half-integer and rational values of parameters has been con-
structed [198, 200], so that the first 20 coefficients around half-integer values of
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parameters, the 12 coefficients for q = 4 and 10 coefficients for q = 6 have been
generated already in 2012.12 Another record is the generation of 24 coefficients
for the Clausen hypergeometric function 3F2 around integer values of parameters,
relevant for the analysis13 performed in [202]. To our knowledge, at the present
moment, this remains the fastest and most universal algorithm.

Moreover, it was shown in Refs. [198, 199], that when the coefficients of the
ε-expansion of a hypergeometric function are expressible in terms of multiple
polylogarithms, there is a set of parameters (not uniquely defined) such that, at each
order of ε, the coefficients of the ε-expansion include multiple polylogarithms of a
single uniform weight. A few years later, this property was established not only for
hypergeometric functions, but for Feynman Diagrams [203].

A multivariable generalization [181] of the algorithm of Refs. [198, 199] has
been described. The main difference with respect to the case of one variable is the
construction of a system of differential equations of triangular form to avoid the
appearance of elliptic functions. As a demonstration of the validity of the algorithm,
the first few coefficients of the ε-expansion of the Appell hypergeometric functions
F1, F2, F3 and FD around integer values of parameters have been evaluated
analytically [102].

The ε-expansion of the hypergeometric functions F3 and FD are not covered by
the nested sums technique or its generalization. The differential equation technique
can be applied to the construction of analytic coefficients of the ε-expansions of
hypergeometric functions of several variables (which is equivalent to the multiple
series of several variables) around any rational values of parameters via direct
solution of the linear systems of differential equations.

The differential equation approach [198, 199] allows us to analyze arbitrary sets
of parameters simultaneously and to construct the solution in terms of iterated
integrals, but for any hypergeometric function the Pfaff system of differential
equations should be constructed. That was the motivation for creation of the
package(s) (the HYPERDIRE project) [82] for the manipulation of the parameters
of Horn-type hypergeometric functions of several variables. For illustration, we
describe in detail how it works in the application to the F3 hypergeometric function
in Sect. 3.2.

Recently, a new technique [204] for the construction of the ε-expansion of
Feynman diagrams [205] as well as for hypergeometric functions has been pre-
sented [206]. It is based on the construction of a coaction14 of certain hypergeo-
metric functions. The structures of the ε-expansion of the Appell hypergeometric
functions F1, F2, F3 and F4 as well as FD (for the last function FD see also the
discussion in Ref. [208]) around integer values of parameters are in agreement with
our analysis and partial results presented in Refs. [102, 181]. However, the structure

12The results have been written in terms of hyperlogarithms of primitive q-roots of unity.
13The results of [201] were relevant for the reduction of multiple zeta values to the minimal basis.
14An interesting construction of the coaction for the Feynman graph has been presented recently
in Ref. [207].
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of the ε-expansion around rational values of parameters has not been discussed
in [206], nor in [208].

2 Horn-Type Hypergeometric Functions

2.1 Definition and System of Differential Equations

The study of solutions of linear partial differential equations (PDEs) of several
variables in terms of multiple series, i.e. a multi-variable generalization of the Gauss
hypergeometric function [209], began long ago [210].

Following the Horn definition [22], a multiple series is called a “Horn-type
hypergeometric function,” if, about the point z = 0, there is a series representation

H(z) =
∑

m

C(m)zm, (6)

where zm = z
m1
1 · · · zmr

r for any integer multi-index m = (m1, · · · ,mr), and the
ratio of two coefficients can be represented as a ratio of two polynomials:

C(m+ ej )
C(m)

= Pj (m)

Qj (m)
, (7)

where ej denotes the unit vector with unity in its j th entry, ej = (0, · · · , 0, 1, 0,
· · · , 0). The coefficients C(m) of such a series can be expressed as products or ratios
of Gamma-functions (up to some factors irrelevant for our consideration) [211, 212]:

C(m) =

p∏
j=1

�
(∑r

a=1 μjama + γj
)

q∏
k=1

�
(∑r

b=1 νkbmb + σk
) , (8)

where μja, νkb, σj , γj ∈ Z and ma are elements of m.
The Horn-type hypergeometric function, Eq. (7), satisfies the following system

of differential equations:

0 = Lj (z)H(z) =
[
Qj

(
r∑

k=1

zk
∂

∂zk

)
1

zj
− Pj

(
r∑

k=1

zk
∂

∂zk

)]
H(z) , (9)
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where j = 1, . . . , r . Indeed,

Qj

(
r∑

k=1

zk
∂

∂zk

)
1

zj

∑
m

C(m)z m =
∑

m

Qj(m)C(m+ej )z m

=
∑

m

Pj (m)C(m)z m = Pj

(
r∑

k=1

zk
∂

∂zk

)∑
m

C(m)z m .

The degrees of the polynomials Pi and Qi are pi and qi , respectively. The largest
of these, r = max{pi, qj }, is called the order of the hypergeometric series. To close
the system of differential equations, the prolongation procedure should be applied:
by applying the differential operator ∂i to Lj we can convert the system of linear
PDEs with polynomial coefficients into Pfaff form (for simplicity, we assume that
system is closed):

LjH(z) = 0 ⇒
{
dωi(z) = �k

ij (z)ωj (z)dzk , d [dωi(z)] = 0

}
. (10)

Instead of a series representation, one can use a Mellin–Barnes integral rep-
resentation (see the discussion in [77]). Indeed, the multiple Mellin–Barnes
representation for a Feynman diagram could be written in the form in Eq. (1). Let
us define the polynomials Pi and Qi as

Pi(t)
Qi(t)

= φ(t+ ei)

φ(t)
. (11)

The integral (1) then satisfies the system of linear differential equations (9)

Qi(t)|tj→θj

1

zi
�(A,B;C,D; z) = Pi(t)|tj→θj �(A,B;C,D; z) , (12)

where θi = zi
d
dzi

. Systems of equations such as Eq. (12) are left ideals in the Weyl
algebra of linear differential operators with polynomial coefficients.

2.2 Contiguous Relations

Any Horn-type hypergeometric function is a function of two types of variables,
continuous variables, z1, z2, · · · , zr and discrete variables: {Ja} := {γk, σr }, where
the latter can change by integer numbers and are often referred to as the parameters
of the hypergeometric function.

For any Horn-hypergeometric function, there are linear differential operators
changing the value of the discrete variables by one unit. Indeed, let us consider a
multiple series defined by Eq. (6).
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Two hypergeometric functions H with sets of parameters shifted by unity, H(γ+
ec; σ ; z) and H(γ ; σ ; z), are related by a linear differential operator:

H(γ + ec; σ ; z) =
(

r∑
a=1

μcaza
∂

∂za
+ γc

)
H(γ ; σ ; z) . (13)

Similar relations also exist for the lower parameters:

H(γ ; σ − ec; z) =
(

r∑
b=1

νcbzb
∂

∂zb
+σc−1

)
H(γ ; σ ; z) . (14)

Let us rewrite these relations in a symbolic form:

RK(z)
∂

∂zK
H(J; z) = H(J± eK ; z) , (15)

where RK(z) are polynomial (rational) functions.
In Refs. [59, 78] it was shown that there is an algorithmic construction of inverse

linear differential operators:

BL,N(z)
∂L

∂zN

(
RK(z)

∂

∂zK

)
H(J; z) ≡ BL,N(z)

∂L

∂zN
H(J± eK ; z) = H(J; z) .

(16)

Applying the direct or inverse differential operators to the hypergeometric function
the values of the parameters can be changed by an arbitrary integer:

S(z)H(J+m; z) =
r∑

j=0

Sj (z)
∂j

∂z
H(J; z) , (17)

where m is a set of integers, S and Sj are polynomials and r is the holonomic
rank (the number of linearly independent solutions) of the system of differential
equations (9). At the end of the reduction, the differential operators acting on the
function H can be replaced by a linear combination of the function evaluated with
shifted parameters.

We note that special considerations are necessary when the system of differential
operators, Eq. (9), has a Puiseux-type solution (see Sect. 3.1.2). In this case, the
prolongation procedure gives rise to the Pfaffian form, but this set of differential
equations is not enough to construct the inverse operators [213], so that new
differential equations should be introduced. In the application to the Feynman
diagrams, this problem is closely related with obtaining new relations between
master integrals, see Ref. [72] for details. In the Sect. 3.1.2 we present an example
of the Horn-type hypergeometric equation of second order of three variables having
a Puiseux-type solution.
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Another approach to the reduction of hypergeometric functions is based on the
explicit algebraic solution of the contiguous relations, see the discussion in Ref.
[214]. This technique is applicable in many particular cases, including 2F1, 3F2, and
the Appell functions F1, F2, F3, F4 (see the references in Ref. [215]), and there
is a general expectation that it could be solved for any Horn-type hypergeometric
function. However, to our knowledge, nobody has analyzed the algebraic reduction
in the application to general hypergeometric functions having a Puiseux-type
solution.

The multiple Mellin–Barnes integral � defined by Eq. (1) satisfies similar
differential contiguous relations:

�(A,B+ea;C,D; z) =
(

m∑
i=1

Aaiθi+Ba

)
�(A,B;C,D; z) ,

�(A,B;C,D−eb; z) =
⎛
⎝ r∑

j=1

Cbj θj+Db

⎞
⎠�(A,B;C,D; z) , (18)

so that the original diagram may be explicitly reduced to a set of basis functions
without examining the IBP relations [73, 74]. A non-trivial example of this type
of reduction beyond IBP relations has been presented in Ref. [72] (see also the
discussion in Chapter 6 of Ref. [75]).

3 Examples

3.1 Holonomic Rank & Puiseux-Type Solution

In addition to the examples presented previously in our series of publications, we
present here a few new examples.

3.1.1 Evaluation of Holonomic Rank: The Hypergeometric Function FN

The Lauricella–Saran hypergeometric function of three variables FN is defined
about the point z1 = z2 = z3 = 0 by

FN(a1, a2, a3; b1, b2; c1, c2; z1, z2, z3)

=
∞∑

m1,m2,m3=0

[
#3

j=1(aj )mj

z
mj

j

mj !

]
(b1)m1+m3(b2)m2

(c1)m1(c2)m2+m3

. (19)
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This function is related to one-loop box diagrams in an arbitrary dimension
considered by Andrei Davydychev [106].

Following the general algorithm [102], the following result is easily derived:

Theorem 1 For generic values of the parameters, the holonomic rank of the
function FN is equal 8.

In this way, for generic values of parameters, the result of differential reduction,
Eq. (17), have the following form:

S(z)FN(J+m; z) =

⎡
⎢⎢⎣S0 + Si

3∑
j=1

θj +
3∑

i,j=1
i<j

Si,j θiθj + S123 θ1θ2θ3

⎤
⎥⎥⎦FN(J; z) ,

where θi = zi
d
dzi

and inverse differential operators can be easily constructed (Note
that “easy” does not mean that these operators have a simple form, see Ref. [216]).

Theorem 2 The system of differential equations defined by the series (19) is
reducible when the one of the following combinations of parameters is an integer:

{a1, a2, a3, b1, b2, } ∈ Z ,

{a2−c1−c2+b1, a2−c2+b1, b2−c1−c2+b1, b2−c2+b1} ∈ Z

(20)

When one or more conditions of the Theorem 2 are valid, the number of independent
differential equations describing the function FN reduces and some additional
analysis is necessary (see for example Ref. [75]) to evaluate the value of irreducible
holonomic rank.

3.1.2 Puiseux-Type Solution: Hypergeometric Function FT

The Lauricella–Saran hypergeometric function of three variables FT is defined
about the point z1 = z2 = z3 = 0 by

FT (a1; a2; b1, b2; c; z1, z2, z3)

=
∞∑

m1,m2,m3=0

(a1)m1(a2)m2+m3(b1)m1+m3(b2)m2

(c)m1+m2+m3

z
m1
1 z

m2
2 z

m3
3

m1!m2!m3! .

(21)
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In this case, the differential operators, Eq. (9), are the following:

L1FT : θ1

⎛
⎝c−1+

3∑
j=1

θj

⎞
⎠FT = z1 (a1+θ1) (b1+θ1+θ3) FT , (22a)

L2FT : θ2

⎛
⎝c − 1+

3∑
j=1

θj

⎞
⎠FT = z2 (a2+θ2+θ3) (b2+θ2) FT , (22b)

L3FT : θ3

⎛
⎝c − 1+

3∑
j=1

θj

⎞
⎠FT = z3 (a2+θ2+θ3) (b1+θ1+θ3) FT ,

(22c)

where FT = FT (a1; a2; b1, b2; c; z1, z2, z3) .

Let us introduce the function

�T = z
1−c+a2
1 z

1−c+b1
2

z
1−c+b1+a2
3

. (23)

It is easy to check that

L1�T = L2�T = L3�T = 0 .

Theorem 3 The system of differential equations defined by Eq. (22) has a Puiseux-
type solution:

�T = z
1−c+a2
1 z

1−c+b1
2

z
1−c+b1+a2
3

. (24)

In particular, to construct the inverse contiguous relations for the function FT , one
extra differential equation should be added.

For completeness, we also note the following result:

Theorem 4 The monodromy group of the system of differential equations defined
by Eq. (22) is reducible when the one of the following combinations of parameters
is an integer:

{a1, a2, b1, b2, c−b1−b2, c−a1−a2} ∈ Z .

A Puiseux-type solution for the hypergeometric differential equation of two
variables was established by Erdelyi [217] still in the 50s and has been analyzed
in detail in [218] in the framework of the GKZ approach.
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3.2 Construction of the ε-Expansion via Differential
Equations: The Appell Function F3

To explain the technical details of our algorithm, let us analyze and construct the ε-
expansion for the Appell hypergeometric function F3. The preliminary results have
been presented in [181, 188].

3.2.1 Notations

Let us consider the Appell hypergeometric function F3 defined about x = y = 0 as

ω0 ≡ F3(a1, a2, b1, b2, c; x, y) =
∞∑

m=0

∞∑
n=0

(a1)m(a2)n(b1)m(b2)n

(c)m+n

xm

m!
yn

n! , (25)

It is symmetric with respect to simultaneous exchange

a1 ⇔ a2 , b1 ⇔ b2 , x ⇔ y . (26)

so that F3(a1, a2, b1, b2, c; x, y) = F3(a2, a1, b2, b1, c; y, x) .
This function satisfies four differential equations (see Section 3.4 in [82]):

(1−x)θxxω0 = −θxyω0 + [(a1+b1)x−(c−1)] θxω0+xa1b1ω0 , (27a)

(xy−x−y)θxxyω0 = [(1−y)(a1+b1)x−y(a2+b2+1−c)] θxyω0

+(1−y)xa1b1θyω0−ya2b2θxω0 , (27b)

and two other equations follow from Eqs. (27) and the symmetry relation (26).
Equations (27) can be written in projective space with homogeneous coordinates
on P2(C) with x = X/Z and y = Y/Z. We want also to remark that the system
of differential equations for the Appell hypergeometric function F2(u, v) coincides
with the system Eq. (27) by a redefinition u = 1/x, v = 1/y. This result follows
also from analytic continuation of the Mellin–Barnes representation for Appell’s
functions F2 and F3.

3.2.2 Onefold Iterated Solution

Assuming the most general form of the parameters

aj = pj

q
+a1ε , bj = rj

q
+bj ε , c = 1− p

q
+ cε .
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where pi, ri , p, q are integers, and writing the ε-expansion for the functions as

ωj =
∞∑
k=0

ω
(k)
j εk , j = 0, 1, 2, 3, (28)

we obtain the full system of differential equations (under the conditions pj rj =
0 , j = 1, 2):

[
(1−x)

d

dx
− s1

q
− 1

x

p

q

]
ω
(r)
1 = −1

x
ω
(r)
3 +

[
(a1+b1)− c

x

]
ω
(r−1)
1

+
[
a1r1+b1p1

q

]
ω
(r−1)
0 +a1b1ω

(r−2)
0 , (29a)

[
(1−y)

d

dy
− s2

q
− 1

y

p

q

]
ω
(r)
2 = −1

y
ω
(r)
3 +

[
(a2+b2)− c

y

]
ω
(r−1)
2

+
[
a2r2 + b2p2

q

]
ω
(r−1)
0 +a2b2sω

(r−2)
0 , (29b)

[
(xy−x−y)

d

dx
− (1− y)

s1

q
+ y

x

(s2 + p)

q

]
ω
(r)
3

=
[
(1−y)(a1+b1)− y

x
(a2+b2−c)

]
ω
(r−1)
3

+(1−y)

[
a1r1+b1p1

q
ω
(r−1)
2 + a1b1ω

(r−2)
2

]

−y
x

[
a2r2+b2p2

q
ω
(r−1)
1 +a2b2ω

(r−2)
1

]
,

(29c)[
(xy−x−y)

d

dy
− (1− x)

s2

q
+ x

y

(s1 + p)

q

]
ω
(r)
3

=
[
(1−x)(a2+b2)− x

y
(a1+b1−c)

]
ω
(r−1)
3

+(1−x)

[
a2r2 + b2p2

q
ω
(r−1)
1 + a2b2ω

(r−2)
1

]

−x
y

[
a1r1 + b1p1

q
ω
(r−1)
2 + a1b1ω

(r−2)
2

]
,

(29d)

where we have introduced new notations:

s1 = p1 + r1 , s2 = p2 + r2 . (30)
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We want to mention that this system of differential equations does not have the ε-
form a-la Henn’s form in [203, 219]. However, the system of equations (29) can be
straightforwardly solved iteratively. Let us redefine functions ω1, ω2, ω3, as follows:

ω
(r)
1 = θxω0 = h1(x)φ

(r)
1 , ω

(r)
2 = θyω0 = h2(y)φ

(r)
2 , (31)

where h1,2(x) are new functions, defined as

h1(x) = σ1

[
xp

(x − 1)s1+p

] 1
q

, h2(y) = σ2

[
yp

(y − 1)s2+p

] 1
q

, (32)

and

ω
(r)
3 = θxθyω

(r)
0 = H(x, y)φ

(r)
3 , (33)

with

H(x, y) = σ3

[
xs2+pys1+p

(xy − x − y)s1+s2+p

] 1
q

, (34)

where σj , j = 1, 2, 3 are some normalization constants.
Substituting it to the original system, Eq. (29), we have (for completeness we

show all four equations explicitly):

(1−x)
d

dx
φ
(r)
1 = −1

x

H(x, y)

h1(x)
φ
(r)
3 (35a)

+
[
(a1+b1)− c

x

]
φ
(r−1)
1 +

[
a1r1 + b1p1

q

]
1

h1(x)
ω
(r−1)
0 + 1

h1(x)
a1b1ω

(r−2)
0 ,

(1−y)
d

dy
φ
(r)
2 = −1

y

H(x, y)

h2(y)
φ
(r)
3 (35b)

+
[
(a2+b2)− c

y

]
φ
(r−1)
2 +

[
a2r2 + b2p2

q

]
1

h2(y)
ω
(r−1)
0 + 1

h2(y)
a2b2ω

(r−2)
0 ,

(xy−x−y)
d

dx
φ
(r)
3 =

[
(1−y)(a1+b1)− y

x
(a2+b2−c)

]
φ
(r−1)
3

+a1r1 + b1p1

q
(1−y)

h2(y)

H(x, y)
φ
(r−1)
2 + a1b1(1−y)

h2(y)

H(x, y)
φ
(r−2)
2

−a2r2 + b2p2

q

y

x

h1(x)

H(x, y)
φ
(r−1)
1 − a2b2

y

x

h1(x)

H(x, y)
φ
(r−2)
1 , (36a)
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(xy−x−y)
d

dy
φ
(r)
3 =

[
(1−x)(a2+b2)− x

y
(a1+b1−c)

]
φ
(r−1)
3

+a2r2 + b2p2

q
(1−x)

h1(x)

H(x, y)
φ
(r−1)
1 + a2b2(1−x)

h1(x)

H(x, y)
φ
(r−2)
1

−a1r1 + b1p1

q

x

y

h2(y)

H(x, y)
φ
(r−1)
2 − a1b1

x

y

h2(y)

H(x, y)
φ
(r−2)
2 , (36b)

This is a system of linear differential equations with algebraic coefficients. For
completeness, it should be supplemented by the boundary condition. Boundary
conditions are discussed below.

Remark Let us recall that the surface of singularities L(x, y) of the F3 hypergeo-
metric function is defined by the system of equations (27) and has the form

L : L1 ∪L2 ∪L3 ∪L4 ∪L5 ≡ x ∪ y ∪ (1− x)∪ (1− y)∪ (x + y − xy) . (37)

The extra functions, Eqs. (32) and (33), can be understood as the ratio of elements
La of Eq. (37), and q-root is related with angle of rotations of curves Lj around
zero.

Indeed, a multiple polylogarithm can be understood as a smooth map U from one
region of singularities, where the solution of differential equation exists, to another

one: LiA (Li)
U−→ LiA

(
Lj

)
. Such map is nothing but an analytic continuation that

mixed the singularities of the differential system Eq. (27).

3.2.3 Boundary Conditions

The boundary conditions for the system of equations, Eqs. (35), (36), are defined by
the series representation, so that

ω0(z1, z2)|z1=0 = 2F1(a2, b2; c; z2) , ω0(z1, z2)|z2=0 = 2F1(a1, b1; c; z1) .

(38)

Keeping in mind that

ωj (z1, z2) = zj
aj bj

c
F3(a1, a2, b1, b2, 1+ c; z1, z2)|aj→aj+1

bj→bj+1
, j = 1, 2 ,

ω3(z1, z2) = z1z2
a1a2b1b2

c(1+ c)
F3(1+ a1, 1+ a2, 1+ b1, 1+ b2; 2+ c; z1, z2) ,
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we have

ω1(z1, z2)|z1=0 = 0 , ω1(z1, z2)|z2=0 = z1
a1b1

c
2F1(1+ a1, 1+ b1; 1+ c; z1) ,

ω2(z1, z2)|z2=0 = 0 , ω2(z1, z2)|z1=0 = z2
a2b2

c
2F1(1+ a2, 1+ b2; 1+ c; z2) ,

ω3(z1, z2)|z1=0 = ω3(z1, z2)|z2=0 = 0 . (39)

The construction of the all-order ε-expansion of Gauss hypergeometric functions
around rational values of parameters in terms of multiple polylogarithms has been
constructed in Refs. [198, 200].

3.2.4 The Rational Parametrization: Towards Multiple Polylogarithms

It is well-known that onefold iterated integrals over algebraic functions are not, in
general, expressible in terms of multiple polylogarithms but demand the introduc-
tion of a new class of functions [220–222].15

The iterative solution of the system Eq. (35), (36), have the following form. In
the first two orders of ε-expansion, we have (these results follow from the series
representation and a special choice of parameters):

ω
(0)
0 = 1 , φ

(0)
1 = φ

(0)
2 = φ

(0)
3 = 0 , (40a)

ω
(1)
0 = φ

(1)
1 = φ

(1)
2 = φ

(1)
3 = 0 , (40b)

The second iteration produces:

φ
(2)
3 (x, y) = 0 , (41a)

φ
(2)
1 (x, y) = a1b1

∫ x

0

dt

(1− t)h1(t)
≡ a1b1R1(x) , (41b)

φ
(2)
2 (x, y) = a2b2

∫ y

0

dt

(1− t)h2(t)
≡ a2b2R2(y) , (41c)

ω
(2)
0 (x, y) =

∫ x

0

dt1

t1
φ
(2)
1 + 2F

(2)
1 (x)+

∫ y

0

dt1

t1
φ
(2)
2 + 2F

(2)
1 (y) (41d)

=
[
a1b1

∫ x

0

dt1

d1
R1(t)+a2b2

∫ y

0

dt1

t1
R2(t)

]
+2F

(2)
1 (x)+2F

(2)
1 (y) ,

15Originally, such types of functions have been introduced in Ref. [197].
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where 2F
(2)
1 (t) are the functions coming from boundary conditions. The finite part

of the F3 function is (in terms of R-functions):

φ
(3)
3 (x, y) = −

(
a1r1 + b1p1

q

)
a2b2h2(y)R2(y)

∫ x

0

dt

H(t, y)
(
t + y

1−y

)

+
(
a2r2 + b2p2

q

)
a1b1

∫ x

0
dt

h1(t)R1(t)

H(t, y)

(
1

t
− 1

t + y
1−y

)

−
(
a2r2 + b2p2

q

)
a1b1h1(x)R1(x)

∫ y

0
dt

dt

H(x, t)
(
t + x

1−x

)

+
(
a1r1 + b1p1

q

)
a1b1

∫ y

0
dt

h2(t)R2(t)

H(x, t)

(
1

t
− 1

t + x
1−x

)
.

(42)

Up to some factor, the function R(t) coincides with the Gauss hypergeometric
function with a rational set of parameters:

R(z) ≡
∫ z

0

dt

(1− t)

1

h(t)
∼ 2F1

(
rj

q
,
pj

q
, 1− p

q
; z
)

, j = 1, 2,

where pj rj = 0. The ε-expansion of the Gauss hypergeometric function around
rational values of parameters has been analyzed in detail in Ref. [200]. It was shown
that only the following cases are relevant:

• Integer set: rj = pj = p = 0,
• Zero-balance type: rj + pj = −p, rjpj = 0.
• Binomial type: p = pj = 0, rj �= 0, (and symmetric one: p = rj = 0,

pj �= 0)
• Inverse binomial type: rj = pj = 0, p �= 0.
• Full type: rj = pj = −p.

For each particular set of parameters, the rational parametrization of Eqs. (35), (36)
should be cross-checked. For illustration, let us consider a few examples.

3.2.5 The Rational Parametrization: Set 1

Let us consider the hypergeometric function

F3

(
a1ε, a2ε, b1ε, b2ε, 1− p

q
+ cε; x, y

)
,
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so that

r1 = p1 = p2 = s2 = 0 , p �= 0 .

For this set of parameters, we have s1 = 0 , s2 = 0 , p �= 0 , and

h(x) =
(

x

x − 1

) p
q

, h(y) =
(

y

y − 1

) p
q

, H(x, y) =
[

xy

((x − 1)(y − 1)− 1)

] p
q

.

There is a parametrization that converts the functions h1 and h2 into rational
functions P1 and P2:

x

x − 1
= P

q

1 (ξ1, ξ2) ,
y

y − 1
= P

q

2 (ξ1, ξ2) ,

where the functions P1 and P2 have the form

Pm(x, y) = #i,j,k,l

(x − ai)(y − bj )

(x − ck)(y − dl)
, m = 1, 2 , (43)

for a set of algebraic numbers {ai, bj , ck, dl}. In terms of new variables, the function
H has the form

H(x, y) = xy

x + y − xy
= 1

1
x
+ 1

y
− 1

= 1
1
P

q
1
+ 1

P
q
2
+ 1

= P
q

3 ,

where P3 is again a rational function of two variables of the type (43).
After a redefinition 1

P
q
i

= Q
q
i , i = 1, 2, 3 we obtain the result that a statement

about existence of a rational parametrization for the functions h(x), h(y) and
H(x, y) is equivalent to the existence of three rational functions of two variables
satisfying the equation

Q
q

1 +Q
q

2 +Q
q

3 = 1 . (44)

To our knowledge, for q > 2, a solution exists only in terms of elliptic functions.
However, it may happen that such a parametrization exists for q = 2, but we are not
able to find it.

This problem is closely related to the solution of a functional equation. For
example, for the equation

f n + gn = 1 ,
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the solution can be characterized as follows: [223, 224]:

• For n = 2, all solutions are the form

f = 2β(z)

1+ β2(z)
, g = 1− β2(z)

1+ β2(z)
,

where β(z) is an arbitrary function.
• For n = 3, one solution is given by

f = 1

2℘

(
1+ 1√

3
℘′
)

, g = − 1

2℘

(
1− 1√

3
℘′
)

, (45)

where ℘ is the Weierstrass ℘-function satisfy
(
℘′
)2 = 4℘3 − 1. For n = 3,

the original equation is of genus 1, so that uniformization theorem assures the
existence of an elliptic solution.

One of the most natural sets of variables for the set of parameters under
consideration is the following: P1 = ξ1 , P2 = ξ2, so that

H = 1

ξ
p

1 ξ
p

2

(
ξ
q

1 ξ
q

2 − ξ
q

1 − ξ
q

2

) p
q . (46)

3.2.6 The Rational Parametrization: Set 2

In a similar manner, let us analyze another set of parameters:

F3

(
−p

q
+ a1ε, a2ε, b1ε,−p

q
+ b2ε, 1− p

q
+ cε; x, y

)
.

In this case, s1 = s2 = −p, and the functions h have the form h(x) =
x

p
q , h(y) = y

p
q . Applying the same trick with the introduction of new functions

P1 and P2, we would find that the existence of a rational parametrization corre-
sponds in the present case to the validity of Eq. (44). In particular, by introducing

new variables x
1
q = ξ1, y

1
q = ξ2 , we obtain H = (ξq1 ξq2 − ξ

q

1 − ξ
q

2

) p
q .

3.2.7 The Rational Parametrization: Set 3

Let us analyze the following set of parameters: p = 0 , s1, s2 �= 0 , corresponding
to

F3

(
p1

q
+ a1ε,

p2

q
+ b1ε, b2ε, 1+ cε; x, y

)
.
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In this case,

h1(x) = (1− x)
p1
q , h2(y) = (1− y)

p2
q , H(x, y) =

(
xs2ys1

(xy − x − y)s1+s2

) 1
q

.

For simplicity, we set s1 = −s2 = s, and put 1 − x = P
q

1 and 1 − y = P
q

2 , so that

H =
(

1−P
q
2

1−P
q
1

) s
q ≡ P3. In particular, for P1 = ξ1, P2 = ξ2, H =

(
1−ξ

q
2

1−ξ
q
1

) s
q

.

3.2.8 The Rational Parametrization: Set 4

Let us analyze the following set of parameters: s1 = −p, s2 = 0, so that
hypergeometric function is

F3

(
−p1

q
+ a1ε, a2ε, b1ε, b2ε, 1− p

q
+ cε; x, y

)
.

In this case,

h1(x) = x
p
q , h2(y) =

(
y

y − 1

) p
q

, H(x, y) = x
p
q ≡ h(x) . (47)

Let us take a new set of variables (x, y)→ (ξ1, ξ2):

ξ1 = x
1
q , ξ2 =

(
y

y − 1

) 1
q

, (48)

In terms of a new variables we have:

H(x, y) ≡ h1(x) = ξ
p

1 , h2(y) = ξ
p

2 , x + y − xy = ξ
q

1 − ξ
q

2

1− ξ
q

2

. (49)

Thus, a rational parametrization exists.

3.2.9 The Rational Parametrization: Set 5

Consider the set of parameters defined by s2 = p = 0, s1 �= 0, that corresponds to

the case F3

(
−p1

q
+ a1ε, a2ε, b1ε, b2ε, 1+ cε; x, y

)
. In this case,

h1(x) = (1− x)
p1
q , h2(y) = 1 , H(x, y) =

(
y

xy − x − y

) p1
q

, (50)
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Let us suggest that

1− x = Pq , H(x, y) = y

x + y − xy
= Qq ,

where P and Q are rational functions. Then, y = (1−Pq)Qq

1−PqQq . After the redefinition,

PQ = R;, we get y = (1−Pq)
(1−Rq)

Rq

P q . The simplest version of P and R are polynomials:
P = ξ1, and R = ξ2. In this parametrization,

h(x) = ξ
p1
1 , H(x, y) =

(
ξ2

ξ1

)p1

, y = 1− ξ
q

1

1− ξ
q

2

(
ξ2

ξ1

)q

.

In this case, the rational parametrization exists.

3.2.10 Explicit Construction of Expansion: Integer Values of Parameters

Let us consider the construction of the ε-expansion around integer values of
parameters. If we put

ω0 = F3(a1ε, b1ε, a2ε, b2ε, 1+ cε; x, y),

then the system of differential equations can be presented in the form

∂

∂x
ω1 =

[
1

x − 1
− 1

x

]
ω3 −

[
c

x
+ (a1 + b1 − c)

x − 1

]
εω1 − a1b1

1

x − 1
ε2ω0 ,

(51)

∂

∂y
ω2 =

[
1

y − 1
− 1

y

]
ω3 −

[
c

y
+ (a2 + b2 − c)

y − 1

]
εω2 − a2b2

1

y − 1
ε2ω0 ,

(52)

∂

∂x
ω3 =

[
(a2+b2−c)

x
− (a1+b1+a2+b2−c)

x + y
1−y

]
εω3

− a1b1

x + y
1−y

ε2ω2+
[

1

x
− 1

x + y
1−y

]
a2b2ε

2ω1 , (53)

∂

∂y
ω3 =

[
(a1+b1−c)

y
− (a1+b1+a2+b2−c)

y + x
1−x

]
εω3

− a2b2

y + x
1−x

ε2ω1+
[

1

y
− 1

y + x
1−x

]
a1b1ε

2ω2 . (54)
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This system can be straightforwardly integrated in terms of multiple polylogarithms,
defined via a onefold iterated integral G, where

G(z; ak, a) =
∫ z

0

dt

t − ak
G(t; a) . (55)

In addition, the ε-expansion of a Gauss hypergeometric function around integer
values of parameters is needed. It has the following form (see Eq. (34) in [173]):

2F1(aε, bε; 1+cε; z) = 1+abε2Li2 (z)

+abε3 [(a+b−c)S1,2(z)−cLi3 (z)
]+O(ε4) .

(56)

The first iteration gives rise to

ω
(0)
0 = 1 , ω

(0)
1 = ω

(0)
2 = ω

(0)
3 = 0 , ω

(1)
0 = ω

(1)
1 = ω

(1)
2 = ω

(1)
3 = 0 .

The results of the second iteration are the following:

ω
(2)
3 = 0 , ω

(2)
1 = −a1b1 ln(1− x) , ω

(2)
2 = −a2b2 ln(1− y) ,

ω
(2)
0 = a1b1Li2 (x)+ a2b2Li2 (y) , (57)

where the classical polylogarithms Lin (z) are defined as

Li1 (z) = − ln(1− z) , Lin+1 (z) =
∫ z

0

dt

t
Lin (t) , n ≥ 1. (58)

After the third iteration, we have

ω
(3)
3 = 0 (59)

ω
(3)
1 = 1

2
a1b1(a1 + b1 − c) ln2(1− x)− a1b1cLi2 (x) , (60)

ω
(3)
2 = 1

2
a2b2(a2 + b2 − c) ln2(1− y)− a2b2cLi2 (y) , (61)

ω
(3)
0 = −a1b1cLi3 (x)− a2b2cLi3 (y)

+a1b1(a1 + b1 − c)S1,2(x)+ a2b2(a2 + b2 − c)S1,2(y) , (62)

where Sa,b(z) are the Nielsen polylogarithms:

z
d

dz
Sa,b(z) = Sa−1,b (z) , S1,b (z) = (−1)b

b!
∫ 1

0

dx

x
lnb(1− zx) . (63)
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The result of the next iteration, ω(4)
3 (x, y), can be expressed in several equivalent

forms:

ω
(4)
3 (x, y)

a1a2b1b2
= ln(1− y)G1

(
x;− y

1− y

)
−G2(x; 1)+G1,1

(
x;− y

1− y
, 1

)
,

ω
(4)
3 (x, y)

a1a2b1b2
= ln(1− x)G1

(
y;− x

1− x

)
−G2(y; 1)+G1,1

(
y;− x

1− x
, 1

)
.

Keeping in mind that

G1,1

(
x;− y

1− y
, 1

)
=
∫ x

0

dt

t + y
1−y

ln(1− t) (64)

= − ln(1− y) ln(x + y − xy)+ ln(1− y) ln y − Li2 (x + y − xy)+ Li2 (y) ,

the result can be written in a very simple form,

ω
(4)
3 (x, y)

a1a2b1b2
= Li2 (x)+ Li2 (y)− Li2 (x + y − xy) . (65)

Taking into account that
ω
(4)
3 (x,y)

a1a2b1b2
= 1

2xyF3(1, 1, 1, 1; 3; x, y), we obtain the
well-known result [225]

1

2
xyF3(1, 1, 1, 1; 3; x, y) = Li2 (x)+ Li2 (y)− Li2 (x + y − xy) .

There is also another form [226] for this integral,

1

2
xyF3(1, 1, 1, 1; 3; x, y) = Li2

(
x

x + y − xy

)
− Li2

(
x − xy

x + y − xy

)

− ln(1− y) ln

(
y

x + y − xy

)
.

One form can be converted to the other using the well-known dilogarithm identity

Li2

(
1

z

)
= −Li2 (z)− 1

2
ln2(−z)− ζ2 ,

together with the attendant functional relations [110, 227].
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The following expressions result from direct iterations in terms of G-functions:

ω
(4)
1 (x, y)

a1b1
= a2b2

{
ln(1− y)

[
G1,1

(
x; 1,− y

1− y

)
−G2

(
x;− y

1− y

)]

−G1,2(x; 1, 1)+G3(x; 1)+G1,1,1

(
x; 1,− y

1− y
, 1

)
−G2,1

(
x;− y

1− y
, 1

)}

+a2b2G1(x; 1)G2(y; 1)− c�1G2,1(x; 1, 1)−�2
1G1,1,1(x; 1, 1, 1)− c2G3(x; 1)

+(a1b1−c�1)G1,2(x; 1, 1) , (66)

where

�j = aj + bj − c .

The G-functions can be converted into classical or Nielsen polylogarithms with the
help of the following relations:

G1,1

(
x; 1,− y

1− y

)
= G1(x; 1)G1

(
x;− y

1− y

)
−G1,1

(
x;− y

1− y
, 1

)
, (67a)

G1 (x; 1)G1,1

(
x;− y

1− y
, 1

)
= G1,1,1

(
x; 1,− y

1− y
, 1

)
(67b)

+2G1,1,1

(
x;− y

1− y
, 1, 1

)
,

G1,1,1

(
x;− y

1− y
, 1, 1

)
= S1,2(x + y − xy)− S1,2(y) (67c)

+1

2
ln2(1− y) [ln(x + y − xy)−ln y]+ ln(1− y)

[
Li2 (x + y − xy)−Li2 (y)

]
,

G2,1

(
x;− y

1− y
, 1

)
+ ln(1− y)G2

(
x;− y

1− y

)
= G1,2

(
1; 1− 1

y
,

1

x

)
+G3 (x; 1)

=
∫ x

0

du

u

[
Li2 (y)− Li2 (u+ y − uy)

]
. (67d)

In a similar manner,

ω
(4)
2 (x, y)

a2b2
= a1b1

{
ln(1− x)

[
G1,1

(
y; 1,− x

1− x

)
−G2

(
y;− x

1− x

)]

−G1,2(y; 1, 1)+G3(y; 1)+G1,1,1

(
y; 1,− x

1− x
, 1

)
−G2,1

(
y;− x

1− x
, 1

)}

−c�2G2,1(y; 1, 1)−�2
2G1,1,1(y; 1, 1, 1)− c2G3(y; 1)− c�2G1,2(y; 1, 1)

+a1b1G1(y; 1)G2(x; 1)+ a2b2G1,2(y; 1, 1) , (68)
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and the last term, expressible in terms of functions of order 3, is ω(5)
3 .

3.2.11 Construction of ε-Expansion via Integral Representation

An alternative approach to construction of the higher order ε-expansion of general-
ized hypergeometric functions is based on their integral representation. We collect
here some representations for the Appell hypergeometric function F3 extracted from
Refs. [10, 11].

For our purposes, the most useful expression is the following: (see Eq. (16) in
Section 9.4. of [11]), [225, 226]:

�(c1)�(c2)

�(c1 + c2)
F3(a1, b1, a2, b2, c1 + c2; x, y)

=
∫ 1

0
duuc1−1(1− u)c2−1

2F1(a1, b1; c1; ux)2F1(a2, b2; c2; (1− u)y) . (69)

Indeed, expanding one of the hypergeometric functions as a power series leads to

∫ 1

0
uc1−1(1− u)j+c2−1

2F1(a1, b1; c1; ux)
∞∑
j=0

(a2)j (b2)j y
j

(c2)j j ! .

The order of summation and integration can be interchanged in the domain of
convergence of the series, and after integration we obtain Eq. (69).

The twofold integral representation [10],

�(b1)�(b2)�(c − b1 − b2)

�(c)
F3(a1, a2; b1, b2; c; x, y) = (70)

∫ ∫
0≤u,0≤v,u+v≤1

dudvub1−1vb2−1(1− u− v)c−b1−b2−1(1− ux)−a1(1− vy)−a2 ,

can be reduced to the following integral:

�(b1)�(b2)�(c − b1 − b2)

�(c)
F3(a1, a2; b1, b2; c; x, y) (71)

=
∫ 1

0
du

∫ 1−u

0
dvub1−1vb2−1(1− u− v)c−b1−b2−1(1− ux)−a1(1− vy)−a2

= �(b2)�(c − b1 − b2)

�(c − b1)

×
∫ 1

0
duub1−1(1− ux)−a1(1− u)c−b1−1

2F1

(
a2, b2

c − b1
(1− u)y

)
.
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For the particular values of parameters (c1 = a1, c2 = a2), the integral Eq. (69)
can be reduced to the Appell function F1:

F3(a1, a2, b1, b2; a1 + a2; x, y) = 1

(1− y)b2
F1

(
a1, b1, b2, a1 + a2; x,− y

1− y

)
.

= 1

(1− x)b1
F1

(
a2, b1, b2, a1 + a2;− x

1− x
, y

)
.

Using the onefold integral representation for the Appell function F1, it is possible
to prove the following relations:

F3(a, c − a, b, c − b, c, x, y) = (1− y)c+a−b
2F1

(
a, b

c
x + y − xy

)
. (72)

Using Eqs. (69) and (71), the onefold integral representation can be written
for the coefficients of the ε-expansion of the hypergeometric function F3 via
the ε-expansion of the Gauss hypergeometric function, constructed in Refs. [198,
200].

The coefficients of the ε-expansion of the Gauss hypergeometric function can be
expressed in terms of multiple polylogarithms of a q-root of unity with arguments(

z
z−1

) 1
q

, z
1
q or (1 − z)

1
q (see also [157]), so that the problem of finding a rational

parametrization reduces to the problem of finding a rational parametrization of the
integral kernel of Eqs. (69) and (71) in terms of variables generated by the ε-
expansion of the Gauss hypergeometric function.

The construction of the higher-order ε-expansion of the Gauss hypergeometric
function around rational values of parameters [198, 200], plays an crucial role
in construction of the higher-order ε-expansion of many (but not all) Horn-type
hypergeometric functions.

3.2.12 Relationship to Feynman Diagrams

Let us consider the one-loop pentagon with vanishing external legs. The higher-
order ε-expansion for this diagram has been constructed [165] in terms of iterated
onefold integrals over algebraic functions. In Ref. [228], the hypergeometric
representation for the one-loop pentagon with vanishing external momenta has been
constructed as a sum of Appell hypergeometric functions F3.

In [181], where our differential equation approach is presented, it was pointed
out that the one-loop pentagon can be expressed in terms of multiple poly-
logarithms. Ref. [154] verified the numerical agreement between the results of
Refs. [165, 228, 229] constructed the iterative solution of the differential equation
[230].



222 M. Kalmykov et al.

Let us recall the results of Ref. [228]. The one-loop massless pentagon is
expressible in terms of the Appell function F3 with the following set of parameters:

�
(d)
5 ∼ F3

(
1, 1,

7− d

2
, 1,

10− d

2
; x, y

)
, (73)

where d is dimension of space-time. Another representation presented in [228] has
the structure

H
(d)
5 ∼ F3

(
1

2
, 1, 1,

d − 2

2
,
d + 1

2
; y

x + y − xy
,

1

x

)
. (74)

Let us consider the case of d = 4− 2ε. The first representation, Eq. (73), is

�
(4−2ε)
5 ∼ F3

(
1, 1,

3

2
− ε, 1, 4− ε; x, y

)
.

This case,

{p1 = p2 = r2 = p = 0} , {r1 = 1 , q = 2} '⇒ s1 �= 0; s2 = 0 , p = 0 ,

corresponds to our set 5, so that the ε-expansion is expressible in terms of multiple
polylogarithms, defined by Eq. (55).

For the other representation, Eq. (74),

H
(4−2ε)
5 ∼ F3

(
1

2
, 1, 1, ε,

5

2
− ε; y

x + y − xy
,

1

x

)
,

so that it is reducible to the following set of parameters:

{p2 = r1 = r2 = 0} , {p1 = 1 , q = 2, p = 1} '⇒ s1 = 1; s2 = 0 , p = −1 .

This is our set 4, so that the ε-expansion is expressible in terms of multiple
polylogarithms, defined by Eq. (55).

The ε-expansion of the one-loop pentagon about d = 3− 2ε could be treated in
a similar manner. In this case, the first representation corresponds to set 1

�(3−2ε) ∼ F3

(
1, 1, 2+ ε, 1,

7

2
+ ε; x, y

)
'⇒ p1 = p2 = r1 = r2 = 0, q = 2 , p = 1

and there is no rational parametrization, so that the result of the ε-expansion is
expressible in terms of a onefold iterated integral over algebraic functions.



Hypergeometric Functions and Feynman Diagrams 223

The other representation, Eq. (74), also cannot be expressed in terms of multiple
polylogarithms:

H
(3−2ε)
5 ∼ F3

(
1

2
, 1, 1,

1

2
− ε, 2− ε; y

x + y − xy
,

1

x

)
'⇒

p2 = r1 = p = 0 ,

q = 2 p1 = r2 = 1 ,

s1 = 1; s2 = 1 .

This corresponds to set 3, and the ε-expansion is expressible in terms of onefold
iterated integral over algebraic functions.

In this way, the question of the all-order ε-expansion of a one-loop Feynman
diagram in terms of multiple polylogarithms is reduced to the question of the
existence of a rational parametrization for the (ratio) of singularities.

Remark The dependence of the coefficients of the ε-expansion (multiple polyloga-
rithms or elliptic function) on the dimension of space-time is not new. In particular,
it is well known that the two-loop sunset in 3−2ε dimension is expressible in terms
of polylogarithms [231, 232] and demands introduction of new functions in 4 − 2ε
dimension [233–239].

4 Conclusion

The deep relationship between Feynman diagrams and hypergeometric functions
has been reviewed, and we have tried to enumerate all approaches and recent
results on that subject. Special attention was devoted to the discussion of different
algorithms for constructing the analytical coefficients of the ε-expansion of multiple
hypergeometric functions. We have restricted ourselves to multiple polylogarithms
and functions related to integration over rational functions (the next step after multi-
ple polylogarithms). The values of parameters related to elliptic polylogarithms was
beyond our consideration.

We have presented our technique for the construction of coefficients of the higher
order ε-expansion of multiple Horn-type hypergeometric functions, developed by
the authors16 during the period 2006–2013. One of the main results of interest was
the observation [102, 145, 146, 166, 198–200] that for each Horn-type hypergeo-
metric function, a set of parameters can be found so that the coefficients of the
ε-expansion include only functions of weight one (so-called “pure functions,” in a
modern terminology). As was understood in 2013 by Johannes Henn [203, 219],
this property is valid not only for hypergeometric functions but also for generic
Feynman diagrams.

16Unfortunately, the further prolongation of this project has not been supported by DFG, so that
many interesting results remain unpublished.
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Our approach is based on the systematic analysis of the system of hypergeo-
metric differential equations (linear differential operators of hypergeometric type
with polynomial coefficients) and does not demand the existence of an integral
representation, which is presently unknown for a large class of multiple Horn-type
hypergeometric functions (they could be deduced, but are not presently available in
the mathematical literature).

Our approach is based on the factorization of the system of differential equa-
tions into a product of differential operators, together with finding a rational
parametrization and constructing iterative solutions. To construct such a system,
an auxiliary manipulation with parameters (shifting by integer values) is required,
which can be done with the help of the HYPERDIRE set of programs [82]. This
technique is applicable not only to hypergeometric functions defined by series
but also to multiple Mellin–Barnes integrals [77]—one of the representations of
Feynman diagrams in a covariant gauge. We expect that the present technique is
directly applicable (with some technical modifications) to the construction of the ε-
expansion of hypergeometric functions beyond multiple polylogarithms, specially,
that the two-loop sunset has a simple hypergeometric representation [234].

There are two of our considerations that have not been solved algorithmically:
(a) the factorization of linear partial differential operators into irreducible factors
is not unique, as has been illustrated by Landau [186] (see also Ref. [187]): (∂x +
1)(∂x + 1)(∂x + x∂y) = (∂2

x + x∂xy + ∂x + (2 + x)∂y)(∂x + 1) ; (b) The choice
of parametrization is still an open problem, but there is essential progress in this
direction [240, 241].

Our example has shown that such a parametrization is defined by the locus of
singularities of a system of differential equations, so that the problem of finding
a rational parametrization is reduced to the parametrization of solutions of the
Diophantine equation for the singular locus of a Feynman diagram and/or hyper-
geometric function. It is well known that in the case of a positive solution of this
problem (which has no complete algorithmic solution), the corresponding system of
partial differential equations of a few variables takes the simplest structure. At the
same time, there is a relationship between the type of solution of the Diophantine
equation for the singular locus and the structure of the coefficients of the ε-
expansion: a linear solution allows us to write the results of the ε-expansion in terms
of multiple polylogarithms. An algebraic solution gives rise to functions different
from multiple polylogarithms and elliptic functions, etc. It is natural to expect that,
in the case of an elliptic solution of the Diophantine equation for the singular locus,
the results for the ε-expansion are related to the elliptic generalization of multiple
polylogarithms.

Another quite interesting and still algorithmically open problem is the transfor-
mation of multiple Horn-type hypergeometric functions with reducible monodromy
to hypergeometric functions with irreducible monodromy. In the application to
Feynman diagrams, such transformations correspond to functional relations, studied
recently by Oleg Tarasov [242–244], and by Andrei Davydychev [106].

Further analysis of the symmetries of the hypergeometric differential equations
related to the Mellin–Barnes representation of Feynman diagrams (for simplicity we
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will call it the hypergeometric representation) has revealed their deep connection
to the holonomic properties of Feynman diagrams. In particular, a simple and fast
algorithm was constructed for the reduction of any Feynman diagram having a
onefold Mellin–Barnes integral representation to a set of master integrals [77].

The importance of considering the dimension of the irreducible representation
instead of generic holonomic rank has been pointed out in the application to
Feynman diagrams [66]. In the framework of this approach, the set of irreducible,
non-trivial master-integrals corresponds to the set of irreducible (with respect to
analytical continuation of the variables, masses, and external momenta) solutions
of the corresponding system of hypergeometric differential equations, whereas
diagrams expressible in terms of Gamma-functions correspond to Puiseux-type
solutions (monomials with respect to Mandelstam variables) of the original system
of hypergeometric equations.

Acknowledgments MYK is very indebted to Johannes Blümlein, Carsten Schneider and Peter
Marquard for the invitation and for creating such a stimulating atmosphere in the workshop
“Anti-Differentiation and the Calculation of Feynman Amplitudes” at DESY Zeuthen. BFLW
thanks Carsten Schneider for kind the hospitality at RISC. MYK thanks the Hamburg University
for hospitality while working on the manuscript. SAY acknowledges support from The Citadel
Foundation.

References

1. R. Hwa, V. Teplitz, Homology and Feynman Integrals (Benjamin, New York, 1966)
2. F. Pham, Introduction a L’etude Topologuqie des Singularities de Landau (Gauthier-Villars

Editeur, Paris, 1967)
3. V.A. Golubeva, Some problems in the analytical theory of Feynman integrals. Russ. Math.

Surv. 31 139 (1976)
4. M.Yu. Kalmykov, B.A. Kniehl, B.F.L. Ward, S.A. Yost, Hypergeometric functions, their

epsilon expansions and Feynman diagrams. arXiv:0810.3238 [hep-th]
5. D.S. Kershaw, Feynman amplitudes as power series. Phys. Rev. D 8, 2708 (1973)
6. D. Kreimer, One loop integrals revisited. 1. The Two point functions. Z. Phys. C 54, 667

(1992)
7. D. Kreimer, One loop integrals revisited. 2. The Three point functions. Int. J. Mod. Phys. A

8, 1797 (1993)
8. L. Brucher, J. Franzkowski, D. Kreimer, Loop integrals, R functions and their analytic

continuation. Mod. Phys. Lett. A 9, 2335 (1994)
9. A. Erdelyi, Higher Transcendental Functions (McGraw-Hill, New York, 1953)

10. L.J. Slater, Generalized Hypergeometric Functions (Cambridge University Press, Cambridge
1966)

11. H.M. Srivastava, P.M. Karlsson, Multiple Gaussian Hypergeometric Series (Ellis Horwood
Ltd., Chichester; Halsted Press, New York, 1985)

12. E.E. Boos, A.I. Davydychev, A method of evaluating massive Feynman integrals. Theor.
Math. Phys. 89, 1052 (1991)

13. A.I. Davydychev, General results for massive N point Feynman diagrams with different
masses. J. Math. Phys. 33, 358 (1992)

14. D.J. Broadhurst, J. Fleischer, O.V. Tarasov, Two loop two point functions with masses:
asymptotic expansions and Taylor series, in any dimension. Z. Phys. C 60, 287 (1993)



226 M. Kalmykov et al.

15. F.A. Berends, M. Buza, M. Böhm, R. Scharf, Closed expressions for specific massive
multiloop selfenergy integrals. Z. Phys. C 63, 227 (1994)

16. S. Bauberger, F.A. Berends, M. Böhm, M. Buza, Analytical and numerical methods for
massive two loop selfenergy diagrams. Nucl. Phys. B 434, 383 (1995)

17. A.I. Davydychev, A.G. Grozin, Effect of m(c) on b quark chromomagnetic interaction and
on-shell two loop integrals with two masses. Phys. Rev. D 59, 054023 (1999)

18. I. Bierenbaum, S. Weinzierl, The Massless two loop two point function. Eur. Phys. J. C 32,
67 (2003)

19. J. Gluza, K. Kajda, R. Riemann, AMBRE: a Mathematica package for the construction of
Mellin-Barnes representations for Feynman integrals. Comput. Phys. Commun. 177, 879
(2007)

20. A.V. Smirnov, V.A. Smirnov, On the resolution of singularities of multiple Mellin-Barnes
integrals. Eur. Phys. J. C 62, 445 (2009)

21. M. Prausa, Mellin-Barnes meets Methods of Brackets: a novel approach to Mellin-Barnes
representation of Feynman integrals. Eur. Phys. J. C 77, 594 (2017)

22. J. Horn, Hypergeometriche Funktionen zweier Veränder lichen. Math. Ann. 105, 381 (1931)
23. A.C.T. Wu, Generalized Euler-Pochhammer integral representation for single-loop Feynman

amplitudes. Phys. Rev. D 9, 370 (1974)
24. K. Mano, Comment on generalized Fuler-Pochhammer integral representation for single-loop

Feynman amplitudes. Phys. Rev. D 11, 452 (1975)
25. B. Ananthanarayan, S. Friot, S. Ghosh, New series representations for the two-loop massive

sunset diagram. Eur. Phys. J. C 80, 606 (2020)
26. B. Ananthanarayan, S. Friot, S. Ghosh, A. Hurier, New analytic continuations for the Appell

F4 series from quadratic transformations of the Gauss 2F1 function. arXiv:2005.07170 [hep-
th]

27. S.I. Bezrodnykh, Analytic continuation of the Appell function F1 and integration of the
associated system of equations in the logarithmic case. Comput. Math. Math. Phys. 57, 559
(2017)

28. S.I. Bezrodnykh, Analytic continuation of the Lauricella function F
(N)
D with arbitrary number

of variables. Integral Transforms Spec. Funct. 29, 21 (2018)
29. S.I. Bezrodnykh, Analytic continuation of the Horn hypergeometric series with an arbitrary

number of variables. Integral Transforns Spec. Funct. bf 31 788 (2020)
30. O.N. Zhdanov, A.K. Tsikh, Investigation of multiple Mellin-Barnes integrals by means of

multidimensional residue. Sib. Math. J. 39, 245 (1998)
31. M. Passare, A.K. Tsikh, A.A. Cheshel, Multiple Mellin-Barnes integrals as periods of Calabi-

Yau manifolds with several moduli. Theor. Math. Phys. 109, 1544 (1997)
32. S. Friot, D. Greynat, On convergent series representations of Mellin-Barnes integrals. J. Math.

Phys. 53, 023508 (2012)
33. S. Friot, D. Greynat, E. De Rafael, Asymptotics of Feynman diagrams and the Mellin-Barnes

representation. Phys. Lett. B 628, 73 (2005)
34. M. Czakon, Automatized analytic continuation of Mellin-Barnes integrals. Comput. Phys.

Commun. 175, 559 (2006)
35. T.Y. Semenova, A.V. Smirnov, V.A. Smirnov, On the status of expansion by regions. Eur.

Phys. J. C 79, 136 (2019)
36. N.D. Lenshina, A.A. Radionov, F.V. Tkachov, Finite Z-less integral expressions for β-

functions in the MS4 scheme. arXiv:2005.03291 [hep-th]
37. I.G. Halliday, R.M. Ricotta, Negative dimensional integrals. 1. Feynman graphs. Phys. Lett.

B 193, 241 (1987)
38. D.J. Broadhurst, Two loop negative dimensional integration. Phys. Lett. B 197, 179 (1987)
39. C. Anastasiou, E.W.N. Glover, C. Oleari, Application of the negative dimension approach to

massless scalar box integrals. Nucl. Phys. B 565, 445 (2000)
40. C. Anastasiou, E.W.N. Glover, C. Oleari, Scalar one loop integrals using the negative

dimension approach. Nucl. Phys. B 572, 307 (2000)



Hypergeometric Functions and Feynman Diagrams 227

41. A.T. Suzuki, E.S. Santos, A.G.M. Schmidt, Massless and massive one loop three point
functions in negative dimensional approach. Eur. Phys. J. C 26, 125 (2002)

42. A.T. Suzuki, E.S. Santos, A.G.M. Schmidt, General massive one loop off-shell three point
functions. J. Phys. A 36, 4465 (2003)

43. A.T. Suzuki, E.S. Santos, A.G.M. Schmidt, One loop N-point equivalence among negative
dimensional, Mellin-Barnes and Feynman parametrization approaches to Feynman integrals.
J. Phys. A 36, 11859 (2003)

44. G. Somogyi, Angular integrals in d dimensions. J. Math. Phys. 52, 083501 (2011)
45. A.G. Grozin, A.V. Kotikov, HQET heavy-heavy vertex diagram with two velocities.

arXiv:1106.3912 [hep-ph]
46. S. Abreu, R. Britto, H. Grönqvist, Cuts and coproducts of massive triangle diagrams. J. High

Energy Phys. 1507, 111 (2015)
47. J. Ablinger, A. Behring, J. Blümlein, A. De Freitas, A. von Manteuffel, C. Schneider,

Calculating three loop ladder and v-topologies for massive operator matrix elements by
computer algebra. Comput. Phys. Commun. 202, 33 (2016)

48. T.F. Feng, C.H. Chang, J.B. Chen, Z.H. Gu, H.B. Zhang, Evaluating Feynman integrals by
the hypergeometry. Nucl. Phys. B 927, 516 (2018)

49. T.F. Feng, C.H. Chang, J.B. Chen, Z.H. Gu, H.B. Zhang, The system of partial differential
equations for the C0 function. Nucl. Phys. B 940, 130 (2019)

50. X.Y. Yang, H.N. Li, The hypergeometric system for one-loop triangle integral. Int. J. Mod.
Phys. A 34, 1950232 (2020)

51. Z.H. Gu, H.B. Zhang, T.F. Feng, Hypergeometric expression for a three-loop vacuum integral.
Int. J. Mod. Phys. A 35, 2050089 (2020)

52. A.G. Grozin, HQET vertex diagram: ε expansion. Phys. Rev. D 102, 054022 (2020)
53. P. Burda, B. Kol, R. Shir, Vacuum seagull: evaluating a three-loop Feynman diagram with

three mass scales. Phys. Rev. D 96, 125013 (2017)
54. B. Kol, R. Shir, The propagator seagull: general evaluation of a two loop diagram. J. High

Energy Phys. 1903, 083 (2019)
55. B. Kol, A. Schiller, R. Shir, Numerator seagull and extended symmetries of Feynman

integrals. arXiv:2009.04947 [hep-th]
56. I.M. Gel’fand, M.M. Kapranov, A.V. Zelevinsky, Hypergeometric functions and toric vari-

eties. Funck. Anal. i Priloz. 23, 12 (1989)
57. I.M. Gel’fand, M.M. Kapranov, A.V. Zelevinsky, Generalized Euler integrals and A-

hypergeometric functions, Adv. Math. 84, 255 (1990)
58. I.M. Gel’fand, M.I. Graev, V.S. Retakh, General hypergeometric systems of equations and

series of hypergeometric type. Russ. Math. Surv. 47, 1 (1992)
59. M. Saito, B. Sturmfels, N. Takayama, Gröbner Deformations of Hypergeometric Differential

Equations (Springer, Berlin, 2000)
60. F. Beukers, Notes on A-hypergeometric functions. https://webspace.science.uu.nl/~beuke106/

AHGcourse.pdf
61. T. Reichelt, M. Schulze, C. Sevenheck, U. Walther, Algebraic aspects of hypergeometric

differential equations. arXiv:2004.07262 [math.AG]
62. E. Bod, Algebraic A-hypergeometric functions and their monodromy. Dissertation, 2013.

http://dspace.library.uu.nl/handle/1874/275540
63. F. Beukers, Monodromy of A-hypergeometric functions. arXiv:1101.0493 [math.AG]
64. S-J. Matsubara-Heo, On Mellin-Barnes integral representations for GKZ hypergeometric

functions. arXiv:1802.04939 [math.CA]
65. L. Nilsson, M. Passare, A.K. Tsikh, Domains of convergence for A-hypergeometric series and

integrals J. Sib. Fed. Univ. Math. Phys. 12, 509 (2019)
66. V.V. Bytev, M.Yu. Kalmykov, B.A. Kniehl, Differential reduction of generalized hypergeo-

metric functions from Feynman diagrams: one-variable case. Nucl. Phys. B 836, 129 (2010)
67. G. ’t Hooft, M.J.G. Veltman, Regularization and renormalization of Gauge fields. Nucl. Phys.

B 44, 189 (1972)

https://webspace.science.uu.nl/~beuke106/AHGcourse.pdf
https://webspace.science.uu.nl/~beuke106/AHGcourse.pdf
http://dspace.library.uu.nl/handle/1874/275540


228 M. Kalmykov et al.

68. D. Zeilberger, A holonomic systems approach to special functions identities. J. Comp. Appl.
Math. 32, 321 (1990)

69. https://specfun.inria.fr/chyzak//mgfun.html
70. https://www3.risc.jku.at/research/combinat/software/ergosum/RISC/HolonomicFunctions.

html
71. F. Beukers, G. Heckman, Monodromy for the hypergeometric function nFn−1. Invent. Math.

95, 325 (1989)
72. M.Yu. Kalmykov, B.A. Kniehl, Counting master integrals: integration by parts versus

differential reduction. Phys. Lett. B 702, 268 (2011)
73. F.V. Tkachov, A theorem on analytical calculability of four loop renormalization group Phys.

Lett. B 100, 65 (1981)
74. K.G. Chetyrkin, F.V. Tkachov, Integration by parts: the algorithm to calculate beta functions

in 4 loops. Nucl. Phys. B 192, 159 (1981)
75. M.Yu. Kalmykov, B.A. Kniehl, Counting the number of master integrals for sunrise diagrams

via the Mellin-Barnes representation. J. High Energy Phys. 1707, 031 (2017)
76. V.A. Smirnov, V.A. Smirnov, FIRE4, LiteRed and accompanying tools to solve integration by

parts relations. Comput. Phys. Commun. 184, 2820 (2013)
77. M.Yu. Kalmykov, B.A. Kniehl, Mellin-Barnes representations of Feynman diagrams, linear

systems of differential equations, and polynomial solutions. Phys. Lett. B 714, 103 (2012)
78. N. Takayama, Gröbner basis and the problem of contiguous relations. Jpn. J. Appl. Math. 6,

147 (1989)
79. H. Frellesvig, F. Gasparotto, S. Laporta, M.K. Mandal, P. Mastrolia, L. Mattiazzi, S. Mizera,

Decomposition of Feynman integrals on the maximal cut by intersection numbers. J. High
Energy Phys. 1905, 153 (2019)

80. H. Frellesvig, F. Gasparotto, S. Laporta, M.K. Mandal, P. Mastrolia, L. Mattiazzi, S. Mizera,
Vector space of Feynman integrals and multivariate intersection numbers. Phys. Rev. Lett.
123, 201602 (2019)

81. H. Frellesvig, F. Gasparotto, S. Laporta, M.K. Mandal, P. Mastrolia, L. Mattiazzi,
S. Mizera, Decomposition of Feynman integrals by multivariate intersection numbers.
[arXiv:2008.04823 [hep-th]]

82. V.V. Bytev, M.Yu. Kalmykov, B.A. Kniehl, HYPERDIRE, HYPERgeometric functions
DIfferential REduction: MATHEMATICA-based packages for differential reduction of gen-
eralized hypergeometric functions pFp−1, F1,F2,F3,F4. Comput. Phys. Commun. 184, 2332
(2013)

83. T.M. Sadykov, On a multidimensional system of differential hypergeometric equations.
Sibirsk. Mat. Zh. 39, 1141 (1998)

84. T. Bitoun, C. Bogner, R.P. Klausen, E. Panzer, Feynman integral relations from parametric
annihilators. Lett. Math. Phys. 109, 497 (2019)

85. L. de la Cruz, Feynman integrals as A-hypergeometric functions. J. High Energy Phys. 1912,
123 (2019)

86. R.P. Klausen, Hypergeometric series representations of Feynman Integrals by GKZ hyperge-
ometric systems. J. High Energy Phys. 2004, 121 (2020)

87. T.F. Feng, C.H. Chang, J.B. Chen, H.B. Zhang, GKZ-hypergeometric systems for Feynman
integrals. Nucl. Phys. B 953, 114952 (2020)

88. L. Nilsson, M. Passare, Mellin transforms of multivariate rational functions. J. Geom Anal.23,
24 (2013)

89. R.N. Lee, A.A. Pomeransky, Critical points and number of master integrals. J. High Energy
Phys. 1311, 165 (2013)

90. F. Jegerlehner, M.Yu. Kalmykov, O(alpha alpha(s)) correction to the pole mass of the t quark
within the standard model. Nucl. Phys. B 676, 365 (2004)

91. P. Vanhove, Feynman integrals, toric geometry and mirror symmetry. arXiv:1807.11466.
92. A. Klemm, C. Nega, R. Safari, The l-loop Banana Amplitude from GKZ Systems and relative

Calabi-Yau Periods. J. High Energy Phys. 2004, 088 (2020)

https://specfun.inria.fr/chyzak//mgfun.html
https://www3.risc.jku.at/research/combinat/software/ergosum/RISC/HolonomicFunctions.html
https://www3.risc.jku.at/research/combinat/software/ergosum/RISC/HolonomicFunctions.html


Hypergeometric Functions and Feynman Diagrams 229

93. K. Bönisch, F. Fischbach, A. Klemm, C. Nega, R. Safari, Analytic structure of all loop banana
amplitudes. arXiv:2008.10574 [hep-th].

94. A.I. Davydychev, R. Delbourgo, A geometrical angle on Feynman integrals. J. Math. Phys.
39, 4299 (1998)

95. J. Fleischer, F. Jegerlehner, O.V. Tarasov, A New hypergeometric representation of one loop
scalar integrals in d dimensions. Nucl. Phys. B 672, 303 (2003)

96. S. Bloch, D. Kreimer, Feynman amplitudes and Landau singularities for 1-loop graphs.
Commun. Num. Theor. Phys. 4, 709 (2010)

97. J.L. Bourjaily, E. Gardi, A.J. McLeod, C. Vergu, All-mass n-gon integrals in n dimensions. J.
High Energy Phys. 2008, 029 (2020)

98. O.V. Tarasov, Connection between Feynman integrals having different values of the space-
time dimension. Phys. Rev. D 54, 6479 (1996)

99. A.I. Davydychev, Geometrical methods in loop calculations and the three-point function.
Nucl. Instrum. Meth. A 559, 293 (2006)

100. O.V. Tarasov, New relationships between Feynman integrals. Phys. Lett. B 670, 67 (2008)
101. A.I. Davydychev, Geometrical splitting and reduction of Feynman diagrams. J. Phys. Conf.

Ser. 762, 012068 (2016)
102. V.V. Bytev, M.Yu. Kalmykov, S.O. Moch, HYPERgeometric functions DIfferential REduc-

tion (HYPERDIRE): MATHEMATICA based packages for differential reduction of gener-
alized hypergeometric functions: FD and FS Horn-type hypergeometric functions of three
variables. Comput. Phys. Commun. 185, 3041 (2014)

103. J. Blümlein, K.H. Phan, T. Riemann, Scalar one-loop vertex integrals as meromorphic
functions of space-time dimension d. Acta Phys. Polon. B 48, 2313 (2017)

104. K.H. Phan, T. Riemann, Scalar 1-loop Feynman integrals as meromorphic functions in space-
time dimension d. Phys. Lett. B 791, 257 (2019)

105. K.H. Phan, Scalar 1-loop Feynman integrals as meromorphic functions in space-time
dimension d, II : special kinematics. Eur. Phys. J. C 80, 414 (2020)

106. A.I. Davydychev, Four-point function in general kinematics through geometrical splitting and
reduction. J. Phys. Conf. Ser. 1085, 052016 (2018)

107. F. Loebbert, D. Müller, H. Münkler, Yangian bootstrap for conformal Feynman integrals Phys.
Rev. D 101, 066006 (2020)

108. F. Loebbert, J. Miczajka, D. Müller, H. Münkler, Massive conformal symmetry and integra-
bility for Feynman integrals. Phys. Rev. Lett. 125, 091602 (2020)

109. F. Loebbert, D. Müller, J. Miczajka, H. Münkler, Yangian bootstrap for massive Feynman
integrals. arXiv:2010.08552 [hep-th]

110. L. Lewin, Polylogarithms and Associated Functions (North Holland, New York, 1981)
111. E. Remiddi, J.A.M. Vermaseren, Harmonic polylogarithms. Int. J. Mod. Phys. A 15, 725

(2000)
112. T. Gehrmann, E. Remiddi, T. Gehrmann, E. Remiddi, Two loop master integrals for gamma*

—> 3 jets: the planar topologies. Nucl. Phys. B 601, 248 (2001)
113. J.M. Borwein, D.M. Bradley, D.J. Broadhurst, P. Lisonek, Special values of multiple

polylogarithms. Trans. Am. Math. Soc. 353, 907 (2001)
114. A.B. Goncharov, Polylogarithms in arithmetic and geometry, in Proceedings of the Interna-

tional Congress of Mathematicians, Zurich (1994)
115. A.B. Goncharov, The double logarithm and Manin’s complex for modular curves. Math. Res.

Lett. 4, 617 (1997)
116. A.B. Goncharov, Multiple polylogarithms, cyclotomy and modular complexes. Math. Res.

Lett. 5, 497 (1998)
117. A.B. Goncharov, Multiple polylogarithms and mixed Tate motives. math/0103059 [math.AG]

(2001)
118. A.B. Goncharov, Galois symmetries of fundamental groupoids and noncommutative geome-

try.
119. A.B. Goncharov, M. Spradlin, C. Vergu, A. Volovich, Classical polylogarithms for amplitudes

and Wilson loops. Phys. Rev. Lett. 105, 151605 (2010)



230 M. Kalmykov et al.

120. C. Duhr, H. Gangl, J.R. Rhodes, From polygons and symbols to polylogarithmic functions. J.
High Energy Phys. 1210, 075 (2012)

121. C. Duhr, Hopf algebras, coproducts and symbols: an application to Higgs boson amplitudes.
J. High Energy Phys. 1208, 043 (2012)

122. E. Panzer, Feynman integrals and hyperlogarithms. arXiv:1506.07243 [math-ph]
123. C. Duhr, F. Dulat, PolyLogTools-polylogs for the masses. J. High Energy Phys. 1908, 135

(2019)
124. T. Gehrmann, E. Remiddi, Numerical evaluation of harmonic polylogarithms. Comput. Phys.

Commun. 141, 296 (2001)
125. T. Gehrmann, E. Remiddi, Numerical evaluation of two-dimensional harmonic polyloga-

rithms. Comput. Phys. Commun. 144, 200 (2002)
126. J. Vollinga, S. Weinzierl, Numerical evaluation of multiple polylogarithms. Comput. Phys.

Commun. 167, 177 (2005)
127. M.Yu. Kalmykov, A. Sheplyakov, lsjk - a C++ library for arbitrary-precision numeric

evaluation of the generalized log-sine functions. Comput. Phys. Commun. 172, 45 (2005)
128. D. Maitre, HPL, a mathematica implementation of the harmonic polylogarithms. Comput.

Phys. Commun. 174, 222 (2006)
129. R. Bonciani, G. Degrassi, A. Vicini, On the generalized harmonic polylogarithms of one

complex variable. Comput. Phys. Commun. 182, 1253 (2011)
130. D. Maitre, Extension of HPL to complex arguments. Comput. Phys. Commun. 183, 846

(2012)
131. S. Buehler, C. Duhr, CHAPLIN - complex harmonic polylogarithms in fortran. Comput. Phys.

Commun. 185, 2703 (2014)
132. H. Frellesvig, D. Tommasini, C. Wever, On the reduction of generalized polylogarithms to

Lin and Li2,2 and on the evaluation thereof. J. High Energy Phys. 1603, 189 (2016)
133. H. Frellesvig, Generalized polylogarithms in Maple. arXiv:1806.02883 [hep-th]
134. A. Ablinger, J. Blümlein, M. Round, C. Schneider, Numerical implementation of harmonic

polylogarithms to weight w = 8. Comput. Phys. Commun. 240, 189 (2019)
135. L. Naterop, A. Signer, Y. Ulrich, handyG-Rapid numerical evaluation of generalised polylog-

arithms in Fortran. Comput. Phys. Commun. 253, 107165 (2020)
136. C. Duhr, L. Tancredi, Algorithms and tools for iterated Eisenstein integrals. J. High Energy

Phys. 2002, 105 (2020)
137. M. Walden, S. Weinzierl, Numerical evaluation of iterated integrals related to elliptic

Feynman integrals. arXiv:2010.05271 [hep-ph]
138. D.J. Broadhurst, On the enumeration of irreducible k fold Euler sums and their roles in knot

theory and field theory. hep-th/9604128
139. D.J. Broadhurst, Massive three - loop Feynman diagrams reducible to SC* primitives of

algebras of the sixth root of unity. Eur. Phys. J. C 8, 311 (1999)
140. J.M. Borwein, D.M. Bradley, D.J. Broadhurst, Evaluations of K fold Euler/Zagier sums: a

compendium of results for arbitrary k. [hep-th/9611004]
141. D.J. Broadhurst, J.A. Gracey, D. Kreimer, Beyond the triangle and uniqueness relations:

Nonzeta counterterms at large N from positive knots. Z. Phys. C 75, 559 (1997)
142. A.I. Davydychev, J.B. Tausk, Two loop selfenergy diagrams with different masses and the

momentum expansion. Nucl. Phys. B 397, 123 (1993)
143. A.I. Davydychev, J.B. Tausk, A Magic connection between massive and massless diagrams.

Phys. Rev. D 53, 7381 (1996)
144. A.I. Davydychev, Explicit results for all orders of the epsilon expansion of certain massive

and massless diagrams. Phys. Rev. D 61, 087701 (2000)
145. A.I. Davydychev, M.Yu. Kalmykov, Some remarks on the epsilon expansion of dimensionally

regulated Feynman diagrams. Nucl. Phys. Proc. Suppl. 89, 283 (2000)
146. A.I. Davydychev, M.Yu. Kalmykov, New results for the epsilon expansion of certain one, two

and three loop Feynman diagrams. Nucl. Phys. B 605, 266 (2001)
147. T. Huber, D. Maitre, HypExp: a mathematica package for expanding hypergeometric func-

tions around integer-valued parameters. Comput. Phys. Commun. 175, 122 (2006)



Hypergeometric Functions and Feynman Diagrams 231

148. T. Huber, D. Maitre, HypExp 2, expanding hypergeometric functions about half-integer
parameters. Comput. Phys. Commun. 178, 755 (2008)

149. C. Bogner, F. Brown, Symbolic integration and multiple polylogarithms. PoS LL 2012, 053
(2012)

150. C. Bogner, F. Brown, Feynman integrals and iterated integrals on moduli spaces of curves of
genus zero. Commun. Num. Theor. Phys. 09, 189 (2015)

151. E. Panzer, Algorithms for the symbolic integration of hyperlogarithms with applications to
Feynman integrals. Comput. Phys. Commun. 188, 148 (2015)

152. C. Bogner, MPL-A program for computations with iterated integrals on moduli spaces of
curves of genus zero. Comput. Phys. Commun. 203, 339 (2016)

153. Z.W. Huang, J. Liu, NumExp: numerical epsilon expansion of hypergeometric functions.
Comput. Phys. Commun. 184, 1973 (2013)

154. D. Greynat, J. Sesma, A new approach to the epsilon expansion of generalized hypergeometric
functions. Comput. Phys. Commun. 185, 472 (2014)

155. D. Greynat, J. Sesma, G. Vulvert, Derivatives of the Pochhammer and reciprocal Pochhammer
symbols and their use in epsilon-expansions of Appell and Kampe de Feriet functions. J.
Math. Phys. 55, 043501 (2014)

156. S. Moch, P. Uwer, S. Weinzierl, Nested sums, expansion of transcendental functions and
multi-scale multi-loop integrals. J. Math. Phys. 43, 3363 (2002)

157. S. Weinzierl, Expansion around half-integer values, binomial sums and inverse binomial
sums. J. Math. Phys. 45, 2656 (2004)

158. J. Ablinger, J. Blümlein, C. Schneider, Harmonic sums and polylogarithms generated by
cyclotomic polynomials. J. Math. Phys. 52, 102301 (2011)

159. V.A. Smirnov, Analytical result for dimensionally regularized massless on shell double box.
Phys. Lett. B 460, 397 (1999)

160. J.B. Tausk, Nonplanar massless two loop Feynman diagrams with four on-shell legs. Phys.
Lett. B 469, 225 (1999)

161. S. Weinzierl, Symbolic expansion of transcendental functions. Comput. Phys. Commun. 145,
357 (2002)

162. S. Moch, P. Uwer, XSummer: transcendental functions and symbolic summation in Form.
Comput. Phys. Commun. 174, 759 (2006)

163. C. Anzai, Y. Sumino, Algorithms to evaluate multiple sums for loop computations. J. Math.
Phys. 54, 033514 (2013)

164. A.J. McLeod, H. Munch, G. Papathanasiou, M. von Hippel, A novel algorithm for nested
summation and hypergeometric expansions. J. High Energy Phys. 2011, 122 (2020)

165. V. Del Duca, C. Duhr, E.W.N. Glover, V.A. Smirnov, The One-loop pentagon to higher orders
in epsilon. J. High Energy Phys. 1001, 042 (2010)

166. A.I. Davydychev, M.Yu. Kalmykov, Massive Feynman diagrams and inverse binomial sums.
Nucl. Phys. B 699, 3 (2004)

167. M.Yu. Kalmykov, Series and epsilon-expansion of the hypergeometric functions. Nucl. Phys.
Proc. Suppl. 135, 280 (2004)

168. H.S. Wilf, Generatingfunctionology (Academic, Boston, 1994)
169. P. Flajolet, R. Sedgewick, Analytic Combinatorics (Cambridge University Press, Cambridge,

2009)
170. J.A.M. Vermaseren, Int. J. Mod. Phys. A 14, 2037 (1999). [hep-ph/9806280]
171. J. Blümlein, S. Kurth, Phys. Rev. D 60, 014018 (1999). [hep-ph/9810241]
172. F. Jegerlehner, M.Yu. Kalmykov, O. Veretin, MS-bar versus pole masses of gauge bosons. 2.

Two loop electroweak fermion corrections. Nucl. Phys. B 658, 49 (2003)
173. M.Yu. Kalmykov, Gauss hypergeometric function: reduction, epsilon-expansion for

integer/half-integer parameters and Feynman diagrams. J. High Energy Phys. 0604, 056
(2006)

174. J. Fleischer, M.Yu. Kalmykov, Single mass scale diagrams: construction of a basis for the
epsilon expansion. Phys. Lett. B 470, 168 (1999)



232 M. Kalmykov et al.

175. J. Ablinger, Proving two conjectural series for ζ(7) and discovering more series for ζ(7).
arXiv:1908.06631 [math.CO]

176. W. Wang, C. Xu, Alternating multiple zeta values, and explicit formulas of some Euler-Apery-
type series. arXiv:1909.02943 [math.NT]

177. J. Braun, D. Romberger, H.J. Bentz, On four families of power series involving harmonic
numbers and central binomial coefficients. arXiv:2006.13115 [math.NT]

178. M.Yu. Kalmykov, B.F.L. Ward, S.A. Yost, Multiple (inverse) binomial sums of arbitrary
weight and depth and the all-order epsilon-expansion of generalized hypergeometric functions
with one half-integer value of parameter. J. High Energy Phys. 0710, 048 (2007)

179. M.Yu. Kalmykov, B.A. Kniehl, Sixth root of unity’ and Feynman diagrams: Hypergeometric
function approach point of view. Nucl. Phys. Proc. Suppl. 205–206, 129 (2010)

180. O. Schnetz, Numbers and functions in quantum field theory. Phys. Rev. D 97, 085018 (2018)
181. V.V. Bytev, M.Yu. Kalmykov, B.A. Kniehl, When epsilon-expansion of hypergeometric

functions is expressible in terms of multiple polylogarithms: the two-variables examples. PoS
LL 2012, 029 (2012)

182. J. Ablinger, J. Blümlein, P. Marquard, N. Rana, C. Schneider, Automated solution of first
order factorizable systems of differential equations in one variable. Nucl. Phys. B 939, 253
(2019)

183. C. Schneider, Symbolic summation in difference fields. Technical Report 01-17, RISC-Linz,
J. Kepler University, Nov 2001

184. C. Schneider, A new Sigma approach to multi-summation. Adv. Appl. Math. 34, 740 (2005)
185. C. Schneider, A difference ring theory for symbolic summation. J. Symb. Comput. 72, 82

(2016)
186. E. Landau, J. für Math. 124, 115–120 (1901)
187. F. Schwarz, Loewy Decomposition of Linear Differential Equations (Springer, Berlin, 2012)
188. S.A. Yost, V.V. Bytev, M.Yu. Kalmykov, B.A. Kniehl, B.F.L. Ward, The epsilon expansion of

Feynman diagrams via hypergeometric functions and differential reduction. arXiv:1110.0210
[math-ph]

189. M.Yu. Kalmykov, B.A. Kniehl, All-order epsilon-expansions of hypergeometric functions of
one variable. Phys. Part. Nucl. 41, 942 (2010)

190. F. Brown, O. Schnetz, A K3 in φ4. Duke Math. J. 161, 1817 (2012)
191. F. Brown, O. Schnetz, Modular forms in quantum field theory. Commun. Num. Theor Phys.

07, 293 (2013)
192. J. Ablinger, J. Blümlein, C. Schneider, Analytic and algorithmic aspects of generalized

harmonic sums and polylogarithms. J. Math. Phys. 54, 082301 (2013)
193. J. Ablinger, J. Blümlein, C.G. Raab, C. Schneider, Iterated binomial sums and their associated

iterated integrals. J. Math. Phys. 55, 112301 (2014)
194. J. Ablinger, A computer algebra toolbox for harmonic sums related to particle physics.

arXiv:1011.1176 [math-ph]
195. J. Ablinger, Computer algebra algorithms for special functions in particle physics.

arXiv:1305.0687 [math-ph]
196. J. Ablinger, The package HarmonicSums: computer algebra and analytic aspects of nested

sums. PoS LL 2014, 019 (2014)
197. U. Aglietti, R. Bonciani, Master integrals with 2 and 3 massive propagators for the 2 loop

electroweak form-factor - planar case. Nucl. Phys. B 698, 277 (2004)
198. M.Yu. Kalmykov, B.F.L. Ward, S. Yost, All order epsilon-expansion of Gauss hypergeometric

functions with integer and half/integer values of parameters. J. High Energy Phys. 0702, 040
(2007)

199. M.Yu. Kalmykov, B.F.L. Ward, S. Yost, On the all-order epsilon-expansion of generalized
hypergeometric functions with integer values of parameters. J. High Energy Phys. 0711, 009
(2007)

200. M.Yu. Kalmykov, B.A. Kniehl, Towards all-order Laurent expansion of generalized hyperge-
ometric functions around rational values of parameters. Nucl. Phys. B 809, 365 (2009)



Hypergeometric Functions and Feynman Diagrams 233

201. J. Blumlein, D.J. Broadhurst, J.A.M. Vermaseren, The multiple zeta value data mine. Comput.
Phys. Commun. 181, 582 (2010)

202. R.H. Boels, On the field theory expansion of superstring five point amplitudes. Nucl. Phys. B
876, 215 (2013)

203. J.M. Henn, Multiloop integrals in dimensional regularization made simple. Phys. Rev. Lett.
110, 251601 (2013)

204. S. Abreu, R. Britto, C. Duhr, E. Gardi, Algebraic structure of cut Feynman integrals and the
diagrammatic coaction. Phys. Rev. Lett. 119, 051601 (2017)

205. S. Abreu, R. Britto, C. Duhr, E. Gardi, Diagrammatic Hopf algebra of cut Feynman integrals:
the one-loop case. J. High Energy Phys. 1712, 090 (2017)

206. S. Abreu, R. Britto, C. Duhr, E. Gardi, From positive geometries to a coaction on hypergeo-
metric functions. J. High Energy Phys. 2002, 122 (2020)

207. D. Kreimer, Outer Space as a combinatorial backbone for Cutkosky rules and coactions.
arXiv:2010.11781 [hep-th]

208. F. Brown, C. Dupont, Lauricella hypergeometric functions, unipotent fundamental groups of
the punctured Riemann sphere, and their motivic coactions. arXiv:1907.06603 [math.AG]

209. C.F. Gauss, Gesammelte Werke, vol. 3 (Teubner, Leipzig, 1823), pp. 1866–1929
210. G. Lauricella, Sulle funzioni ipergeometriche a piu variabili. Rend. Circ. Math. Palermo 7,

111–158 (1893)
211. O. Ore, J. Math. Pure Appl. 9, 311 (1930)
212. M. Sato, Singular orbits of a prehomogeneous vector space and hypergeometric functions.

Nagoya Math. J. 120, 1 (1990)
213. V.V. Bytev, B.A. Kniehl, HYPERDIRE HYPERgeometric functions DIfferential REduction:

mathematica-based packages for the differential reduction of generalized hypergeometric
functions: Horn-type hypergeometric functions of two variables. Comput. Phys. Commun.
189, 128 (2015)

214. M.J. Schlosser, Multiple hypergeometric series: Appell series and beyond. [arXiv:1305.1966
[math.CA]]

215. M.Yu. Kalmykov, V.V. Bytev, B.A. Kniehl, B.F.L. Ward, S.A. Yost, Feynman diagrams,
differential reduction, and hypergeometric functions. PoS ACAT 08, 125 (2008)

216. V.V. Bytev, B.A. Kniehl, HYPERDIRE - HYPERgeometric functions DIfferential REduction:
Mathematica-based packages for the differential reduction of generalized hypergeometric
functions: Lauricella function Fc of three variables. Comput. Phys. Commun. 206, 78 (2016)

217. A. Erdelyi, Hypergeometric functions of two variables. Acta Math. 83, 131 (1950)
218. A. Dickenstein, L. Matusevich, T.M. Sadykov, Bivariate hypergeometric D-modules. Adv.

Math. 196, 78 (2005)
219. J.M. Henn, Lectures on differential equations for Feynman integrals. J. Phys. A 48, 153001

(2015)
220. J.M. Henn, V.A. Smirnov, Analytic results for two-loop master integrals for Bhabha scattering

I. J. High Energy Phys. 1311, 041 (2013)
221. S. Caron-Huot, J.M. Henn, Iterative structure of finite loop integrals. J. High Energy Phys.

1406, 114 (2014)
222. F. Brown, C. Duhr, A double integral of d-log forms which is not polylogarithmic:

arXiv:2006.09413 [hep-th].
223. F. Gross, On the equation f n + gn = 1. Bull. Am. Math. Soc. 72, 86 (1966)
224. I.N. Baker, On a class of merpmorphic functions. Proc. Am. Math. Soc. 17, 819 (1966)
225. A.M. Sanchis-Lozano, Simple connections between generalized hypergeomeric series and

dilogarithms. J. Comput. Appl. Math. 85, 325 (1997)
226. Yu.A. Brychkov, N. Saad, On some formulas for the Appell function F3(a, a

′, b, b′, c;w, z).
Integral Transform. Spec. Funct. 26, 910 (2015)

227. A.N. Kirillov, Dilogarithm identities. Prog. Theor. Phys. Suppl. 118, 61 (1995)
228. B.A. Kniehl, O.V. Tarasov, Analytic result for the one-loop scalar pentagon integral with

massless propagators. Nucl. Phys. B 833, 298 (2010)



234 M. Kalmykov et al.

229. M.G. Kozlov, R.N. Lee, One-loop pentagon integral in d dimensions from differential
equations in ε-form. J. High Energy Phys. 1602, 021 (2016)

230. A.V. Kotikov, Differential equations method: new technique for massive Feynman diagrams
calculation. Phys. Lett. B 254, 158 (1991)

231. A.K. Rajantie, Feynman diagrams to three loops in three-dimensional field theory. Nucl. Phys.
B 480, 729 (1996). Erratum: [Nucl. Phys. B 513, 761 (1998)]

232. R.N. Lee, A.A. Pomeransky, Differential equations, recurrence relations, and quadratic
constraints for L-loop two-point massive tadpoles and propagators. J. High Energy Phys.
1908, 027 (2019)

233. S. Laporta, E. Remiddi, Analytic treatment of the two loop equal mass sunrise graph. Nucl.
Phys. B 704, 349 (2005)

234. O.V. Tarasov, Hypergeometric representation of the two-loop equal mass sunrise diagram.
Phys. Lett. B 638, 195 (2006)

235. S. Bloch, P. Vanhove, The elliptic dilogarithm for the sunset graph. J. Number Theor. 148,
328 (2015)

236. L. Adams, C. Bogner, S. Weinzierl, The iterated structure of the all-order result for the two-
loop sunrise integral. J. Math. Phys. 57, 032304 (2016)

237. S. Bloch, M. Kerr, P. Vanhove, Local mirror symmetry and the sunset Feynman integral. Adv.
Theor. Math. Phys. 21, 1373 (2017)

238. J. Broedel, C. Duhr, F. Dulat, L. Tancredi, Elliptic polylogarithms and iterated integrals on
elliptic curves II: an application to the sunrise integral. Phys. Rev. D 97, 116009 (2018)

239. C. Bogner, S. Müller-Stach, S. Weinzierl, The unequal mass sunrise integral expressed
through iterated integrals on M1,3. Nucl. Phys. B 954, 114991 (2020)

240. M. Besier, D. Van Straten, S. Weinzierl, Rationalizing roots: an algorithmic approach.
Commun. Num. Theor. Phys. 13, 253 (2019)

241. M. Besier, D. Van Straten, S.S. Weinzierl, RationalizeRoots: software package for the
rationalization of square roots. Comput. Phys. Commun. 253, 107197 (2020)

242. O.V. Tarasov, New relationships between Feynman integrals. Phys. Lett. B 670, 67 (2008).
243. O.V. Tarasov, Derivation of functional equations for Feynman integrals from algebraic

relations. J. High Energy Phys. 1711, 038 (2017)
244. O.V. Tarasov, Functional reduction of Feynman integrals. J. High Energy Phys. 1902, 173

(2019)



Differential Equations and Feynman
Integrals

Anatoly V. Kotikov

Abstract The role of differential equations in the process of calculating Feynman
integrals is reviewed. An example of a diagram is given for which the method of
differential equations was introduced, the properties of the inverse-mass-expansion
coefficients are shown, and modern methods based on differential equations are
discussed.

1 Introduction

The calculation of Feynman integrals (FIs) provides basic information both for the
matrix elements of the experimentally studied processes and for the characteristics
of the physical models themselves, i.e. their renormalization, critical behavior, etc.
When studying renormalization and the critical behavior, it is usually sufficient to
restrict oneself to the limit of massless particles at which the corresponding two-
point FIs are fairly simple. However, starting at the 2 or 3 loop level, there is a need
to use modern methods such as integration by parts (IBP) [1] and the Gegenbauer
polynomial method [2].1

Calculating FIs having massive propagators is a much more complex problem.
Simple results, in the form of a product of �-functions exist for simple tadpoles
only, see Eq. (10) below. A massive one-loop diagram is already given by a one-
fold integral, see Eq. (15) below.

1See also Ref. [3] and the reviews [4] and [5]. Note that multipoint massless FIs are as complex
as massive 2-point FIs. For the relationship between 2-point massive FIs and 3-point massless FIs,
cf. [6].
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It turns out, however, that massive FIs satisfy IBP procedures [1], which lead
to relations between the FIs equivalent to the original ones, but with different
powers of the propagators, including powers equal to zero. Diagrams contain-
ing propagators with degrees equal to zero are equivalent to simpler diagrams
obtained by canceling these propagators and reducing the points they join to one
point.

Such relations can be understood in two ways. First, considering them alge-
braically, one can understand them as connections between diagrams that are not
independent and can be reduced to a certain set of independent diagrams, which are
called master integrals (or masters) [7].

Second, propagators with powers greater than one can be considered as deriva-
tives, with respect to the corresponding mass or external momentum, from the
propagator with a degree of one. Thus, the relations between the master integrals
can be considered as differential equations (DEs) for these masters. An example is
given in Sect. 2, containing inhomogeneous terms, including only simpler diagrams,
which are obtained from the original diagrams by reducing some propagator. For
these simpler diagrams one can obtain similar DEs by applying the IBP procedure,
see Appendix. They contain inhomogeneous terms, including only even simpler
diagrams, which are obtained from simple diagrams by propagator reduction. By
repeating the original procedure several times, it is usually possible to obtain DEs
containing inhomogeneous terms, including only tadpoles, which in turn are easily
computable exactly. Note, however, that starting from the 2-loop level, obtaining
results for massive tadpoles requires the use of modern methods of FI calculation,
cf. [8] and references and discussions therein. Sometimes it is convenient to stop
the considered procedure on one-loop massive FI and to perform the integration
after introducing Feynman parameters, cf. [9]. More complicated diagrams can be
obtained from these tadpoles by solving successively obtained DEs with certain
boundary conditions. For dimensionally regularized massive FIs a good boundary
condition is obtained in the limit of large masses, m→∞, at which these diagrams
usually vanish.

The paper is organized as follows. In Sect. 2 we will consider a two-loop FI, the
calculation of which leads to the use of differential equations. The calculation of
massive diagrams is given in Sect. 3. Here rules are given for their efficient calcu-
lation, examples of two- and three-point diagrams are considered. The recurrence
relations for the coefficients of decomposition in the inverse mass are considered. In
Sect. 4 a short review of modern computing technology is given. Appendix contains
the derivation of the DEs for massive diagrams from the inhomogeneous term of the
DE for the diagram considered in Sect. 2.
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2 History

As mentioned in the introduction, integral representations for one-loop
FIs (obtained, for example, using the Feynman parameter method [9]) are
hypergeometric functions2 and, thus, can be represented as solutions of some
DEs. The importance of DEs for FIs was recognized long ago, see, for example,
[11, 12]. However, in my opinion, the practical application awaited the emergence
the of IBP procedure [1] for FIs and is based on the use of IBP relations, see Eqs.
(16) and (17) below.

IBP-based DEs appeared in the nineties in several papers, studying FIs: for
massive two-point functions in [13, 14], for massive three-point functions in
[15], and for four-point in [16]. Also n-point functions were considered in [17,
18]. A short overview was given in Ref. [19] dedicated to the 70th anniver-
sary of Academician O.S. Parasyuk, the co-author of the BPHZ renormaliza-
tion procedure [20], cf. e.g. [21]. The results for massless diagrams can be
sometimes obtained more easily in x-space, cf. [22–24]. It is convenient to
compute the so-called dual diagrams in x-space, cf. [23, 25]. A dual diagram is
obtained from the initial one by replacement of all momenta p by x with the
rules of correspondence between the graph and the integral. Massive two-point
and three-point diagrams were studied in x-space in Refs. [26, 27], respec-
tively.

In Refs. [13, 26] we studied a preprint of the excellent yet unpublished work [7]
on the calculation of two-loop massive FIs. Despite its excellent results, the paper
itself turned out to be quite difficult to understand.

I therefore decided to reproduce these results using the IBP relations, which
proved to be very successful for calculating the correction to the longitudinal
structure function of the deep-inelastic scattering (DIS) [25, 28]. Indeed, the method
developed [23, 25] for calculating massless FIs containing the (traceless) product of
impulses in the numerators of propagators was based on the application of IBPs
to such diagrams. This method, extended to 3-, 4- and 5-loop diagrams and built
into computer algebra programs, is the basis of the modern calculations, starting
with the excellent work in which NNLO corrections for anomalous dimensions
of Wilson operators were obtained, see e.g. [29], and references and discussions
therein. A similar method has also been developed [30] to calculate massive
corrections in the DIS process, cf. [31, 32] and the review [33] and details given
therein.

2Investigations of hypergeometric functions related to the calculation of FI are recently presented
[10] as a contribution to this volume.
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The first example which was studied in Refs. [13, 26] was the diagram

I1(q
2,m2) = , (1)

having the vertical massive propagator, see Eq. (9) for the definitions. The diagram
has left-right and top-bottom symmetries.

Applying IBP relations (16) to the left triangle of the diagram I1(q
2,m2) in

succession with vertical and lateral distinguished lines, we get

(d − 4)I1(q
2,m2) = 2

⎡
⎢⎢⎣ −

−m2

⎤
⎥⎥⎦− 2m2 , (2)

(d − 4)I1(q
2,m2) = − q2

−m2 . (3)

Taking the combination of these equations: Eq. (2)–2(m2/q2)× Eq. (3), we have

(d−4)

(
1− 2m2

q2

)
I1(q

2,m2) = 2J1(q
2,m2)−2m2

(
1− m2

q2

)
,

(4)

where

J1(q
2,m2)= − −m2

q2 .

(5)
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Because

1

(q2 +m2)2 = − d

dm2

1

(q2 +m2)2 , (6)

Eq. (5) can be rewritten in the form
[
(d − 4)

(
1− 2m2

q2

)
− 2m2

(
1− m2

q2

)
d

dm2

]
I1(q

2,m2) = 2 J1(q
2,m2) ,

(7)

i.e. the first order DE3 for the original diagram with the inhomogeneous term
J1(q

2,m2) containing only simpler diagrams, i.e. those obtained from the original
expression by canceling one of the propagators, see Eq. (5).

The first diagram in the inhomogeneous term J1(q
2,m2) is independent of the

mass and can therefore be easily calculated as a product of the �-functions, see Eq.
(11) below,

= L2,1(q
2)L1,1(q

2) = 1

(4π)d
A(2, 1)A(1, 1)

q2(5−d)
, (8)

where A(α1, α2) is given in Eq. (13) below.
Using IBP relations, for the remaining two diagrams in the inhomogeneous

J1(q
2,m2) term diagrams, one can obtain similar equations with inhomogeneous

terms containing only even simpler diagrams, i.e. those obtained from the original
by canceling two propagators. These results are given in Appendix.

3 Calculation of Massive Feynman Integrals

Let us briefly consider the rules for calculating diagrams having massive propaga-
tors.

1. The massless propagator and the propagator with mass m will be represented
as

1

q2α
= ,

1

(q2 +m2)α
= , (9)

3Hereafter we consider only first order DEs. The consideration of the higher order DEs can be
found in Section 7 of the review [33]. See also the recent papers [34].
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where the symbol m will be omitted in the single-mass case (as in the case of
I1(q

2,m2) in Eq. (1)).
2. The massive one-loop tadpole Tα1,α2(m

2) and the massless loop Lα1,α2(q
2) can

be calculated exactly as combinations of the �-functions:

Tα1,α2(m
2) =

∫
Dk

k2α1(k2 +m2)α2
= = R(α1, α2)

m2(α1+α2−d/2)
,(10)

Lα1,α2(q
2) =

∫
Dk

(q − k)2α1k2α2
= = A(α1, α2)

q2(α1+α2−d/2)
,(11)

where

A(α1, α2) = a(α1)a(α2)

a(α1 + α2 − d/2)
, a(α) = �(α̃)

�(α)
, α̃ = d

2
− α , (12)

R(α1, α2) = �(d/2− α1)�(α1 + α2 − d/2)

�(d/2)�(α2)
(13)

and

Dk = ddk

πd/2
= (4π)d/2 DEk, DEk = ddk

(2π)d
. (14)

Here DEk is the usual Euclidean measure in d = 4− 2ε dimensions.
3. A simple loop of two massive propagators with masses m1 and m2 can be rep-

resented as hypergeometric function, which can be calculated in a general form,
for example, by the Feynman-parameter method, see [9]. It is very convenient,
using this approach to represent the loop as an integral of a propagator with the
“effective mass” μ [13, 35–40]:

∫
Dk

[(q − k)2 +m2
1]α1 [k2 +m2

2]α2
= �(α1 + α2 − d/2)

�(α1)�(α2)

×
∫ 1

0

ds sα1−1 (1− s)α2−1

[s(1− s)q2 +m2
1s +m2

2(1− s)]α1+α2−d/2
= �(α1 + α2 − d/2)

�(α1)�(α2)

×
∫ 1

0

ds

s1−α̃2 (1− s)1−α̃1

1

[q2 + μ2]α1+α2−d/2 ,

(
μ2 = m2

1

1− s
+ m2

2

s

)
.
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It is useful to rewrite the equation graphically as

= �(α1 + α2 − d/2)

�(α1)�(α2)

∫ 1

0

ds

s1−α̃2 (1− s)1−α̃1

(15)

The rule is very convenient in the cases m2 = 0 and m1 = m2, where the variable
μ is equal to μ2 = m2

1/s and μ2 = m2
1/s(1 − s), respectively. Such simple

forms of μ provide the possibility to use directly an inverse-mass expansion
without applying the Mellin-Barnes representation, which is essentially a more
complicated procedure.

4. For any triangle with indices αi (i = 1, 2, 3) and masses mi there is the
following relation, which is based on integration by parts procedure [1, 13, 15]

(d − 2α1 − α2 − α3) = α2

⎡
⎢⎢⎣

−
[
(q2 − q1)

2 +m2
1 +m2

2

]
×

⎤
⎥⎥⎦

+α3

[
α2 ↔ α3,m2 ↔ m3

]
− 2m2

1α1 × . (16)

Eq. (16) can been obtained by introducing the factor (∂/∂kμ) (k−q1)
μ to the sub-

integral expression of the triangle, shown below as [...], and using the integration
by parts procedure as follows:

d

∫
Dk

[
...
] =

∫
Dk

(
∂

∂kμ
(k − q1)

μ

) [
...
] =

∫
Dk

∂

∂kμ

(
(k − q1)

μ
[
...
])

−
∫

Dk (k − q1)
μ ∂

∂kμ

([
...
])

(17)

The first term in the r.h.s. becomes to be zero because it can be represented as
a surface integral on the infinite surface. Evaluating the second term in the r.h.s.
we reproduce Eq. (16). Note that Eq. (17) can also be applied to the n-point
subgraph, see, for example, [17].



242 A. V. Kotikov

As it is possible to see from Eqs. (16) and (17) the line with the index α1 is
distinguished. The contributions of the other lines are the same. So, we will denote
below the line with the index α1 as a “distinguished line”. It is clear that a various
choices of the distinguished line produce different types of the IBP relations.

3.1 Basic Massive Two-Loop Integrals

Below we will concentrate mostly on two-loop two-point and three-point diagrams,
which can be taken from the diagrams shown in Fig. 1. We will call them as:

Îj = Î (q,mj = m �= 0,mp = 0, p �= j),

Îij = Î (q,mi = mj = m �= 0,mp = 0, p �= i �= j),

Îijs = Î (q,mi = mj = ms = m �= 0,mp = 0, p �= i �= j �= s),

Îijst = Î (q,mi = mj = ms = mt = m �= 0,Mp = 0, p �= i �= j �= s �= t),

(18)

P̂j = P̂ (q,mj = m �= 0,mp = 0, p �= j),

P̂ij = P̂ (q,mi = mj = m �= 0,mp = 0, p �= i �= j),

P̂ijs = P̂ (q,mi = mj = ms = m �= 0,mp = 0, p �= i �= j �= s),

P̂ijst = P̂ (q,mi = mj = ms = mt = m �= 0,mp = 0, p �= i �= j �= s �= t).

(19)

Now we repeat once again the procedure of the DE method. Application of the
IBP procedure [1] to loop internal momenta leads to relations between various
FIs and, therefore, to the necessity of calculating only some of them, which in a
sense are independent. These independent diagrams (which were chosen completely
arbitrarily, of course) are called master integrals [7].

Fig. 1 Two-loop two-point diagram Î (q,m1, ..., m5) and three-point diagram P̂ (q,m1, ..., m6)

with q2
1 = q2

2 = 0
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Applying the IBP procedure [1] to the master-integrals themselves leads to DEs
[13, 26] for them with the inhomogeneous terms containing less complex diagrams.
Applying the IBP procedure to diagrams in inhomogeneous terms leads to new
DEs for them with new inhomogeneous terms containing even more less complex
diagrams (≡ less2 complex ones). By repeating the procedure several times, in the
last step we can obtain inhomogeneous terms containing mainly tadpoles, which can
be easily calculated in-turn.

By solving the corresponding DEs in this last step, the diagrams for the
inhomogeneous terms of the DEs in the previous step can be reproduced. Repeating
the procedure several times, we can get the results for the original Feynman diagram.

Thus, the DE method procedure is well defined, but it requires a lot of manual
work and a lot of time. So, the calculations [36] of each of the diagrams P6 and P126
took about a month of work (of course, along with checking the results). It would
be nice, however, to transfer some of the work to the computer. The first attempt
is based on the properties of the inverse mass expansion coefficients of the master
integrals. It is presented in the next section. A more modern and efficient technique
is discussed in Sect. 5.

4 Evaluation of Series

Calculations of the two-point diagrams shown in Fig. 1, which do not contain elliptic
structures, see Fig. 2 in Ref. [37],4 as well as calculations of some three-point
diagrams shown in Fig. 1, see also Fig. 3 in Ref. [37], lead to results with interesting
properties of their inverse mass expansion coefficients.

4.1 Properties of Series

The inverse-mass expansion of two-loop two-point and three-point diagrams5 with
one nonzero mass (massless and massive propagators are shown by dashed and solid

4In fact, the results for these two-point diagrams were found in the late eighties and early nineties,
and were planned to be published in a long paper summarizing the results obtained in Refs. [13, 15].
However, this paper has not been published. These results, after verification, were published in Ref.
[37].
5The diagrams are complicated two-loop FIs that do not have cuts of three massive particles. Thus,
their results should be expressible as combinations of polylogarithms. Note that we consider only
three-point diagrams with independent upward momenta q1 and q2, which satisfy the conditions
q2

1q
2
2 = 0 and (q1 + q2)

≡q2 �= 0, where q is a downward momentum.
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lines, respectively), can be considered as

FI = N̂

q2α

∑
n=1

Cn (ηx)
n

{
F0(n)+

[
ln x F1,1(n)+ 1

ε
F1,2(n)

]
(20)

+
[

ln2 x F2,1(n)+ 1

ε
ln x F2,2(n)+ 1

ε2 F2,3(n)+ ζ(2) F2,4(n)

]
+ · · ·

}
,

where x = q2/m2, η = 1 or −1 and α = 1 and 2 for two-point and three-point

cases, respectively. The normalization factor is N̂ = (μ2/m2)
2ε

, where the mass
scale μ = 4πe−γEμ is the standard one of the MS-scheme and γE is Euler’s
constant. Moreover,

Cn = (n!)2

(2n)! ≡ Ĉn (21)

for diagrams with two-massive-particle-cuts (2m-cuts). For the diagrams with one-
massive-particle-cuts (m-cuts) one has Cn = 1.

For the m-cut case, the coefficients FN,k(n) should have the form

FN,k(n) ∼ S±a,...

nb
,

ζ(±a)

nb
, (22)

where S±a,... ≡ S±a,...(j − 1) are nested sums [41]: 6

S±a(j) =
j∑

m=1

(−1)m

ma
, S±a,±b,...(j) =

j∑
m=1

(−1)m

ma
S±b,...(m), (23)

and ζ(±a) = S±a(∞) and ζ(±a, ,±b, ...) = S±a,±b,...(∞) are the Euler-Zagier
constants.

For 2m-cut case, the coefficients FN,k(n) can be more complicated

FN,k(n) ∼ S±a,...

nb
,
Va,...

nb
,
Wa,...

nb
, (24)

where W±a,... ≡ W±a,...(j − 1) and V±a,... ≡ V±a,...(j − 1) with [37]

Wa(j) =
j∑

m=1

Ĉ−1
m

ma
, Wa,b,c,···(j) =

j∑
m=1

Ĉ−1
m

ma
Sb,c,···(m), (25)

Va(j) =
j∑

m=1

Ĉm

ma
, Va,b,c,···(j) =

j∑
m=1

Ĉm

ma
Sb,c,···(m), (26)

6In our previous papers [23, 25, 36, 37] the nested sums Ka,b,...(j) = ∑j

m=1
(−1)m+1

ma Sb,...(m) =
−S−a,b,...(j) have been used together with their analytic continuations [25, 42].
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The terms ∼ Va,... and ∼ Wa,... can appear only in the case of the 2m-cut. The
origin of the appearance of these terms is the product of series (20) with the different
coefficients Cn = 1 and Cn = Ĉn.

4.2 Two-Point Examples

As an example, consider the two-loop two-point diagrams Î5 and Î12 studied in [37]

Î5 = , Î12 = (27)

where Î5 coincides with I1(q
2,m2) considered in Sect. 2.

Their results are

Î5 = N̂

q2

∑
n=1

xn

n

{
ln2 x − 2

n
ln x + 2ζ(2)+ 4S−2 + 2

2

n2 +
2(−)n

n2

}
, (28)

Î12 = − N̂

q2

∑
n=1

(−x)n

n2

{
1

n
+ Ĉn

(
− 2 ln x − 3W1 + 2

n

)}
. (29)

From (28) one can see that the corresponding functions FN,k(n) have the form

FN,k(n) ∼ 1

n3−N
, (N ≥ 2), (30)

if we introduce the following complexity of the sums (� = (S, V,W))

�±a ∼ �±a1,±a2 ∼ �±a1,±a2,··· ,±am ∼ ζa ∼ 1

na
, (

m∑
i=1

ai = a) . (31)

The number 3 − N determines the level of transcendentality (or complexity, or
weight) of the coefficients FN,k(n). The property greatly reduces the number of
the possible elements in FN,k(n). The level of transcendentality decreases if we
consider the singular parts of diagrams and/or coefficients in front of ζ -functions
and of logarithm powers. Thus, finding the parts we can predict, the rest is obtained
using the ansatz based on the results known already, but contains elements with a
higher level of transcendentality.
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Other two-loop two-point integrals in [37] have a similar form. They were exactly
calculated by DE method [13, 26]. Their representations in the form of Nielsen
polylogarithms [43] can be found also in Ref. [37].

4.3 Three-Point Examples

Now we consider the two-loop three-point diagrams, P̂5 and P̂12:

P̂5 = , P̂12 = .

Their results are (see [37]):

P̂5 = N̂

(q2)2

∑
n=1

xn

n

{
− 6ζ3 + 2S1ζ2 + 6S3 − 2S1S2 + 4

S2

n
− S2

1

n
+ 2

S1

n2

+
(
− 4S2 + S2

1 − 2
S1

n

)
ln x + S1 ln2 x

}
, (32)

P̂12 = N̂

(q2)2

∑
n=1

(−x)n

n2 Ĉn

{
2

ε2 +
2

ε

(
S1 − 3W1 + 1

n
− ln x

)
− 6W2 − 18W1,1

−13S2 + S2
1 − 6S1W1 + 2

S1

n
+ 2

n2 − 2

(
S1 + 1

n

)
ln x + ln2 x

}
. (33)

Now the coefficients FN,k(n) have the form

FN,k(n) ∼ 1

n4−N
, (N ≥ 3), (34)

The diagram P5 (and also P1, P3, P6 and P126 in [37]) was calculated exactly by
the differential equation method [13, 26].7 To find the results for P12 (and also all
others in [37]) we have used the knowledge of the several n terms in the inverse-
mass expansion (20) (usually less than n = 100) and the following arguments:

• If a two-loop two-point diagram with a “similar topology” (for example, I12
for P12, etc.) was already calculated, we should consider a similar set of basic

7The evaluation of the inverse mass expansion coefficients is demonstrated in Ref. [38].
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elements for corresponding FN,k(n) of two-loop three-point diagrams but with a
higher level of complexity.

• Let the diagram under consideration contain singularities and/or powers of
logarithms. Since the coefficients are very simple before the leading singularity,
or the largest degree of the logarithm, or the largest ζ -function, they can often be
predicted directly from the first few terms of the expansion.
Moreover, often we can calculate the singular part using a different technique
(see [37] for extraction of ∼ W1(n) part). Then we should expand the singular
parts, find the main elements and try to use them (with the corresponding increase
in the level of complexity) in order to predict the regular part of the diagram. If
we need to find ε-suppressed terms, we should increase the level of complexity
of the corresponding basic elements.

Later, using the ansatz for FN,k(n) and several terms (usually less than 100) in the
above expression, which can be exactly calculated, we obtain a system of algebraic
equations for the parameters of the ansatz. Solving the system, we can obtain the
analytical results for FIs without exact calculations. To check the results, we only
need to calculate a few more terms in the above inverse-mass expansion (20) and
compare them with the predictions of our ansatz with the fixed coefficients indicated
above.

Thus, the considered arguments give a possibility to find results for many
complicated two-loop three-point diagrams without direct calculations. Several
process options have been successfully used to calculate Feynman diagrams for
many processes (see [36–40, 44]).

Note that properties similar to (30) and (34) but b = 0 in (22) were found for the
eigenvalues of anomalous dimensions [45] and coefficient functions [46], as well
as in the next-to-leading corrections [47] to the BFKL equation [48] for N = 4 the
Super Yang-Mills (SYM) model. Such a strong restriction made it possible to obtain
anomalous dimensions in the first three orders of the perturbation theory directly
from the corresponding results for QCD (the “most complicated” parts are the same
in N = 4 SYM and QCD) [49, 50], as well as in the 4th, 5th, 6th and 7th orders (see
[51], [52], [53] and [54], respectively) in the algebraic Bethe ansatz [55].

Note that the series (28), (29) and (32) can be expressed as a combination of the
Nielsen [43] and Remiddi-Vermaseren [56] polylogarithms with weight 4−N (see
[36, 37]). More complicated cases were examined in [57].

4.4 Properties of Massive Diagrams

Coefficients of the inverse-mass-series expansions of the two-point and three-point
FIs have the structure (30) and (34) with the rule (31). Note that these conditions
greatly reduce the number of possible harmonic sums. In turn, the restriction is
associated with a DE specific form for the considered FIs. The DEs can be formally
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represented as [58, 59] (see the example I1(q
2,m2) considered in Sect. 2)

(
(x + a)

d

dx
− k(x)ε

)
FI = less complicated diagrams(≡ FI1), (35)

with some number a and some function k(x). This form is generated by the IBP
procedure for diagrams including an inner n-leg one-loop subgraph, which in turn
contains the product kμ1 ...kμm of its internal momenta k with m = n− 3.

Indeed, for ordinary degrees αi = 1 + aiε with arbitrary ai of subgraph
propagators, the IBP relation (16) gives the coefficient d−2α1−∑p

i=2 αi+m ∼ ε for

m = n−3. Important examples of applying the rule are the diagrams Î5, Î12 and P̂5,
P̂12 (for the case n = 2 and n = 3) and also the diagrams in Ref. [60] (for the case
n = 3 and n = 4). However, we note that the results for the non-planar diagrams
(see Fig. 3 of [37]) obey Eq. (34) but their subgraphs do not comply with the above
rule. The disagreements may be related to the on-shell vertex of the subgraph, but
this requires additional research.

Taking the set of less complicated Feynman integrals FI1 as diagrams having
internal n-leg subgraphs, we get their result structure similar to the one given above
(34), but with a lower level of complexity.

So, the integrals FI1 should obey to the following equation (see J
(1)
2 (q2,m2) in

Appendix)

(
(x + a1)

d

dx
− k1(x)ε

)
FI1 = less2 complicated diagrams(≡ FI2). (36)

Thus, we will have the a set of equations for all Feynman integrals FIn as

(
(x + an)

d

dx
− kn(x)ε

)
FIn = lessn+1 complicated diagrams(≡ FIn+1),

(37)

with the last integral FIn+1 containing only tadpoles. Note that for the case n = 2 the
diagrams corresponding to the example I1(q

2,m2), satisfy the system of equations,
formally represented as Eq. (37).

5 Modern Technique of Massive Diagrams

In the last decade, several popular applications of DEs have emerged, allowing the
use of computer resources and thus to obtain results for very complicated FIs.

In my opinion, the most successfully used approach is the so-called canonical
form representation [61] of DEs (and its generalizations in Refs. [62, 63]), the
method [64] of simplified DEs, and the ability to use the effective mass (see Eq.



Differential Equations and Feynman Integrals 249

(15)), as well as their combinations. DEs are also effectively used in calculating FIs
with an elliptical structure (see [65]).

5.1 Canonical Form of Differential Equations

In our notation (see Eqs. (35)–(37)), the canonical form [61], which was introduced
by Johannes Henn in 2013 and is widely popular now (there is a huge number of
publications, which simply cannot be listed here), represents a homogeneous matrix
equation of the form (see also the review [66])

d

dx
F̂ I − εK̂(x)F̂ I = 0, (38)

for the vector

F̂ I =

⎛
⎜⎜⎝

FI
FI1/ε

...

FIn/ε
n

⎞
⎟⎟⎠ ,

where the matrix K̂ contains the functions kj /(x + aj ) as its elements. The form
(38) is called as the “canonic basic”.

Note that obtaining it is far from trivial (see, for example, Appendix for FIn=2
diagrams). Moreover, it is not always achievable (see [62, 63]), where FIs were
considered that are not reducible to (38)), and to obtain it is sometimes associated
with a non-trivial analysis (see Refs. [67] and [68] containing methods and criteria
to obtain the equation, respectively). However, the form of (38) is very convenient
as it can be easily diagonalized. Note that formally for real calculations of FIn it is
convenient to replace

FIn = F̃InFIn,

where the term FIn obeys the corresponding homogeneous equation

(
(x + an)

d

dx
− kn(x)ε

)
FIn = 0, (39)

The replacement simplifies the above Eq. (37) to the following form

(x + an)
d

dx
F̃In = F̃In+1

FIn+1

FIn
, (40)
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having the solution

F̃In(x) =
∫ x

0

dx1

x1 + an
F̃In+1(x1)

FIn+1(x1)

FIn(x1)
(41)

Usually there are some cancellations in the ratio FIn+1/FIn and sometimes it is
equal to 1. In the last case, Eq. (41) coincides with the definition of Goncharov
polylogarithms [69] (see also the review [70] and the references therein).

Sometimes the integrand in (41) can have a quadratic form in the denominator,
for example, x2

1 ± x1 + 1 (th signs ± can change, including when passing from the
Euclidean metric to the Minkowski metric). Such forms appeared in two-point FIs,
Î14, Î15 and Î123 and can be represented as Nielsen three-logarithm with complicated
argument, i.e. Li3(−y3), where y = (

√
x + 4 − x)/(

√
x + 4 + x) is so-called

conformal variable, as well as in the transform in [71] of H(−r, ...) functions,
introduced in [72], to the Remiddi-Vermaseren polylogarithms [56] of variable ∼ y

where one integral representation contains the factor x2
1 ±x1+1 in the denominator

and is thus left in this form. Terms of this kind have appeared recently in [73] also
and could be shown to be mapped into cyclotomic harmonic polylogarithms [74] in
Ref. [75]. We note that such terms appear also in contributions of the massive form
factors at 3-loop order [76]. Already before, the study of such and related integral
representations lead to the discovery of cyclotomic polylogarithms, see [74] and
Ref. [33] for a review.

5.2 Other Approaches

Here we will consider other methods that can be connected both with each other and
with the canonical form and its generalizations, Unfortunately, we cannot pretend
here to be complete in listing all the approaches.8

1. The simplified DE approach [64] is based on the violation of momentum
conservation by the parameter x, with some propagator. Using the IBP relations,
we can obtain set of equations which depends on x. We can solve it with the
boundary conditions at x = 0 and take the limit x → 1. The equations in
this approach are usually representable in canonical form, which leads to very
important results (see [78]).

2. Series expansions in singular and regular fixed points [79] (see also Ref. [80]
and discussion therein) for DE systems, which generate Eq. (38), for example, as

εK̂(x)→ K̂1(x)+ εK̂2(x) . (42)

8A short review of many approaches has recently been presented as an introduction to this volume
[77].
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The results are obtained in the form of Goncharov polylogarithms [69] and, in
some complicated cases, numerically.

3. Symmetries of FIs is a general method introduced in [81] which associates with
any given Feynman diagram a system of partial DEs. The method uses the same
variations which are used in the DE method [13] and the IBP technique [1], but
distinguishes itself by associating with any diagram a natural Lie group which
acts on the diagram’s parameter space. This approach was further developed and
numerous diagrams have been analyzed within it (see the recent paper [82] and
discussions and references therein).

4. Using the effective mass (15) reduces the number of loops in the considered
diagram. In the cases under consideration, two-loop diagrams were reduced to
one-loop ones. Then, one-loop diagrams were easily calculated using the DE
method, and the required two-loop diagrams were presented as integrals of the
obtained one-loop results (see Ref. [39]).

5.3 Elliptic Structure

Recently, the scientific community has centered its attention to the study of FIs
whose geometric properties are defined by elliptic curves. We already have a lot
of progress in understanding simplest functions beyond usual polylogarithms, the
so-called elliptic polylogarithms (see the recent papers [65, 83–85] and references
and discussions therein). Unfortunately, this topic is beyond the scope of this
consideration (discussions about elliptic polylogarithms can be found in Ref. [65],
which is a contribution to this Volume), but we would like to point out only
some of the integral representations that can be used in conjunction with elliptic
polylogarithms or even instead of elliptic polylogarithms.

The effective mass form (15) turned out to be convenient for integrals containing
an elliptic structure, since it allows one to represent the final result (see Ref. [39])
as an integral containing an elliptic kernel (i.e., a root of a polynomial of the 3rd
or 4th degree) and a remainder represented in the form of an ordinary (Goncharov)
polylogarithms. This approach can be an alternative to the introduction of elliptic
polylogarithms, which have a very complex structure (see, for example, the recent
paper [86], where the study of sunsets in special kinematics was carried out both in
the form of elliptic polylogarithms (following Ref. [87]), as well as in the form of
integral representations containing an elliptic kernel and ordinary polylogarithms.
Notice, that such analysis has been done in all orders of the dimensional regulator
following the corresponding results in Ref. [88]).

At the end of the section, we would like to note a recent paper [89], where
the results for the most complex two-point single-mass diagrams containing an
elliptical structure were obtained in the following form: using the effective mass
representation, the original FIs were presented as integrals of one-loop diagrams
dependent on the ratio μ/m. These one-loop diagrams were considered in a
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generalized canonical form (42). The authors of Ref. [89] have obtained a very
convenient representations for extremely complicated FIs.

6 Conclusions

In this short review we examined the applicability of DEs for calculating FIs. We
have considered an example I1(q

2,m2), which led to the DE method sometime
ago. The consistent application of the IBP relations to I1(q

2,m2), and then to the
diagrams of the inhomogeneous terms that arise each time, made it possible to obtain
a DE hierarchy for increasingly simple diagrams obtained at each step by reducing
one propagator. As noted in Sect. 3.1, the DE method is well defined but requires a
lot of manual work and a lot of time.

Next, we showed an effective method restoring the exact result for two-point
and three-point two-loop diagrams in terms of inverse-mass-expansion coefficients,
which have a beautiful structure and can be predicted using the corresponding
coefficients at the poles or at transcendental constants such as Euler’s ζ -functions.
These predictions were verified by analytical calculations of the first few terms using
computer programs. Thus, this method is, apparently, the first, where computer
programs were used for FI calculations using differential equations.

We have also given a brief overview of modern popular techniques such as the
‘canonical form of DEs [61], the simplified DE approach [64] and the method
of the effective mass’, see, for example, Ref. [40]. Section 5.2 lists other popular
approaches as well.

The canonical form [61], and its generalizations [62, 63], are probably the most
commonly used approaches, at least as a part of the calculations.

The effective mass method [40] allows one to actually work with diagrams that
have fewer loops than the original ones. The results for the original diagrams are
obtained in the form of integral representations, where the integrand expressions
are determined by calculating the diagrams with fewer loops. So, in Ref. [39] the
two-loop diagrams with an elliptic structure were considered. The corresponding
one-loop diagrams depending on the effective mass has no elliptic structure.
Thus, the results of the original diagrams were presented in the form of integral
representations containing an elliptic kernel, i.e., a root of a polynomial of the 3rd or
4th degree, and ordinary polylogarithms. This representations can be used instead of
elliptic polylogarithms, and even more complex objects than elliptic polylogarithms,
see [89] and discussions therein.

Following the discussion in Sect. 5.3, the combined application of the effective-
mass approach and generalizations of the canonical form for effective-mass-
dependent diagrams can yield results for very complicated FIs. Such an analysis
has already been carried out in the recent article [89] and, in our opinion, similar
calculations can be performed in the near future for many complicated FIs.
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Appendix: Massive Part of J1(q
2,m2) in Eq. (5)

In this appendix we consider the following diagrams

I
(α)
2 (q2,m2) = , S(β,α)(q2,m2) =

(43)

The IBP relations for the internal loop of the diagram produce two equations:

(d − 1− 2α) I (α)2 (q2,m2) = α J
(α+1)
2 (q2,m2)−m2 α I

(α+1)
2 (q2,m2) , (44)

(d − 3) I (1)2 (q2,m2) = T0,2(m
2 = 0) L1,1(q

2) − S(2,1)(q2,m2)

−m2 − 2m2 I
(2)
2 (q2,m2) , (45)

where

J
(α)
2 (q2,m2) = T0,α(m

2) L1,1(q
2) − S(1,2)(q2,m2) . (46)

We note that T0,2(m
2 = 0) = 0 in dimensional regularization and

T0,2(m
2)L1,1(q

2) = 1

(4π)d
R(0, 2)A(1, 1)

m2(2−d/2)q2(2−d/2)
, (47)

where R(α1, α2) and A(α1, α2) are given in Eqs. (13) and (12), respectively.
The IBP relations for internal triangles of the diagram I

(1)
2 (q2,m2) produce two

additional equations:

(d − 4) I (1)2 (q2,m2) = S(2,1)(q2,m2)− J
(2)
2 (q2,m2)−m2 I

(2)
2 (q2,m2)

−q2 , (48)
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(d − 4) = S(2,1)(q2,m2)− T2(m
2 = 0) L1,1(q

2)

+m2 − q2 . (49)

Using Eqs. (45) and (49) in the combination: 2×(45) + (49) , we have

(3d − 10) I (1)2 (q2,m2) = −4m2 I
(2)
2 (q2,m2)−m2

−q2 . (50)

So, we have for the mass-dependent part of J1(q
2,m2), see Eq. (5),

m2 + q2

=
[

3d − 10− 4m2 d

dm2

]
I
(1)
2 (q2,m2) , (51)

i.e. the mass-dependent combination is expressed through the diagram I
(1)
2 (q2,m2)

and its derivative.
Using Eq. (44) one obtains

[
d − 2− α −m2 d

dm2

]
I
(α)
2 (q2,m2) = α J

(α+1)
2 (q2,m2) , (52)

i.e. diagram I
(α)
2 (q2,m2) obeys the differential equation with the inhomogeneous

term J
(α+1)
2 (q2,m2) having a very simple form: it contains only one-loop diagrams.

We see that the last term in J
(α)
2 (q2,m2), see Eq. (46), is expressed through the
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massive one loop integral Mα1,α2(q
2,m2):

Mα1,α2(q
2,m2) =

∫
Dk

(q − k)2α1(k2 +m2)
α2
= .

(53)

Indeed,

S(1,α)(q2,m2) = A(1, 1)M2−d/2,α(q
2,m2) . (54)

The one-loop diagram M2−d/2,α(q
2,m2) can be evaluated by one of some effective

methods, for example, by Feynman parameters.
We would like to note that I (1)2 (q2,m2) satisfies Eq. (52) with α = 1 that is not

of the type of (35). But the integral I (2)2 (q2,m2) satisfies Eq. (52) with α = 2 and is

of the type of (35). So, it is convenient to rewrite (51) with I
(2)
2 (q2,m2) in its r.h.s.:

m2 + q2

= 3d − 10

d − 3
J
(2)
2 (q2,m2)− d − 2

d − 3
m2 I

(2)
2 (q2,m2) . (55)

Now we should compare the IBP-based equations for J
(2)
2 (q2,m2) and

J
(3)
2 (q2,m2) obtained in the right-hand sides of (55) and (52), respectively, with Eq.

(35). Since J
(3)
2 (q2,m2) = −(d/dm2) J

(2)
2 (q2,m2), consider only J

(2)
2 (q2,m2).

So, we should prepare the IBP-based equations for the massive one-loop dia-
grams Mε,2(q

2,m2) and Mε,3(q
2,m2). Applying the IBP procedure with massive

distinguished line to Mε,2(q
2,m2), we have

(−3ε)Mε,2(q
2,m2) = ε

[
M1+ε,1(q

2,m2)− (q2 +m2)M1+ε,2(q
2,m2)

]

−4m2 Mε,3(q
2,m2) . (56)

The corresponding applications of the IBP procedure with massless distinguished
line to M1+ε,1(q

2,m2) and M1+ε,2(q
2,m2) leads to the following results:

(1− 4ε)M1+ε,1(q
2,m2) = Mε,2(q

2,m2)− (q2 +m2)M1+ε,2(q
2,m2) , (57)

−4εM1+ε,2(q
2,m2) = 2Mε,3(q

2,m2)− 2 (q2 +m2)M1+ε,3(q
2,m2). (58)
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The last equation has the following form

[
−4ε − (q2 +m2)

d

dm2

]
M1+ε,2(q

2,m2) = − d

dm2
Mε,2(q

2,m2). (59)

Putting (57) to (56), we have after little algebra

− 4ε(1− 3ε)Mε,2(q
2,m2) = −2ε(1− 4ε) (q2 +m2)M1+ε,2(q

2,m2)
]

−4(1− 4ε)m2 Mε,3(q
2,m2) , (60)

which transforms to

−
[

4ε(1− 3ε)+ 2(1− 4ε)
d

dm2

]
Mε,2(q

2,m2) = −2ε(1− 4ε)(q2 +m2)M1+ε,2(q
2,m2)

(61)

So, Eqs. (59) and (61) can be considered as a system of equations having a form
similar to Eq. (35).
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Holonomic Anti-Differentiation
and Feynman Amplitudes

Christoph Koutschan

Abstract Computer algebra methods within the scope of the holonomic systems
approach provide a versatile toolbox to integration problems in the context of
Feynman diagrams. This is demonstrated with the aid of several benchmark
problems, ranging from hypergeometric series evaluations to Bessel integrals of
sunrise diagrams.

1 Introduction

Recent interest in the mathematical structure of Feynman diagrams has been
inspired by the persistent accuracy of high-energy experiments at LHC. Still in the
1970s it was pointed out that Feynman diagrams can be understood as a special
class of functions satisfying some system of differential equations. Later, it was
shown in [1] within analytical regularization, that any regularized Feynman integral
satisfies some holonomic system of linear differential equations. In dimension
regularization, this statement was later presented by a few groups [2–4].

It was a popular idea to explore the holonomic systems approach, as originally
formulated by Zeilberger [5], for the reduction of Feynman diagrams to the set of
so-called master integrals [6–8]. Unfortunately, this idea was not followed up, due to
the complexity of the problem. Nevertheless, we claim that the holonomic approach
can be quite useful for solving other problems, related to Feynman diagrams. One
goal of this paper is to substantiate this claim with the aid of a well-chosen set of
problems, which we are going to tackle with the HolonomicFunctions package [9,
10].

This work was initiated at the WPC workshop “Anti-Differentiation and the
Calculation of Feynman Amplitudes”, that took place in October 2020 at DESY

C. Koutschan (�)
Johann Radon Institute for Computational and Applied Mathematics (RICAM), Austrian
Academy of Sciences, Linz, Austria
e-mail: christoph.koutschan@ricam.oeaw.ac.at

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
J. Blümlein, C. Schneider (eds.), Anti-Differentiation and the Calculation
of Feynman Amplitudes, Texts & Monographs in Symbolic Computation,
https://doi.org/10.1007/978-3-030-80219-6_11

261

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80219-6_11&domain=pdf
mailto:christoph.koutschan@ricam.oeaw.ac.at
https://doi.org/10.1007/978-3-030-80219-6_11


262 C. Koutschan

Zeuthen. The material presented here reflects the outcome of several discussions
during this meeting. Specifically, we have to give Mikhail Kalmykov credit for
compiling the collection of challenge problems.

2 The Holonomic Systems Approach

Before we start, we give a very brief introduction to the main mathematical tool that
is used in this paper, that is the holonomic systems approach [5]. For more details
and background on the methods employed here, we refer to the survey articles [11,
12].

In order to write mixed difference-differential equations in a concise way, we
employ the following usual operator notation: let Dx denote the partial derivative
operator with respect to x (x is then called a continuous variable) and Sn the forward
shift operator with respect to n (n is then called a discrete variable); they act on a
function f by

Dxf = ∂f

∂x
and Snf = f

∣∣
n→n+1.

They allow us to write linear homogeneous difference-differential equations in
terms of operators, e.g.,

∂

∂x
f (k, n+ 1, x, y)+ n

∂

∂y
f (k, n, x, y)+ xf (k + 1, n, x, y)− f (k, n, x, y) = 0

turns into

(
DxSn + nDy + xSk − 1

)
f (k, n, x, y) = 0;

in other words, such equations are represented by polynomials in the operator sym-
bols Dx , Sn, etc., with coefficients in some field K which is typically some rational
function field in the variables x, n, etc., and possibly in some additional parameters.
Note that in general the polynomial ring K〈Dx, Sn, . . . 〉 is not commutative (this
fact is indicated by the angle brackets): the coefficients from the field K do not
commute with the polynomial variables Dx , Sn, etc. For instance, multiplication
with a(x, n) ∈ K is subject to the rules

Dx · a(x, n) = a(x, n) ·Dx + ∂

∂x
a(x, n) and Sn · a(x, n) = a(x, n+ 1) · Sn.

Such non-commutative rings of operators are called Ore algebras, and we typically
denote them by O; concise definitions and specifications of the properties of such
algebras can be found, for instance, in [9].
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We define the annihilator (with respect to some Ore algebra O) of a function f by:

annO(f ) := {P ∈ O | P(f ) = 0}.

It can easily be seen that annO(f ) is a left ideal in O. Every left ideal I ⊆ annO(f )
is called an annihilating ideal for f .

Definition 1 Let O = K〈. . . 〉 be an Ore algebra. A function f is called ∂-finite
w.r.t. O if O/ annO(f ) is a finite-dimensional K-vector space. The dimension of this
vector space is called the (holonomic) rank of f w.r.t. O.

In the holonomic systems approach, the representing data structures of functions
are (generators of) annihilating ideals (plus initial values). When working with (left)
ideals, we use (left) Gröbner bases [13, 14] which are an important tool for executing
certain operations (e.g., the ideal membership test) in an algorithmic way.

Without proof we state the following theorem about closure properties of ∂-finite
functions; its proof can be found in [9, Chap. 2.3]. We remark that all of them are
algorithmically executable, and the algorithms work with the above mentioned data
structure.

Theorem 1 Let O be an Ore algebra and let f and g be ∂-finite w.r.t. O of rank r

and s, respectively. Then

(i) f + g is ∂-finite of rank � r + s.

(ii) f · g is ∂-finite of rank � rs.

(iii) f 2 is ∂-finite of rank � r(r + 1)/2.

(iv) Pf is ∂-finite of rank � r for any P ∈ O.

(v) f |x→A(x,y,... ) is ∂-finite of rank � rd if x, y, . . . are continuous variables and
if the algebraic function A satisfies a polynomial equation of degree d.

(vi) f |n→A(n,k,... ) is ∂-finite of rank � r if A is an integer-linear expression in the
discrete variables n, k, . . . .

Note that in most examples the bounds on the rank are sharp.
If we want to consider integration and summation problems, then the function

in question needs to be holonomic, a concept that is closely related to ∂-finiteness.
The precise definition is a bit technical and therefore skipped here; the interested
reader can find it, e.g., in [5, 9, 15]. All functions that appear in this paper are both
∂-finite and holonomic. The following theorem establishes the closure of holonomic
functions with respect to sums and integrals; for its proof, we once again refer
to [5, 9].

Theorem 2 Let the function f be holonomic w.r.t. Dx (resp. Sn). Then also
∫ b

a
f dx

(resp.
∑b

n=a f ) is holonomic.

If a function is ∂-finite and holonomic then Chyzak’s algorithm [16] can be used to
compute an annihilating ideal for the integral (resp. sum), or a heuristic approach
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proposed in [17]. In either case, the treatment of integrals and summations is based
on the method of creative telescoping [18]. For example, for a parametrized integral
of the form

∫ b(t)

a(t)
f (x, t) dx, one has to determine a pair (P,Q), called the telescoper

and the certificate, with the properties that P +DxQ ∈ ann(f ) and that the operator
P is free of x and Dx . Then, integrating the equation (P + DxQ)(f ) = 0 and
using the fundamental theorem of calculus, yields a linear differential equation for
the integral.

In our calculations we will use the software package HolonomicFunctions [10],
implemented in Mathematica by the author, where all the above mentioned algo-
rithms are available.

3 Particular Values of Hypergeometric Functions

In [19] the authors present nice evaluations of hypergeometric functions at particular
values. Let ε be an arbitrary parameter, then the following holds:

2F1

(
2ε, 3ε
1
2 + 2ε

∣∣∣∣ 1

4

)
= �(1+ ε) �(1+ 4ε)

�(1+ 2ε) �(1+ 3ε)
(1)

see also [20] for similar hypergeometric evaluations at 1
4 . In this section we are

demonstrating the usage of computer algebra for proving identities like (1). Other
software packages, specialized to the treatment of hypergeometric series, include
HYP [21] and HYPERDIRE [22].

3.1 Evaluation of a 2F1

We write down the definition of the 2F1 hypergeometric function as an infinite sum

2F1

(
2ε, 3ε
1
2 + 2ε

∣∣∣∣ 1

4

)
=

∞∑
k=0

(2ε)k (3ε)k( 1
2 + 2ε)k k!

4−k

and denote the expression inside the sum by fk,ε. By viewing k and ε as discrete
variables, one can immediately construct two difference equations, one in k and one
in ε, and both of first order, which are satisfied by fk,ε:

2(k + 1)(4ε + 2k + 1)fk+1,ε = (2ε + k)(3ε + k)fk,ε,

6ε2(2ε + 1)(3ε + 1)(3ε + 2)(4ε + 2k + 1)(4ε + 2k + 3)fk,ε+1 =
(4ε + 1)(4ε + 3)(2ε + k)(2ε + k + 1)(3ε + k)(3ε + k + 1)(3ε + k + 2)fk,ε.
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Applying the creative telescoping algorithm to these recurrence equations yields a
telescoper

P = 3(3ε + 1)(3ε + 2)Sε − 4(4ε + 1)(4ε + 3)

and a certificate Q that is given by the following rational function:

(4ε + 1)(4ε + 3)k
(
74ε3 + 3(19k + 18)ε2 + (12k2 + 27k + 10)ε + k(k + 1)(k + 2)

)
3ε2(2ε + 1)(4ε + 2k + 1)

.

They satisfy the telescopic relation (P + (Sk − 1)Q)(fk,ε) = 0, a fact that
can be easily verified by applying the operator P + (Sk − 1)Q to fk,ε and by
subsequent simplification (which is straightforward, but tedious by hand). Summing
this relation for k from 0 to ∞ yields

∞∑
k=0

P(fk,ε)+ lim
k→∞Qfk,ε −Qfk,ε

∣∣
k=0︸ ︷︷ ︸

=0

,

which reveals that the 2F1 function from Eq. (1), let us denote it by F(ε), satisfies
the following recurrence equation:

3(1+ 3ε)(2+ 3ε)F (ε + 1) = 4(1+ 4ε)(3+ 4ε)F (ε).

Plugging in the right-hand side of (1) into the above recurrence, and simplifying it,
reveals that also the closed form, the quotient of Gamma functions, satisfies the same
recurrence. By comparing a single initial value (ε = 0), we establish the identity: for
ε = 0 the infinite sum reduces to a finite one since only the first summand (which
equals 1) survives, thanks to the definition of the Pochhammer symbol. Similarly,
all Gamma functions on the right-hand side evaluate to 1 when ε is sent to 0.

3.2 Evaluations of 3F2 Hypergeometric Functions

In an analogous fashion, one can prove identities like

1

(1− ε)(1+ 2ε)
3F2

(
1, 1+ ε, 1+ 2ε

3
2 + ε, 2− ε

∣∣∣∣ 1

4

)
= 1

3ε2

(
�(1+ 2ε) �(1− ε)

�(1+ ε)
− 1

)
.

(2)
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This one is a consequence of Eq. (1), but can also be proven directly with the
holonomic approach. The summand here (after expanding the definition of 3F2)
is

fk,ε = (ε + 1)k (2ε + 1)k
(1− ε)(2ε + 1) 4k (2− ε)k

(
ε + 3

2

)
k

Again, creative telescoping yields

P = (ε + 1)2Sε + 2ε(2ε + 1),

Q = (ε − k − 1)(10ε2 + 5εk + 9ε + k2 + 3k + 2)

3ε

with (P + (Sk − 1)Q)(fk,ε) = 0. In contrast to the previous example, one gets an
inhomogeneous contribution

Qfk,ε
∣∣
k=0 =

(ε − 1)(10ε2 + 9ε + 2)

3ε
· 1

(1− ε)(1+ 2ε)
= −2+ 5ε

3ε
,

which gives rise to the inhomogeneous recurrence equation

(ε + 1)2F(ε + 1)+ 2ε(2ε + 1)F (ε) = −5ε + 2

3ε
.

It is easy to check that also the right-hand side of Eq. (2) satisfies this recurrence.
It is well known, that the two-loop massless propagator diagram possesses

a large class of symmetries under exchange of indices (see [23–25]). Recently,
the following relations between Clausen’s hypergeometric function of arguments
z = ±1 was proven (see Eq. (5) in [26]):

3F2

(
1, B, 2A

1+ B, 2− A

∣∣∣∣−1

)
+ B

1+ A− B
· 3F2

(
1, 2A, 1+ A− B

2− A, 2+ A− B

∣∣∣∣−1

)

= B
�(2− A)�(B + A− 1) �(B − A)�(1+ A− B)

�(2A)�(1+ B − 2A)

− 1− A

B + A− 1
· 3F2

(
1, B, 2A

1+ B,A+ B

∣∣∣∣ 1
)
,

where A and B are arbitrary numbers. Also such type of identities can be treated,
by applying creative telescoping to the expression

(−1)k(2A)k(B)k

(2− A)k(B + 1)k
+ (−1)kB (2A)k(A− B + 1)k

(A− B + 1) (2− A)k(A− B + 2)k
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in order to obtain a set of recurrences in A and B for the left-hand side (of holonomic
rank 3), and then by analogously computing an annihilator for the right-hand side,
which turns out to consist of exactly the same recurrences.

3.3 Finding More 2F1 Identities

Not only can we apply the holonomic systems approach to prove identities like (1)
or (2) or to evaluate the hypergeometric functions appearing there (i.e., without
knowing the right-hand sides), but the holonomic approach also allows one to find,
almost automatically, many more, similar identities. We exemplify this with Eq. (1),
i.e., we seek identities of the form

2F1

(
a + 2ε, b + 3ε

c + 2ε

∣∣∣∣ x
)
= H(a, b, c, ε, x), (3)

where H stands for some hypergeometric expression with respect to ε: the shift-
quotient H(a, b, c, ε + 1, x)/H(a, b, c, ε, x) should be a rational function, when
regarded as a function in ε. In practice, it will be the case the H is hypergeometric-
hyperexponential in all parameters a, b, c, ε, x, which means that it can be expressed
in closed form in terms of powers, Gamma functions, and the like.

In the algebraic language, the problem is to identify conditions on the parameters
a, b, c, x such that the telescoper of the summand

sk,ε = sk,ε(a, b, c, x) = (a + 2ε)k (b + 3ε)k
(c + 2ε)k

xk

k!
is a first-order operator in Sε. Following the approach proposed in [17], one can
construct an ansatz for the telescopic operator P + (Sk − 1)Q using the following
specification:

P = P(ε, Sε) = p1Sε + p0, Q = Q(k, ε) = 1

c + 2ε + k
·

4∑
i=0

qik
i

Note that Q need not depend on Sk or Sε, because the input sk,ε is hypergeometric.
All unknowns here, namely the seven symbols p0, p1, q0, . . . , q4, are assumed to
be rational functions in Q(a, b, c, ε) and should not depend on k. Applying the
telescopic operator to the summand sk,ε, and by subsequently dividing by sk,ε yields

p1 · sk,ε+1

sk,ε
+ p0 +Q(k + 1, ε) · sk+1,ε

sk,ε
−Q(k, ε) = 0
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where

sk,ε+1

sk,ε
= (a + 2ε + k)2 (b + 3ε + k)3 (c + 2ε)2

(a + 2ε)2 (b + 3ε)3 (c + 2ε + k)2
,

sk+1,ε

sk,ε
= x(a + 2ε + k)(b + 3ε + k)

(k + 1)(c + 2ε + k)
.

By clearing denominators, i.e., multiplying by (c + 2ε + k)(c + 2ε + k + 1), this
identity of rational functions is turned into a polynomial equation of degree 6 in k.
Coefficient comparison with respect to the variable k ensures that the parameters of
the ansatz will not depend on k, as required, and will lead to a linear system of seven
equations for the seven unknowns p0, p1, q0, . . . , q4.

Since we are seeking a nontrivial solution of this system, we are interested in
the cases where the system matrix is singular. We note that this matrix, although
with 7 × 7 being small in dimension, has a nontrivial size in terms of byte count
(totaling to about 1 MB), due to the appearance of the parameters a, b, c, ε, x. The
determinant of the matrix is given (in fully factored form) by

x(c − a)(a − c − 1)(a + 2ε − 1)(a + 2ε)6(a + 2ε + 1)6(b + 3ε − 1)(b + 3ε)6

× (b + 3ε + 1)6(b + 3ε + 2)6(c + 2ε)(c + 2ε + 1)(b − c + ε − 1)(b − c + ε)

×
(
(x + 2)(4x − 1)ε2 + (4ax2 + 2ax + 8bx − 2b − 7cx + c + 2x2 + 9x − 2)ε

+ a(a + 1)x2 + x(2a + b + 2)(b − c + 1)+ c(c − b − 1)
)
.

The first three factors of the determinant correspond to trivial or well-known
evaluations of the hypergeometric function:

x = 0 : 2F1

(
a + 2ε, b + 3ε

c + 2ε

∣∣∣∣ 0
)
= 1,

c = a : 2F1

(
a + 2ε, b + 3ε

a + 2ε

∣∣∣∣ x
)
= 1

(1− x)b+3ε ,

c = a − 1 : 2F1

(
a + 2ε, b + 3ε

a + 2ε − 1

∣∣∣∣ x
)
= a(1− x)+ bx + ε(x + 2)+ x − 1

(a + 2ε − 1)(1− x)b+3ε+1 .

All remaining factors that are linear in ε do not give useful conditions: since the
ε appears with a constant coefficient and since the parameters a, b, c, x are not
supposed to depend on ε, these factors can never become 0. The only interesting
factor is the last one, a quadratic polynomial in ε, which is zero if and only if all
its three coefficients vanish. This yields three nonlinear polynomial equations in
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the parameters a, b, c, x. A (lexicographic) Gröbner basis of the ideal generated by
these polynomials is given by the following six polynomials:

(x + 2)(4x − 1),

(x + 2)(2a − 2c + 1),

a2 − 2ac + a + c2 − c + x,

12a + 8bx − 2b − 12cx − 9c + 8x + 4,

12ab − 18ac + 12a − 12bc + 6b + 18c2 − 21c + 8x + 4,

12b2 − 36bc + 24b + 27c2 − 36c + 5x + 10.

Thanks to their triangular shape, they allow us to determine the complete set of
solutions (a, b, c, x) to our polynomial equations, parametrized by a:

(
a,

3(a − 1)

2
, a − 1,−2

)
,

(
a,

3a + 2

2
, a + 2,−2

)
,

(
a,

3a

2
,

2a + 1

2
,

1

4

)
,

(
a,

3a − 1

2
,

2a + 1

2
,

1

4

)
.

Clearly, the first two families of solutions are not interesting, since the correspond-
ing hypergeometric series are not convergent. In contrast, the two families in the
second row do give us valid identities:

2F1

(
a + 2ε, 3

2a + 3ε
1
2 (2a + 1)+ 2ε

∣∣∣∣∣
1

4

)
= �

(
a
2 + ε + 1

)
�(2a + 4ε + 1)

�(a + 2ε + 1) �
(

3a
2 + 3ε + 1

) , (4)

2F1

(
a + 2ε, 1

2 (3a − 1)+ 3ε
1
2 (2a + 1)+ 2ε

∣∣∣∣∣
1

4

)
=
(

4

3

) 3a
2 +3ε

· �
(
a
2 + ε + 1

)
�
(
a + 2ε + 1

2

)
�
(
a
2 + ε + 1

2

)
�
(
a + 2ε + 1

) .
(5)

Note that Eq. (4) is a generalization of the original identity (1) we started with,
which is recovered for a = 0.

Also, we should remark that this approach is not restricted to the special form
where we have 2ε and 3ε in the top parameters of the 2F1, and 2ε in the bottom
parameter, but also to other situation where the epsilon coefficients 2, 2, 3 are
replaced by other integers. In this fashion one could potentially find many more
similar identities.

However, we do not claim that the two identities stated above are necessarily
new. There is a vast literature on special evaluations of hypergeometric functions,
and it is likely that they already appear somewhere. For example, large classes of
such identities were presented in [27] and [28], and in particular the latter seems
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to take a similar approach as the one discussed here. We nevertheless would like
to point out that, although the holonomic systems approach may not be the most
efficient way for finding new identities, it is definitely a very useful tool for proving
them.

4 Holonomic Integration

Some of the multiloop Feynman diagrams contain the one-loop diagram or the
product of one-loop diagrams insertions [29–33]. In particular, the L-loop bubble
type diagram, can be understood as the integration of L − 1 propagators with
an external massive line. The diagrams of that type have been studied from
mathematical [34, 35] as well as from practical evaluation point of view [36, 37]. In
particular, it was pointed out, that both types of diagrams are expressible in terms of
FC hypergeometric functions [38].

In this section, we will be interested in the integral

I (a) =
∫ ∞

0

tα−1

(t + a)j
f (t) dt =

∫ ∞

0
F(t, a) dt. (6)

where j ∈ Z and α is a parameter, and where the unspecified function f (t) sat-
isfies the following linear non-homogeneous differential equation with polynomial
coefficients:

(t + 1)(t + 9)f ′′(t)+ (b2t
2 + b1t + b0)f

′(t)+ c1(t + 3)f (t) = c2t. (7)

where b0, b1, b2, c1, c2 are parameters (or numerical constants). Note that such type
of equation appears originally in the paper by Broadhurst-Fleischer-Tarasov [39] in
the context of analytical evaluation of two-loop sunset diagrams with equal masses.

Of course, one natural question that one could ask in this context, is whether
the solutions of Eq. (7) can be expressed in closed form, e.g., in terms of known
special functions or as hypergeometric series. However, here we want to focus on the
integral (6) and ask the question: does this integral satisfy a similarly nice relation
as the original function f (t), that is to say: a linear differential equation, and if so,
how can we find it?

From the theory of holonomy it follows immediately that this is the case: the
property of f (t) being holonomic transfers to the whole integral, because the kernel
is just a simple combination of power functions (and hence holonomic), and because
holonomicity is preserved under definite integration.

In order to perform actual calculation, we shall first devise a holonomic descrip-
tion for the function f , by artificially viewing it as a bivariate function f (t, a). In
other words, we want to give generators of a holonomic ideal in the operator algebra
O = K(t, a)〈Dt,Da〉 where K = Q(α, b0, b1, b2, c1, c2, j). The first generator is
readily obtained Eq. (7), which one has to homogenize in order to get an annihilating
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operator. In terms of operators, this corresponds to left-multiplying the operator
given by the left-hand side of (7) by an annihilating operator of its right-hand side:

(tDt − 1) · ((t + 1)(t + 9)D2
t + (b2t

2 + b1t + b0)Dt + c1(t + 3)
)

= (t3 + 10t2 + 9t)D3
t + (b0t + b1t

2 + b2t
3 + t2 − 9)D2

t

+ (−b0 + b2t
2 + c1t

2 + 3c1t)Dt − 3c1.

The second generator is just Da since f (t, a) actually does not depend on a. From
the noncommutative version of Buchberger’s product criterion it follows that these
two operators form a Gröbner basis, and by the definition of f , it is clear that they
generate annO(f ), the annihilator of f with respect to O.

Simple transformations convert the annihilating operators for f into operators
that annihilate the whole integrand of (6), let us denote this integrand by F(t, a).
Algorithmically we can do it by exploiting the closure property that the product
of two holonomic functions is again holonomic, but in such simple instances, one
could even do it by hand. In any case, the result is as follows:

(a + t)Da + j,

t (1+ t)(9+ t)D3
t +

(−9+ b0t + t2 + b1t
2 + b2t

3 − 3t (9+ 10t + t2)R
)
D2

t

+ (b2t
2 + c1t

2 + 3c1t − b0 − 2(−9+ b0t + (1+ b1)t
2 + b2t

3)R

+ 3t (9+ 10t + t2)R2 − 3t (9+ 10t + t2)R′
)
Dt

− 3c1 − (−9+ b0t + (1+ b1)t
2 + b2t

3)R′ − (9t + 10t2 + t3)R′′

+ (b0 − t (b2t + c1(3+ t))+ 3t (9+ 10t + t2)R′R

+ (−9+ b0t + (1+ b1)t
2 + b2t

3)R2 − t (9+ 10t + t2)R3

where R = R(t, a) = (a+t)(α−1)−j t
t (a+t)

and where R′ refers to the differentiation with
respect to t . In expanded form, this annihilator covers about a page.

Equipped with this holonomic description of the integrand, we can now employ
the creative telescoping algorithm as implemented in the HolonomicFunctions
package [10], in order to obtain two operators, namely a telescoper P = P(a,Da)

and a certificate Q = Q(t, a,Dt ,Da) with the property that P +DtQ is an element
in annO(F ). To keep the exposition concise, we first look at the special case α = 1.
Then these two operators are given as follows:

P = −(a − 9)(a − 1)D3
a + (a2b2 − ab1 − 2aj + b0 + 10j)D2

a

+ (2ab2j + ac1 − b1j − 3c1 − j2 + j)Da + j (b2j − b2 + c1),
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and

Q = (t + 1)(t + 9)(a + j t)

(j − 1)t
D2
t +

(
a2(b0 + t (b1 + b2t))+ a(j (t (b0 + t (b1 + b2t + 2)

+ 20)+ 18)+ t (b0 + t (b1 + b2t)))+ j t (t (b0 + t (b1 + b2t − 1)− 10)

+ 3j (t + 1)(t + 9)− 9)
)/(

(j − 1)t (a + t)
)
Dt

+
(
a3c1(t + 3)+ a2(b0j + j t (b1 + b2t)+ c1(j + 2)t (t + 3))

+ a
(
j2(t (2b0 + t (2b1 + 2b2t − 1))+ 9)+ j (t + 3)

(
2c1t

2 + t − 3
)+ c1t

2(t + 3)
)

+ j t
(
t (t (−b1 − b2t + c1(t + 3)+ 1)− b0)+ 2j (t (b0 + t (b1 + b2t − 2)− 15)− 9)

+ 3j2(t + 1)(t + 9)− 9
))/(

(j − 1)t (a + t)2
)
.

By denoting the result of applying the operator Q to the integrand F by g(t, a), we
express the above property as the equation

P
(
F(t, a)

) = − d

dt
g(t, a).

Integrating both side of this equation (almost) yields the desired relation
for the integral:

P
(
I (a)

) = g(0, a)− lim
t→∞ g(t, a) = g(0, a)

(the latter simplification under appropriate convergence assumptions on the given
integral). Since the right-hand side of this (potentially) inhomogeneous differential
equation is not given explicitly, but in terms of the unspecified function f (t), it may
be desirable to convert it to a holonomic description, i.e., into a homogeneous linear
differential equation.

For this purpose, one shall derive a linear differential equation for g(0, a) which,
thanks to holonomic closure properties, is possible even without knowing its explicit
closed form. The procedure consists of two steps: (1) derive an annihilator for
Q(F), which is possible by the closure under operator application (the command
DFiniteOreAction yields an output of several pages), and (2) by applying
the closure property “algebraic substitution” (the corresponding command is called
DFiniteSubstitute). As a result, one receives the following operator that
annihilates g(0, a):

a3D3
a + (3a2j + 5a2)D2

a + (3aj2 + 7aj + 2a)Da + (j3 + 2j2 − j − 2).

Multiplying this operator from the left to the telescoper P yields an order-6
annihilating operator for the integral I (a) (not printed here for space reasons).
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When we want to deal with the case of general α, then the approach is completely
analogous, with the difference that all expressions get more unhandy, and that the
telescoper for general α is an operator of order 6.

In this way, starting from the linear differential equation (7) for the 2-loop sunset,
we have obtained the differential equation for the 3-loop bubble diagram with two
masses, studied recently in [40, 41].

5 Sunrise in Terms of Bessel-K Functions

In this section, we are studying a family of integrals that correspond to sunrise
Feynman diagrams. Within dimensional regularization [42] in the momentum space
it is defined as

J (L)
( #   »

M2
j ; # »αj ;p2) =

∫ L∏
j=1

dnkj(
k2
j +M2

j

)αj · 1(
(p − k1 − . . .−kL)2 +M2

L+1

)αL+1
,

where αj are positive integers and M2
j and p2 are some (in general, complex) param-

eters and n is an (in general, non-integer) parameter of dimensional regularization.
Using the coordinate representation for the Feynman propagator and performing an
integration over the angle,

∫
exp(ipx) dnx̂ = 2π

n
2

(
2

qx

) n
2−1

Jn
2−1(qx),

where q2 = −p2 and where Jν(z) denotes the Bessel function of the first kind, it is
easy to get a one-fold integral representation for this type diagram [43]:

J (L)(
#   »

M2
j ; # »αj ;p2) =

∫
dnk exp(iqx)

L+1∏
i=1

∫
dnki exp(ikix)(
k2 +M2

i

)α

=
∫

kn−1 dk
∫

dk̂ exp(iqx)
L+1∏
i=1

∫
dnki exp(ikix)(
k2 +M2

i

)α

= 2π
n
2

∫
xn−1

(
2

qx

) n
2−1

Jn
2−1(qx)

L+1∏
i=1

2π
n
2

�(αi)

(
2Mi

x

) n
2−αi

Kn
2−α(Mix) dx

=
(
π

n
2
)L+2

2α− n
2 (L+2)−L−1

(
1

q

) n
2−1∫ ∞

0
tα−

n
2 LJn

2−1(tq)

L+1∏
j=1

⎛
⎝Kn

2−αj (Mj t)
M

n
2−αj
j

�(αj )

⎞
⎠ dt

(8)
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where α =∑L+1
k=1 αk , and n is the dimension of space-time, where q2 = −p2, and

Kν(z) denotes the modified Bessel function of the second kind. This integral has
been studied in [44–47].

In the rest of this section, we will focus on the integral representation (8). Note
that the integrand contains a product of L + 2 Bessel functions (both J and K

counted together). Since a Bessel function has holonomic rank 2, it follows by
Theorem 1(ii) that the expression in the integral has holonomic rank at most 2L+2.
Unfortunately, it turns out that the bound in this instance is tight, i.e., the holonomic
rank of the integrand is exactly 2L+2. Since all creative telescoping algorithms are
very sensitive concerning the holonomic rank of the input annihilator, this class of
integrals is going to pose challenges for our package.

For computing telescopers of holonomic integrals, we have several algorithms
at hand: we mention just Chyzak’s algorithm [16] and a heuristic ansatz proposed
by the author [17]. The advantage of the former algorithm is that it is theoretically
sound and is guaranteed to terminate and to return the minimal-order telescoper,
while the latter uses several heuristics to shape the ansatz, which may result in a non-
minimal telescoper and in some instances this “algorithm” even fails to terminate.
The disadvantage of Chyzak’s algorithm is that it is very sensitive to the holonomic
rank of the input due to the uncoupling step. The other approach [17] was designed
specifically to address this issue and to circumvent the costly uncoupling step.
Since our examples have relatively large holonomic rank, we will use the heuristic
approach, and hence the reported telescopers need not necessarily be minimal. On
the other side, the usage of this algorithm enables us to get some results at all: for
example, in the most simple example (first line of Table 1), we obtain a result after
about 2 seconds, while the algorithm [16] was aborted after 1000 seconds without
yielding any result.

As a toy example, we start with the case L = 1. Hence, in this case the
integral depends on the six parameters q, n, α1, α2,M1,M2. Nevertheless, the
HolonomicFunctions program is able to compute a telescoper within a few seconds.
This telescoper is a third-order operator in Dq , but is still too long to be printed here.
Instead, we display the specialized version with M1 = M2 = 1:

−8q3(q2+ 4)D3
q + 4q2(5nq2− 16α1 − 16α2 + 12n− 8α1q

2− 8α2q
2− 12q2− 24

)
D2
q

−2q
(
16α2

1 + 16α2
2 + 48α1 + 32α1α2 + 48α2 + 7n2q2+ 12n2− 32α1n− 32α2n− 24n

+ q2(−24α1n− 24α2n− 30n+ 16α2
1 + 16α2

2 + 48α1 + 48α2 + 48α1α2 + 28)
)
Dq

− 32α2
1 − 32α2

2 + 32α1 − 64α1α2 + 32α2 + 3n3q2 + 4n3 − 16α1n
2 − 16α2n

2

− 16α1n
2q2 − 16α2n

2q2 − 14n2q2 + 16α2
1n+ 16α2

2n+ 16α1n+ 32α1α2n+ 16α2n

+ 16α2
1nq

2 + 16α2
2nq

2 + 48α1nq
2 + 48α2nq

2 + 80α1α2nq
2 + 20nq2 − 16n− 8q2

− 32α2
1q

2 − 32α2
2q

2 − 64α1α
2
2q

2 − 32α1q
2 − 32α2q

2 − 64α2
1α2q

2 − 96α1α2q
2.
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Table 1 Some benchmark computations: the first column gives the specification of an instance
of integral (8) (parameters that are not mentioned are kept symbolic), “Rank” refers to the
holonomic rank of the integrand, “Order” to the order (degree w.r.t. Dq ) of the telescoper, “Time”
to the computation time (in seconds), and “Size” to the byte size of the telescoper (not the
certificate), using Mathematica’s ByteCount. One computation didn’t finish within 36 hours,
one computation crashed (ERR); nevertheless, the order of the telescoper could be extracted from
the log files

Case Rank Order Time Size

L = 1,Mj = 1 8 3 2 s 15 KB

L = 1 8 3 6 s 149 KB

L = 2,Mj = 1, αj = j 16 4 34 s 36 KB

L = 2,Mj = 1 16 7 797 s 6.8 MB

L = 2,M1 = q,M2 = M3 = 1 16 7 8003 s 4.6 MB

L = 2,M1 = M2 = M3 16 7 ERR –

L = 2, α1 = 5, α2 = 11, α3 = 14 16 7 > 36 h –

L = 3,Mj = 1, αj = j 32 11 83006 s 1.4 MB

L = 3,M1 = q,M2 = M3 = M4 = 1, αj = j 32 11 763 s 1.0 MB

We have also looked at some “less trivial” cases of the integral (8). As the
above output suggests, it will not be reasonable to print the resulting operators, but
instead we tabularize our findings (see Table 1), together with some information on
timings and sizes of the outputs. These data allow us to acquire an intuition on how
the difficulty of the computation depends on the holonomic rank of the input, the
number of parameters, etc.

Table 1 gives an impression that the computation of integrals related to sunrise
Feynman diagrams is challenging but not completely hopeless for the holonomic
systems approach. We plan to explore further the applicability of this approach to
Feynman integrals in a forthcoming publication.

Concluding, we have shortly discussed a set of problems related to the evaluation
of Feynman diagrams, where the holonomic systems approach, implemented in the
package HolonomicFunctions, could be quite useful. We are looking forward to
many other exciting collaborations between computer algebra and particle physics.
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Outer Space as a Combinatorial
Backbone for Cutkosky Rules
and Coactions

Dirk Kreimer

Abstract We consider a coaction which exists for any bridge-free graph. It is based
on the cubical chain complex associated to any such graph by considering two
boundary operations: shrinking edges or removing them. Only if the number of
spanning trees of a graph G equals its number of internal edges we find that the
graphical coaction ΔG constructed here agrees with the coaction ΔInc proposed by
Britto and collaborators. The graphs for which this is the case are one-loop graphs or
their duals, multi-edge banana graphs. They provide the only examples discussed by
Britto and collaborators so far. We call such graphs simple graphs. The Dunce’s cap
graph is the first non-simple graph. The number of its spanning trees (five) exceeds
the number of its edges (four). We compare the two coactions which indeed do not
agree and discuss this result. We also point out that for kinematic renormalization
schemes the coaction ΔG simplifies.

1 Introduction

The notion of a coaction has gained prominence recently in the context of amplitude
computations in high energy physics [1].

This is motivated by the appearance of multiple polylogarithms and their elliptic
cousins in such computations [2–4]. For such functions the existence of such a
coaction is known. Indeed Francis Brown gave a masterful account of is appearance
and conceptual role [5, 6] in particular also with regards to the small graphs
principle, see for example [7, 8].
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For physicists it is second nature to regard any Feynman integral computation as
a manipulation on Feynman graphs.

One hence wishes to identify coactions in combinatorial manipulations of
Feynman graphs which are in accordance with their appearance in the study of such
polylogarithms.

A possible approach is based on reverse engineering by pulling back the coaction
structure of the functions into which Feynman graphs evaluate to the graphs
themselves. This is an approach successfully employed by Britto et al. [1] and
they conjecture a graphical coaction which by construction is correct for the known
graphs amenable to computation.

These are the simple graphs alluded to in the abstract above plus a few non-
simple graphs with kinematics chosen such that a large number of terms in their
conjectured graphical coactions is bound to vanish. As a consequence they evaluate
to multiple polylogarithms (MPLs) and one is again in safe terrain and can again
pull back to the coaction on MPLs.

Here we introduce a coaction which exists independent of any physics consider-
ation as a purely mathematical construct.

Its existence follows from known studies in graph complexes and graph homol-
ogy [9–11]. We derive it in all detail.

We then compare the constructions of Britto et al. and ours and show that the two
constructions agree on simple graphs and on graphs which evaluate to mere MPLs.

Next we discuss differences for generic kinematics for non simple graphs and
argue why the suggestion of Britto et al. [1] for a graphical coaction is bound to fail.

We also discuss simplifications apparent in kinematical renormalization schemes
and relate the Steinmann relations [12] to the structure of the cubical chain complex.

2 Incidence Hopf Algebras for (Lower) Triangular Matrices

Let us first define incidence Hopf algebras following Schmitt [13, 14]. Apart from
changes in notation this material is similar to the presentation in Appendix C.3 of
Britto et al. [1].

We start from a (partially) ordered set P with partial order ≤.
For x, y ∈ P , x ≤ y, consider the interval

[x, y] = {z ∈ P |x ≤ z ≤ y}.

Let P2 be the Q-algebra generated by such intervals [1, 13] through multiplication
as a free product by disjoint union of intervals.

It gives rise to an incidence bialgebra IP upon setting

Δ([x, y]) =
∑

x≤z≤y
[x, z] ⊗ [z, y],
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for the co-product Δ and

Î([x, y]) = δx,y, (1)

for the co-unit Î, where

δx,y = 1, x = y, δx,y = 0, else.

Note that Δ([x, x]) = [x, x] ⊗ [x, x] is group-like.
Following Schmitt we can turn this bialgebra IP into a Hopf algebra I

P̃
by

augmenting IP by multiplicative inverses [x, x]−1 for group-like [x, x], for all
x ∈ P .

The antipode S : I
P̃
→ I

P̃
, S ◦ S = id is defined by S([x, x]) = [x, x]−1 and

S([x, y]) =
∑

x=z0≤z1≤...≤zk=y

(−1)k
1

[x, x]
k∏

i=1

[zi−1, zi]
[zi, zi] .

2.1 Example: Lower Triangular Matrices

As an example consider lower triangular n× n matrices M , Mi,j = 0, j � i. P is
provided by the first n integers and the intervals [ji], 1 ≤ j ≤ i ≤ n, are represented
as Mi,j .

As Mi,j ∈ HGF , a Hopf algebra [15], the algebra structure of P2 agrees
with the algebra structure of HGF and is a free commutative algebra. We have
Δ(Mi,jMl,s) = Δ(Mi,j )Δ(Ml,s).

IP ≡ IM gets a different bialgebra structure though. Instead of using the
coproduct ΔGF of HGF the coproduct is

ΔMi,j =
i∑

k=j

Mk,j ⊗Mi,k.

Coassociativity of this map is obvious.

(Δ⊗ id)Δ(Mj,k) =
∑
h,i

Mh,k ⊗Mi,h ⊗Mj,i,

(id⊗Δ)Δ(Mj,k) =
∑
h,i

Mi,k ⊗Mh,i ⊗Mj,h,

and the two expressions on the right obviously agree.
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Consider the Q-vectorspace V1 generated by elements Mi,1, i � 1. Let ρΔ :
V1 → V1 ⊗ I

P̃
,

ρΔ(Mi,1) =
i∑

k=2

Mk,1 ⊗Mi,k,

be the restriction of Δ to V1.
Then coassociativity of Δ delivers

(id⊗Δ)ρΔ = (ρΔ ⊗ id)ρΔ,

and we also have by Eq.(1) that (id⊗ Î)ρΔ = id. We conclude

Proposition 2.1 ρΔ is a coaction on V1.

Note that we get such a Hopf algebra and coaction for any chosen lower triangular
matrix M . We write ΔM whenever necessary.

It is useful to define matrices MI

(MI)i,j = Mi,j /Mi,i ,

which has unit entries along the diagonal and the diagonal matrix MD

(MD)i,j = 0, i �= j, (MD)i,i = Mi,i .

Then,

(MD)×MI = M. (2)

For lower triangular matrices there are two maps which are natural to consider:
shifting to the row above or to the column to the right.

So consider the map

mr : Mi,j → Mi−1,j ,

where we set M0,j = 0 and the map

mc : Mi,j → Mi,j+1,

where we set Mn,n+1 = 0.

Proposition 2.2 We have

(id⊗mr) ◦Δ = Δ ◦mr, (3)
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and

(mc ⊗ id) ◦Δ = Δ ◦mc. (4)

Proof mr : Δ maps entries from the j -th row to entries in the j -th row on the rhs of
the tensorproduct, and mr shifts j → j − 1 on both sides of the equation.
mc: Δ maps entries from the k-th column to entries in the k-th column on the lhs of
the tensorproduct, and mc shifts k → k + 1 on both sides of the equation. *,
Example 2.3 Let us consider an example for all the above:

M =

⎛
⎜⎜⎝

1 0 0 0
a b 0 0
c d e 0
f g h j

⎞
⎟⎟⎠ . (5)

Then,

MI =

⎛
⎜⎜⎝

1 0 0 0
a/b 1 0 0
c/e d/e 1 0
f/j g/j h/j 1

⎞
⎟⎟⎠ , (6)

and

MD =

⎛
⎜⎜⎝

1 0 0 0
0 b 0 0
0 0 e 0
0 0 0 j

⎞
⎟⎟⎠ . (7)

We have

ρΔ(f ) = f ⊗ j + c ⊗ h+ a ⊗ g,

when we regard f as an element of the Q-vectorspace V1 spanned by a, c, f . Also
Δ(g) = g ⊗ j + d ⊗ h + b ⊗ g, where g ∈ IM \ V1, and IM is the Q-vectorspace
spanned by the entries of M .

Furthermore

Δ(mr(g)) = Δ(d) = d ⊗ e + b ⊗ d = (id⊗mr)(g ⊗ j + d ⊗ h+ b ⊗ g),

as mr(j) = 0, and

Δ(mc(g)) = Δ(h) = h⊗ j + e ⊗ h = (mc ⊗ id)(g ⊗ j + d ⊗ h+ b ⊗ g),

as mc(b) = 0.
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Let us introduce some more terminology. For any lower triangular n× n matrix M

let us call the entries Mi,j the Galois correspondents of M , Mi,j ∈ Gal(M). We
regard Δ as a map

Gal(M)→ Gal(M)⊗Gal(M).

For several say k such matrices Mi , 1 ≤ i ≤ k, each of them giving rise to a
coproduct and coaction Δi ≡ ΔMi we associate the set Galk := ∪k

i=1Gal(Mi). The
union is not a disjoint union as a single Galois correspondent can be contained in
various sets Gal(Mi) of such correspondents simultaneously.

We then define for all x ∈ Galk ,

Δ(x) =
k∑

j=1

Δj(x),

where we set Δj(x) = 0 ∀x �∈ Gal(Mj ).
In fact there is a matrix M which we can assign to Galk . Of particular interest to

us is the case where the entries in the upper left and lower right corner are all equal:
(Mi)1,1 = (Mj )1,1 and (Mi)n,n = (Mj )n,n, ∀i, j .

The generic construction is an obvious iteration of the following example on two
matrices.

Example 2.4 Assume M1,M2 are lower k × k square matrices.
So the MB

i below are lower (k− 2)× (k− 2) square matrices, while the MC
i are

(k − 2)× 1 column matrices, the MR
i are 1× (k − 2) row matrices, i ∈ {1, 2}.

M1 =

⎛
⎜⎜⎜⎜⎜⎝

1 0 ∼ 0 0
. . . . 0

MC
1 . MB

1 . -
. . . . 0
g . MR

1 . c

⎞
⎟⎟⎟⎟⎟⎠

,

M2 =

⎛
⎜⎜⎜⎜⎜⎝

1 0 ∼ 0 0
. . . . 0

MC
2 . MB

2 . -
. . . . 0
h . MR

2 . c

⎞
⎟⎟⎟⎟⎟⎠

,
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Then,

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 ∼ 0 0 ∼ 0 0
. . . . ∼ ∼ ∼ 0

MC
1 . MB

1 . ∼ 0 ∼ -
. . . . ∼ ∼ ∼ 0
. ∼ ∼ ∼ . . . 0

MC
2 ∼ 0 ∼ . MB

2 . -
. ∼ ∼ ∼ . . . 0

g + h . MR
1 . . MR

2 . c

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

And indeed immediately checks

ΔM = ΔM1 +ΔM2 .

Furthermore note that for any entry Mij in a n× n matrix M there exists a lower
triangular (i − j + 1)× (i − j + 1) matrix Mij , with

ΔM(x) = ΔMij

(x), ∀x ∈ Gal(Mij ).

Here the lowest leftmost entry of the matrix Mij is Mi,j .

3 Lower Triangular Matrices from the Cubical Chain
Complex

Lower triangular matrices derived from the cubical chain complex played a
prominent role already in [16]. We refine their construction here to derive a graphical
coaction.

A most prominent role in the study of Feynman graphs G is played by their |G|
independent loops. They provide the basis for the subsequent loop integrations of
Feynman integrals.

Assume given a bridgefree graph G together with a spanning tree T for it
constituting a pair (G, T ) ≡ GT ∈ HGF .

We can route all external momentum flow through edges e ∈ ET of the spanning
tree. The remaining |G| = eG − eT edges ei generate a basis LGT

for the cycle
space of G,

LGT
= {∪|G|i=1li},

where each li is a cycle of edges given by a pair (ei, pi) where ei �∈ ET and pi ⊆ ET

is the unique path of edges connecting source and target of ei .
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The Feynman integral is independent of the choice of T as long as T is a spanning
tree of G, T ∈ T(G).

Example 3.1 Here is the wheel with three spokes w3:

Its cycles are

{(e1, e2, e3), (e1, e5, e6), (e2, e4, e6), (e3, e5, e4), (e2, e3, e5, e6), (e6, e4, e3, e1),

(e4, e5, e1, e2)}.

It has 16 = |T(w3)| spanning trees T on three edges. Choose T = (e1, e6, e4).
e2, e3, e5 generate a basis for the cycles l1 := (e2, p2), l2 := (e3, p3) and l3 :=
(e5, p5), and p2 = (e4, e6), p3 = (e4, e6, e1) and p5 = (e1, e6).

This setup suggests to study Culler–Vogtmann Outer Space [9]. It assigns a k-
dimensional cell C(G) to any graph G on k + 1 edges and the Feynman integral
becomes an integral over the volume over this cell.

This is evident in parametric space where we can identify the edge length Ae of
an edge e with the parametric variable.

The renormalized Feynman form (see [17] for notation and for other than log-
divergent singularities in renormalization)

IntR(G)(q, p) =
∑
F

(−1)|F |
ln
(

Φ(G/F)ψ(F )+Φ0(F )ψ(G/F)
Φ0(G/F)ψ(F )+Φ0(F )ψ(G/F)

)

ψ2
G

�G

as provided by the Symanzik polynomials Φ,ψ gives the volume form for C(G).
The sum is over the forests of G as demanded by renormalization and we get

ΦR(G)(q) =
∫
C(G)

IntR(G).
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Here, q ∈ QG is a vector spanned by Lorentz invariants in QG as provided by the
external momentum vectors of G and p ∈ PG is a point in the projective space
spanned by positive real edge variables.

A sum over all vacuum Feynman graphs then integrates Outer Space (OS). A
sum over all bridgefree graphs with n loops and a given number s of external legs
sums the corresponding classes of graphs Xn,s with s fixed marked points and n

loops [11].
The codimension k boundaries of cells C(G) are cells themselves which are

assigned to reduced graphs where k edges of T and therefore of G shrink.
All codimension one boundaries appear for example as

C(G)→ C(G/e), e ∈ EG.

The lowest dimensional boundary is of codimension eT and the graph assigned to it
is the rose G/ET .

When studying C(G) and the cells apparent as codimension k boundaries a
prominent role its played by the barycenters of all these cells.

Example 3.2 Consider the simplest cell C(b), a one-dimensional line for the bubble
graph b on two edges with different masses (green or red lines) with two 1-edge
spanning trees indicated by double edges.

The codimension one ends are zero-dimensional cells to which a tadpole graph is
associated. At the barycentric middle of the cell we have the graph with its two
vertices as spanning forest, and the two internal edges on-shell. The barycentric
middle is determined by

Armr = Agmg

as a point p ∈ Pb ≡ P
1 which determines the ratio pb = Ar/Ag = mg/mr , and

there is qb ∈ Qb ∼ R (generated by q2 with qb : q2 = (m1+m2)
2), so that (qb, pb)

determines a threshold divisor in IntR(b)(q, p).
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The cell C(b) gives by the two spanning trees rise to two one-dimensional unit
cubes Q1 ∼ [0, 1], Q2 ∼ [0, 1]. Approaching zero, the graph shrinks to a tadpole,
approaching one it approaches the leading singularity

IntR(b)(q, p),

corresponding to the barycenter and the evaluation of ΦR(b) at q2 = (m1 + m2)
2.

As each cube is one-dimensional it gives rise to a single lower triangular Hodge
matrix as indicated.

For each cell C(G) with associated (reduced) graph g the barycenter corresponds
to the leading singular graph gF , where F = ∪v∈Vg , so that all internal edges of g
are on the mass-shell.

Such barycenters define paths from the barycenter of C(G) through barycenters
of lower and lower dimensional hypersurfaces until we reach the barycenter of
codimension eT cells.

The collection of all these paths defines the spine of Outer Space as a deformation
retract of OS [9].

The barycenters then provide the coordinates in parametric space of the threshold
divisors which generate monodromy of Feynman amplitudes.

Physical thresholds are determined by solving a variational problem [16] deter-
mining the minimal kinematical configuration so as to make the discriminant of the
second Symanzik polynomial Φ vanish for the associated leading singular graph.

The spine determines a set of |T(G)| eT -dimensional cubes and with it |T(G)|×
eT ! paths from the midpoint of C(G) to the rose G/ET . Each such path defines
a lower triangular matrix corresponding to the eT ! simplices into which a cube
decomposes.

We will thus now turn to the cubical chain complex for Feynman graphs [15, 16]
where a pair GT of a graph G and a spanning tree T for it gives rise to a eT -cube.

Any eT -cube gives rise to a natural cell decomposition into eT ! simplices and
therefore generates eT ! lower triangular matrices corresponding to the eT ! possible
orderings of the edges. Figure 1 is instructive.

Note that the cell C(t) as well as the cubes Qi are two dimensional and in fact
the cell C(t) can be dissected in |T(t)| = 3 open cubes so that C(t) = .iQi is the
completion of their union. This is in fact typical for one-loop graphs:

C(G) = X̄, X = .|T(G)|
j=1 Qj, 1 ≤ j ≤ |T(G)|

and X̄ \ X is the spine of G. This is very different for generic graphs where
dim(C(G)) = dim(Qj ) = −1+ |G| [15].

Let us study one cube say for the spanning tree on blue and red edges, so the
cube Q1 containing .
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Fig. 1 A two dimensional cell C(t) (a 2-simplex, so itself a triangle) in outer space for the triangle
graph t on three different masses (indicated by colored edges). On-shell edges are thin and marked
by a hashed line, off-shell edges are double lines, a dot orders the two-edge spanning trees with
the dotted edge the longer one. For this simple graph the spine gives a simplicial decomposition of
C(t) into three open 2-cubes Q1,Q2,Q3

It provides nine cells: a two-dimensional square, four one-dimensional edges,
and four zero-dimensional corners.

Q(1) =

The three graphs in the anti-diagonal from the lowest left corner (the origin of the
cube) to the upper right corner appear in both Hodge matrices M(1) and M(2) defined
below and associated to this cube.

In such n-cubes, the n! paths from the rose (the origin of the cube) to the leading
singular graph (diagonally opposed for the main diagonal) share their origin and
their endpoint and do not intersect otherwise. This reflects the Steinmann relations
[12] as threshold divisors do not overlap between graphs and sectors assigned to
different paths. An example:
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Example 3.3 We list all six matrices M(i), 1 ≤ i ≤ 6 for the triangle graph.

M (1) =

⎛
⎜⎜⎜⎜⎜⎜⎜

1 0 0 0

0 0

0

⎞
⎟⎟⎟⎟⎟⎟⎟ ,

for sectors

⎜⎜⎜⎜⎜⎜
1 ∅

Ag > 0

Ag > Ab > 0

Ag > Ab > Ar > 0

⎟⎟⎟⎟⎟⎟ ,

M (2) =

⎜⎜⎜⎜
1 0 0 0

0 0

0

⎟⎟⎟⎟⎟ ,

for sectors

⎜⎜⎜⎜
1 ∅

Ag > 0

Ag > Ar > 0

Ag > Ar > Ab > 0

⎟⎟⎟ .

As Ar > Ab and Ab > Ar do not coexist, both sectors give monodromy in different
regions of Qt .
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M (3) =

⎜⎜⎜⎜⎜⎜
1 0 0 0

0 0

0

⎟⎟⎟⎟⎟⎟ ,

for sectors

⎜⎜⎜⎜⎜
1 ∅

Ar > 0

Ar > Ag > 0

Ar > Ag > Ab > 0

⎟⎟⎟⎟⎟ ,

M (4) =

⎜⎜⎜⎜⎜⎜⎜
1 0 0 0

0 0

0

⎟⎟⎟⎟⎟⎟⎟ ,

for sectors

⎜⎜⎜⎜⎜⎜
1 ∅

Ar > 0

Ar > Ab > 0

Ar > Ab > Ag > 0

⎟⎟⎟⎟⎟⎟ ,

M (5) =

⎜⎜⎜⎜⎜⎜⎜
1 0 0 0

0 0

0

⎟⎟⎟⎟⎟⎟⎟ ,
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for sectors

⎜⎜⎜⎜⎜⎜
1 ∅

Ab > 0

Ab > Ar > 0

Ab > Ar > Ag > 0

⎟⎟⎟⎟⎟⎟ ,

M (6) =

⎜⎜⎜⎜⎜⎜⎜
1 0 0 0

0 0

0

⎟⎟⎟⎟⎟⎟⎟ ,

for sectors

⎜⎜⎜⎜⎜⎜
1 ∅

Ab > 0

Ab > Ag > 0

Ab > Ag > Ar > 0

⎟⎟⎟⎟⎟⎟ .

Note that each such Hodge matrix is well-defined in its sector.
We define

ΔM =
6∑

j=1

ΔM(j)

,
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where we find M as

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

1 0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

.

Let us work out a few coactions.

ΔM = ⊗ + ⊗

+ ⊗ + ⊗

+ ⊗ + ⊗

+ ⊗ .

Note that ΔM(Mi,i) = Mi,i ⊗Mi,i is group-like, so for example

ΔM = ⊗ .

Furthermore the tadpole graphs fulfill

ΔM = ⊗ ,

and similar for blue, red.
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This construction is generic and constructs a graphical coaction for any graph
with any number of loops and legs.

For example a n-loop vertex graph G in Φ4 theory has 2n edges and all spanning
trees T ∈ T(G) have n edges.

We get |T(G)| × n! Hodge matrices M(G, To), where the number of spanning
trees

|T(G)| = ψ(1, . . . , 1),

is given through the first Symanzik polynomial evaluated at unit arguments.
The required graphical coaction ΔG then comes as above by summing the

individual coactions ΔM(G,To) for M(G, To) which corresponds to a construction
of a matrix M = MG from all the matrices M(G, To).

The situation simplifies if we use kinematical renormalization schemes which set
tadpole graphs to zero and use (see [15])

ΦR(G) =
∑

T ∈T(G)

�R((G, T )). (8)

Here on the rhs we use Feynman rules �R((G, T )) integrating the space-like parts of
loop momenta after the energy components ki,0 have been integrated out as residue
integrals. These residue integrals generated the sum over spanning trees on the right
[15].

This allows to erase the leftmost column and uppermost row in the matrices M(i)

and we get six 3× 3 matrices N(i) which we can combine to a matrix N as follows:

N =

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

+ + ∼ 0 0 0 0 0

+︸ ︷︷ ︸ 0 0 0

+︸ ︷︷ ︸ 0 0 0

+

︸ ︷︷ ︸ 0 0 0

+ +︸ ︷︷ ︸

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

.
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Here we could write

+ + = ,

as the sum over residues when doing the dki,0 (contour) integrations for any graph
G pairs off with the spanning trees of G by Eq. (8). Here an entry (G, F ) ∈ HGF in
the matrix is shorthand for ΦR((G,F )).

Note that the corresponding coaction ΔN is utterly based on Cutkosky graphs:

ΔN = ⊗ + ⊗

+ ⊗ + ⊗ .

Also,

ΔN = ⊗ ,

and so on. This is particularly useful when using kinematical renormalization
schemes where indeed any tadpole vanishes.

There is much more information in our matrices (where we understand that
entries are evaluated by renormalized Feynman rules)

N (1) =

⎜⎜⎜⎜⎜⎜⎜
0 0

↑ π
�Var

disp 0
↑ π ↑ π

�Var
disp �Var

disp

⎟⎟⎟⎟⎟⎟⎟ .

Some properties:

• The boundary d of the cubical chain complex [18] and its action on a graph
GF ∈ HGF is realized on ΦR(GF ) as indicated for N(1) above.

d = d0 + d1, d ◦ d = d0 ◦ d0 = d1 ◦ d1 = 0,

goes to the right: Var(ΦR(GF )) = ΦR(d0(GF )), and up: π ◦ ΦR(GF ) =
ΦR(d1(GF )), corresponding to mr and mc in the coaction.
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• Any variation induces a transition in the columns Ci → Ci+1 by putting an edge
e with quadric Q(e) on the mass-shell. Therefore Hodge matrices.

• This determines a point in a fiber determined by the zero locus Q(e) = 0 of the
quadric Q(e) assigned to edge e. π is the corresponding projection onto a base
space provided by the reduced graph. It also determines a sequence of iterated
integrals associated to the order o in either parametric or quadric Feynman rules.
The next Sec.(3.1) gives an example.

• Any row Ri+1 is a fibration over Ri by a one-dimensional fiber. For example the
z-integral in Eq. (12) is an integral over such a one-dimensional fiber.

• Boundaries of the dispersion integral are provided by the leading singularities
stored in MD.

3.1 The Triangle Graph

Consider the one-loop triangle with vertices {A,B,C} and edges

{(A,B), (B,C), (C,A)},

and quadrics (in this example we use both p, q to indicate 4-momenta as we are not
invoking parametric variables) :

PAB = k2
0 − k2

1 − k2
2 − k2

3 −M1,

PBC = (k0 + q0)
2 − k2

1 − k2
2 − k2

3 −M2,

PCA = (k0 − p0)
2 − (k1)

2 − (k2)
2 − (k3 − p3)

2 −M3.

Here, we Lorentz transformed into the rest frame of the external Lorentz 4-vector
q = (q0, 0, 0, 0)T , and oriented the space like part of p = (p0,p)T in the 3-
direction: p = (0, 0, p3)

T .

Using q0 =
√
q2, q0p0 = qμp

μ ≡ q.p, p · p = q.p2−p.pq.q

q2 , we can express
everything in covariant form whenever we want to.

We consider first the two quadrics PAB, PBC which intersect in C
4.

The real locus we want to integrate is R4, and we split this as R×R
3, and the latter

three dimensional real space we consider in spherical variables as R+×S1×[−1, 1],
by going to coordinates k1 = √

s sinφ sin θ ,k2 = √
s cosφ sin θ , k3 = √

s cos θ ,
s = k2

1 + k2
2 + k2

3, z = cos θ .
We have

PAB = k2
0 − s −M1,

PBC = (k0 + q0)
2 − s −M2.
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So we learn say s = k2
0 −M1 from the first and

k0 = kr := M2 −M1 − q2
0

2q0

from the second, so we set

sr := M2
2 +M2

1 + (q2
0 )

2 − 2(M1M2 + q2
0M1 + q2

0M2)

4q2
0

.

The integral over the real locus transforms to

∫
R

4
d4k → 1

2

∫
R

∫
R+

√
sδ+(PAB)δ+(PBC)dk0ds ×

∫ 2π

0

∫ 1

−1
dφδ+(PCA)dz.

We consider k0, s to be base space coordinates, while PCA also depends on the fibre
coordinate z = cos θ . Nothing depends on φ (for the one-loop box it would).

Integrating in the base and integrating also φ trivially in the fibre gives

1

2

√
sr

2q0
2π
∫ 1

−1
δ+(PCA(s = sr , k0 = kr))dz.

For PCA we have

PCA = (kr − p0)
2 − sr − p · p− 2|p|√srz−M3 =: α + βz. (9)

Integrating the fibre gives a very simple expression (the Jacobian of the δ-function
is 1/(2

√
sr |p|), and we are left with the Omnès factor1

π

4|p|q0
= π

2
√
λ(q2, p2, (q + p)2)

= ΦR

( )
. (10)

This contributes as long as the fibre variable

z = (kr − p0)
2 − sr − p · p−M3

2|p|√sr
(11)

lies in the range (−1, 1). This is just the condition that the three quadrics intersect.

1For any 4-vector r we have r2 = r2
0 − r · r. Let q be a time-like 4-vector, p an arbitrary 4-vector.

Then, (q ·p2−q2p2)/q2 = λ(q2, p2, (q+p)2)/4q2 and in the rest frame of q, (q ·p2−q2p2)/q2 =
p · p where λ(a, b, c) = a2 + b2 + c2 − 2(ab + bc + ca), as always.
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An anomalous threshold below the normal threshold appears when (m1−m2)
2 <

q2 < (m1 +m2)
2.

On the other hand, when we leave the propagator PCA uncut, we have the integral

1

2

√
sr

2q0
2π
∫ 1

−1

1

PCA (s=sr ,k0=kr )

dz.

This delivers a result as foreseen by S-Matrix theory [19, 20].
The two δ+-functions constrain the k0- and t-variables, so that the remaining

integrals are over the compact domain S2. Here the fiber is provided by the one-
dimensional z-integral and the compactum CG/EF

is the two-dimensional S2 while
for CG it is the one-dimensional S1.

As the integrand does not depend on φ, this gives a result of the form

ΦR

( )
= 2πC

∫ 1

−1

1

α + βz
dz

︸ ︷︷ ︸
=:JCA

= 2π
C

β
ln

α + β

α − β
(12)

= 1

2
Var(ΦR(b2))︸ ︷︷ ︸
ΦR

⎛
⎜⎝

⎞
⎟⎠

×JCA,

where C = √
sr/2q0 is intimately related to Var(ΦR(b2)) for b2 the reduced triangle

graph (the bubble), and the factor 1/2 here is Vol(S1)/Vol(S2).
Here, α and β are given through (see Eq. (9)) l1 ≡ p2 = λ(q2, p2, (p+q)2)/4q2

and l2 := sr = λ(q2,M1,M2)/4q2 as

α = (kr − p0)
2 − l2 − l1 −M3, β = 2

√
l1l2.

Note that

C

β
= 1√

λ(q2, p2, (q + p)2)
= 1

2q0|p| ,

in Eq. (12) is proportional to the Omnès factor Eq. (10).
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In summary, there is a Landau singularity in the reduced graph in which we
shrink PCA. It is located at

q2
0 = snormal = (

√
M1 +

√
M2)

2 = s⎛
⎜⎝

⎞
⎟⎠
.

It corresponds to the threshold divisor defined by the intersection (PAB = 0) ∩
(PBC = 0) at the point

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q2 = (
√
M1 +

√
M2)

2,
A1

A2
=
√
M2√
M1︸ ︷︷ ︸

barycenter

⎛
⎜⎝

⎞
⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

This is not a Landau singularity when we unshrink PCA though. A (leading)
Landau singularity appears in the triangle when we also intersect the previous
divisor with the locus (PCA = 0).

It has a location which can be computed from the parametric approach. One finds

q2
0 = sanom = (

√
M1 +

√
M2)

2 +

+4M3(
√
λ2
√
M1 −√λ1

√
M2)

2 − (√λ1(p
2 −M2 −M3)

4M3
√
λ1
√
λ2

+
√
λ2((p + q)2 −M1 −M3)

)2
4M3

√
λ1
√
λ2

= s⎛
⎝

⎞
⎠
,

with λ1 = λ(p2,M2,M3) and λ2 = λ((p + q)2,M1,M3).
Equation (12) above is the promised result: the leading singularity of the reduced

graph t/PCA and the non-leading singularity of t have the same location and both
involve Var(ΦR(b2)) and the non-leading singularity of t factorizes into the (fibre)
amplitude JCA × Var(ΦR(b2)).
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Fig. 2 The two Cutkosky triangle graphs G1,G2 are distinguished by a permutation of external
edges p1, p2. Edges e1, e2 are on-shell, e3 is off-shell and hence in the forest. Shrinking or
removing it delivers in both cases the same reduced (g) or leading (h) graph. As a result we get a
cycle d(G1 −G2) = 0. Obviously there is no X such that dX = G1 −G2

This gives rise to a cycle which is a generator in the cohomology of the cubical
chain complex as Fig. 2 demonstrates [15]. As for dispersion, we get a result
effectively mapping C3 → C2 → C1:

ΦR

( )
=

∫ s
⎜⎜⎜⎜⎝

⎟⎟⎟⎟⎠

s⎛
⎜⎜⎝

⎞
⎟⎟⎠

ΦR

s − x
dx

+
∫ ∞

s⎛
⎜⎜⎜

⎞
⎟⎟⎟

ΦR

( )
s − x

dx.

The situation is very similar for the Dunce’s cap graph dc. Again we have spanning
trees of length two and monodromy generated from partitioning its three vertices in
all possible ways by cuts.

Look first at a single term for a chosen ordered spanning tree (Fig. 3):
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1 0 0 0

0 0

0

Ag > 0;Ay > 0 ⇔ Ag > Ay > 0 ∨ Ay > Ag > 0

Ag > 0;Ay > Ab > 0 ⇔ Ay > Ab > Ag > 0

Ag > Ar > 0;Ay > Ab > Ar > 0 ⇔ Ay > Ab > Ag > Ar > 0

↑ π ↑ π↑ π

↑ π

↑ π ↑ π

↑ π ↑ π

↑ π
↑ π

⇀↽Var
disp

→∮
dki,0 ⇀↽Var

disp
⇀↽Var

disp

→∮
dki,0

→∮
dki,0

∨Ay > Ag > Ab > 0 ∨ Ag > Ay > Ab > 0

∨Ay > Ag > Ab > Ar > 0 ∨ Ag > Ay > Ab > Ar > 0

Fig. 3 Dispersion in the Dunce’s cap. Here the order is blue before red, so red shrinks first and
blue is cut first. Note that due to the presence of more than one loop, choosing a spanning tree
(blue, red: the thick double edges) and an order does not single out a single sector as it would
in the one-loop case. Here we get three sectors. See the right column. Summing over trees and
orders correctly delivers all 24 sectors from the ten ordered spanning trees partitioning them as
24 = 3+ 2+ 3+ 2+ 3+ 2+ 3+ 2+ 2+ 2 as we see below

3.2 Summing Up

We use Eq. (8) where �R has integrated out all energy integrals
∮ ∏|G|

i=1 dki,0 by
contour integrations closing in the upper halfplane.

This leads to a graphical coaction:

Theorem 3.4

ΔG =
∑

(T ,o)∼G

Δ
GTo (g),

defines a graphical coaction for all g ∈ Gal(MG). For kinematical renormalization
schemes it can be written as a coaction on Cutkosky graphs.

Corollary 3.5 Assume the number of spanning trees equals the number of edges of
a graph, |T(G)| = eG which is true for one-loop graphs and their duals, banana
graphs. We call them simple graphs (in blunt ignorance of the analytical complexity
of an n-edge banana graph, n ≥ 3). Then

∑
(T ,o)∼G

Δ
GTo (G) = ΔInc(G),

where ΔInc is the incidence Hopf algebra and coaction used by Britto et al. [1].
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Here,

ΔInc(G) = ΔInc(G,∅) =
∑

∅≤X≤EG
X �=∅

(GX,∅)⊗ (G,X),

in their notation. GX has all edges e contracted, e �∈ X. In fact one-loop graphs
evaluate to dilogs [2] and hence provide the first examples to pull back the coaction
from such functions to graphs.

There are non simple graphs in dedicated kinematics (massless internal edges,
light-like external momenta) where ΔInc agrees with ΔG as well, but not in a generic
situation:

Corollary 3.6 The first non simple graph is the Dunce’s cap graph dc with two
loops and three vertices. It has four edges and five spanning trees. ΔInc(dc) �=
Δdc(dc).

Similar for all other non simple graphs in generic kinematics.

3.3 The Dunce’s Cap

Example 3.7 Let us work out the Dunce’s cap. We start with Fig. 4.
There are 6 = (

4
2 ) choices for two out of four edges. One of these does not form

a possible basis for two loops in the graph, the other five choices determine the five
spanning trees of the graph as in Fig. 5. Correspondingly the co-dimension two edge
BC is not part of the cell of the Dunce’s cap, nor are the four corners. We give one
cube as an example in Fig. 6, see also Fig. 7.

For example for the spanning tree T3 with order blue before red so that we shrink
red first we find the matrix M(3) given in Fig. 8. Applying ΔM is in Fig. 9. If we
change the order to red before blue we get a different matrix. Finally the case of a
spanning tree on the yellow and blue edge, with order yellow before blue (Figs. 10
and 11). Next we can get rid of dangling tadpole graphs using for example M

(3)
D in

M(3) using the matrix of Fig. 12. And also use the matrix Fig. 13.
We construct M̃(3) = M

(3)
D′ × (M

(3)
D )−1 × M(3). We now sum over orders and

spanning trees for all M̃(i), and use hence kinematic renormalization schemes for
which we have

ΦR

( )
= ΦR

( )
= 0. (13)

This then allows to eliminate the leftmost column and topmost row from the
coaction matrices and allows to sum over spanning trees so that we can formulate
the coaction on Cutkosky graphs.
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Fig. 4 The Dunce’s cap dc and its cell C(dc), a tetrahedron. We also indicate the four triangular
cells which are its co-dimension one hypersurfaces. It is a graph on four edges, its cell in OS is
thus the three-dimensional tetrahedron C(dc). Its spine gives rise to five two-dimensional cubes
Qi which can not provide a triangulation of C(dc). Instead C(dc) gives rise to a fibration of the
cubes Qi . The spine is a union of ten paths. Six of them give rise to two sectors, and four of them
to three sectors, adding up to the 24 sectors in C(dc). Renormalization makes the extra sector in
the latter four paths well-defined

Fig. 5 The five spanning trees of the Dunce’s cap dc. They give rise to five cubes Qi and ten
matrices M(dc, To) . Spanning trees are on two edges so we get two possible orders and hence ten
matrices. Integrating the energy variables indeed generates residues

∑
T �R(GT ) for those trees

Again we find a matrix N = N(dc) which defines a coaction which only involves
Cutkosky graphs as in Fig. 14.

Remark 3.8 Deformed coactions. Pulling back the known coaction of (elliptic)
polylogs to a graphical coaction Britto et.al. find the need to deform their coaction
in a systematic way using the parity of the number of edges. We can incorporate this
in ΔG in a similar fashion but attempt at an approach using the Z2 grading of graph
homology in future work (Fig. 15).
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Fig. 6 A cube Q for the graph dc. It gives rise to two matrices M(j). Note that it contains the six
entries of M(3). Note that in all nine entries of the cube graphs are evaluated at Agmg = Aymy

and the cube describes a codimension 1 surface of P3 = Pdc. The one-dimensional fibre which has
the cube as base is given by the variable Ay/Ag

Fig. 7 This is illegal. The green and red edge do not form a spanning tree. Correspondingly there
is neither matrix nor residue assigned to this configuration and hence for the nonsimple Dunce’s
cap graph the coaction ΔInc of [1] (which includes this graph) deviates from the structure of a
cubical complex

Remark 3.9 First entry condition. Steinman relations. Note that to any entry
Mj,2 belongs a 2-partition VG = V

(1)
G . V

(2)
G . This defines a variable s =

(
∑

v∈V (1)
G

q(v))2. The Matrix M then describes the monodromy of functions

ΦR(Mj,1) in the leftmost column through the entries Mj,2 in the next column when
varying this variable s. Mj,2 are by construction the first entries which have a non-
trivial cut each originating from a distinct non-overlapping sector.
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1 0 0 0

0 0

0

Ag > 0;Ay > 0 ⇔ Ag > Ay > 0 ∨ Ay > Ag > 0

Ag > 0;Ay > Ab > 0 ⇔ Ay > Ab > Ag > 0

Ag > Ar > 0;Ay > Ab > Ar > 0 ⇔ Ay > Ab > Ag > Ar > 0

∨Ay > Ag > Ab > 0 ∨ Ag > Ay > Ab > 0

∨Ay > Ag > Ab > Ar > 0 ∨ Ag > Ay > Ab > Ar > 0

Fig. 8 The matrix M(3) which we had before. We have obviously four such matrices giving three
sectors each

Fig. 9 In the upper row ΔM acts as a coaction, in the lower as a coproduct

1 0 0 0

0 0

0

Ag > 0;Ay > 0 ⇔ Ag > Ay > 0 ∨ Ay > Ag > 0

Ag > Ar > 0;Ay > Ar > 0 ⇔ Ag > Ay > Ar > 0 ∨ Ay > Ag > Ar > 0

Ag > Ar > 0;Ay > Ar > Ab > 0 ⇔ Ag > Ay > Ar > Ab > 0 ∨ Ay > Ag > Ar > Ab > 0

Fig. 10 The matrix M(2). We also give the sectors to which its entries contribute of which there
are two and we have four such matrices

One interpretation of the Steinmann relation is that two different 2-partitions
which define two different variables s, t indeed do not interfere. The monodromy
in a chosen variable s is solely determined by subdividing the associated 2-partition
further.
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1 0 0 0

0 0

0

Ag > 0;Ar > 0 ⇔ Ag > Ar > 0 ∨ Ar > Ag > 0

Ag > Ay > 0;Ar > Ay > 0 ⇔ Ag > Ar > Ay > 0 ∨ Ar > Ag > Ay > 0

Ag > Ay > Ab > 0;Ar > Ay > Ab > 0 ⇔ Ag > Ar > Ay > Ab > 0 ∨ Ar > Ag > Ay > Ab > 0

Fig. 11 The matrix M(9). We also give the sectors to which its entries contribute of which there
are two and we have two such matrices from the two possible orders

Fig. 12 The matrix M
(3)
D . Multiplying from the left with its inverse unifies the diagonal and

eliminates all tadpoles due to Eq. (13)

Fig. 13 The matrix M
(3)
D′ . Multiplying it from the right reinserts all diagonal entries apart from

tadpoles
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Fig. 14 The matrix N(dc). The second entry in the lowest row is a shorthand given in Fig. 15

Fig. 15 Integrating the subloop sums two residues by putting either the red or green edge on shell.
We can combine this into one entry in the matrix N(dc) thanks to the fact that tadpoles vanish

4 Conclusions

• The cell decomposition of OS together with the corresponding spine provide a
cubical complex for Feynman graphs organized by spanning trees.

• Boundaries correspond to either reduced or Cutkosky-cut graphs.
• Each cube has an accompanying simplex decomposition giving Hodge matrices

according to a chosen order of edges in a spanning tree.
• Each Hodge matrix defines a coaction.
• Summing over trees and orders defines a coproduct and graphical coaction ΔG

for any Feynman graph G.
• Only in simple cases it agrees with ΔInc. For generic kinematics ΔInc is

maximally wrong.
• The use of dimensional regularization is neither necessary nor sufficient to find a

valid graphical coaction.
• Task: interprete ΔG in terms of Brown’s approach [5, 6] in particular on the

possibly not so mysterious rhs (the ‘de Rham side’).
• Question: What is Brown’s small graphs principle making out of the simplifica-

tions in kinematic renormalization?
• This so far is a story on principal sheets and variations in the real domain. For a

complete understanding in algebraic geometry one must make room for complex
variations of masses and kinematics. Need to take into account finer structure of
OS. Whilst here we worked with the spine of OS, one needs to consider markings
and bordification of OS itself.
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Appendix 1: The Cubical Chain Complex

We assume the reader is familiar with the notion of a graph and of spanning trees and
forests. See [15] where these notions are reviewed. We follow the notation there. In
particular |G| is the number of independent cycles of G, eG the number of internal
edges and vG the number of vertices of G. For a pair of a graph and a spanning
forest we write (G, F ) or GF . If a spanning forest has k connected components we
call it a k-forest. A spanning tree T is a 1-forest. Its number of edges hence eT .
T(G) is the set of spanning trees of G.

Pairs (G, F ) are elements of a Hopf algebra HGF based on the core Hopf algebra
Hcore of bridgefree graphs [15].

As an algebra HGF is the free commutative Q-algebra generated by such pairs.
Product is disjoint union and the empty graph and empty tree provide the unit.

A k-cube is a k-dimensional cube [0, 1]k � R
k .

Consider GT . We define a cube complex for eT -cubes CubTG assigned to G.
There are eT ! orderings o = o(T ) which we can assign to the internal edges of T .

We define a boundary for any elements GF ≡ (G, F ) of HGF . For this consider
such an ordering

o : EF → [1, . . . , eF ]

of the eF edges of F . There might be other labels assigned to the edges of G and
we assume that removing an edge or shrinking an edge will not alter the labels of
the remaining edges. In fact the whole Hopf algebra structure of Hcore and HGF is
preserved for arbitrarily labeled graphs [21].

The (cubical) boundary map d is defined by d := d0 + d1 where

d0(G
o(F )
F ) :=

eF∑
j=1

(−1)j (G
o(F\ej )
F\ej ), d1(G

o(F )
F ) :=

eF∑
j=1

(G/ej
o(F/ej )

F/ej
). (14)

We understand that all edges ek, k � j on the right are relabeled by ek → ek−1
which defines the corresponding o(T /ej ) or o(T \ej ). Similar if T is replaced by F .

From [18] we know that d is a boundary:

Theorem 4.1 [18]

d ◦ d = 0, d0 ◦ d0 = 0, d1 ◦ d1 = 0.
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Starting from GT for any chosen T ∈ T(G) each chosen order o defines one of
eT ! simplices of a eT -cube CubTG. We write To for a spanning tree T with a chosen
order o of its edges. It identifies one such simplex.

Such simplices will each provide one of the lower triangular matrices defining
our coactions. If spt (G) is the number of spanning trees of a graph G, we get
spt (G) × eT ! such matrices where we use that eT = eG − |G| is the same for
all spanning trees T of G, as there are eT ! different matrices for each of the spt (G)

different eT -cubes CubTG.

Appendix 2: The Lower Triangular Matrices M(G,To)

Consider a pair (G, To) where G is a bridgeless Feynman graph and To a spanning
tree T of G with an ordering o of its edges e ∈ ET . There are eT ! such orderings
where eT is the number of edges of T .2

To such a pair we associate a (eT + 1)× (eT + 1) lower triangular square matrix

M = M(G, To)

with Mij ∈ HGF .
More precisely, Mij ∈ Gal(M) ≡ Gal(G, To), where Gal(G, To) � HGF is the

set of Galois correspondents of (G, To), i.e. the graphs which can be obtained from
G by removing or shrinking edges of T in accordance with o.

As stated above for a pair (G, T ) there are eT ! such matrices M(G, To) generated
by the corresponding eT -cube of the cubical chain complex associated to any pair
(G; T ) ∈ GF [15].

M is defined through its entries Mij ∈ Gal(G, To), j ≤ i,

Mij := (G/Ej , (T /Ej \Ei).

Here Ej is the set given by the first (eT − j + 1)-entries of the set

{∅, eeT , ej−1, . . . , e1}

and Ei by the first i entries of {∅, e1, . . . , eeT }. We shrink edges in reverse order and
remove them in order.

Define the map ΔM ≡ Δ(G,To) : Gal(G, To)→ Gal(G, To)⊗Gal(G, To),

Δ(G,To) (M)jk =
eT+1∑
i=1

(M)ik ⊗ (M)ji , (15)

2In the parametric representation o orders them by length.
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as before. We often omit the superscript {}(G,To) when not necessary.
Let us now define

V1 =: Gal(G, To)/ � Gal(G, To),

as the Q-span of elements Mj,1, j ≥ 2.
Then we can regard the coproduct ΔM as a coaction

ρΔM : Gal(G, To)/ → Gal(G, To)/ ⊗Gal(G, To).

Soon we will evaluate entries in MI by Feynman rules.

(MI)ij → ΦR(Mij )/ΦR(Mjj ).

This normalization M → MD ×MI to the leading singularities is common [1].

Appendix 3: Summing Orders and Trees

Let us first consider the sectors we are integrating over. A graph G provides eG!
sectors. We partition them as follows. We have eG = eT + |G|. Then

eG!
eT ! × |G|! ≥ spt (G),

with equality only for |G| = 1 and the dual of one-loop graphs (‘bananas’) and
spt (G) is the number of spanning trees of G (see also [15]). We note that eT !× |G|!
is the number of sectors

aei ≥ aef ⇔ ei ∈ EG \ ET ∧ ef ∈ ET ,

where each edge not in the spanning tree is larger than each edge in the spanning
tree. This allows to shrink all eT edges in the spanning tree in any order in
accordance with the spine being a deformation retract in the Culler–Vogtmann Outer
Space [9].

The difference

eG! − spt (G)× eT ! × |G|!

are the sectors where at least one loop shrinks. Any spanning tree T defines a basis
of |G| loops li , 1 ≤ i ≤ |G|, provided by a path pi in T connecting the two ends of
an edge ei ∈ EG \ ET . We say that ei generates li .
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For any given T the sectors where a loop shrinks fulfill two conditions

(i) for any li , aei ≥ ae, ∀e ∈ Epi
,

(ii) it is not a sector for which aei ≥ aef ⇔ ei ∈ EG \ ET ∧ ef ∈ ET , holds.

The latter condition (ii) ensures that when shrinking eT edges at least one edge in
EG \ ET and hence a loop shrinks. The former condition (i) ensures that each loop
li retracts to its generator ei .

Example 4.2 As an example we consider the Dunce’s cap and the wheel with three
spokes graph.

The Dunce’s cap: Each spanning tree T gives rise to 2! × 2! sectors eT ! × |G|!.
There are five spanning trees, so this covers 20 sectors where no loop shrinks. There
are four edges in the Dunce’s cap so we get 4! sectors. For the four missing sectors
four spanning trees provide one each.

The wheel with three spoke graph:
eT ! × |G|! = 3! × 3! = 36 and there are 16 spanning trees giving us 576 sectors.

The 16 spanning trees correspond to 16 choices of three edges while there are 20 =
(

6
3 ) such choices altogether. There are 6! = 720 sectors. The missing 144 = (20 −

16) × 3! × 3! sectors come from the four triangle subgraphs providing 4 × 3! × 3!
sectors.

This ends our example.

As a result if we let n(To) be the number of sectors provided by an ordered spanning
tree we have

Lemma 4.3

eG! =
∑
T ∈T

∑
o

n(To).

It thus makes sense to assign a union of sectors secTo = .n(To)
j=1 secj to each

ordered spanning tree To. Here secj ∈ SECoT , the set of sectors compatible with T

and its order of edges o.

We have a coaction ρ
ΔTo and coproduct ΔT o for each ordered spanning tree T o

with a corresponding set Gal(G, To) for each.
We define

Gal(G) := .T .o Gal(G, To).

This gives rise to a corresponding matrix MG formed from M(G, To) and corre-
sponding coproduct and coaction ΔG.
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Integration-by-Parts: A Survey

Peter Marquard

Abstract We present an overview of the field of Integration-By-Parts with special
emphasis on Laporta’s algorithm. We give an overview of the problems associated
with Laporta’s algorithm and try to illustrate possible ways out.

1 Introduction

The concept of Integration-By-Parts as a tool to facilitate multi-loop calculations
was first introduced in [1].

Let us consider a family of Feynman integrals with L loops with corresponding
loop momenta ki and E + 1 legs of the form

J(a1, . . . , aN ,−bN+1, . . . ,−bI) =
∫ (

L∏
i=1

ddki

)
N∏

j=1

1

(P 2
j )

aj

I∏
j=N+1

(P 2
j )

bj ,

(1)

where

P 2
j =

(
L∑

m=1

Ajmkm +
E∑

m=1

Bjmqm

)2

−m2
j . (2)

Here, qi are the external momenta fulfilling momentum conservation

0 =
E+1∑
i=0

qi, (3)
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such that we only have E independent momenta and mi are the masses on the
internal lines. In total we then have

I = L(L+ 1)/2+ LE (4)

invariants (scalar products) involving the loop momenta. In order to have well-
defined integrals we work in dimensional regularization with d = 4− 2ε.

The Feynman integrals in this family are not independent, but are related by the
Integration-By-Parts (IBP) identities and it follows

0 =
∫ (

L∏
i=1

ddki

)
∂

∂kμ
pμ

N∏
j=1

1

(P 2
j )

aj

I∏
j=N+1

(P 2
j )

bj (5)

with k ∈ {ki}, p ∈ {ki, qi}. This relation is an immediate consequence of the fact
that

0 =
∫

ddk
∂

∂kμ
f (k) (6)

in dimensional regularization for a suitable function f (k).
Defining raising and lowering operators i+, i− with properties

i+J(n1, . . . , nI) = niJ(n1, , . . . , ni + 1, . . . , nI) (7)

i−J(n1, . . . , nI) = J(n1, , . . . , ni − 1, . . . , nI) (8)

then the general form of an IBP relation is

OIBP(k, p)J(n1, . . . , nI) =
{
dδkp +

∑
Cij i+j− +

∑
Dk(sij ,m

2
i )k+

}

×J(n1, . . . , nI) . (9)

This operator notation has turned out to be particularly useful to find explicit recur-
sions and discuss the mathematical structure of the integration-by-parts relations.
The Lie-algebraic structure formed by the IBP operators has been discussed in [2].

Using IBP identities all integrals belonging to the same family can represented
as a linear combination of a small set of basis integrals, so-called master integrals
Mi

J(c1, . . . , cI) =
∑
k

Ck(d, sij ,mi)Mk , (10)

where the coefficients Ck , in general, are rational functions of the space-time
dimension d, the kinematic invariants sij = (qi + qj )

2, and masses mi . Thus,
Feynman integrals are part of a linear space. Representing an integral by a linear
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combination of master integrals has been coined integral reduction in the literature.
How to obtain this reduction is the main topic of this article.

IBP reduction has evolved into one of the cornerstone of most multi-loop
calculations. We can not give a exhaustive list of reference here but refer the reader
to [3], where many examples for state of the art multi-loops calculations are given.

There are two major ways to make use of the IBP identities: find explicit rules that
reduce the powers of the propagators or use Laporta’s algorithm [4]. Finding explicit
reduction rules can be found manually on a case-by-case basis and automated by
using LITERED [5]. For two very versatile classes of integrals that appear in
many applications, massive tadpoles and massless propagators, the corresponding
reduction rules have been implemented in publicly available computer programs,
e.g. MATAD [6], FMFT [7], TARCER [8], MINCER [9, 10], and FORCER [11]
which have been used in many physics applications, see also [12]. For a possible
solution to the reduction problem that uses a different approach see [13]. Laporta’s
algorithm has also been implemented in public REDUCE [14, 15], FIRE [16–19],
KIRA [20, 21]) as well as many private codes and we will focus our attention on
this approach in the remainder of this article.

Before we come to the main part of this contribution we like to mention, that
integration-by-parts is also a crucial ingredient for the calculation of master integrals
using differential equations, cf. [22].

2 Laporta’s Algorithm

Laporta’s algorithm works, in short, by explicitly generating all Integration-By-Parts
identities for a well-chosen set of seed integrals and solving each of the equations
in the resulting system of linear equations for the, according to a chosen order, most
complicated integral present. This guarantees that we express integrals by simpler
ones and finally by only master integrals.

The problem is thus given by solving the linear system of equations

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ ∗ ∗ · · · · · · ∗ ∗
∗ ∗ ∗ ∗ · · · · · · ∗ ∗
∗ ∗ ∗ ∗ · · · · · · ∗ ∗
...
...
...
... · · · · · · ... ...

...
...
...
... · · · · · · ... ...

...
...
...
... · · · · · · ... ...

...
...
...
... · · · · · · ... ...

∗ ∗ ∗ ∗ · · · · · · ∗ ∗
∗ ∗ ∗ ∗ · · · · · · ∗ ∗
∗ ∗ ∗ ∗ · · · · · · ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

J1

J2

J3

J4
...
...

JN−1

JN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
...
...
...
...

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11)
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s

t

seeds

solvable

not (completely) solvable

Fig. 1 Integral content of the linear system of equations. s the sum of propagator powers and t the
sum of numerator powers

Fig. 2 Example for a highly symmetric case. Removing one of the lines in the diagram on the
left-hand side yields one of the diagrams on the right-hand side, which are all identical

or in short

MJ = 0, (12)

where J is the vector of integrals and the coefficient matrix M, which, in general, is
an M ×N matrix with M > N , but rank (M) < N .

As is depicted in Fig. 1 the integrals contained in the system of equations are,
in general, all seed integrals and also integrals where the sum of propagator and/or
numerator powers is raised by one unit with respect to the seed integrals. Experience
shows that in most cases a complete reduction for the seed integrals can be found
but only a partial reduction for the additional integrals.

One important aspect when dealing with Integration-By-Parts identities is, that
it does not know anything about symmetries of the Feynman integrals. Consider
the example in Fig. 2: Removing any of the lines of the diagram on the left-hand
side leads to the same diagram on the right-hand although all of them are given
in a different representation in terms of the corresponding propagators. Thus, the
diagrams on the right-hand side have to be mapped to each other to avoid redundant
calculation of identical sectors.
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Using a Gauss-Jordan elimination the system of equations can be transformed
to reduced row echelon form. For a dense system of linear equations Gauss
elimination scales like O(N3) with the number of equations or variables, iff we
assume constant time for the necessary integer or algebraic arithmetic. Solving
the system of equations can become very costly when one considers multi-loop
calculations where the number of equations can exceed 109. On the other hand of
the spectrum in multi-leg calculations many kinematic invariants appear which leads
to very complex rational arithmetic.

If we order the integrals in a suitable way the structure of the solved system is
given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 0 0 · · · · · · 0 0 · · · 0
...

...
...
... · · · · · · ... ...

...

0 · · · 0 0 0 · · · · · · 0 0 · · · 0

∗ · · · ∗ 0 0 · · · · · · 0 ∗ · · · ∗
...

...
...
... · · · · · · ... ...

...

∗ · · · ∗ 0 0 · · · · · · 0 ∗ · · · ∗
0 · · · 0 1 0 · · · · · · 0 ∗ · · · ∗
0 · · · 0 0 1 0 · · · 0 ∗ · · · ∗
0 · · · 0 0 0

. . .
. . .

...
...

...
...

...
...
...
. . . 1 0 ∗ · · · ∗

0 · · · 0 0 0 · · · 0 1 ∗ · · · ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

JN
...

JK+1

JK
...

JM+1

JM
...

J1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
...
...
...
...

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(13)

where the double lines separate parts of the solution that we will discuss in the
following. J1, . . . , JM denote the master integrals, JM+1, . . . , JK the integrals
for which we have obtained a complete reduction to master integrals and finally
JK+1, . . . , JN the set of integrals present in the system of equations, for which only
a partial solution but no complete reduction to master integrals could be achieved.
The top row of the matrix indicates that a considerable part of the equations only
contains redundant information.

The depicted structure of the solution immediately shows some of the short-
comings of Laparta’s algorithm. We will discuss these and possible solutions next.

Redundancy
The identically vanishing first rows of (13) show that we are considering a
significant amount of equations that are redundant and do not contain any new
information. Since these equations eventually vanish from the system of equations
they can be considered a nuisances only and do not pose any significant problems.
These equations can also rather easily be eliminated by preconditioning the system
of equations with a run, where all variables are replaced by numbers, see [23] for an
implementation.



318 P. Marquard

Fig. 3 Hierarchical structure of the Integration-By-Parts identities

Fringe Integrals
As discussed before, the system of equations generated by the chosen seeds integrals
contains, in general, integrals that are not part of the set of seed integrals. The
presence of these fringe integrals leads to corresponding parts of the system of
equation that are dense and in addition contain complicated coefficients. If possible,
considering these integrals should be avoided.

The appearance of these fringe integrals can be partially be avoided by using
syzygies [24, 25]. Syzygies come into play when we try to choose the operator that
generates the Integration-by-Parts identities from the beginning in a way that no
integrals with additional propagator or numerator powers are generated. This can
help to reduce the number of integrals for which no complete solution can be found.

Parallelization
The structure of the Integration-By-Parts identities immediately generate the struc-
ture illustrated in Fig. 3. If we define a sector by the denominators that are present,
we find that the system of equations for a given sector only depends on integrals
in the sector under considerations and on integrals from simpler sectors, i.e. with
a smaller number of denominators. In the given example, this means that in order
to solve, e.g., sector S124 we only need to consider this sector and in addition the
sectors S12, S14, S24. This also means that all sectors in the same row in Fig. 3 can
be solved in parallel. In addition to allowing for parallelization this also serves to
keep the systems of equations to be solved small.

Finite Fields
Probably the most promising approach to improve and extend the reach of
Integration-By-Parts methods employing Laporta’s algorithm is based on finite
field methods. As it turns out, for complicated problems the rational arithmetics
needed to handle and simplify the coefficients of the matrix in every step of the
Gauss-Jordan elimination very quickly becomes the bottleneck of the operation.
Especially, in intermediate stages of the Gauss-Jordan elimination the problem
suffers from a large swell of the expression sizes. This can be overcome by
performing the reduction for specific integer values of all the appearing variables
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and reconstructing the rational functions only in the end. Note, that in the end,
many integrals that appear in the system of equations are not needed for the physics
problem at hand and thus, only a small fraction of the total number of integrals
has to be reconstructed. In addition, since arbitrary precision rational numbers are
not very suitable for fast operations also the use of finite fields is advisable. These
ideas have successfully been implemented in FIRE, KIRA, and in private codes.
For the rational reconstruction from data given over finite fields FireFly [26] is
available. It has also been suggested to perform the whole calculation over finite
fields and only perform the rational reconstruction at the very end for the final
result. A framework to facilitate this in available in FiniteFlow [27].

3 Conclusions

We presented an overview of the field of integral reduction using integration-by-
parts techniques with particular emphasis on Laporta’s algorithm. We discussed
the problems related to the special structure of integration-by-parts identities and
illustrated possible ways to overcome them. Especially finite field methods are very
promising to push the machinery to a higher level.
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Calculating Four-Loop Corrections in
QCD

Sven-Olaf Moch and Vitaly Magerya

Abstract We review the current status of perturbative corrections in QCD at four
loops for scattering processes with space- and time-like kinematics at colliders, with
specific focus on deep-inelastic scattering and electron-positron annihilation. The
calculations build on the parametric reduction of loop and phase space integrals up
to four-loop order using computer algebra programs such as Form, designed for
large scale computations.

1 Introduction

Perturbation theory forms the backbone of theory predictions for scattering pro-
cesses at high energy colliders. Given the size of the coupling constant αs in
the theory of strong interactions, Quantum Chromodynamics (QCD), this requires
the computation of quantum corrections at higher orders. For collisions involving
hadrons, either in the initial state or identified in the final state, the theory description
is based on QCD factorization, which allows for the separation of long- and short-
distance physics. Within this framework, quantum corrections to the hard scattering
cross section driven by short-distance physics are calculated typically at the next-
to-next-to-leading order (NNLO) in order to reach an accuracy of the order of a few
percent from the truncation of the perturbative expansion. The long-distance physics
part of the interaction is encoded in hadronic matrix elements which are inaccessible
to perturbation theory. Based on the description of a hadron as an incoherent
combination of parton states, it is possible, though, to compute matrix elements
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of partonic operators and, in particular, their scale dependence in perturbative
QCD. The gained knowledge, encoded in splitting functions, serves as input to the
parton evolution equations derived from the renormalization group and forms an
essential ingredient in the determination of the non-perturbative parton distribution
functions (PDFs) or parton fragmentation functions (FFs) from fits to experimental
data. The current description of QCD evolution equations for PDFs and FFs is
complete at NNLO. This requires the splitting functions in space-like and time-like
kinematics at the three-loop level [1–6] as well as the coefficient functions for the
hard scattering at two-loop order entering, e.g., in DIS structure functions [7–10] or
in fragmentation functions in e+e− annihilation [3, 11–14].

With the increasing precision of the experimental data collected at the Large
Hadron Collider (LHC) for Standard Model (SM) processes used to extract fun-
damental theory parameters such as the strong coupling αs or the PDFs [15], the
step towards the next-to-next-to-next-to-leading order (N3LO) becomes necessary.
This is particularly crucial in preparation for the physics program at a future
Electron-Ion Collider (EIC) [16, 17], where PDFs as well as parton FFs are
expected to be accessible with high precision, but also in view of the ongoing
future circular collider (FCC) studies [18]. The push beyond the state-of-the-art
requires the calculation of four-loop corrections, building on known results for the
renormalization of QCD at four-loop [19, 20] and even five-loop order [21–23].

The simplest cross section computations at the four-loop level involve semi-
inclusive (single-scale) observables, such as DIS structure functions and e+e−
fragmentation functions and the current status of their calculation will be discussed
and reviewed in detail below.

2 Space-Like Kinematics

The scattering reaction for unpolarized DIS reads

l(k) + nucl(p) → l ′(k ′) + X , (1)

where l and l ′ denote the scattered lepton and ‘nucl’ a nucleon with respective
momenta k, k ′ and p. X summarizes the remaining hadronic final states. The
inclusive DIS cross section factorizes as dσ ∼ LμνWμν in terms of leptonic
and hadronic tensors Lμν and Wμν . The latter one encodes the strong interaction
dynamics and can be expanded to define the unpolarized structure functions F 2, 3 ,L,

Wμν(p, q) = 1

4π

∫
d4z e iq·z 〈 nucl, p|J †

μ(z)Jν(0)| nucl, p〉

= eμν

2xB
FL(xB,Q

2) + dμν

2xB
F2(xB,Q

2) + i
εμνpq

p · q F3(xB,Q
2) .

(2)
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Here Jμ represents an electro-magnetic or weak current. The momentum q is
transferred by the gauge-boson with space-like kinematics, Q2 ≡ −q2 > 0, and
the Bjorken variable is defined as

xB = Q2

2p · q , (3)

with 0 < xB ≤ 1. The symmetric tensors eμν and dμν multiplying the structure
functions F 2, L are dependent on p and q, while the totally antisymmetric one εμναβ
in front of the structure function F3 arises from the vector/axial-vector interference,
see [24, 25] for definitions.

QCD factorization allows for the decomposition of the DIS structure functions
in terms of (space-like) coefficient functions Ca,f and PDFs φf,

Fa(xB,Q
2) =

∑
f=q, q̄, g

∫ 1

xB

dz

z
φf

(
xB

z
, μ2

)
Ca,f

(
z, αs(μ

2),
μ2

Q2

)
+ O

(
1

Q2

)
,

(4)

up to higher-twist corrections O(1/Q2). The coefficient functions can be computed
in perturbation theory via expansions in the strong coupling as ≡ αs/(4π) as

Ca,f(x, αs) = δ(1− x) + as c
(1)
a,f(x) + a 2

s c
(2)
a,f(x) + a 3

s c
(3)
a,f(x) + a 4

s c
(4)
a,f(x) + . . . ,

(5)

and are completely known up to N3LO [24, 25], i.e. all terms c(3)a,f . At four-loop order
a low number of fixed Mellin moments, defined as

c(N) =
∫ 1

0
dx x N−1 c(x) , (6)

are available [26] as well as the complete soft corrections in the limit x → 1 using
threshold resummation and QCD factorization in d-dimensions [27].

The scale dependence of the PDFs is governed by the well-known evolution
equations

d

d lnμ2 φf =
∑

f′=q, q̄, g

Pff′(αs(μ
2)) ⊗ φf′(x, μ

2) . (7)

For QCD with nf quark flavors and with ′⊗′ denoting the standard convolution
these are commonly expressed in terms of 2nf − 1 scalar equations in the flavor
non-singlet case, and a coupled set of 2 × 2 matrix equations in the flavor singlet
case. The evolution kernels, i.e. the space-like splitting functions Pff′ are calculable
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in perturbative QCD as well,

Pff′(x, αs) = asP
(0)
ff′ (x)+ a2

s P
(1)
ff′ (x)+ a3

s P
(2)
ff′ (x)+ a4

s P
(3)
ff′ (x)+ a5

s P
(4)
ff′ (x)+ . . . .

(8)

The NNLO results P
(2)
ff′ are all known [1, 2]. At N3LO, i.e., at four loops, the non-

singlet quark-quark splitting functions have been computed in the large-Nc limit and
number of Mellin moments for the remaining color coefficients are known [28, 29]
for a general SU(Nc) gauge theory. In the flavor-singlet sector the leading large-nf
terms and those proportional to quartic color Casimirs are known [29, 30]. Beyond
this order, even some low-N Mellin moments of the five-loop contributions to the
non-singlet quark-quark splitting function P

(4)
ns have been determined [31].

In the following, we give a brief overview of the computational set-up and work-
flow underlying the computations at four loops and beyond.

2.1 Computational Work-Flow

Using the operator product expansion in DIS one can relate the product of currents
Jμ in the hadronic tensor in Eq. (2) to Mellin moments of the structure functions
F 2, 3 ,L, see, e.g. [32]. The latter, parameterizing the (semi)-inclusive cross section,
are then obtained with the help of the optical theorem from the imaginary part of
the forward Compton amplitude for the gauge boson-nucleon scattering. Thus, the
computation of QCD corrections in DIS starts from the forward Compton amplitude
of the corresponding gauge boson-parton scattering process, using the kinematics
of Eq. (3), which gives access to both, the coefficient functions in Eq. (5) and the
splitting functions in Eq. (8). In case, one is only interested in the latter, the direct
computation of operator matrix elements, evaluated in parton two-point functions,
proves more efficient and allows for the determination of the anomalous dimensions
γ (N), i.e., the Mellin transforms of the splitting functions, cf. Eq. (6).

The required Feynman diagrams up to four loops can generated using the
diagram generator Qgraf [33] and the group theory factors for a general color
SU(Nc) gauge theory can be obtained with algorithms described in [34]. The loop
integrals are considered in dimensional regularization [35, 36], d = 4 − 2ε, which
is the standard framework in perturbative QCD at higher orders and the integral
reductions are performed by means of integration-by-parts identities (IBP) [37, 38].
The solution of the IBP reductions are encoded in the program Forcer [39],
which performs a parametric reduction of four-loop massless propagator diagrams
to master integrals. The latter are shown in Fig. 1 and their analytic expressions as
a Laurent series in ε have been computed in [41, 42]. The symbolic manipulations
employ the computer algebra system Form [43–45] and its multi-threaded version
TForm [46] in order to handle both, the run times and the size of the intermediate
expressions occurring in the reduction of diagrams with high Mellin moments N .
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Fig. 1 Master integrals for four-loop propagators (figure from [40])

The approach delivers results for fixed Mellin moments of the anomalous
dimensions and DIS coefficient functions. When enough fixed Mellin moments are
available, one can follow the approach of [47], and attempt the reconstruction of an
analytic expression as a function of N in terms of harmonic sums [48, 49]. In the
planar limit, i.e., for large Nc, the exact four-loop results for moments up to N = 20
are sufficient to determine the analytic expressions of the non-singlet quark-quark
anomalous dimensions γ

(3)
ns (N) as a function of N by LLL-based techniques [50–

53] and solving systems of Diophantine equations, cf. [28] for details.
The bottleneck of the approach via fixed Mellin moments is caused by the high

powers of propagators, which need to undergo the parametric reduction with the
program Forcer [39]. This leads to large intermediate expressions of the order of
TByte and to long run times of the computer algebra system Form. For example,
the computation of the Mellin moment N = 10 of the quark coefficient function
in the projection on FL in Eq. (4) at four loops requires the evaluation O(3200)
diagrams with a total of O(800000) hrs CPU time, i.e. almost 100 years altogether.
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Fortunately, the multi-threaded version TForm delivers an average speed-up factor
of O(10) and with a cluster of sufficiently many servers, the problem is doable
within half a year of “wall time”.

Extensions to five-loop low-N Mellin moments of the non-singlet anomalous
dimension γ

(4)
ns (N), i.e. the Mellin transform of P (4)

ns , as achieved in [31], require the
computation of five-loop self-energy integrals, which can be accomplished with an
implementation [54] of the local R∗ operation [55–57]. This allows for the reduction
to four-loop integrals, that can be evaluated again by the FORCER program [39].
However, the size of intermediate expressions and the run times of Form become
prohibitively large beyond the fixed values N = 2 and N = 3.

3 Time-Like Kinematics

Semi-inclusive e+e− annihilation via a virtual photon or Z-boson with time-like
momentum q proceeds as

e− + e+ → γ /Z(q) → h(p) + X , (9)

where h(p) stands for a specific species of identified hadrons in the final state. The
time-like kinematics are characterized by the momentum transfer Q2 ≡ q2 > 0 and
the Feynman variable is

xF = 2p · q
Q2

, (10)

with 0 < xF ≤ 1. In the center-of-mass frame xF is the fraction of the beam energy
carried by the hadron h. The space- and time-like processes (1) and (9) are related by
crossing which implies a mapping xB → xF for the kinematics in Eqs. (3) and (10)
and the use of analytic continuation.

In perturbative QCD, the total (angle-integrated) fragmentation function

1

σtot

dσ h

dx
= F h(x,Q2) , (11)

as well as the transverse (F h
T ), longitudinal (F h

L ) and asymmetric (F h
A ) ones

parameterizing the double-differential cross section dσ h/dx d cos θh [58], are
given by

F h
a (x,Q

2) =
∑

f=q, q̄, g

∫ 1

x

dz

z
CT
a,f

(
z, αs(Q

2)
)
Dh

f

(
x

z
,Q2

)
+ O

(
1

Q

)
.

(12)
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in terms of the parton fragmentation functions (FFs) Dh
f and the (time-like)

coefficient functions CT
a,f ,

CT
a,f(x, αs) = σew

(
δ(1− x) + as c

T ,(1)
a,f (x) + a 2

s c
T ,(2)
a,f (x) + a 3

s c
T ,(3)
a,f (x) + . . .

)
,

(13)

where σew denotes the electroweak prefactors [58] and the second-order coefficient
functions are known [3, 11–14], while the three-loop corrections cT ,(3)a,f (x) have not
been derived so far.

The parton FFs Dh
f obey evolution equations analogous to the PDFs in Eq. (7),

d

d lnμ2 Dh
f =

∑
f′=q, q̄, g

PT
f′f(αs(μ

2)) ⊗ Dh
f′ (x, μ

2) , (14)

with time-like splitting functions, but with 2×2 matrix PT
f′f in the flavor singlet case

transposed compared to PDFs in Eq. (7). In perturbative QCD the time-like splitting
functions can be expanded as

PT
f′f(x, αs) = asP

T,(0)
f′f (x)+ a2

s P
T,(1)
f′f (x)+ a3

s P
T,(2)
f′f (x)+ a4

s P
T,(3)
f′f (x)+ . . . ,

(15)

where the NNLO results P
T,(2)
f′f are all known [3–6], while at N3LO only the non-

singlet quark-quark splitting functions are available in the large-Nc limit [28]. These
results are all based on analytic continuation from space- to time-like kinematics and
on exploiting reciprocity relations for collinear splitting functions in QCD. In the
sequel, we discuss the computational work-flow for the direct calculation of QCD
corrections to semi-inclusive e+e− annihilation (9).

3.1 Inclusive Cross-Sections

A practical indirect way of calculating total cross-sections is the optical theorem.
Through it, O(α3

s ) corrections for e+e− annihilation in Eq. (9) can be expressed in
terms of the four-loop propagator diagrams. In the massless case all the 22 master
integrals for these propagators shown in Fig. 1 have been calculated in [41, 42].

The direct way on the other hand requires the calculation of all squared
amplitudes with 2, 3, 4, and 5 particles in the final state (with 3, 2, 1, and 0 loops
respectively), e.g.

σ ∼
∑
n

∫
dPSn |〈p1, . . . , pn|iT |q〉|2 =

∫
dPS3

∣∣∣∣ + + . . .

∣∣∣∣
2

+ . . . ,

(16)
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and integration of those over the respective phase space,

dPSn ≡
(

n∏
i=1

ddpi

(2π)d−1
δ+(p2

i )

)
(2π)d δd(q −

n∑
j=1

pj ) . (17)

Performing the phase-space integration analytically quickly turns out to be the
bottleneck: the parameterization of 4- and 5- particle phase spaces necessarily
requires the introduction of square roots into the integrand, preventing an analytic
solution, see, e.g., the “tripole parameterization” of the 4-particle phase space
in [59]. Instead one should consider both loop and phase-space integration appearing
in the squared amplitude together, as a single “cut” diagram:

∫
dPS3

( )∗
≡
∫

dPS3 ≡ . (18)

Then, by applying the idea of “reverse unitarity” [60]: that is, replacing on-shell
conditions for final state particles in Eq. (17) by denominators,

δ+(p2) = 1

2πi

(
1

p2 − i0
− 1

p2 + i0

)
, (19)

one can treat each outgoing line as a “cut propagator”, and thus construct IBP
relations for cut diagrams.

In this way the direct calculation is reduced to calculating the master integrals
for 2-, 3-, 4-, and 5-particle cuts of four-loop propagators. For this task conventional
IBP software can be largely reused with two modifications: first, any cut propagator
raised to a non-negative power can be set to zero (because x δ(x) = 0), and second,
when symmetries between diagrams are constructed, cut propagators should not be
symmetrized with the regular ones.

The full set of (massless) master integrals for 5-particle cuts of four-loop
propagators has been first calculated in [61], for 4- and 3-particle cuts in [40], and for
2-particle cuts in [62–64]. As an example, the set of master integrals for 4-particle
cuts is shown in Fig. 2. Because these integrals are single-scale, it is convenient to
calculate them by solving dimensional recurrence relations (DRR) [65, 66], which
relate the values of these integrals at different values of the space-time dimension d:

Ii(d + 2) = MiiIi(d)+
∑
j �=i

Mij Ij (d) . (20)

As explained in [40], there is at most a single master integral per sector, and thus
the matrix Mij is triangular. With the help of the “dimensional recurrence and
analyticity” method of [67], an ansatz for the full solution can be constructed,
leaving only a number of constants undetermined. Once enough extra information
is gathered to fix these constants (i.e. values of the leading pole coefficients, or
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Fig. 2 Master integrals for all four-particle cuts of four-loop propagators (figure from [40])

several terms of the ε-expansion computed by alternative means), DREAM [68] can
be used to evaluate Ii(4− 2ε) as a series in ε with arbitrary precision (thousands of
digits), and these numerical values can then be turned into analytic expressions in
terms of multiple zeta values [69] with the help of an integer relation reconstruction
algorithm like PSQL [70].

The optical theorem (or rather Cutkosky rules [71, 72]), being the alternative way
of computing fully inclusive quantities, provides an essential cross-check on these
master integrals: the imaginary part of each four-loop propagator diagram must be
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equal to a combination of its cuts. For example:

2 Im = 2 Re + 4 Im − 2 , (21)

where the dashed lines indicate the propagators cut according to Eq. (19), see also
Fig. 2.

3.2 Semi-Inclusive Cross-Sections

Integrals for semi-inclusive cross-sections differ from the inclusive case by the
presence of the scaling parameter x (i.e., xF in Eq. (10)) in the integration measure,

dPSn(x) ≡ dPSn δ(x − 2q ·p1/q
2), (22)

so that the semi-inclusive cut diagrams now have the form of

∫
dPS3(x)

( )∗
≡ , (23)

where the crossed dashed line corresponds to the constraint Eq. (22). The inclusion
of x still allows for an IBP reduction if one applies Eq. (19) to transform this
additional δ-function into a cut propagator, this time a massive one. This complicates
calculations:

• first, by introducing linear dependencies between denominators of a given
diagram; these need to be split through partial fractioning, with the end result
that a single Feynman diagram can now contribute terms to several different meta
topologies;

• second, by the increased number of master integrals: there are 693 semi-inclusive
master integrals (298 for 5-particle cuts, 277 for 4-particle cuts, 96 for 3-particle
cuts, and 22 for 2-particle cuts) vs. 115 for the inclusive case;

• third, by the increase in the size of IBP expressions, and the increased computa-
tional requirements of the reduction;

• and finally by the fact that one can not easily solve DRR for these integrals: the
method used for the inclusive case largely relied on numerical evaluation, and
having a free parameter x makes that impractical (if not impossible).

The master integrals for semi-inclusive cuts for three-loop propagators were
completed in [73, 74] and for four-loop propagators in [75].

A convenient way to calculate the values of these master integrals is the method
of differential equations [76, 77]: the integrands of cut master integrals can be
differentiated with respect to x, and the obtained expressions can then be reduced
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back to the same integrals via IBP relations, resulting in systems of differential
equations of the form

∂

∂x
Ii(d, x) = Mij (d, x)Ij (d, x) . (24)

To solve these equations, one follows the observation from [78]: if there is a basis
transformation

Ji(d, x) = Tij (d, x)Ij (d, x) , (25)

such that once substituted into Eq. (24) factorizes the dependence of M on d =
4− 2ε, transforming the equation into an ε-form,

∂

∂x
Ji(d, x) = εSij (x)Jj (d, x) , (26)

then the solution can easily found as a series in ε,

Ii(4−2ε, x) ≡
∑
k

εkI ki (x), I
(k)
i (x) =

∫
dx Sij (x)I

(k−1)
j (x)+C

(k)
i . (27)

Only two issues remain: how to find the transformation matrix Tij from Eq. (25),

and how to fix the integration constants C(k)
i .

A general algorithm of constructing ε-form transformations directly from the
matrix Mij was presented in [79] and improved upon in [18, 80]. We rely upon the
public implementation of this algorithm, Fuchsia [81, 82], to find Tij , specifically
on the new version available at [83].

To fix the integration constants observe that if one integrates a semi-inclusive
integral over all x, the result should be a fully inclusive integral. So by writing down
equations of the form

∫
dx = , (28)

for each master integral, and inserting the series’ in ε for both the semi-inclusive and
the (known) inclusive integrals, all C(k)

i can be recovered. The only complication
here is that the solution for Ii(d, x) may contain terms ∼ 1/x, which would make
the integral on the left-hand side divergent if taken order-by-order in the series.
This can be side-stepped by multiplying the integrand on the left-hand side by xm

with high enough m, and inserting a denominator of the form
(
2q ·p1/q

2
)m

into the
diagram on the right-hand side.

At this stage, it remains to apply the IBP reductions for the semi-inclusive case
to the Feynman diagrams of the individual parton processes contributing to the
semi-inclusive e+e− annihilation in Eq. (9). This will check the NNLO results for
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the time-like splitting functions P
T,(2)
f′f (x) in Eq. (15) by a direct computation and

determine the hitherto unknown three-loop corrections cT ,(3)a,f (x) in Eq. (13).

4 Conclusions

The push towards N3LO accuracy in QCD for DIS structure functions or frag-
mentation functions in e+e− annihilation requires calculations at four-loop order.
The efforts are realized with a largely automated work-flow for the generation of
all Feynman diagrams, the parametric IBP reduction to master integrals of loop
and phase space integrals, for the latter after a mapping with “reverse unitarity”
to loop integrals with cuts, and the computation of the master integrals with
various algorithms, such as DRR or differential equations. The complexity of the
computations, i.e., the size of the expressions, the run times for IBP reductions and
the algorithms for the solution of master integrals poses challenges to currently
available computer algebra programs and requires continuous improvements. We
have presented a brief review of the current status, listing available results as well
as indicating the needs for future improvements.
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Abstract This article presents an algorithmic theory of contiguous relations. Con-
tiguous relations, first studied by Gauß, are a fundamental concept within the theory
of hypergeometric series. In contrast to Takayama’s approach, which for elimination
uses non-commutative Gröbner bases, our framework is based on parameterized
telescoping and can be viewed as an extension of Zeilberger’s creative telescoping
paradigm based on Gosper’s algorithm. The wide range of applications include
elementary algorithmic explanations of the existence of classical formulas for
non-terminating hypergeometric series such as Gauß, Pfaff-Saalschütz, or Dixon
summation. The method can be used to derive new theorems, like a non-terminating
extension of a classical recurrence established by Wilson between terminating 4F3-
series. Moreover, our setting helps to explain the non-minimal order phenomenon
of Zeilberger’s algorithm.
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2 Introduction

Contiguous relations are a fundamental concept within the theory of hypergeometric
series and orthogonal polynomials; see, for instance, [1]. An example in connection
with the thematical scope of this volume is [13], which is contained in this
book and whose subsection 2.2 is devoted to contiguous relations for multivariate
hypergeometric functions.

As often, the story begins with Gauß [10]. Let

2F1

(
a, b

c
; z
)
=

∞∑
k=0

(a)k(b)k

(c)kk! zk,

where (x)k is the shifted factorial

(x)k = x(x + 1) · · · (x + k − 1) if k ≥ 1 and (x)0 = 1.

Gauß defined two such 2F1 series as contiguous, if two of the parameters are
pairwise equal, and if the third pair differs by 1. In particular, Gauß showed that
a 2F1 series and any two others contiguous to it are linearly related. For instance,

(a − c) 2F1

(
a − 1, b

c
; z
)
+ (c − 2a − (b − a)z) 2F1

(
a, b

c
; z
)

+ a(1− z) 2F1

(
a + 1, b

c
; z
)
= 0, (1)

is the first entry [10, 7.1] in Gauß’ list of fifteen (= 6 · 5/2) fundamental contiguous
relations. Moreover, in Section 11 of [10] Gauß describes how to obtain relations
between

2F1

(
a, b

c
; z
)
, 2F1

(
a + λ, b + μ

c + ν
; z
)

and 2F1

(
a + λ′, b + μ′

c + ν′ ; z
)
,

where the λ, λ′, μ, μ′, ν, ν′ are integers taken from {−1, 0, 1}. This gives in total
325 (= 26 · 25/2) relations.1

Today Gauß’ notion of contiguous relations is used in a more general sense.
Namely, two pFq series, i.e.,

pFq

(
a1, . . . , ap

b1, . . . , bq
; z
)
=

∞∑
k=0

(a1)k · · · (ap)k
(b1)k · · · (bq)k

zk

k! ,

1The number of these relations can be reduced further by taking symmetries (e.g., swapping a and
b) into account.
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are said to be contiguous if their parameters differ by integers. A first systematic
textbook treatment of contiguous relations was presented by E. Rainville [25]. For
an excellent up-to-date account the reader is referred to the book by G.E. Andrews
et al. [1].

In particular, this book has played an influential role for the work presented
in this article. Section 3.12 of [1] is devoted to summation, in particular, to a
comparison of the classic method of contiguous relations to the W–Z method,
more precisely, to Zeilberger’s algorithm [41] also called creative telescoping. It
is pointed out that “the W–Z method is an effective algorithm for discovering useful
instances of contiguous relations.” Moreover, it is explained that a specific use of
contiguous relations, called Pfaff’s method, can serve as a valuable alternative.
Namely, “There is a somewhat different summation method due to Pfaff. This
method is less algorithmic than the W–Z method. However, it spreads out the
algebraic complications to systems of recurrences. Consequently, it may provide
new summations in addition to the one we wish to prove and it may allow the
required algebra to be considerably simpler than that required by the W–Z method.
Pfaff’s method rather resembles the W–Z method; however, it allows the various
additional parameters in the summation to play an important role” [1, p. 171].

In order to illustrate this point, various examples are given. We consider one of
these, namely Bailey’s summation of a balanced 4F3 series,

S(n) = S(n, a, b) = 4F3

(
a/2, (a + 1)/2, b + n,−n

b/2, (b + 1)/2, a + 1
; 1

)
= (b − a)n

(b)n
; n ≥ 0;

(2)

see [1, (3.11.7)]. By F(n, k) we denote the kth summand of this 4F3 series.
As a note, when dealing with such hypergeometric series we always assume that

the summand terms are well-defined; this convention is made explicit also in (16).
In view of the fact that the given sum is terminating at n, in this particular case,
a + 1+ � �= 0, b/2+ � �= 0, and (b + 1)/2+ � �= 0 for 0 ≤ � ≤ n.

Following the presentation in [1], we first prove (2) by applying Zeilberger’s
algorithm2 which computes the telescoping summand recurrence

(n+ 1)(−n− b + a) F (n, k)+ (−a2 + ab − a + 2nb + 3b + 2+ 4n+ 2n2) F (n+ 1, k)

− (b + n+ 1)(a + n+ 2) F (n+ 2, k) = �k G(n, k − 1),
(3)

where the (forward) difference operator is defined as usual as

�k f (k) = f (k + 1)− f (k), (4)

2We are using the Mathematica package “fastZeil” presented in [22]; it is freely available as
described at https://combinatorics.risc.jku.at/software.

https://combinatorics.risc.jku.at/software
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and where

G(n, k) = − (a + 1+ 2k)(a + 2k)(b + n+ k)(n+ 1)

(b + n)(n− k + 1)
F (n, k). (5)

Summing (3) over k from 0 to n implies a recurrence for the sum S(n),

(n+ 1)(−n− b + a) S(n)+(−a2 + ab − a + 2nb+3b + 2+4n+ 2n2) S(n+ 1)

− (b + n+ 1)(a + n+ 2) S(n+ 2) = 0. (6)

Since S(0) = 1, S(1) = (b − a)/b, and since (b − a)n/(b)n satisfies (6), the
summation (2) is proven. We note that owing to the constraint on b, the denominator
on the right-hand side of (5) is non-zero for 0 ≤ k ≤ n.

Notice that Zeilberger’s algorithm has not produced a minimal recurrence for
S(n). This is in contrast to the closed form representation (b − a)n/(b)n which
corresponds to a recurrence of order 1. The reason for this phenomenon will be
explained below.

Again following [1], Pfaff’s method works as follows. By subtracting the
summands term by term one finds that

S(n, a, b)− S(n− 1, a, b) = a(1− b − 2n)

b(b + 1)
T (n− 1, a + 2, b + 2), (7)

where

T (n, a, b) = 4F3

(
a/2, (a + 1)/2, b + n− 1,−n

b/2, (b + 1)/2, a
; 1

)
.

Then inspection of T (n, a, b) for some concrete values of n leads to the conjecture

T (n, a, b) = (b − a)n

(b + 2n− 1)(b)n−1
. (8)

Next one repeats this step by subtracting S(n − 1, a, b) from T (n, a, b), which
yields,

T (n, a, b)− S(n− 1, a, b) = − (a + n)(b + n− 1)

b(b + 1)
T (n− 1, a+ 2, b+ 2). (9)

The proof is then completed by observing that (7) and (9), together with the initial
values S(0, a, b) = T (0, a, b) = 1, completely define S(n, a, b) and T (n, a, b),
and by verifying that the right sides of (2) and (8) satisfy the same recurrences and
initial values.
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Summarizing, as pointed out in [1, Sect. 3.12], both proofs rely on contiguous
relations. The Zeilberger output recurrence (6) is of the form

c0 · 4F3

(
a1, a2, a3, a4

b1, b2, b3
; 1

)
+ c1 · 4F3

(
a1, a2, a3 + 1, a4 − 1

b1, b2, b3
; 1

)

+ c2 · 4F3

(
a1, a2, a3 + 2, a4 − 2

b1, b2, b3
; 1

)
= 0, (10)

where the 4F3 parameters ai and bj are taken as in the 4F3 series in (2), and where
the cl are the coefficients in the recurrence (6). The existence of this relation is
predicted by Theorem 1C in Sect. 10. To compute the relation as in (3), the rational
function version (116) applies.

The proof by Pfaff’s method relies on two contiguous relations. Namely, if the
4F3 parameters ai and bj are taken again as in the 4F3 series in (2), then

c0 · 4F3

(
a1, a2, a3, a4

b1, b2, b3
; 1

)
+ c1 · 4F3

(
a1, a2, a3 − 1, a4 + 1

b1, b2, b3
; 1

)

+ c2 · 4F3

(
a1 + 1, a2 + 1, a3, a4 + 1
b1 + 1, b2 + 1, b3 + 1

; 1

)
= 0 (11)

with c0 = 1, c1 = −1 and c2 = −a(1− b− 2n)/(b(b+ 1)) corresponds to (7), and

c0 · 4F3

(
a1, a2, a3 − 1, a4

b1, b2, b3 − 1
; 1

)
+ c1 · 4F3

(
a1, a2, a3 − 1, a4 + 1

b1, b2, b3
; 1

)

+ c2 · 4F3

(
a1 + 1, a2 + 1, a3, a4 + 1
b1 + 1, b2 + 1, b3 + 1

; 1

)
= 0 (12)

with c0 = 1, c1 = −1 and c2 = (a + n)(b + n− 1)/(b(b + 1)) corresponds to (9).
The existence of both of these contiguous relations is implied by Theorem 1B in
Sect. 9.

We note that proving (2) by Pfaff’s method leads in a direct manner to
the discovery and the proof of a ‘companion summation’, namely (8). Another
difference between the methods is that, when executing the ‘Pfaff proof’, the
relations (11) and (12) in [1] have been derived ‘by hand’, whereas (10) was
delivered automatically by Zeilberger’s algorithm. This latter aspect of ‘hand-
computation’ will be removed by the main theorems in this article. In particular,
we will see that:
Any contiguous relation between terminating and most of the contiguous relations
between non-terminating hypergeometric series can be found automatically by the
computer.
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In particular, this means that in its essence Pfaff’s method is as algorithmic as the
W–Z method. For example, if we do not know the coefficients in (11) and (12), we
simply compute them by the algorithm described in Sect. 3.

It is important to note that conceptually even more is true. As explained in Sect. 4,
contiguous relations can be found automatically by the same mechanism which is
applied to find Zeilberger recurrences, namely, creative telescoping [41].

Zeilberger’s algorithm [39] is based on the observation that a straightforward
extension of Gosper’s algorithm [11] for indefinite hypergeometric summation
(hypergeometric telescoping) can be used for automatic definite hypergeometric
summation (creative telescoping). For the sake of completeness of the presentation,
the essence of creative telescoping, the parameterized Gosper algorithm, is briefly
sketched in Sect. 3; in Sect. 7 we show how the RISC package fastZeil, which
implements this extended Gosper algorithm, can be brought into action. For further
information on Zeilberger’s algorithm, creative telescoping, and the W–Z method,
the reader is referred to the book [23] by M. Petkovšek, H.S. Wilf, and D. Zeilberger.

Before listing the contents of this article, we illustrate this new application of
creative telescoping by having another look at Bailey’s summation (2).

First of all we note that running Zeilberger’s algorithm with order 1 results in an
empty output. This proves that there does not exist a contiguous relation of the form

c0 S(n, a, b)+ c1 S(n− 1, a, b) = 0.

To overcome this issue, in the spirit of creative telescoping, we introduce a further
shift—but not with respect to n as we would do when using Zeilberger’s algorithm!
Instead we shift one of the parameters, say a, and take as a new ansatz,

c0 S(n, a, b)+ c1 S(n− 1, a, b)+ c2 S(n− 1, a − 1, b) = 0. (13)

Then we apply the package described in Sect. 7 which computes indeed a relation
of type (13) with the coefficients

c0 = −(a + n)(n+ b − 1)(2n+ b − 2),

c1 = (n+ b − a − 1)
(
(a2 + a(2n− 1)+ n(2n+ b − 2)

)
, and

c2 = a(a − b)(1+ a − b). (14)

This provides a new proof of Bailey’s summation (2), since (13) with the values cl
from (14) together with the initial value S(0, a, b) = 1 completely define S(n, a, b),
and it is easy to verify that (b − a)n/(b)n satisfies the same recurrence and initial
value.

As described in Sect. 4, all such contiguous relations can be computed automat-
ically by creative telescoping via telescoping contiguous relations; see Theorems 1
and 2. For instance, in order to obtain (13), the corresponding telescoping contigu-
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ous relation for all k ≥ 0 is computed as

c0
(a1)k(a2)k(a3)k(a4)k

(b1)k(b2)k(b3)kk! + c1
(a1)k(a2)k(a3 − 1)k(a4 + 1)k

(b1)k(b2)k(b3)kk!
+ c2

(a1)k(a2 − 1)k(a3 − 1)k(a4 + 1)k
(b1)k(b2)k(b3 − 1)kk! = �k C(k)

(a1)k(a2)k(a3)k(a4)k

(b1)k(b2)k(b3)kk!
(15)

with cl as in (14),

a1 = a

2
, a2 = a + 1

2
, a3 = b + n, a4 = −n, b1 = b

2
, b2 = b + 1

2
, b3 = a + 1,

and

C(x) = x(x + a)(2x + b − 2)(2x + b − 1)(b + n− 1)(a + 2n− 1)

n(2x + a − 1)(x + b + n− 1)
.

Summing both sides of (15) over k from 0 to n results in (13). We want to stress that
the existence of (15), and thus that of (13), is predicted by Theorem 1C in Sect. 10.

There is quite some literature where contiguous relations are used. Most often
this usage is more or less of implicit nature, for instance, as part of a method
or a derivation. Much less literature can be found where general aspects of how
to compute contiguous relations are treated; but there is still some. In addition
to the books [1] and [25], there are articles such as [26, 27, 35, 36], or [8]; the
latter devoted to q-series summation. In particular we want to stress the pioneering
work of Takayama [35], where for elimination in difference-differential operator
rings, non-commutative Gröbner bases methods are introduced. This theme reoccurs
in the context of Zeilberger’s holonomic systems approach to special functions
identities [40]; see, for instance, the work of Chyzak [6] and of Koutschan [16],
and also the references given there.

Despite all this work, we feel that our viewpoint and methods described in this
article have particular advantages. Based on difference equations our approach is
elementary and connects directly to Zeilberger’s extension of Gosper’s algorithm.
An independent development in this direction is [3]. This article mentions con-
nections to Karr-Schneider summation theory which also applies here: Basically
all what we describe can be algorithmically realized using Schneider’s Sigma
package [30]. Further references to Schneider’s work are given in Sect. 3.1.

Nevertheless, there are other aspects like summation theory for non-terminating
hypergeometric series. In our setting, the existence of fundamental summation
theorems like the Gauß 2F1 or the Pfaff-Saalschütz 3F2 formulas find natural
explanations; see the Sects. 8.2 and 10.2. This, in particular, includes contiguous
relations between non-terminating hypergeometric series. Another spin-off con-
cerns the fact that our setting in many cases admits explanations of the phenomenon
why Zeilberger’s algorithm does not always deliver the minimal recurrence and
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why ‘creative symmetrizing’ sometimes can help; see the Sects. 11.2 and 11.3.
For related work see [5]. Finally, all what we say in this article, including the
explanations for non-minimality of Zeilberger orders, carries over to the case of
q-hypergeometric series and q-contiguous relations.

The organization of the rest of this paper is as follows. In Sect. 3 a brief
description of the parameterized Gosper algorithm is given. This section is kept
as short as possible since this algorithm is essentially the same as when used as the
computational engine in Zeilberger’s algorithm for proving definite hypergeometric
summation identities.

Section 4 presents Theorem 1 which states the existence of telescoping contigu-
ous relations for terms which are summands of hypergeometric pFq -series with
argument z = 1 or when p �= q + 1. In Sect. 5 a detailed Proof of Theorem 1 is
given.

The examples presented in Sect. 6 should give a first impression of the variety
of potential applications for telescoping contiguous relations and the methods
described. In this section the examples are enriched with some details for proper
illustration of the method, a theme which is continued further in Sect. 7. There
we give a brief description of the computer algebra package we have used for our
algorithmic applications.

The Sects. 8, 9, and 10 describe three somehow disjoint refinements of Theorem 1
which imply the existence of contiguous relations for hypergeometric q+1Fq -series
with argument z = 1. Illustrating examples concern formulas such as the non-
terminating versions of Gauß’ 2F1 and the Pfaff-Saalschütz 3F2 summations, but
include also the examples from the Introduction as Bailey’s 4F3-series summation.

Finally, Sect. 11 presents further, more involved applications. Using parame-
terized telescoping, we derive a generalization of a result which arose in the
classical work by James Wilson on hypergeometric recurrences and contiguous
relations. In addition, we discuss non-minimality of Zeilberger recurrences from
telescoping contiguous relations point of view. In particular, we explain why
‘creative symmetrizing’ in some instances successfully reduces the order. This
discussion includes a new (algorithmic) proof of the non-terminating version of
Dixon’s well-poised 3F2-series. The concluding Sect. 12 points to the fact that all
what has been said in this article carries over to q-hypergeometric series and to
q-contiguous relations.

3 The Parameterized Gosper Algorithm

Zeilberger, [39] and [41], was the first who discovered that Gosper’s algorithm [11]
finds a straightforward extension that can be used for creative telescoping. In other
words, Zeilberger observed that Gosper’s algorithm for indefinite hypergeometric
summation can be used to solve also definite hypergeometric summation problems.
On this basis, Wilf and Zeilberger developed a rich theoretical framework which,
for instance, includes also W–Z pairs and companion identities; see [23].



Contiguous Relations and Creative Telescoping 343

We present the essence of creative telescoping in the form of an input/output
description of the corresponding parameterized extension of Gosper’s algorithm. To
this end we need to introduce a few definitions.

Throughout this article, p and q denote fixed non-negative integers; �k is the
difference operator defined in (4). The parameters ai, bj , and the argument z range
over the complex numbers; for z we assume z �= 0, unless explicitly mentioned
otherwise.

Remark As in the computer algebra examples presented, for the purpose of
symbolic computation the ai, bj , and z usually are taken as indeterminates; i.e.,
instead of K = C, one takes

K = C(a1, . . . , ap, b1, . . . , bq, z);

or, even more precisely,

K = F(a1, . . . , ap, b1, . . . , bq, z),

where the field F is a computable algebraic extension of Q depending on extra
parameters involved.

However, when seeing K in this article, the reader should feel free to interpret it as
K = C.

In contrast to complex variables like ai , bj , or z, the variable x will always denote
an indeterminate. As usual, with K as the coefficient domain, K[x] is the ring of
polynomials in x; K(x) is its quotient field, the rational functions in x.

Throughout, N := Z≥0 is the set of non-negative integers. The variables n and k

always denote non-negative integers; i.e., n, k ∈ N.
Following [12], for k ∈ N we will use the notation

pFq

(
a1, . . . , ap

b1, . . . , bq
; z
)
k

:= (a1)k · · · (ap)k
(b1)k · · · (bq)k

zk

k! . (16)

When dealing with such a term we always assume it is well-defined; this means,
bj + � �= 0 for 0 ≤ � ≤ k − 1 and all j . The analogous convention applies to
hypergeometric series,

pFq

(
a1, . . . , ap

b1, . . . , bq
; z
)
=

∞∑
k=0

pFq

(
a1, . . . , ap

b1, . . . , bq
; z
)
k

.

The notation pFq(a1, . . . , ap; b1, . . . , bq; z) and pFq(a1, . . . , ap; b1, . . . , bq; z)k
will be used within text lines.

Definition 1 A sequence t (k) over K is called a hypergeometric term if there exists
a rational function ρ ∈ K(x) such that t (k + 1) = ρ(k) · t (k) for all sufficiently
large k.
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Definition 2 Two hypergeometric terms s(k) and t (k) over K are similar if there
exists a rational function ρ ∈ K(x) such that s(k) = ρ(k)t (k) for all sufficiently
large k.

3.1 The Parameterized Gosper Algorithm

Input. Hypergeometric terms t (k), t0(k), . . . , td (k) over K where each tl(k), 0 ≤
l ≤ d, is similar to t (k).

Remark We want to comment on the way how to actually input a hypergeometric
term. According to Definition 1, this, for instance, can be done by specifying a
homogeneous first-order recurrence with polynomial coefficients plus an initial
value. Alternatively, one can give an expression in closed form, for instance, in the
form of a hypergeometric term as in (16).

Output. All hypergeometric terms g(k) over K and all tuples (c0, . . . , cd) ∈
K

d+1 such that for all sufficiently large k,

c0 t0(k)+ · · · + cd td(k) = g(k + 1)− g(k) (= �kg(k)) . (17)

One can show that each such g(k) must be of the form

g(k) = r(k) t (k) (18)

where r ∈ K(x) is a rational function which is computed by the algorithm.
Note. Gosper’s algorithm is the special case d = 0 with t (k) = t0(k). Let

t (k) = f (n, k) be a term which is hypergeometric with respect to k and
n (plus mild side conditions), then Zeilberger’s algorithm is the special case
with tl(k) = f (n + l, k) for 0 ≤ l ≤ d, and K, for instance, chosen as
K = C(n). For more detailed descriptions of these algorithms see, for instance,
[23].

We also note that the zero term g(k) = 0 together with (c0, . . . , cd) = (0, . . . , 0)
always form a solution to (17). All solutions (c0, . . . , cd , g(k)) form a vector space
over K, hence the output of the parameterized Gosper algorithm can be given in
terms of a basis.

Independent Verification
It is important to note that running the algorithm delivers all the information
necessary to prove the correctness of the telescoping recurrence (17) independently
from the steps of the algorithm. Namely, suppose we want to verify (17) for
certain cl and g(k), where g(k) is given as in (18) by the rational function r ∈
K(x).
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Since all terms tl(k) are similar to t (k), the left hand side of (17) can be written
as a rational function multiple of t (k). Due to

g(k + 1)− g(k) =
(
r(k + 1)

t (k + 1)

t (k)
− r(k)

)
t (k)

we can divide both sides of (17) by t (k), and checking (17) then reduces to checking
the resulting equality of rational functions. Wilf and Zeilberger [37] call r(x) the
certificate.

Remark As already mentioned, the parameterized Gosper algorithm (creative tele-
scoping) is the driving engine of Zeilberger’s algorithm. It is described in detail
in a slightly different form in [23].—It is interesting to note that the parameterized
Gosper algorithm, in much more general form, has been used extensively by M. Karr
[14, 15] in his difference field approach to symbolic summation. However, Karr
has never linked it to definite summation. In the framework of difference fields
and, more recently, difference rings, this step has been carried out, accompanied by
other substantial theoretical and algorithmical enhancements, by Carsten Schneider
in [29–34]; see also the references given there.

4 Telescoping Contiguous Relations for z �= 1 or p �= q + 1

This section contains the first main theorem of the paper, Theorem 1. It states the
existence of telescoping contiguous relations with respect to non-negative integer
shifts if z �= 1 or p �= q + 1 (or both).

Despite the existence of telescoping contiguous relations apriori is independent
from the question whether they involve summands of convergent series, for
applications such as taking the infinite sum over such summands,

pFq

(
a1, . . . , ap

b1, . . . , bq
; z
)
=

∞∑
k=0

pFq

(
a1, . . . , ap

b1, . . . , bq
; z
)
k

,

we need to consider the conditions for the convergence of such series in case they
are non-terminating; i.e., where none of the ai is zero or a negative integer.

According to [1, Th. 2.1.1] such series converge absolutely for all z if p ≤ q and
for |z| < 1 if p = q+1; if p > q+1 they diverge for all z �= 0. The remaining case,
“The case |z| = 1 when p = q + 1 is of great interest”; see [1, p. 62]. According
to [1, Th. 2.1.2], the q+1Fq -series with |z| = 1 converges absolutely if

Re
( q∑

j=1

bj −
q+1∑
i=1

aj

)
> 0. (19)
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For |z| = 1 and z �= 1 it converges conditionally if

0 ≥ Re
( q∑

j=1

bj −
q+1∑
i=1

aj

)
> −1, (20)

and it diverges if this real part is less or equal −1.
We want to note explicitly that if z = 1 and p = q + 1, the criteria for

the existence of telescoping contiguous relations, given by the Theorems 1A, 1B,
and 1C, come in the form of refinements of (19).

Theorem 1 Suppose z �= 1 or p �= q+1. Let d = max{p, q+1}. For 0 ≤ l ≤ d let
(α

(l)
1 , . . . , α

(l)
p , β

(l)
1 , . . . , β

(l)
q ) be pairwise different tuples with non-negative integer

entries. Then there exist c0, . . . , cd in K, not all 0, and a polynomial C(x) ∈ K[x]
such that for all k ≥ 0,

d∑
l=0

cl · pFq

(
a1 + α

(l)
1 , . . . , ap + α

(l)
p

b1 − β
(l)
1 , . . . , bq − β

(l)
q

; z
)

k

= �k C(k) pFq

(
a1, . . . , ap

b1, . . . , bq
; z
)
k

.

(21)

Moreover, C(0) = 0, and if C(x) �= 0, for the polynomial degree of C(x) one has

degC(x) ≤ q + 1− d + max
0≤l≤d{α

(l)
1 + · · · + α(l)

p + β
(l)
1 + · · · + β(l)

q }; (22)

in addition, if p ≤ q + 1,

lim
k→∞C(k)pFq

(
a1, . . . , ap

b1, . . . , bq
; z
)
k

= 0. (23)

If p > q the limit (23) is valid if one of the ai is a non-positive integer.

Proof Since C(x) is a polynomial, the limit (23) is immediate from classical
asymptotics as Theorem 2.2.1 in [1]. The rest of Theorem 1 is proven in Sect. 5. *,
Remark According to the convergence criteria stated above, when summing (21)
over k from 0 to∞, imposing |z| < 1 or p ≤ q guarantees the absolute convergence
of pFq(a1, . . . , ap; b1, . . . , bq; z) and of the series

pFq

(
a1 + α

(l)
1 , . . . , ap + α

(l)
p

b1 − β
(l)
1 , . . . , bq − β

(l)
q

; 1

)
, l ∈ {0, . . . , d}.

If p = q + 1 and z �= 1 in such applications of Theorem 1, one needs to
check whether the criteria for absolute or conditional convergence are satisfied. An
example for z = −1 and p = 2 = q + 1 is provided by Kummer’s summation
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formula (152). There we also show that, alternatively, Kummer’s identity can be
derived as a limiting case of Dixon summation (150) which can be obtained from
Theorem 1A with p = 3 = q + 1 and argument z = 1.

Remark In Theorem 1 one can allow arbitrary integer parameters instead of
restricting to non-negative integers. More precisely, for arbitrary parameters α

(l)
i

and β
(l)
j this gives a relation,

d∑
l=0

cl · pFq

(
a1 + α

(l)
1 , . . . , ap + α

(l)
p

b1 − β
(l)
1 , . . . , bq − β

(l)
q

; z
)

k

= �k R(k) pFq

(
a1, . . . , ap

b1, . . . , bq
; z
)
k

,

(24)

with a rational function R(x) ∈ K(x) instead of a polynomial C(x) ∈ K[x]. For this
extension, in view of (30) and (31), it is important to notice that because of possible
poles of the R(x), not all integer choices of α(l)

i and β
(l)
j are admissible.

Definition 3 The relations (21) and (24) are called telescoping contiguous rela-
tions.

The next corollary shows that the restriction to non-negative integer shifts in
Theorem 1 is not an essential one.

Corollary 1 Any telescoping contiguous relation of the form (21) and, if poles of
R(x) cause no problem, in the version of (24) can be computed by the parameterized
Gosper algorithm.

Proof It suffices to prove the statement with respect to the form (24). For the
parameterized Gosper algorithm described in Sect. 4, take as input

tl(k) = pFq

(
a1 + α

(l)
1 , . . . , ap + α

(l)
p

b1 − β
(l)
1 , . . . , bq − β

(l)
q

; z
)

k

and

t (k) = pFq

(
a1, . . . , ap

b1, . . . , bq
; z
)
k

with K = C(a1, . . . , ap, b1, . . . , bq, z) as the field of constants. Note that t (k) and
the tl(k) are hypergeometric terms; in addition, all terms tl(k) are similar to t (k)

as required. The parameterized Gosper algorithm finds all (c0, . . . , cd) ∈ K
d+1

and R(x) ∈ K(x) such that for g(k) = R(k)t (k) the tuple (c0, . . . , cd , g(k))

satisfies (17). Therefore the solution (c0, . . . , cd , R(k)t (k)) as in (24) will be found
by the algorithm. *,
Before proving Theorem 1 in Sect. 5, we present some immediate consequences.
Further applications are given in Sect. 6.
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4.1 Telescoping Contiguous Relations for z �= 1 and
(p, q) = (1, 0)

Suppose z �= 1 and (p, q) = (1, 0). In this case, d = max{p, q+1} = 1. According
to Theorem 1 there exist c0 and c1, not all 0, and a polynomial C(x) with C(0) = 0
such that for all k ≥ 0,

c0 t0(k)+ c1 t1(k) = �k C(k) t (k), (25)

where

t (k) = t0(k) = 1F0

(
a

−; z
)
k

and t1(k) = 1F0

(
a + α

− ; z
)
k

with α ∈ Z>0 According to (22),

degC(x) ≤ q + 1− d + α = α.

For fixed α, the cj and C(x) can be computed automatically as described in Sect. 7.
For example, for α = 1 one obtains (25) with c0 = a, c1 = a(z−1), and C(x) = x.
For |z| < 1 one can sum the resulting telescoping relation over k from 0 to infinity,
which using (23) gives,

a · 1F0

(
a

−; z
)
− a(1− z) · 1F0

(
a + 1
− ; z

)
= 0; (26)

this is in accordance with the binomial expansion

1F0

(
a

−; z
)
= (1− z)a.

4.2 Telescoping Contiguous Relations for z �= 1 and
(p, q) = (2, 1)

Suppose z �= 1 and (p, q) = (2, 1). In this case, d = max{p, q+1} = 2. According
to Theorem 1 there exist c0, c1 and c2, not all 0, and a polynomial C(x) with C(0) =
0 such that for all k ≥ 0,

c0 t0(k)+ c1 t1(k)+ c2 t2(k) = �k C(k) t (k), (27)
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where t (k) = t0(k) and

t0(k) = 2F1

(
a, b

c
; z
)

k

, t1(k) = 1F0

(
a + α1, b + β1

c − γ1
; z
)

k

, t2(k) = 2F1

(
a + α2, b + β2

c − γ2
; z
)

k

.

Here the (αl, βl, γl) for l = 1 and l = 2 are different triples of non-negative integers,
each with entries not all 0. For |z| < 1 one can sum the telescoping relation (27)
over k from 0 to infinity, which using (23) gives,

c0 · 2F1

(
a, b

c
; z
)
+ c1 · 1F0

(
a + α1, b + β1

c − γ1
; z
)
+ c2 · 2F1

(
a + α2, b + β2

c − γ2
; z
)
= 0.

(28)

For fixed αl ,βl , and γl , the cj and C(x) can be computed automatically as described
in Sect. 7; concrete examples are given there.

We want to conclude this section with the remark that Theorem 1 together with
our implementation of parameterized telescoping presented in Sect. 7 (or any other
implementation meeting the specification given in Sect. 3) settles the existence and
the computation of the general three term contiguous 2F1-relations treated by Gauß
in [10].

5 Proof of Theorem 1

In this section we prove Theorem 1. To this end we make use of several elementary
facts which are presented in the form of lemmas.

5.1 Preparatory Lemmas

Definition 4 Let x be an indeterminate, c ∈ C \ Z≤0, and m ∈ N. Define
μ0(c; x) := 1, and

μm(c; x) :=
(

1+ x

c

) (
1+ x

c + 1

)
· · ·
(

1+ x

c +m− 1

)
, m ≥ 1.

For the degree of the polynomial μm(c; x) ∈ K[x] we have

degμm(c; x) = m. (29)
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Lemma 1 Let (α1, . . . , αp, β1, . . . , βq) ∈ N
p+q such that for all i ∈ {1, . . . , p}

and j ∈ {1, . . . , q},

ai + αi �∈ {1, . . . , αi} and bj − βj �∈ Z≤0.

Then for all k ≥ 0,

pFq

(
a1 + α1, . . . , ap + αp

b1 − β1, . . . , bq − βq
; z
)
k

=
p∏

i=1

μαi (ai; k) ·
q∏

j=1

μβj (bj − βj ; k) · pFq

(
a1, . . . , ap

b1, . . . , bq
; z
)
k

.

Proof For k ≥ 0,

(a + 1)k =
(

1+ k

a

)
(a)k (30)

and

1

(b − 1)k
=
(

1+ k

b − 1

)
1

(b)k
. (31)

The lemma is proven by iterated application of (30) and (31). *,
For

t (k) = (a1)k · · · (ap)k
(b1)k · · · (bq)k

zk

k! (32)

let us consider all pairs P(x) ∈ K[x] and R(x) ∈ K(x) such that for all k ≥ 0,

P(k) t (k) = �kR(k) t (k). (33)

It turns out that if (33) holds, then R(x) has to be a polynomial, too. More
precisely, all such pairs can be characterized as follows. We note that the essence of
this characterization is closely related to what is called the Gosper, resp. Gosper-
Petkovšek, form and to the author’s concept of greatest factorial factorization;
see [19].

Lemma 2 Suppose P(x) ∈ K[x] and R(x) ∈ K(x) satisfy the relation

P(k) pFq

(
a1, . . . , ap

b1, . . . , bq
; z
)
k

= �k R(k) pFq

(
a1, . . . , ap

b1, . . . , bq
; z
)
k

, k ≥ 0. (34)
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Then there exists a polynomial P1(x) ∈ K[x] such that

P(x) = z

p∏
i=1

(x + ai) · P1(x + 1)− x

q∏
j=1

(x + bj − 1) · P1(x) (35)

and

R(x) = x

q∏
j=1

(x + bj − 1) · P1(x). (36)

Vice versa, if P(x) and R(x) are of the form (35) and (36) with P1(x) being an
arbitrary polynomial in K[x], then relation (34) is satisfied.

Proof First we prove the statement assuming that

ai �∈ Z and ai − bj �∈ N, i ∈ {1, . . . , p}, j ∈ {1, . . . , q}.

Then, since (34) is a finite sum, analytic continuation proves the statement without
these restrictions.

With t (k) as in (32), relation (34) turns into P(k)t (k) = R(k + 1)t (k + 1) −
R(k)t (k). Dividing out t (k) results in an equality between rational functions; in
other words, relation (34) is equivalent to the relation

P(x)+ R(x)

R(x + 1)
= (x + a1) · · · (x + ap)

(x + b1) · · · (x + bq)

z

x + 1
. (37)

Suppose P(x) and R(x) are of the form (35) and (36) with P1(x) being an arbitrary
polynomial in K[x]. It is easily verified that then relation (37) is satisfied. Therefore
it remains to prove the other direction of the lemma.

To this end, suppose that (34) holds for some P(x) ∈ K[x] and R(x) =
R1(x)/R2(x) ∈ K(x) with R1 and R2 being coprime polynomials in K[x]. So we
can rewrite relation (37) as

(x + 1)
q∏

j=1

(x + bj ) · P(x)R2(x + 1) = z

p∏
i=1

(x + ai) · R1(x + 1) R2(x) (38)

where

P(x) = R1(x)+ P(x)R2(x). (39)

In the following we will use that gcd (R1(x), R2(x)) = 1, gcd
(
P(x), R2(x)

) = 1,
and the fact that if h(x) ∈ K[x] is irreducible then gcd (h(x), h(x + l)) = 1 for all
non-zero integers l.
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Suppose that x+b | R2(x) where b = 1 or b = bj for some j ∈ {1, . . . , q}. Then
x + b + 1 divides R2(x + 1), and (38) implies that x + b + 1 | R2(x). By iterating
this observation we obtain that x + b + l | R2(x) for all l ∈ N, a contradiction
to R2(x) being a non-zero polynomial. Consequently (x + 1)

∏q

j=1(x + bj ) must
divide R1(x + 1); in other words, there exists a polynomial P1(x) ∈ K[x] such that

R1(x) = x

q∏
j=1

(x + bj − 1) · P1(x). (40)

By an analogous reasoning one can show that
∏p

i=1(x + ai) must divide P(x); this
means, there exists a polynomial Q(x) ∈ K[x] such that

P(x) =
p∏

i=1

(x + ai) ·Q(x). (41)

By (40) and (41), Eq. (38) reduces to

Q(x)R2(x + 1) = z P1(x + 1) R2(x). (42)

Without loss of generality we may assume that the leading coefficient of R2(x) is
equal to 1. The next proof step will show that R2(x) must have degree 0 which
implies that

R2(x) = 1 and Q(x) = z P1(x + 1). (43)

For proving this, suppose that an arbitrary irreducible polynomial h(x) divides
R2(x). Then h(x + 1) | R2(x + 1), and (42) implies that h(x + 1) | R2(x). Iterating
this observation we obtain that h(x + l) | R2(x) for all l ∈ N. Therefore R2(x) can
only have irreducible factors which are constants, and (43) is proved.

Finally, Eq. (39) together with (40) and (41) imply (35). Since R2(x) = 1 we
have R(x) = R1(x), and Eq. (36) is nothing but relation (40). This completes the
proof of the lemma. *,
We are interested in polynomial solutions P(x) and R(x) to (34) which are minimal
with respect to their degree in x; see also Lemma 3.

Corollary 2 The minimal non-trivial choice for P(x) ∈ K[x] and R(x) ∈ K(x)

such that (34) holds is the following:

P(x) = z

p∏
i=1

(x + ai)− x

q∏
j=1

(x + bj − 1) (44)



Contiguous Relations and Creative Telescoping 353

and

R(x) = x

q∏
j=1

(x + bj − 1). (45)

Proof Immediate from Lemma 2 choosing P1(x) = 1. *,
The minimally chosen polynomials P(x) and Q(x) from Corollary 2 will play a

fundamental role which gives rise to the following definition.

Definition 5 To any hypergeometric term pFq(a1, . . . , ap; b1, . . . , bq; z)k we
associate the polynomials

pPq(x) := z

p∏
i=1

(x + ai)− x

q∏
j=1

(x + bj − 1) (46)

and

pRq(x) := x

q∏
j=1

(x + bj − 1). (47)

For the proof of Theorem 1 we need a bit more than the minimal non-trivial choice
specified in Corollary 2; we also need the cases where P1(x) = xn.

Definition 6 For any non-negative integer n,

pP
(n)
q (x) := z (x + 1)n

p∏
i=1

(x + ai)− xn+1
q∏

j=1

(x + bj − 1) ∈ K[x]. (48)

Notice that pP
(0)
q (x) = pPq(x).

Lemma 3 Suppose z �= 1 or p �= q + 1. Then

deg pP
(n)
q (x) = max{n+ p, n+ 1+ q} = n+max{p, q + 1} = n+ deg pPq(x),

(49)

and for the leading coefficient,

lcf pP
(n)
q (x) =

⎧⎨
⎩

−1 , if p ≤ q

z− 1 , if p = q + 1
z , if p > q + 1

. (50)

Proof Immediate by inspection. *,
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Lemma 4 (“Reduction Lemma”) Suppose z �= 1 or p �= q + 1. Fix n ∈ N. Let

d = deg pPq(x) and cn = lcf pP
(n)
q (x)

be the degree and the leading coefficient, respectively, of the polynomial pP
(n)
q (x).

Then there exists a polynomial pQ
(n)
q [x] ∈ K[x] with deg pQ

(n)
q (x) ≤ n + d − 1

such that for all k ≥ 0,

cn · kn+d
pFq

(
a1, . . . , ap

b1, . . . , bq
; z
)
k

= (pQ(n)
q (k)+�k k

n
pRq(k)

)
pFq

(
a1, . . . , ap

b1, . . . , bq
; z
)
k

.

(51)

Proof Let P1(x) = xn. Then according to Lemma 2 we have for all k ≥ 0,

pP
(n)
q (k) pFq

(
a1, . . . , ap

b1, . . . , bq
; z
)
k

= �k k
n
pRq(k) pFq

(
a1, . . . , ap

b1, . . . , bq
; z
)
k

. (52)

By Lemma 3 we have deg pP
(n)
q (x) = n+ d; i.e., choosing cn := lcf pP

(n)
q (x) ∈ K

we can define

pQ
(n)
q (x) := cn · xn+d − pP

(n)
q (x) ∈ K[x]

where deg pQ
(n)
q (x) ≤ n+d−1. Hence Lemma 4 follows from (52) after replacing

pP
(n)
q (k) by cn · kn+d − pQ

(n)
q (k). *,

The Reduction Lemma implies the following result in a straightforward manner.

Corollary 3 Suppose z �= 1 or p �= q + 1. Let d = deg pPq(x). For any fixed
n ∈ N there exist polynomials un(x) and vn(x) in K[x] with

deg un(x) ≤ d − 1 and deg vn(x) = n (53)

such that for all k ≥ 0,

kn+d
pFq

(
a1, . . . , ap

b1, . . . , bq
; z
)
k

= un(k) pFq

(
a1, . . . , ap

b1, . . . , bq
; z
)
k

+�k vn(k) pRq(k) pFq

(
a1, . . . , ap

b1, . . . , bq
; z
)
k

.

(54)

Proof The proof proceeds by induction on n. For n = 0 we invoke Lemma 4 with
n = 0; i.e., we can choose u0(x) = 1/c · pQ(0)

q (x) with deg u0(x) ≤ d − 1 and

v0(x) = 1/c where c = lcf pP
(0)
q (x).
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For proving the induction step, let t (k) be as in (32). According to Lemma 4 we
have with c = lcf pP

(n+1)
q (x) that for all k ≥ 0,

kn+1+d t (k) = 1

c
· pQ(n+1)

q (k) t (k)+�k

1

c
· kn+1

pRq(k) t (k). (55)

Since deg pQ
(n+1)
q (x) ≤ n + d, the polynomial pQ

(n+1)
q (x) can be written in the

form

pQ
(n+1)
q (x) =

n+d∑
j=0

Qjx
j with Qj ∈ K.

For all m with 0 ≤ m ≤ n we apply the induction hypothesis to Qm+d k
m+d t (k),

and thus by (54) we obtain polynomials u(x) and v(x) in K[x]with deg u(x) ≤ d−1
and deg v(x) ≤ n such that for all k ≥ 0,

pQ
(n+1)
q (k) t (k) =

d−1∑
j=0

Qjk
j t (k)+ u(k) t (k)+�k v(k) pRq(k) t (k). (56)

Finally combining (56) with (55) we obtain the polynomials

un+1(x) = 1

c

(
u(x)+

d−1∑
j=0

Qjx
j
)

and vn+1(x) = 1

c

(
xn+1 + v(x)

)
,

which satisfy (53) and (54) for n + 1 instead of n. This completes the proof of
Corollary 3. *,

We shall utilize Corollary 3 in the following form. We note explicitly that if
0 ∈ K[x] is the zero polynomial, we use the convention deg 0 = −1.

Corollary 4 Suppose z �= 1 or p �= q + 1. Let d = deg pPq(x). For any M ∈ K[x]
with degM(x) = m there exist polynomials U(x) and V (x) in K[x] with

degU(x) ≤ d − 1 and degV (x) = max{m− d,−1} (57)

such that for all k ≥ 0,

M(k) pFq

(
a1, . . . , ap

b1, . . . , bq
; z
)
k

= U(k) pFq

(
a1, . . . , ap

b1, . . . , bq
; z
)
k

+�k V (k) pRq(k) pFq

(
a1, . . . , ap

b1, . . . , bq
; z
)
k

.

(58)
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Proof Without loss of generality we can rewrite M(x) into the form

M(x) =
d−1∑
j=0

Mjx
j +

m−d∑
n=0

Mn+dx
n+d

with coefficients Mi in K.
If m < d the second sum is zero. This means, in this case we can choose U(x) =

M(x) and V (x) = 0, and both, (57) and (58), are satisfied. In particular we have
that degV (x) = deg 0 = max{m− d,−1} = −1.

In order to prove the corollary also for m ≥ d, let t (k) be as in (32). By invoking
Corollary 3 we obtain that for all k ≥ 0,

M(k) t (k) =
d−1∑
j=0

Mjk
j t (k)

+
m−d∑
n=0

Mn+d un(k) t (k)+�k

m−d∑
n=0

Mn+d vn(k) pRq(k) t (k).

But this proves Corollary 4 since we can choose,

U(x) =
d−1∑
j=0

Mjx
j +

m−d∑
n=0

Mn+d un(x) and V (x) =
m−d∑
n=0

Mn+d vn(x),

and it is easily verified that both, (57) and (58), are satisfied. *,

5.2 Proof of Theorem 1

With the results of the preceding subsection we are ready to prove Theorem 1.
Let t (k) be as in (32). First we prove the statement of Theorem 1 assuming

that the condition to apply Lemma 1 holds; namely, for i ∈ {1, . . . , p}, j ∈
{1, . . . , q}, l ∈ {0, . . . , d},

ai + α
(l)
i �∈ {1, . . . , α(l)

i } and bj − β
(l)
j �∈ Z≤0.

Then, analytic continuation proves the statement without these restrictions an the
ai .3

3The conditions on the bj − β
(l)
j remain valid as being those for pFq bottom parameters.
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According to Lemma 1 the left hand side of (21), with unspecified cl ∈ K which
will be specialized further in a later step, can be rewritten as

( d∑
l=0

cl Ml(k)
)
t (k)

where

Ml(x) =
p∏

i=1

μ
α
(l)
i

(ai; x)
q∏

j=1

μ
β
(l)
j

(bj − β
(l)
j ; x) ∈ K[x],

with μm(c, x) as in Definition 4 of Sect. 5.1.
According to Corollary 4 there exist polynomials Ul(x) and Vl(x) in K[x] with

degUl(x) ≤ d − 1 and degVl(x) = max{degMl(x)− d,−1} (59)

such that for all k ≥ 0,

( d∑
l=0

cl Ml(k)
)
t (k) = (

d∑
l=0

cl Ul(k)
)
t (k)+�k

( d∑
l=0

cl Vl(k)
)
pRq(k) t (k).

(60)

If we can choose cl ∈ K, not all zero, such that

d∑
l=0

cl Ul(x) = 0, (61)

then Theorem 1 is proven. Namely, using these specific solutions c0, . . . , cd , not all
0, we can set

C(x) := (
d∑

l=0

cl Vl(x)
)
pRq(x). (62)

And, choosing the cl and C(x) this way, (60) is nothing but (21); moreover, we have
C(0) = 0 owing to pRq(0) = 0. In addition, if C �= 0 the degree estimate (22)
holds which can be seen as follows. From (62) and (59) we have that

degC(x) ≤ deg pRq(x)− d + max
0≤l≤d{degMl(x)},
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and (22) is implied by deg pRq(x) = q + 1 together with

degMl(x) = α
(l)
1 + · · · + α(l)

p + β
(l)
1 + · · · + β(l)

q ,

according to (29).
Finally we show that a non-trivial choice of cl satisfying (61) indeed exists. To

this end we define for 0 ≤ m ≤ d − 1 and 0 ≤ l ≤ d,

um,l := coefficient of xm in Ul(x).

This gives rise to a d × (d + 1) matrix U via

U := (um,l) =
⎛
⎜⎝

u0,0 u0,1 · · · u0,d
...

...
. . .

...

ud−1,0 ud−1,1 · · · ud−1,d

⎞
⎟⎠ . (63)

Now finding all cl satisfying (61) is equivalent to finding all solutions (c0, . . . , cd) ∈
K

d+1 to the homogeneous nullspace problem

⎛
⎜⎝

u0,0 u0,1 · · · u0,d
...

...
. . .

...

ud−1,0 ud−1,1 · · · ud−1,d

⎞
⎟⎠

⎛
⎜⎜⎜⎝

c0

c1
...

cd

⎞
⎟⎟⎟⎠ =

⎛
⎜⎝

0
...

0

⎞
⎟⎠ .

Since we have d+1 unknowns and d equations, there exists a solution (c0, . . . , cd) ∈
K

d+1 where the cl are not all 0. This completes the proof of Theorem 1. �
Remark In symbolic summation various articles describe algorithms that split the
summand into a summable and a non-summable part. Then computing a recurrence
only for the non-summable part often yields a speed-up. For the hypergeometric
case this has been considered, e.g., in [4]. The approach presented in this subsection
is different: the main goal is to find optimal estimates on the shift-set and to
guarantee that the certificate C(x) is a polynomial. As pointed out by the anonymous
referee, the approach of Sect. 5.2 might also yield a refined method to compute the
parameterized telescoping solution, and that it would be interesting to check if the
underlying system to be solved is simpler than the system one has to solve in the
standard parameterized Gosper method.
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5.3 Connection to Differential Equations

This section is not necessary for understanding the flow of the arguments. Neverthe-
less, we feel that we should at least mention how things are related to the classical
hypergeometric differential equations.

We begin by recalling a fact which is straight-forward. In this section we suppose
that p ≤ q + 1.

Lemma 5 Let Dx be the differential operator with respect to x. For n, k ∈ N such
that n ≥ k,

(xDx)
n
pFq

(
a1, . . . , ap

b1, . . . , bq
; x
)
k

= kn pFq

(
a1, . . . , ap

b1, . . . , bq
; x
)
k

. (64)

Next, for the choice P(x) = pPq(x) and R(x) = pRq(x), we sum both sides
of (34) over all k from 0 to ∞ to obtain,

∞∑
k=0

pPq(k) pFq

(
a1, . . . , ap

b1, . . . , bq
; z
)
k

= −pRq(0)+ lim
k→∞ pRq(k) pFq

(
a1, . . . , ap

b1, . . . , bq
; z
)
k

= 0, (65)

where the last equality is owing to (23) and (36). Setting θ = zDz and using
Lemma 5, the left hand side of (65) turns into

(
z

p∏
i=1

(θ + ai)− θ

q∏
j=1

(θ + bj − 1)
)
pFq

(
a1, . . . , ap

b1, . . . , bq
; z
)

(66)

which is the non-trivial side of the classic homogeneous differential equation for
pFq ; see, for instance, [25, §47, eq. (2)].

Thus we can summarize as follows: Relation (34) with the minimal choice
P(x) = pPq(x) and R(x) = pRq(x) can be considered as a finite, telescoping
version of the homogeneous differential equation for pFq series.

6 Applications of Theorem 1

Example We begin by considering one of Gauß’ fifteen classical contiguous
relations [10, 7.2],

(b− a) 2F1

(
a, b

c
; z
)
+ a 2F1

(
a + 1, b

c
; z
)
− b 2F1

(
a, b + 1

c
; z
)
= 0. (67)
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We have p = 2, q = 1, and thus d = deg 2P1(x) = 2; in addition, c �∈ Z≤0, and
|z| < 1 as a condition for convergence.

Following the proof of Theorem 1 in Sect. 5.2, let us determine complex numbers
c0, c1, and c2, and a polynomial C(x) ∈ C[x] with C(0) = 0 and

degC(x) ≤ q + 1− d +max{0, 1} = 1+ 1− 2+max{0, 1} = 1,

such that for all k ≥ 0,

c0 · 2F1

(
a, b

c
; z
)
k

+ c1 · 2F1

(
a + 1, b

c
; z
)
k

+ c2 · 2F1

(
a, b + 1

c
; z
)
k

= �k C(k) 2F1

(
a, b

c
; z
)
k

. (68)

As in the proof of Lemma 2, w.l.o.g. we may assume that a �∈ {0} and b �∈ {0}. Let

t (k) = (a)k(b)k

(c)k

zk

k! . (69)

According to Lemma 1 the left hand side of (68) can be written as

( 2∑
l=0

cl Ml(k)
)
t (k)

where

M0(x) = 1, M1(x) = 1+ x

a
, and M2(x) = 1+ x

b
.

Hence, according to Corollary 4, to establish the relation (60) we can choose

Ul(x) = Ml(x) and Vl(x) = 0, 0 ≤ l ≤ 2. (70)

Then (62) implies that C(x) = 0; i.e., C(0) = 0 and degC(x) = −1 ≤ 1.
Finally we have to choose cl ∈ C, not all 0, such that

∑2
l=0 cl Ul(x) = 0. Because

of (70) we obtain according to (63),

U =
(

1 1 1
0 1/a 1/b

)
.

It is easily verified that

(c0, c1, c2) = (b − a, a,−b)
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generates the one-dimensional nullspace of

U =
(

1 1 1
0 1/a 1/b

)⎛
⎝ c0

c1

c2

⎞
⎠ =

(
0
0

)
.

Consequently we obtain as the desired telescoping contiguous relation

(b − a) 2F1

(
a, b

c
; z
)
k

+ a 2F1

(
a + 1, b

c
; z
)
k

− b 2F1

(
a, b + 1

c
; z
)
k

= 0.

(71)

Note that the right hand side is 0 which is due to C(x) = 0; this means, in
this case the contiguous relation (67) is already true when restricted to the kth
summand. Of course, as any (telescoping) contiguous relation, the equality (71)
can be verified independently from its derivation. Namely, after dividing both sides
by t (k), relation (71) reduces to

b − a + a
a + k − 1

a
− b

b + k − 1

b
= 0. (72)

Example As a second example we again consider relation (1),

(a + 1− c) 2F1

(
a, b

c
; z
)
+ ((a + 1− b)z− 2(a + 1)+ c) 2F1

(
a + 1, b

c
; z
)

+ (1− z)(a + 1) 2F1

(
a + 2, b

c
; z
)
= 0, (73)

which is the first of Gauß’ fifteen fundamental contiguous relations with a replaced
by a + 1. As explained in [1, (2.5.19)], this relation gives rise to a set of orthogonal
polynomials.—As in the previous example we have p = 2, q = 1, and thus d =
deg 2P1(x) = 2; in addition, c �∈ Z≤0, and |z| < 1 as a condition for convergence.

Again by following the proof of Theorem 1 in Sect. 5.2, we determine complex
numbers c0, c1, and c2 and a polynomial C(x) ∈ C[x] with C(0) = 0 and

degC(x) ≤ 1+ 1− 2+max{0, 1, 2} = 2, (74)

and such that for all k ≥ 0,

c0 · 2F1

(
a, b

c
; z
)
k

+ c1 · 2F1

(
a + 1, b

c
; z
)
k

+ c2 · 2F1

(
a + 2, b

c
; z
)
k

= �k C(k) 2F1

(
a, b

c
; z
)
k

. (75)
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As in the proof of Lemma 2, w.l.o.g. we may assume that a �∈ {0,−1}. Let t (k) be
as in (69).

According to Lemma 1 the left hand side of (75) can be written as

( 2∑
l=0

cl Ml(k)
)
t (k)

where

M0(x) = 1, M1(x) = 1+ x

a
, and

M2(x) =
(

1+ x

a

)(
1+ x

a + 1

)
= 1+ 2a + 1

a(a + 1)
x + 1

a(a + 1)
x2.

From Lemma 4 (with n = 0) we obtain that for all k ≥ 0,

(z− 1) · k2 t (k) = 2Q
(0)
1 (k) t (k)+�k 2R1(k) t (k) (76)

where

2Q
(0)
1 (x) = lcf 2P1(x) · x2 − 2P1(x) = − ((a + b)z− c + 1) x − abz,

and

2R1(x) = x(x + c − 1).

Utilizing (76) we obtain

( 2∑
l=0

cl Ml(k)
)
t (k)

=
(
c0 M0(k)+ c1 M1(k)+ c2

(
1+ 2a + 1

a(a + 1)
k
))

t (k)+ c2
k2

a(a + 1)
t (k)

= (c0 U0(k)+ c1 U1(k)+ c2 U2(k)) t (k)+�k C(k) t (k)

where

U0(x) = 1 (= M0(x)) , U1(x) = 1+ x

a
, (= M1(x)) , and

U2(x) = (a − b + 1)z− a − 1

(a + 1)(z− 1)
+ (a − b + 1)z− 2a − 2+ c

a(a + 1)(z− 1)
x. (77)
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and

C(x) = c2

a(a + 1)(z− 1)
2R1(x). (78)

Now (78) implies that C(0) = 0 and degC(x) = 2 in accordance with (74).
Finally we have to choose cl ∈ C, not all 0, such that

∑2
l=0 cl Ul(x) = 0. Because

of (77) we obtain according to (63),

U =
(

1 1 (a−b+1)z−a−1
(a+1)(z−1)

0 1
a

(a−b+1)z−2a−2+c
a(a+1)(z−1)

)
.

It is easily verified that

(c0, c1, c2) = (a(a − c + 1), a((a − b + 1)z− 2a − 2+ c), a(a + 1)(1− z))

(79)

generates the one-dimensional nullspace of

U =
(

1 1 (a−b+1)z−a−1
(a+1)(z−1)

0 1
a

(a−b+1)z−2a−2+c
a(a+1)(z−1)

)⎛
⎝ c0

c1

c2

⎞
⎠ =

(
0
0

)
.

Consequently, by choosing the cl as in (79), and C(x) with substituting c2 = a(a +
1)(1 − z) into (78), we obtain as the desired telescoping contiguous relation (75)
from which (73) is obtained as usual by summation over all k ≥ 0.

In practice, as stated and proven in Corollary 1, the coefficients cl and the
polynomial C(x) are computed by the Parameterized Gosper Algorithm; see Sect. 7
and the examples presented subsequently.

7 A Package for Computing Telescoping Contiguous
Relations

In Sect. 4 we began to explain that telescoping and classical contiguous relations
can be computed automatically—up to restrictions imposed by computational
complexity—by creative telescoping. Each computer algebra package that imple-
ments Zeilberger’s algorithm is in its essence based on the parameterized Gosper
algorithm which executes creative telescoping. Consequently each of these packages
can be easily adapted to contiguous relations computations.

Already at the time of the prototype version [20] of this article, Axel Riese has
carried out such an adaption within the Paule–Schorn [22] package fastZeil,
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written in the Mathematica system and available from the Web at
https://combinatorics.risc.jku.at/software

To use this package, follow the installation instructions, open a Mathematica
session, and read in the package as follows:

In[1]:= << RISC‘fastZeil‘
Fast Zeilberger Package version 3.61
written by Peter Paule, Markus Schorn, and Axel Riese
© RISC-JKU

For better readability, we write the rising factorials in ‘pretty print’ format:

In[2]:= (x_)k_ := Pochhammer[x, k]
In[3]:= {(x)0, (x)1, (x)2, (x)5}

Out[3]= {1, x, x(1+ x), x(1+ x)(2+ x)(3+ x)(4+ x)}

7.1 Computer Discovery and Proof of (67)

To do the example (67), resp. (68), we consider the problem to compute c0, c1, c2,
not all 0, and a polynomial C(x) such that for all k ≥ 0,

c0 t0(k)+ c1 t1(k)+ c2 t2(k) = �k C(k) t (k), (80)

where t (k) = t0(k), and

t0(k) = 2F1

(
a, b

c
; z
)

k

, t1(k) = 2F1

(
a + 1, b

c
; z
)

k

, t2(k) = 2F1

(
a, b + 1

c
; z
)

k

.

To invoke the package, we need to make explicit use of the similarity4 between the
tj (k):

In[4]:= t[a_, b_, c_, k_] := (a)k(b)k

(c)kk! zk

In[5]:= ra = t[a + 1, b, c, k]/t[a, b, c, k] //FullSimplify

Out[5]=
a+ k

a

In[6]:= rb = t[a, b + 1, c, k]/t[a, b, c, k] //FullSimplify

Out[6]=
b+ k

b

4Recall Definition 2.

https://combinatorics.risc.jku.at/software
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Hence we have,

t1(k) = ra · t (k) = a + k

a
· t (k) and t2(k) = rb · t (k) = b + k

b
· t (k).

To solve the problem related to (80), we call parameterized telescoping as follows:

In[7]:= Gosper[t[a, b, c, k], {k, n1, n2}, Parameterized → {1, ra, rb}]
If ‘-n1+n2’ is a natural number, then: :

Out[7]= {Sum [(a− b)F0(k)− aF1(k)+ bF2(k), {k, n1, n2}] = 0}

This output has to be interpreted as follows: in the setting

F0(k) = t0(k), F1(k) = t1(k), and F2(k) = t2(k),

one has for all nj ∈ N such that n1 ≤ n2:

(a − b)

n2∑
k=n1

t (k)− a

n2∑
k=n1

t1(k)+ b

n2∑
k=n1

t2(k) = 0. (81)

For n = n1 = n2 this is (71).

Remark As already mentioned, despite being a trivial relation on the summand
level, relation (71), resp. (81), cannot be handled with the standard Zeilberger
algorithm owing to the fact that we have shifts in two parameters: a → a + 1
and b → b + 1.

7.2 Computer Discovery and Proof of (73)

To do the example (73), resp. (75), we consider the problem to compute c0, c1, c2,
not all 0, and a polynomial C(x) such that for all k ≥ 0,

c0 t0(k)+ c1 t1(k)+ c2 t2(k) = �k C(k) t (k), (82)

where t (k) = t0(k), and

t0(k) = 2F1

(
a, b

c
; z
)

k

, t1(k) = 2F1

(
a + 1, b

c
; z
)

k

, t2(k) = 2F1

(
a + 2, b

c
; z
)

k

.

To invoke the package, we need again use similarity between the tj (k):

In[8]:= t[a_, b_, c_, k_] := (a)k(b)k

(c)kk! zk

In[9]:= ra1 = t[a + 1, b, c, k]/t[a, b, c, k] //FullSimplify
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Out[9]=
a+ k

a

In[10]:= ra2 = (t[a + 2, b, c, k]/t[a + 1, b, c, k] //FullSimplify) ∗
(t[a + 1, b, c, k]/t[a, b, c, k] //FullSimplify)//Factor

Out[10]=
(a+ k)(1+ a+ k)

a(1+ a)

Hence we have,

t1(k) = ra1·t (k) = a + k

a
·t (k) and t2(k) = ra2·t (k) = (a + k)(1+ a + k)

a(1+ a)
·t (k).

To solve the problem related to (82), we again call parameterized telescoping:

In[11]:= Gosper[t[a, b, c, k], {k, 0, n}, Parameterized → {1, ra1, ra2}]
If ‘n’ is a natural number, then: :

Out[11]= {Sum[−a(a−c+1)F0(k)−a(az−2a−bz+c+z−2)F1(k)+a(a+1)(z−1)F2(k), {k, 0, n}]
= (a+ n)(b+ n)zn+1(a)n(b)n

n!(c)n
}

This output has to be interpreted as follows: taking

F0(k) = t0(k), F1(k) = t1(k), and F2(k) = t2(k),

one has for all n ∈ N:

a(a + 1− c)

n∑
k=0

t (k)+ a((a + 1− b)z− 2(a + 1)+ c)

n∑
k=0

t1(k)

+ a(a + 1)(1− z)

n∑
k=0

t2(k) = −(n+ 1)(c + n) · t (n+ 1). (83)

For n → ∞ this relation becomes Gauß’ relation (73) since the right-hand side
turns to zero owing to the limit property (23).

Finally, we note that subtracting from (83) the case n− 1 results in

a(a + 1− c)t (n)+ a((a + 1− b)z− 2(a + 1)+ c)t1(n)+ a(a + 1)(1− z)t2(n)

= −�nn(c + n− 1)t (n),

which confirms the choice of the ci as in (79). With these ci we obtained the desired
telescoping contiguous relation of the form (75) with C(x) = −x(c + x − 1).
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8 Telescoping Contiguous Relations for z = 1: Case A

An important class of contiguous relations concerns the case z = 1 and p = q+1 ≥
1; i.e., involving summands of the form

q+1Fq

(
a1, . . . , aq+1

b1, . . . , bq
; 1

)
k

. (84)

To establish versions of Theorem 1 for this situation, we need to refine further.

Definition 7 (Case-A Condition) We say that the complex parameters in (84)
satisfy the Case-A condition, if

q∑
j=1

bj −
q+1∑
i=1

ai − q �∈ Z≥0. (85)

This section gives a Case-A version of Theorem 1; in the Sects. 9 and 10 corre-
sponding theorems, Theorems 1B and 1C, for other parameter conditions, Case-B
and Case-C, respectively, are presented.

Theorem 1A Suppose z = 1 and p = q+1. Let the complex parameters ai and bj

satisfy the Case-A condition (85). For 0 ≤ l ≤ q let (α(l)
1 , . . . , α

(l)
q+1, β

(l)
1 , . . . , β

(l)
q )

be pairwise different tuples with non-negative integer entries.
Then there exist c0, . . . , cq in K, not all 0, and a polynomial C(x) ∈ K[x] such

that for all k ≥ 0,

q∑
l=0

cl · q+1Fq

(
a1 + α

(l)
1 , . . . , aq+1 + α

(l)
q+1

b1 − β
(l)
1 , . . . , bq − β

(l)
q

; 1

)

k

= �k C(k) q+1Fq

(
a1, . . . , aq+1

b1, . . . , bq
; 1

)

k

.

(86)

Moreover, C(0) = 0, and if C(x) �= 0, for the polynomial degree of C(x) one has

degC(x) ≤ 1+M where M := max
0≤l≤q{α

(l)
1 +· · ·+α

(l)
q+1+β

(l)
1 +· · ·+β(l)

q }; (87)

in addition,

Re
( q∑

j=1

bj −
q+1∑
i=1

ai

)
> M ⇒ lim

k→∞C(k)pFq

(
a1, . . . , aq+1

b1, . . . , bq
; 1

)
k

= 0. (88)
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Remark According to [1, Thm. 2.1.2], the condition on the left-hand side of (88) is
exactly the condition needed for the absolute convergence of all series

q+1Fq

(
a1 + α

(l)
1 , . . . , aq+1 + α

(l)
q+1

b1 − β
(l)
1 , . . . , bq − β

(l)
q

; 1

)
, l ∈ {0, . . . , q}.

Proof Observe that when z = 1,

q+1Pq(x) = xq
( q+1∑

i=1

ai −
q∑

j=1

bj + q
)
+O(xq−1),

hence deg q+1Pq(x) = q and deg q+1P
(n)
q (x) = n+q. Using these degree estimates

the statement is proven analogously to the proof of Theorem 1. The limit (88)
follows from (87) by using,

q+1Fq

(
a1, . . . , aq+1

b1, . . . , bq
; 1

)
∼ �(b1) . . . �(bq)

�(a1) . . . �(aq+1)
k
−1+∑i ai−

∑
j bj , k →∞;

(89)

see [1, proof of Thm. 2.1.2] for this asymptotic estimate. *,
Remark As in Theorem 1 one can allow arbitrary integer parameters instead of
restricting to non-negative integers. More precisely, for arbitrary parameters α

(l)
i

and β
(l)
j this gives a relation,

q∑
l=0

cl · q+1Fq

(
a1 + α

(l)
1 , . . . , aq+1 + α

(l)
q+1

b1 + β
(l)
1 , . . . , bq + β

(l)
q

; 1

)

k

= �k R(k) q+1Fq

(
a1, . . . , aq+1

b1, . . . , bq
; 1

)

k

,

(90)

with a rational function R(x) ∈ K(x) instead of a polynomial C(x) ∈ K[x]. Again,
as in (24), it is important to notice that because of possible poles of the R(x), not all
integer choices of α(l)

i and β
(l)
j are admissible.

Definition 8 Also the relations (86) and (90) are called telescoping contiguous
relations.

Corollary 5 Any telescoping contiguous relation of the form (86) and, if poles of
R(x) cause no problem, in the version of (90) can be computed by the parameterized
Gosper algorithm.

Proof Analogous to that for Corollary 1. *,
We present some illustrating applications.
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8.1 Telescoping Contiguous Relations for z = 1 and
(p, q) = (1, 0)

Suppose z = 1 and (p, q) = (1, 0). According to Theorem 1 there exist c0 �= 0 and
a polynomial C(x) with C(0) = 0 such that for all k ≥ 0,

c0 · 1F0

(
a + α

− ; 1

)
k

= �k C(k) 1F0

(
a

−; 1

)
k

. (91)

For all α ∈ Z≥0 this is true if the case-A condition,

q∑
j=1

bj −
q+1∑
i=1

ai − q = −a �∈ Z≥0, (92)

holds. It turns out that C(x) = x/(a + α), and summing (91) over k from 0 to n

produces a telescoping hypergeometric sum,

n∑
k=0

1F0

(
a + α

− ; 1

)
k

=
n∑

k=0

(−1)k
(−(a + α)

k

)
= n+ 1

a + α

(a)n+1

(n+ 1)! . (93)

Independently from Theorem 1A, this is obtained —including a confirmation of the
Case-A condition—by our implementation of parameterized telescoping:

In[12]:= Gosper
[

(a + α)k

k! , {k, 0, n}
]

If ‘n’ is a natural number and a + α �= 0, then: :

Out[12]= Sum

[
(a+ α)k

k! , {k, 0, n}
]
= (a+ α + n)(a+ α)n

n!(a+ α)

Finally, we remark that applying the limit formula (88) the relation (93) turns into

∞∑
k=0

(a + α)k

k! =
∞∑
k=0

(−1)k
(−(a + α)

k

)
= 0,

matching (1− 1)−(a+α) = 0.
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8.2 Computer Proof of Gauß’ 2F1 Summation

Most of the classical non-terminating pFq series summation formulas can be proved
using contiguous relations. With the means of telescoping contiguous relations the
essential part of these proofs can be done automatically by the computer.

For example, let us take Gauß’ 2F1 summation theorem [1, Thm. 2.2.2]:

∞∑
k=0

(a)k(b)k

(c)kk! = 2F1

(
a, b

c
; 1

)
= �(c)�(c − a − b)

�(c − a)�(c − b)
, Re(c−a−b) > 0. (94)

The condition on the real part is to guarantee absolute convergence; see [1,
Thm. 2.1.2]. We will follow a variant of the proof idea presented in [1, 2.2]. Its
key ingredient is the contiguous relation

2F1

(
a, b

c
; 1

)
= (c − 1)(c − a − b − 1)

(c − a − 1)(c − b − 1)
2F1

(
a, b

c − 1
; 1

)
. (95)

Once this relation is found, the rest of the proof of (94) follows by unfolding (95),

2F1

(
a, b

c
; 1

)
= (c − 1)(c − a − b − 1)

(c − a − 1)(c − b − 1)

(c − 2)(c − a − b − 2)

(c − a − 2)(c − b − 2) 2F1

(
a, b

c − 2
; 1

)
= . . .

= �(c)�(c − a − b)

�(c − a)�(c − b)
· �(c − a − n)�(c − b − n)

�(c − n)�(c − a − b − n)
2F1

(
a, b

c − n
; 1

)
,

and by observing that

lim
n→∞

�(c − a − n)�(c − b − n)

�(c − n)�(c − a − b − n)
2F1

(
a, b

c − n
; 1

)
= 1.

Using the parameterized Gosper algorithm, relation (95) is found automatically as
follows. For the ansatz

c0 · 2F1

(
a, b

c
; 1

)
k

+ c1 · 2F1

(
a, b

c − 1
; 1

)
k

= �k C(k) 2F1

(
a, b

c
; 1

)
k

(96)

the algorithm computes

c0 = (c − a − 1)(c − b − 1), c1 = −(c − 1)(c − a − b − 1), and C(x) = x(x + c − 1).
(97)

Consequently, degC(x) ≤ 1+M where M = 1. To ensure convergence of all series
involved, one has to require also Re(c− a− b) > 1 = M . This allows to apply (88)
after summing (96) over k from 0 to ∞, which gives the desired (95).
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9 Telescoping Contiguous Relations for z = 1: Case B

The next refinement of Theorem 1 concerns the following violation of the Case-A
condition

Definition 9 (Case-B Condition) The parameters a1, . . . , aq+1 and b1, . . . , bq
satisfy the Case-B condition, if

q∑
j=1

bj −
q+1∑
i=1

ai − q ∈ Z≥1. (98)

Hence the remaining violation of the Case-A condition is when
∑q

j=1 bj −∑q+1
i=1 ai = q; this is Case-C which is treated in Sect. 10.

Theorem 1B Suppose z = 1 and p = q + 1 ≥ 2. Let the complex parameters
ai and bj satisfy the Case-B condition (98) and let d = q − 1 or d = q. For

0 ≤ l ≤ d let (α(l)
1 , . . . , α

(l)
q+1, β

(l)
1 , . . . , β

(l)
q ) be pairwise different tuples with non-

negative integer entries. Suppose,

M := max
0≤l≤d{α

(l)
1 + · · · + α

(l)
q+1 + β

(l)
1 + · · · + β(l)

q } <
q∑

j=1

bj −
q+1∑
i=1

ai . (99)

Then for d = q−1 or d = q there exist c0, . . . , cd in K, not all 0, and a polynomial
C(x) ∈ K[x] such that for all k ≥ 0,

d∑
l=0

cl · q+1Fq

(
a1 + α

(l)
1 , . . . , aq+1 + α

(l)
q+1

b1 − β
(l)
1 , . . . , bq − β

(l)
q

; 1

)

k

= �k C(k) q+1Fq

(
a1, . . . , aq+1

b1, . . . , bq
; 1

)

k

.

(100)

Moreover, C(0) = 0, and

degC(x) ≤ 1+
q∑

j=1

bj −
q+1∑
i=1

ai. (101)

In addition, owing to (89), if strict inequality in (101) holds,

lim
k→∞C(k)pFq

(
a1, . . . , aq+1

b1, . . . , bq
; 1

)
k

= 0; (102)
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otherwise,

lim
k→∞C(k)q+1Fq

(
a1, . . . , aq+1

b1, . . . , bq
; 1

)

k

= leading coefficient of C(x) · �(b1) . . . �(bq)

�(a1) . . . �(aq+1)
.

(103)

Remark According to [1, Thm. 2.1.2], the condition (99) is exactly the condition
needed for the absolute convergence of all series

q+1Fq

(
a1 + α

(l)
1 , . . . , aq+1 + α

(l)
q+1

b1 − β
(l)
1 , . . . , bq − β

(l)
q

; 1

)
, l ∈ {0, . . . , q − 1}.

Proof Let k0 :=∑q

j=1 bj −
∑q+1

i=1 ai , and suppose that k0−q = α ∈ Z≥1. Observe
that

deg q+1Pq(x) = q, . . . , deg q+1P
(α−1)
q (x) = q + α − 1, deg q+1P

(α)
q (x) = q + α − 1,

(104)

but

deg q+1P
(α+1)
q (x) = q + α + 1.

Owing to (104), one can find a polynomial P1(x) with degP1(x) = α such that

P(x) =
q+1∏
i=1

(x+ai)·P1(x+1)−x

q∏
j=1

(x+bj−1)·P1(x) = c·xq−1+O(xq−2), (105)

where c is some constant in K. Analogously to the proof of Theorem 1, for

tl (k) := q+1Fq

(
a1 + α

(l)
1 , . . . , aq+1 + α

(l)
q+1

b1 − β
(l)
1 , . . . , bq − β

(l)
q

; 1

)

k

and t (k) := q+1Fq

(
a1, . . . , aq+1

b1, . . . , bq
; 1

)

one carries out the following transformation into a telescoping form:

d∑
l=0

cltl(k) =
d∑

l=0

cl

q+1∏
i=1

μ
α
(l)
i

(ai; k)
q∏

j=1

μ
β
(l)
j

(bj − β
(l)
j ; k)t (k)

=
d∑

l=0

clMl(k)t (k)

= (
d∑

l=0

cl Ul(k)
)
t (k)+�k

( d∑
l=0

cl Vl(k)
)
pRq(k) t (k).
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For each l ∈ {0, . . . , d}: if the constant c in (105) is non-zero, then degUl(x) ≤
q − 2; otherwise, degUl(x) ≤ q − 1. In the first case one has d := q − 1; otherwise
d := q. For both cases, with the same argument as in Theorem 1, there is a choice of
the cl , not all zero, such that

∑d
l=0 cl Ul(x) = 0. Notice that for the transformation

into a telescoping form we used the condition (99) for the estimate,

degMl(x) = α
(l)
1 + · · · + α

(l)
q+1 + β

(l)
1 + · · · + β(l)

q ≤ M < k0 = q + α,

together with (104) and (105). To prove the remaining statements, one again uses
the arguments as in the proof of Theorem 1. *,
Remark Again one can allow arbitrary integer parameters instead of restricting to
non-negative integers. More precisely, for arbitrary parameters α

(l)
i and β

(l)
j this

gives a relation,

d∑
l=0

cl · q+1Fq

(
a1 + α

(l)
1 , . . . , aq+1 + α

(l)
q+1

b1 + β
(l)
1 , . . . , bq + β

(l)
q

; 1

)

k

= �k R(k) q+1Fq

(
a1, . . . , aq+1

b1, . . . , bq
; 1

)

k

,

(106)

with a rational function R(x) ∈ K(x) instead of a polynomial C(x) ∈ K[x]. Again,
as in (24), it is important to notice that because of possible poles of the R(x), not all
integer choices of α(l)

i and β
(l)
j are admissible.

For the sake of better visibility, we state the criterion for the choice of d, which
emerged from the proof, as a particular corollary.

Corollary 6 Let c be the constant as in (105). Then a criterion for the choice of d
in Theorem 1B is this:

d =
{
q − 1, if c �= 0

q, if c = 0
. (107)

Definition 10 Also the relations (100) and (106) are called telescoping contiguous
relations.

Corollary 7 Any telescoping contiguous relation of the form (86) and, if poles of
R(x) cause no problem, in the version of (90) can be computed by the parameterized
Gosper algorithm.

Proof Analogous to that for Corollary 1. *,
An example is provided by the existence of the contiguous relation (11), represent-
ing the Pfaff relation (7), which is predicted by Theorem 1B with d = 2 = q − 1
and with M = 4 for the maximum of the shift sums; moreover, connecting to the
proof of Theorem 1B, k0 = 5. With the same data, Theorem 1B also implies the
existence of the contiguous relation (12), representing the Pfaff relation (9).

The next subsections show two more illustrating examples.
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9.1 Telescoping Contiguous Relations for z = 1 and
(p, q) = (2, 1)

The minimal choice for Theorem 1B is q = 1; i.e., assuming that the constant c in
Corollary 6 is non-zero, we seek for a relation,

c0 · 2F1

(
a1 + α1, a2 + α2

b1 − β1
; 1

)
k

= �k C(k) 2F1

(
a1, a2

b1
; 1

)
k

, k ≥ 0.

The Case-B condition is b1 − a1 − a2 − 1 := α ∈ Z≥1; hence α := 1 is again a
minimal choice. Finally, we need condition (99) to be satisfied. This means, M :=
α1 + α2 + β1 < b1 − a1 − a2 = 2, and (α1, α2, β1) = (0, 0, 0) is a minimal choice.
Then Theorem 1B tells us that the sum

n∑
k=0

(a1)k(a2)k

(a1 + a2 + 2)kk!

has a closed form by telescoping. In view of (99), other admissible choices are
(α1, α2, β1) = (1, 0, 0) or (α1, α2, β1) = (0, 0, 0), which says that the sums

n∑
k=0

(a1 + 1)k(a2)k

(a1 + a2 + 2)kk! and
n∑

k=0

(a1)k(a2)k

(a1 + a2 + 1)kk!

are also telescoping.5 This can be confirmed by running Gosper’s algorithm, for
example:

In[13]:= Gosper
[

(a1)k(a2)k

(a1 + a2 + 1)kk! , {k, 0, n}
]

If ‘n’ is a natural number and a1a2 �= 0,then: :

Out[13]= Sum

[
(a1)k(a2)k

(a1 + a2 + 1)kk! , {k, 0, n}
]
= (a1 + n)(a2 + n)

a1a2

(a1)n(a2)n

(a1 + a2 + 1)nn!

The algorithm computes C(x) = x(x+ a1+ a2)/(a1a2), which means that we have
equality in the bound estimate (101), and the limit (103) of Theorem 1B implies,

∞∑
k=0

(a1)k(a2)k

(a1 + a2 + 1)kk! =
1

a1a2

�(a1 + a2 + 1)

�(a1)�(a2)
= �(a1 + a2 + 1)

�(a1 + 1)�(a2 + 1)
.

Notice that this is a telescoping special case of Gauß’ summation formula (94).

5Notice that the right-hand sum is obtained by replacing a1 with a1 − 1 in the left sum.
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10 Telescoping Contiguous Relations for z = 1: Case C

It remains to consider the final possibility for a violation of the Case-A condition,
namely, when

∑q

j=1 bj −
∑q+1

i=1 ai = q.

Definition 11 (Case-C Condition) The parameters a1, . . . , aq+1 and b1, . . . , bq
satisfy the Case-C condition, if

q∑
j=1

bj −
q+1∑
i=1

ai = q. (108)

Theorem 1C Suppose z = 1 and p = q + 1 ≥ 2. Let the complex parameters ai
and bj satisfy the Case-C condition (108) and let

d :=
{
q − 1, if deg q+1Pq(x) = q − 1

q, if deg q+1Pq(x) < q − 1
. (109)

For 0 ≤ l ≤ d let (α(l)
1 , . . . , α

(l)
q+1, β

(l)
1 , . . . , β

(l)
q ) be pairwise different tuples with

non-negative integer entries. Suppose,

M := max
0≤l≤d{α

(l)
1 + · · · + α

(l)
q+1 + β

(l)
1 + · · · + β(l)

q } < q. (110)

Then for d there exist c0, . . . , cd in K, not all 0, and a polynomial C(x) ∈ K[x] such
that for all k ≥ 0,

d∑
l=0

cl · q+1Fq

(
a1 + α

(l)
1 , . . . , aq+1 + α

(l)
q+1

b1 − β
(l)
1 , . . . , bq − β

(l)
q

; 1

)

k

= �k C(k) q+1Fq

(
a1, . . . , aq+1

b1, . . . , bq
; 1

)

k

.

(111)

Moreover, C(0) = 0, and

degC(x) ≤ 1+ q. (112)

In addition, owing to (89), if strict inequality in (112) holds,

lim
k→∞C(k)pFq

(
a1, . . . , aq+1

b1, . . . , bq
; 1

)
k

= 0; (113)
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otherwise,

lim
k→∞C(k)q+1Fq

(
a1, . . . , aq+1

b1, . . . , bq
; 1

)

k

= leading coefficient of C(x) · �(b1) . . . �(bq)

�(a1) . . . �(aq+1)
.

(114)

Remark According to [1, Thm. 2.1.2], the condition (99) is exactly the condition
needed for the absolute convergence of all series

q+1Fq

(
a1 + α

(l)
1 , . . . , aq+1 + α

(l)
q+1

b1 − β
(l)
1 , . . . , bq − β

(l)
q

; 1

)
, l ∈ {0, . . . , q − 1}.

Proof Observe that

deg q+1Pq(x) ≤ q − 1, but deg q+1P
(n)
q (x) = q + n, n ≥ 1; (115)

hence the degree q − 1 provides a natural bound. Analogously to the proof of
Theorem 1, for

tl (k) := q+1Fq

(
a1 + α

(l)
1 , . . . , aq+1 + α

(l)
q+1

b1 − β
(l)
1 , . . . , bq − β

(l)
q

; 1

)

k

and t (k) := q+1Fq

(
a1, . . . , aq+1

b1, . . . , bq
; 1

)

one carries out the following transformation into a telescoping form:

q−1∑
l=0

cltl(k) =
q−1∑
l=0

cl

q+1∏
i=1

μ
α
(l)
i

(ai; k)
q∏

j=1

μ
β
(l)
j

(bj − β
(l)
j ; k)t (k)

=
q−1∑
l=0

clMl(k)t (k)

= (
q−1∑
l=0

cl Ul(k)
)
t (k)+�k

( q−1∑
l=0

cl Vl(k)
)
pRq(k) t (k).

For each l ∈ {0, . . . , d}: if q+1Pq(x) = q − 1 then degUl(x) ≤ q − 2; otherwise,
degUl(x) ≤ q − 1. In the first case one has d := q − 1; otherwise d := q. For
both cases, with the same argument as in Theorem 1, there is a choice of the cl ,
not all zero, such that

∑d
l=0 cl Ul(x) = 0. Notice that for the transformation into a

telescoping form we used the condition (110) for the estimate,

degMl(x) = α
(l)
1 + · · · + α

(l)
q+1 + β

(l)
1 + · · · + β(l)

q ≤ M < q.

To prove the remaining statements, one again uses the arguments as in the proof of
Theorem 1. *,
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Remark Again one can allow arbitrary integer parameters instead of restricting to
non-negative integers. More precisely, for arbitrary parameters α

(l)
i and β

(l)
j this

gives a relation,

q−1∑
l=0

cl · q+1Fq

(
a1 + α

(l)
1 , . . . , aq+1 + α

(l)
q+1

b1 + β
(l)
1 , . . . , bq + β

(l)
q

; 1

)

k

= �k R(k) q+1Fq

(
a1, . . . , aq+1

b1, . . . , bq
; 1

)

k

,

(116)

with a rational function R(x) ∈ K(x) instead of a polynomial C(x) ∈ K[x]. Again,
as in (24), it is important to notice that because of possible poles of the R(x), not all
integer choices of α(l)

i and β
(l)
j are admissible.

Definition 12 Also the relations (111) and (116) are called telescoping contiguous
relations.

Corollary 8 Any telescoping contiguous relation of the form (111) and, if poles
of R(x) cause no problem, in the version of (116) can be computed by the
parameterized Gosper algorithm.

Proof Analogous to that for Corollary 1. *,
An example is provided by the existence of the contiguous relation (10), represent-
ing the Zeilberger output recurrence (6), which is predicted by Theorem 1C with
d = deg 4P3(x) = 2 = q − 1 and with M = 2 for the maximum of the shift sums.
With the same data, Theorem 1C implies the contiguous relation (15) representing
the new mixed relation (13) for Bailey’s summation. To compute the relation as
in (15), one uses the rational function variation (116) of Theorem 1C.

The next subsections show two more illustrating examples.

10.1 Telescoping Contiguous Relations for z = 1 and
(p, q) = (2, 1)

The minimal choice for Theorem 1C is q = 1. Let us seek for a relation,

c0 · 2F1

(
a1 + α1, a2 + α2

b1 − β1
; 1

)
k

= �k C(k) 2F1

(
a1, a2

b1
; 1

)
k

, k ≥ 0.

To guarantee existence, according to Theorem 1C we consider,

deg 2P1(x) = deg
(
(x + a1)(x + a2)− x(x + b1 − 1)

)

= deg
(
(a1 + a2 − b1 + 1)x + a1a2

)
= deg a1a2 = 0,
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invoking the Case-C condition, b1 − a1 − a2 = 1. Hence, if a1a2 �= 0 then
deg 2P1(x) = 0 = q − 1, and we can call Theorem 1C with d = q − 1 = 0.
Moreover, we need M := α1 + α2 + β1 < q = 1, thus (α1, α2, β1) = (0, 0, 0) is
the only choice, and Theorem 1C tells us that the sum,

n∑
k=0

(a1)k(a2)k

(a1 + a2 + 1)kk! =
(a1 + 1)n(a2 + 1)n
(a1 + a2 + 1)nn! , (117)

has a closed form by telescoping; for the evaluation see Out[13]. In other words,
this minimal case coincides with that of Theorem 1B presented in Sect. 9.1.

10.2 Telescoping Contiguous Relations for z = 1 and
(p, q) = (3, 2)

We proceed with q = 2 as the next to minimal choice for Theorem 1C. Let us seek
for a relation,

c0 · 3F2

(
a1 + α

(0)
1 , a2 + α

(0)
2 , a3 + α

(0)
3

b1 − β
(0)
1 , b2 − β

(0)
1

; 1

)

k

+ c1 · 3F2

(
a1 + α

(1)
1 , a2 + α

(1)
2 , a3 + α

(1)
3

b1 − β
(1)
1 , b2 − β

(1)
1

; 1

)

k

= �k C(k) 3F2

(
a1, a2, a3

b1, b2
; 1

)
k

, k ≥ 0.

To guarantee existence, according to Theorem 1C, we consider,

deg 3P2(x) = deg
(
(x + a1)(x + a2)(x + a3)− x(x + b1 − 1)(x + b2 − 1)

)

= deg
(
(a1 + a2 + a3 − b1 − b2 + 2)x2 + (a1a2 + a1a3 + a2a3−(b1 − 1)(b2 − 1))x + a1a2a3

)

= deg
(
(a1a2 + a1a3 + a2a3 − (b1 − 1)(b2 − 1))x + a1a2a3

)

invoking the Case-C condition, b1 + b2 − a1 − a2 − a3 = 2. Hence we assume that

a1a2 + a1a3 + a2a3 − (b1 − 1)(b2 − 1) �= 0,

because then deg 3P2(x) = 1, and we can call Theorem 1C with d = q − 1 = 1.
Moreover, we need to have,

M := max
0≤l≤1

{α(l)
1 + α

(l)
2 + α

(l)
3 + β

(l)
1 + β

(l)
2 } < q = 2.



Contiguous Relations and Creative Telescoping 379

Thus, (β(0)
2 , α

(1)
3 ) = (1, 1) and all other parameters equal to zero, is an admissible

choice. For this choice, Theorem 1C tells us that a non-trivial telescoping relation
of the form

c0 · 3F2

(
a1, a2, a3

b1, b2 − 1
; 1

)
k

+ c1 · 3F2

(
a1, a2, a3 + 1

b1, b2
; 1

)
k

= �k C(k) 3F2

(
a1, a2, a3

b1, b2
; 1

)
k

, k ≥ 0,

exists provided that b1 + b2 − a1 − a2 − a3 = 2. As described in Sect. 7, the RISC
package fastZeil by applying parameterized telescoping computes:

c0 = −a3(1+a3−b1)(1+a1+a2+a3−b1), c1 = a3(1+a1+a3−b1)(1+a2+a3−b1)

and

C(x) = x(x + b1 − 1)(x + a1 + a2 + a3 − b1 + 1);

for the computation b2 is replaced by a1 + a2 + a3 − b1 + 2. Applying (114) one
obtains in the limit k →∞ the relation:

c0 · 3F2

(
a1, a2, a3

b1, a1 + a2 + a3 − b1 + 1
; 1

)
+ c1 · 3F2

(
a1, a2, a3 + 1

b1, a1 + a2 + a3 − b1 + 2
; 1

)

= �(b1)�(a1 + a2 + a3 − b1 + 2)

�(a1)�(a2)�(a3)
. (118)

Another special case is obtained by replacing a3 with−n ∈ Z≤0 and then taking the
limit k →∞,

S(n) = (b1 − a1 + n− 1)(b1 − a2 + n− 1)

(b1 + n− 1)(b1 − a1 − a2 + n− 1)
S(n− 1), n ≥ 1. (119)

where

S(n) := 3F2

(
a1, a2,−n

b1, a1 + a2 − b1 − (n+ 1)
; 1

)
.

Unfolding the relation (119) gives the celebrated Pfaff-Saalschütz formula [1,
Thm. 2.2.6],

S(n) = (b1 − a1)n(b1 − a2)n

(b1)n(b1 − a1 − a2)n
. (120)
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Finally, setting b1 = −n in S(n) gives the telescoping special case (117) of Gauß’
summation formula.

11 Further Applications

The examples presented in this section should deepen the impression of a wide
spectrum of potential applications of telescoping contiguous relations and the
methods described. Using parameterized telescoping, we derive a generalization,
Theorem 2, of a result which arose in the classical work by James Wilson on
hypergeometric recurrences and contiguous relations. Two further subsections
discuss non-minimality of Zeilberger recurrences from telescoping contiguous
relations point of view. In particular, we explain why ‘creative symmetrizing’ in
some instances successfully reduces the order. This discussion includes a new
(algorithmic) proof of the non-terminating version of Dixon’s well-poised 3F2-
series.

11.1 Generalizing a Theorem by James A. Wilson

As mentioned, in [1] various approaches for deriving contiguous relations are
described, for instance, by integration or by using Wilson’s method [38]. We choose
an example that is given in [1, (3.7.5)] for explaining Wilson’s technique, namely

fg 4F3

(
a, b, c, d

e, f, g
; 1

)
− (f − a)(g − a) 4F3

(
a, b + 1, c + 1, d + 1
e + 1, f + 1, g + 1

; 1

)

+ a(e − b)(e − c)(e − d)

e(e + 1)
4F3

(
a + 1, b + 1, c + 1, d + 1

e + 2, f + 1, g + 1
; 1

)
= 0,

(121)

where one of the upper parameters is a negative integer, and where

a + b + c + d + 1 = e + f + g. (122)

Throughout this section we assume (122) to hold. To connect to classical terminol-
ogy we remark that Wilson’s contiguous relation is between balanced 4F3-series;
i.e., as in (122) the sum of the top parameters plus 1 equals the sum of the bottom
parameters. More generally, if the parameters of a q+1Fq -series satisfy the relation

q∑
j=1

bj −
q+1∑
i=1

ai = m (123)
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for m ∈ Z, the series is called m-balanced.
To fit (121) into our framework we set

a1 = a, a2 = b, a3 = c, a4 = d, b1 = e + 2, b2 = f + 1, b3 = g + 1,

which translates (121) into the telescoped version,

c0 4F3

(
a1, a2, a3, a4

b1 − 2, b2 − 1, b3 − 1
; 1

)
k

+ c1 4F3

(
a1, a2 + 1, a3 + 1, a4 + 1

b1 − 1, b2, b3
; 1

)
k

+ c2 4F3

(
a1 + 1, a2 + 1, a3 + 1, a4 + 1

b1, b2, b3
; 1

)
k

= �kC(k)4F3

(
a1, a2, a3, a4

b1, b2, b3
; 1

)
k

, k ≥ 0,

(124)

with

b1+b2+b3−(a1+a2+a3+a4)−q = e+2+f +1+g+1−(a+b+c+d)−3 = 2.

Consequently, this turns the series into ones which are 5-balanced and the Case-B
condition (98) is satisfied. Moreover, in view of

M := max
0≤l≤q−1

{α(l)
1 + · · · + α

(l)
q+1 + β

(l)
1 + · · · + β(l)

q } = 4 <

q∑
j=1

bj −
q+1∑
i=1

ai = 5,

the existence of (124) is guaranteed by Theorem 1B with d = q−1 = 2, and where
the coefficients cj and the polynomial C(x) can be computed by parameterized
telescoping.

We remark explicitly that to this end, instead of renaming the variables, one can
work directly in the original setting (121). More precisely, using our package we
compute coefficients c0, c1, c2, not all 0, and a polynomial C(x) such that for all
k ≥ 0,

c0 t0(k)+ c1 t1(k)+ c2 t2(k) = �k C(k) t (k), (125)

where

t (k) = 4F3

(
a, b, c, d

e + 2, f + 1, g + 1
; 1

)
k

,

t0(k) = 4F3

(
a, b, c, d

e, f, g
; 1

)
k

,
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t1(k) = 4F3

(
a, b + 1, c + 1, d + 1
e + 1, f + 1, g + 1

; 1

)
k

, and

t2(k) = 4F3

(
a + 1, b + 1, c + 1, d + 1

e + 2, f + 1, g + 1
; 1

)
k

.

For running the program we supply the rational functions rl that are induced by the
hypergeometric similarity relations

tl(k) = rl(k) t (k);

recall Definition 2. More concretely:

In[14]:= t[k_] := (a)k(b)k(c)k(d)k

(e + 2)k(f + 1)k(g + 1)kk!
In[15]:= r0 = (a)k(b)k(c)k(d)k

k!(e)k(f)k(g)k

1
t[k] //FullSimplify

Out[15]=
(k+ e)(k+ e+ 1)(k+ f)(k+ g)

e(e+ 1)fg

In[16]:= r1 = (a)k(b + 1)k(c + 1)k(d + 1)k

k!(e + 1)k(f + 1)k(g + 1)k

1
t[k] //FullSimplify

Out[16]=
(k+ b)(k+ c)(k+ d)(k+ e+ 1)

bcd(e+ 1)

In[17]:= r2 = (a + 1)k(b + 1)k(c + 1)k(d + 1)k

k!(e + 2)k(f + 1)k(g + 1)k

1
t[k] //FullSimplify

Out[17]=
(k+ a)(k+ b)(k+ c)(k+ d)

abcd

In[18]:= RatFuMults = {r0, r1, r2} /. g → a + b + c + d − e − f + 1

After these preparations we are ready to compute the desired telescoping relation:

In[19]:= Gosper[t[k] /. g → a + b + c + d − e − f + 1, {k, 0, n − 1}, Parameterized →
RatFuMults]
If ‘n’ is a natural number, then: :

Out[19]= Sum[bcde(e+1)f(a+b+c+d−e−f+1)t0(k)+bcde(e+1)(a−f)(b+c+d−e−f+1)t1[k]
− abcd(b− e)(c− e)(d− e)t2[k], {k, 0, n− 1}]
= −n(n+e+1)(n+f)(n+a+b+c+d−e−f+1)

(
bcd−bce−bde−ben−cde−cen−den−en2)

(a)n(b)n(c)n(d)n

n!(e+ 2)n(f+ 1)n(a+ b+ c+ d− e− f+ 2)n

In other words, the telescoping relation (125) is constituted by

c0 = bcde(e + 1)fg, c1 = −bcde(e + 1)(f − a)(g − a),

c2 = −abcd(b − e)(c − e)(d − e),
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and the polynomial

C(x) = −x(x + e + 1)(x + f )(x + g)
(
bcd − bce − bde − cde − (b + c + d)ex − ex2

)
.

We remark that after executing the call In[19] for parameterized telescoping, the
program allows to retrieve the polynomial C(x) explicitly with

In[20]:= show[R]

Out[20]= k(1+e+k)(1+a+b+c+d−e−f+k)(f+k)(−bcd+bce+bde+cde+(b+c+d)ek+ek2)

Obviously, if one of the entries a, b, c, d is a negative integer, relation (125)
in the limit k → ∞ implies Wilson’s relation (121). But applying the limit
property (103), the telescoping relation (125) as a “bonus” implies a generalization
of Wilson’s (121), which does not require that one of the upper parameters is a
negative integer:

Theorem 2 If a + b + c + d + 1 = e + f + g then

fg 4F3

(
a, b, c, d

e, f, g
; 1

)
− (f − a)(g − a) 4F3

(
a, b + 1, c + 1, d + 1
e + 1, f + 1, g + 1

; 1

)

+ a(e − b)(e − c)(e − d)

e(e + 1)
4F3

(
a + 1, b + 1, c + 1, d + 1

e + 2, f + 1, g + 1
; 1

)

= �(e + 1)�(f + 1)�(g + 1)

�(a)�(b + 1)�(c + 1)�(d + 1)
.

(126)

11.2 Non-minimality of Zeilberger Recurrences

Bailey’s summation (2) already has shown that Zeilberger’s algorithm does not
always deliver a recurrence of minimal order for the sum in question. Another such
example is the summation

Sd(n) =
n∑

k=0

(−1)k
(
n

k

)(
d k

n

)
= (−d)n, n ≥ 0, (127)

where d is any positive integer.
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We remark that this evaluation is an immediate consequence of the following
elementary fact which is implied by the binomial theorem. For any choice of
complex numbers ai ,

n∑
k=0

(−1)k
(
n

k

)
(a0 + a1 k + · · · + an k

n) = (−1)nn! an;

see, for instance, [12, Ch. 5].
However, in [22] it has been pointed out that the Zeilberger recurrence for Sd(n),

d ≥ 2, is of order d − 1. For instance, for d = 3 by running Zeilberger’s algorithm
one obtains

2(2n+ 3) S3(n+ 2)+ 3(5n+ 7) S3(n+ 1)+ 9(n+ 1) S3(n) = 0

as the output recurrence for the sum S3(n).
In order to consider the problem from contiguous relations point of view, we

translate S3(n) for n = 3m into hypergeometric notation. One can easily verify that

S3(3m) = (−1)m
(

3m

m

)
T (m) (m ≥ 0) (128)

where

T (m) =
2m∑
k=0

(−2m)k(m+ 1/3)k(m+ 2/3)k
(1/3)k(2/3)kk! = 3F2

(
−2m,m+ 1/3, m+ 2/3

1/3, 2/3
; 1

)
.

(129)

According to (127) we have for m ≥ 0,

T (m) = (−1)m
(

3m

m

)−1

(−3)3m. (130)

The fact that the Zeilberger recurrence for T (m) is of order 2 tells us that there is no
contiguous relation with cl ∈ C(m) of the form

c0 · 3F2

(
−2m,m+ 1/3, m+ 2/3

1/3, 2/3
; 1

)
+ c1 · 3F2

(
−2m− 2, m+ 4/3, m+ 5/3

1/3, 2/3
; 1

)
= 0,

where in the second 3F2-series m is replaced by m+ 1.
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However, one can try another ansatz for a (telescoping) contiguous relation, for
instance,

c0 3F2

(
−2m,m+ 1/3, m+ 2/3

1/3, 5/3
; 1

)

k

+ c1 3F2

(
−2m,m+ 1/3, m+ 2/3

1/3, 2/3
; 1

)

k

+ c2 3F2

(
−2m− 2, m+ 4/3, m+ 5/3

1/3, 2/3
; 1

)

k

= �k C(k) 3F2

(
−2m− 2, m+ 1/3, m+ 2/3

1/3, 5/3
; 1

)

k

.

(131)

Summing (131) over k from 0 to 2m+ 2 would then give the recurrence

c0 P(m)+ c1 T (m)+ c2 T (m+ 1) = 0, m ≥ 0, (132)

where

P(m) = 3F2

(−2m,m+ 1/3,m+ 2/3
1/3, 5/3

; 1

)
(133)

is a balanced series which owing to the Pfaff-Saalschütz formula (120) evaluates to

P(m) = 0 for m ≥ 1. (134)

Running the parameterized Gosper algorithm shows that a formula of type (131)
indeed exists. Our package computes that (131), and thus (132), holds for

c0 = 9m(3m− 1)(21m2 + 27m+ 8),

c1 = 18(m+ 1)(2m+ 1)(9m+ 1),

c2 = −(3m+ 1)(3m+ 2)(9m+ 1), and

C(x) = x(9x2 − 4)C̃(x)

2(m+ 1)(3m+ 2)(3m+ 4)

where

C̃(x) = 3x(162m3+405m2+261m+40)−(3m+1)(189m3+549m2+555m+184).

Summarizing, in contrast to Zeilberger’s algorithm the contiguous relations
approach allows additional integer shifts in other parameters. So in the present
example this enables one to invoke the Pfaff-Saalschütz evaluation (134) to zero,
which finally has led to the desired order 1 recurrence for T (m), namely

T (m+ 1)

T (m)
= 18

(m+ 1)(2m+ 1)

(3m+ 1)(3m+ 2)
,
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which together with T (0) = 1 proves (130). In other words, why Zeilberger’s
algorithm sometimes misses to compute the minimal recurrence simply is explained
by the fact that this algorithm searches only within a restricted subclass of
contiguous relations.

Remark We want to note explicitly that this example is remarkable also with regard
to the existence of (131). Renaming the variables as follows,

a1 = −2m− 2, a2 = m+ 1/3, a3 = m+ 2/3, b1 = 1/3, b2 = 5/3,

turns (131) into

c0 · 3F2

(
a1 + 2, a2, a3

b1, b2
; 1

)
k

+ c1 · 3F2

(
a1 + 2, a2, a3

b1, b2 − 1
; 1

)
k

+ c2 · 3F2

(
a1, a2 + 1, a3 + 1

b1, b2 − 1
; 1

)
k

= �k C(k) 3F2

(
a1, a2, a3

b1, b2
; 1

)
k

. (135)

In this case,

b1+b2−(a1+a2+a3)−q = 1/3+5/3−(−2m−2+m+1/3+m+2/3)−2 = 1,

which matches the Case-B condition (98). But

M := max
0≤l≤2

{α(l)
1 + α

(l)
2 + α

(l)
3 + β

(l)
1 + β

(l)
2 } = 3 <

2∑
j=1

bj −
3∑

i=1

ai = 3

violates the requirement (99), and thus the existence of (131) cannot be derived
from the generic form of Theorem 1B with d = q = 2. Nevertheless, the following
refinement for q = 2 applies.

Corollary 1B Suppose z = 1 and p = q + 1 = 3. Let the complex parameters ai

and bj satisfy the Case-B condition (98). For 0 ≤ l ≤ 2 let (α(l)
1 , α

(l)
2 , α

(l)
3 , β

(l)
1 , β

(l)
2 )

be pairwise different tuples with non-negative integer entries such that

M := max
0≤l≤2

{α(l)
1 + α

(l)
2 + α

(l)
3 + β

(l)
1 + β

(l)
2 } = 3. (136)

Then there exist c0, c1, c2 in K, not all 0, and a polynomial C(x) ∈ K[x] such that
for all k ≥ 0,

2∑
l=0

cl ·3F2

(
a1 + α

(l)
1 , a2 + α

(l)
2 , a3 + α

(l)
3

b1 − β
(l)
1 , b2 − β

(l)
2

; 1

)

k

= �k C(k) 3F2

(
a1, a2, a3

b1, b2
; 1

)
k

.

(137)
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Proof To prove the statement one modifies the proof of Theorem 1; we restrict
to presenting a sketch. In the case of Corollary 1B we have k0 := ∑q

j=1 bj −∑q+1
i=1 ai = 3; this means, k0 − q = α with q = 2 and α = 1. Observe that

deg 3P2(x) = 2, deg 3P
(1)
2 (x) = 2, but deg 3P

(2)
2 (x) = 4. (138)

Owing to (138), one can find a polynomial P1(x) with degP1(x) = 1, or
degP1(x) = 0, such that

P(x) =
3∏

i=1

(x+ ai) ·P1(x+ 1)− x

2∏
j=1

(x+ bj − 1) ·P1(x) = p1x+p0, (139)

where p0, p1 ∈ K are not both zero. Suppose p1 �= 0. Then for j = 1, 2 there are
γj ∈ K and polynomials Cj (x) ∈ K[x] such that

kj t (k) = γj t (k)+�kCj (x)t (k), (140)

where t (k) = 3F2(a1, a2, a3; b1, b2; 1)k . Again with the notation used in the proof
of Theorem 1B, the left-hand side of (137) turns into,

2∑
l=0

cltk(k) =
2∑

l=0

clMl(k)t (k),

with polynomials Ml(x) of the form,

Ml(x) = γl,0 + γl,1x + γl,2x
2 + γl,3x

3, l = 0, 1, 2.

Finally, owing to (140),

2∑
l=0

clMl(k)t (k) =
( 2∑
l=0

cl Ul(k)
)
t (k)+�k

( 2∑
l=0

cl Vl(k)
)
pRq(k) t (k),

with Ul(x) of the form Ul(x) = ul,0 + ul,3x
3. Hence there exist c0, c1, c2 ∈ K, not

all zero, such that
∑2

l=0 cl Ul(x) = 0. *,

11.3 Creative Symmetrizing Revisited

The discussion in Sect. 11.2 has shed new light on the fact that Zeilberger’s
algorithm does not always deliver a minimal recurrence for a given sum. In several
such instances, by the method of ‘creative symmetrizing’, introduced in [18], it is
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possible to transform the original sum in such a way that for the transformed version
Zeilberger’s recurrence is minimal. In this section we shall see that the contiguous
relations point of view can help to understand why creative symmetrizing can help.

As an illustrating example we consider a sum which Helmut Prodinger [24] has
brought to our attention; namely for n ≥ 1 let

S(n) =
n∑

k=1

(−1)k
(
n

k

)2(
n

k − 1

)
. (141)

Carlitz [2], using Pfaff-Saalschütz summation, gave the evaluation

S(2m) = (−1)m
(3m)!

(m!)2 (m− 1)! (2m+ 1)
(142)

for m ≥ 1. However, he did not mention what happens if n is odd.
Before applying contiguous relations we explain what creative symmetrizing is

about. Let A(m) = S(2m) for m ≥ 1. Again Zeilberger’s algorithm does not deliver
the first order recurrence corresponding to (142); rather than this it outputs,

− 18(2m+ 1)(3m+ 1)(3m+ 2)(4m+ 7)(6m+ 5)(6m+ 7) A(m)

− 12(2m+ 3)(4m+ 5)(36m4 + 180m3 + 341m2 + 290m+ 90) A(m+ 1)

− 2(m+ 1)(m+ 2)(2m+ 3)(2m+ 5)2(4m+ 3) A(m+ 2) = 0,

which together with the corresponding certificate, which is too huge to be displayed
here, is sufficient to prove (142).

However, as observed by Axel Riese [28] creative symmetrizing reduces the
order to the minimal one. Namely, consider

2A(m) =
2m∑
k=1

(−1)k
(

2m

k

)2( 2m

k − 1

)
+

2m∑
k=1

(−1)2m+1−k

(
2m

2m+ 1− k

)2( 2m

2m− k

)

=
2m∑
k=1

(−1)k
(

2m

k

)2( 2m

k − 1

)(
1−

(
2m

k − 1

)(
2m

k

)−1
)

=
2m∑
k=1

(−1)k
2m− 2k + 1

2m− k + 1

(
2m

k

)2( 2m

k − 1

)
.

This way we obtain an equivalent but transformed sum presentation a(m) of A(m),
where

a(m) =
2m∑
k=1

(−1)k
2m− 2k + 1

2(2m− k + 1)

(
2m

k

)2( 2m

k − 1

)
. (143)
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Now, when we take the summand of a(m) as input for Zeilberger’s algorithm, it
outputs as recurrence for the sum a(m),

3(2m+ 1)(3m+ 1)(3m+ 2) a(m)+m(m+ 1)(2m+ 3) a(m+ 1) = 0 (144)

which, in view of a(1) = A(1) = S(2) = −2 immediately implies (142).
We note that in the odd case, i.e., if n = 2m + 1, Zeilberger’s algorithm again

gives a second order recurrence; but creative symmetrizing also helps here. Namely,
analogous to above, for B(m) = S(2m + 1), m ≥ 0, one obtains an equivalent but
transformed sum presentation b(m), where

b(m) =
2m+1∑
k=1

(−1)k
m+ 1

2(2m− k + 2)

(
2m+ 1

k

)2(2m+ 1

k − 1

)
. (145)

For this rearrangement, Zeilberger’s algorithm again outputs the minimal recur-
rence, namely

− 3(3m+ 4)(3m+ 5) b(m)− (m+ 2)2 b(m+ 1) = 0. (146)

Consequently, since b(0) = B(0) = S(1) = −1, we obtain for m ≥ 0,

S(2m+ 1) = b(m) = (−1)m+1 (3m+ 2)!
2 (m+ 1)!2 m! (147)

as a closed form evaluation for the odd case.
Summarizing, we have seen that creative symmetrizing, i.e., rearranging the

summation by combining the first and the last summand, the second and the term
before the last one, a.s.o., resulted in an order reduction of Zeilberger’s output
recurrence.

In the remaining part of this section we show that an explanation of this
phenomenon is provided by the contiguous relations point of view.

To this end, let us consider the odd case (the even case can be treated analogously)
and rewrite B(m) = S(2m+ 1) into hypergeometric notation, i.e.,

B(m) = −(2m+ 1)2
3F2

(−(2m+ 1),−2m,−2m
2, 2

; 1

)
. (148)

The 3F2 series is nearly-poised, this means, the second top and the first bottom
parameter add up to the same number as the third top and the second bottom
parameter; in the given example this is −2m+ 2. The series would be well-poised,
if the remaining top parameter increased by 1 would be the same number. As
we will explain below, well-poised series behaves “more nicely” with respect to
(telescoping) contiguous relations.
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First, we point out that creative symmetrizing converts the sum representa-
tion (145) into a (terminating) well-poised series; namely,

b(m) = −(m+ 1)(2m+ 1) 3F2

(−2m,−(2m+ 1),−(2m+ 1)
2, 2

; 1

)
. (149)

In fact, this well-poised 3F2 is the special case a = −2m, b = c = −(2m + 1) of
Dixon’s summation formula [1],

3F2

(
a, b, c

a + 1− b, a + 1− c
; 1

)
= �(1+ a

2 )�(1+ a
2 − b − c)�(1+ a − b)�(1+ a − c)

�(1+ a)�(1+ a − b − c)�(1+ a
2 − b)�(1+ a

2 − c)
,

(150)

where Re(1 + 1
2 − b − c) > 0. The substitution a = −2m, b = c = −(2m + 1)

gives a hypergeometric term on the right-hand side of (150), hence b(m) satisfies an
order 1 recurrence.

Second, we explain why well-poised series behave better with respect to
(telescoping) contiguous relations than nearly-poised series. Namely, Theorem 1A
with d = q = 2 and parameterized telescoping gives,

c0 · 3F2

(
a, b, c

a + 1− b, a + 1− c
; 1

)
k

+ c1 · 3F2

(
a + 1, b, c

a + 2− b, a + 2− c
; 1

)
k

+ c2 · 3F2

(
a + 2, b, c

a + 3− b, a + 3− c
; 1

)
k

= �kR(k)3F2

(
a, b, c

a + 1− b, a + 1− c
; 1

)
k

,

(151)

where

c0 = −a(1+ a − b)(2+ a − b)(2+ a − 2b − 2c)(1+ a − c)(2+ a − c),

c1 = 0,

c2 = a(1+ a)(2+ a − 2b)(2+ a − 2c)(1+ a − b − c)(2+ a − b − c),

and

R(k) = p(k)
(−2− a + b)(−1− a + b)(−2− a + c)(−1− a + c)k

(1+ a − b + k)(1+ a − c + k)

with

p(k) = −2− a + 3a2 + 2a3 + 4b + ab − 2a2b − 2b2 + 4c + ac − 2a2c − 6bc − abc

+ 2b2c − 2c2 + 2bc2 + 3ak + 3a2k − 2abk − 2ack + ak2.
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Remark Notice that in view of the pattern of the shifts of the bottom parameters
in the 3F2-series, we applied Theorem 1A in the version of (106) which gives a
rational function R(x) ∈ K(x) instead of a polynomial C(x) ∈ K[x].
Inspection of the coefficients cj reveals the crucial feature of the well-poised
property: it puts c1 to zero!

Besides its relevance for our example, the fact that c1 = 0 allows a proof of
Dixon’s identity along the same lines as our proof of Gauß’ summation formula (94).
Using the abbreviation,

F(a, b, c) := 3F2

(
a, b, c

a + 1− b, a + 1− c
; 1

)
,

in the limit k →∞ relation (151) turns into

F(a, b, c) = (1+ a)(2+ a − 2b)(2+ a − 2c)(1+ a − b − c)(2+ a − b − c)

(1+ a − b)(2+ a − b)(2+ a − 2b − 2c)(1+ a − c)(2+ a − c)
F (a + 2, b, c)

= (a)2n(
a
2 − b + 1)n( a2 − c + 1)n(a − b − c + 1)2n

( a2 )n(
a
2 − b − c + 1)n(a − b + 1)2n(a − c + 1)2n

F (a + 2n, b, c).

Finally, applying

�(x) = lim
n→∞

n!nx−1

(x)n
and lim

n→∞F(a + 2n, b, c) = 1

proves (150).

Remark Connecting to the remarks given after the statement of Theorem 1 in
Sect. 4, we note that Dixon’s identity (150) in the limit c →∞ gives

2F1

(
a, b

a + 1− b
;−1

)
= �(1+ a

2 )�(1+ a − b)

�(1+ a)�(1+ a
2 − b)

, Re(b) < 1, (152)

which is Kummer’s summation theorem [1, Cor. 3.1.2], Alternatively, one can
compute the telescoping relation of the form,

c0 · 2F1

(
a, b

a + 1− b
;−1

)
k

+ c1 · 2F1

(
a + 1, b

a + 2− b
;−1

)
k

+ c2 · 2F1

(
a + 2, b

a + 3− b
;−1

)
k

= �kR(k)2F1

(
a, b

a + 1− b
;−1

)
k

, (153)

where c0 = −(a + 1 − b)(a + 2 − b), c1 = 0, c2 = (a + 1)(a + 2 − 2b) and
R(x) = (a + 1 − b)(a + 2 − b)(b − 1)x/(a(a + 1 − b + x)). As with (151),
this relation is a recurrence with shifts in a only, hence it can be computed already
with Zeilberger’s algorithm. However, we want to emphasize that its existence is
predicted by Theorem 1 applied with the condition p = 2 = q + 1 and z = −1.
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Finally note that Kummer’s summation follows by taking the limit k →∞ in (153),
and by iterating the resulting relation as we did to obtain the Dixon sum. To arrive
at (152), one has to apply the binomial theorem [1, (2.1.6)] in the form,

1F0

(
b

−;−1

)
= 2−b.

12 Conclusion: q-Case

There are many variations like Corollary 1B of the method presented. Such
variations depend on the particular application, needless to say. But even when
facing a problem not generically covered by one of the theorems in this article,
using a computer algebra implementation of parameterized telescoping could lead to
the desired (telescoping) contiguous relation. Still this algorithmic possibility does
not make tables of such relations obsolete. An excellent reference in this regard
is [17], a huge collection of hypergeometric series summation and transformation
identities including contiguous relations; most importantly, the table look-up is
greatly supported by coming in the form of a Mathematica package.

Another aspect is that all what has been said in this article carries over to q-
hypergeometric series and to q-contiguous relations. We are planning to treat the
q-case in a subsequent paper.

As a kind of a “preview”: already at the time of [20], Axel Riese has implemented
a q-version of the algorithm for computing (telescoping) contiguous relations
described in Sect. 4. This extension of his Mathematica package qZeil [21] allows
to derive automatically (telescoping) q-contiguous relations, for example, those of
Heine [9, Exercise 1.9]. Also in the scope are q-functional relations like

F(a, b; t) = 1− atq

1− t
+ (1− aq)(b − atq)

(1− bq)(1− t)
tqF (aq, bq; tq)

where

F(a, b; t) = 1+
∞∑
n=1

(1− aq)(1− aq2) · · · (1− aqn)

(1− bq)(1− bq2) · · · (1− bqn)
tn;

see, for instance, the book by N.J. Fine [7, (4.1)].
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Nested Integrals and Rationalizing
Transformations

Clemens G. Raab

Abstract A brief overview of some computer algebra methods for computations
with nested integrals is given. The focus is on nested integrals over integrands
involving square roots. Rewrite rules for conversion to and from associated nested
sums are discussed. We also include a short discussion comparing the holonomic
systems approach and the differential field approach. For simplification to rational
integrands, we give a comprehensive list of univariate rationalizing transformations,
including transformations tuned to map the interval [0, 1] bijectively to itself.

1 Introduction

By nested integrals, we mean multiple integrals whose integrand is a product of
individual integrands depending only on one integration variable each and where
each integration variable occurs as an integration bound for the next inner integral.
Commonly, they use the origin as their base point and have the form

∫ x

0
f1(t1)

∫ t1

0
f2(t2) . . .

∫ tk−1

0
fk(tk) dtk . . . dt1, (1)

where each fi is allowed to depend only on ti and on external parameters, but not on
any other integration variable tj . Note that here and in all that follows, the possible
dependence on external parameters is not denoted explicitly. Also conventions with
base points other than the origin are possible, e.g.

∫ 1

x

f1(t1)

∫ 1

t1

f2(t2) . . .

∫ 1

tk−1

fk(tk) dtk . . . dt1. (2)
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Choosing the integrands from certain classes of functions, the nested integrals
give rise to various classes of functions. Already Kummer [30] considered nested
integrals over rational functions and determined that it is sufficient to consider
integrands that are reciprocals of linear polynomials in the integration variable.
These integrals are often referred to as hyperlogarithms. They occurred also in the
works of Poincaré, Lappo-Danilevski, and many others, see e.g. [27, 31, 35, 48].
In the context of QFT, special choices of rational integrands have been used fre-
quently, giving harmonic polylogarithms [41], cyclotomic harmonic polylogarithms
[10], and generalized harmonic polylogarithms [11]. Generalizing the notation of
Ref. [41], integrands for generalized harmonic polylogarithms Ha1,...,ak (x) are given
by

fa(x) := ca

x − a
(3)

with ca := sgn(−a + 0) such that fa(x) > 0 for x > 0 close to zero, which is the
base point of these integrals following (1). For integrals of the form (2), the choice
ca := sgn(1− a− 0) is preferred in order to have fa(x) > 0 for x < 1 close to one.

Going beyond rational integrands, one can also allow more general functions by
requiring only the square of the integrand to be a rational function. A minimal set of
integrands needed to express these integrals (and hence also those over any algebraic
functions expressible by non-nested square roots) was determined in Ref. [8] based
on work by Hermite [28], which consists of integrands (3) and the following ones.

f{a1,...,ak}(x) := fa1(x)
1/2 . . . fak (x)

1/2 for k ≥ 2 (4)

f(a,{a1,...,ak})(x) := fa(x)f{a1,...,ak}(x) for k ≥ 1, a �∈ {a1, . . . , ak} (5)

f({a1,...,ak},j)(x) := xjf{a1,...,ak}(x) for j ∈ {1, . . . , k − 2} (6)

In the context of QFT, certain explicit non-rational integrands of this type occurred
already in Ref. [13], for instance, and continue to arise more often in computations
in recent years, see e.g. [9, 16–18].

More generally, one can use integrands that are hyperexponential functions, i.e.
their logarithmic derivative is a rational function. Rational functions and square
roots of rational functions mentioned so far are hyperexponential too. Nested
integrals over hyperexponential functions give rise to the d’Alembertian functions
[12].

In the context of QFT, also nested integrals with other types of integrands beyond
hyperexponential functions arise as well. For instance, integrands appear that are
solutions of second-order differential equations represented in terms of complete
elliptic integrals or 2F1-functions, see e.g. [7].

It is well known that, for reasonably regular integrands, nested integrals satisfy
the shuffle relations [40]. These relations apply, for instance, if integrands have
at most simple poles. In general, however, additional terms arise in the shuffle
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relations, which are given by nested integrals of lower depth. An algebraic theory
covering that is worked out by the author and Georg Regensburger in Ref. [39].

For a given class of integrands, if one chooses a minimal set of integrands among
them such that still all nested integrals of that type can be expressed, then one can
deduce that nested integrals over that set of integrands do not satisfy any additional
algebraic relation beyond the shuffle relations. This in turn allows to compute
canonical forms of quantities that are expressed polynomially in terms of nested
integrals over the given class of integrands. For rational integrands, for example, the
set of all integrands of the form (3), for a ∈ C, has this property. Hence, over the
rational functions, all algebraic relations of generalized harmonic polylogarithms
are given by the shuffle relations, cf. also Ref. [25]. The analogous statement for
nested integrals over functions whose square is rational holds when one selects
the set of integrands given by Eqs. (3) through (6) and branch cuts are ignored.
A minimal set of hyperexponential integrands needed to express all d’Alembertian
functions as well as a corresponding canonical form was worked out by the author
[37].

For the rest of this chapter, we focus on integrands whose square is rational. In
Sect. 2, by briefly looking at how nested integrals may arise from nested sums, we
highlight computational methods introduced in Ref. [8] relying on special identities
that have been constructed to be used as rewrite rules. These rewrite rules allow to
do certain computations with nested integrals and nested sums more directly than
via e.g. constructing and solving differential equations as it is done in more general
methods. We briefly compare two computer algebra approaches to the construction
of such differential equations. Section 3 is devoted to expressing nested integrals
involving square roots in terms of hyperlogarithms by suitable change of variables.

Many of the formulae and algorithms discussed below are implemented in the
package HarmonicSums [1–3].

2 Obtaining Nested Integrals from Nested Sums

In analogy to nested integrals, nested sums are multiple sums of a summand that is
the product of summands that depend only on one summation variable and where
each summation variable occurs as one bound of the summation range of the next
inner sum. For example, they may take the general form

n∑
i1=1

f1(i1)

i1∑
i2=1

f2(i2) · · ·
ik−1∑
ik=1

fk(ik).

Passing from sequences indexed by a discrete variable n to functions depending
on a continuous variable x can work in two main ways. On the one hand, we
can view the sequence given as the sequence of Taylor coefficients of a function,
the generating function of the sequence. On the other hand, we can aim at an
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integral representation of the sequence, i.e. a definite integral over an integrand
depending on a parameter n that reproduces the entries of the sequence. Often,
such integral representations are based on integral transforms. Below, we utilize
the Mellin transform, modified to take the following form.

M(f (x)) (n) =
∫ 1

0
xnf (x) dx (7)

If the summands fj (n) are P-finite (also called P-recursive) sequences, i.e.
sequences that satisfy a linear recurrence with polynomial coefficients, then so
are the corresponding nested sums. Closely related is the concept of holonomic
sequences, which is equivalent in case of univariate sequences. In particular, for
summands satisfying first-order recurrences the nested sums are d’Alembertian
sequences [12], like the harmonic sums [47], generalized harmonic sums (S-sums)
[33], or nested (inverse) binomial sums [8], for example. This allows general
strategies and algorithms for P-finite/holonomic sequences to be applied to nested
sums as well.

In the following, however, our focus lies on approaches and algorithms that
exploit the nested structure of the sums. Similarly, also for integrals, there are
specialized methods that are able to exploit the structure of nested integrals, in
addition to the general algorithms that do not. Such dedicated approaches not only
reduce the computational burden, but also enable general theoretical statements to
be proven that would be very hard to obtain otherwise, see also [8].

2.1 Generating Functions

Generating functions are defined by infinite sums of the form

F(x) =
∞∑
n=0

fnx
n. (8)

It is well known that any linear recurrence with polynomial coefficients for the
sequence (fn) can be translated into a linear differential equation with polynomial
coefficients for the function F(x). This provides a general strategy to compute the
function F(x) by constructing and solving a differential equation, starting form a
recurrence for the sequence (fn), independent of the explicit form of that sequence.
In practice, however, constructing and solving differential equations can be avoided
altogether in many cases by exploiting the syntactic presentation of the sequence.

This can be done by utilizing general properties of generating functions that can
be interpreted as rewrite rules. The aim of such rewrite rules is to express F(x) in
terms of other generating functions of sequences that are simpler. For instance, a
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well-known identity for generating functions is

∞∑
n=1

xn
fn

n
=
∫ x

0

1

t

∞∑
n=1

tnfn dt, (9)

which holds for arbitrary sequences (fn). It reduces computing the generating
function of a sequence ( fn

n
) to computing the generating function of (fn). In general,

one is interested in identities that allow to simplify generating functions of the forms∑∞
n=0 x

ngnfn and
∑∞

n=0 x
ngn

∑n
i=0 fi for concrete g but arbitrary f . In Eq. (9), we

have g such that g0 = 0 and gn = 1
n

for n ≥ 1.
Equations (7.1) through (7.11) in Ref. [8] give rewrite rules for evaluating

generating functions involving sums. Among them, the rules

∞∑
n=1

xn
(

2n

n

) n∑
i=1

fi = 1

4
√

1
4 − x

∫ x

0

1

t

√
1
4 − t

∞∑
n=1

tnn

(
2n

n

)
fn dt (10)

∞∑
n=1

xn

n
(2n
n

)
n∑

i=1

fi =
√
x√

4− x

∫ x

0

1√
t
√

4− t

∞∑
n=0

tn(2n
n

)fn+1 dt (11)

=
∞∑
n=1

xn

n
(2n
n

)fn +
√
x√

4− x

∫ x

0

1√
t
√

4− t

∞∑
n=1

tn(2n
n

)fn dt
(12)

as well as

∞∑
n=1

xn

(2n+ 1)
(2n
n

)
n∑

i=1

fi = 2√
x
√

4− x

∫ x

0

1√
t
√

4− t

∞∑
n=1

tn(2n
n

)fn dt (13)

involve also the central binomial coefficient. We illustrate the use of such rewrite
rules by the following small example.

Example 1 Consider the generating function given by

∞∑
n=1

xn
1

n2
(2n
n

)
n∑

i=1

1

i
.

In order to apply one of the rules involving the binomial coefficient, we first need to

use Eq. (9). Applying that rule to fn = 1
n(2n

n )

n∑
i=1

1
i
, we obtain

∞∑
n=1

xn
1

n2
(2n
n

)
n∑

i=1

1

i
=
∫ x

0

1

t

∞∑
n=1

tn
1

n
(2n
n

)
n∑

i=1

1

i
dt.
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Proceeding with the new generating function inside the integrand, we apply Eq. (12)
to fn = 1

n
in order to obtain

∞∑
n=1

xn
1

n
(2n
n

)
n∑

i=1

1

i
=

∞∑
n=1

xn

n2
(2n
n

) +
√
x√

4− x

∫ x

0

∞∑
n=1

tn

n(2n
n )√

t
√

4− t
dt.

To treat the first term on the right hand side, we apply Eq. (9) with fn = 1
n(2n

n )
yielding

∞∑
n=1

xn

n2
(2n
n

) =
∫ x

0

1

t

∞∑
n=1

tn

n
(2n
n

) dt.

It remains to evaluate the last generating function by instantiating Eq. (11) with the
Kronecker delta fn = δ1,n.

∞∑
n=1

xn

n
(2n
n

)
n∑

i=1

δ1,i =
√
x√

4− x

∫ x

0

∞∑
n=0

tn

(2n
n )

δ1,n+1 dt

√
t
√

4− t
=

√
x√

4− x
H{0,4}(x)

Recall that the integrand f{0,4} is defined by Eqs. (3) and (4) so that one could also
write H{0,4}(x) = arccos(1 − x

2 ) explicitly. Altogether, we obtained the generating
function as a sum of two nested integrals performing hardly any computation and
without constructing any differential equation.

∞∑
n=1

xn
1

n2
(2n
n

)
n∑

i=1

1

i
= H0,{0,4},{0,4}(x)+ H{0,4},4,{0,4}(x)

2.2 Mellin Representations

An integral representation of a given nested sum in terms of the Mellin transform (7)
usually does not take the form of just one term M(f (x)) (n). In general, Mellin
representations of nested sums take the form

c0 +
k∑

j=1

cnj M
(
fj (x)

)
(n) , (14)

for some k ≥ 1 with c0, . . . , ck and f1(x), . . . , fk(x) being independent of
n. Often, the integral (7) defining the Mellin transform needs to be regularized
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accordingly due to singularities of fj (x). Such Mellin representations can be used to
compute asymptotic expansions of complicated expressions involving nested sums
as described by Eqs. (2.15) and (2.16) from Ref. [8], like it was done e.g. in Ref. [9].

In Ref. [4], a general method for computing Mellin representations of P-finite
sequences based on constructing and solving differential equations is presented.
Specialized on sequences that are given as nested sums, a refined version [6] of
that method was given later, which exploits the nested structure of the input but still
relies on constructing and solving differential equations.

Instead, one can use basic identities of the Mellin transform to exploit the
structure of the nested sum to be represented. Several basic identities that allow
to build Mellin representations of sequences from Mellin representations of simpler
sequences are collected in Sect. 2 of Ref. [8], for example. Among them,

n∑
i=1

ci M(f (x)) (i) = cn M

(
x

x − 1
c

f (x)

)
(n)−M

(
x

x − 1
c

f (x)

)
(0) , (15)

which reduces the Mellin representation of a sum to the Mellin representation of its
summand, as well as

M(f (x)) (n) ·M(g(x)) (n) = M

(∫ 1

x

f ( x
t
)g(t)

t
dt

)
(n) , (16)

which allows to compute the Mellin representation of a product from the Mellin
representations of the factors by evaluating Mellin convolution integrals.

2.2.1 Computer algebra approaches to parameter integrals

We see that performing a Mellin convolution amounts to computing a definite
integral depending on a parameter. An overview of this topic and related algorithms
is given in Ref. [38], for example. Here, we just give a short explanation. There
are essentially two main approaches in computer algebra for treating rather general
parameter integrals, which we briefly compare below without going into details.
The key concept is that of creative telescoping, which, for a given integrand f (t)

depending on additional parameters, aims to construct a linear operator L such that
L commutes with d

dt
and an explicit antiderivative g(t) of L(f (t)) can be found:

L(f (t)) = d

dt
g(t). (17)

Then, by the properties imposed on L, integrating from a to b yields an implicit

equation L
(∫ b

a
f (t) dt

)
= g(b)− g(a) for the parameter integral, which typically

is a differential or recurrence equation depending on how L acts on the parameters
in the integrand. If a or b depends on additional parameters acted on by L,
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then additional terms arise in the equation from the difference L
(∫ b

a
f (t) dt

)
−∫ b

a
L(f (t)) dt . To obtain an evaluation of the parameter integral, the implicit equa-

tion still has to be solved by other means. For computing telescoping relations (17),
on the one hand, many algorithms based on holonomic systems have been developed
over the past 30 years, see e.g. [20, 22–24, 46, 49]. On the other hand, integration
algorithms based on differential fields have been developed for more than 50 years,
many of which are suitable for creative telescoping, see e.g. [19, 32, 34, 36, 42, 45].

One main difference between these two approaches lies in the way functions
are represented. Therefore, there is a fundamental difference in what kind of
antiderivatives g(t) can be found by the algorithms to fulfill Eq. (17). In the
holonomic systems approach, g is restricted to the form g(t) = Q(f (t)) for
some linear (typically differential/recurrence) operator Q acting on the integrand.
Hence, essentially no additional functions can appear in g that did not already
appear in the integrand f . In contrast, with algorithms using differential fields,
antiderivatives g(t) can be found that involve certain new functions that do not
already occur in the integrand f (t). As a result, potentially simpler operators L

may allow the antidifferentiation in Eq. (17) to be carried out by the algorithm
in question, yielding a differential or recurrence equation of smaller order for the
parameter integral. Another difference lies in the type of integrands that can be
handled. In the holonomic systems approach, most general algorithms work with D-
finite functions, i.e. integrands that satisfy linear homogeneous differential equations
with polynomial coefficients. Algorithms using differential fields can deal with
Liouvillian integrands [45] and also a large class of non-Liouvillian functions, see
e.g. [19, 36]. The two classes of integrands accessible by algorithms of the two
approaches are very large, each covering a majority of common special functions.
Despite the fact that many functions (e.g. all d’Alembertian functions) are both D-
finite and Liouvillian, there are many Liouvillian functions that are not D-finite,
and vice versa. In particular, arbitrary quotients and compositions of Liouvillian
functions are Liouvillian again, whereas the same is not true for D-finite functions.
The holonomic systems approach is not specific to integration and many algorithms
using this approach can be used for summation as well. Inspired by integration
algorithms using differential fields, an algorithmic analog has been introduced for
summation by Karr [29] using difference fields, which was developed further by
Schneider, see [43] and references therein.

In fact, there is also a third approach to compute parameter integrals, which
is more specialized. It relies on collections of identities that either evaluate the
given parameter integral or relate it to other integrals. Such identities can be used
as rewrite rules for evaluating or simplifying parameter integrals of specific form.
Coming back to Mellin convolutions (16), many such identities are provided in
Sect. 4 of Ref. [8] specially for rewriting integrals

∫ 1
x
t−1g(x

t
)h(t)f (t) dt , with

certain concrete choices of g and h but arbitrary f , in terms of similar integrals
which only involve the derivative f ′ instead of f . If these rewrite rules are applied
to f being a nested integral, then in the resulting integral the function f ′ will
only involve a nested integral with lower depth. Iterating this reduction, a Mellin
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convolution involving a nested integral can be performed, provided sufficiently
many rewrite rules are available. This is analogous to rewrite rules like Eqs. (10)
through (13) mentioned above, which remove one summation step each. Due to the
page limit, we refer to Ref. [8] for examples of such rules and how they can be
combined to obtain general patterns for Mellin representations of nested sums with
certain prefactors.

There are methods to design new rewrite rules of this type for Mellin con-
volutions with other choices of g and h or even for other types of parameter
integrals, e.g. integrals arising from integral transforms. For example, Sect. 7 of
Ref. [8] also lists some rewrite rules for the integral transform

∫ 1
0

1
1−tx

f (t) dt , that
allow to convert Mellin representations of sequences into their generating function.
Specialized identities can also be derived for doing other tasks by rewriting, e.g.
evaluating Mellin transforms in terms of nested sums.

3 Rationalizing Transformations

In this section, we discuss simplification of square roots in the integrands by suitable
changes of variables. That is, if

√
f (x) appears with f (x) a rational function, we

want to apply a transformation x = g(y) such that
√
f (g(y)) can be simplified to

a rational function. To preserve the nested structure of the integrals properly, the
same change of variables has to be applied to all integrands of a nested integral. For
instance, a nested integral of the form (1) would become the nested integral

∫ g−1(x)

g−1(0)
f1(g(u1))g

′(u1)

∫ u1

g−1(0)
f2(g(u2))g

′(u2) . . .

. . .

∫ uk−1

g−1(0)
fk(g(uk))g

′(uk) duk . . . du1. (18)

Since this transformation should not introduce any new functions in those integrands
that are already rational (nor via g′(y)), g(y) is required to be a rational function.

Example 2 Formula (5.30) in [8] gives an integral representation of the nested sum

n∑
i=1

(2i
i

)
i2

i∑
j=1

(−1)j

j2
.

Among others, it involves the nested integral

∫ 1

x

1

t1

∫ 1

t1

1√
t2
√

1+ t2

∫ 1

t2

1√
t3
√

1+ t3

∫ 1

t3

1√
t4
√

1− t4
dt4 dt3 dt2 dt1
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of the form (2). In order to obtain integrands that are rational functions, based on
Eqs. (71) and (72) below for a1 = −1 and a2 = 1, we can use the change of
variables

x = 2y2

y4 + 1
respectively y =

√
1+ x −√

1− x√
2
√
x

,

which maps the interval [0, 1] bijectively to itself to preserve the form (2). Then, by

Eqs. (75) and (76), we have
√
x
√

1± x =
√

2y(1±y2)

y4+1
and the differentials occurring

in the above nested integral are transformed as follows.

dx

x
=
(

2

y
− 4y3

y4 + 1

)
dy

dx√
x
√

1± x
= 2

√
2(1∓ y2)

y4 + 1
dy

To obtain properly nested integrals again, the change of variable has to be applied
uniformly to all levels within the nested integral, which in the present case yields

32
√

2
∫ 1

y

(
1

u1
− 2u3

1

u4
1 + 1

)∫ 1

u1

1− u2
2

u4
2 + 1

∫ 1

u2

1− u2
3

u4
3 + 1

∫ 1

u3

1+ u2
4

u4
4 + 1

du4 du3 du2 du1

having rational integrands. Altogether, the nested integral above can hence be writ-

ten in terms of cyclotomic harmonic polylogarithms [10] evaluated at
√

1+x−√1−x√
2
√
x

.

Below, we let C be any field of characteristic zero, i.e. a field extension of
the rational numbers possibly containing indeterminates. Its algebraic closure is
denoted by C. Elements of C will be considered as constants. In full generality,
the problem of finding a rationalizing transformation for square roots of univariate
rational functions can be stated as follows.

Problem 1 Given a set of nonzero rational functions F ⊂ C(x), find, if possible,
a non-constant rational function g ∈ C(y) such that, upon substituting g(y) for
x, every element of F can be written in the form c·f (y)2 for some c ∈ C and
f ∈ C(y).

Remark 1 Not for every set of radicands F ⊂ C(x) a rationalizing transformation
g ∈ C(y) exists, however. If F is such that there are f1, . . . , fn ∈ F and
r ∈ C(x) such that p := f1· . . . ·fn·r2 is a squarefree polynomial (i.e. not
divisible by the square of any non-constant polynomial) of degree ≥ 3, then a
rationalizing transformation cannot exist for F . This is because, for any rationalizing
transformation g ∈ C(y), there would exist nonzero c ∈ C and f ∈ C(y)

such that p(g(y)) = c·f (y)2. However, the irreducible algebraic curve defined
by p(X) = c·Y 2 has a rational parameterization X = g(y) and Y = f (y) with
f, g ∈ C(y) if and only if the curve has genus 0 (see e.g. [44]), which happens only
for degx(p) ≤ 2 since p is squarefree.
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In the past, many ad-hoc transformations have been used in practice for explicitly
converting integrands with square roots into rational integrands, see e.g. [5], or
for evaluating certain quantities in terms of polylogarithms at arguments involving
square roots, see e.g. [21, 26]. In the rest of this section, we will give an exhaustive
overview of explicit formulae for rationalizing transformations solving Problem 1.
In general, also a multivariate analog of Problem 1 can be considered, for which a
general method to construct rationalizing transformations was given recently [14]
that works in many cases and has been implemented [15].

Remark 2 In all that follows, we exclude the case when all elements of F are
squares in C(x), which trivially admits the rationalizing transformation g(y) = y.
Without loss of generality, we can assume that the elements of F are monic
squarefree polynomials in C[x], since multiplying an element of F by a nonzero
square in C(x) or by a nonzero constant from C does not change the possible
transformations g. Furthermore, we can assume without loss of generality that no
polynomial in F divides another, since distinct f1, f2 ∈ F with f1|f2 allow to
replace f2 by the quotient f2/f1 (or to remove f1 from F , if f1 is constant) without
changing g.

For simplicity, one is interested in rationalizing transformations g of low degree
max(deg(num(g)), deg(den(g))). As soon as one rationalizing transformation g

is known for a given set F , infinitely many rationalizing transformations can be
obtained by composition g(h(y)) with any non-constant h ∈ C(y). If h ∈ C(y) has
degree 1, i.e. it is of the form ay+b

cy+d
, then composition g(h(y)) does not change the

degree of g, otherwise the degree is increased.
Next, we give explicit formulae for rationalizing transformations for radicands

which have coefficients in arbitrary field extensions of Q. The transformations
are chosen such that they map y = 0 to x = g(0) = 0. After that, we will
give dedicated formulae for the fields C = R and C = C, where we impose
in addition that the transformations map the interval [0, 1] bijectively to itself.
All rationalizing transformations given below have been constructed by the author
on various occasions distributed over the past few years, using the computer
algebra systems MATHEMATICA, SINGULAR, and MAPLE, with verification of their
properties in MATHEMATICA.

3.1 General Transformations Mapping 0 to 0

Let C be a field of characteristic zero. Any F ⊂ C(x), for which a rationalizing
transformation exists, see Remark 1, can be reduced, as described in Remark 2, to
one of the following four essentially different cases (or to the trivial case F = {}).

Note that all rationalizing transformations g ∈ C(y) given below are of lowest
possible degree max(deg(num(g)), deg(den(g))). Therefore, in each of the cases,
any other rationalizing transformation can be obtained via composition g(h(y))

with h ∈ C(y). Moreover, the coefficients in the given transformations are rational
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expressions in the coefficients of the radicand polynomials from F . More precisely,
if the field C is the smallest field extension of Q that contains the coefficients of
these polynomials, then the coefficients of g lie in the same field C and do not
involve any new algebraic or transcendental numbers.

Expressions for an inverse of g are not unique and may require new
algebraic numbers in general. All inverses below are expressed as elements of
C(x)[r1, . . . , rk], where r1, . . . , rk are square roots of the polynomials in F . In
addition to directly satisfying g(g−1(x)) = x, the formulae for g−1(x) below
are selected to yield the unique Puiseux series in C((x1/2)) that also satisfies
g−1(g(y)) = y.

We start with the simplest case of one linear polynomial

F = {x − a}, (19)

where a ∈ C. Then, for instance, we can use one of the following two rationalizing
transformations of degree 2, depending on whether a is zero or not.

g(y) = y2 (20)

g(y) = −4ay(y + 1) (21)

An inverse transformation is straightforwardly obtained as

g−1(x) = √
x respectively g−1(x) =

√
x − a −√−a

2
√−a

. (22)

Next, we consider one quadratic radicand polynomial

F = {x2 + c1x + c0}, (23)

where c0, c1 ∈ C are such that c2
1 �= 4c0, i.e. the polynomial is not a square.

Depending on whether c0 is zero or not, we can use one of the following two
rationalizing transformations of degree 2, for example.

g(y) = c1y
2

4(y + 1)
(24)

g(y) = 4c0y

(c2
1 − 4c0)y2 − 2c1y + 1

(25)

Also in this case, the respective algebraic inverses are straightforwardly obtained.

g−1(x) = 2

c1

(
x +

√
x2 + c1x

)
(26)

g−1(x) = c1x + 2c0 − 2
√
c0

√
x2 + c1x + c0

(c2
1 − 4c0)x

(27)
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By Remark 1, F cannot contain a squarefree polynomial of degree ≥ 3. So, we
continue with the case of two linear polynomials

F = {x − a1, x − a2}, (28)

where a1, a2 ∈ C are distinct. Again, we distinguish the two cases whether 0 is
a root of one of these polynomials or not. Assuming a1 �= 0, without loss of
generality, we can use one of the following two rationalizing transformations of
degree 4, depending on whether a2 is zero or not.

g(y) = 4a1y
2

(y2 + 1)2
(29)

g(y) = 4a1a2y(y − a1)(y − a2)

(y2 − a1a2)2 (30)

Writing the inverse transformations in terms of square roots of polynomials in F ,
we obtain the following expressions for the inverse of (29) and (30), respectively.

g−1(x) =
√
a1
√
x√−a1x

(√−a1 −√
x − a1

)
(31)

g−1(x) =
(
a1 +√−a1

√
x − a1

) (
a2 +√−a2

√
x − a2

)
x

(32)

Finally, we conclude with the case of two quadratic polynomials, which by
Remark 1 need to have a common root. This is equivalent to the more symmetric
case of three quadratic polynomials that pairwise have exactly one common root,
i.e.

F = {(x − a1)(x − a2), (x − a1)(x − a3), (x − a2)(x − a3)}, (33)

where a1, a2, a3 ∈ C are pairwise distinct. Assuming 0 �∈ {a1, a2}, without loss
of generality, we can use one of the following two rationalizing transformations of
degree 4, for instance, depending on whether a3 is zero or not.

g(y) = 4a1a2y
2

(a1 − a2)2y4 + 2(a1 + a2)y2 + 1
(34)

g(y) = − 4a1a2a3y(y − a1)(y − a2)(y − a3)

(s2
1 − 4s2)y4 + 8s3y3 − 2s1s3y2 + s2

3

(35)

For shorter notation in Eq. (35), we used the elementary symmetric polynomials

s1 = a1 + a2 + a3, s2 = a1a2 + a1a3 + a2a3, and s3 = a1a2a3. (36)
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Using square roots of only two of the three polynomials in F , we can write the
respective inverses of (34) and (35) as follows. For shorter notation, we abbreviate
the square roots r1 := √

(x − a1)(x − a2) and r2 := √
(x − a1)(x − a3) in Eq. (38).

g−1(x) =
√
a1a2

(a1 − a2)x

(√
x(x − a1)√−a1

−
√
x(x − a2)√−a2

)
(37)

g−1(x) = s3

(s2
1 − 4s2)x + 4s3

(
s1 − 2x − s1 − 2a3√

a1a2
r1

− s1 − 2a2√
a1a3

r2 + a1·(s1 − 2a1)√
a1a2

√
a1a3(x − a1)

r1r2

)
(38)

3.2 Real-Valued Square Roots on the Interval [0, 1]

Here, we consider C = R and assume that all radicands f ∈ F are such that
f (x) ≥ 0 for all x ∈ [0, 1], so that all the square roots are real-valued on [0, 1]. In
addition, we require rationalizing transformations which not only map 0 to 0 like the
ones above but which also map the interval [0, 1] bijectively to itself and hence are
monotonically increasing on that interval. Such bijections of [0, 1] allow to preserve
this common integration range of integrals and avoid non-real integration bounds.
Indeed, as the exhaustive collection below shows, this is possible for all cases
discussed above, where rationalizing transformations exist at all, and the degrees
of the transformations remain the same. This is achieved by carefully constructed
Möbius transformations of y in the general formulae given in Sect. 3.1.

For each rationalizing transformation g(y), we give an explicit formula for the
inverse g−1(x) so that, for all x ∈ [0, 1], the unique y ∈ [0, 1] with x = g(y) is
given by y = g−1(x). As above, it will be a common property of all rationalizing
transformations given below that their inverse is given in terms of the square roots
of the original radicand polynomials. In order to avoid additional case distinctions,
we use radicand polynomials like a−1(a − x) instead of x − a and a − x, for
instance. It is straightforward to adapt the formulae to other normalizations of
radicands if necessary. Outside the interval [0, 1], unless stated otherwise, the
explicit expressions given below for g(y) and g−1(x) still satisfy g(g−1(x)) = x,
but g−1(g(y)) = y need not hold due to the multivalued nature of the inverse of g.

Once a rationalizing transformation g(y) is known for a given set F that maps
[0, 1] to itself, infinitely many such rationalizing transformations of the same degree
can be obtained by composition g(h(y)) with

h(y) = y

(1− λ)y + λ
, (39)

where λ > 0 is arbitrary. In fact, all Möbius transformations that map [0, 1] to
itself in a bijective and monotonically increasing way are given by Eq. (39) for some
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λ > 0. The special value λ = 1 yields the identity map and replacing λ by 1/λ gives
the inverse transformation of (39).

In contrast to Sect. 3.1 above, however, it is no longer possible in all cases to
give transformations of the same degree which have coefficients that are rational
expressions in the coefficients of the radicand polynomials from F . More precisely,
the coefficients of the transformations given below involve taking square roots, but
still they are real numbers. Hence, if we take C as the smallest field extension
of Q that contains the coefficients of the polynomials in F , then the coefficients
of the transformations may lie in an algebraic extension of C. The rationalizing
transformations below are chosen so that the degree of this field extension over C is
minimal.

3.2.1 One Square Root

Starting with the simplest case of just a linear radicand, the radicand polynomial (up
to a positive constant factor) has to have the form

x or a−1(a − x), (40)

for some a < 0 or a ≥ 1, in order to be non-negative for all x ∈ [0, 1]. In the former
case, the rationalizing transformation (20) already has the property of mapping the
interval [0, 1] bijectively to itself, so we trivially have

g(y) = y2 and g−1(x) = √
x (41)

on [0, 1]. In the latter case, however, we need to modify the transformation (21).
Introducing α := √

1− a−1 ≥ 0 for any a < 0 or a ≥ 1, we have that both

g(y) = y·((1− 2a + 2aα)y + 2a·(1− α)
)

and (42)

g−1(x) = a·(1+ α)
(

1−
√
a−1(a − x)

)
(43)

map the interval [0, 1] bijectively to itself in a monotonically increasing way. The
Möbius transformation used to obtain (42) from (21) is h(y) = − y

2a(1+α)
. From

Eq. (41) resp. (43), we easily obtain also the explicit expressions of the square root

√
x = y respectively

√
a−1(a − x) = (α − 1)y + 1 (44)

as rational functions in y whenever y = g−1(x). For later reference, we note that
the inverses g−1(x) given by Eqs. (41) and (43) can be rewritten in the form

g−1(x) = x√
x

respectively g−1(x) = (1+ α)x

1+√a−1(a − x)
. (45)
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Next, we consider radicands that are quadratic polynomials as in Eq. (23). First,
we assume that x = 0 is a root of the radicand, which then, being squarefree
and nonnegative on the interval [0, 1], necessarily (up to a positive constant factor)
equals

a−1x(a − x), (46)

for some a < 0 or a ≥ 1. For a < 0 or a > 1, the transformations

g(y) = ay2

y2 + a − 1
and (47)

g−1(x) = aα

√
a−1x(a − x)

a − x
(48)

map the interval [0, 1] bijectively to itself in a monotonically increasing way, where
the inverse transformation (48) involves α := √

1− a−1 > 0. In fact, Eq. (47) can
be obtained from Eq. (24) with c1 = −a by substituting h(y) = − 2y

y±√1−a
for

y, which has complex coefficients if a > 1 even though the transformations (24)
and (47) have real coefficients. Note that Eqs. (47) and (48) are not valid if a = 1.
For the special value a = 1, the following rationalizing transformation maps the
interval [0, 1] bijectively to itself in a monotonically increasing way, for example.

g(y) = y2

2y2 − 2y + 1
(49)

g−1(x) = x −√
x(1− x)

2x − 1
(50)

Observe that the singularity at x = 1
2 in Eq. (50) is removable. The transfor-

mation (49) can be obtained from Eq. (24) with c1 = −1 by replacing y with
h(y) = − 2y

(1−i)y+i
or its complex conjugate. By Eq. (48) respectively (50), the

square root is easily expressed as rational function in y = g−1(x) by

√
a−1x(a − x) = aαy

y2 + a − 1
respectively

√
x(1− x) = y(1− y)

2y2 − 2y + 1
.

(51)

Furthermore, the inverses given by Eqs. (48) and (50) can also be written as

g−1(x) = αx√
a−1x(a − x)

respectively g−1(x) = x

x +√
x(1− x)

. (52)
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If x = 0 is not a root of the quadratic radicand, then (up to a positive constant
factor) the quadratic polynomial has the form

c−1
0 (x2 + c1x + c0), (53)

where c0, c1 ∈ R, c0 �= 0, are such that the polynomial is not a square and is
nonnegative for all x ∈ [0, 1]. These conditions are equivalent to requiring c0, c1 ∈
R to be such that the conditions c0 �= 0, c2

1 �= 4c0, and c0(c0 + c1 + 1) ≥ 0 hold
and at least one of the inequalities −1 < 2c0 + c1 < 0 and c2

1 > 4c0 does not hold.

In this case, we set α :=
√

1+ c−1
0 ·(c1 + 1) ≥ 0 and the following rationalizing

transformation maps the interval [0, 1] bijectively to itself in a monotonically
increasing way.

g(y) = y(c1y + 2c0·(1+ α))

1+ 2c0 + c1 + 2c0α − y2
(54)

g−1(x) = c0·(1+ α)

√
c−1

0 (x2 + c1x + c0)− 1

x + c1
(55)

In Eq. (55), the singularity at x = −c1 is removable. Note that these formulae work
regardless whether the quadratic polynomial (53) has two real roots (i.e. c2

1 > 4c0)
or two conjugate complex roots (i.e. c2

1 < 4c0). We can obtain Eq. (54) also from
Eq. (25) via the Möbius transformation h(y) = y

c1y+2c0(1+α)
. By virtue of Eq. (55),

we have the following expression of the square root as rational function in terms of
y = g−1(x).

√
c−1

0 (x2 + c1x + c0) = 1+ 2c0 + c1 + 2c0α + c1(1+ α)y + y2

1+ 2c0 + c1 + 2c0α − y2 (56)

In fact, the inverse (55) can also be written in different form.

g−1(x) = (1+ α)x

1+
√
c−1

0 (x2 + c1x + c0)

(57)

3.2.2 Two Square Roots

For two real-valued square roots of linear polynomials on the interval [0, 1], up to a
positive constant factor, the two radicand polynomials are given by the set

F = {x, a−1(a − x)} (58)

for some a < 0 or a ≥ 1, if one of the square roots vanishes at x = 0. The
generic case when neither of the two square roots vanishes at x = 0 gives rise to
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radicands (63) below. First, for the radicands (58), we introduce α := √
1− a−1 ≥

0 to express the rationalizing transformation

g(y) = 4y2

((1− α)y2 + 1+ α)2 (59)

g−1(x) = a·(1+ α)
1−√a−1(a − x)√

x
(60)

mapping the interval [0, 1] bijectively to itself in a monotonically increasing
way. The limit of formula (60) at x = 0 is finite and zero. Although, with
a1 = a, both transformations (29) and (59) have real coefficients, the Möbius
transformation h(y) = y√

2a−1+2aα
, which changes the former into the latter, has

complex coefficients if a < 0. Based on Eqs. (59) and (60), the rational function
representations

√
x = 2y

(1− α)y2 + 1+ α
and

√
a−1(a − x) = 1− 2a(1+ α)+ y2

1− 2a(1+ α)− y2
(61)

of the square roots in terms of y = g−1(x) hold. Also in this case, the inverse (60)
can be rewritten to obtain the following expression.

g−1(x) = (1+ α)
√
x

1+√a−1(a − x)
(62)

If none of the two square roots vanishes at x = 0, the radicand polynomials (up
to a positive constant factor) are given by

F = {a−1
1 (a1 − x), a−1

2 (a2 − x)}, (63)

with distinct a1, a2 ∈ R such that ai < 0 or ai ≥ 1 for each i. With

α :=
(

1+
√

1− a−1
1

)(
1+

√
1− a−1

2

)
> 1, (64)

a rationalizing transformation that maps the interval [0, 1] bijectively to itself in a
monotonically increasing way can be obtained from Eq. (30) by replacing y with y

α
.

g(y) = 4a1a2αy(y − a1α)(y − a2α)

(y2 − a1a2α2)2
(65)

For x ∈ [0, 1], the inverse can be given as

g−1(x) = a1a2α

(
1−

√
a−1

1 (a1 − x)

)(
1−

√
a−1

2 (a2 − x)

)

x
, (66)
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where the singularity at x = 0 is removable. With y = g−1(x) as in Eq. (66), the
two square roots become rational functions in y as follows.

√
a−1

1 (a1 − x) = y2 − 2a2αy + a1a2α
2

−y2 + a1a2α2 (67)

√
a−1

2 (a2 − x) = y2 − 2a1αy + a1a2α
2

−y2 + a1a2α2
(68)

Equivalently, the inverse (66) can be written as

g−1(x) = αx(
1+

√
a−1

1 (a1 − x)

)(
1+

√
a−1

2 (a2 − x)

) . (69)

3.2.3 Three Square Roots

Dealing with real-valued square roots of three quadratic polynomials, which
pairwise have exactly one common root, we first consider the case when x = 0 is
among their roots. Up to a positive constant factor, the three radicand polynomials
being nonnegative on the whole interval [0, 1] necessarily are of the form

F = {a−1
1 x(a1 − x), a−1

2 x(a2 − x), a−1
1 a−1

2 (a1 − x)(a2 − x)} (70)

with distinct a1, a2 ∈ R such that ai < 0 or ai ≥ 1 for each i. Then, a
rationalizing transformation and its inverse, both mapping [0, 1] bijectively to itself
in a monotonically increasing way, can be given as follows.

g(y) = 4s2y
2

(−s1 + 2s2(1− α))y4 + 2s1y2 − s1 + 2s2(1+ α)
(71)

g−1(x) = a1a2

(√
1− a−1

1 +
√

1− a−1
2

)√
a−1

1 x(a1 − x)−
√
a−1

2 x(a2 − x)

(a1 − a2)x

(72)

For shorter notation in Eq. (71) and also below, we use

α :=
√
(1− a−1

1 )(1− a−1
2 ) ≥ 0 (73)

as well as the elementary symmetric polynomials

s1 = a1 + a2 and s2 = a1a2 (74)

as abbreviations. Note that the limit of the formula (72) at x = 0 is finite and
zero. The transformation (71) can also be obtained from Eq. (34) via the Möbius
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transformation h(y) = y√−a1−a2+2a1a2(1+α)
, which has complex coefficients if

a1a2 < 0 even though Eqs. (34) and (71) have real coefficients. With y = g−1(x)

given by Eq. (72), for x ∈ [0, 1], the three square roots of the polynomials in F can
be written as the rational functions

√
a−1

1 x(a1 − x) = 2s2y
(
(β1 − β2)y

2 + β1 + β2
)

(−s1 + 2s2(1− α))y4 + 2s1y2 − s1 + 2s2(1+ α)
(75)

√
a−1

2 x(a2 − x) = 2s2y
(
(β2 − β1)y

2 + β1 + β2
)

(−s1 + 2s2(1− α))y4 + 2s1y2 − s1 + 2s2(1+ α)
(76)

√
(a1 − x)(a2 − x)

a1a2
= (s1 − 2s2(1− α))y4 − s1 + 2s2(1+ α)

(−s1 + 2s2(1− α))y4 + 2s1y2 − s1 + 2s2(1+ α)
(77)

in y using also βi :=
√

1− a−1
i ≥ 0 with i = 1, 2 for shorter notation. Moreover,

the inverse (72) can be written more symmetrically as

g−1(x) =
(√

1− a−1
1 +

√
1− a−1

2

)
x√

a−1
1 x(a1 − x)+

√
a−1

2 x(a2 − x)

. (78)

While Eqs. (75) and (76) also hold for x outside the interval [0, 1], Eq. (77) does
not hold in the same generality. This restriction can be lifted by replacing the square

roots of the polynomials from F by pairwise products of
√
x,
√
a−1

1 (a1 − x), and√
a−1

2 (a2 − x) in Eqs. (72) through (78). This modification was used in Example 2.
If x = 0 is not among the roots of the three quadratic polynomials, then (up to a

positive constant factor) they are given by

F =
{
(a1 − x)(a2 − x)

a1a2
,
(a1 − x)(a3 − x)

a1a3
,
(a2 − x)(a3 − x)

a2a3

}
, (79)

with pairwise distinct a1, a2, a3 ∈ R satisfying ai < 0 or ai ≥ 1 for each i, since the
radicand polynomials are nonnegative for all x ∈ [0, 1]. To express the following
more compactly, we use the elementary symmetric polynomials (36) and we let

α :=
√
(1− a−1

1 )(1− a−1
2 )+

√
(1− a−1

1 )(1− a−1
3 )+

√
(1− a−1

2 )(1− a−1
3 ) > 0.

(80)

Then, replacing y with y
1+α

in Eq. (35), we obtain the rationalizing transformation

g(y) = − 4s3y(y − a1(1+ α))(y − a2(1+ α))(y − a3(1+ α))

(s2
1 − 4s2)y4 + 8s3(1+ α)y3 − 2s1s3(1+ α)2y2 + s2

3(1+ α)4
,

(81)
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which maps the interval [0, 1] bijectively to itself in a monotonically increasing way.
Its inverse on the interval [0, 1] is given by

g−1(x) =− s3(1+ α)

(s2
1 − 4s2)x + 4s3

(
2x − s1 + (s1 − 2a3)

√
(a1 − x)(a2 − x)

a1a2

+(s1 − 2a2)

√
(a1 − x)(a3 − x)

a1a3
+ (s1 − 2a1)

√
(a2 − x)(a3 − x)

a2a3

)

(82)

and, if s2
1 �= 4s2, has a singularity at x = − 4s3

s2
1−4s2

�= 0, which is removable

whenever it lies in the interior of the interval [0, 1], or at least has a finite limit if
x = 1. On the interval [0, 1], the three square roots can be expressed as the rational
functions

√
(ai − x)(aj − x)

aiaj
= pi(y)pj (y)

q(y)
(83)

in y, for i, j ∈ {1, 2, 3}, with y = g−1(x) given by Eq. (82), where for shorter
notation the following abbreviations were used.

pi(y) := (s1 − 2ai)y
2 − 2

s3

ai
(1+ α)y + s3(1+ α)2 (84)

q(y) := (s2
1 − 4s2)y

4 + 8s3(1+ α)y3 − 2s1s3(1+ α)2y2 + s2
3(1+ α)4 (85)

Alternatively, Eq. (82) can be written more compactly as

g−1(x) = (1+ α)x

1+
√

(a1−x)(a2−x)
a1a2

+
√

(a1−x)(a3−x)
a1a3

+
√

(a2−x)(a3−x)
a2a3

. (86)

With the expressions (82) and (86) for g−1(x) on the interval [0, 1], we do not have
g(g−1(x)) = x for x outside the interval [0, 1] in general (unless one of the ai is the
sum of the other two). To satisfy g(g−1(x)) = x as well as Eq. (83) in full generality,
one can replace the square roots of the polynomials from F by the pairwise products

of the square roots
√
a−1
i (ai − x), i = 1, 2, 3, in the formulae (82), (83), and (86).

Remark 3 Note the similarity of the formulae (45), (52), (57), (62), (69), (78),
and (86). Despite the large variety of rationalizing transformations g(y) given on
[0, 1], in each case, the inverse can be expressed in the form g−1(x) = w(1)x

w(x)
, where

w(x) is some simple expression in terms of the respective square roots.
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3.3 Complex-Valued Square Roots on the Interval [0, 1]

In the following, we no longer require the square roots to take real values on
the interval [0, 1] like before in Sect. 3.2. Moreover, we consider C = C, i.e.
we also treat radicands with complex coefficients. Still, we aim at rationalizing
transformations that, when considered on the interval [0, 1], give monotonically
increasing bijections of [0, 1] to itself. This imposes some restrictions on the
rationalizing transformation g and hence also on the radicands in F , which we
explain now.

If, for a given set F of radicands, there is a rationalizing transformation g ∈ C(y)

that maps the interval [0, 1] to itself, then g necessarily can also be written with real
coefficients, since it is real-valued on [0, 1] and any rational function g ∈ C(y) can
be written as g = g1+ ig2 for some g1, g2 ∈ R(y). Consequently, if some f ∈ C(x)

becomes a square f (g(y)) by the change of variable x = g(y), then also its complex
conjugate f becomes a square in C(y) by the same transformation g. Altogether, we
have that a set F ⊂ C(x) does not admit a rationalizing transformation that maps
[0, 1] to itself, if the set F ∪ F does not. This restricts most of the general cases
listed in Sect. 3.1 to special choices of the coefficients of radicands.

For instances that can be reduced (cf. Remark 2) to radicands of real-valued
square roots on [0, 1], we refer to the transformations in Sect. 3.2. As it turns out,
the remaining cases can also be treated by some of the formulae given in that section.
The simplest case not reducible to real-valued square roots is given by one square
root whose only singularity lies outside the real line. The set F ∪F of radicands can
be reduced to the form (63) with a2 = a1 �= a1. Similarly, for a square root with two
singularities, where exactly one of them is on the real line, F ∪F can be reduced to
the form (70) or (79) with one ai being the complex conjugate of one of the others.
All other cases of complex-valued roots that admit a rationalizing transformation
mapping [0, 1] to itself can also be reduced to one of these cases detailed below.

3.3.1 Two Square Roots

We consider F as in Eq. (63), where a1, a2 ∈ C \ R are such that a2 = a1. With α

as in Eq. (64), we have that the rationalizing transformation given by Eq. (65) again
maps the interval [0, 1] bijectively to itself in a monotonically increasing way. Also
the formulae (66) through (68) still hold.

Alternatively, we can express all of these formulae also with real coefficients
using Re(a1), Im(a1), |a1|2, and | a1−1

a1
|. More explicitly, α > 1 can be written as

α = 1+
∣∣∣∣a1 − 1

a1

∣∣∣∣+
√

2

(
1− Re(a1)

|a1|2 +
∣∣∣∣a1 − 1

a1

∣∣∣∣
)

(87)
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and the rationalizing transformation (65) and its inverse (66) read as follows.

g(y) = 4|a1|2αy(y2 − 2 Re(a1)αy + |a1|2α2)

(y2 − |a1|2α2)2 (88)

g−1(x) = 4|a1|2α

(
1−

√
a−1

1 (a1 − x)

)(
1−

√
a−1

1 (a1 − x)

)

x
(89)

Moreover, the two square roots can be written explicitly as r1(y)±ir2(y) in terms of
y = g−1(x) with r1, r2 ∈ R(y). Then, r1(y) and r2(y) give the real and imaginary
parts as long as y is real, which happens whenever x is real.

√
a−1

1 (a1 − x) = y2 − 2 Re(a1)αy + |a1|2α2

−y2 + |a1|2α2
+ i

2 Im(a1)αy

−y2 + |a1|2α2
(90)

√
a−1

1 (a1 − x) = y2 − 2 Re(a1)αy + |a1|2α2

−y2 + |a1|2α2 − i
2 Im(a1)αy

−y2 + |a1|2α2 (91)

3.3.2 Three Square Roots

First, we treat the set of radicands F as in Eq. (70) with a1, a2 ∈ C \ R such that
a2 = a1. With α as in Eq. (73), the rationalizing transformation given by Eqs. (71)
and (74) again maps the interval [0, 1] bijectively to itself in a monotonically
increasing way. Its inverse is given by Eq. (72) and also Eqs. (75) through (77)
remain valid to the extent mentioned there. While the formula (72) for y = g−1(x)

gives a real value whenever x is real, it does not make Eq. (77) true for general x. In
the following, we consider the inverse

g−1(x) = a1a2

(√
1− a−1

1 +
√

1− a−1
2

)√
a−1

1 (a1 − x)−
√
a−1

2 (a2 − x)

(a1 − a2)
√
x

(92)

instead, which gives the same values if x > 0, but does not give a real value if x < 0.
In return, the right hand sides of Eqs. (75) through (77) give correct expressions for

the pairwise products of
√
x,
√
a−1

1 (a1 − x), and
√
a−1

2 (a2 − x) for general x.

We can write these formulae with real coefficients using Re(a1), Im(a1), |a1|2,
and | a1−1

a1
|. With

α =
∣∣∣∣a1 − 1

a1

∣∣∣∣ > 0, (93)
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we introduce the abbreviations

β :=
√

1

2

(
1− Re(a1)

|a1|2 + α

)
(94)

q(y) := (|a1|2 − Re(a1)− |a1|2α)y4 + 2 Re(a1)y
2 + |a1|2 − Re(a1)+ |a1|2α

(95)

for shorter notation. Then, we have that

g(y) = 2|a1|2y2

q(y)
(96)

g−1(x) = −i
|a1|2β
Im(a1)

·
√
a−1

1 (a1 − x)−
√
a−1

1 (a1 − x)
√
x

(97)

and with y = g−1(x) we have the following rational expressions in y for the
pairwise products of square roots, which reveal the real and imaginary part as long
as y is real.

√
x

√
a1 − x

a1
= (|a1|2 − Re(a1)+ |a1|2α)y

βq(y)
+ i

Im(a1)y
3

βq(y)
(98)

√
x

√
a1 − x

a1
= (|a1|2 − Re(a1)+ |a1|2α)y

βq(y)
− i

Im(a1)y
3

βq(y)
(99)

√
a1 − x

a1

√
a1 − x

a1
= −(|a1|2 − Re(a1)− |a1|2α)y4 + |a1|2 − Re(a1)+ |a1|2α

q(y)

(100)

Finally, we turn to radicands F as in Eq. (79) with a1 ∈ R such that a1 < 0 or
a1 ≥ 1 and a2, a3 ∈ C \R such that a3 = a2. With α as in Eq. (80), the rationalizing
transformation given by Eqs. (81) and (36) is a monotonically increasing bijection of
the interval [0, 1] to itself and its inverse on [0, 1] can be given by Eq. (82) resp. (86).
Furthermore, also the expressions (83) for the three square roots remain valid for
y = g−1(x) with x ∈ [0, 1]. To obtain formulae that hold for general x, we instead
use the inverse

g−1(x) =− s3(1+ α)

(s2
1 − 4s2)x + 4s3

(
2x − s1 + (s1 − 2a3)

√
a1 − x

a1

√
a2 − x

a2

+(s1 − 2a2)

√
a1 − x

a1

√
a3 − x

a3
+ (s1 − 2a1)

√
a2 − x

a2

√
a3 − x

a3

)

(101)
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below. In terms of the real quantities a1, Re(a2), Im(a2), |a2|2, and | a2−1
a2

|, we can
write

α =
∣∣∣∣a2 − 1

a2

∣∣∣∣+
√

a1 − 1

a1

√
2

(
1− Re(a2)

|a2|2 +
∣∣∣∣a2 − 1

a2

∣∣∣∣
)

(102)

and

q(y) = (a2
1 − 4a1 Re(a2)− 4 Im(a2)

2)y4 + 8a1|a2|2(1+ α)y3

− 2a1|a2|2(a1 + 2 Re(a2))(1+ α)2y2 + a2
1 |a2|4(1+ α)4

(103)

for Eqs. (80) and (84). Then, we have

g(y) = −4a1|a2|2 y(y − a1(1+ α))(y2 − 2 Re(a2)(1+ α)y + |a2|2(1+ α)2)

q(y)

(104)

and

g−1(x) = − a1|a2|2(1+ α)

(a2
1 − 4a1 Re(a2)− 4 Im(a2)2)x + 4a1|a2|2

(
2x − a1 − 2 Re(a2)

+ a1

√
a1 − x

a1

(√
a2 − x

a2
+
√

a2 − x

a2

)
+ (2 Re(a2)− a1)

√
a2 − x

a2

√
a2 − x

a2

+2i Im(a2)

√
a1 − x

a1

(√
a2 − x

a2
−
√

a2 − x

a2

))
. (105)

In terms of y = g−1(x), the pairwise products of square roots can be expressed as

√
a1 − x

a1

√
a2 − x

a2
= a1(y

2 − 2 Re(a2)(1+ α)y + |a2|2(1+ α)2)p(y)

q(y)

− i
2 Im(a2)y(y − a1(1+ α))p(y)

q(y)
(106)

and

√
a1 − x

a1

√
a2 − x

a2
= a1(y

2 − 2 Re(a2)(1+ α)y + |a2|2(1+ α)2)p(y)

q(y)

+ i
2 Im(a2)y(y − a1(1+ α))p(y)

q(y)
(107)
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as well as

√
a2 − x

a2

√
a2 − x

a2
= r(y)

q(y)
, (108)

where for shorter notation, in addition to Eq. (103), we also use the abbreviations

p(y) := (2 Re(a2)− a1)y
2 − 2|a2|2(1+ α)y + a1|a2|2(1+ α)2 (109)

and

r(y) := (a2
1 + 4 Im(a2)

2)y4 − 4a1(a1 Re(a2)+ 2 Im(a2)
2)(1+ α)y3

+ 6a2
1 |a2|2(1+ α)2y2 − 4a2

1 Re(a2)|a2|2(1+ α)3y + a2
1 |a2|4(1+ α)4. (110)

Also, Eqs. (106) through (108) exhibit the real and imaginary parts whenever the
quantity y = g−1(x) is real.
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Term Algebras, Canonical
Representations and Difference Ring
Theory for Symbolic Summation

Carsten Schneider

Abstract A general overview of the existing difference ring theory for symbolic
summation is given. Special emphasis is put on the user interface: the translation and
back translation of the corresponding representations within the term algebra and
the formal difference ring setting. In particular, canonical (unique) representations
and their refinements in the introduced term algebra are explored by utilizing the
available difference ring theory. Based on that, precise input-output specifications
of the available tools of the summation package Sigma are provided.

1 Introduction

In the last 40 years exciting results have been accomplished in symbolic summation
as elaborated, e.g., in [18, 19, 22, 24, 25, 29, 31, 49, 52, 53, 55, 56, 61, 63, 65–
67, 71, 74, 85–87, 90, 92, 93, 97, 98, 108, 114, 116–118, 127, 130, 132–134]
that will be sketched in more details below. In most cases, symbolic summation
can be subsumed by the following problem description: given an algorithm that
computes/represents a sequence, find a simpler algorithm that computes/represents
(from a certain point on) the same sequence. Based on the context of a given
problem, simpler can have different meanings: e.g., the output algorithm can be
represented uniquely (by a canonical form in the sense of [50]), it might be
computed more efficiently, or it can be formulated in terms of certain classes of
special functions.

Often symbolic summation is subdivided in the following summation
paradigms.
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• Telescoping: Given an algorithm F(k) that computes a sequence, find an
algorithm G(k), that is not more complicated than F(k), such that

F(k) = G(k + 1)−G(k) (1)

holds for all k ∈ Z≥0 with k ≥ δ for some δ ∈ Z≥0. Then summing this equation
over k from δ to n yields a simpler way to compute S(n) =∑n

k=δ F (k), namely

n∑
k=δ

F (k) = G(n+ 1)−G(δ). (2)

• Zeilberger’s creative telescoping [134]: Given an algorithm F(n, k) that com-
putes a bivariate sequence, find an algorithm G(n, k) that is not more complicated
than F(n, k), and algorithms c0(n), . . . , cd(n) (for univariate sequences), such
that

c0(n) F (n, k)+ c1(n) F (n+ 1, k)+ · · · + cd(n) F (n+ d, k)

= G(n, k + 1)−G(n, k) (3)

holds for all n, k ∈ Z≥0 with n, k ≥ δ for some δ ∈ Z≥0. Then summing this
equation over k from δ to n yields for the definite sum S(n) =∑n

k=δ F (n, k) the
recurrence

c0(n) S(n)+ c1(n) S(n+ 1)+ · · · + cd(n) S(n+ d) = H(n) (4)

with H(n) = G(n, n+1)−G(n, δ)+∑d
i=1 ci(n)

∑i
j=1 F(n+i, n+j). In many

cases H(n) collapses to a rather simple “algorithm” and thus (4) yields (together
with d initial values and the assumption that cd(n) is nonzero for n ≥ δ) an
efficient algorithm to compute the sequence (S(n))n≥δ .

• Recurrence solving: Given a recurrence of the form (4) where the algorithms
c0(n), . . . , cd(n) and H(n) can be given by expressions in terms of certain
classes of special functions (that can be evaluated accordingly) and given d initial
values, say S(δ), S(δ + 1), . . . , S(δ + d − 1) which determines the sequence
(S(n))n≥δ , find an expression that computes the sequence (S(n))n≥δ in terms of
the same class of special functions or an appropriate extension of it.

We emphasize that all of the above summation paradigms are strongly interwo-
ven (as illustrated, e.g., in the book [93]) and they often yield a strong toolbox by
combining them in a nontrivial way.

Another natural classification of symbolic summation is based on the input class
of algorithms and the focus how they can be formally represented. In most cases
they are either given by evaluable expressions in terms of sums/products or linear
recurrences accompanied with initial values that uniquely determine/enable one to
calculate the underlying sequences. The first breakthrough in this regard has been
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achieved by Abramov [18, 19] who solved the telescoping problem for a rational
function F(x) ∈ K(x) and proposed an algorithm for finding all rational solutions
of K(x) of a given linear recurrence of the form (4) with ci(x),H(x) ∈ K(x). In
particular, Gosper’s telescoping algorithm [61] for hypergeometric products F(n) =∏n

k=l H(k) with H(x) ∈ K(x) and Zeilberger’s extension to definite sums via his
creative telescoping paradigm [52, 53, 85, 90, 93, 134] made symbolic summation
highly popular in many areas of sciences; recently also the treatment of contiguous
relations has been extensively explored in [86]. In particular, the interplay with
Petkovšek’s algorithm Hyper [91] or van Hoeij’s improvements [127] to find all
hypergeometric product solutions enables one to simplify definite hypergeometric
products to expressions given in terms of hypergeometric products; first methods
are on the way to find even definite sum solutions [92]. More generally, one can
use these solvers as subroutines to hunt for all d’Alembertian solutions [22, 24]
(solutions that are expressible in terms of indefinite nested sums defined over hyper-
geometric products) and Liouvillian solutions [63, 94] (incorporating in addition the
interlacing operator). This successful story has been pushed forward for indefinite
and definite summation problems in terms of q-hypergeometric products and their
mixed version [25, 31, 87]. Further generalizations opened up substantially the class
of applications, like the holonomic approach [55, 74, 133] dealing with objects
that can be described by recurrence systems or the multi-summation approach
of (q–)hypergeometric products [29, 130, 132]. Even non-holonomic summation
problems [56, 67, 71] involving, e.g., Stirling numbers, can be treated nowadays
automatically.

In the following we will focus on the difference ring/field approach. It has
been initiated by Karr’s telescoping algorithm [65, 66] in #&-fields which can be
considered as the discrete analog of Risch’s indefinite integration algorithm [48, 95].
This pioneering work has been explored further in [49, 97, 98, 108] and has
been pushed forward to a general summation theory in the setting of R#&-ring
extensions [114, 116–118] which is the driving engine of the summation package
Sigma [107, 112]. In this setting, one can deal not only with expressions containing
(q–)hypergeometric products and their mixed versions, but also with those contain-
ing sums and products that are indefinite nested (that, depending on the ring or field
setting, can appear also in the denominator). In particular, it covers a significant class
of special functions that arise frequently, e.g., within the calculation of (massive) 2-
loop and 3-loop Feynman integrals: harmonic sums [37, 129], generalized harmonic
sums [15, 81], cyclotomic sums [2] and binomial sums [4, 58, 131].

Internally, the following construction is performed in Sigma.

1. Rephrase the expression in terms of nested sums and products in an appropriate
difference ring (built by #&-field and R#&-ring extensions).

2. Solve the summation problems (given above) in this formal difference ring.
3. Translate the obtained solution from the difference ring to the term algebra

setting.

The goal of this article is two-fold. First, we will present the existing algorithms in
the difference ring setting (step 2) that have been implemented in large part within
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Sigma. In particular, we will summarize the available parameterized telescoping
algorithms [100, 102, 106, 108–111, 115] (containing telescoping/creative telescop-
ing as special cases), the multiplicative version of telescoping for the representation
of products [23, 51, 83, 84, 104, 114, 120] and recurrence solving algorithms [26,
49, 80, 98, 99, 101, 105] which generalize many contributions of the literature
mentioned above. In addition, we will comment on further enhancements in order
to treat new classes of summation objects, like unspecified sequences [68, 69, 89]
and radical objects [70], or to combine the difference field/ring and holonomic
approaches yielding a new toolbox for multi-summation [43, 103].

Besides these difference ring algorithms and the underlying difference ring
theory (step 2), the translation mechanism between the summation objects and
the formal representation (step 1 and 3) will be elaborated in detail. In particular,
the summation package Sigma benefits strongly on this stable toolbox: the user
can define expressions in terms of symbolic sums and products in a term algebra
and obtains simplifications of the expressions by executing the rather technical
difference ring/field machinery in the background. However, rigorous input/output
specifications on the sum-product level are missing: many of the properties that one
can extract on the formal level (step 2) are not properly carried over to the user level.
The second main result of the article is a contribution towards closing this gap. In
particular, inspired by Nemes and Paule [82] and utilizing ideas from [109, 114, 126]
we will show that the difference ring theory implies a canonical simplification in
the sense of [50]. We can write the sums and products in a σ -reduced basis (see
Definition 4) such that two expressions evaluate to the same sequence iff they are
syntactically equal.

In Sect. 2 we will define a term algebra in which we will represent our sequences
in terms of indefinite nested sums and products. In particular, we will introduce
one of the main features of Sigma given in Problem SigmaReduce: one can
represent the expressions of our term algebra in canonical form. In Sect. 3 we will
elaborate how this distinguished representation can be accomplished by exploiting
the difference ring theory of R#&-extensions. Here we will utilize the interplay
(see Fig. 1) between the difference ring of sequences, the term algebra (equipped
with an evaluation function) in which the sequences can be introduced by the user
and the formal difference ring setting (also equipped with an evaluation function) in
which the sequences can be modeled on the computer algebra level. In Sect. 4 we
will make this construction precise by using the existing difference ring algorithms.
In particular, we will concentrate on refined simplifications, like finding expressions
with minimal nesting depth. Finally, we are in the position to specify in Sect. 5 the
above introduced summation paradigms of Sigma within the term algebra level. In
Sect. 6 we present the main applications of the presented algorithms that support the
evaluation of Feynman integrals. We conclude the article in Sect. 7.
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Fig. 1 The symbolic
summation framework for
difference rings and fields

2 The Term Algebra SumProd(G)

Inspired by Nemes and Paule [82] we will refine the construction from [111] to
introduce a term algebra for a big class of indefinite nested sums and products.

The basis of our construction (see also [31]) will be the rational function field
extension K = K(q1, . . . , qv) over a field K and on top of it the rational function
field extension Gm := K(x, x1, . . . , xv) over K. For any element f = p

q
∈ Gm

with p, q ∈ K[x, x1, . . . , xv] where q �= 0 and p, q being coprime we define

ev(f, k) =
⎧⎨
⎩

0 if q(k, qk
1 , . . . , q

k
v ) = 0

p(k,qk1 ,...,q
k
v )

q(k,qk1 ,...,q
k
v )

if q(k, qk
1 , . . . , q

k
v ) �= 0.

(5)

Note that there is a δ ∈ Z≥0 with q(k, qk
1 , . . . , q

k
v ) �= 0 for all k ∈ Z≥0 with

k ≥ δ; for an algorithm that determines δ if one can factorize polynomials over
K see [31, Sec. 3.2]. We define L(f ) to be the minimal value δ ∈ Z≥0 such
that q(k, qk

1 , . . . , q
k
v ) �= 0 holds for all k ≥ δ; further, we define Z(f ) =

max(L(1/p), L(1/q)) for f �= 0. Later we will call L : Gm → Z≥0 also
an o-function and1 Z : G∗

m → Z≥0 a z-function. Gm = K(x, x1, . . . , xv)

represents the multibasic mixed sequences. The special cases Gr = K(x) and Gb =
K(x1, . . . , xv) represent the rational and the multi-basic sequences, respectively. If
not specified further, G will stand for one of the three cases Gm, Gr or Gb.

Now we extend G to expressions SumProd(G) in terms of indefinite nested sums
defined over indefinite nested products. For the set of nontrivial roots of unity

R = {r ∈ K \ {1} | r is a root of unity}

we introduce the function ord : R→ Z≥1 with

ord(r) = min{n ∈ Z≥1 | rn = 1}.

1For a ring A we denote by A∗ the set of units. If A is a field, this means A∗ = A \ {0}.
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Let�∧ , ⊕, 1, Sum, Prod and RPow be operations with the signatures

�∧ : SumProd(G)× Z → SumProd(G)

⊕ : SumProd(G)× SumProd(G) → SumProd(G)

1 : SumProd(G)× SumProd(G) → SumProd(G)

Sum : Z≥0 × SumProd(G) → SumProd(G)

Prod : Z≥0 × SumProd(G) → SumProd(G)

RPow : R → SumProd(G).

In the following we write�∧ , ⊕ and 1 in infix notation, and Sum and Prod in prefix
notation. Further, for (. . . ((f1�f2)�f3)� . . . �fr) with � ∈ {1,⊕} and f1, . . . , fr ∈
SumProd(G) we write f1�f2�f3� . . . �fr .

More precisely, we define the following chain of set inclusions:

Prod1(G) ⊂ SumProd1(G) expressions with
single nested products∩ ∩

Prod∗(G) ⊂ Prod(G) ⊂ SumProd(G) expressions
with nested products

power products
in products

expressions
in products

expressions in
sums and products.

(6)

Here we start with the set of power products of nested products Prod∗(G) which is
the smallest set that contains 1 with the following properties:

1. If r ∈ R then RPow(r) ∈ Prod∗(G).
2. If p ∈ Prod∗(G), f ∈ G∗, l ∈ Z≥0 with l ≥ Z(f ) then2 Prod(l,f 1p) ∈

Prod∗(G).
3. If p, q ∈ Prod∗(G) then p 1 q ∈ Prod∗(G).
4. If p ∈ Prod∗(G) and z ∈ Z \ {0} then p�∧ z ∈ Prod∗(G).

Later we will also use the sets

#(G) ={RPow(r) | r ∈ R} ∪ {Prod(l, f 1 p) | l, f, p as given in item 2}
#1(G) ={RPow(r) | r ∈ R} ∪ {Prod(l, f ) | f ∈ G∗, l ∈ Z≥0 with l ≥ Z(f )}

where #(G) and #1(G) contains all nested and single nested products, respec-
tively.

Example 1 In Prod∗(G) with G = Q(q1)(x, x1) we get, e.g.,

P = (Prod(1,Prod(1, x)�∧ (−2))︸ ︷︷ ︸
∈#(G)

�∧ 2)1 Prod(1,
x1+x2

1
x

)︸ ︷︷ ︸
∈#1(G)

1RPow(−1)︸ ︷︷ ︸
#1(G)

∈ Prod∗(G).

2We also write p instead of f 1 p if f = 1; similarly we write f instead of f 1 p if p = 1.
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Finally, we define SumProd(G) as the smallest set containing G ∪ Prod∗(G) with
the following properties:

1. For all f, g ∈ SumProd(G) we have f ⊕ g ∈ SumProd(G).
2. For all f, g ∈ SumProd(G) we have f 1 g ∈ SumProd(G).
3. For all f ∈ SumProd(G) and k ∈ Z≥1 we have f�∧ k ∈ SumProd(G).
4. For all f ∈ SumProd(G) and l ∈ Z≥0 we have Sum(l, f ) ∈ SumProd(G).

SumProd(G) is also called the set of expressions in terms of nested sums over nested
products. In addition, we define the following subsets:

1. the set Prod(G) of expressions in terms of nested products (over G), i.e., all
elements from SumProd(G) which are free of sums;

2. the set Prod1(G) of expressions in terms of depth-1 products (over G), i.e., all
elements from Prod(G) where the arising products are taken from #1(G);

3. the set Sum(G) of expressions in terms of nested sums (over G), i.e., all elements
from SumProd(G) where no products appear;

4. the set SumProd1(G) of expressions in terms of nested sums over depth-1
products (over G), i.e., all elements from SumProd(G) with products taken from
#1(G).

In other words, besides the chain of set inclusions given in (6) we also get

Sum(G) ⊂ SumProd1(G) ⊂ SumProd(G).

Furthermore, we introduce the set of nested sums over nested products given by

&(G) = {Sum(l, f ) | l ∈ Z≥0 and f ∈ SumProd(G)},

and the set of nested sums over single nested products given by

&1(G) = {Sum(l, f ) | l ∈ Z≥0 and f ∈ SumProd1(G)}.

For convenience we will also introduce the set &#(G) = &(G) ∪#(G) of nested
sums and products and the set &#1(G) = &1(G) ∪ #1(G) of nested sums and
single-nested products. In short, we obtain the following chain of sets:

#1(G) ⊂ &#1(G) ⊃ &1(G) with single nested products
∩ ∩ ∩

#(G) ⊂ &#(G) ⊃ &(G) with nested products

products products and
sums over products sums over products
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Example 2 With G = K(x) we get, e.g., the following expressions:

E1 = Sum(1,Prod(1, x)) ∈ &1(G) ⊂ SumProd1(G),

E2 = Sum(1, 1
x+1 1 Sum(1, 1

x3 )1 Sum(1, 1
x
)) ∈ &(G) ⊂ Sum(G),

E3 = (E1 ⊕ E2)1 E1 ∈ SumProd1(G).

Finally, we introduce a function ev (a model of the term algebra) which evaluates
a given expression of our term algebra to sequence elements. In addition, we also
introduce the depth for our expressions. We start with the evaluation function ev :
G× Z≥0 → K given by (5) and the depth function d : G→ Z≥0 given by

d(f ) =
{

0 if f ∈ K

1 if f ∈ G \K.

Now ev and d are extended recursively from G to ev : SumProd(G) × Z≥0 →
SumProd(G) and d : SumProd(G)→ Z≥0 as follows.

1. For f, g ∈ SumProd(G) and k ∈ Z \ {0} (k > 0 if f /∈ Prod∗(G)) we set

ev(f�∧ k, n) := ev(f, n)k, d(f�∧ k) := d(f ),

ev(f ⊕ g, n) := ev(f, n)+ ev(g, n), d(f ⊕ g) := max(d(f ),d(g)),

ev(f 1 g, n) := ev(f, n) ev(g, n) d(f 1 g) := max(d(f ),d(g));

2. for r ∈ R and Sum(l, f ),Prod(λ, g) ∈ SumProd(G) we define

ev(RPow(r), n) :=
n∏

i=1

r = rn, d(RPow(r)) := 1,

ev(Sum(l, f ), n) :=
n∑
i=l

ev(f, i), d(Sum(l, f )) := d(f )+ 1,

ev(Prod(λ, g), n) :=
n∏

i=λ

ev(g, i), d(Prod(λ, g)) := d(g)+ 1.

Remark 1

(1) Since ev(Prod(r, 1), n) = ev(RPow(r), n), RPow is redundant. But it will be
convenient for the treatment of canonical representations (see Definition 3).

(2) Any evaluation of Prod∗(G) is well defined and nonzero since the lower bounds
of the products are set large enough via the z-function.

(3) SumProd1(Gr ) covers as special cases generalized/cyclotomic harmonic sums
[2, 15, 37, 81, 129] and binomial sums [4, 58, 131].
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In a nutshell, ev applied to f ∈ SumProd(G) represents a sequence. In
particular, f can be considered as a simple program and ev(f, n) with n ∈ Z≥0
executes it (like an interpreter/compiler) yielding the nth entry of the represented
sequence.

Definition 1 For F ∈ SumProd(G) and n ∈ Z≥0 we write F(n) := ev(F, n).

Example 3 For Ei ∈ SumProd(K(x)) with i = 1, 2, 3 in Example 2 we get
d(Ei) = 3 and

E1(n) = ev(E1, n) =
n∑

k=1

k∏
i=1

i =
n∑

k=1

k!,

E2(n) = ev(E2, n) =
n∑

k=1

1
1+k

( k∑
i=1

1
i3

) k∑
i=1

1
i

and E3(n) = (E1(n)+ E2(n))E1(n). For P ∈ SumProd(K(x, x1)) in Ex. 1 we get

P(n) = ev(P, n) =
( n∏
k=1

( k∏
i=1

i
)−2)2( n∏

k=1

qk + q2k

k

)
(−1)n, d(P ) = 3.

Example 4 We show how the expressions of SumProd(G) with ev are handled in

In[1]:= << Sigma.m
Sigma - A summation package by Carsten Schneider © RISC-JKU

Instead of F = Sum(1, 1
x
) with F(n) = ev(F, n) =∑n

k=1
1
k

we introduce the sum
by

In[2]:= F = SigmaSum[ 1
k , {k, 1, n}]

Out[2]=

n∑
k=1

1

k

where n is kept symbolically. However, if the user replaces n by a concrete integer,
say 5, the evaluation mechanism is carried out and we get F(5) = ev(F, 5):

In[3]:= F/.n → 5

Out[3]=
137

60

Similarly, we can define E1 from Example 2 as follows:

In[4]:= E1 = SigmaSum[SigmaFactorial[k], {k, 1, n}]

Out[4]=

n∑
k=1

k!
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Here SigmaFactorial defines the factorials; its full definition is given by:

In[5]:= GetFullDefinition[E1]

Out[5]=

n∑
k=1

k∏
o1=1

o1

Similarly, one can introduce as shortcuts powers, Pochhammer symbols, bino-
mial coefficients, (generalized) harmonic sums [15] etc. with the function calls
SigmaPower, SigmaPochhammer, SigmaBinomial or S, respectively; analogously
q-versions are available. Together with Ablinger’s package HarmonicSums, also
function calls for cyclotomic sums [2] and binomial sums [4] are available.

In the same fashion, we can define E2, E3 ∈ SumProd(Q(x)) from Example 2
and P ∈ SumProd(Q(q)(x, x1)) with q = q1 from Example 1 by

In[6]:= E2 = SigmaSum[SigmaSum[1/i, {i, 1, k}]SigmaSum[1/i3, {i, 1, k}]/(k + 1), {k, 1, n}]

Out[6]=

n∑
k=1

( k∑
i=1

1
i3

) k∑
i=1

1
i

1+ k

In[7]:= E3 = (E1 + E2)E1

Out[7]=

( n∑
k=1

k!
)( n∑

k=1

k! +
n∑

k=1

( k∑
i=1

1
i3

) k∑
i=1

1
i

1+ k

)

In[8]:= P = SigmaProduct[SigmaProduct[i, {i, 1, k}]−2, {k, 1, n}]2

SigmaProduct[(SigmaPower[q, k] + SigmaPower[q, k]2)/k, {k, 1, n}]
SigmaPower[−1, n]

Out[8]=

( n∏
k=1

( k∏
i=1

i
)−2)2( n∏

k=1

qk + (qk)2

k

)
(−1)n

Note that within Sigma the root of unity product RPow(α) with α ∈ R can be
either defined by SigmaPower[α,n] or SigmaProduct[α,{k,1,n}]. Whenever α

is recognized as an element of R, it is treated as the special product RPow(α).

Expressions in SumProd(G) (similarly within Mathematica using Sigma) can
be written in different ways such that they produce the same sequence. In the
remaining part of this section we will elaborate on canonical (unique) represen-
tations [50].

In a preprocessing step we can rewrite the expressions to a reduced representa-
tion; note that the equivalent definition in the ring setting is given in Definition 10.
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Definition 2 An expression A ∈ SumProd(G) is in reduced representation if

A = (f1 1 P1)⊕ (f2 1 P2)⊕ · · · ⊕ (fr 1 Pr) (7)

with fi ∈ G∗ and

Pi = (ai,1
�∧ zi,1)1 (ai,2

�∧ zi,2)1 · · · 1 (ai,ni
�∧ zi,ni ) ∈ Prod∗(G) (8)

for 1 ≤ i ≤ r where

• ai,j = Sum(li,j , fi,j ) ∈ &(G) and zi,j ∈ Z≥1,
• ai,j = Prod(li,j , fi,j ) ∈ #(G) and zi,j ∈ Z \ {0}, or
• ai,j = RPow(fi,j ) with fi,j ∈ R and 1 ≤ zi,j < ord(ri,j )

such that the following properties hold:

1. for each 1 ≤ i ≤ r and 1 ≤ j < j ′ < ni we have ai,j �= ai,j ′ ;
2. for each 1 ≤ i < i′ ≤ r with ni = nj there does not exist a σ ∈ Sni with

Pi′ = (ai,σ (1)
�∧ zi,σ (1))1 (ai,σ (2)

�∧ zi,σ (2))1 · · · 1 (ai,σ (ni )
�∧ zi,σ (ni )).

We say that H ∈ SumProd(G) is in sum-product reduced representation (or in
sum-product reduced form) if it is in reduced representation and for each Sum(l, A)

and Prod(l, A) that occur recursively in H the following holds: A is in reduced
representation as given in (7), l ≥ max(L(f1), . . . , L(fr)) (i.e. the first case of (5)
is avoided during evaluations) and the lower bound l is greater than or equal to the
lower bounds of the sums and products inside of A.

Example 5 In Sigma the reduced representation of E3 is calculated with the call

In[9]:= CollectProdSum[E3]

Out[9]=

( n∑
k=1

k!
)2 +

( n∑
k=1

k!
) n∑

k=1

( k∑
i=1

1
i3

) k∑
i=1

1
i

1+ k

Before we can state one of Sigma’s crucial features we need the following
definitions.

Definition 3 Let W ⊆ &#(G). We define SumProd(W,G) as the set of elements
from SumProd(G) which are in reduced representation and where the arising sums
and products are taken from W . More precisely, A ∈ SumProd(W,G) if and only
if it is of the form (7) with (8) where ai,j ∈ W . In the following we seek a W with
the following properties:

• W is called shift-closed over G if for any A ∈ SumProd(W,G), s ∈ Z there
are B ∈ SumProd(W,G) and δ ∈ Z≥0 such that A(n + s) = B(n) holds for all
n ≥ δ.



434 C. Schneider

• W is called shift-stable over G if for any product or sum in W the multiplicand
or summand is built by sums and products from W .

• W is called canonical reduced over G if for any A,B ∈ SumProd(W,G) with
A(n) = B(n) for all n ≥ δ for some δ ∈ Z≥0 the following holds: A and B are
the same up to permutations of the operands in ⊕ and 1.

The sum-product reduced form is only a minor simplification, but it will be
convenient to connect to the difference ring theory below; see Corollary 1. In
Lemma 1 we note further that shift-stability implies shift-closure. In particular, the
shift operation can be straightforwardly carried out; the proof will be delivered later
on page 447.

Lemma 1 If a finite set W ⊂ &#(G) is shift-stable and the elements are in sum-
product reduced form,3 then it is also shift-closed. If K is computable then one can
compute for F ∈ SumProd(W,G) and λ ∈ Z a G ∈ SumProd(W,G) such that
F(n+λ) = G(n) holds for all n ≥ δ for some δ. If one can factor polynomials over
K, δ can be determined.

Based on this observation, we focus on σ -reduced sets which we define as
follows.

Definition 4 W ⊆ &#(G) is called σ -reduced over G if it is canonical reduced,
shift-stable and the elements in W are in sum-product reduced form. In particular,
A ∈ SumProd(W,G) is called σ -reduced (w.r.t. W ) if W is σ -reduced over G.

More precisely, we are interested in the following problem.

Problem SigmaReduce: Compute a σ -Reduced Representation

Given: A1, . . . , Au ∈ SumProd(G) with G ∈ {Gr ,Gb,Gm}, i,e., G =
K(x, x1, . . . , xv) or G = K(x1, . . . , xv).

Find: a σ -reduced set W = {T1, . . . , Te} ⊂ &#(G′) in4 G′, B1 . . . , Bu ∈
SumProd(W,G′) and δ1, . . . , δu ∈ Z≥0 such that for all 1 ≤ i ≤ r we get

Ai(n) = Bi(n) n ≥ δi .

3The sum-product reduced form is not necessary, but simplifies the proof given on page 447.
4In general, we might need a larger field G′ = K′(x, x1, . . . , xv) or G′ = K′(x1, . . . , xv) where
the field K is extended to K′.
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Example 6 Consider the following two expressions from SumProd(Q(x)):

In[10]:= A1 = SigmaSum[SigmaSum[1/i, {i, 1, k}]SigmaSum[1/i3, {i, 1, k}]/(k + 1), {k, 1, n}]

Out[10]=

n∑
k=1

( k∑
i=1

1
i3

) k∑
i=1

1
i

1+ k

In[11]:= A2 =
n∑

i=1

1

i5
−

n∑
i=1

1
i4

1 + n
−

n∑
j=1

j∑
i=1

1
i4

j
−

n∑
j=1

j∑
i=1

1
i3

j2
+

n∑
j=1

j∑
i=1

1
i3

j

1 + n
−

n∑
j=1

j∑
i=1

1
i

j4
+

n∑
j=1

j∑
i=1

1
i

j3

1 + n
+

n∑
k=1

k∑
j=1

j∑
i=1

1
i3

j

k
+

n∑
k=1

k∑
j=1

j∑
i=1

1
i

j3

k
;

Then we solve Problem SigmaReduce by executing:

In[12]:= {B1, B2} = SigmaReduce[{A1, A2}, n]

Out[12]= {
n∑

k=1

( k∑
i=1

1
i3

) k∑
i=1

1
i

1+ k
,

n∑
k=1

( k∑
i=1

1
i3

) k∑
i=1

1
i

1+ k
}

Since B1 = B2, it follows A1 = A2. Note that the set W pops up only implicitly.
The set of all sums and products in the output, in our case

W0 =
{ n∑

k=1

1

1+ k

( k∑
i=1

1

i3

) k∑
i=1

1

i

}
(= {Sum(1, 1

x+1 1Sum(1, 1
x3 )1Sum(1, 1

x
))
}
)

forms a canonical set in which A1 and A2 can be represented by B1 and B2
respectively. Adjoining in addition all sums and products that arise inside of the
elements in W0 we get W = {∑n

i=1
1
i
,
∑n

i=1
1
i3 } ∪ W0 which is a σ -reduced set.

Internally, SigmaReduce parses the arising objects from left to right and constructs
the underlying σ -reduced set W in which the input expressions can be rephrased.

Reversing the order of the input elements yields the following result:

In[13]:= {B2, B1} = SigmaReduce[{A2, A1}, n]

Out[13]=

{
−
( n∑

k=1

1

k4

) n∑
k=1

1

k
+

( n∑
k=1

1
k3

) n∑
k=1

1
k

1+ n
−

n∑
k=1

k∑
k=1

1
k3

k2 +
n∑

k=1

k∑
k=1

1
k4

k
+

n∑
k=1

( k∑
k=1

1
k3

) k∑
k=1

1
k

k
,

−
( n∑

k=1

1

k4

) n∑
k=1

1

k
+

( n∑
k=1

1
k3

) n∑
k=1

1
k

1+ n
−

n∑
k=1

k∑
k=1

1
k3

k2 +
n∑

k=1

k∑
k=1

1
k4

k
+

n∑
k=1

( k∑
k=1

1
k3

) k∑
k=1

1
k

k

}
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In this case we get the σ -reduced set

W =
{ n∑

j=1

1

j4
,

n∑
j=1

1

j3
,

n∑
j=1

1

j
,

n∑
j=1

j∑
k=1

1
k4

j
,

n∑
j=1

j∑
k=1

1
k3

j2
,

n∑
j=1

( j∑
k=1

1
k3

) j∑
k=1

1
k

j

}

(expressed in the Sigma-language) and since B1 = B2 we conclude again that
A1 = A2 holds for all n ≥ 0. To check that A1 = A2 holds, one can also execute

In[14]:= SigmaReduce[A1 − A2, n]

Out[14]= ∅

Here W = {} is the σ -reduced set in which we can represent A1 − A2 by 0.

Such a unique representation (up to trivial permutations) immediately gives
rise to the following application: One can compare if two expressions A1 and
A2 evaluate to the same sequences (from a certain point on): simply check if the
resulting B1 and B2 in SumProd(W,G) for a σ -reduced W are the same (up to
trivial permutations). Alternatively, just check if A1 − A2 can be reduced to zero.
Besides that we will refine the above problem further. E.g., given A ∈ SumProd(G),
one can find an expression B ∈ SumProd(W,G) and δ ∈ Z≥0 such that A(n) =
B(n) holds for all n ≥ δ and such that B is as simple as possible. Here simple can
mean that d(B) is as small as possible. Other aspects might deal with the task of
minimizing the number of elements in the set W . Finally, we want to emphasize
that the above considerations can be generalized such that also unspecified/generic
sequences can appear. The first important steps towards such a summation theory
have been elaborated in [89].

As it turns out, the theory of difference rings provides all the techniques
necessary to tackle the above problems. In the next section we introduce all the
needed ingredients and will present our main result in Theorem 2 below.

3 The Difference Ring Approach for SumProd(G)

In the following we will rephrase expressions H ∈ SumProd(G) as elements h in a
formal difference ring. More precisely, we will design

• a ring A with A ⊇ G ⊇ K in which H can be represented by h ∈ A;
• an evaluation function ev : A× Z≥0 → K such that H(n) = ev(h, n) holds for

sufficiently large n ∈ Z≥0;
• a ring automorphism σ : A→ A which models the shift H(n+ 1) with σ(h).

Example 7 We will rephrase F = Sum(1, 1
x
) ∈ SumProd(Gr ) with Gr = K(x)

where K = Q in a formal ring. Namely, we take the polynomial ring A = Gr [s] =
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Q(x)[s] (s transcendental over Gr ) and extend ev : Gr × Z≥0 → Q to ev′ :
A× Z≥0 → Q as follows: for h =∑d

k=0 fk s
k with fk ∈ Gr we set

ev′(h, n) :=
d∑

k=0

ev(fk, n) ev′(s, n)k (9)

with

ev′(s, n) =
n∑

i=1

1

i
=: S1(n)(= Hn); (10)

since ev and ev′ agree on Gr , we do not distinguish them anymore. For any

H = f0 ⊕ (f1 1 (F�∧ 1))⊕ · · · ⊕ (fd 1 (F�∧ d))
with d ∈ Z≥0 and f0, . . . , fd ∈ Gr we can take h =∑d

k=0 fks
k ∈ A and get

H(n) = ev(h, n) ∀n ∈ Z≥0.

Further, we introduce the shift operator acting on the elements in A. For the field Gr

we simply define the field automorphism σ : Gr → Gr with σ(f ) = f |x �→x+1(=
f (x + 1)). Moreover, based on the observation that for any n ∈ Z≥0 we have

F(n+ 1) =
n+1∑
i=1

1

i
=

n∑
i=1

1

i
+ 1

n+ 1
,

we extend the automorphism σ : Gr → Gr to σ ′ : A → A as follows: for h =∑d
k=0 fk s

k with fk ∈ Gr we set σ ′(h) :=∑d
k=0 σ(fk)σ

′(s)k with σ ′(s) = s+ 1
x+1 ;

since σ ′ and σ agree on Gr , we do not distinguish them anymore. We observe that

ev(s, n+ 1) =
n+1∑
i=1

1

i
=

n∑
i=1

1

i
+ 1

n+ 1
= ev(s + 1

x+1 , n) = ev(σ (s), n)

holds for all n ∈ Z≥0 and more generally that ev(h, n+ l) = ev(σ l(h), n) holds for
all h ∈ A, l ∈ Z and n ∈ Z≥0 with n ≥ max(−l, 0).

As illustrated in the example above, the following definitions will be relevant.

Definition 5 A difference ring/difference field is a ring/field A equipped with
a ring/field automorphism σ : A → A which one also denotes by (A, σ ).
(A, σ ) is difference ring/field extension of a difference ring/field (H, σ ′) if H is
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a subring/subfield of A and σ |H = σ ′. For a difference ring (A, σ ) and a subfield
K of A with5 σ |K = id we introduce the following functions.

1. A function ev : A× Z≥0 → K is called evaluation function for (A, σ ) if for all
f, g ∈ A and c ∈ K there exists a λ ∈ Z≥0 with the following properties:

∀n ≥ λ : ev(c, n) = c, (11)

∀n ≥ λ : ev(f + g, n) = ev(f, n)+ ev(g, n), (12)

∀n ≥ λ : ev(f g, n) = ev(f, n) ev(g, n). (13)

In addition, we require that for all f ∈ A and l ∈ Z there exists a λ with

∀n ≥ λ : ev(σ l(f ), n) = ev(f, n+ l). (14)

2. A function L : A → Z≥0 is called an operation-function (in short o-function)
for (A, σ ) and an evaluation function ev if for any f, g ∈ A with λ =
max(L(f ), L(g)) the properties (12) and (13) hold and for any f ∈ A and l ∈ Z
with λ = L(f )+max(0,−l) property (14) holds.

3. Let G be a subgroup of A∗. Z : G → Z≥0 is called a zero-function (in short
z-function) for ev and G if ev(f, n) �= 0 holds for any f ∈ G and integer
n ≥ Z(f ).

We note that a construction of a map ev : A×Z≥0 → K with the properties (11)
and (13) is straightforward. It is property (14) that brings in extra complications: the
evaluation of the elements in A must be compatible with the automorphism σ .

In this article we will always start with the following ground field; see [31].

Example 8 Take the rational function field Gm := G = K(x, x1, . . . , xv) over
K = K(q1, . . . , qv), v ≥ 0, with the function (5), together with the functions
L : Gm → Z≥0 and Z : G∗

m → Z≥0 from the beginning of Sect. 2. It is easy to see
that ev : Gm × Z≥0 → K satisfies for all c ∈ K and f, g ∈ G the property (11)
for L(c) = 0 and the properties (12) and (13) with λ = max(L(f ), L(g)). Finally,
we take the automorphism σ : Gm → Gm defined by σ |K = id, σ(x) = x + 1 and
σ(yi) = qi yi for 1 ≤ i ≤ v. Then one can verify in addition that (14) holds for
all f ∈ Gm and l ∈ Z with λ = max(−l, L(f )). Consequently, ev is an evaluation
function for (Gm, σ) and L is an o-function for (Gm, σ). In addition, Z is a z-
function for ev and G∗

m by construction. In the following we call (Gm, σ) also a
multibasic mixed difference field. If v = 0, i.e., Gr = K(x) = K′(x), we get the
rational difference field (Gr , σ ), and if we restrict to Gb = K(x1, . . . , xv), we get
the multibasic difference field (Gb, σ ).

We continue with the convention from above: if we write (G, σ ), then it can be
replaced by any of the difference rings (Gm, σ), (Gr , σ ) or (Gb, σ ).

5Note that (A, σ ) is a difference ring extension of (K, id).
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In the following we look for such a formal difference ring (A, σ ) with a
computable evaluation function ev and o-function L in which we can model a finite
set of expressions A1, . . . , Au ∈ SumProd(G) with a1, . . . , au ∈ A.

Definition 6 Let F ∈ SumProd(G) and (A, σ ) be a difference ring extension of
(G, σ ) equipped with an evaluation function ev : A × Z≥0 → K. We say that
f ∈ A models F if ev(f, n) = F(n) holds for all n ≥ λ for some λ ∈ Z≥0.

3.1 The Naive Representation in APS-Extensions

As indicated in Example 7 our sum-product expressions will be rephrased in a tower
of difference field and ring extensions. We start with the field version which will lead
later to #&-fields [65, 66].

Definition 7 A difference field (F, σ ) is called a PS-field extension of a difference
field (H, σ ) if H = H0 ≤ H1 ≤ · · · ≤ He = F is a tower of field extensions where
for all 1 ≤ i ≤ e one of the following holds:

• Hi = Hi−1(ti) is a rational function field extension with σ(ti )
ti

∈ (Hi−1)
∗ (ti is

called a P -field monomial);
• Hi = Hi−1(ti) is a rational function extension with σ(ti)−ti ∈ Hi−1 (ti is called

an S-field monomial).

Example 9 Following Example 8, (Gm, σ) with Gm = K(x, x1, . . . , xv) is a
PS-field extension of (K, σ ) with the S-field monomial x and the P -monomials
x1, . . . , xv . Similarly, (Gb, σ ) with Gb = K(x1, . . . , xv) forms a tower of P -
field extensions of (K, σ ) and (Gr , σ ) with Gr = K(x) is an S-field extension
of (K, σ ).

In addition, we will modify the field version to obtain the following ring version
(allowing us to model also products over roots of unity).

Definition 8 A difference ring (E, σ ) is called an APS-extension of a difference
ring (A, σ ) if A = A0 ≤ A1 ≤ · · · ≤ Ae = E is a tower of ring extensions where
for all 1 ≤ i ≤ e one of the following holds:

• Ai = Ai−1[ti] is a ring extension subject to the relation tνi = 1 for some ν > 1

where σ(ti )
ti

∈ (Ai−1)
∗ is a primitive νth root of unity (ti is called an A-monomial,

and ν is called the order of the A-monomial);
• Ai = Ai−1[ti , t−1

i ] is a Laurent polynomial ring extension with σ(ti )
ti

∈ (Ai−1)
∗

(ti is called a P -monomial);
• Ai = Ai−1[ti] is a polynomial ring extension with σ(ti)− ti ∈ Ai−1 (ti is called

an S-monomial).

Depending on the occurrences of the APS-monomials such an extension is also
called an A-/P -/S-/AP -/AS/-/PS-extension.
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Example 10 Take the rational difference ring (Q(x), σ ) with σ(x) = x + 1 and
σ |Q = id. Then the difference ring (Q(x)[s], σ ) with σ(s) = s + 1

x+1 defined in
Example 7 is an S-extension of (Q(x), σ ) and s is an S-monomial over (Q(x), σ ).

For an APS-extension (E, σ ) of a difference ring (A, σ ) we will also write
E = A〈t1〉 . . . 〈te〉. Depending on whether ti with 1 ≤ i ≤ e is an A-monomial,
a P -monomial or an S-monomial, G〈ti〉 with G = A〈t1〉 . . . 〈ti−1〉 stands for the
algebraic ring extension G[ti] with tνi for some ν > 1, for the ring of Laurent
polynomials G[t1, t−1

1 ] or for the polynomial ring G[ti], respectively.
For such a tower of APS-extensions we can use the following lemma itera-

tively to construct an evaluation function; for the corresponding proofs see [118,
Lemma 5.4].

Lemma 2 Let (A, σ ) be a difference ring with a subfield K ⊆ A where σ |K = id
that is equipped with an evaluation function ev : A× Z≥0 → K and o-function L.
Let (A〈t〉, σ ) be an APS-extension of (A, σ ) with σ(t) = α t + β (α = 1, β ∈ A
or α ∈ A∗, β = 0). Further, suppose that ev(σ−1(α), n) �= 0 for all n ≥ μ for some
μ ∈ Z≥0. Then the following holds.

1. Take l ∈ Z≥0 with l ≥ max(L(σ−1(α), L(σ−1(β)), μ); if tλ = 1 for some λ > 1
(t is an A-monomial), set l = 1. Then ev′ : A〈t〉 × Z≥0 → K given by

ev′(
b∑

i=a

fi t
i , n) =

b∑
i=a

ev(fi, n) ev′(t, n)i ∀n ∈ Z≥0 (15)

with fi ∈ A for a ≤ i ≤ b and6

ev′(t, n) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n∏
i=l

ev(σ−1(α), i) if σ(t) = α t

n∑
i=l

ev(σ−1(β), i) if σ(t) = t + β

(16)

is an evaluation function for (A〈t〉, σ ).
2. There is an o-function L′ : A〈t〉 → Z≥0 for ev′ defined by

L′(f ) =
{
L(f ) if f ∈ A,

max(l − 1, L(fa), . . . , L(fb)) if f =∑b
i=a fi t

i /∈ A〈t〉 \A.

(17)

Example 11 In Example 7 we followed precisely the construction (1) of the above
lemma to construct for (Q(x)[s], σ ) an evaluation function. For this ev we can

6If t is an A-monomial, we have ev(t, n) = αn.
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now apply also the construction (2) to enhance the o function L : Q(x) → Z≥0
(given in Example 8 with v = 0) to L : Q(x)[s] → Z≥0 by setting L(f ) =
max(0, L(f0), . . . , L(fb)) for f =∑b

i=0 fis
i .

More precisely, the main idea is to apply the above lemma iteratively to extend
the evaluation function ev from A to E. However, if one wants to treat, e.g., the next
P -monomial t with σ(t)

t
= α ∈ E∗, one has to check if there is a μ ∈ Z≥0 such that

ev(σ−1(α), n) �= 0 holds for all n ≥ μ. So far, we are not aware of a general
algorithm that can accomplish this task. In order to overcome these difficulties,
we will restrict APS-extensions further to a subclass which covers all summation
problems that we have encountered in concrete problems so far.

Let G be a multiplicative subgroup of A∗. Following [116, 118] we call

{G}EA := {h t
m1
1 . . . tme

e |h ∈ G and mi ∈ Z where mi = 0 if ti is an S-monomial}

the simple product group over G and

[G]EA := {h t
m1
1 . . . tme

e |h ∈ G and mi ∈ Z where mi = 0 if ti is an AS-monomial}

the basic product group over G for the nested APS–extension (E, σ ) of (A, σ ).
Note that we have the chain of subgroups [G]EA ≤ {G}EA ≤ E∗. In the following
we will restrict ourselves to the following subclass of APS-extensions.

Definition 9 Let (A, σ ) be a difference ring and let G be a subgroup of A∗. Let
(E, σ ) be an APS-extension of (A, σ ) with E = A〈t1〉 . . . 〈te〉.
1. The extension is called G-basic if for any P -monomial ti we have σ(ti )

ti
∈

[G]A〈t1〉...〈ti−1〉
A and for any A-mon. ti we have αi = σ(ti )

ti
∈ G with σ(αi) = αi .

2. It is called G-simple if for any AP -monomial ti we have σ(ti )
ti

∈ {G}A〈t1〉...〈ti−1〉
A .

If G = A∗, it is also called basic (resp. simple) instead of A∗-basic (resp. A∗-
simple).

By definition any simple APS-extension is also a basic APS-extension. We will
start with the more general setting of simple extensions, but will restrict later mostly
to basic extensions. For both cases we can supplement Lemma 2 as follows.

Lemma 3 Let (A, σ ) be a difference ring with a subfield K ⊆ A where σ |K =
id that is equipped with an evaluation function ev and o-function L. Let G be a
subgroup of A∗ and let (A〈t〉, σ ) be an APS-extension of (A, σ ) with σ(t) =
α t + β with α ∈ G and β ∈ A. Suppose that there is in addition a z-function for ev
and G. Take l ∈ Z≥0 with

l ≥
{

max(L(σ−1(α)), Z(σ−1(α))) if t is an AP -monomial

L(σ−1(β)) if t is an S-monomial.
(18)
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Then we obtain an evaluation function ev′ and o-function L′ for (A〈t〉, σ ) as given

in Lemma 2. In addition, we can construct a z-function Z′ for {G}A〈t〉
A . If ev, L and

Z are computable, ev′, L′ and Z′ are computable.

Proof For r as defined in (18) the assumptions in Lemma 2 are fulfilled and the
ev′ with L′ defined in the lemma yield an evaluation function together with an o-

function. If t is an S-monomial, {G}A〈t〉
A = G and we can set Z′ := Z. Otherwise,

if t is an AP -monomial, we have ev′(t, n) �= 0 for all n ∈ Z≥0 by construction.

Thus for f = g tm ∈ {G}A〈t〉
A with g ∈ G and m ∈ Z we have ev(f, n) �= 0 for all

n ≥ Z(g). Thus we can define Z′(f ) = Z(g). If L and Z are computable, also L′
and Z′ are computable. In addition, if we can compute ev, then clearly also ev′ is
computable. *,

In general, suppose that we are given a difference ring (A, σ ) with a subfield
K ⊆ A where σ |K = id. Assume in addition that we are given a (computable)
evaluation function ev : A×Z≥0 → K together with a (computable) o-function L :
A → Z≥0 and a (computable) z-function Z : A∗ → Z≥0. Furthermore, suppose
that we are given a simple APS-extension (E, σ ) of (A, σ ) with E = A〈t1〉 . . . 〈te〉.
Then we can apply iteratively Lemmas 2 and 3 and get a (computable) evaluation
function ev : E × Z≥0 → K together with a (computable) o-function L : E →
Z≥0 and a (computable) z-function for {A∗}A〈t1〉...〈te〉

A ; note that {{A∗}HA}
H〈ti 〉
H =

{A∗}H〈ti 〉
A for all H = A〈t1〉 . . . 〈ti−1〉 with 1 ≤ i < e.

It is natural to define the evaluation function iteratively using Lemma 2 but it is
inconvenient to compute the o-function in this iterative fashion. Here the following
lemma provides a shortcut for expressions which are given in reduced representa-
tion; for the corresponding representation in SumProd(G) see Definition 2.

Definition 10 Let (E, σ ) be an APS-extension of (A, σ ) with E = A〈t1〉 . . . 〈te〉.
Then we say that f ∈ E is in reduced representation if it is written in the form

f =
∑

(m1,...,me)∈S
f(m1,...,me)t

m1
1 . . . tme

e (19)

with f(m1,...,me) ∈ A and S ⊆ M1 × · · · ×Me finite where

Mi =

⎧⎪⎪⎨
⎪⎪⎩
{0, . . . , νi − 1} if ti is an A-extension of order νi,

Z if ti is a P -monomial,

Z≥0 if ti is an S-monomial.

Lemma 4 Take a difference ring (A, σ ) with a subfield K ⊆ A where σ |K = id
that is equipped with an evaluation function ev : A × Z≥0 → K together with
an o-function L and z-function Z. Let (E, σ ) with E = A〈t1〉 . . . 〈te〉 be a simple
APS-extension of (A, σ ) and let ev be an evaluation function and Z be a z-function
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(using iteratively Lemmas 2 and 3). Here the li ∈ Z≥0 for 1 ≤ i ≤ e are the lower
bounds of the corresponding sums/products in (16) with t = ti . Then for any f ∈ E
with (19) where f(m1,...,me) ∈ E and S ⊆ Ze we have

L(f ) = max(max
s∈S L(fs), max

j∈sup(f )
lj − 1)

where sup(f ) = {1 ≤ j ≤ e | tj depends on f }.
Proof We show the statement by induction on e. If e = 0, the statement holds
trivially. Now suppose that the statement holds for e ≥ 0 extensions and let
f ∈ E〈te+1〉 with E = G〈t1〉 . . . 〈te〉 where f = ∑b

i=a fi t
i
e+1 with fi ∈ E. If

f ∈ E, then the statement holds by the induction assumption. Otherwise write
fi = ∑

(s1,...,se)∈Si f
(i)
s1,...,se t

s1
1 . . . t

se
e with Si ⊆ Ze and f

(i)
s for s ∈ Si in reduced

representation. In particular, we get f = ∑
(s1,...,se+1)∈S h(s1...,se+1)t

s1
1 . . . t

se+1
e+1 with

h(s1...,se+1) = f
(se+1)

(s1,...,se)
and S = ∪a≤i≤b{(s1, . . . , se, i) | (s1, . . . , se) ∈ Si}. Then by

the induction assumption we get L(fi) = max(maxs∈Si L(f
(i)
s ),maxj∈sup(fi ) lj −

1). Thus by the definition in (17) we get

L(f ) = max( max
a≤i≤b L(fi), le+1 − 1)

= max(max
s∈Sa

L(f (a)
s ), max

s∈Sa+1
L(f (a+1)

s ), . . . ,max
s∈Sb

L(f (b)
s ), max

j∈sup(f )
lj − 1)

= max(max
s∈S L(hs), max

j∈sup(f )
lj − 1). *,

Utilizing the above constructions with A := G, we are now ready to show
in Lemmas 5 and 6 given below that the representations in SumProd(G) and in
a basic APS-extension are closely related. Their proofs are rather technical (but
not very deep). Still we will present all the details, since this construction will
be crucial for further refinements. This will finally lead to a strategy to solve
Problem SigmaReduce.

Lemma 5 Take the difference field (G, σ ) with G ∈ {Gr ,Gb,Gm} with the
evaluation function ev, o-function L and z-function Z from Example 8. Let (E, σ )

with E = G〈t1〉 . . . 〈te〉 be a basic APS-extension of (G, σ ) and let ev, L and Z be
extended versions for (E, σ ) (using Lemmas 2 and 3). Then for each 1 ≤ i ≤ e

one can construct Ti ∈ &#(G) in sum-product reduced representation with
ev(ti , n) = Ti(n) for all n ≥ L(ti). In particular, if f ∈ E \ {0}, then there is
0 �= F ∈ SumProd({T1, . . . , Te},G) with F(n) = ev(f, n) for all n ≥ L(f ).
If K is computable and polynomials can be factored over K, all components can be
computed.

Proof First suppose that we can construct such Ti ∈ &#(G) with Ti(n) = ev(ti , n)
for all n ≥ L(ti) and 1 ≤ i ≤ e. Now take f ∈ E in reduced representation, i.e.,
it is given in the form (19) with S ⊆ Ze. Now replace each f(m1,...,me) · tm1

1 . . . t
me
e
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by f(m1,...,me) 1 (T1
�∧m1)1 · · · 1 (Te

�∧me) and replace + by ⊕ in f yielding F ∈
SumProd(G) in reduced representation. Then for each n ≥ L(f ) we get

ev(f, n) = ev(
∑

(m1,...,me)∈S
f(m1,...,me)t

m1
1 . . . tme

e , n)

=
∑

(m1,...,me)∈S
ev(f(m1,...,me), n) ev(t1, n)

m1 . . . ev(te, n)
me

=
∑

(m1,...,me)∈S
ev(f(m1,...,me), n) ev(T1, n)

m1 . . . ev(Te, n)
me

= ev(F, n).

(20)

Note: if f �= 0, we can find (m1, . . . , me) ∈ S with f(m1,...,me) ∈ G∗ which implies
that F �= 0. This shows the second part of statement (1).
Finally we show the existence of the Ti by induction on e. For e = 0 nothing has
to be shown. Suppose that the statement holds for e ≥ 0 extensions and consider
the APS-monomial te+1 over E = G〈t1〉 . . . 〈te〉. By assumption we can take
Ti ∈ SumProd(G) in sum-product reduced representation with Ti(n) = ev(ti , n)
for all n ≥ L(ti) and 1 ≤ i ≤ e. Now consider the APS-monomial te+1 with
σ(te+1) = α te+1+β. By assumption we have (16) (ev′ replaced by ev) with l ∈ Z≥0
where (18) and L is defined by (17) (L′ replaced by L). In particular, we have
l ≥ max(L(σ−1(α)), L(σ−1(β)), μ) with μ ≥ Z(σ−1(α)), and L(te+1) = l − 1.

A-monomial Case If te+1 is an A-monomial, we have σ(te+1) = α te+1 with α ∈
R. In particular, we have ev(te+1, n) = αn. Thus we set Te+1 = RPow(α) and get
ev(te+1, n) = Te+1(n) for all n ≥ L(te+1) = 0.

S-Monomial Case If te+1 is an S-monomial, we have σ(te+1) = te+1 + β with
β ∈ E. Now take f = σ−1(β) in reduced representation. Then by construction
l ≥ max(L(σ−1(β)), 0) = L(f ). Further, we can take F ∈ SumProd(G) as
constructed above with (20) for all n ≥ l ≥ L(f ). Thus for Te+1 = Sum(l, F )

we get ev(te+1, n) = Te+1(n) for all n ≥ l − 1 = L(te+1).

P -Monomial Case If te+1 is a P -monomial, we have σ(te+1) = α te+1 with
α ∈ [G]EG, i.e., α = g t

n1
1 . . . t

ne
e with g ∈ G∗ and n1, . . . , ne ∈ Z with ni = 0 if ti

is an AS-monomial. Thus f = σ−1(α) = h t
m1
1 . . . t

me
e with h := f(m1,...,me) ∈ G∗

and m1, . . . , me ∈ Z with mi = 0 if ti is an AS-monomial. By construction,
l ≥ max(L(f ), Z(f )) = max(L(f ), Z(h)). As above we get F = h1 (T1

�∧m1)1
· · · 1 (Te

�∧me) ∈ SumProd(G) such that ev(f, n) = F(n) holds for all n ≥ L(f )

and ev(f, n) = F(n) �= 0 for all n ≥ l. Thus for Te+1 = Prod(l, F ) ∈ Prod(G) we
get ev(te+1, n) = Te+1(n) for all n ≥ l − 1 = L(te+1).
We note that in the last two cases Te+1 is in sum-product reduced representation:
the arising sums and products in F are in sum-product reduced representation
by induction, F given by (20) is in reduced representation and we have l ≥
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maxk∈S L(fk) where l is larger than all the lower bounds of the sums and product
in F due to Lemma 4. This completes the induction step.
If K is computable and one can factorize polynomials over K, the functions Z and
L are computable and thus all the ingredients can be computed. *,

Definition 11 Given (G, σ ) where G ∈ {Gr ,Gb,Gm} with ev, L and Z from
Example 8, let (E, σ ) be a basic APS-extension with an evaluation function ev
together with L and Z given by iterative application of Lemmas 2 and 3. Let a ∈
E be in reduced representation. Then following the construction of Lemma 5 one
obtains A ∈ SumProd(G) in sum-product reduced representation with A(n) =
ev(a, n) for all n ≥ L(a). The derived A is also called the canonical induced sum-
product expression of a w.r.t. (A, σ ) and ev and we write expr(a) := A.

Example 12 (Cont. of Example 7) For a = x + x+1
x

s4 ∈ Q(x)[s] with our
evaluation function ev we obtain the canonical induced sum-product expression

expr(a) = A = x ⊕
(
x+1
x
1 (Sum(1, 1

x
)�∧ 4)

)
∈ Sum(Q(x))

with A(n) = ev(a, n) for all n ≥ 1.

Lemma 6 Take the difference field (G, σ ) with G ∈ {Gr ,Gb,Gm} with the
evaluation function ev, o-function L and z-function Z from Example 8. Let (H, σ )

be a basic APS-extension of (G, σ ) and let ev, L and Z be extended versions for
(H, σ ) (using Lemmas 2 and 3). Let A ∈ SumProd(G). Then there is an APS-
extension (E, σ ) of (H, σ ) which forms a basic APS-extension of (G, σ ) together
with the extended functions ev, L and Z (using Lemmas 2 and 3) in which one can
model A by a ∈ E: i.e., ev(a, n) = A(n) holds for all n ≥ δ for some δ ∈ Z≥0.
If K is computable and one can factorize polynomials over K, all the ingredients
can be computed.

Proof We prove the lemma by induction on the depth of the arising sums (Sum)
and products (Prod and RPow) in A ∈ SumProd(G). If no sums and products arise
in A, then A ∈ G and the statement clearly holds. Now suppose that the statement
holds for all expressions with sums/products whose depth is smaller than or equal to
d ≥ 0. Take all products and sums T1, . . . , Tr ∈ &#(G) that arise in A. We proceed
stepwise for i = 1, . . . , r with the starting field H. Suppose that we have constructed
an APS-extension (A, σ ) of (H, σ ) which forms a basic APS-extension of (G, σ ).
Suppose in addition that we are given an extended evaluation function ev, o-function
L and z-function Z function (using Lemmas 2 and 3) in which we find b1, . . . , bi−1
with ev(bj , n) = Tj (n) for all n ≥ L(bj ) and all 1 ≤ j < i. Now we consider Ti .
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Bookkeeping7 If Ti has been treated earlier (i.e., by handling sums and products of
depth ≤ d), we get bi ∈ A with ev(bi, n) = Ti(n) for all n ≥ L(ai).

RPow-Case If Ti = RPow(α), we take the A-extension (A〈t〉, σ ) of (A, σ ) with
σ(t) = αt of order ord(α) and extend ev to A〈t〉 by ev(t, n) = αn. Further, we
extend L : A〈t〉 → Z≥0 with (17) and get L(t) = 0. Thus we can take bi = t and
get ev(bi, n) = Ti(n) for all n ≥ L(bi) = 0.

Otherwise, we can write Ti = Sum(λ,H) or Ti = Prod(λ,H) where the sums
and products in H ∈ SumProd(G) have depth at most d. By assumption we can
construct an APS-extension (A′, σ ) of (A, σ ) which is a basic APS-extension of
(G, σ ) and we can extend ev, L and Z (using Lemmas 2 and 3) and get h ∈ A′ with
ev(h, n) = H(n) for all n ≥ δ for some δ ∈ Z≥0 with δ ≥ L(h).

Sum-Case If Ti = Sum(λ,H), we take the S-extension (A′〈t〉, σ ) of (A′, σ ) with
σ(t) = t + σ(h). In addition, we extend ev to A′〈t〉 by ev(t, n) = ∑n

k=l ev(h, k)
with l = max(δ, λ); note that (18) is satisfied. Further, we extend L : A′〈t〉 → Z≥0

with (17) and get L(t) = l − 1. Finally, we set c =∑l−1
k=λ H(k) ∈ K. Then we get

bi = t + c with ev(bi, n) =∑n
k=λ H(k) = ev(Sum(λ,H), n) for all n ≥ L(bi) =

l − 1.

Product-Case If Ti = Prod(λ,H), we take the P -extension (A′〈t〉, σ ) of (A′, σ )
with σ(t) = σ(h)t . In addition we extend ev to A′〈t〉 by ev(t, n) = ∏n

k=l ev(h, k)
with l = max(L(h), Z(h), λ); note that (18) is satisfied. Further, we extend L :
A′〈t〉 → Z≥0 with (17) and get L(t) = l − 1. Thus we can take bi = c t with
c = ∏l−1

k=λ H(k) ∈ K∗ (the product evaluation is nonzero by assumption of #(G))
and get ev(bi, n) =∏n

k=λ H(k) = ev(Prod(λ,H), n) for all n ≥ L(bi) = l − 1.

In all three cases we can follow Lemma 3 and extend the z-function accordingly.
After carrying out the steps i = 1, . . . , r we get a basic APS-extension (E, σ )

of (H, σ ) together with an evaluation function ev, o-function L and z-function Z

(using Lemmas 2 and 3) and b1, . . . , br such that Ti(n) = ev(bi, n) holds for all
1 ≤ i ≤ r and n ≥ L(bi). Finally, let f1, . . . , fs ∈ G be all arising elements in A

(that do not arise within Prod and Sum). Define δ = max(L(f1), . . . , L(fs)) ∈ Z≥0.
Then for each n ∈ Z≥0 with n ≥ δ we have that ev(A, n) can be carried out without
catching poles in the second case of (5). Now replace each Ti with 1 ≤ i ≤ r

in A by bi and replace ⊕,1,�∧ by +, ·, and ˆ, respectively. This yields a ∈ E
which we can write in reduced representation. Note that in a some fk remain and
others are combined by putting elements over a common denominator which lies in
K[x, x1, . . . , xv] (or in K[x1, . . . , xv]). Further, some factors of the denominators
might cancel. Thus L(a) ≤ δ. In particular, when carrying out the evaluations
ev(a, n) and ev(A, n) for n ≥ δ no poles arise and thus by the homomorphic

7This step is not necessary for the proof, but avoids unneccesary copies of APS-monomials. When
we refine this construction later, this step will be highly relevant.
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property of the evaluation it follows that ev(a, n) = ev(A, n) for all n ≥ δ. This
completes the induction step.
If K is computable and one can factorize polynomials over K, then the z- and o-
function for G are computable. Thus all the components of the iterative construction
(using Lemmas 2 and 3) are computable. *,

As consequence, we can establishe with Lemma 5 above and the following
corollary a 1-1 correspondence between basic APS-extensions and shift-stable sets
whose expressions are in sum-reduced representation.

Corollary 1 Let W = {T1, . . . , Te} ⊂ &#(G) be in sum-product reduced
representation and shift-stable. More precisely, for each 1 ≤ i ≤ e the arising
sums/products in Ti are contained in {T1, . . . , Ti−1}. Then there is a basic APS-
extension (E, σ ) of (G, σ ) with E = G〈t1〉 . . . 〈te〉 equipped with an evaluation
function ev (using Lemmas 2 and 3) such that Ti = expr(ti) ∈ &#(G) holds for
1 ≤ i ≤ e.

Proof We can treat the elements T1, . . . , Te following the construction of Lemma 6
iteratively. Let us consider the ith step with Ti = Sum(λ,H) or Ti = Prod(λ,H).
Since the Ti are in sum-product reduced form it follows from Lemma 4 that within
the sum-case (resp. product-case) we can guarantee l = λ, i.e, c = 0 (resp. c = 1).
Thus ev(ti , n) = Ti(n) for all n ≥ l and hence expr(ti) = Ti(n). *,
In addition, we can provide the following simple proof of Lemma 1.

Proof of Lemma 1 Let W = {T1, . . . , Te} ⊆ W be shift-stable and the Ti in sum-
product reduced form. Take F ∈ SumProd(W,G) and λ ∈ Z. W.l.o.g. we may
assume that the Ti are given as in Corollary 1. Thus we can take an APS-extension
(G〈t1〉 . . . 〈te〉, σ ) of (G, σ ) equipped with an evaluation function ev and o-function
L such that expr(ti) = Ti for 1 ≤ i ≤ e. Then we can take f ∈ E with (19) and get
F(n+ λ) = ev(F, n+ λ) = ev(σλ(ti), n) = G(n) for all n ∈ L(f )+max(0,−λ)

with G(n) := expr(σλ(ti)) ∈ SumProd(W,G). Thus W is shift-closed. If K is
computable and one can factor polynomials over K, then one can compute the o-
function L and all the above components are computable. *,
In short, the naive construction of APS-extensions will not gain any substantial
simplification (except a transformation to a sum-product reduced representation). In
the next section we will refine this construction further to solve Problem SigmaRe-
duce.

3.2 The Embedding into the Ring of Sequences
and R�	-Extensions

Let (A, σ ) be a difference ring with a subfield K ⊆ A where σ |K = id that
is equipped with an evaluation function ev : A × Z≥0 → K. Then ev naturally

produces sequences in the commutative ring KZ≥0 with the identity element 1 =
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(1, 1, 1, . . . ) with component-wise addition and multiplication. More precisely, we
can define the function τ : A→ KZ≥0 with

τ(f ) = (ev(f, n))n≥0 = (ev(f, 0), ev(f, 1), ev(f, 2), . . . ). (21)

Due to (12) and (13) the map τ can be turned to a ring homomorphism by defining
the equivalence relation (fn)n≥0 ≡ (gn)n≥0 with fj = gj for all j ≥ λ for some
λ ∈ Z≥0; compare [93]. It is easily seen that the set of equivalence classes [f ] with

f ∈ KZ≥0 forms with [f ]+[g] := [f+g] and [f ][g] := [fg] again a commutative
ring with the identity element [1] which we will denote by S(K). In the following
we will simply write f instead of [f ]. In this setting, τ : A → S(K) forms a ring
homomorphism. In addition the shift operator S : S(K)→ S(K) defined by

S((a0, a1, a2, . . . )) = (a1, a2, a3, . . . )

turns to a ring automorphism. In the following we call (S(K), S) also the (differ-
ence) ring of sequences over K. Finally, we observe that property (14) implies that

τ(σ (f )) = S(τ(f )) (22)

holds for all f ∈ A, i.e., τ turns to a difference ring homomorphism. Finally,
property (11) implies

τ(c) = c = (c, c, c, . . . ) (23)

for all c ∈ K. In the following we call a ring homomorphism τ : A → S(K)

with (22) and (23) also a K-homomorphism.
We can now link these notions to our construction from above with G ∈

{Gr ,Gb,Gm}. Let (E, σ ) with E = G〈t1〉 . . . 〈te〉 be a basic APS-extension of
(G, σ ) and take an evaluation function ev : E×Z≥0 → K with o-function L. Such
a construction can be accomplished by iterative application of Lemmas 2 and 3.
Then the function τ : E→ A with (21) for f ∈ E yields a K-homomorphism.

If we find two different elements a, b ∈ E with τ(a) = τ(b), then we find
two different sum-product reduced representations expr(a) and expr(b) in terms of
the sums and products given in W = {expr(t1), . . . , expr(te)} ⊆ &#(G) which
evaluates to the same sequence. In short, W is not canonical reduced (and thus not
σ -reduced) over G. This shows that a solution of Problem SigmaReduce can be
only accomplished if τ is injective.

In this context, the set of constants plays a decisive role.

Definition 12 For a difference ring (A, σ ) the set of constants is defined by
constσA = {c ∈ A | σ(c) = c}.
In general, constσA is a subring of A. If A is a field, then constσA itself is a field
which one also calls the constant field of (A, σ ).
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With this extra notion we can state now the following remarkable property that
is based on results from [118]; compare also [126].

Theorem 1 Let (E, σ ) be a basic APS-extension of a difference field (F, σ ) with
K = constσF and let τ be a K-homomorphism. Then τ is injective iff constσ
E = K.

Proof Suppose that constσE = K. By Theorem [118, Thm 3.3] it follows that
(E, σ ) is simple (i.e., the only difference ideals in E are {0} or E) and thus by
[118, Lemma 5.8] we can conclude that τ is injective. Conversely, if τ is injective,
it follows by [118, Lemma 5.13] that constσE = K. *,
This result gives rise to the following refined definition of PS-field/APS-
extensions.

Definition 13 Let (F, σ ) be a PS-field extension of (H, σ ) as defined in Defini-
tion 7. Then this is called a #&-field extension if constσF = constσH. The arising
P -field and S-field monomials are also called #-field and &-field monomials,
respectively. In particular, we call it a #-/&-/#&-field extension if it is built by
the corresponding monomials. (F, σ ) is called a #&-field over K if (F, σ ) is a
#&-field extension of (K, σ ) and constσK = K.

Example 13 As mentioned in Examples 8 and 9, the difference fields (Gr , σ ),
(Gb, σ ) and (Gm, σ) are PS-field extensions of (K, σ ). Using the technologies
given in Theorems 5 and 10 below one can show that they are all #&-field
extensions. Since constσK = K, they are also #&-fields over K; compare
also [83].

Definition 14 Let (E, σ ) be an APS-extension of (A, σ ) as defined in Definition 8.
Then this is called an R#&-extension if constσE = constσA. The arising A-
monomials are also called R-monomials, the P -monomials are called #-monomials
and the S-monomials are called &-monomials. In particular, we call it an R-/#-/&-
/R#-/R&/-#&-extension if it is built by the corresponding monomials.

Example 14 (Cont. of Example 10) Consider the difference ring (Q(x)[s], σ ) from
Example 10. Since ev : Q(x)[s] → Q defined by (9) and (10) (with ev′ = ev)
is an evaluation function of (Q(x)[s], σ ) we can construct the Q-homomorphism
τ : Q(x)[s] → S(Q) defined by (21). Since s is a &-monomial over Q(x), we get
constσQ(x)[s] = Q. Thus we can apply Theorem 1 and it follows that

τ(Q(x))[τ(s)] = τ(Q(x))[(ev(s, n))n≥0] = τ(Q(x))[(S(n))n≥0]

with S = expr(s) = Sum(1, 1
x
) ∈ &(Q(x)) is isomorphic to the polynomial ring

Q(x)[s]. Further, (S(n))n≥0 with S(n) =∑n
k=1

1
k

is transcendental over τ(Q(x)).

Example 14 generalizes as follows. Suppose that we are given a basic R#&-
extension (E, σ ) of (G, σ ) with

G[ρ1] . . . [ρl][p1, p
−1
1 ] . . . [pu, p

−1
u ][s1] . . . [sr ]
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where the ρi are R-monomials with ζi = σ(ρi )
ρi

∈ R being primitive roots of unity,
pi are #-monomials and the si are &-monomials. In addition, take an evaluation
function ev with o-function L by iterative applications of Lemmas 2 and 3. Here we
may assume that

• ev(ρi, n) = ζ ni for all 1 ≤ i ≤ l,
• ev(pi, n) = Pi(n) with expr(pi) = Pi ∈ #(G) for all 1 ≤ i ≤ u, and
• ev(si, n) = Si(n) with expr(si) = Si ∈ &(G) for all 1 ≤ i ≤ r .

Then τ : E → S(K) with (21) is a K-homomorphism. By Theorem 1 it follows
that τ is injective and thus

τ(E) = τ(G) [τ(ρ1)] . . . [τ(ρl)]
×[τ(p1), τ (p1)

−1] . . . [τ(pu), τ (pu)
−1]

×[τ(s1)] . . . [τ(sr )]
= τ(G) [(ζ n1 )n≥0] . . . [(ζ nl )n≥0]

×[(P1(n))n≥0, (
1

P1(n)
)n≥0] . . . [(Pu(n))n≥0, (

1
Pu(n)

)n≥0]
×[(S1(n))n≥0] . . . [(Sr(n))n≥0]

forms a (Laurent) polynomial ring extension over the ring of sequences R =
τ(G)[(ζ n1 )n≥0] . . . [(ζ nl )n≥0]. In particular, we conclude that the sequences

(P1(n))n≥0, (
1

P1(n)
)n≥0, . . . (Pu(n))n≥0, (

1
Pu(n)

)n≥0, (S1(n))n≥0, . . . , (Sr (n))n≥0

are, up to the trivial relations (Pi(n))n≥0·( 1
Pi(n)

)n≥0 = 1 for 1 ≤ i ≤ u, algebraically
independent among each other over the ring R.

We are now ready to state the main result of this section that connects
SumProd(G) with difference ring theory.

Theorem 2 Let (E, σ ) be a basic APS-extension of (G, σ ) with G ∈
{Gr ,Gb,Gm} and A = E〈t1〉 . . . 〈te〉 equipped with an evaluation function
ev : E × Z≥0 → K (using Lemmas 2 and 3). Take the K-homomorphism
τ : E → S(K) with τ(f ) = (ev(f, n))n≥0 and Ti = expr(ti) ∈ &#(G) for
1 ≤ i ≤ e. Then the following statements are equivalent.

1. (E, σ ) is an R#&-extension of (G, σ ).
2. τ is a K-isomorphism between (E, σ ) and (τ (E), S); in particular all sequences

generated by the #&-monomials are algebraically independent over the ring
given by the sequences of τ(G) adjoined with the sequences generated by R-
monomials.

3. W = {T1, . . . , Te} is canonical-reduced over G.
4. The zero recognition problem is trivial, i.e., for any F ∈ SumProd(W,G) the

following holds: F = 0 if and only if ev(F, n) = 0 for all n ≥ δ for some
δ ∈ Z≥0.
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Proof (1)⇔ (2) is an immediate consequence of Theorem 1.
(2)⇒ (3): Let F,F ′ ∈ SumProd(W,G) with F(n) = F ′(n) for all n ≥ δ for some
δ ∈ Z≥0. Replace in F,F ′ any occurrences of Ti�∧ zi for 1 ≤ i ≤ e with zi ∈ Z
by t

zi
i , ⊕ by +, and 1 by ·. This yields f, f ′ ∈ E with ev(f, n) = F(n) for all

n ≥ L(f ) and ev(f ′, n) = F ′(n) for all n ≥ L(f ′). Hence τ(f ) = τ(f ′). Since
τ is injective, f = f ′. But this implies that F and F ′ are the same up to trivial
permutations of the operands in 1 and ⊕. Consequently W is canonical reduced.
(3) ⇒ (4): Suppose that W is canonical reduced and take F ∈ SumProd(W,G)

with F(n) = 0 for all n ≥ δ for some δ ∈ Z≥0. Since ev(0, n) = 0 for all n ≥ 0 and
W is canonical reduced, it follows that F = 0.
(4) ⇒ (1): Suppose that τ is not injective and take f ∈ E \ {0} with τ(f ) = 0.
By Lemma 5 we can take 0 �= F ∈ SumProd({T1, . . . , Te},G) and δ ∈ Z≥0 with
ev(f, n) = F(n) = 0 for all n ≥ δ. Thus statement (4) does not hold. *,

In order to derive the equivalences in Theorem 2 we assumed that an APS-
extension is given. We can relax this assumption if the set W is shift-stable.

Corollary 2 Let W = {T1, . . . , Te} ⊂ &#(G) be in sum-product reduced
representation and shift-stable. More precisely, for each 1 ≤ i ≤ e the arising
sums/products in Ti are contained in {T1, . . . , Ti−1}. Then the following two
statements are equivalent:

1. There is a basic R#&-extension (E, σ ) of (G, σ ) with E = G〈t1〉 . . . 〈te〉
equipped with an evaluation function ev (using Lemmas 2 and 3) with Ti =
expr(ti) ∈ &#(G) for 1 ≤ i ≤ e.

2. W = {T1, . . . , Te} is σ -reduced over G.

Proof (1) ⇒ (2): By assumption W is sum-product reduced and shift-stable, and
by (1)⇒ (3) of Theorem 2 it is canonical-reduced. Thus W is σ -reduced.
(2) ⇒ (1): By Corollary 1 we get an APS-extension (E, σ ) of (G, σ ) with E =
G〈t1〉 . . . 〈te〉 equipped with an evaluation function ev (using Lemmas 2 and 3) with
Ti = expr(ti) ∈ &#(G) for 1 ≤ i ≤ e. Since W is canonical reduced, it follows by
(3)⇒ (1) of Theorem 2 that (E, σ ) is an R#&-extension of (G, σ ). *,

Corollary 2 yields immediately a strategy (actually the only strategy for shift-
stable sets) to solve Problem SigmaReduce.

Strategy to Solve Problem SigmaReduce

Given: A1, . . . , Au ∈ SumProd(G) with G ∈ {Gr ,Gb,Gm}, i.e., G =
K(x, x1, . . . , xv) or G = K(x1, . . . , xv).

Find: a σ -reduced set W = {T1, . . . , Te} ⊂ &#(G′) with B1 . . . , Bu ∈
SumProd(W,G′) and δ1, . . . , δu ∈ Z≥0 such that Ai(n) = Bi(n) holds for all
n ≥ δi and 1 ≤ i ≤ r .
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1. Construct an R#&-extension (E, σ ) of8 (G′, σ ) with E = G′〈t1〉 . . . 〈te〉
equipped with an evaluation function ev : E × Z≥0 → K′ and o-function L

(using Lemmas 2 and 3) in which A1, . . . , Au are modeled by a1, . . . , au ∈ E.
More precisely, for 1 ≤ i ≤ u we compute in addition δi ∈ Z≥0 with δi ≥ L(ai)

such that

Ai(n) = ev(ai, n) ∀n ≥ δi . (24)

2. Set W = {T1, . . . , Te} with Ti := expr(ti) ∈ &#(G′) for 1 ≤ i ≤ e.
3. Set Bi := expr(ai) ∈ SumProd(W,G′) for 1 ≤ i ≤ u.
4. Return W , (B1, . . . , Bu) and (δ1, . . . , δu).

What remains open is to enrich this general method with the construction required
in step (1). This task will be considered in detail in the next section.

4 The Representation Problem

In this section we will give an overview of the existing algorithms that assist in
the task of solving the open subproblem given in step (1) of our general method
SigmaReduce. The resulting machinery can be summarized as follows.

Theorem 3 Given A1, . . . , Au ∈ SumProd1(G) with G ∈ {Gr ,Gb,Gm} where K
is a rational function field over an algebraic number field. Then one can compute a
σ -reduced set W = {T1, . . . , Te} ⊂ &#1(G) with B1 . . . , Bu ∈ SumProd(W,G)

and δ1, . . . , δu ∈ Z≥0 such that Ai(n) = Bi(n) holds for all n ≥ δi and 1 ≤ i ≤ u.

Theorem 4 Given A1, . . . , Au ∈ SumProd(K(x)) where K = A(y1, . . . , yo) is a
rational function field over an algebraic number field A. Then one can take K′ =
A′(y1, . . . , yo) where A′ is an algebraic extension of A and can compute a σ -
reduced set W = {T1, . . . , Te} ⊂ &#(K′(x)) with B1 . . . , Bu ∈ SumProd(W,G′)
and δ1, . . . , δu ∈ Z≥0 such that Ai(n) = Bi(n) holds for all n ≥ δi and 1 ≤ i ≤ u.

Here we will start with the problem to represent products in R#-monomials (see
Sect. 4.1). More precisely, we will show various tactics that enable one to represent
expressions of Prod1(Gr ), Prod1(Gb), Prod1(Gm) and Prod(Gr ). Afterwards,
we will consider the problem to represent nested sums over such products (i.e.,
expressions of Sum(G), SumProd1(Gr ), SumProd1(Gb), SumProd1(Gm) and
SumProd(Gr )) in &-monomials (see Sect. 4.2).

8Here we get G′ = K′(x, x1, . . . , xv) or G′ = K′(x1, . . . , xv) where K′ is a field extension of K;
if A1, . . . , Au ∈ SumProd1(G), one can restrict to the special case G = G′.
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Remark 2 Sigma can represent fully algorithmically single nested products in
R#-extensions; in addition, Ocansey’s package NestedProducts [83, 84] can
deal with the case Prod(Gr ). Expressions from more general domains (e.g., sums
and products that arise nontrivially in denominators) also work with the function
call SigmaReduce of Sigma. But for these cases the underlying summation
mechanisms (like those given in Lemmas 5 and 6) are only partially developed and
the back translation from the difference ring setting to the term algebra might fail.

In general, it suffices in our proposed construction to compute an R#&-
extension in which a finite set of sums and products are modeled. However, in some
important instances it is possible to perform this constructions stepwise.

Definition 15 Fix X as one of the term algebras Prod1(G), Prod(G), Sum(G),
SumProd1(G), SumProd(G), and let D be a subclass of basic R#&-extensions of
(G, σ ). Then D is called X-extension-stable if for any (H, σ ) ∈ D and any A ∈ X

one can construct an R#&-extension (E, σ ) of (H, σ ) with (E, σ ) ∈ D and a ∈ E
such that one can model A with a.

We note that within such an extension-stable class of R#&-extensions one does not
have to treat the arising sums and products in one stroke, but can consider them
iteratively. This is in particular interesting, when unforeseen sums and products
arise in a later step, that have to be considered in addition. In a nutshell, we will
provide a general overview of the existing tools to design basic R#&-extensions. In
particular, we will emphasize the available algorithms to construct extension-stable
versions.

4.1 Representation of Products in R�-Extensions

We start with algorithmic tools that enable one to test if a P -extension forms a
#-extension. Based on these tools we present (without further details) the existing
techniques to represent a finite set of products in an R#-extension.

4.1.1 Algorithmic Tests

In [109, Theorem 9.1] based on Karr’s work [65, 66] a general criterion for #-field
extensions is elaborated. Here we present a more flexible version in the ring setting.

Theorem 5 Let (E, σ ) be a P -extension of a difference ring (H, σ ) with E =
H〈t1〉 . . . 〈td〉 and fi = σ(ti )

ti
∈ H∗ for 1 ≤ i ≤ d. Suppose that

{g ∈ H \ {0} | σ(g) = u g for some u ∈ H∗} ⊆ H∗ (25)
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holds. Then the following statements are equivalent:

1. (E, σ ) is a #-extension of (H, σ ), i.e., constσE = constσH.
2. There do not exist g ∈ H \ {0} and (z1, . . . , zd) ∈ Zd \ {0} with

σ(g) = f
z1
1 . . . f

zd
d g.

Proof (1) ⇒ (2): Suppose that there is a g ∈ H \ {0} and (z1, . . . , zd) ∈ Zd \ {0}
with σ(g) = f

z1
1 . . . f

zd
d g. Let i be maximal such that zi �= 0. Then we can take

h = g f
−z1
1 . . . f

−zi−1
i−1 and get σ(h) = f

zi
i h. With part (2) of Theorem 2.12 in [116]

it follows that (H〈t1〉 . . . 〈ti〉, σ ) is not a #-extension of (H〈t1〉 . . . 〈ti−1〉, σ ).
(2) ⇒ (1): Let i with 1 ≤ i ≤ d be minimal such that (H〈t1〉 . . . 〈ti〉, σ ) is
not a #-extension of (H〈t1〉 . . . 〈ti−1〉, σ ). Then σ(g) = α

zi
i g for some g ∈

H〈t1〉 . . . 〈ti−1〉 \ {0} and zi ∈ Z \ {0} by part (2) of Theorem 2.12 in [116]. In
particular, with property (25) we can apply Theorem 22 of [116] and it follows that
g = h t

−z1
1 . . . t

−zi−1
i−1 for some zi ∈ Z and h ∈ H∗. Thus we get σ(h) = α

z1
1 . . . α

zi
i h

with zi �= 0 which proves statement (1). *,
Remark 3

(1) Theorem 10 contains the following special case (see [66] for the field and [116]
for the ring case): a P extension (A〈p〉, σ ) of (A, σ ) with f := σ(p)

p
∈ A∗ is

a #-extension iff there are no g ∈ A, m ∈ Z \ {0} with σ(g) = f g.
(2) Often Theorem 5 is applied to the special case when the ground ring (H, σ )

forms a field. Note that in this particular instance, the assumption (25) trivially
holds.

Let (A, σ ) be a difference ring and f = (f1, . . . , fd) ∈ (A∗)d . Then we define

M(f ,A) := {(m1, . . . , md) ∈ Zd | σ(g) = f
m1
1 . . . f

md

d g for some g ∈ A \ {0}};

see also [65]. Note that Theorem 5 states that the P -extension (E, σ ) of the
difference ring (H, σ ) with E = H〈t1〉 . . . 〈td〉 and fi = σ(ti )

ti
∈ H∗ for 1 ≤ i ≤ d is

a #-extension if and only if M(f ,H) = {0}. If f ∈ ([F∗]HF )d (which holds for F∗-
basic P -extensions), this latter property can be checked by utilizing the following
result.

Theorem 6 Let (H, σ ) be a basic R#&-extension of a difference field (F, σ ) and
f ∈ ([F∗]HF )d . Then the following holds:

1. M(f ,H) is a Z-module over Zd .
2. If one can compute a basis of M(h,F) for any h ∈ (F∗)m with m ≥ 1, then one

can compute a basis of M(f ,H).

Proof Part (1) follows by Lemma 2.6 and Theorem 2.22 of [116] and part (2)
by [116, Theorem 2.23]. *,
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In other words, we can apply Theorem 5 to test if a basic P -extension over F is
a #-extension if one can compute a basis of M(h,F) in a difference field (F, σ ).
In particular, using the algorithms from [65] this is possible if (F, σ ) is a #&-field
over K where the constant field satisfies certain algorithmic properties.

Definition 16 A field K is called σ -computable if the following holds:

1. One can factorize multivariate polynomials over K;
2. given (f1, . . . , fd) ∈ (K∗)d one can compute for {(z1, . . . , zd) ∈ Zd |

f
z1
1 . . . f

zd
d = 1} a Z-basis;

3. one can decide if c ∈ K is an integer.

More precisely, the following holds if (F, σ ) is a #&-field over a σ -computable
constant field; special cases are Gr , Gb or Gm where K is σ -computable.

Corollary 3 Let (E, σ ) be a basic R#&-extension of a #&-field (F, σ ) over K.
If K is σ -computable, one can compute a basis of M(h,E) for any h ∈ ([F∗]EF)d

with d ≥ 1. This in particular is the case, if K = A(y1, . . . , yo) is a rational
function over an algebraic number field A.

Proof If K is σ -computable, it follows by Karr [65, Theorem 9] that one can
compute a basis of M(f ,F) for any f ∈ (F∗)m with m ≥ 1. Thus by part 2
of Theorem 6 one can compute a basis of M(h,E) for any h ∈ ([F∗]EF)d with
d ≥ 1. In particular, it follows by Schneider [104, Thm. 3.5] (based on the algorithm
of [59]) that a rational function field over an algebraic number field is σ -computable.

*,
Remark 4

(1) By [116, Theorem 2.26] Corollary 3 is also valid for f ∈ ({F∗}EF)d in simple
R#&-extension defined over a #&-field. As elaborated in [116, Sect. 2.3.3]
(using ideas of [69]) it holds even in the more general setting that (F, σ ) is
a #&-field extension of a difference field (F0, σ ) where all roots of unity
in F are constants and (F0, σ ) is σ -computable; for the definition of these
algorithmic properties we refer to [69, Def. 1]. Further aspects can be also found
in [21]. In particular, all these properties hold, if (F0, σ ) is a free difference
field [68, 69] (covering generic/unspecified sequences Xn) or is built by radical
extensions [70] (covering objects like

√
n). For the underlying implementations

enhancing Sigma we refer to [69, 70].
(2) Within Sigma the case of #&-fields is implemented properly where the

constant field is given by a rational function field over the rational numbers.
In parts also algebraic numbers work, but here we rely on sub-optimal routines
of Mathematica.
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4.1.2 Algorithmic Representations

In this section we present several algorithms that provide proofs of Theorems 3
and 4 if one restricts to the cases Prod1(G) with G ∈ {Gr ,Gb,Gm} or Prod(Gr ),
i.e., if one drops expressions where sums arise. More precisely, we will introduce
several solutions of step (1) for our method SigmaReduce.

First, we treat the case Prod1(G). In this setting (where also sums can arise)
single-basic R#&-extensions, a subclass of basic R#&-extensions, are sufficient.

Definition 17 An R#&-extension (E, σ ) of a difference ring (A, σ ) with E =
A〈t1〉 . . . 〈te〉 is called single-basic if for any R-monomial ti we have σ(ti )

ti
∈

constσA∗ and for any P -monomial ti we have σ(ti )
ti

∈ A∗.

We will present the following two main strategies.

• Optimal product representations. In [120, Theorem 69] we showed that one can
construct R#-extensions with minimal extension degree and minimal order.

Theorem 7 Let G ∈ {Gr ,Gb,Gm} and A1, . . . , Au ∈ Prod1(G). Then there is
a single-basic R#-extension (E, σ ) of (G, σ ) with E = G〈t1〉 . . . 〈te〉 together
with an evaluation function ev and o-function L (based on the construction given in
Lemmas 2 and 3) with the following properties:

1. A1, . . . , Au are modeled by a1, . . . , au ∈ E, i.e., for all 1 ≤ i ≤ u we have (24)
for some explicitly given δi ∈ Z≥0 with δi ≥ L(ai).

2. There is at most one R-monomial in E. This implies that the order λ is minimal
among all such extensions in which one can model a1, . . . , au.

3. The number of #-monomials in E is minimal among all such extensions in which
one can model a1, . . . , au.

If the constant field of (K, σ ) is a rational function field over an algebraic number
field, then the above components are computable.

Example 15 For the following products in Prod1(Q[i](x) with the imaginary unit i:

A1 = Prod
(
1, −13122x(1+x)

(3+x)3

)
, A2 = Prod

(
1, 26244x2(2+x)2

(3+x)2

)
,

A3 = Prod
(
1, ik(2+x)3

729(5+x)

)
, A4 = Prod

(
1, −162x(2+x)

5+x

)
,

we compute the alternative expressions B1 = 5(1+x)2(2+x)5(3+x)8

52488(4+x)(5+x)
T1T2T

−2
3 , B2 =

(4+x)2(5+x)2

400 T 2
2 , B3 = 2754990144(4+x)2(5+x)2

25(1+x)4(2+x)10(3+x)16 T
3
3 and B4 = T2 in terms of the σ -

reduced set W = {T1, T2, T3} with

T1 = RPow(−1), T2 = Prod(1, −162x(2+x)
5+x

), T3 = Prod(1, −i(3+x)6

9x(1+x)2(2+x)(5+x)
);
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internally, T1 is modeled by an R-monomial of order 2 and T2, T3 are modeled by
two #-monomials. Details on this construction are given in [120, Ex. 70].

We remark that this optimal representation has one essential drawback: if further
products have to be treated in a later situation, the existing difference ring cannot be
reused, but a completely new difference ring has to be designed.

• Extension stable representations for completely factorizable constant fields.
In the following we will follow another approach: instead of computing the
smallest ring in which one can model a finite set of single nested products, we
design a difference ring where the multiplicands are as small as possible such
that the constructed difference rings are Prod1(G)-extension-stable. In order to
accomplish this task, we will restrict the constant field K further as follows.

A ring R is called completely factorizable if R is a unique factorization domain
(UFD) and all units in R are roots of unity. In particular, any element a ∈ R\{0} can
be written in the form a = u a

n1
1 . . . a

nl
l with a root of unity u, n1, . . . , nl ∈ Z≥1 and

a1, . . . , al ∈ R being coprime irreducible elements. In addition, a field K is called
completely factorizable if it is the quotient field of a completely factorizable ring R.
In such a field any element a ∈ K∗ can be written in the form a = u a

n1
1 . . . a

nl
l with

a root of unity u, n1, . . . , nl ∈ Z\ {0} and a1, . . . , al ∈ R being coprime irreducible
elements. We call K completely factorizable of order λ ∈ Z≥0, if the set of roots of
unity is finite and the maximal order is λ. We say that complete factorizations are
computable over such a field K if for any rational function from K(x1, . . . , xr ) a
complete factorization can be computed.

The following lemma allows to lift the property of completely factorizable rings.

Lemma 7 If a ring (resp. field) A is completely factorizable, the polynomial ring
A[x1, . . . , xr ] (resp. rat. function field A(x1, . . . , xr )) is completely factorizable.

Example 16 The ring Z and the Gaussian ring Z[i] with the roots of unity
1,−1 and 1,−1, i,−i, respectively, are examples of completely factorizable rings.
Thus Z, Z[i] and, in particular Z[x1, . . . , xr ] and Z[i][x1, . . . , xr ] are completely
factorizable rings. Furthermore, their quotient fields Q, Q[i], Q(x1, . . . , xr ) and
Q[i](x1, . . . , xr ) are completely factorizable of order 2 or 4, respectively. In
particular, one can compute complete factorizations over Q and Q[i].
Definition 18 Let F be the quotient field of a completely factorizable ring R of
order λ. A single-basic R#&-extension (E, σ ) of (F, σ ) with E = F〈t1〉 . . . 〈te〉 is
called completely factorized if there is at most one R-monomial ρ with σ(ρ)

ρ
∈

( constσF)∗ of order λ and for any #-monomial ti we have that σ(ti )
ti

∈ R is
irreducible.

We are now ready to state the following result implemented within Sigma;
the case Gr is covered by [114, Theorem 2]; the extension to Gb and Gm is
straightforward.
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Theorem 8 Let G ∈ {Gr ,Gb,Gm} where K is completely factorizable of
order λ. Then the class of completely factorized R#-extensions over (G, σ ) is
Prod1(G)-extension-stable. More precisely, let (H, σ ) be a completely factorized
R#-extension of (G, σ ) equipped with an evaluation function ev an o-function
L. Let A ∈ Prod1(G). Then there is an R#-extension (E, σ ) of (H, σ ) with an
extended evaluation function ev and o-function L (using Lemmas 2 and 3) with the
following properties:

1. (E, σ ) is a completely factorizable R#-extension of (G, σ ).
2. A is modeled by a ∈ E, i.e., A(n) = ev(a, n) for all n ≥ δ for some δ ∈ Z≥0.

If complete factorization over K can be computed, all components are computable.

Example 17 Given the products (15), we can split the multiplicands into irre-
ducible factors and get (after some technical details) the product representations

B1 = 216T 2
1 T2T

8
3

(n+1)2(n+2)3(n+3)3T4
, B2 = 9T 2

2 T 8
3 T 2

4
(n+3)2 , B3 = 15(n+1)2(n+2)2T 2

1 T 3
4

(n+3)(n+4)(n+5)T 6
3

and B4 =
60T 2

1 T2T
4
3 T4

(n+3)(n+4)(n+5) in terms of the σ -reduced set W = {T1, T2, T3, T4} with

T1 = RPow(i), T2 = Prod(1, 2), T3 = Prod(1, 3), T4 = Prod(1, x);

internally, T1 is modeled by an R-monomial of order 4, and T2, T3, T4 are modeled
by three #-monomials.

It would be interesting to see extension-stable difference ring constructions that
work in more general settings. A first step in this direction has been elaborated
in [83, Theorem 6.2]. Here a toolbox (implemented within NestedProducts)
is summarized where one tries to follow the above construction of completely
factorized R#-extensions as much as possible. In this way, a modification of the
existing R#-extension will arise only for products whose multiplicands are taken
from an algebraic number field.

• Representation of nested products. We obtained the first algorithm in [84,
Theorem 9] (implemented in NestedProducts) to represent products from
Prod(Gr ) fully algorithmically in a basic R#-extension. This result can be stated
as follows.

Theorem 9 Let G = Gr = K(x) where K = A(y1, . . . , yo) with o ≥ 0 is a
rational function field over an algebraic number field A. Then for A1, . . . , Au ∈
Prod(G) one can compute a basic R#-extension (E, σ ) of (G′, σ ) with an
evaluation function ev and o-function L (using Lemmas 2 and 3) with the following
properties:

1. The ground field G is extended to G′ = K′(x) where K′ = A′(y1, . . . , yo) with
A′ being an algebraic field extension of A.

2. Within the R#-monomials in (E, σ ) there is at most one R-monomial.
3. A1, . . . , Au are modeled by a1, . . . , au ∈ E, i.e., for all 1 ≤ i ≤ u we have (24)

for some explicitly given δi ∈ Z≥0 with δi ≥ L(ai).
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Remark 5 Theorem 7 holds also for general ground rings (G, σ ) with certain
algorithmic properties; see [120]. Fascinating structural properties of mixed hyper-
geometric products (and related objects within the differential case) are presented
in [51]. Further simplification aspects within #&-fields (e.g., finding products
where the degrees of the top most sum or product in the numerator and denominator
of a multiplicand are minimal) are elaborated in [23, 104]. In addition, methods to
find algebraic relations of sequences built by products are given in [72, 84, 109, 120,
124].

4.2 Representation of Sums

4.2.1 Algorithmic Tests via (Parameterized) Telescoping

We will proceed as in the product case. The additive version of Theorem 5, which
is nothing else than parameterized telescoping (see Sect. 5.2), reads as follows.

Theorem 10 ([118, Thm. 7.10]) Let (E, σ ) be an S-extension of a difference ring
(H, σ ) with E = H〈t1〉 . . . 〈td〉 and fi = σ(ti) − ti ∈ H for 1 ≤ i ≤ d. If
K := constσH is a field, then the following statements are equivalent:

1. (E, σ ) is a &-extension of (H, σ ), i.e., constσE = constσH.
2. There do not exist g ∈ H and (c1, . . . , cd) ∈ Kd \ {0} with

σ(g)− g = c1 f1 + · · · + cd fd .

Note that Theorem 10 contains the following special case (compare [65] for the
field case and [116] for the ring case): an S extension (A[s], σ ) of (A, σ ) with
f := σ(s) − s ∈ A is a &-extension if and only if there is no g ∈ A such that
the telescoping equation σ(g) − g = f holds; this property will be crucial for the
construction that establishes Theorem 12 given below.

Let (A, σ ) be a difference ring with constant field K, u ∈ A \ {0} and
f = (f1, . . . , fd) ∈ Ad . Then following [65] we define the set of solutions of
parameterized first-order linear difference equations:

V1(u,f ,A) = {(c1, . . . , cd , g) ∈ Kd ×A | σ(g)− u g = c1 f1 + · · · + cd fd}.

With this notion, Theorem 10 can be restated as follows: (E, σ ) is a &-extension
of (H, σ ) if and only if V1(1, (f1, . . . , fd),H) = {0}d ×K. In order to check that
this is the case, we can utilize the following theorem.

Theorem 11 Let (H, σ ) be a basic R#&-extension of a difference field (F, σ ) with
constant field K, u ∈ [F∗]HF and f ∈ Hd . Then the following holds:

1. V1(u,f ,H) is a K-vector space of dimension ≤ d + 1.
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2. If one can compute a basis of M(h,F) for any h ∈ (F∗)n and a basis of
V1(v,h,F) for any v ∈ F∗, h ∈ Fn, then one can compute a basis of
V1(u,f ,H).

Proof Lemma 2.17 and Thm. 2.22 of [116] gives (1); [116, Thm. 2.23]9 shows (2).
*,

In particular, we can activate this machinery if (F, σ ) is a #&-field over a σ -
computable constant field; a special case is, e.g., F = Gm.

Corollary 4 Let (E, σ ) be an R#&-extension of a #&-field (F, σ ) over K. If K
is σ -computable, one can compute a basis of V1(1,f ,E) for any f ∈ (E∗)d . This
in particular is the case, if K is a rational function field over an algebraic number
field.

Proof If K is σ -computable, it follows by Karr [65] (or [104]) that one can compute
a basis of V1(u,f ,F) for any u ∈ F∗, f ∈ (F∗)d . Thus by part 2 of Theorem 11
one can compute a basis of V1(1,h,E) for any h ∈ (E∗)d . In particular, it follows
by Schneider [104, Thm. 3.5] (based on the algorithm of [59]) that a rational
function field over an algebraic number field is σ -computable. *,
Remark 6 (1) By [116, Thm. 2.26], Corollary 4 is also valid for f ∈ ({F∗}EF)d

in simple R#&-extensions over a #&-field. As elaborated in [116, Sect. 2.3.3] it
holds even in the more general setting where (F, σ ) is a #&-field extension of
a difference field (F0, σ ) which is σ ∗-computable (see [69, Def. 1]) and one can
compute a basis of V (u,f ) in (F0, σ

k) for any10 k > 0, u ∈ F∗ and f ∈ Fm
0 ; see

also Remark 4.(1).

4.2.2 Basic Representations

The following theorem (based on Theorem 10 and the property that one can
solve the telescoping problem (26) given below) enables one to lift the results of
Prod1(G) and Prod(Gr ) form Sect. 4.1 to the cases Sum(G), SumProd1(G) and
SumProd(Gr ).

Theorem 12 Let G ∈ {Gr ,Gb,Gm} and A1, . . . , Au ∈ SumProd(G). Let (H, σ )

be a basic R#&-extension of (G, σ ) equipped with an evaluation function ev and
an o-function L where all arising products in A1, . . . , Au can be modeled. Then
there is a &-extension (E, σ ) of (H, σ ) with an extended evaluation function ev and
o-function L (using Lemmas 2 and 3) such that a1, . . . , au ∈ E model A1, . . . , Au,
i.e., for all 1 ≤ i ≤ u we have (24) for some explicitly given δi ∈ Z≥0 with δi ≥
L(ai).

9For an alternative algorithm we refer to [118, Section 6].
10If the extension is basic, we only need the case k = 1.
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If K is σ -computable, and L : H → Z≥0 and ev : H × Z≥0 → K are
computable, the above components can be computed.

Proof This result follows from the construction given in [118, pp. 657–658] which
can be summarized as follows. We suppose that we have constructed already a
basic R#&-extension of (G, σ ) equipped with an evaluation function ev and an
o-function L where all arising products in A1, . . . , Au can be modeled. Then we
can adapt the construction of Lemma 6 and deal with all arising sums and products
arising in the A1, . . . , Au. Suppose that we have constructed already a &-extension
(A, σ ) of (G, σ ) and we are treating now the product or sum Ti . If it is a product,
we sort it out in the bookkeeping step and obtain an element bi ∈ H∗ ⊆ E∗ that
models Ti by assumption. Otherwise, Ti = Sum(λ,H). By induction (on the depth
of the arising sums) we can construct a &-extension (A′, σ ) of (A, σ ) together with
an extended evaluation function ev and o-function L such that we can take h ∈ A′
with ev(h, n) = H(n) for all n ≥ L(h). Now we enter the sum-case and perform
the following extra test. We check if there is a g ∈ A′ with

σ(g) = g + f ⇔ σ(g)− g = f (26)

for f := σ(h). Suppose there is such a g. We define δi := max(L(f ), L(g), λ).
Then for bi := g+∑δi

j=λ H(j)− ev(g, δi) ∈ A′ we get ev(bi, n+1)− ev(bi, n) =
ev(g, n + 1) − ev(g, n) = H(n + 1) and Ti(n + 1) = Ti(n) + H(n + 1) for all
n ≥ δi . Since ev(bi, δi) = ∑δi

j=λ F (j) = ev(Ti, δi), we get ev(bi, n) = ev(Ti, n)
for all n ≥ δi .
Otherwise, if there is no such g, we proceed as in the sum-case of Lemma 6: we
adjoin the &-monomial t to A′ with σ(t) = t + f with f = σ(h) and get the
claimed bi = t + c with c ∈ K such that ev(bi, n) = ev(Ti, n) holds for all
n ≥ L(bi) = δi .
Summarizing, we can construct a nested &-extension in which the elements from
SumProd(G) can be modeled. If K is σ -computable, one can decide constructively
by Corollary 4 if there exists such a g. Furthermore, if L : H → Z≥0 and ev :
H× Z≥0 → K are computable also their extensions for (E, σ ) are computable by
recursion. Consequently, all components are computable. *,

We get immediately the following result for Sum(G)-stable extensions.

Corollary 5 Let G ∈ {Gr ,Gb,Gm}. The class of &-extensions over (G, σ ) is
Sum(G)-extension-stable. More precisely, let (H, σ ) be a &-extension of (G, σ )

with an evaluation function ev and an o-function L, and let A ∈ Sum(G). Then
there is a &-extension (E, σ ) of (H, σ ) with an extended evaluation function ev
and an o-function L (using Lemmas 2 and 3) together with a ∈ E and δ ∈ Z≥0
with A(n) = ev(a, n) for all n ≥ δ. If K is σ -computable, these components can be
computed.

Combining Theorems 8 and 12 we get Sigma’s main translation mechanism.
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Corollary 6 Let G ∈ {Gr ,Gb,Gm} where K is completely factorizable of order
λ. Then the class of completely factorized R#&-extensions is SumProd1(G)-
extension-stable. More precisely, let (H, σ ) be a completely factorized R#&-
extension of (G, σ ) equipped with an evaluation function ev an o-function L. Let
A ∈ SumProd1(G). Then there is an R#&-extension (E, σ ) of (H, σ ) with an
extended evaluation function ev and o-function L (using Lemmas 2 and 3) with the
following properties:

1. (E, σ ) is a completely factorizable R#&-extension of (G, σ ).
2. A is modeled by a ∈ E, i.e., A(n) = ev(a, n) for all n ≥ δ for some δ ∈ Z≥0.

If K is σ -computable and complete factorizations over K can be computed, all the
components can be given explicitly.

Proof We can write H = G〈t1〉 . . . 〈te〉[s1, . . . , su] where the ti are R#-monomials
and the si are &-monomials. Take all products that arise in A. Since (H0, σ )

with H0 = G〈t1〉 . . . 〈te〉 is a completely factorized R#-extension of (G, σ ), we
can apply Theorem 8 and get an R#-extension (H1, σ ) of (H0, σ ) with H1 =
H0〈p1〉 . . . 〈pv〉 together with an extended evaluation function ev and o-function L

such that (H1, σ ) is a completely factorized R#-extension of (G, σ ) and such that
all products in A can be modeled in H1. By Schneider [118, Cor. 6.5] (together
with [118, Prop 3.23]) it follows that also (H2, σ ) with H2 = H〈p1〉 . . . 〈pv〉 is
a #-extension of (H, σ ). In particular, (H2, σ ) is a completely factorized R#&-
extension of (G, σ ) and we can merge the evaluation functions and o-functions to
ev : H2 × Z≥0 → K and L : H2 → Z≥0. Finally, we apply Theorem 12 and get a
&-extension (E, σ ) of (H2, σ ) with an appropriately extended evaluation function
ev and o-function L together with a ∈ E and δ ∈ Z≥0 such that ev(a, n) = A(n)

holds for all n ≥ δ. By definition (E, σ ) is a completely factorized R#&-extension
of (G, σ ).
If K is σ -computable and one can compute complete factorizations over K,
Theorems 8 and 12 are constructive and all components can be computed. *,

Furthermore, combining Theorems 7 and 12 gives the following result (we omit
the optimality properties given in Theorem 7).

Corollary 7 Let G ∈ {Gr ,Gb,Gm} where K is built by a rational function field
defined over an algebraic number field. Then for A1, . . . , Au ∈ SumProd1(G)

there is a single-basic R#&-extension (E, σ ) of (G, σ ) together with an extended
evaluation function ev : E × Z≥0 → K and o-function L : E → Z≥0
(using Lemmas 2 and 3) with the following properties: A1, . . . , Au are modeled
by a1, . . . , au ∈ E, i.e., for all 1 ≤ i ≤ u we have (24) for some explicitly given
δi ∈ Z≥0 with δi ≥ L(ai).

In addition, the applications of Theorems 9 and 12 yield the following statement.

Corollary 8 Let Gr = K(x) with K = A(y1, . . . , yo) be a rational function field
over an algebraic number field A. Then for A1, . . . , Au ∈ SumProd(G) there is a
basic R#-extension (E, σ ) of (G′

r , σ ) with an evaluation function ev : E×Z≥0 →
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K′ and o-function L : E → Z≥0 (using Lemmas 2 and 3) with the following
properties:

1. The ground field Gr is extended to G′
r = K′(x) where K′ = A′(y1, . . . , yo)

with A′ being an algebraic field extension of A.
2. Within the R#&-monomials in (E, σ ) there is at most one R-monomial.
3. A1, . . . , Au are modeled by a1, . . . , au ∈ E, i.e., for all 1 ≤ i ≤ u we have (24)

for some explicitly given δi ∈ Z≥0 with δi ≥ L(ai).

In particular, activating our method SigmaReduce in combination with Corollar-
ies 6 and 7 establishes Theorems 3 and 3, respectively.

Most of the above results are implemented within the summation package
Sigma or are available by using in addition the package NestedProducts.
Further details can be found in the following remark.

Technical Details of the Summation Package Sigma

Remark 7

(1) Within Sigma the function call SigmaReduce follows the method given on
page 451. Note that in this construction the σ -reduced set W is constructed by
treating stepwise the sums and products that occur in the Ai .

(2) The user can control the σ -reduced set W manually by introducing extra sums
and products with the option Tower→ {S1, . . . , Sv} that will be parsed before
the arising sums in A1, . . . , Au are considered; as an example we refer to In[20]
in Example 19.

(3) Sigma is tuned for expressions from SumProd1(G) where the constant field K
is a completely factorizable field. In particular for the case that K is a rational
function field over the rational numbers, the machinery given in Corollary 6
is highly robust. Sigma also works partially with rational function fields over
algebraic number fields; but here it depends on the stability of the subroutines
in Mathematica.

(4) For nested products the machinery of SigmaReduce works if the objects can
be transformed straightforwardly to R#&-extensions. For more complicated
situations the objects SumProd(Gr ) can be handled fully algorithmically in
combination with Ocansey’s package NestedProducts.

Remark 8 As observed in [36] an algebraically independent basis of certain classes
of indefinite nested sums can be obtained by exploiting the underlying quasi-shuffle
algebra. In [36] this aspect has been utilized for the class of harmonic sums, and it
has been enhanced for generalized, cyclotomic and binomial sums in [2, 4, 15]. Later
it has been shown in [16] that the relations in the class of cyclotomic harmonic sums
produced by difference ring theory (compare Theorem 1) and by the quasi-shuffle
algebra are equivalent. As a consequence, the quasi-shuffle algebra of cyclotomic
sums induces a canonical representation. We emphasize that many of the above
aspects can be carried over to a summation theory of unspecified sequences [89].
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4.2.3 Depth-Optimal Representations

In [102, 108] we have refined Karr’s definition of #&-field extensions to depth-
optimal #&-field extensions and have developed improved telescoping algorithms
therein. In this way, we could provide a general toolbox in [111] that can find
representations such that the nesting depths of the arising sums are minimal.
As it turns out, the underlying telescoping algorithms can be adapted (and even
simplified) for R#&-extensions. For the specification of the refined representation
(without entering into technical details) we need the following definition.

Definition 19 A finite set W ⊂ &#(G) is called depth-optimal if for any G ∈
SumProd(W,G) and G′ ∈ SumProd(G) with G(n) = G′(n) for all n ≥ δ for some
δ ∈ Z≥0 it follows that δ(G) ≤ δ(G′) holds.

Then combining the results from Sect. 4.2.2 with the tools from [102, 108, 111]
we obtain algorithms that can solve the following problem if K is σ -computable;
for simplicity we skipped the general case SumProd(G). Further technical details
concerning the implementation in Sigma can be found in Remark 7.

Problem DOS: Depth-Optimal SigmaReduce

Given: A1, . . . , Au ∈ SumProd1(Gm).
Find: a finite σ -reduced depth-optimal set W ⊂ &#1(Gm) together with

B1, . . . , Bu ∈ SumProd(W,Gm) and δ1, . . . , δu ∈ Z≥0 such that Ai(n) = Bi(n)

holds for all n ≥ δi and 1 ≤ i ≤ u

Example 18 Given the sums A1, A2, A3 ∈ Sum(Q(x)) defined by

In[15]:= {A1, A2, A3} =
{ n∑

k=1

( k∑
i=1

1
i2

) k∑
i=1

(−1)i

i

1 + k
,

n∑
k=1

( k∑
i=1

1
i2

) k∑
i=1

(−1)i

i

2 + k
,

n∑
k=1

( k∑
i=1

1
i2

) k∑
i=1

(−1)i

i

3 + k

}
;

we get the alternative expressions B1, B2, B3 ∈ SumProd(W,Q(x)) by executing

In[16]:= {B1, B2, B3} = SigmaReduce[{A1, A2, A3}, n]

Out[16]=

{ n∑
k=1

( k∑
i=1

1
i2

) k∑
i=1

(−1)i

i

1+ k
,

n∑
k=1

( k∑
i=1

1
i2

) k∑
i=1

(−1)i

i

2+ k
,

3

16
+ (−3− 2n)(−1)n

8(1+ n)(2+ n)
+ (−1)n

2(2+ n)

n∑
i=1

1

i2
+ 1

2

n∑
i=1

(−1)i

i2
+ −3+ 2n+ 2n2

4(1+ n)(2+ n)

n∑
i=1

(−1)i

i

− (1+ n)(5+ 2n)

2(2+ n)(3+ n)

( n∑
i=1

1

i2

) n∑
i=1

(−1)i

i
+1

2

n∑
i=1

( i∑
j=1

1
j2

) i∑
j=1

(−1)j

j

1+ i
+1

2

n∑
i=1

( i∑
j=1

1
j2

) i∑
j=1

(−1)j

j

2+ i

}
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with the σ -reduced set

W =
{ n∑

k=1

1

k2
,

n∑
k=1

(−1)k

k
,

n∑
i=1

(−1)i

i2
,

n∑
k=1

( k∑
i=1

1
i2

) k∑
i=1

(−1)i

i

1+ k
,

n∑
k=1

( k∑
i=1

1
i2

) k∑
i=1

(−1)i

i

2+ k

}
.

Note: instead of A3 (a sum of nesting depth 3) the simpler sum
∑n

i=1
(−1)i

i2 (with
nesting depth 2) has been introduced automatically.

Remark 9 Further refined #&-extensions, such as reduced #&-extensions, have
been elaborated in [110] (based on improved telescoping algorithms given in [100,
115]).

5 The Summation Paradigms

We have explained in detail how sums and products can be modeled automatically
within R#&-extensions. Thus steps 1 and 3 on page (1) are settled and we focus on
step 2: We will introduce the summation paradigms in difference rings and fields;
further details how these problems are handled in Sigma are given below.

5.1 Refined Telescoping

As indicated in Sect. 4.2.2, in particular in Theorem 12, the construction of basic
R#&-extensions for the representation of SumProd(G) is based on algorithms that
solve the telescoping problem (26). In particular, the quality of the constructed
extensions and the used telescoping algorithms are mutually intertwined. As
illustrated for instance in Sect. 4.2.3, the underlying telescoping algorithms could
be refined further (using [102, 108, 111]) to compute depth-optimal representations.

In the following we will focus on the available telescoping technologies in
Sigma (based on [100, 102, 106, 108–111, 115]) that enable one to simplify sums
further. For simplicity we will focus on sums from &#1(Gm) and skip, e.g., the
case &#(Gr ).

Problem RT: Refined Telescoping

Given: F ∈ SumProd1(Gm).
Find: δ ∈ Z≥0 and a σ -reduced set W = {T1, . . . , Te} ⊂ &#1(Gm) where

d(T1) ≤ d(T2) ≤ · · · ≤ d(Te) together with F ′,G ∈ SumProd(W,Gm) such
that for all k ≥ δ we have F(k) = F ′(k) and

G(k + 1)−G(k) = F ′(k).
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• Refinement 1: W is depth-optimal (by using SimplifyByExt→MinDepth).
• Refinement 2: In addition, if d(G) = d(F ′)+1, then d(Te−1) < d(Te) = d(G)

and Te = Sum(δ,H) with H ∈ SumProd({T1, . . . , Ti},Gm) where i with 1 ≤
i < e is minimal (by using SimplifyByExt→DepthNumber).

• Refinement 3: One can compute, among all possible choices with i

minimal, H such that also degTi is minimal (by using SimplifyByExt→
DepthNumberDegree).

Given such G and δ ∈ Z≥0 for F we obtain the simplification (2) for all n ≥ δ.

Example 19 We start with the following sum:

In[17]:= mySum1 =
n∑

k=1

( k∑
j=1

(−1)j

j2

)( k∑
j=1

(−1)j

j

)2;

Telescoping without any refinements (by setting SimplifyByExt→None) does not
yield a simplification. However, by activating the first refinement with the option
SimplifyByExt→MinDepth (which actually is the default option) we get

In[18]:= SigmaReduce[mySum1, n, SimplifyByExt → MinDepth]

Out[18]=
1

3

n∑
i=1

(−1)i

i3
+ (−1)1+n

( n∑
j=1

(−1)j

j2

) n∑
j=1

(−1)j

j
+ (1 + n)

( n∑
j=1

(−1)j

j2

)( n∑
j=1

(−1)j

j

)2 −

1

3

( n∑
j=1

(−1)j

j

)3

We illustrate the second refinement with the sum:

In[19]:= mySum2 =
n∑

k=1

( k∑
j=1

(−1)j

j2

)( k∑
j=1

(−1)j

j

)3;

In[20]:= SigmaReduce[mySum2, n, SimplifyByExt → DepthNumber,

Tower →
{ n∑

i=1

(−1)i

i ,
n∑

i=1

(−1)i

i2

}
SimpleSumRepresentation → False]

Out[20]=
1

4

( n∑
j=1

(−1)j

j2

)2−3

2
(−1)n

( n∑
j=1

(−1)j

j2

)( n∑
j=1

(−1)j

j

)2+(1+n)
( n∑

j=1

(−1)j

j2

)( n∑
j=1

(−1)j

j

)3

− 1

4

n∑
i=1

( 1

i4
−

6
( i∑

j=1

(−1)j

j

)2

i2
+

4(−1)i
( i∑

j=1

(−1)j

j

)3

i

)

Namely, within the given extension (specified by Tower→ { n∑
i=1

(−1)i

i
,

n∑
i=1

(−1)i

i2

}
,

compare Remark 7) we find a sum extension which is free of
n∑

i=1

(−1)i

i2 . Without the
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option SimpleSumRepresentation→False further simplifications on the found
sum (using in addition partial fraction decomposition) are applied and one gets:

In[21]:= SigmaReduce[mySum2, n, SimplifyByExt → DepthNumber,

Tower →
{ n∑

i=1

(−1)i

i ,
n∑

i=1

(−1)i

i2

}
]

Out[21]= −1

4

n∑
i=1

1

i4
+ 1

4

( n∑
j=1

(−1)j

j2

)2 − 3

2
(−1)n

( n∑
j=1

(−1)j

j2

)( n∑
j=1

(−1)j

j

)2

+ (1+ n)
( n∑

j=1

(−1)j

j2

)( n∑
j=1

(−1)j

j

)3 + 3

2

n∑
i=1

( i∑
j=1

(−1)j

j

)2

i2
−

n∑
i=1

(−1)i
( i∑

j=1

(−1)j

j

)3

i

If one changes the order of the extension with the option Tower→{ n∑
i=1

(−1)i

i2 ,
n∑

i=1

(−1)i

i

}
, no simplification is possible with the option

SimplifyByExt→DepthNumber. However, using the option
SimplifyByExt→DepthNumberDegree one finds a sum extension where in the

summand the degree w.r.t. T =
n∑

i=1

(−1)i

i
is minimal. In this case we find

In[22]:= SigmaReduce[mySum2, n, SimplifyByExt → DepthNumberDegree, Tower

→
{ n∑

i=1

(−1)i

i2
,

n∑
i=1

(−1)i

i

}
SimpleSumRepresentation → False]

Out[22]= −3

2
(−1)n

( n∑
j=1

(−1)j

j2

)( n∑
j=1

(−1)j

j

)2 + (1 + n)
( n∑

j=1

(−1)j

j2

)( n∑
j=1

(−1)j

j

)3 −

1

4

( n∑
j=1

(−1)j

j

)4 + 1

4

n∑
i=1

(
− 3

i4
+ 2(−1)i

i2
i∑

j=1

(−1)j

j2
+ 4(−1)i

i3

i∑
j=1

(−1)j

j

)

where in the summand of the found sum the degree w.r.t. T is 1. With the option
SimpleSumRepresentation→True (which is the standard option) this sum is
simplified further (by splitting it into atomics by partial fraction decomposition)
and we get:

In[23]:= SigmaReduce[mySum2, n, SimplifyByExt → DepthNumberDegree,

Tower →
{ n∑

i=1

(−1)i

i2
,

n∑
i=1

(−1)i

i

}
]

Out[23]= −1

2

n∑
i=1

1

i4
+ 1

4

( n∑
j=1

(−1)j

j2

)2 − 3

2
(−1)n

( n∑
j=1

(−1)j

j2

)( n∑
j=1

(−1)j

j

)2

+ (1+ n)
( n∑

j=1

(−1)j

j2

)( n∑
j=1

(−1)j

j

)3 − 1

4

( n∑
j=1

(−1)j

j

)4 +
n∑

i=1

(−1)i

i3

i∑
j=1

(−1)j

j
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5.2 Parameterized Telescoping (Including Creative
Telescoping)

The summation paradigm of telescoping can be generalized as follows.

Problem PT: Parameterized Telescoping

Given: F1, . . . , Fd ∈ SumProd(G) with G ∈ {Gr ,Gb,Gm}.
Find: Find, if possible, a suitable σ -reduced finite set W ⊂ &#(G′) and δ ∈ Z≥0

with the following properties; as in Problem SigmaReduce, one might have to
extend the constant field K of G to K′ yielding G′.

• One can take F ′
1, . . . , F

′
d ∈ SumProd(W,G′) such that for all 1 ≤ i ≤ d and all

k ≥ δ we have Fi(k) = F ′
i (k);

• one can take c1, . . . , cd ∈ K′ with c1 �= 0 and G ∈ SumProd(W,G′) such that
for all k ≥ δ we have

G(k + 1)−G(k) = c1 F
′
1(k)+ · · · + cd F

′
d(k). (27)

Given such c1, . . . , cd ∈ K, G and δ ∈ Z≥0 for F1, . . . , Fd , we obtain

c1

n∑
k=δ

F1(k)+ · · · + cd

n∑
k=δ

Fd(k) = G(n+ 1)−G(δ) (28)

for all n ≥ δ. In particular, if one is given a bivariate sequence F(n, k) with
Fi(k) = F(n+ i−1, k) ∈ SumProd(G) for i = 1, . . . , d, Eq. (27) turns into (3). In
particular, the sum relation (28) can be transformed to the recurrence (4) for the sum
S(n) = ∑n

k=δ F (n, k). Summarizing, parameterized telescoping contains creative
telescoping [134] as a special case.

A straightforward solution to the above problem can be obtained by the appli-
cation of Theorem 13. In the context of σ -reduced sets this can be rephrased as
follows.

Proposition 1 Let W = {T1, . . . , Te} ⊆ &#(G) be σ -reduced where for each
1 ≤ i ≤ e the arising sums and products within Ti are contained in {T1, . . . , Ti−1}
and are in sum-product reduced form. Let F ′

1, . . . , F
′
d ∈ SumProd(W,G). Then one

can compute, in case of existence, (c1, . . . , cd) ∈ Kd with c1 �= 0 together with
G ∈ SumProd(W,G) and δ ∈ Z≥0 such that (27) holds for all k ≥ δ.

Proof By Corollary 2 we get an R#&-extension (E, σ ) of (G, σ ) with E =
G〈t1〉 . . . , 〈te〉 together with an evaluation function ev and o-function L with
expr(ti) = Ti for all 1 ≤ i ≤ e. In particular, we get f = (f1, . . . , fd) ∈ Ed

with ev(fi, k) = F ′
i (k) for all 1 ≤ i ≤ u and all n ≥ L(fi). Note that
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(c1, . . . , cd ,G) ∈ Kd × SumProd(W,G) with (27) for all k ≥ δ for some
δ ∈ Z≥0 iff (c1, . . . , cd , g) ∈ Kd × E. By Theorem 13 we can compute a basis
V = V1(1,f ,E) and can check if there is (c1, . . . , cd , g) ∈ V with c1 �= 0. If this is
not the case, then there is no (c1, . . . , cd ,G) ∈ Kd ×SumProd(W,G) with c1 �= 0.
Otherwise, we rephrase the result as (c1, . . . , cd ,G) ∈ Kd ×SumProd(W,G) such
that (27) holds for all k ≥ δ with δ = max(L(F ′

1), . . . , L(F
′
u), L(G)). *,

Remark 10 In Proposition 1 we assume that the input expressions from
SumProd(G) can be rephrased directly in an R#&-extension. If this is not the
case, the representation machinery has to be applied in a preprocessing step. To
support this construction, the user can control the σ -reduced set W as outlined
in the Remark 7.(2) above. But this should be done with care in order to avoid
useless results. If W contains, e.g., Tj ∈ Sum(l, F ′

1), one gets trivially G = Tj and
(c1, c2, . . . , cd) = (1, 0, . . . , 0).

Example 20 We activate Proposition 1 to apply Zeilberger’s creative telescoping
paradigm. Take the summand F(n, k) defined in

In[24]:= F = (−1)k

k

(
n
k

) k∑
i=1

1
i

i∑
j=1

1
j + n

;

and define the definite sum

In[25]:= definiteSum = SigmaSum[F, {k, 1, n}]

Out[25]=

n∑
k=1

(−1)k

k

(
n

k

) k∑
i=1

1

i

i∑
j=1

1

j+ n

Then we can compute a linear recurrence for SUM[n]=definiteSum with the call

In[26]:= rec = GenerateRecurrence[definiteSum, n, SimplifyByExt → None]

Out[26]=

{
(1+n)3(8+3n)2SUM[n]+

(
−1692−4306n−4369n2−2202n3−549n4−54n5

)
SUM[n+1]

+ (7+ 3n)
(

554+ 1072n+ 764n2 + 237n3 + 27n4
)

SUM[n+ 2]
− 2(3+ n)2(5+ 2n)(5+ 3n)2SUM[n+ 3]
== 808+ 2008n+ 2007n2 + 1017n3 + 261n4 + 27n5

(2+ n)2(3+ n)

}

Here Sigma searches for a solution of (3) with d = 0, 1, 2, . . . and finally computes
a solution for d = 3. Internally, it takes the shifted versions F(n + i, k) with i =
0, 1, 2, 3

In[27]:= FList = {F, (F/.n → n + 1), (F/.n → n + 2), (F/.n → n + 3)};
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and rewrites the expressions in a σ -reduced representation:

In[28]:= FListRed = SigmaReduce[FList, k]

Out[28]=

{
(−1)k

k

(
n

k

) k∑
i=1

1

i

i∑
j=1

1

j+ n
,

(−1)k
(

n

k

)(
1

(1+n)(1−k+n)(1+k+n) +
1

k(−1+ k− n)

k∑
i=1

1

i+ n

+ (−1− n)

k(−1+ k− n)

k∑
i=1

1

i

i∑
j=1

1

n+ j

)
, . . .

}

Here we have printed only the first two entries of the output list. Afterwards it
activates Proposition 1 by executing the command

In[29]:= ParameterizedTelescoping[FListRed, n]

Out[29]= {{∅,∅,∅,∅, 1}, {c1, c2, c3, c4,G}}

The expressions c1, c2, c3, c4 and G equal

c1 = −(1+ n)3(8+ 3n)2,

c2 = 1692+ 4306n+ 4369n2 + 2202n3 + 549n4 + 54n5,

c3 = −(7+ 3n)(554+ 1072n+ 764n2 + 237n3 + 27n4),

c4 = 2(3+ n)2(5+ 2n)(5+ 3n)2,

G(n, k) =(−1)k
(
n

k

)(
Q1

k∑
i=1

1

i

i∑
j=1

1

n+ j
+Q2

k∑
i=1

1

i + n
+Q3

)

for some Q1,Q2,Q3 ∈ Q(n, k). Alternatively, ParameterizedTelescoping

[FList,k] (without SigmaReduce as a preprocessing step) could be used. The
same result could be produced with CreativeTelescoping[definiteSum,n,

SimplifyByExt→ None].
Finally, summing (3) with d = 3 over k from 0 to n yields the recurrence given

in Out[26]. Note that the correctness of the solution (c1, c2, c3, c4,G) of (3) with
d = 4 can be verified straightforwardly: Since W is σ -reduced, one simply has
to plug in the solutions and checks that the left-hand and right-hand sides agree.
Thus we have shown rigorously that the definite sum given in In[25] is a solution
of Out[26].

In order to introduce refined methods, we need the following definition.

Definition 20 Let W ⊂ &#(G) be σ -reduced depth-optimal and F ′ =
(F ′

1, . . . , F
′
d) ∈ SumProd1(W,G)d . W is called F ′-one complete if the following

holds: If there is (c1, . . . , cd ,G) ∈ Kd × SumProd1(G) with c1 �= 0,
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d(G) ≤ min(d(F ′
1), . . . ,d(F

′
d)) such that (27) holds for all n sufficiently large,

then there is G′ ∈ SumProd1(W,G) with the same ci such that11 (27) holds (G
replaced by G′) for all n sufficiently large.

Using the techniques from [100, 102, 106, 108–111, 115] the following refined
parameterized telescoping techniques are available for the class SumProd1(Gm)

over a σ -computable field K; for simplicity we skip more general cases, like
SumProd(Gr ).

Problem RPT: Refined Parameterized Telescoping

Given: F1, . . . , Fd ∈ SumProd1(Gm).
Find: δ ∈ Z≥0 and a depth-optimal σ -reduced set W = {T1, . . . , Te} ⊂

&#1(Gm) with d(T1) ≤ d(T2) ≤ · · · ≤ d(Te) with the following properties:

• One gets F ′ = (F ′
1, . . . , F

′
d) ∈ SumProd(W,Gm)

d such that Fi(k) = F ′
i (k)

holds for all 1 ≤ i ≤ d and k ≥ δ.

In addition, based on the refinements given below, one obtains (c1, . . . , cd ,G) ∈
Kd × SumProd(W,Gm) with c1 �= 1 such that (27) holds for all k ≥ δ.

• Refinement 1: W is F ′-one complete. Further, one can compute (it exists) such
a solution with d(G) ≤ d(F ′

1) (by using SimplifyByExt→MinDepth).
• Refinement 2: If this is not possible, one gets d(G) = d(F ′

1) + 1 with the
following extra property: d(Te−1) < d(Te) = d(G) and Te = Sum(δ,H) with
H ∈ SumProd({T1, . . . , Ti},Gm) where i with 1 ≤ i < e is minimal (by using
the option SimplifyByExt→DepthNumber).

• Refinement 3: One can compute, among all possible choices with i

minimal, H such that also degTi is minimal (by using SimplifyByExt→
DepthNumberDegree).

For technical details concerning Sigma we refer to Remarks 7 and 10 above.

Example 21 While the standard approach finds for the definite sum given in In[25]
only a recurrence of order 3, the refined parameterized telescoping toolbox (refine-
ment 1) computes a recurrence of order 1:

In[30]:= GenerateRecurrence[definiteSum, n, SimplifyByExt → MinDepth]

Out[30]=

{
SUM[n] − SUM[n+ 1] == 1

(1+ n)3 −
1

2(1+ n)2

n∑
i=0

(−1)i
(n

i

)
1+ i+ n

+ 1

1+ n

n∑
i=1

(−1)i
(n

i

) i∑
j=1

1
n+j

i

}

11Since W is depth-optimal, it follows in particular that d(G′) ≤ d(G).
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by introducing in addition the sum
∑n

i=0
(−1)i(ni)
1+i+n

. The right-hand side is given by
definite sums which are simpler than the input sum. In this situation, they can be
simplified further to

1

(1+ n)3 −
1

2(1+ n)2(1+ 2n)

1(2n
n

) + 1

1+ n

n∑
i=1

1

i2 −
3

1+ n

n∑
i=1

1

i2
(2i
i

)

in SumProd1(Q(x)) by applying again the creative telescoping paradigm plus
recurrence solving (which we will introduce in the next subsection).

This refined version turns out to be highly valuable in concrete applications. First,
one can discover in many problems the minimal recurrence relation. Sometimes this
enables one even to read off hypergeometric series solutions, like, e.g., in [88]. In
addition, the calculation of such recurrences of lower order is more efficient, and
the extra time to simplify the more complicated right hand sides is often negligible.
In applications from particle physics, like in [13, 14], the standard approach is even
out of scope and only our improved methods produced the desired results.

Remark 11

(1) Structural theorems (together with algorithmic versions) that are strongly
related to Liouville’s theorem of integration [79, 96] can be found in [110].

(2) Based on Theorems 1 and 10 additional aspects of the algebraic independence
of indefinite nested sums (related to [62]) are worked out in [109] and [118,
Section 7.2]. Namely, if there is no solution of a parameterized telescoping
problem (in particular of a creative telescoping problem), then the indefinite
sums defined over these parameters are algebraically independent.

5.3 Recurrence Solving

Finally, we turn to difference ring algorithms that solve parameterized higher-order
linear difference equations. Let (A, σ ) be a difference ring with constant field K,
a = (a0, . . . , am) ∈ Am+1 and f = (f1, . . . , fd) ∈ Ad . Then we define [65]

V (a,f ,A) = {(c1, . . . , cd , g) ∈ Kd ×A |
am σm(g)+ · · · + a1 σ(g)+ a0 g = c1 f1 + · · · + cd fd};

note that we have V ((−u, 1),f ,A) = V1(u,f ,A).
In Sigma algorithms are available to solve parameterized linear difference

equations that are based on the following theorem.
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Theorem 13 Let (E, σ ) be a basic R#&-extension of a #&-field (F, σ ) over K,
0 �= a = (a0, . . . , am) ∈ Fm+1 and f ∈ Ed . Then the following holds:

1. V (a,f ,E) is a K-vector space of dimension ≤ m+ d.
2. If K is σ -computable, then one can compute a basis of V (a,f ,E).

Proof (1) follows by a slight variant of [98, Prop 3.1.1] and [57, Thm. XII (page
272)]. By Abramov et al. [26, Theorem 9] (based on [20, 49, 91, 99, 101, 105]) the
statement (2) holds for f ∈ Fn. Thus with [17] statement (2) holds also for f ∈ En.

*,
In addition, Sigma contains a solver that finds all hypergeometric solutions in

the setting of #&-fields. This result follows by Theorems 9 and 10 of [26], which
can be considered as the differential version of Singer’s celebrated algorithm [123]
that finds Liouvillian solutions of linear differential equations with Liouvillian
coefficients.

Theorem 14 Let (F, σ ) be a #&-field over a σ -computable K. Let a0, . . . , am ∈
F with a0 am �= 0. Then one can compute a P -extension (E, σ ) of (F, σ ) with
E = F〈t1〉 . . . 〈te〉 and σ(ti )

ti
∈ F∗ and finite sets ∅ �= Si ⊂ F∗ for 1 ≤ i ≤ e as

follows.

1. For any 1 ≤ i ≤ e and any h ∈ Si it follows that g = hti is a solution of

am σm(g)+ · · · + a1 σ(g)+ a0 g = 0. (29)

2. For any difference ring extension (H, σ ) of (F, σ ) with H = F〈p1〉 . . . 〈pu〉 and
σ(pi )
pi

∈ F∗ and any solution g ∈ H of (29) with α = σ(g)
g

∈ F∗ one can take

i ∈ {1, . . . , e} with f1, . . . , fl ∈ Si and c1, . . . , cl ∈ K∗ such that σ(g′)
g′ = α

holds for g′ = (c1 h1 + · · · + cl hl)ti .

We note that the obtained solver of hypergeometric solutions covers the special
cases Gr (see [91, 127]), Gb with v = 1 (see [25]) and Gm (see [31]).

Remark 12 Theorems 13 and 14 hold in the more general setting where (F, σ )

is a #&-field extension of a difference field (F0, σ ) where certain properties are
satisfied (see [26, Def. 7]). In addition, there is a generalization of Theorem 13
given in [17] (based on [26, 118]) where the ai (with some extra properties) can be
taken from the ring E; the implementation can be found in the Mathematica package
PLDESolver.

Based on [22, 24] we obtain the following result to find all d’Alembertian
solutions, a subclass of Liouvillian solutions [63]. The solver relies on [43, Cor 2.1]
and [98, Alg. 4.5.3] and the algorithmic machinery of Theorems 14 and 13.
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Problem PLDE: Solving Parameterized Linear Difference Equations

Given: a0, . . . , am ∈ G with am �= 0 and F1, . . . , Fd ∈ SumProd1(G) with
G ∈ {Gr ,Gb,Gm}, i.e., G = K(x, x1, . . . , xv) (or G = K(x1, . . . , xv)) where
K = A(y1, . . . , yo)(q1, . . . , qv) is a rational function field over an algebraic
number field A.

Find: δ ∈ Z≥0, a finite σ -reduced set W ⊂ &#1(G
′) and

B = {(ci,1, . . . , ci,d ,Gi)}1≤i≤ν ⊆ Kd × SumProd(W,G′) such that

am(n)Gi(n+m)+ · · · + a0(n)Gi(n) = ci,1F1(n)+ · · · + ci,dFd(n)

holds for all n ≥ δ with 1 ≤ i ≤ ν; here G′ = K′(x, x1, . . . , xv) (or G′ =
K′(x1, . . . , xv)) with K′ = A′(y1, . . . , yo)(q1, . . . , qv) where A′ is an algebraic
field extension of A.

In addition, the following properties hold:

1. Completeness: For any G′′ = K′′(x, x1, . . . , xv) (or G′′ = K′′(x1, . . . , xv))
with K′′ = A′′(y1, . . . , yo)(q1, . . . , qv) where A′′ is an algebraic extension of
A and (c1, . . . , cd ,G) ∈ Kd × SumProd1(G

′′) with

(am(n)G(n+m)+ · · · + a0(n)G(n))n≥0 = (c1F1(n)+ · · · + cdFd(n))n≥0

there is a (κ1, . . . , κν) ∈ (K′′)ν with

(c1, . . . , cd) = κ1(c1,1, . . . , c1,d )+ · · · + κν(cν,1, . . . , cν,d ),

(G(n))n≥0 = (κ1G1(n)+ · · · + κνGν(n))n≥0.

2. Linear independence: If there is a (κ1, . . . , κν) ∈ (K′)ν with

κ1(c1,1, . . . , c1,d )+ · · · + κν(cν,1, . . . , cν,d ) = 0,

(κ1G1(n)+ · · · + κνGν(n))n≥0 = 0,

then (κ1, . . . , κν) = 0.

Remark 13 Right from the start the case d = 1 was available (and fully solved
with [26]) in Sigma with the function call SolveRecurrence[a0G[n] + · · · +
amG[n + m] == F1,G[n]]. The case d > 1 has been incorporated in Sigma
only recently. It can be carried out with SolveRecurrence[a0G[n] + · · · +
amG[n + m] == {F1, . . . , Fd},G[n]] or SolveRecurrenceList[{a0, . . . , am},
{F1, . . . , Fd}, n]. It works also for nested products, i.e., F1, . . . , Fd ∈
SumProd(G), if the Fi can be expressed straightforwardly in an R#&-extension.
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Using in addition the package NestedProducts this toolbox works also fully
algorithmically for the case SumProd(Gr ).

Example 22 [Cont. of Ex. 20] We proceed with the calculations given in Exam-
ple 20. We apply our solver in Sigma to the already computed recurrence Out[26]
and get

In[31]:= recSol = SolveRecurrence[rec[[1]], SUM[n]]

Out[31]=

{
{0, 1}, {0,

n∑
i=1

1

i
}, {0, 4

9

n∑
i=1

i!2
i3(2i)! +

4

3

( n∑
i=1

1

i

) n∑
i=1

i!2
i2(2i)!

− 4

3

n∑
i=1

i!2
i∑

j=1

1
j

i2(2i)! }, {1,−
n∑

i=1

i∑
j=1

1
j2

i
}
}

The first three entries provide three linearly independent solutions of the homoge-
neous version of the recurrence and the last entry gives a particular solution of the
recurrence itself.

Remark 14

(1) By default the found solutions are represented in a depth-optimal σ -reduced set
W to keep the nesting depth of the solutions as small as possible.

(2) Since all components (i.e., ai, Fi,Gi) can be represented in the given σ -reduced
set W , the correctness of the solutions Gi can be verified by plugging them into
the recurrence and checking if the left-hand and right-hand sides are equal.

(3) If one finds m linearly independent solutions of the homogeneous version
together with a particular solution, the solution space is fully determined.
In particular, any sequence, which is a solution of the recurrence, can be
represented by SumProd(G): simply combine the found solutions accordingly
(which is always possible from a certain point on) such that the evaluation of
the expression agrees with the first m initial values.

Example 23 (Cont. of Ex. 22) In Example 22 we found all solutions of the
recurrence. Since also the definite sum given in In[25] is a solution of the recurrence,
we can combine the solutions accordingly and get an alternative solution of the input
sum:

In[32]:= sol = FindLinearCombination[recSol, definiteSum, n, 3]

Out[32]= 3
( n∑

i=1

1

i

) n∑
i=1

i!2
i2(2i)! −

n∑
i=1

i∑
j=1

1
j2

i
− 3

n∑
i=1

i!2
i∑

j=1

1
j

i2(2i)! +
n∑

i=1

i!2
i3(2i)!
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Finally, we can rewrite the result in terms of the central binomial coefficient with

In[33]:= sol = SigmaReduce[sol, n, Tower → {SigmaBinomial[2n, n]}]

Out[33]= 3
( n∑

i=1

1

i

) n∑
i=1

1

i2
(2i

i

) +
n∑

i=1

1

i3
(2i

i

) −
n∑

i=1

1

i

i∑
j=1

1

j2
− 3

n∑
i=1

1

i2
(2i

i

)
i∑

j=1

1

j

Summarizing we have discovered and proved the identity

n∑
k=1

(−1)k
(
n
k

)
k

k∑
i=1

i∑
j=1

1
j+n

i
= 3

( n∑
i=1

1

i

) n∑
i=1

1

i2
(2i
i

)

−
n∑

i=1

i∑
j=1

1
j2

i
− 3

n∑
i=1

i∑
j=1

1
j

i2
(2i
i

) +
n∑

i=1

1

i3
(2i
i

) .

Example 24 More generally, using the algorithms from [26] we can solve recur-
rences where the coefficients are represented within a #&-field. E.g., for the
recurrence

In[34]:= recFactorial = −F[n+2]+(1+n)
(
8+9n+2n2)n!F[n+1]−2(1+n)3(3+n)n!2F[n] = 0;

where the coefficients are taken from SumProd1(Q(x)), we can find all its solutions
(in this instance, they are again from SumProd1(Q(x))) by executing the Sigma-
call

In[35]:= SolveRecurrence[recFactorial, F[n]]

Out[35]=

{{
0,

n∏
i=1

i!}, {0,−2nn!
n∏

i=1

i! + 3
2

n∏
i=1

i!
n∑

i=1

2ii!}}

6 Application: Evaluation of Feynman Integrals

The elaborated summation tools from above contributed to highly nontrivial
applications, e.g., in the research areas of combinatorics, number theory and particle
physics. Here we emphasize the following striking aspects that are most relevant for
the treatment of Feynman integrals.

Multi-Summation In order to support the user for the evaluation of definite multi-
sums to expressions in SumProd(G), the package EvaluateMultiSums [112,
113]

In[36]:= << EvaluateMultiSums.m
EvaluateMultiSums by Carsten Schneider © RISC-JKU
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has been developed to tackle definite sums in one stroke. It uses as backbone Sigma
with all the available tools introduced above. E.g., by executing

In[37]:= EvaluateMultiSum[
n∑

k=1

(−1)k

k

(
n
k

) k∑
i=1

1
i

i∑
j=1

1
j + n

, {}, {n}, {1}, {∞}]

Out[37]= 3
( n∑

i=1

1

i

) n∑
i=1

i!2
i2(2i)! −

n∑
i=1

i∑
j=1

1
j2

i
− 3

n∑
i=1

i!2
i∑

j=1

1
j

i2(2i)! +
n∑

i=1

i!2
i3(2i)!

we reproduce the identity given in Example 23. In particular, it can tackle definite
multi-sums by zooming from inside to outside and, in case that this is possible,
transforming stepwise the sums to expressions in SumProd1(G). In this way we
could treat highly complicated massive 3-loop Feynman integrals. More precisely,
using techniques described in [42] these integrals can be transformed to several
thousands of multiple sums with summands from Prod1(Gr ). Afterwards, the
package SumProduction [40, 113] is applied. It combines these sums to few
(but large) sums tailored for our summation toolbox. Afterwards the command
EvaluateMultiSum can be applied (without any further interaction) to treat the
obtained sums. In the course of these calculations, we treated up to sevenfold multi-
sums [8] or fourfold sums with up to 1GB of size [13, 14]. In addition, this package
helped significantly to solve problems from combinatorics [75, 119, 121].

In addition, the difference field/ring approach described in this article has been
united with important parts of the holonomic approach [55, 133] in [103]. While its
first main application arose in combinatorics [28], this combined toolbox has been
improved further in [43] and enabled us to tackle various multi-sums coming from
particle physics [3, 5, 6]. In addition, these improved tools have been applied in [122]
to complicated multi-sums that arose in the context of irrationality proofs of ζ(4).
We remark further, that also other multi-sum and integral techniques from [1, 8, 42]
have been explored; for further technologies see also [39] and the references therein.

Solving Coupled Systems Using integration-by-parts methods [54, 76] one can
represent physical expressions in terms of master integrals which can be calculated
by solving recursively defined coupled systems of linear differential equations. Most
of these master integrals can be represented in terms of power series. Utilizing the
techniques from above, this gives rise to two general tactics to compute the physical
expressions in terms of known special functions (in case that this is possible).

Uncoupling and Solving the Underlying Recurrences In the first approach we
uncouple iteratively the systems of linear differential equation using Gerhold’s
package OreSys [60] and reduce the problem to solving scalar linear differential
equations of each master integral I (x) = ∑∞

n=0 F(n)xn. In a first step, each
linear differential equation can be transformed to a linear recurrence. Applying
Sigma’s recurrence solver in a second step enables one to decide constructively
if the coefficient F(n) can be expressed in terms of SumProd1(G). If this is
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possible for each master integral, one can express also the physical expres-
sions in SumProd1(G). Using these technologies implemented in the package
SolveCoupledSystem [7, 9] (using Sigma) we could treat highly nontrivial
problems of particle physics as given in [3, 10, 32–34]. Note that there are also other
methods available [64, 78] that can solve certain classes of systems. Furthermore,
in ongoing investigations nontrivial methods are developed to solve the coupled
systems directly without recourse to uncoupling methods; see [30, 80, 128] and the
literature therein.

The Large Moment Method The second highly successful approach is based on the
technology [38, 46] implemented within the package SolveCoupledSystem.
It enables one to produce for the master integrals the first coefficients F(n) with
n = 0, . . . , μ; so far we encountered cases where μ = 10.000 was necessary.
Here one does not solve the arising recurrences as proposed above, but uses them to
produce a large number of sequence values; as starting point one needs in addition
a few initial values that can be produced by our summation tools or procedures like
Mincer [77] or MATAD [125]. A significant feature of the large moment method
is that one can avoid complicated function spaces (either nested sums with high
weight or new classes, like nested sums over, e.g., elliptic functions [11, 27, 45, 47])
during the calculation. Only in the last step, one combines all the calculations and
gets large moments of the physical expressions. Then one can use, e.g., the package
ore_algebra [73] in Sage to guess recurrences (so far up to order 40) that
specify precisely the different components of the physical problem. Finally, one can
decide algorithmically if the physical problem (or individual subexpressions) can be
represented within the class SumProd1(Gr ). In this way we could compute, e.g., the
3-loop splitting functions [10], the polarized 3-loop anomalous dimensions [35] and
the massive 2- and 3-loop form factor [12, 44]; for another case study see, e.g., [41].

7 Conclusion

We presented two different layers to treat the class of indefinite nested sums defined
over nested products in the context of symbolic summation. First, the term algebra
layer SumProd(G) (covering the rational case G = Gr , the multibasic case
G = Gb and the mixed multibasic case G = Gm) equipped with an evaluation
function ev : SumProd(G) × Z≥0 → K has been introduced. There the user can
define, evaluate and manipulate the class of nested sums and products conveniently.
In particular, we illustrated how this user interface is implemented within the
summation package Sigma.

Second, the formal difference ring/field layer has been elaborated. Here the ele-
ments of SumProd(G) are rephrased in a ring E that is built by (Laurent) polynomial
ring extensions. More precisely, the adjoined variables (in some instances factored
out by ideals) represent the summation objects with two extra ingredients: a ring
automorphism σ : E → E that describes the action of the shift operator on the
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ring elements and an evaluation function ev : E × Z≥0 → K that allows one
to evaluate the formal ring elements to sequences. In this formal setting one can
develop and implement not only complicated summation algorithms, but also set up
a summation theory that enables one to embed the formal ring extensions into the
ring of sequences (see Theorem 1).

One of the secrets of Sigma’s success within, e.g., particle physics, combina-
torics and number theory is the smooth interaction between these two different
layers: as illustrated in Fig. 1 on page 427 one can represent the objects from the
two worlds so that their interpretation with the corresponding evaluation function
agrees. In this article, we worked out in detail this algorithmic translation back
and forth between the user-friendly term algebra and the complicated difference
ring setting. To gain a better understanding of Sigma’s capabilities we established
a precise input-output specification of the available summation tools using the
introduced term algebra language. Special emphasis has been put on the canonical
form representation (and its relation to the difference ring theory) for the class
SumProd(G).
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Expansion by Regions: An Overview

Vladimir A. Smirnov

Abstract A short review of expansion by regions is presented. It is a well-known
strategy to obtain an expansion of a given multiloop Feynman integral in a given
limit where some kinematic invariants and/or masses have certain scaling measured
in powers of a given small parameter. Prescriptions of this strategy are formulated
in a simple geometrical language and are illustrated through simple examples.

1 Historiographical Notes

Expansion by regions is a universal strategy to obtain an expansion of a given
Feynman integral in a given limit, where kinematic invariants and/or masses
essentially differ in scale. For simplicity, let us consider a Feynman integral
G�(q

2,m2) depending on two scales, for example, q2 and m2, and let the limit
be t = −m2/q2 → 0. Experience tells us that the expansion at t → 0 has the form

G�(t, ε) ∼ (−q2)ω
∞∑

n=n0

2h∑
k=0

cn,k(ε) t
n logk t , (1)

where ω = 4h − 2
∑

ai is the degree of divergence, with al powers of the
propagators, h is the number of loops and ε = (4 − d)/2 is the parameter of
dimensional regularization. The expansion is often called asymptotic, in the sense
that the remainder of expansion has the order o(tN ) after keeping terms up to tN .
However, every power series at a power of logarithm in expansions in various limits
of momenta and masses has a non-zero radius of convergence which is determined
usually by the nearest threshold.
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There can be different reasons to consider some limit and the corresponding
expansion. Typically, different scaling of kinematic invariants and/or masses
involved is dictated by a phenomenological situation. Moreover, experience
obtained when expanding Feynman integrals in some limit can show a way
to construct the corresponding effective theory. At the level of individual
Feynman integrals, expanding a complicated Feynman integral in some limit can
approximately substitute the analytic evaluation of the integral.

One can use various techniques in order to obtain an expansion of a given
Feynman integral in some limit: one can start with a parametric representation, or
apply the method of Mellin–Barnes representation, or obtain an expansion within
the method of differential equations. However, the general strategy of expansion by
regions provides the possibility to write down a result for the expansion immediately
once relevant regions are known. Such a result looks similar to (1) but now
exponents of the expansion parameter depending linearly on ε are not yet expanded
in ε,

G�(t, ε) ∼ (−q2)ω
∞∑

n=n0

h∑
k=0

h∑
j=0

c′n,j,k(ε)tn−jε logk t (2)

and the coefficients in the expansion can be represented in terms of integrals over
loop momenta or over Feynman parameters. These integrals on the right-hand
side of the expansion are constructed according to certain rules starting from the
Feynman integral or a parametric integral for the initial Feynman integrals G� . This
means that expansion by regions reduces the problem to the evaluation of integrals
present in (2).

Logarithms in (2) within dimensional regularization do not appear in limits
typical of Euclidean space such as the off-shell large momentum limit and the large
mass limit. Rather, they are typical for limits typical of Minkowski space such as
the Regge limit and various versions of the Sudakov limit. In fact, one can avoid
such logarithms by introducing an auxiliary analytic regularization which can be
introduced as additional complex numbers in the exponents of the propagators. One
can say that, after this, the various scales in the problem become separated so that
the expansion becomes only in powers of the expansion parameter. After turning off
this regularization, spurious poles in the auxiliary analytic parameters cancel giving
rise to the logarithms, and this happens to be an important consistency check. A
lot of examples illustrating this phenomenon can be found, e.g., in [1]. We will
come back to this point in Section 2 when discussing the geometrical formulation
of expansion by regions.

According to the first formulation of expansion by regions [2] one analyzes
various regions in a given integral over loop momenta and, in every region, expands
the integrand in parameters which are there small. Then the integration in the
integral with so expanded propagators is extended to the whole domain of the
loop momenta and, finally, one obtains an expansion of the given integral as the
corresponding sum over the regions. Although these recipes were formulated in a
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Fig. 1 A one-loop graph

suspicious mathematical language, expansion by regions was successfully applied
in numerous calculations.

A very simple example is given by the Feynman integral corresponding to the
graph depicted in Fig. 1,

G(q2,m2; d) =
∫

ddk

(k2 −m2)2(q − k)2
(3)

in the limit m2/q2 → 0.
The relevant regions are the region of small loop momenta, k ∼ m, and the region

of large loop momenta, k ∼ q. According to the above prescriptions, in the first
region, the first propagator is unexpanded and the second propagator is expanded in
a Taylor series in k. In the second region, the first propagator is expanded in a Taylor
series in m the second propagator is unexpanded. The leading terms of expansion
give

G(q2,m2; d) ∼
∫

ddk

(k2)2(q − k)2 +
1

q2

∫
ddk

(k2 −m2)2 + . . . (4)

The integrals involved can be evaluated by Feynman parameters, with the following
result

G(q2,m2; d) ∼ iπd/2
(

�(1− ε)2�(ε)

�(1− 2ε)(−q2)1+ε
+ �(ε)

q2(m2)ε
+ . . .

)
(5)

Although the initial Feynman integral is finite at d = 4, there are simple poles
above: an infrared pole in the first term and an ultraviolet term in the second term.
They are successfully canceled, with the following result

iπd/2
(

log

(−q2

m2

)
+ . . .

)
. (6)

Such an interplay of various divergences is a typical feature of expansions
in momenta and masses. Only in rare situations, such as an expansion in the
small momentum limit of a Feynman integral without massless threshold in the
corresponding channel, there is no such phenomenon. Let me also point out that the
first term in (4) is convergent at Re(ε) < 0 while the second term in (4) is convergent
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at Re(ε) > 0. This can be seen from an analysis of convergence of the corresponding
integrals over Feynman parameters. Thus, there is no domain in the complex plane
of ε where both terms are given by convergent integrals. In fact, using auxiliary
subtraction operators, it is possible to write down the result of expansion in such a
way that both terms on the right-hand side will be convergent in some domain of ε.
However. I prefer to follow the prescription which is implied in practice: to evaluate
every term in the result for expansion in a domain of ε where it is convergent and
then analytically continue the corresponding result to some desirable domain.

Expansion by regions has the status of experimental mathematics. Usually,
when studying a given limit, one starts from one-loop examples, checks results
by independent methods and, finally, one understands which regions are relevant
to the limit and that one obtains reliable expansion within this strategy. Beneke
provided a one-parametric example showing explicitly how expansion by regions
works. The example was used in Chapter 3 of [1]. Guided by this example, Jantzen
[3] provided detailed explanations of how this strategy works in several two-loop
examples by starting from regions determined by some inequalities and covering
the whole integration space of the loop momenta, then expanding the integrand and
then extending integration and analyzing all the pieces which are obtained, with
the hope that ‘readers would be convinced that the expansion by regions is a well-
founded method’.

However, there is an important class of limits for which there is a mathematical
proof. These are limits typical of Euclidean space: for example, the off-shell large
momentum limit and the large mass limit. In [4] (see also Appendix B of [1]) that
the remainder of such expansion constructed with the help of an operator which has
the structure of the R-operation (i.e. renormalization at the diagrammatical level)
has the desirable order with respect to the parameter of expansion. This proof was
for a general h-loop graph. It was similar to proofs of results on the R-operation and
was based on sector decompositions and a resolution of singularities in parametric
integrals, with power counting of sector variables.

For this class of limit, the expansion of a given Feynman integral corresponding
to a graph � is given [4–6] (see also [7] and Chapter 9 of [8]) by the following
simple formula:

G� ∼
∑
γ

G�/γ ◦ Tqγ ,mγ Gγ . (7)

which is written for the off-shell large-momentum limit, i.e. where a momentum Q

is considered large and momenta qi as well as the masses mj are small. The sum runs
over subgraphs γ of � which can be called asymptotically irreducible (AI): they are
one-particle irreducible after identifying the two external vertices associated with
the large external momentum Q. Moreover, T is the operator of Taylor expansion
in internal masses and external momenta of a subgraph γ , the symbol ◦ means the
insertion of the polynomial obtained after this Taylor expansion into the vertex of
the reduced graph �/γ to which γ is reduced.
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In the case of limits typical of Euclidean space, there is a natural one-to-
one correspondence between AI subgraphs and regions in the description of the
expansion within expansion by regions, so that we obtain an indirect justification of
expansion by regions for such limits. The set of relevant regions exactly corresponds
to the set of AI subgraphs. There are two kind of regions for each loop momentum:
small and large. For a given AI subgraph γ , the corresponding region is defined by
considering each loop momentum of γ as large and the rest of the loop momenta
of � (i.e. loop momenta of �/γ ) as small. For example, two subgraphs are AI for
Fig. 1: the graph � and the subgraph consisting of the massless line. As a result, we
obtain the same contributions as above.

For limits typical of Minkowski space, to reveal the set of relevant regions is not
so simple. For example, for the threshold limit in the case where the threshold in
the q channel is at q2 = 4m2 and the small expansion parameter is introduced by
y = m2 − q2/4 → 0, the following four kind of regions for a loop momentum are
relevant [2]:

(hard), k0 ∼
√
q2 , k ∼

√
q2 ,

(soft), k0 ∼ √
y , k ∼ √

y ,

(potential), k0 ∼ y/

√
q2 , k ∼ √

y ,

(ultrasoft), k0 ∼ y/

√
q2 , k ∼ y/

√
q2 .

where q = (q0, 0).
An alternative version of expansion by regions was formulated and illustrated

via examples in [9] within the well-known Feynman parametric representation. This
representation in the case of propagators with −k2 propagators with general indices
ai (powers of the propagators) is

G(q1, . . . , qn; d) =
(
iπd/2

)h �(
∑

a − hd/2)∏
i �(ai)

×
∫ ∞

0
. . .

∫ ∞

0
δ
(∑

xi − 1
) ∏

x
ai−1
i Ua−(h+1)d/2Fhd/2−adx1 . . . dxn (8)

where n is the number of lines (edges), a = ∑
ai , h is the number of loops of the

graph,

F = −V + U
∑

m2
l xl , (9)

and U and V are two basic functions (Symanzik polynomials, or graph polynomials)
for the given graph,

U =
∑
T ∈T 1

∏
l �∈T

xl , (10)
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V =
∑
T ∈T 2

∏
l �∈T

xl

(
qT
)2

. (11)

In (10), the sum runs over trees of the given graph, and, in (11), over 2-trees, i.e.
subgraphs that do not involve loops and consist of two connectivity components;
±qT is the sum of the external momenta that flow into one of the connectivity
components of the 2-tree T . The products of the Feynman parameters involved are
taken over the lines that do not belong to a given tree or a 2-tree T . As is well known,
one can choose the sum in the argument of the delta-function over any subset of
lines. In particular, one can choose just one Feynman parameter, xl , and then the
integration will be over the other parameters at xl = 1. The functions U and V are
homogeneous with respect to Feynman parameters, with the homogeneity degrees
h and h+ 1, respectively.

One can consider quite general limits for a Feynman integral which depends on
external momenta qi and masses and is a scalar function of kinematic invariants and
squares of masses, si , and assume that each si has certain scaling ρκi where ρ is a
small parameter.

An algorithmic way to reveal regions relevant to a given limit was found in
[10]. It is based on the geometry of polytopes connected with the basic functions
U and F in (8). This was a real breakthrough, both in theoretical and practical sense
because, on the one hand, it became possible to formulate expansion by regions in
an unambiguous mathematical language and, on the other hand, the authors of [10]
presented also a public code asy.m which was later successfully applied in various
problems with Feynman integrals.

Ironically, this algorithm and the code didn’t find, in this first version, the
potential region for the threshold expansion. Later, this algorithm was updated and,
in its current version, it can reveal potential region as well as Glauber region. This
was done by introducing an additional decomposition of the integration domain
and introducing new variables. Consider, for example, one-loop diagram with two
massive lines in the threshold limit y = m2 − q2/4 → 0

G(q2, y) = iπd/2 �(ε)

∫ ∞

0

∫ ∞

0

(x1 + x2)
2ε−2 δ (x1 + x2 − 1) dx1dx2[

q2

4 (x1 − x2)2 + y(x1 + x2)2 − i0
]ε . (12)

The code asy.m in its first version revealed only the contribution of the hard
region, i.e. xi ∼ y0. To make the potential region visible, let us decompose
integration over x1 ≤ x2 and x2 ≤ x1, with equal contributions. In the first domain,
let us turn to new variables by x1 = x′1/2, x2 = x′2 + x′1/2 and arrive at

iπd/2 �(ε)

2

∫ ∞

0

∫ ∞

0

(x1 + x2)
2ε−2 δ (x1 + x2 − 1) dx1dx2[

q2

4 x2
2 + y(x1 + x2)2 − i0

]ε .
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Now we observe two regions with the scalings (0, 0) and (0, 1/2). The second
one, with x1 ∼ y0, x2 ∼ √

y, gives

iπd/2 �(ε)

2

∫ ∞

0

dx2(
q2

4 x2
2 + y

)ε = iπd/2 1

2
�(ε − 1/2)

√
πy

q2 y−ε .

Taking into account that we have two identical contributions after the above
decomposition, we obtain a result for the potential contribution equal to the previous
expression with omitted 1/2.

Observe that the expression for the function F in the Feynman parametric
representation is non-negatively defined and only some individual terms are negative
but this brings problems when looking for potential contributions. In the current
version [11] of the code asy.m, one can get rid of the negative terms due to
additional decompositions and introduction of new variable. Let me emphasize that
this code can work successfully also in situations with a function F not positively
defined even without additional decompositions—see, e.g. [12, 13].

For completeness, let me refer to [14, 15] where two specific ways of dealing
with expansion by region were applied.

Let us realize that the very word ‘region’ is used within the strategy under
discussion in a physical rather mathematical way. By region, we mean some
scaling behaviour of parameters involved. I will present expansion by regions in
a mathematical language in the next section using another form of parametric
representation, rather than (8) and illustrate it through simple examples.

2 Geometrical Formulation

Lee and Pomeransky [16] have recently derived another form of parametric
representation which turns out to be preferable in certain situations

G(q1, . . . , qn; d) =
(
iπd/2

)h �(d/2)

�((h+ 1)d/2− a)
∏

i �(ai)

×
∫ ∞

0
. . .

∫ ∞

0

∏
i

x
ai−1
i P−δdx1 . . . dxn , (13)

where δ = 2 − ε and P = U + F . One can obtain (8) from (13) by [16] inserting
1 = ∫ δ(

∑
i xi − η)dη, scaling x → ηx and integrating over η.

The parametric representation takes now a very simple form: up to general
powers of the integration variables, there is only one polynomial raised to a general
complex power. I believe that the fact that this function is the sum of the two basic
functions in Feynman parametric representation is not crucial and expansion by
regions holds for any polynomial.



494 V. A. Smirnov

Let us formulate, following [17], expansion by regions for integral (13) with
a polynomial with positive coefficients in the case of limits with two kinematic
invariants and/or masses of essentially different scale, where one introduces one
parameter, t , which is the ratio of two scales and is considered small. These can
be such limits typical of Minkowski space as the Regge limit, with t � s and
various versions of the Sudakov limit. Then the polynomial in Eq. (13) is a function
of Feynman parameters and t ,

P(x1, . . . , xn, t) =
∑
w∈S

cwx
w1
1 . . . xwn

n twn+1 , (14)

where S is a finite set of points w = (w1, . . . , wn+1) and cw > 0.
By definition, the Newton polytope NP of P is the convex hull of the points w

in the n + 1-dimensional Euclidean space R
n+1 equipped with the scalar product

v · w =∑n+1
i=1 viwi . A facet of P is a face of maximal dimension, i.e. n.

The Main Conjecture (Expansion by Regions) The expansion of (13) in the limit
t →+0 is given by

G(t, ε) ∼
∑
γ

∫ ∞

0
. . .

∫ ∞

0

[
Mγ (P (x1, . . . , xn, t))

−δ
]

dx1 . . . dxn , (15)

where the sum runs over facets of the Newton polytope NP of P , for which the
normal vectors rγ = (r

γ

1 , . . . , r
γ
n , r

γ

n+1), oriented inside the polytope have r
γ

n+1 >

0. Let us normalize these vectors by r
γ

n+1 = 1. Let us call these facets essential.

The contribution of a given essential facet is defined by the change of variables
xi → t r

γ
i xi in the integral (13) and expanding the resulting integrand in powers of t .

Let us write this procedure explicitly. For a given essential facet γ , the polynomial
P is transformed into

Pγ (x1, . . . , xn, t) = P(tr
γ
1 x1, . . . , t

r
γ
n xn, t) ≡

∑
w∈S

cwx
w1
1 . . . xwn

n tw·rγ . (16)

The scalar product w · rγ is proportional to the projection of the point w on the
vector rγ . For w ∈ S, it takes a minimal value for all the points belonging to the
considered facet w ∈ S ∩ γ . Let us denote it by L(γ ).

The polynomial (16) can be represented as

tL(γ )
(
P

γ

0 (x1, . . . , xn)+ P
γ

1 (x1, . . . , xn, t)
)
, (17)

where

P
γ

0 (x1, . . . , xn) =
∑

w∈S∩γ
cwx

w1
1 . . . xwn

n , (18)
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P
γ

1 (x1, . . . , xn, t) =
∑

w∈S\γ
cwx

w1
1 . . . xwn

n tw·rγ−L(γ ) . (19)

The polynomial Pγ

0 is independent of t while P
γ

1 can be represented as a linear
combination of positive rational powers of t with coefficients which are polynomials
of x.

For a given facet γ , let us define the operator

Mγ (P (x1, . . . , xn, t))
−δ = t

∑n
i=1 r

γ
i −L(γ )δTt

(
P

γ

0 (x1, . . . , xn)+ P
γ

1 (x1, . . . , xn, t)
)−δ

= t
∑n

i=1 r
γ
i −L(γ )δ

(
P

γ

0 (x1, . . . , xn)
)−δ + . . . (20)

where Tt performs an expansion in powers of t at t = 0.

Comments
• An operator Mγ can equivalently be defined by introducing a parameter ργ ,

replacing xi by ρr
γ
i xi , pulling an overall power of ργ , expanding in ργ and setting

ργ = 1 in the end.
• The leading order term of a given facet γ corresponds to the leading order of the

operator M0
γ :

∫ ∞

0
. . .

∫ ∞

0

[
M0

γ (P (x1, . . . , xn, t))
−δ
]

dx1 . . . dxn

= t−L(γ )δ+∑n
i=1 r

γ
i

∫ ∞

0
. . .

∫ ∞

0

(
P

γ

0 (x1, . . . , xn)
)−δ

dx1 . . . dxn . (21)

• In fact, with the above definitions, we can write down the equation of the
hyperplane generated by a given facet γ as follows

wn+1 = −
n∑

i=1

r
γ

i wi + L(γ ) . (22)

• Let us agree that the action of an operator Mγ on an integral reduces to the action
of Mγ on the integrand described above. Then we can write down the expansion
in a shorter way,

G(t, ε) ∼
∑
γ

MγG(t, ε) (23)

• In the usual Feynman parametrization (8), the expansion by regions in terms
of operators Mγ is formulated in a similar way, and this is exactly how it is
implemented in the code asy.m [10]. The expansion can be written in the same
form (23) but the operators Mγ act on the product of the two basic polynomials U
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Fig. 2 The Newton polytope
for (24)

and F raised to certain powers present in (8). Now, each of the two polynomials
is decomposed in the form (17) and so on.

• Of course, prescriptions based on representation (13) are algorithmically prefer-
able because the degree of the sum of the two basic polynomials is smaller than
the degree of their product UF (previously used in asy.m) so that looking for
facets of the corresponding Newton polytope becomes a simpler procedure.1

Therefore, the current version of the code asy.m included in FIESTA [18]
(called with the command SDExpandAsy is now based on this more effective
procedure.

• It is well known that dimensional regularization might be insufficient to regular-
ize individual contributions to the asymptotic expansion. As it was explained in
the discussion after Eq. (2), the natural way to overcome this problem is to intro-
duce an auxiliary analytic regularization, i.e. to introduce additional exponents
λi to powers of the propagators. This possibility exists in the code asy.m [10]
included in FIESTA [18]. One can choose these additional parameters in some
way and obtain a result in terms of an expansion in λi followed by an expansion in
ε. If an initial integral can be well defined as a function of ε then the cancellation
of poles in λi in the sum of contributions of different regions serves as a good
check of the calculational procedure, so that in the end one obtains a result in
terms of a Laurent expansion in ε up to a desired order.

To illustrate the above prescriptions let us consider a very simple example of the
integral

G(t, ε) =
∫ ∞

0
(x2 + x + t)ε−1dx (24)

in the limit t → 0. The polynomial involved is P(x, t)=∑(w1,w2)∈S c(w1,w2)x
w1 tw2 .

The corresponding Newton polytope (triangle) is shown in Fig. 2.

1In fact, this step is performed within asy.m with the help of another code qhull. It is most
time-consuming and can become problematic in higher-loop calculations.
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There are two essential facets γ1 and γ2 with the corresponding normal vectors
r1 = (0, 1) and r2 = (1, 1). For the facet γ1, we obtain the contribution given by
expanding the integrand in t . In the leading order, we have

∫ ∞

0
(x2 + x)ε−1dx = �(1− 2ε)�(ε)

�(1− ε)
. (25)

For the facet γ2, we obtain t times the integral of the integrand with x → tx

expanded in powers of t . In the leading order, we have

tε
∫ ∞

0
(x + 1)ε−1dx = − tε

ε
. (26)

The sum of the two contributions in the leading order gives

G(t, ε) ∼ − log t +O(ε) . (27)

Let us now consider again the example of Fig. 1. The two basic functions of
Feynman parameters are

F = x1(t (x1 + x2)+ x2) , U = x1 + x2 . (28)

The set S involved in the definition (14) consists of the vertices

A(2, 0, 1), B(1, 1, 1), C(1, 1, 0),D(1, 0, 0), E(0, 1, 0)

of the Newton polytope for the polynomial P = U + F , as it is shown in Fig. 3.
There are two essential facets. The first one is CDE which belongs to the plane

w3 = 0 and has the normal vector (0, 0, 1). It gives the contribution obtained by
expanding the integrand in t .

The second essential facet is ACD which belongs to the plane w1 −w3 = 1 and
has the normal vector (−1, 0, 1). It gives t−ε times the integral

�(2− ε)

�(1− 2ε)

∫ ∞

0

∫ ∞

0
x1

[
x1 + x2

1 + x1x2 + tx2 + tx1x2

]ε−2
dx1dx2

Fig. 3 The Newton polytope
for Fig. 1
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with the integrand expanded in t . Taking the leading orders in both contributions we
reproduce (5).

3 Conclusion

As it was argued in [17], the more general parametric representation (13), with a
general polynomial not necessarily related to Feynman integrals, looks mathemat-
ically more natural for the proof of expansion by regions. Moreover, first steps of
analysis of convergence of integrals (13) were made and expansion by regions was
proven in a partial case in the leading order of expansion. Hopefully, expansion
by regions will be sooner or later mathematically justified in the case of a general
polynomial P .

Practically, expansion by regions is a very important strategy which is suc-
cessfully applied for several purposes. Let me, finally, point out that one can use
expansion by regions in various ways.

• One can apply the code asy.m included in FIESTA [18] (i.e. the command
SDExpandAsy) to obtain an expansion in some limit treating all the involved
parameters numerically. In particular, one can check analytic results.

• One can use SDExpandAsy with the option OnlyPrepareRegions =
True in order to reveal relevant regions and to construct contributions to the
expansion as parametric integrals which can then analytically be evaluated.
Here the method of Mellin-Barnes representation can serve as an appropriate
additional technique.

• One can study expansion in multiscale limits, applying asy.m several times, in
various orders.
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Some Steps Towards Improving IBP
Calculations and Related Topics

J.A.M. Vermaseren

Abstract A number of aspects of IBP reductions are discussed, indicating some of
the major bottlenecks. Potential future developments are indicated, including some
in the realm of mathematics and computer algebra.

1 Introduction

We all know the principle of the IBP relations. They are based on the equation

∫
dDp

∂

∂pμ
Iμ = 0 (1)

and working out the derivative. This sounds simple, but when applied to Feynman
diagrams it can lead to great complications. This working out was first done in a
nontrivial way by Chetyrkin and Tkachov [1], but it took about 10 years before
their algorithms could actually be used in an automated way to compute the O(α3

S)

contribution [2] to the reaction e+e− → hadrons. This is a principle we are still
struggling with: there is much time involved in going from an idea to obtaining
physics results. In particular more and more mathematics and computer science is
needed.

The general problem is of course how to compute reactions by whatever means.
The ‘classical’ way is to write down all Feynman diagrams and try to work them
out. Before the days of LHC data relatively few people were involved at the
technological edge of this approach, but the need of accurate theoretical results for
very large numbers of reactions has changed this and nowadays this is a very active
field with very many very smart people making steady progress.
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The development knows two main branches:

• many legs and few loops
• few legs and many loops.

There are of course more subdivisions. Inclusion of mass parameters creates
horrendous complications, just to name one.

Personally I work in the ‘few legs and many loops’ branch and in addition I try
to keep the particles massless. There are some similarities here with the ‘many legs
and few loops’ approach, because in principle the equations have the same structure,
but in for instance massless propagator-type diagrams the equations can/should be
reduced until only the dimension parameter remains in the coefficients, which I
call a complete reduction, while otherwise the reduction steps finish with still other
parameters remaining, resulting in very complicated final answers. In many cases
one is already happy with numerical results.

Deriving and applying the IBP relations cannot be done without the use of
sophisticated computer programs, either of the generic computer algebra type or
more dedicated programs. One computer algebra program that has been developed
with this kind of work in mind is Form [3, 4]. As mentioned later in this talk, it is
still being extended.

There are different approaches to solving the IBP relations.
The oldest method is to work the integrals down to simpler and simpler integrals

until the IBP relations cannot go any further as is done in the Mincer [5–7] and
Forcer [8] programs. This requires a rather lengthy development time for creating
good programs. Currently the attempt is to automate this approach.

In Laporta-style [9] methods one starts with the easiest integrals and uses the
IBP relations to create more and more complicated integrals until one has all the
integrals that are needed for a given problem. This generates usually many more
integrals than needed and hence needs much storage. Its advantage is that it can (and
has been) automated much easier. This has been done in programs like FIRE [10],
Reduze [11, 12] and Kira [13]. In principle they could work at any number of loops
and legs, provided enough computer resources are available, but in practise a 4-loop
gluon propagator with all powers of the gauge parameter might be an enormous
challenge. To our knowledge this has not been tried yet.

In this talk I will concentrate on the first method. It should be noted that also for
this there are more methods than the one described here. The first was the method
of Baikov [14], used for (among others) the first calculation of the 5-loop beta
function in QCD [15]. In addition Roman Lee developed LiteRed [16, 17] which
is an automatically constructed program that could in principle do the same things
as Forcer, except for that (a) it is written in Mathematica and (b) it does not have the
tailored tricks and methods that make Forcer so fast.

Of course, to get a full answer for a Feynman diagram involves more than
‘just’ solving a set of IBP equations. There are also the master integrals. These
have become a specialization by themselves, attracting also attention from the more
mathematically minded scientists as we will see in this talk.
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In this talk I will highlight what I see as several paths that are followed in the
‘few legs and many loops’ branch to make it more powerful. Next I will discuss
some mathematical aspects in the field of multiple zeta values (MZV’s) and finally
some new features in Form to support this.

There will not be very many formulas in this talk. In this subject it is either not
many or too many.

2 Few Legs and Many Loops

The program with which this all started was Mincer [5, 6], originally developed
for Schoonschip [18, 19] in the 1980s in Russia, and later reprogrammed into
Form [7] at Nikhef. It managed to reduce 3-loop massless propagator-type diagrams
into two master integrals plus convolutions of well known one-loop integrals. With
ever increasing computer power it could be used for many more useful physics
calculations.

The most complicated topology in Mincer was what was called the NO topology
(for non planar) (Fig. 1):

The reduction scheme can be worked out by hand, but you would not want it to
be much more complicated than it is. The diagram in which all denominators have
one power is a master diagram. Originally it was worked out to its finite term as [1]

NO = 20ζ5 + O(ε) (2)

and a few improvements later it was worked out all the way to the ε7 term (Roman
Lee and the Smirnovs [20]).

This topology shows the beginning of a very annoying effect. Whereas there
are 8 propagators/edges, there are 9 variables (not considering Q2 which is used
for scaling). One of these can only occur in the numerator. There are various
possibilities to choose this variable, but all run into the problem that much of the
reduction scheme deals with reducing its power to zero. Once this has been done,
the remaining part is much simpler.

Fig. 1 The non-planar or NO
topology
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Fig. 2 The LA78 topology

One may wonder why we need reductions of higher powers of the denominators.
Normally diagrams give only one power, and the diagram with all propagators at
one is a master integral. Well, there are at least two cases for which higher powers
occur:

First: When we want to make gauge checks gluon propagators look like

− i(gμν − ξqμqν/q
2)/q2 (3)

and hence we can obtain two powers of 1/q2 (Fig. 2).
Second: When we study Mellin moments, we have diagrams with 4 legs, two

of which have momentum P . This P flows through the diagram and we expand in
P . This means that for the N -th moment we have to take N derivatives in P , after
which we set P to zero. This can give up to N + 2 extra powers of denominators
in the remaining propagator-type diagram. The +2 comes from what remains after
putting P to zero.

When we go to four loops things become much more complicated. Now there
are 14 variables and at most 11 propagators. This gives very problematic reduction
schemes. Some of the worst ones are (Fig. 3):

This was all implemented in the Forcer program. In the Forcer program actually
the worst topology was (Fig. 4).

More recent research has shown that the scheme for this topology can be vastly
improved by making a different selection for its 5 numerator variables. This brings
us to the crucial question, relevant for all IBP solving systems: what is the optimal
set of variables and how do we find it?

I have been involved in trying to find such variables in a systematic way. This is
by no means easy for several reasons:

• There are many ways to select an independent set of variables. At the four-loop
level there can already be hundreds and sometimes even thousands.

• Once you have a set there are many orders in which you can eliminate variables.
• Many orders of elimination become very slow and obtain rational polynomial

coefficients that can crash the program.
• Some nasties that I will mention below.

Considering the above restrictions a nearly exhaustive search program has been
executed only for one topology until now (Fig. 5):
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Fig. 3 The NO2, NONO and
BEBE topologies

Fig. 4 The BUBU topology

Fig. 5 The LALA topology

It did give indeed a much better reduction scheme than what was in Form. The
more important BEBE topology however has still resisted a complete investigation
due to extra complications which reduce the number of available equations and
hence make most selections run into very long execution times (to be mentioned
when we define complexity).

Programs like the above depend very much on built in smartness to reject
hopeless cases as soon as possible. Such rules have to be found heuristically and
which involves much time.
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Of course one can derive reduction schemes automatically without such opti-
mizations, but the result will be that the actual calculations will be extremely slow
due to the inefficiency of the scheme.

The worst reduction equations are typically about halfway the reduction, when
about half the number of parameters is still present, but already the powers of the
monomials can become rather high. This is comparable to final results in the ‘many
legs and few loops’ case where there are many physical parameters remaining. In
the case of the ‘few legs and many loops’ diagrams and higher powers of numerators
or denominators, one may have to apply such reduction formulas many times, hence
it is important to keep such formulas as short as possible.

The Forcer program has been used already for a number of calculations. Some
of them are

• Two different ways to compute the five-loop beta function.
• Higgs decay.
• A number of Mellin moments of the splitting functions in DIS at the 4-loop level.

This is needed for the 3-loop Higgs production at the LHC.
• Even some Mellin moments of the splitting functions in DIS at the 5-loop level.

Currently the splitting functions for the non-singlet are being run at N = 10 and
the singlet at N = 8. These are enormous tasks with individual diagrams that can
take weeks on a computer with 16 cores. Sven Moch [21] will tell us more about it.

The hope is that when all topologies can be optimized some more Mellin
moments can be computed, giving a higher precision in the determination of the
PDF’s at the LHC.

Having a four loop program, the next question is: what about five loops?
The Forcer program as it exists was derived by hand guided computer programs.
Reduction schemes were needed for 21 topologies and took three people several
months to derive. For five loops there are about 10 times as many of such topologies,
and most have 20 variables that need to be reduced. This is only feasible with an
even higher level of automatization.

The flow from topology to topology is not so much the problem. For Forcer this
gluing together of the topologies was done with a Python program, but the newest
version of Form has the Kaneko diagram generator [22] built in, making it at least
as easy to do this in Form itself. For a five (or more) loop program most of this
has now been set up in Form. There are however a few unresolved issues. The most
important are:

• The reduction scheme of the ‘nontrivial’ topologies.
• The selection of the notation for such topologies.

In the Forcer program it turns out that often most of the time is spent when
transitioning from one topology to simpler topologies (with one fewer edge). They
may have different notations. This is shown by (Fig. 6):

If we eliminate either of the lines 1,4,5,8 we obtain identical topologies, but the
transitions to the notation of this topology are different. The same holds when we
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Fig. 6 The 4-loop ladder
topology

Fig. 7 The triangle diagram

eliminate either of the lines 2,3,6,7, and similar when we eliminate one of the lines
9 or 11.

It means that the numerators have to be rewritten, unless we have a reduction
scheme for each notation that can be encountered. This would need for instance 34
different reduction schemes for the bebe topology. It has already been noticed that
not all of those schemes would be very efficient. Hence one should create a number
of efficient schemes, and rely for the others on a minimal amount of rewriting. It
should be clear that designing a program that can do all this automatically is not
trivial. Some progress has been made though.

We did find a much better bebe reduction scheme than the one in Forcer.
Replacing the Forcer routine was not easy because it was all handwork to change
the notations at the input and the output. The results was:

• A much faster overal running time.
• Fewer spurious poles (the equivalent of better numerical stability).

What are spurious poles?
IBP reduction algorithms have the tendency to create poles in ε whenever a

line/edge is eliminated. The result is that diagrams with for instance the 3-loop
ladder topology at the three loop level will give individual terms with up to 6 powers
of 1/ε during the reduction, while, once all terms are added, the leading divergence
is at most 1/ε3. This is the normal situation. Spurious poles can occur when there
are powers of numerators. Let us take a close look at the most common reduction
equation which is called the triangle relation (Fig. 7):

I (n, α0, β1, β2, α1, α2) =
(

+β1(I (n, α0 − 1, β1 + 1, β2, α1, α2)− I (n, α0, β1 + 1, β2, α1 − 1, α2))

+β2(I (n, α0 − 1, β1, β2 + 1, α1, α2)− I (n, α0, β1, β2 + 1, α1, α2 − 1)))
/(n+ 4− 2ε − 2α0 − β1 − β2). (4)
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The parameter n is the number of times the vector P occurs in the numerator. The
parameters α1 and α2 are the powers of the two lines outside the triangle with the
momenta P1 and P2, while β1 and β2 are the powers of the adjacent lines inside the
triangle.

If all denominators have power 1 and there are no numerators, we see indeed
that eliminating one line gives us a power of 1/ε. But we can obtain more than one
power when there are more powers of numerators and denominators because now
(n + 4 − 2α0 − β1 − β2) can pass through zero more than once during the full
reduction.

If one works with rational polynomials in ε this is not so much of a problem,
but this is rather slow. It is faster to work with finite expansions in ε, thereby
avoiding rational polynomial arithmetic. This is similar to rational numbers versus
floating point numbers which have a finite accuracy and are sensitive to numerical
instabilities.

In the case of the Mincer program the spurious poles were avoided by a
summation of the recursion [23] and properly adding all resulting terms. This is
however either not feasible or not practical when more loops are involved. Hence,
whenever powers of numerators are involved we have to be prepared for extra
powers of 1/ε. It can be rather difficult to predict how many. There are two solutions
around this:

1. Work with exact rational coefficients.
2. Work with a cut off series but maybe run more than once to get an idea how many

powers are needed cq. sufficient.

The first solution turned out to be rather expensive. Hence we worked with the
second solution and eventually we got a heuristic formula to how many powers in ε

we had to go to be able to trust the results. This formula depended linearly on the
number of the Mellin moment.

As it turns out, with the new bebe routine this dependence disappeared. Let us
see how that can be, because this will be important for the automated derivation of
reduction schemes.

In order to have a reduction scheme one needs an ordering of the integrals in the
form of a complexity. If each equation in the scheme lowers this complexity, and
below a certain level at least one line/edge vanishes creating a simpler topology,
eventually the scheme will terminate. The most important parameter is of course the
number of edges. We cannot possibly accept relations that increase the number of
edges. We do not include this parameter in our definition of complexity.

We have to proceed as follows:

1. The most important part of the complexity is the sum of the deviations from their
minimal value for all parameters combined. We call this the sum-complexity.

2. Next we can lower individual parameters , but this may go at the cost of raising
others, provided the sum complexity is not increasing.

3. Then we have to find an ordering of these reductions that does not create loops
in the scheme.
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Fig. 8 A kickback scheme

The above three steps are in principle sufficient, but not necessarily efficient.
For the next step we need the concept of kickbacks. When we lower the sum

complexity by one, it may well be that we lower several variables at the cost of
several others. And if one of those that are raised is at the top of the scheme, we
have to start all over again, be it with one sum complexity less. We call this a
large kickback. The better schemes have as few of such kickbacks as possible, and
the ones they have are only very few steps back. In particular, if whatever exists
in kickbacks does not involve numerators, the number of spurious poles will be
severely limited. Also the rational coefficients will be comparatively mild and so
will be the number of terms at the end of the reduction (Fig. 8).

Hence the ordering of the reduction of the variables should take these kickbacks
into account.

This is exactly what happened with the bebe routine. The old bebe routine,
created by handguided computing, but without much experience, had a few rather
bad kickbacks. The new one, designed with much more automation, gave already
shorter code, and by exchanging the order of some of the variables by hand, the code
became only marginally longer, but kickback-free. This made a big difference, both
in speed and in the number of terms in the final answer.

The bebe reduction has another problem. The nasties mentioned before. The
structure of the equations is such that the only solutions that we could find start
off with eliminating two variables, but each step increases the sum complexity by
one. This had to be done before the equations were generated that are used for the
other variables, thereby avoiding kickbacks and hence infinite loops. It does however
make the number of useful relations for the other reductions significantly smaller.

Such approaches are not needed for the other topologies, but can be used anyway
in such a way that the results are improved. This is still being studied.

Unfortunately the situation with the other topologies that still need to be cleaned
up is slightly more complicated. Also, it is not easy to replace topology routines
inside Forcer, because of the changes in notation. A routine like bebe can be called
in 34 different ways, and creates output in 8 different ways. This has to be changed
by hand, because the original Python code had some global optimizations in which
tiny changes anywhere, could change all numberings and notations of diagrams in
the complete program, invalidating all partially built up databases. The future Form
program should not have that problem. The hope is that with the new computer we
just got we can make a new attempt at the other topologies.

Of course at the five loop level this will be even worse, because then 20 variables
have to be eliminated, rather than 14, and in addition the equations will be lengthier.
In the next section we will see how one can still obtain some five-loop results.
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3 A Little Bit About Rstar

When calculating only the UV divergences of a diagram there are a few theo-
rems [24–27] about extracting this divergence and rearranging external lines. They
make the calculation feasible with a program that can solve diagrams with one loop
fewer.

In the case of propagator diagrams one may extract the divergence by taking
enough derivatives of the external momentum to make the result dimensionless.

If a propagator diagram is dimensionless, we may as well set the momentum to
zero, or move external legs to other points in the diagram. This does not change the
ultraviolet divergence, but it may affect the IR divergences. This way we can change
the diagram to one in which we can do one integral and reduce the problem to an
integral that can be done at a simpler level (Fig. 9).

Integrals with only one line between the two Q’s we call carpet integrals and they
can be done ‘trivially’. But because now p2

1 = p2
8 we have introduced a potential

infrared divergence. This is the main reason why it took so many years to do the
four-loop QCD beta function and later the five-loop QCD beta function. Cannot we
hunt down those IR divergences?

For the subtraction of divergences there exists a procedure, called Rstar. This has
been used a lot in φ4 theories. In QCD it is more complicated because the gluons
introduce dotproducts in the numerators and hence complicated tensors. The whole
is a very tricky interplay of determining subgraphs, locally eliminating tensors in the
numerators by derivation and keeping the orders of limits and derivations correct.
Details are in the paper by Herzog and Ruijl [28].

One practical problem is that the tensors need projectors to take them from inside
the derivatives and the counterterm subtractions to outside of these.

Effectively one needs a projection operator T
μ1···μn
ν1···νn that projects out products

of Kronecker deltas like δ
μ1
ν1 · · · δμn

νn . As it turns out, it is an exercise in cosets of
the symmetric group Sn in which each coset has a coefficient that is a rational

Fig. 9 Moving an external
line to create a carpet integral



Some Steps Towards Improving IBP Calculations and Related Topics 511

polynomial in the dimension D. And it happens that the generalised Kronecker
delta dd_ in Form is ideal for this kind of work because, when the indices are
contracted with momenta, of which there are only a few different ones, Form gets the
combinatorics factors right without having to generate the same term many times.
We managed to determine these coefficients all the way to 16 pairs of indices (in the
process of being written up).

Vector p1,p2,p3;
Local F = dd_(p1,p2,p3,p1,p2,p3,p1,p2,p3,p1,p2,p3);
Print +f +s;
.end

Time = 0.00 sec Generated terms = 15
F Terms in output = 15

Bytes used = 868
F =

+ 1728*p1.p1*p1.p2*p1.p3*p2.p2*p2.p3*p3.p3
+ 1152*p1.p1*p1.p2*p1.p3*p2.p3^3
+ 216*p1.p1*p1.p2^2*p2.p2*p3.p3^2
+ 864*p1.p1*p1.p2^2*p2.p3^2*p3.p3
+ 864*p1.p1*p1.p3^2*p2.p2*p2.p3^2
+ 216*p1.p1*p1.p3^2*p2.p2^2*p3.p3
+ 216*p1.p1^2*p2.p2*p2.p3^2*p3.p3
+ 27*p1.p1^2*p2.p2^2*p3.p3^2
+ 72*p1.p1^2*p2.p3^4
+ 1152*p1.p2*p1.p3^3*p2.p2*p2.p3
+ 864*p1.p2^2*p1.p3^2*p2.p2*p3.p3
+ 1728*p1.p2^2*p1.p3^2*p2.p3^2
+ 1152*p1.p2^3*p1.p3*p2.p3*p3.p3
+ 72*p1.p2^4*p3.p3^2
+ 72*p1.p3^4*p2.p2^2

;

To do all possible diagrams in QCD one also needs to deal with indices on
gamma matrices. It is still an outstanding problem when there is a mixture of
Kronecker delta’s and gamma matrices. The gamma matrices can be written in the
antisymmetric ‘σ ’ basis, but it ceases to be a simple application of the symmetric
group. This is currently under study.

Also here the continuous changing of (sub)topologies and hence notations is a
serious problem. In the local Rstar operation this is done term by term making
such operations very time consuming, unless specialized tables are constructed in
advance. Part of this is already present in Form by means of the Kaneko diagram
generator, but the canonicalization of the notations still has to be built in. Using
external code is rather slow.
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4 Mathematical Aspects

In the sequel we ignore color factors. Each color channel can be seen as a separate
object for the purpose of the current discussion.

Evaluating master integrals is a science by itself. In the case that we have
massless propagator graphs, the answer should be ’just a number’. This holds also
for beta functions. What numbers are involved?

Until now Multiple Zeta Values have been sufficient. There are indications that at
more loops these may not be sufficient. Thus far this has been shown for individual
diagrams cq. topologies. This is not yet a proof that it will hold for complete physical
results. Personally I have encountered two cases in which the more complicated
objects cancelled each other.

In the first computation of the four-loop beta function in QCD there were master
integrals that we could not evaluate at the time, but they dropped out when the
diagrams were added. Here the method was to blame. The infrared regularization
was based on masses and this gave rather hard integrals. When done with a program
like Forcer there are no mass parameters and this effect does not occur. Also not at
five loops.

In the computation of all Mellin moments of the coefficient functions in three-
loop DIS, one sum occurred that was not a simple harmonic sum. We just gave it
a name when it survived in individual diagrams, but when all diagrams were added
this object vanished (Fig. 10).

It is of course likely that with extra loops such miracles do not occur.
When we have integrals or sums that end up in terms of MZV’s or Euler sums

there are usually very many different ones. There exist however many relations
between them due to shuffle and stuffle relations. Such relations can be combined to
reduce all different MZV’s and Euler sums to an independent set. This set is usually
rather restricted.

Example of a stuffle relation, which comes from the sum property of MZV’s:

CFunction S;
L F = S(2,3)*S(5);
Stuffle S-;
Print +s;
.end

Fig. 10 A nontrivial but
cancelling integral
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F =
+ S(2,3,5) + S(2,5,3)
- S(2,8) + S(5,2,3) - S(7,3);

Example of a shuffle relation, which comes from the integral property of MZV’s:

CFunction H;
L F = H(2,3)*H(5);
Transform H,ToIntegralNotation(1,last);
Print;
.sort

F =
H(0,0,0,0,1)*H(0,1,0,0,1);

Shuffle H;
Transform H,ToSumNotation(1,last);
Print +s;
.end

F =
+ H(2,3,5) + 3*H(2,4,4) + 7*H(2,5,3) + 15*H(2,6,2)
+ 30*H(2,7,1) + 2*H(3,3,4) + 8*H(3,4,3) + 20*H(3,5,2)
+ 40*H(3,6,1) + 6*H(4,3,3) + 18*H(4,4,2) + 36*H(4,5,1)
+ 5*H(5,2,3) + 12*H(5,3,2) + 24*H(5,4,1) + 10*H(6,1,3)
+ 5*H(6,2,2) + 10*H(6,3,1);

By writing down all shuffle and stuffle relations and ‘solving’ them, one can
determine a basis and express all MZV’s in terms of this basis.

Complete reduction relations have been worked out in the MZV datamine [29]
and go to weight 12 for the Euler sums and weight 22 for the MZV’s. This was
the limit of what could be reached with the existing computer resources at the time
(2009). Recently I got a new computer with 64 cores and 1 Tbyte of memory. I
managed to compute the weight 13 Euler sum reductions. The run took 11 days in
which it used 637 days of CPU time (a pseudo-efficiency of 58). The run for weight
12 took 5 hours, using 161 hours of CPU time. It shows that it is not realistic to
expect much of an extension to the datamine. Actually the situation can become
much worse when the alphabet has more than 3 elements.

As Broadhurst [30] showed, at a given moment some not very high loop diagrams
may result in sums in which the alphabet involves the sixth root of unity. Let us
consider how many finite sums exist for a given alphabet as a function of the number
m of its elements. For the MZV’s the alphabet contains the two elements 0 and 1,
while for the Euler sums the alphabet contains the elements 0, 1 and−1. The generic
formula is (m − 1)2mN−2, possibly divided roughly by two when there are duality
considerations. In general one needs to solve only for about one half the number of
variables (Table 1).

To do this for such a large number of variables requires special programs, as is
explained in the paper about the datamine. One complication is that the rational
coefficients become rather bad. Their complexity seems to be dictated by the
number of variables. Of course one can try to solve the systems over a finite field,
like modulus a 31 bit prime number and after doing this several times, one can
reconstruct the coefficients. This was also done for the MZV’s at weight 22, but the
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Table 1 Number of sums for
various sizes of the alphabet

Weight 2 3 7

2 1 4 36

3 2 12 252

4 4 36 1764

5 8 108 12,348

6 16 324 86,436

7 32 972 605,052

8 64 2916 4,235,364

9 128 8748

10 256 26,244

11 512 78,732

12 1024 236,196

13 2048 708,588

22 1,048,576

result was that the combined running time of the modulus programs took more time
than working directly with the rational numbers.

If weight 13 for the alternating sums is already barely feasible, it should be clear
that we can never reach such weights for the sixth root of unity. Hence another
approach is called for, which is based on a paper by Francis Brown [31] and a paper
by Borwein, Bradley and Broadhurst [32]. Most advanced in applying this is Oliver
Schnetz [33]. The way it works is as follows:

Based on the theory of motivic multiple zeta values one can construct algebraic
operators that can map any MZV onto elements in a space that has the same
dimension d as a basis for the given weight w. Because this is all linear, one can
determine whether, if one chooses d MZV’s, these form a basis for this weight.
This needs however already expressions for weights lower or equal to w− 3, which
means that the whole algorithm is effectively recursive. Once a basis is known one
can obtain the coefficients for each individual MZV in terms of this basis with the
exception of one coefficient: the coefficient of the depth 1 term, which, when the
weight is even, can be expressed as a power of ζ2.

This is where the Broadhurst paper comes in. He explains how one can determine
any MZV numerically to very high precision. If necessary many thousands of digits.
Having routines for this allows then to determine the last coefficient numerically in
terms of a high precision floating point number, which then can be converted to a
fraction.

The above method is explained for the MZV’s but can also be applied to Euler
sums or to alphabets based on higher roots of unity. In this way Oliver Schnetz [33]
has created already programs that can determine alternating sums to weight 21 and
MZV’s to weight 32. In addition he has already some programs for higher roots of
unity, like up to weight 13 for the sixth roots of unity and up to weight 17 for the
third and fourth roots of unity.
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For the higher weights the programs can become a bit slow, because they will
need to do calculations with many thousands of bits accuracy, and the evaluation of
the MZV’s needs as many steps as there are bits in the accuracy.

Currently those programs are mainly interesting from the mathematical view-
point, but it is inevitable that once more loops can be dealt with, physics will need
them as well.

5 Computer Algebra

It should be clear that when diagrams or MZV’s are calculated the easiest would be
if it can all be done in a single program. Unfortunately version 4 of Form cannot deal
with floating point numbers. Hence for the necessary type of operations version 5
will be equipped with some new functions that allow access to the arbitrary precision
floating point facilities of the GMP library. In addition there will be some built in
functions like mzv_ and euler_ to evaluate these sums to a user defined precision.
More functions (sqrt_, ln_, etc.) still need to be programmed. And of course there
are some commands that allow conversions between rational and floating point
numbers. This was not completely trivial, because this is rather specialized stuff
that should not be in the way of the regular operations of Form.

Let me give an example: Assume we want to know the expression for the

L F = mzv_(2,5,3);

The Francis Brown part of the program would give us

L Fa = +20*mzv_(2)*mzv_(3)*mzv_(5)
-34*mzv_(3)*mzv_(7)
-447/14*mzv_(5)^2
-22/7*mzv_(7,3);

but the coefficient of mzv_(10) or mzv_(2)^5 is missing. The interesting
part of the program becomes now

*
* Program to test the reconstruction of the depth 1

* term for MZV’s.

* We take a relation from the datamine. For example:

*
*Fill mzv10(0,1,0,0,0,0,1,0,0,1)=

* 38686/13475*z2^5+20*z2*z3*z5

* -34*z3*z7-447/14*z5^2-22/7*z7z3;

*
#StartFloat 100

*
Off Statistics;
L F = mzv_(2,5,3);
L Fa = +20*mzv_(2)*mzv_(3)*mzv_(5)

-34*mzv_(3)*mzv_(7)
-447/14*mzv_(5)^2
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-22/7*mzv_(7,3);
L Fb = mzv_(2)^5;
Evaluate mzv_;
Print +f +s;
.sort

F=
+1.401734757585418072158234569434e-02
;

Fa=
-3.456140777152661943477201458825e+01
;

Fb=
+1.204321598200656133921253731802e+01
;

L FF = (F-Fa)/Fb;
Print +f +s FF;
.sort

FF=
+2.870946196660482374768089053803e+00
;

ToRational;
Print +f +s FF;
.end

FF=
+38686/13475
;

Checking with the datamine gives indeed this fraction.
The major work now is to figure out what is a good accuracy for the floating point

numbers. This will be a function of the type of the sums and the maximal weight we
would like to go to. This needs some experimentation and extrapolation. For now
we can use the datamine of course.

For other roots of unity the experimental method is called for. If there is not
enough accuracy, the conversion to a fraction will give rather ‘unphysical’ results.
One can start with too much accuracy for a number of cases and then work it down
to see how long the proper fractions are reconstructed. Then give it some extra
accuracy and one is ready to go. And there is always the check of the stuffle and
shuffle relations.

Of course, much speed can be gained if we tabulate the numerical value of the
basis elements. This has one problem. These basis elements have different numbers
of indices and tables have typically a fixed number of indices. Hence Form has now
been extended with tables of which the number of indices does not have to be fixed.
This gives yet another complication. Tables in Form can have arguments in addition
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to indices, and the number of arguments follows the rules of wildcarding, and hence
the number of arguments can also not be fixed. Therefore the notation becomes:

Table,sparse,T1(<=5,arguments);
Table,sparse,T2(<=10,arguments);

in which ‘arguments’ represents a potential field of arguments as in the definition
of regular tables. It needs a maximum number, because space is reserved for this
maximum.

When such tables are used, the first index should be a number that tells how
many real indices there are, because as mentioned before, the number of arguments
does not have to be constant when ?a style wildcards are involved, which pick up a
whole field of arguments.

With the above we can make one single table for all basis elements of which
we would like to store the numerical value. Such a table can be stored for future
programs and its size is only a small fraction of the size of complete tables.

6 Outlook

To make progress in the field of few legs and many loops we need either completely
new methods, or a number of very powerful new automated programs to break down
the integrals to master integrals.

It is worth to put effort in this, because accurate calculations for reactions at the
LHC need reliable 4-loop splitting functions.

Steady progress is made and more is needed, both in the fields of mathematics
and computer algebra.

Dedicated programs for specific tasks may help, but have mainly been con-
structed for the ‘many legs and few loops’ calculations.
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Iterated Integrals Related to Feynman
Integrals Associated to Elliptic Curves

Stefan Weinzierl

Abstract This talk reviews Feynman integrals, which are associated to elliptic
curves. The talk will give an introduction into the mathematics behind them,
covering the topics of elliptic curves, elliptic integrals, modular forms and the
moduli space of n marked points on a genus one curve. The latter will be
important, as elliptic Feynman integrals can be expressed as iterated integrals on the
moduli space M1,n, in same way as Feynman integrals which evaluate to multiple
polylogarithms can be expressed as iterated integrals on the moduli space M0,n.
With the right language, many methods from the genus zero case carry over to the
genus one case. In particular we will see in specific examples that the differential
equation for elliptic Feynman integrals can be cast into an ε-form. This allows to
systematically obtain a solution order by order in the dimensional regularisation
parameter.

1 Introduction

In this talk we review Feynman integrals associated to elliptic curves and the
mathematics behind them. It has become common practice to call these Feynman
integrals “elliptic Feynman integrals”. Elliptic Feynman integrals and closely related
integrals in string theory have received considerable attention in recent years [1–63].

We call a Feynman integral elliptic, if it can be expressed as a linear combination
of iterated integrals on a covering space of the moduli space M1,n of a genus one
curve with n marked points with integrands having only simple poles. “Ordinary”
Feynman integrals, which evaluate to multiple polylogarithms, can be expressed as
a linear combination of iterated integrals on a covering space of the moduli space
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M0,n of a genus zero curve with n marked points, again with integrands having only
simple poles.

This definition already uses some mathematical terminology, which we explain
in the sequel. As a rough guide, elliptic Feynman integrals are the next-to-easiest
Feynman integrals, with Feynman integrals evaluating to multiple polylogarithms
being the easiest Feynman integrals. Of course, there are also more complicated
Feynman integrals beyond these two categories [64–68]. These more complicated
integrals are not the topic of this talk.

2 Background from Mathematics

We review the background from mathematics. The material presented in this section
is probably well-known to mathematicians. It might help physicists as a starting
guide into this topic. Textbooks on elliptic curves are Du Val [69] and Silverman
[70], textbooks on modular forms are Stein [71], Miyake [72] and Diamond and
Shurman [73].

We start with the definition of an algebraic curve. As ground field we take the
complex numbers C. An algebraic curve in C

2 is defined by the zero set of a
polynomial P(x, y) in two variables x and y:

P (x, y) = 0 (1)

It is more common to consider algebraic curves not in the affine space C
2, but in

the projective space CP
2. Let [x : y : z] be homogeneous coordinates of CP2. An

algebraic curve in CP
2 is defined by the zero set of a homogeneous polynomial

P(x, y, z) in the three variables x, y and z:

P (x, y, z) = 0 (2)

The requirement that P(x, y, z) is a homogeneous polynomial is necessary to have
a well-defined zero set on CP

2.
We usually work in the chart z = 1. In this chart Eq. (2) reduces to

P (x, y, 1) = 0. (3)

If d is the degree of the polynomial P(x, y, z), the arithmetic genus of the algebraic
curve is given by

g = 1

2
(d − 1) (d − 2) . (4)
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For a smooth curve the arithmetic genus equals the geometric genus, therefore just
using “genus” is unambiguous in the smooth case. Let’s look at an example: The
equation

y2z− x3 − xz2 = 0 (5)

defines a smooth algebraic curve of genus 1.
Please note that the geometric genus of a singular curve is given by a more

complicated formula. For example, the geometric genus of an algebraic curve with
k irreducible components, s nodes (i.e. double points, where the curve crosses
transversely) and no other singularities is given by ggeom = garithm + k − s − 1.

Let us now turn to elliptic curves: An elliptic curve over C is a smooth algebraic
curve in CP

2 of genus one with one marked point. It is common practice to work in
the chart z = 1 and to take as the marked point the “point at infinity”. Equation (5)
reads in the chart z = 1

y2 − x3 − x = 0, (6)

The point at infinity, which is not contained in this chart, is given by [x : y : z] =
[0 : 1 : 0].

Over the complex numbers C any elliptic curve can be cast into the Weierstrass
normal form. In the chart z = 1 the Weierstrass normal form reads

y2 = 4x3 − g2x − g3. (7)

A second important example is to define an elliptic curve by a quartic polynomial
in the chart z = 1:

y2 = (x − x1) (x − x2) (x − x3) (x − x4) . (8)

If all roots of the quartic polynomial on the right-hand side are distinct, this defines
a smooth elliptic curve. (The attentive reader may ask, how this squares with the
genus formula above. The answer is that the elliptic curve in CP

2 is not given by
the homogenisation y2z2 = (x− x1z)(x− x2z)(x− x3z)(x− x4z). The latter curve
is singular at infinity. However, there is a smooth elliptic curve, which in the chart
z = 1 is isomorphic to the affine curve defined by Eq. (8).)

As one complex dimension corresponds to two real dimensions, we may consider
a smooth algebraic curve (i.e. an object of complex dimension one) also as a real
surface (i.e. an object of real dimension two). The latter objects are called Riemann
surfaces, as the real surface inherits the structure of a complex manifold. We
may therefore view an elliptic curve either as a complex one-dimensional smooth
algebraic curve in CP

2 with one marked point or as a real Riemann surface of genus
one with one marked point. This is shown in Fig. 1.
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Fig. 1 The left picture shows the real part of an elliptic curve in the Weierstrass normal form
y2 = 4x3 − g2x − g3. The marked point is at infinity. The right part shows a real Riemann surface
of genus one with one marked point

Let us now turn to a second topic: Periodic functions. We consider a non-constant
meromorphic function f of a complex variable z. A period ω of the function f is a
constant such that for all z:

f (z+ ω) = f (z) (9)

The set of all periods of f forms a lattice, which is either

• trivial (i.e. the lattice consists of ω = 0 only),
• a simple lattice, generated by one period ω : ' = {nω | n ∈ Z},
• a double lattice, generated by two periods ω1, ω2 with Im(ω2/ω1) �= 0 :

' = {n1ω1 + n2ω2 | n1, n2 ∈ Z} . (10)

It is common practice to order these two periods such that Im(ω2/ω1) > 0.

There cannot be more possibilities: Assume that there is a third period ω3, which
is not an element of the lattice ' spanned by ω1 and ω2. In this case we may
construct arbitrary small periods as linear combinations of ω1, ω2 and ω3 with
integer coefficients. In the next step one shows that this implies that the derivative
of f (z) vanishes at any point z, hence f (z) is a constant. This contradicts our
assumption that f is a non-constant function.
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An example for a singly periodic function is given by

exp (z) . (11)

In this case the simple lattice is generated by ω = 2πi.
Double periodic functions are called elliptic functions. An example for a doubly

periodic function is given by Weierstrass’s ℘-function. Let ' be the lattice generated
by ω1 and ω2. Then

℘ (z) = 1

z2 +
∑

ω∈'\{0}

(
1

(z+ ω)2 −
1

ω2

)
. (12)

℘(z) is periodic with periods ω1 and ω2.
Of particular interest are also the corresponding inverse functions. These are in

general multivalued functions. In the case of the exponential function x = exp(z),
the inverse function is given by

z = ln (x) . (13)

The inverse function to Weierstrass’s elliptic function x = ℘(z) is an elliptic
integral given by

z =
∞∫

x

dt√
4t3 − g2t − g3

(14)

with

g2 = 60
∑

ω∈'\{0}

1

ω4
, g3 = 140

∑
ω∈'\{0}

1

ω6
. (15)

The standard elliptic integrals are classified as complete or incomplete elliptic
integrals and as integrals of the first, second or third kind. Table 1 shows the
definition of the six standard elliptic integrals. The complete elliptic integrals are
a special case of the incomplete elliptic integrals and obtained from the incomplete
elliptic integrals by setting the variable z to one.

The classification of elliptic integrals as integrals of the first, second or third kind
follows the classification of Abelian differentials: An Abelian differential f (z)dz
is called Abelian differential of the first kind, if f (z) is holomorphic. It is called
an Abelian differential of the second kind, if f (z) is meromorphic, but with all
residues vanishing. It is called an Abelian differential of the third kind, if f (z) is
meromorphic with non-zero residues.

So far we introduced elliptic curves and elliptic integrals. The link between
the two is provided by the periods of an elliptic curve. An elliptic curve has one



524 S. Weinzierl

Table 1 The six standard elliptic integrals. They are classified as complete or incomplete elliptic
integrals and as integrals of the first, second or third kind

Complete Incomplete

First kind K(x) =
1∫

0

dt√
(1−t2)(1−x2t2)

F (z, x) =
z∫

0

dt√
(1−t2)(1−x2t2)

Second kind E(x) =
1∫

0
dt

√
1−x2t2√

1−t2
E (z, x) =

z∫
0
dt

√
1−x2t2√

1−t2

Third kind #(v, x) =
1∫

0

dt

(1−vt2)
√
(1−t2)(1−x2t2)

# (v, z, x) =
z∫

0

dt

(1−vt2)
√
(1−t2)(1−x2t2)

Fig. 2 A genus one Riemann
surface, where the two
independent cycles γ1 and γ2
are indicated

holomorphic differential (i.e. one Abelian differential of the first kind). If we view
the elliptic curve as a genus one Riemann surface (i.e. a torus), we see that there
are two independent cycles γ1 and γ2, as shown in Fig. 2. A period of an elliptic
curve is the integral of the holomorphic differential along a cycle. As there are two
independent cycles, there are two independent periods. Let’s study this for an elliptic
curve in the Legendre form

y2 = x (x − 1) (x − λ) , (16)

where λ is a parameter not equal to 0, 1 or infinity. The periods are

ω1 = 2

λ∫

0

dx

y
= 4K

(√
λ
)
, ω2 = 2

λ∫

1

dx

y
= 4iK

(√
1− λ

)
. (17)

The elliptic curve y2 = x(x − 1)(x − λ) depends on a parameter λ, and so do
the periods ω1(λ) and ω2(λ). We may now ask: How do the periods change, if we
change λ? The variation is governed by a second-order differential equation: With
t = √

λ we have

[
t
(

1− t2
) d2

dt2
+
(

1− 3t2
) d

dt
− t

]
ωj = 0, j = 1, 2. (18)

The differential operator

t
(

1− t2
) d2

dt2 +
(

1− 3t2
) d

dt
− t (19)
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Fig. 3 C/', where ' is a
double lattice generated by
ω1 and ω2. Points inside the
fundamental parallelogram
correspond to points on the
elliptic curve. A point outside
the fundamental
parallelogram can always be
shifted inside the
fundamental parallelogram
through the addition of some
lattice vector

is called the Picard-Fuchs operator of the elliptic curve y2 = x(x − 1)(x − λ).
There is a third possibility to represent an elliptic curve: We may also represent

an elliptic curve as C/', where ' is the double lattice generated by ω1 and ω2.
This is shown in Fig. 3. Points, which differ by a lattice vector are considered to
be equivalent. The different equivalence classes are represented by the points inside
the fundamental parallelogram, as shown in Fig. 3. They correspond to points on the
elliptic curve. Before we go into the details, let us first remark that this is not too
surprising: If we start from the representation of an elliptic curve as a genus one
Riemann surface and cut open this surface along the two cycles γ1 and γ2 shown in
Fig. 2, we obtain a parallelogram.

Let’s now fill in the technical detail: We would like to map a point on an elliptic
curve, defined by a polynomial P , to a point in C/' and vice versa. For simplicity
we assume that the elliptic curve is given in the Weierstrass normal form y2−4x3+
g2x + g3 = 0.

We start with the direction from the Weierstrass normal form to C/': Given a
point (x, y) with y2 − 4x3 + g2x + g3 = 0 the corresponding point z ∈ C/' is
given by

z =
∞∫

x

dt√
4t3 − g2t − g3

. (20)

Let’s now consider the reverse direction from z ∈ C/' to a point on the curve
defined by the Weierstrass normal form. Given a point z ∈ C/' the corresponding
point (x, y) on y2 − 4x3 + g2x + g3 = 0 is given by

(x, y) = (
℘ (z) , ℘′ (z)

)
. (21)

℘(z) denotes Weierstrass’s ℘-function.
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Fig. 4 The generators τ and
1 generate the same lattice as
the generators τ ′ and 1

Let us now introduce some additional notation and conventions: It is common
practise to normalise one period to one: (ω2, ω1)→ (τ, 1), where

τ = ω2

ω1
. (22)

In addition one requires Im(τ ) > 0. This is always possible: If Im(τ ) < 0 simply
exchange ω1 and ω2 and proceed as above. The possible values of τ lie therefore in
the complex upper half-plane, defined by

H = {τ ∈ C|Im(τ ) > 0} . (23)

Let us now turn to modular transformations: We have seen that we may represent an
elliptic curve as C/', where ' is a double lattice generated by ω1 and ω2. As only
the lattice ' matters, but not the specific generators, we may consider a different
pair of periods (ω′2, ω′1), which generate the same lattice '. An example is shown
in Fig. 4: The generators τ and 1 generate the same lattice as the generators τ ′ and 1.

Let’s return to the general case and consider a change of basis from the pair of
periods (ω2, ω1) to the pair of periods (ω′2, ω′1). The new pair of periods (ω′2, ω′1) is
again a pair of lattice vectors, so it can be written as

(
ω′2
ω′1

)
=
(
a b

c d

)(
ω2

ω1

)
, (24)

with a, b, c, d ∈ Z. The transformation should be invertible and (ω2, ω1) and
(ω′2, ω′1) should generate the same lattice '. This implies

(
a b

c d

)
∈ SL2 (Z) . (25)

In terms of τ and τ ′ we have

τ ′ = aτ + b

cτ + d
. (26)

A transformation of the form as in Eq. (26) is called a modular transformation.
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We may then look at functions f (τ), which transform under modular transfor-
mations in a particular way. This leads to modular forms. A meromorphic function
f : H→ C is a modular form of modular weight k for SL2(Z) if

1. f transforms under modular transformations as

f

(
aτ + b

cτ + d

)
= (cτ + d)k · f (τ) for γ =

(
a b

c d

)
∈ SL2(Z), (27)

2. f is holomorphic on H,
3. f is holomorphic at i∞.

The prefactor (cτ + d)k in Eq. (27) is called automorphic factor and equals

(cτ + d)k =
(
ω′1
ω1

)k

. (28)

It is convenient to introduce the |kγ operator, defined by

(f |kγ )(τ ) = (cτ + d)−k · f (γ (τ)). (29)

With the help of the |kγ operator we may rewrite Eq. (27) as

(f |kγ ) = f for γ ∈ SL2(Z) (30)

A meromorphic function f : H → C, which only satisfies Eq. (27) (or equivalently
only Eq. (30)) is called weakly modular of weight k for SL2(Z).

Apart from SL2(Z) we may also look at congruence subgroups. The standard
congruence subgroups are defined by

�0(N) =
{(

a b

c d

)
∈ SL2(Z) : c ≡ 0 mod N

}
,

�1(N) =
{(

a b

c d

)
∈ SL2(Z) : a, d ≡ 1 mod N, c ≡ 0 mod N

}
,

�(N) =
{(

a b

c d

)
∈ SL2(Z) : a, d ≡ 1 mod N, b, c ≡ 0 mod N

}
.

�(N) is called the principle congruence subgroup of level N . The principle
congruence subgroup �(N) is a normal subgroup of SL2(Z). In general, a subgroup
� of SL2(Z) is called a congruence subgroup, if there exists an N such that

� (N) ⊆ �. (31)

The smallest such N is called the level of the congruence subgroup.
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We may now define modular forms for a congruence subgroup �, by relaxing the
transformation law in Eq. (27) to hold only for modular transformations from the
subgroup �, plus holomorphicity on H and at the cusps. In detail: A meromorphic
function f : H → C is a modular form of modular weight k for the congruence
subgroup � if

1. f transforms as

(f |kγ ) = f for γ ∈ �, (32)

2. f is holomorphic on H,
3. f |kγ is holomorphic at i∞ for all γ ∈ SL2(Z).

For a congruence subgroup � of SL2(Z) we denote by Mk(�) the space of modular
forms of weight k. From the inclusions

�(N) ⊆ �1(N) ⊆ �0(N) ⊆ SL2(Z) (33)

follow the inclusions

Mk(SL2(Z)) ⊆Mk(�0(N)) ⊆Mk(�1(N)) ⊆Mk(�(N)). (34)

For a given N , the space Mk(�(N)) of modular forms of weight k for the principal
congruence subgroup �(N) is the largest one among the spaces listed in Eq. (34).
By definition we have for f ∈Mk(�(N)) and γ ∈ �(N)

f |kγ = f, γ ∈ �(N).

We may ask what happens if we transform by a γ ∈ SL2(Z), which does not belong
to the congruence subgroup �(N). One may show that in this case we have

f |kγ ∈Mk(�(N)), γ ∈ SL2(Z)\�(N),

i.e. f |kγ is again a modular form of weight k for �(N), although not necessarily
identical to f . The proof relies on the fact that �(N) is a normal subgroup of
SL2(Z). This is essential: If � is a non-normal congruence subgroup of SL2(Z)

one has in general f |kγ /∈Mk(�).
Modular forms of SL2(Z) are invariant under τ ′ = τ + 1, since

(
1 1
0 1

)
∈ SL2(Z). (35)

In other words, they are periodic with period 1: f (τ + 1) = f (τ).
It is convenient to introduce for τ ∈ H and z ∈ C

q̄ = exp (2πiτ) , w̄ = exp (2πiz) . (36)
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Throughout this review we use the notation q̄ to denote the nome squared. The bar is
used to distinguish this quantity from the nome, usually denoted by q = exp(iπτ).
The notation for z and w we will be useful in the next section. q̄ = exp(2πiτ) maps
the complex upper half-plane τ ∈ H to the unit disk |q̄| < 1.

The maps in Eq. (36) trivialise periodicity with period 1, i.e.

w̄ (z+ 1) = w̄ (z) . (37)

On the other hand, shifts by τ correspond to multiplication with q̄:

w̄ (z+ τ) = w̄ (z) · q̄ (τ ) . (38)

We now introduce iterated integrals of modular forms. Let f1, . . . , fn be modular
forms. We set

I (f1, f2, . . . , fn; τ) =

= (2πi)n
τ∫

τ0

dτ1f1 (τ1)

τ1∫

τ0

dτ2f2 (τ2) . . .

τn−1∫

τ0

dτnfn (τn) . (39)

As basepoint we usually take τ0 = i∞. Please note that an integral over a modular
form is in general not a modular form. This is not surprising if we consider the
following analogy: An integral over a rational function is in general not a rational
function.

We usually like iterated integrals appearing in solutions of Feynman integrals
to have at worst simple poles. Let’s study iterated integrals of modular forms. As
modular forms are holomorphic in the complex upper half-plane, there are no poles
there. So the only interesting points are the cusps. Let’s focus on modular forms
f ∈ Mk(SL2(Z)), so the only cusp is at τ = i∞. By definition a modular form
f (τ) is holomorphic at the cusp and has a q̄-expansion

f (τ) = a0 + a1q̄ + a2q̄
2 + . . . , q̄ = exp(2πiτ). (40)

The transformation q̄ = exp(2πiτ) transforms the point τ = i∞ to q̄ = 0 and we
have

2πi f (τ)dτ = dq̄

q̄

(
a0 + a1q̄ + a2q̄

2 + . . .
)
. (41)

Thus a modular form non-vanishing at the cusp τ = i∞ has a simple pole at q̄ = 0.
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3 Moduli Spaces

This section gives an introduction into moduli spaces.
Let X be a topological space. The configuration space of n ordered points in X

is

Confn (X) = {
(x1, . . . , xn) ∈ Xn

∣∣ xi �= xj for i �= j
}
. (42)

Please note that we require that the points are distinct: xi �= xj . As a simple example
consider the configuration space of 2 ordered points in R:

Conf2 (R) =
{
(x1, x2) ∈ R

2
∣∣∣ x1 �= x2

}
. (43)

Conf2(R) is the plane R
2 with the diagonal x1 = x2 removed.

As a second example consider the configuration space of 2 ordered points in the
complex projective space CP

1 (i.e. the Riemann sphere):

Conf2

(
CP

1
)
=
{
(z1, z2) ∈

(
CP

1
)2
∣∣∣∣ z1 �= z2

}
. (44)

This is a two-dimensional space. A Möbius transformation

z′ = az+ b

cz+ d
(45)

transforms the Riemann sphere into itself. These transformations form a group
PSL (2,C). Usually we are not interested in configurations

(z1, . . . , zn) ∈ Confn
(
CP

1
)

and (z′1, . . . , z′n) ∈ Confn
(
CP

1
)
, (46)

which differ only by a Möbius transformation. This brings us to the definition of the
moduli space of the Riemann sphere with n marked points:

M0,n = Confn
(
CP

1
)
/PSL (2,C) . (47)

We may use the freedom of Möbius transformations to fix three points (usually 0, 1
and ∞). Therefore

dim
(

Confn
(
CP

1
))

= n,

dim
(
M0,n

) = n− 3. (48)
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Fig. 5 The upper left figure shows a configuration of three marked points on a complex curve of
genus zero, the upper right figure shows the corresponding configuration when the complex curve
is viewed as a real Riemann surface. The lower figures show the analogous situation for a complex
curve of genus one

Let’s generalise this: We are interested in the situation, where the topological
space X is a smooth algebraic curve C in CP

2. This implies that there exists a
homogeneous polynomial P(z1, z2, z3) such that

C =
{

[z1 : z2 : z3] ∈ CP
2
∣∣∣P (z1, z2, z3) = 0

}
. (49)

If d is the degree of the polynomial P(z1, z2, z3), the genus g of C is given by
Eq. (4). Alternatively we may view C as a Riemann surface of genus g (Fig. 5).

Let us now consider a smooth curve C of genus g with n marked points.
Two such curves (C; z1, . . . , zn) and (C′; z′1, . . . , z′n) are isomorphic if there is an
isomorphism

φ : C → C′ such that φ (zi) = z′i . (50)

The moduli space

Mg,n (51)

is the space of isomorphism classes of smooth curves of genus g with n marked
points. For g ≥ 1 the isomorphism classes do not only depend on the positions of
the marked points, but also on the “shape” of the curve. For g = 0 there is only one
“shape”, the Riemann sphere.

The dimension of Mg,n is

dim
(
Mg,n

) = 3g + n− 3, (52)
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for g = 0 this formula agrees with the previous result in Eq. (48).
In this talk we are mainly interested in the moduli spaces M0,n and M1,n. Let us

work out natural choices for coordinates on M0,n and M1,n.

• We start with genus 0. We have dimM0,n = n − 3. As mentioned above, the
sphere has a unique shape. We may use Möbius transformations to fix three
points, say zn−2 = 1, zn−1 = ∞, zn = 0. This leaves

(z1, . . . , zn−3) (53)

as coordinates on M0,n.
• We now turn to genus 1. From Eq. (52) we have dimM1,n = n. We need one

coordinate to describe the shape of the elliptic curve (or the shape of the torus
or the shape of the parallelogram). We may take τ as defined in Eq. (22) for this.
We may use translation to fix one marked point, say zn = 0. This gives

(τ, z1, . . . , zn−1) (54)

as coordinates on M1,n.

We then consider iterated integrals on M0,n and M1,n. In general, iterated integrals
are defined as follows: Let ω1, . . . , ωk be differential 1-forms on a manifold M and
γ : [0, 1] → M a path. We write for the pull-back of ωj to the interval [0, 1]

fj (λ) dλ = γ ∗ωj . (55)

Iterated integral are defined by Chen [74]

Iγ (ω1, . . . , ωk; λ) =
λ∫

0

dλ1f1 (λ1)

λ1∫

0

dλ2f2 (λ2) . . .

λk−1∫

0

dλkfk (λk) . (56)

Let us now specialise to iterated integrals on M0,n. We are interested in differential
one-forms, which have only simple poles. We therefore consider

ωmpl = dy

y − zj
. (57)

The iterated integrals constructed from these differential one-forms are the multiple
polylogarithms:

G(z1, . . . , zk; y) =
y∫

0

dy1

y1 − z1

y1∫

0

dy2

y2 − z2
. . .

yk−1∫

0

dyk

yk − zk
, zk �= 0. (58)
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We may slightly enlarge the set of functions by setting

G(0, . . . , 0︸ ︷︷ ︸
k

; y) = 1

k! lnk (y) (59)

and for (z1, z2, . . . , zk) �= (0, 0, . . . , 0)

G(z1, z2, . . . , zk; y) =
y∫

0

dy1

y1 − z1
G(z2, . . . , zk; y1). (60)

This allows trailing zeros. We say that the multiple polylogarithm G(z1, . . . , zk; y)
has a trailing zero if zk = 0. Using the shuffle product we may convert any multiple
polylogarithm with trailing zeros into multiple polylogarithm without trailing zeros
and powers of ln(y).

Let’s now consider iterated integrals on M1,n. We recall that we may take
(τ, z1, . . . , zn−1) as coordinates on M1,n. We may decompose an arbitrary inte-
gration path into pieces along dτ (with z1 = · · · = zn−1 = const) and pieces along
the dzj ’s (with τ = const). Thus we obtain two classes of standardised iterated
integrals: Iterated integrals on M1,n with integration along dτ and iterated integrals
on M1,n with integration along the dzj ’s.

In addition we have to specify the differential one-forms we want to integrate.
The differential one-forms which we want to consider in the case of M1,n are
derived from the Kronecker function. The Kronecker function F(x, y, τ ) is defined
in terms of the first Jacobi theta function by

F (x, y, τ ) = πθ ′1 (0, q)
θ1 (π (x + y) , q)

θ1 (πx, q) θ1 (πy, q)
, (61)

where q = exp(πiτ ) and θ ′1 denotes the derivative with respect to the first argument.
The first Jacobi theta function θ1(z, q) is defined by

θ1 (z, q) = −i

∞∑
n=−∞

(−1)n q

(
n+ 1

2

)2

ei(2n+1)z, q = eiπτ . (62)

Please note that in order to make contact with the standard notation for the Jacobi
theta functions we used here the nome q = exp(πiτ ) and not the nome squared
q̄ = q2 = exp(2πiτ). The definition of the Kronecker function is cleaned up if we
define

θ̄1 (z, q̄) = θ1

(
πz, q̄

1
2

)
. (63)
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Then

F (x, y, τ ) = θ̄ ′1 (0, q̄)
θ̄1 (x + y, q̄)

θ̄1 (x, q̄) θ̄1 (y, q̄)
. (64)

It is obvious from the definition that the Kronecker function is symmetric in x and
y. We are interested in the Laurent expansion in one of these variables. We define
functions g(k)(z, τ ) through

F (z, α, τ ) =
∞∑
k=0

g(k) (z, τ ) αk−1. (65)

We are primarily interested in the coefficients g(k)(z, τ ) of the Kronecker function.
Let us recall some of their properties [39, 75, 76].

1. When viewed as a function of z, the function g(k)(z, τ ) has only simple poles.
More concretely, the function g(1)(z, τ ) has a simple pole with unit residue at
every point of the lattice. For k > 1 the function g(k)(z, τ ) has a simple pole only
at those lattice points that do not lie on the real axis.

2. The (quasi-) periodicity properties are

g(k) (z+ 1, τ ) = g(k) (z, τ ) ,

g(k) (z+ τ, τ ) =
k∑

j=0

(−2πi)j

j ! g(k−j) (z, τ ) . (66)

We see that g(k)(z, τ ) is invariant under translations by 1, but not by τ .
3. The functions g(k)(z, τ ) have the symmetry

g(k)(−z, τ ) = (−1)k g(k)(z, τ ). (67)

4. Under modular transformations the functions g(k)(z, τ ) transform as

g(k)
(

z

cτ + d
,
aτ + b

cτ + d

)
= (cτ + d)k

k∑
j=0

(2πi)j

j !
(

cz

cτ + d

)j

g(k−j) (z, τ ) .

(68)
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5. The q̄-expansion of the g(k)(z, τ ) functions is given by (with q̄ = exp(2πiτ) and
w̄ = exp(2πiz))

g(0) (z, τ ) = 1,

g(1) (z, τ ) = −2πi

[
1+ w̄

2 (1− w̄)
+ E0,0 (w̄; 1; q̄)

]
,

g(k) (z, τ ) = − (2πi)k

(k − 1)!
[
−Bk

k
+ E0,1−k (w̄; 1; q̄)

]
, k > 1, (69)

where Bk denote the k-th Bernoulli number, defined by

x

ex − 1
=

∞∑
k=0

Bk

k! x
k, (70)

and

En;m (ū; v̄; q̄) = ELin;m (ū; v̄; q̄)− (−1)n+m ELin;m
(
ū−1; v̄−1; q̄

)
,

ELin;m (ū; v̄; q̄) =
∞∑
j=1

∞∑
k=1

ūj

jn

v̄k

km
q̄jk. (71)

Having defined the functions g(k)(z, τ ), we may now state the differential one forms
which we would like to integrate on M1,n. To keep the discussion simple, we focus
on M1,2 with coordinates (τ, z). (The general case M1,n is only from a notational
perspective more cumbersome.) We consider

ωKronecker
k = (2πi)2−k

[
g(k−1) (z− cj , τ

)
dz+ (k − 1) g(k)

(
z− cj , τ

) dτ

2πi

]
,

(72)

with cj being a constant. The differential one-form ωKronecker
k is closed

dωKronecker
k = 0. (73)

For the integration along dz (i.e. τ = const) the part

ω
Kronecker,z
k = (2πi)2−k g(k−1) (z− cj , τ

)
dz (74)
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is relevant. The iterated integrals of the differential one-forms in Eq. (74) along a
path γ from z = 0 to z are the elliptic multiple polylogarithms �̃, as defined in
ref. [31]:

�̃
(
n1 ... nr
c1 ... cr ; z; τ

) =
(2πi)n1+···+nr−r Iγ

(
ω

Kronecker,z
n1+1 (c1, τ ) , . . . , ω

Kronecker,z
nr+1 (cr , τ ) ; z

)
. (75)

It is not possible that the differential one-forms ω entering the definition of elliptic
multiple polylogarithms have at the same time the following three properties: (i)
ω is double-periodic, (ii) ω is meromorphic and (iii) ω has only simple poles. We
can only require two of these three properties. The definition of the �̃-functions
selects meromorphicity and simple poles. The differential one-forms are not double-
periodic. (This is spoiled by the quasi-periodicity of g(k)(z, τ ) in τ .) However, this
is what physics (i.e. the evaluation of Feynman integrals) dictates us to choose. The
integrands are then either multi-valued functions on M1,n or single-valued functions
on a covering space, in the same way as ln(z) is a multi-valued function on C

×
or a single-valued function on a covering space of C×. Of course, in mathematics
one might also consider alternative definitions, which prioritise other properties.
A definition of elliptic multiple polylogarithms, which implements properties (i)
and (ii), but gives up property (iii) can be found in [77], a definition, which
implements properties (i) and (iii), but gives up (ii) can be found in [76]. It is
a little bit unfortunate that these different function are all named elliptic multiple
polylogarithms. The reader is advised to carefully check what is meant by the name
“elliptic multiple polylogarithm”.

Let us now consider the integration along dτ (i.e. z = const). Here, the part

ω
Kronecker,τ
k = (2πi)2−k (k − 1) g(k)

(
z− cj , τ

) dτ

2πi

= (k − 1)

(2πi)k
g(k)

(
z− cj , τ

) dq̄
q̄

(76)

is relevant. This is supplemented by z-independent differential one-forms con-
structed from modular forms: Let fk(τ ) be a modular form of weight k. We set

ωmodular
k = (2πi) fk (τ ) dτ = fk (τ )

dq̄

q̄
. (77)

Let ωkj be as in Eq. (76) or as in Eq. (77) and γ the path from τ = i∞ to τ ,
corresponding in q̄-space to a path from q̄ = 0 to q̄. We then consider in q̄-space
the iterated integrals

Iγ
(
ωk1 , . . . , ωkr ; q̄

)
. (78)
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The integrands have no poles in 0 < |q̄| < 1. A simple pole at q̄ = 0 is possible and
allowed. If ωkr has simple pole q̄ = 0 we say that the iterated integral has a trailing
zero. We may split ωkr into a part proportional to dq̄/q̄ and a regular remainder.
The singular part of a trailing zero can be treated in exactly the same way as we did
in the case of multiple polylogarithms.

4 Physics

After reviewing the mathematical background let us now turn to physics, and here
in particular to the computation of Feynman integrals.

Integration-by-parts identities [78, 79] and differential equations [24, 80–89] are
standard tools for the computation of Feynman integrals. In essence, integration-by-
parts identities allow us to express a Feynman integral from a large set of Feynman
integrals as a linear combination of Feynman integrals from a smaller set. The
Feynman integrals in the smaller set are called master integrals and we may think of
the master integrals as a basis of an (abstract) vector space. We denote the number of
master integrals by NF = NFibre and the master integrals by I = (I1, . . . , INF

). The
notation used in relation with Feynman integrals is summarised in Table 2. Public
available computer programs based on the Laporta algorithm [90] like REDUZE
[91], FIRE [92] or KIRA [93] can be used to perform the reduction to the master
integrals.

For the master integrals one derives (again by using integration-by-parts identi-
ties) differential equations in the external invariants or internal masses. We denote
the number of kinematic variables by NB = NBase and the kinematic variables by
x = (x1, . . . , xNB

). The system of differential equations for the master integrals can
be written as

(d + A) I = 0, (79)

where A(ε, x) is a matrix-valued one-form

A =
NB∑
i=1

Aidxi. (80)

Table 2 The notation used in connection with Feynman integrals: NF denotes the number of
master integrals, NB the number of kinematic variables the master integrals depend on and NL

the number linearly independent differential one-forms appearing in the ε-form of the differential
equation

NF = NFibre: Number of master integrals, I = (I1, . . . , INF
).

master integrals denoted by

NB = NBase: Number of kinematic variables, x = (x1, . . . , xNB
).

kinematic variables denoted by

NL = NLetters: Number of letters, ω = (ω1, . . . , ωNL
).

differential one-forms denoted by
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The Ai(ε, x)’s are matrices of size NF × NF , whose entries are rational functions
in the dimensional regularisation parameter ε and the kinematic variables x. The
matrix-valued one-form A satisfies the integrability condition

dA+ A ∧ A = 0. (81)

Geometrically we have a vector bundle with a fibre of dimension NF spanned by
I1, . . . INF

and a base space of dimension NB with local coordinates x1, . . . , xNB
.

The matrix-valued one-form A defines a flat connection.
Up to this point everything is general and applies to any Feynman integral. In

particular, computing a Feynman integral is reduced to the problem of solving
a system of differential equations as in Eq. (79). The solution of a system of
differential equations requires in addition boundary values. The boundary values
correspond to simpler Feynman integrals, where some kinematic variables have
special values or vanish. Therefore at this stage the boundary values can be
considered to be known (otherwise one would first set up a system of differential
equations for the boundary values).

The system of differential equations is particular simple [86], if A is of the form

A = ε

NL∑
j=1

Cj ωj , (82)

where

– the only dependence on the dimensional regularisation parameter ε is given by
the explicit prefactor,

– the Cj ’s are NF ×NF -matrices, whose entries are numbers r1+ ir2 with r1, r2 ∈
Q,

– the differential one-forms ωj have only simple poles (and depend only on x).

We denote by NL = NLetters the number of letters, i.e. the number of Q[i]-
linear independent differential one-forms ωj . The set of letters is denoted by
ω = (ω1, . . . , ωNL

).
Let us now discuss the possibilities to transform a generic system of differential

equations as in Eq. (79) into the simple form of Eq. (82). On the one hand we may
change the basis of the master integrals

I ′ = UI, (83)

where U(ε, x) is a NF ×NF -matrix. The new connection matrix is

A′ = UAU−1 + UdU−1. (84)
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On the other hand, we may perform a coordinate transformation on the base
manifold:

x′i = fi (x) , 1 ≤ i ≤ NB. (85)

The connection transforms as

A =
NB∑
i=1

Aidxi ⇒ A′ =
NB∑

i,j=1

Ai

∂xi

∂x′j
dx′j . (86)

Let us consider some examples of elliptic Feynman integrals. The most prominent
example is the two-loop sunrise integral. The two-loop sunrise integral is defined by

Sν1ν2ν3 (ε, x) = (−1)ν123 e2γEε
(
m2

3

)ν123−D
∫

dDk1

iπ
D
2

dDk2

iπ
D
2

1

D
ν1
1 D

ν2
2 D

ν3
3

, (87)

with the propagators

D1 = k2
1 −m2

1, D2 = (k1 − k2)
2 −m2

2, D3 = (p − k2)
2 −m2

3 (88)

and ν123 = ν1 + ν2 + ν3. γE denotes Euler’s constant. It is convenient to consider
this Feynman integral in D = 2 − 2ε space-time dimensions. With the help of
dimensional shift relations [94, 95] the result in D = 2 − 2ε dimensions is easily
related to the corresponding Feynman integrals in D = 4− 2ε dimensions.

The simplest example for an elliptic Feynman integral is the equal mass sunrise
integral. In the equal mass case we have m1 = m2 = m3 = m. In this case we
have 3 master integrals and one kinematic variable, which we may take originally
as x = p2/m2. This corresponds to NF = 3 and NB = 1. In mathematical terms
we are looking at a rank 3 vector bundle over M1,1.

The first question which we should address is how to obtain the elliptic curve
associated to this integral. For the sunrise integral there are two possibilities, we
may either obtain an elliptic curve from the Feynman graph polynomial or from
the maximal cut. The sunrise integral has three propagators, hence we need three
Feynman parameters, which we denote by α1, α2, α3. The second graph polynomial
defines an elliptic curve

EFeynman : −α1α2α3x + (α1 + α2 + α3) (α1α2 + α2α3 + α3α1) = 0, (89)

in CP
2, with [α1 : α2 : α3] being the homogeneous coordinates of CP2. The elliptic

curve varies with the kinematic variable x. In general, the Feynman parameter space
can be viewed as CP

n−1, with n being the number of propagators of the Feynman
integral. It is clear that this approach does not generalise in a straightforward way to
other elliptic Feynman integrals with more than three propagators. (For an elliptic
curve we want the zero set of a single polynomial in CP

2).
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We therefore turn to the second method of obtaining the elliptic curve, which
generalises easily: From the maximal cut of the sunrise integral we obtain the elliptic
curve as a quartic polynomial P(w, z) = 0:

Ecut : w2 − z (z+ 4)
[
z2 + 2 (1+ x) z+ (1− x)2

]
= 0. (90)

Also this elliptic curve varies with the kinematic variable x. Please note that these
two elliptic curves EFeynman and Ecut are not isomorphic, but only isogenic. Let
ω1 and ω2 be two periods of this elliptic curve Ecut with Im(ω2/ω1) > 0 and set
τ = ω2/ω1. We denote the Wronskian by

W = ω1
d

dx
ω2 − ω2

d

dx
ω1. (91)

In order to bring the system of differential equations for the equal mass sunrise
integral into the simple form of Eq. (82) we perform a change of the basis of the
master integrals from a pre-canonical basis (S110, S111, S211) to

J1 = 4ε2 S110 (ε, x) ,

J2 = ε2 π

ω1
S111 (ε, x) ,

J3 = 1

ε

ω2
1

2πiW

d

dx
J2 + ω2

1

2πiW

(
3x2 − 10x − 9

)
2x (x − 1) (x − 9)

J2. (92)

This transformation is not rational or algebraic in x, as can be seen from the
prefactor 1/ω1 in the definition of J2. The period ω1 is a transcendental function
of x. In addition we change the kinematic variable from x to τ (or q̄). Again, this is
a non-algebraic change of variables. One obtains

(d + A) J = 0 (93)

with

A = 2πi ε

⎛
⎝ 0 0 0

0 η2 (τ ) η0 (τ )

η3 (τ ) η4 (τ ) η2 (τ )

⎞
⎠ dτ, (94)

where ηk(τ ) denotes a modular form of modular weight k for �(6). The differential
equation for the equal mass sunrise system is now in ε-form and the kinematic
variable matches the standard coordinate on M1,1. With the additional information
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of a boundary value, the differential equation is now easily solved order by order in
ε in terms of iterated integrals of modular forms. One finds for example

J2 =
[

3 Cl2

(
2π

3

)
+ I (η0, η3; τ)

]
ε2 + O

(
ε3
)
. (95)

The Clausen value Cl2(2π/3) comes from the boundary value.
Let us also consider an example where the kinematic space is M1,n with n > 1.

We don’t have to go very far, the unequal mass sunrise integral provides an example.
We now take the three masses squared m2

1, m2
2 and m2

3 in Eq. (88) to be pairwise
distinct. We now have 7 master integrals and 3 kinematic variables. As original
kinematic variables we use x = p2/m2

3, y1 = m2
1/m

2
3, y2 = m2

2/m
2
3. This

corresponds to NF = 7 and NB = 3. In mathematical terms we are looking at a
rank 7 vector bundle over M1,3.

Finding the elliptic curve proceeds exactly in the same way as discussed in the
equal mass case. In the next step we would like to change the kinematic variables
from (x, y1, y2) to the standard coordinates (τ, z1, z2) on M1,3. This raises the
question: How to express the new coordinates in terms of the old coordinates (or
vice versa)? For τ the answer is straightforward: τ is a again the ratio of the two
periods τ = ω2/ω1, and ω1 and ω2 are functions of x, y1 and y2.

Also for z1 and z2 there is a simple geometric interpretation: In the Feynman
parameter representation there are two geometric objects of interest: the domain of
integration σ (the simplex α1, α2, α3 ≥ 0, α1 + α2α3 ≤ 1) and the elliptic curve
EFeynman (the zero set X of the second graph polynomial). X and σ intersect at three
points, as shown in Fig. 6. The images of these three points in C/' are 0, z1, z2,
where we used a translation transformation to fix one point at 0.

The system of differential equations can again be transformed into the simple
form of Eq. (82) by a redefinition of the master integrals and a change of coordinates

Fig. 6 X and σ intersect at three points, the images of these three points in C/' are 0, z1, z2
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from (x, y1, y2) to (τ, z1, z2). The explicit formula for the fibre transformation is a
little bit lengthy and can be found in the literature [48, 55]. Doing so, one finds

A = ε

NL∑
j=1

Cj ωj , with ωj having only simple poles, (96)

where ωj is either

2πi fk (τ ) dτ, (97)

where fk(τ ) is a modular form, or of the form

ωk (L (z) , τ ) =

(2πi)2−k

[
g(k−1) (L (z) , τ ) dL (z)+ (k − 1) g(k) (L (z) , τ )

dτ

2πi

]
, (98)

with L(z) being a linear function of z1 and z2:

L (z) =
2∑

j=1

αjzj + β, (99)

and α1, α2 and β being constants.
With the additional information of a boundary value, the differential equation

in Eq. (96) is now easily solved order by order in ε in terms of iterated integrals as
discussed in Sect. 3. We are free to choose a suitable point in kinematic space for the
boundary value and to integrate the differential equation from the chosen boundary
point to the kinematic point of interest. We are free to choose any path (as long as the
path avoids branch cuts). An arbitrary path will involve integrations along dτ and the
dzj ’s. It is advantageous to use as boundary condition the values on the hypersurface
τ = i∞. There the elliptic curve degenerates, i.e. the geometric genus equals zero,
and the sought-after boundary values of the Feynman integrals are expressible in
terms of multiple polylogarithms. We may then integrate the differential equation
only along dτ . This avoids integrations along the dzj ’s, the analytic expressions
tend to be shorter and the final expressions are easier to evaluate numerically. This
approach also avoids poles and branch cuts along the integration path. The only
problem, which might occur, are a slow convergence of the q̄-expansion of the final
result in the case |q̄| � 1. This can be avoided by using in this kinematic region
a different choice of periods ω1 and ω2, related to the original ones by a modular
transformation [55]. It is therefore always possible to achieve

|q̄| ≤ e−π
√

3 ≈ 0.0043, (100)

which guarantees a fast convergence of the q̄-expansion of the final result.
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5 Conclusions

Feynman integrals are important in many areas of physics and indispensable for
precision calculations within perturbation theory beyond the leading order. Feynman
integrals, which evaluate to multiple polylogarithms are by now well understood.
Multiple polylogarithms are iterated integrals on the moduli space M0,n. From two
loops onwards, there is a class of Feynman integrals related to elliptic curves, which
evaluate to iterated integrals on the moduli space M1,n. These integrals were the
main topic of this talk. We discussed the mathematical background of elliptic curves,
elliptic functions, modular forms and the moduli space of n marked points on a
smooth curve of genus one. The investment in the mathematical foundations pays
off, as with the right language we may transfer methods known from the genus zero
case to the genus one case. In particular we may achieve through a redefinition of
the master integrals and a change of the kinematic variables that the differential
equation is transformed to

A = ε

NL∑
k=1

Ck ωk, with ωk having only simple poles. (101)

This form can be reached for many Feynman integrals evaluating to multiple
polylogarithms and—as we have seen in this talk—also for non-trivial elliptic
Feynman integrals.
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