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Abstract. We present the Dirac structures and the associated Dirac
system formulations for non-simple thermodynamic systems by focusing
upon the cases that include irreversible processes due to friction and
heat conduction. These systems are called non-simple since they involve
several entropy variables. We review the variational formulation of the
evolution equations of such non-simple systems. Then, based on this, we
clarify that there exists a Dirac structure on the Pontryagin bundle over a
thermodynamic configuration space and we develop the Dirac dynamical
formulation of such non-simple systems. The approach is illustrated with
the example of an adiabatic piston.
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1 Variational Formulation of Non-simple Systems

Before exploring Dirac structures underlying the thermodynamics of non-simple
systems, we review the variational setting of such non-simple systems by focusing
on the internal irreversible processes associated with friction and heat conduc-
tion.

1.1 Setting for Thermodynamics of Non-simple Systems

Non-simple Systems with Friction and Heat Conduction. Consider an
adiabatically closed system ¥ = UL _ 34 which consists of P simple thermody-
namic systems X 4, in which we include the irreversible processes due to friction
and heat conduction between subsystems. Here a simple thermodynamic system

H.Yoshimura is partially supported by JSPS Grant-in-Aid for Scientific Research
(17H01097), JST CREST Grant Number JPMJCR1914, the MEXT Top Global Uni-
versity Project, Waseda University (SR 2021C-134) and the Organization for University
Research Initiatives (Evolution and application of energy conversion theory in collab-
oration with modern mathematics).

© Springer Nature Switzerland AG 2021
F. Nielsen and F. Barbaresco (Eds.): GSI 2021, LNCS 12829, pp. 918-925, 2021.
https://doi.org/10.1007/978-3-030-80209-7_98


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80209-7_98&domain=pdf
http://orcid.org/0000-0001-5898-5509
http://orcid.org/0000-0001-9411-1382
https://doi.org/10.1007/978-3-030-80209-7_98

Dirac Structures in Thermodynamics of Non-simple Systems 919

denotes a system that has only one variable to represent the thermodynamic
state, usually denoted by entropy. Since ¥ is an interconnected system of sim-
ple subsystems X1, ..., 3 p, it becomes a “non-simple” system that has several
entropy (or temperature) variables (see [7]) and we note that all the irreversible
processes are internal. For each simple subsystem X4, A=1,..., P, S4 € R indi-
cates its entropy variable. Here, we assume that the mechanical configuration of
3 is given by independent mechanical variables ¢ = (¢, ..., ¢") € Q, where Q is
the mechanical configuration manifold of 3.

Friction, Heat Conduction and External Forces. Let Fe*'—~4 : T*Q xRF —
T*Q@Q be an external force that acts on 34 and hence the total exterior force is
et = Zf::l Fext—=A Let F(A) . 7*Q x R — T*Q be the friction forces
associated with the irreversible processes of each subsystem X 4, which yield an
entropy production for subsystem 3 4. Associated with the heat exchange between
3 4 and X5, let J o be the fluxes such that for A # B, Jagp = Jpa and for A = B,
Jag = — EB?éA Jap, where Zi:l Jap = 0 for all B.

Thermodynamic Displacements. In our formulation, we introduce the con-
cept of thermodynamic displacements, see [3,4]. For the case of heat exchange,
we define the thermal displacements I'*, A = 1, ..., P such that its time rate I'4
becomes the temperature of 3 4. We also introduce a new variable X' 4 associated
with the internal entropy production.

1.2 Variational Formulation of Non-simple Systems

The Lagrange-d’Alembert Principle for Non-simple Systems. Now we
consider a variational formulation of Lagrange-d’Alembert type for non-simple
systems with friction and heat conduction, which is a natural extension of Hamil-
ton’s principle in mechanics (see [4]).

Given a Lagrangian L : TQ x R — R and an external force F** : TQ x
RP — T*Q, find the curves q(t), Sa(t), I'*(t), £ a(t) which are critical for the
variational condition

to

to
5 [ L850+ PASa— S de+ [ (Fbg) de =0,

tl tl
subject to the phenomenological constraint

OL

9, = <Ffr<A>,q> 4+ JaglB, for A=1,..,P, (1)
054
and for variations subject to the variational constraint

aL _ fr(A) B _
55,05 = <F ,5q> 4 JapdlE, for A=1,..,P, 2)

with 6q(t1) = dq(ta) = 0 and 614 (t) = 6T (ty) =0, A=1,..., P.
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By direct computations, we obtain the following evolution equations:

doL 9L FA

—_ == Ffr( )+Fext’
dt 8q 8(] A=1 3SA
oL
+I74=0, A=1,.,P

aSA 0 b b ) (3)
) . PopA
Sa— 24+ ZaTJBA:0= A=1,..., P

B=1 054

From the second equation in (3), the temperature of the subsystem X4, i.e., T4

can be obtained as ['4 = QBSLA =: TA. Because Zizl Jap = 0 for all B, the

last equation in (3) yields Sq = 4. Hence, together with (1), we obtain the
following Lagrange-d’Alembert equations for the curves ¢(t) and Sa(¢):

d oL OL .

L ye Y F T(A) Fext

atoq  0q ,42:1 T "
oL oL 0L

8, = (FrA), J A=1,.. P

S < > Z AB\9Sg ~ 9Sa e

The First Law of Energy Balance. For the total energy £ : TQ xRF — R
given by E(q,vq,54) = <£‘3—ULQ (q,vq,54) ,vq> — L(q,vq,S4), we have %E =
(Ft ¢) = Pg¥* along the solution curve of (4). If the Lagrangian is given by
L(q,v,S1,...,5p) = Z,}::1 L4(q,v,54), the evolution equations for X 4 are

P
daLA 8LA fr( A

@ _ ZHA _ pfe(A) 4 pext—A FB=A A=1,..P
i aq 8(1 + +BZ:1 ) yer

where FB—4 is the internal force exerted by 35 on ¥ 4. From Newton’s third

law, we have FB—~4 = —FA=B_ Denoting by E4 the total energy of 3,4, we
have
d P P
_ ext— A B—A B—A
s Ea=rw +ZPW +ZPH ; ()
B=1 B=1
where Pgit—A = (Fext—4, (j> is the mechanical power that flows from the exte-

rior into X4, PBHA ZB 1 <FBHA > is the internal mechanical power that

flows from X g into X4, and PB*A ZB 1JaB aaT]; - aaTLA) is the internal

heat power from X5 to 3 4. It follows that the power exchange can be written
as PE=A = Jup(T4 - TE).
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The Second Law and Internal Entropy Production. The total entropy of
the system is S = 25:1 Sa. Therefore, it follows from (4) that the rate of total
entropy production of the system is given by

S5 ()« 5 o (e ) a7
T 7 A e ’
= <B

which becomes always positive because of the second law. This is consistent with
the phenomenological relations of the form

T4 - TB

fr(A -7
F (4) _ _Aquﬂ and JABW

= Lap(TP —T4). (6)
In the above, /\;‘} and Z,p are functions of the state variables, where the
symmetric part of )\f} are positive semi-definite and with Z4p > 0 for all
A, B. From the second relation, we get Jap = —ZapTAT? = —kap, with
kap = kap(q,Sa,Sp) the heat conduction coefficients between 34 and Xp.

2 Dirac Formulation of Non-simple Systems

In this section, we develop the Dirac formulation for the dynamics of non-simple
systems by means of an induced Dirac structure the Pontryagin bundle; for the
details, see [1,5,6].

2.1 Dirac Structures in Thermodynamics

Thermodynamic Configuration Space. For our class of non-simple sys-
tems, let 2 = @Q x V be a thermodynamic configuration space, where @
denotes the mechanical configuration space with mechanical variables ¢ € Q
as before and V = RF x R x RP is the thermodynamic space with ther-
modynamic variables (Sa, ™, X4) € V. We denote by x = (q,54, ", X4)
an element of 2, by (z,v) an element in the tangent bundle T2 where
v = (vq,v5,,vra,vx,) € T, 2, and by (x,p) an element of the cotangent bundle
T*2, where p = (pg, P54, Pra,ps.) € Th 2.

Nonlinear Constraints of Thermodynamic Type. Let Cy C T2 x9 T2
be the variational constraint locally given as

;TLA(SZA - <Ffr<A>, 5q>

P (7)
+ > JapdlP A=1, ...,P}.

B=1

Cy = {(x,v,dx) ETI2 %9 T2

For every (x,v) € T2, we consider the subspace of T, 2 given by
Cy(z,v) :=Cy N ({(x,v)} X Tmc@) cT,2.



922 H. Yoshimura and F. Gay-Balmaz

The kinematic constraint associated to Cy is defined by
Ck ={(z,v) e T2 | (z,v) € Cy(x,v)}, (8)

which is given locally as

_ oL _ fr(A) & _
CK—{(.Q?,’U) € TQ‘ E’UZ‘A—<F ,’Uq>+BZ_1 Japvrs,A=1,...,P . (9)

Variational and kinematic constraints Cy and Cg are called nonlinear con-
straints of thermodynamic type if they are related as in (8).
Note also that the annihilator of Cy (x,v) C T2, defined by

Cv (x,v)° = {(z,¢) 6T*Q| (¢,62) =0, Yoz € Cy(x,v)} C Ty 2,

is given, in coordinates ¢ = (¢4, Cs4,Cra,Cx,) € Th 2, by

Cv(x,v)° = {(w,o €T 2| Gt TAFTW =0, (s, =0,
954
C P
Cry = =4 Z Jap, A=1,. P}
ﬁ B=1

Dirac Structures on the Pontryagin Bundle. & =T2¢T*2. The Pon-
tryagin bundle & is defined as the Whitney sum bundle of & = T2 ¢ T*2,
with vector bundle projection, m(» o) : & = T20T*2 — 2,x = (z,v,p) — 2.
Given a variational constraint Cy C T2 X 9 T2 as in (7), we define the induced
distribution Agp on & by

-1
Agp (xw,p) = (T(m,v,p)ﬂ—(ﬂ,g)) (CV(va)) - T(m,v,p)gza
for each (z,v,p) € L. Locally, this distribution reads
A/ﬁ (Iv ’U,p) = {(Iv v, P, &Ev 51}7 5}7) € T(w,v,p)‘@ | (I, (Siﬂ) € CV(I7 U)}

Further, the presymplectic form on & is defined from the canonical symplectic
form 27«9 on T*2 as Ny = WZ}}, T Q)QT* 9, which is locally given by using
local coordinates (z,v,p) = (¢, Sa, ', Za, 04,054, Vra, Vs, Dgs PSas Pra, D)
for each x = (x,v,p) € & as

Ry = dq/\dpq +dSaNdps, +dla Ndpr +dX 4 Ndps, .

Definition 1. The Dirac structure Da, induced on & from Ap and wgyp is
defined by, for each x € L,

Da, (x —{ux,ax ETP XTI | ux € Ap(x) and
(o, W) = 2 (%) (ux, wy) for all wy € Ag(x)}.
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Proposition 1. The local expression of the Dirac condition, for each x =
("1:7 v7p)7
((iC,’U,p,CL’,’U,p), (Z,U,p,a,ﬁ, 7)) S DAg/ (.’ﬁ,’l),p)

18 equivalent to
(x7i) GCV(JZ,U), 6:07 "Y:i, ]5+Oz€CV(I‘,U)O.

In coordinates (Oé,ﬁ,’}/) = (alpaSA7aFAvaﬂAaﬁqaﬂSAaﬁFA7/62A7 7q775A77FAa
vs.4), this condition reads as

. . 1. ,
Pgt+ag+ (P, +042A)WF£(A)=O, Psa +as, =0,
EEN

. . 1
pFA+aFA:p2A+a2A3TZJAB)
954 B=1

ﬂq:O7 BSA:O7 61”"20, ﬂEA:O7
q-:’y‘ﬁ SA:WSA)-Z'—‘A:’YFA72A:’YEA7

87[’ — ( pfr(4) - J
8SA72A_< ’7q>+Bz:_1 ABYXp-

2.2 Dirac Formulation for Thermodynamics of Non-simple Systems

Dirac Dynamical Systems on & = T2®T*2. For a given Lagrangian
L(q,v4,584) on TQ x RP, we introduce an augmented Lagrangian by
L(q, 54, T4, X a,vq,vpa) = L(q,v4,S4) +vpa(Sa — Xa).

In the above, note that the augmented Lagrangian may be regarded as a
(degenerate) Lagrangian function £ (z,v) on T 2. Further, define the generalized
energy & on  =T2 HT*2 as

E(x,v,p) := (p,v) — ZL(x,v).

Given an external force F°**(q, vy, S4), which may be regarded as a map
Ft. T9 — T*2, a horizontal one-form F*: & — T*Z is induced by

<}~7’8Xt(z,v,p),u> = <F6Xt(x,’t}),T7T(gz7a@)(U)>, for all u € T, p) P

Theorem 1. Given Cy and Ck as in (7) and (9), the solution curve x =
(z(t),v(t),p(t)) of the Dirac system

(,v.p.,0.9). d6 (@, 0.p) = F*(@,v.9)) € Da, (wv,p), (1)
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satisfies the equations of motion

, Y% , 0L
(.I,I) € CV(Z','U), p_ﬁ = 07 T =, p—% —F t(x U) € OV(I U)

In coordinates, we obtain the system

P F P IL,A
— Y G R P =0, ra+ Y G Tea =0,
A= T B=1 0S4
q:vq, FA:UFA7 Z.'AZUZ;A,
oL oL (11)
= — =84—%a, - +T*=0
pq aqu Pra A — A, 85',4 + )
oL .
Evg <Ff (4) vq> Z Japvrs.

This system yields the Lagrange-d’Alembert evolution Eq. (4) for non-simple
thermodynamic systems with friction and heat conduction.,

Along the solution curve (z(t), v(t), p(t)) € & of the Dirac dynamical system
n (10), the energy balance equation holds as

& o@,0.0) = (F>(a,0),2).

2.3 Example of the Adiabatic Piston

The Adiabatic Piston. Now we consider a piston-cylinder system that is
consisted of two cylinders connected by a rod, each of which contains a fluid (or
an ideal gas) and is separated by a movable piston, as in Fig. 1 (see [2]).

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Y2
R | ———
; | s |<—Ff<2>
T3 S,
|m1 i m3 ma, a2 |
,,,,,,,,,,,,,,,,,,,,,,,,
| } |
l r=D-{-q

Fig. 1. The adiabatic piston problem

The system X is an interconnected system that is composed of three simple
systems; the two pistons 31, 3o with mass mq, mo and the connecting rod Xs
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with mass mg. As in Fig. 1, ¢ and r = D — £ — q denote the distances between the
bottom and the top in each piston where D = const. Choose the state variables
(q,vq,S1,52) (the entropy of X3 is constant), and the Lagrangian is

L4, 81, 82) = 3 M2~ Us(g, 81) — Ua(a, S2),
where M :=my +mao +mg, Ui(q, S1) := U1(S1, V1 = a1q, N1), and Us(q, S2) :=
Us(S2, Vo = aar, Na), with U;(S;, Vi, N;) the internal energies of the fluids, N; the
constant numbers of moles, and «; the constant areas of the cylinders, ¢ = 1, 2.
As in (6), we have FT*Y) (g, ¢,S4) = —A4¢, with A = A(q,54) >0, A=1,2
and Jap = —kap =: —k, where k = k(S1,52,¢) > 0 is the heat conductivity of
the connecting rod.

From the Dirac system formulation (11), we obtain the evolution equations

as
P = II1(q, S1)on — II2(g, S2)az — (A' + A\?)4,

G ="vq, Pqg= Muvg,
Tl(q7sl)sl = Aqu + K (TZ((LSQ) - Tl(qul)) )
T%(q,52)52 = N¢* + £ (T (g, 51) — T%(q, 52)) ,

where T%(q, S;) = %(q’ Si), 68—[{11 = —1II1(g,51)a1, and 88—({12 = II5(q, S2)as.

Since the system is isolated, we recover the first law %E = 0, where F =

$M¢* + Ui(q, S1) 4+ U(g, S2). The second law is also recovered as

d )\1 /\2 o (TZ_Tl)Z
= (T1+T2>q e 20
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