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Abstract. We present the Dirac structures and the associated Dirac
system formulations for non-simple thermodynamic systems by focusing
upon the cases that include irreversible processes due to friction and
heat conduction. These systems are called non-simple since they involve
several entropy variables. We review the variational formulation of the
evolution equations of such non-simple systems. Then, based on this, we
clarify that there exists a Dirac structure on the Pontryagin bundle over a
thermodynamic configuration space and we develop the Dirac dynamical
formulation of such non-simple systems. The approach is illustrated with
the example of an adiabatic piston.

Keywords: Dirac structures · Non-simple systems ·
Thermodynamics · Adiabatic piston

1 Variational Formulation of Non-simple Systems

Before exploring Dirac structures underlying the thermodynamics of non-simple
systems, we review the variational setting of such non-simple systems by focusing
on the internal irreversible processes associated with friction and heat conduc-
tion.

1.1 Setting for Thermodynamics of Non-simple Systems

Non-simple Systems with Friction and Heat Conduction. Consider an
adiabatically closed system Σ = ∪P

A=1ΣA which consists of P simple thermody-
namic systems ΣA, in which we include the irreversible processes due to friction
and heat conduction between subsystems. Here a simple thermodynamic system
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denotes a system that has only one variable to represent the thermodynamic
state, usually denoted by entropy. Since Σ is an interconnected system of sim-
ple subsystems Σ1, ...,ΣP , it becomes a “non-simple” system that has several
entropy (or temperature) variables (see [7]) and we note that all the irreversible
processes are internal. For each simple subsystem ΣA, A = 1, ..., P , SA ∈ R indi-
cates its entropy variable. Here, we assume that the mechanical configuration of
Σ is given by independent mechanical variables q = (q1, ..., qn) ∈ Q, where Q is
the mechanical configuration manifold of Σ.

Friction,HeatConduction andExternal Forces. Let F ext→A : T ∗Q×R
P →

T ∗Q be an external force that acts on ΣA and hence the total exterior force is
F ext =

∑P
A=1 F ext→A. Let F fr(A) : T ∗Q × R

P → T ∗Q be the friction forces
associated with the irreversible processes of each subsystem ΣA, which yield an
entropy production for subsystem ΣA. Associated with the heat exchange between
ΣA and ΣB , let JAB be the fluxes such that for A �= B, JAB = JBA and for A = B,
JAA := −∑

B �=A JAB , where
∑P

A=1 JAB = 0 for all B.

Thermodynamic Displacements. In our formulation, we introduce the con-
cept of thermodynamic displacements, see [3,4]. For the case of heat exchange,
we define the thermal displacements ΓA, A = 1, ..., P such that its time rate Γ̇A

becomes the temperature of ΣA. We also introduce a new variable ΣA associated
with the internal entropy production.

1.2 Variational Formulation of Non-simple Systems

The Lagrange-d’Alembert Principle for Non-simple Systems. Now we
consider a variational formulation of Lagrange-d’Alembert type for non-simple
systems with friction and heat conduction, which is a natural extension of Hamil-
ton’s principle in mechanics (see [4]).

Given a Lagrangian L : TQ × R
P → R and an external force F ext : TQ ×

R
P → T ∗Q, find the curves q(t), SA(t), ΓA(t), ΣA(t) which are critical for the

variational condition

δ

∫ t2

t1

[
L (q, q̇, SA) + Γ̇A(SA − ΣA)

]
dt +

∫ t2

t1

〈
F ext, δq

〉
dt = 0,

subject to the phenomenological constraint

∂L

∂SA
Σ̇A =

〈
F fr(A), q̇

〉
+ JABΓ̇B , for A = 1, ..., P , (1)

and for variations subject to the variational constraint

∂L

∂SA
δΣA =

〈
F fr(A), δq

〉
+ JABδΓB, for A = 1, ..., P , (2)

with δq(t1) = δq(t2) = 0 and δΓA(t1) = δΓA(t2) = 0, A = 1, ..., P .
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By direct computations, we obtain the following evolution equations:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt

∂L

∂q̇
=

∂L

∂q
−

P∑

A=1

Γ̇A

∂L
∂SA

F fr(A) + F ext,

∂L

∂SA
+ Γ̇A = 0, A = 1, ..., P,

ṠA − Σ̇A +
P∑

B=1

Γ̇A

∂L
∂SA

JBA = 0, A = 1, ..., P.

(3)

From the second equation in (3), the temperature of the subsystem ΣA, i.e., TA

can be obtained as Γ̇A = − ∂L
∂SA

=: TA. Because
∑P

A=1 JAB = 0 for all B, the
last equation in (3) yields ṠA = Σ̇A. Hence, together with (1), we obtain the
following Lagrange-d’Alembert equations for the curves q(t) and SA(t):

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d

dt

∂L

∂q̇
− ∂L

∂q
=

P∑

A=1

F fr(A) + F ext,

∂L

∂SA
ṠA =

〈
F fr(A), q̇

〉
−

P∑

B=1

JAB

(
∂L

∂SB
− ∂L

∂SA

)

, A = 1, ..., P.

(4)

The First Law of Energy Balance. For the total energy E : TQ ×R
P → R

given by E (q, vq, SA) =
〈

∂L
∂vq

(q, vq, SA) , vq

〉
− L (q, vq, SA) , we have d

dtE =

〈F ext, q̇〉 = P ext
W along the solution curve of (4). If the Lagrangian is given by

L(q, v, S1, ..., SP ) =
∑P

A=1 LA(q, v, SA), the evolution equations for ΣA are

d

dt

∂LA

∂q̇
− ∂LA

∂q
= F fr(A) + F ext→A +

P∑

B=1

FB→A, A = 1, ..., P,

where FB→A is the internal force exerted by ΣB on ΣA. From Newton’s third
law, we have FB→A = −FA→B . Denoting by EA the total energy of ΣA, we
have

d

dt
EA = P ext→A

W +
P∑

B=1

PB→A
W +

P∑

B=1

PB→A
H , (5)

where P ext→A
W =

〈
F ext→A, q̇

〉
is the mechanical power that flows from the exte-

rior into ΣA, PB→A
W =

∑P
B=1

〈
FB→A, q̇

〉
is the internal mechanical power that

flows from ΣB into ΣA, and PB→A
H =

∑P
B=1 JAB

(
∂L

∂SB
− ∂L

∂SA

)
is the internal

heat power from ΣB to ΣA. It follows that the power exchange can be written
as PB→A

H = JAB(TA − TB).
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The Second Law and Internal Entropy Production. The total entropy of
the system is S =

∑P
A=1 SA. Therefore, it follows from (4) that the rate of total

entropy production of the system is given by

Ṡ = −
P∑

A=1

1
TA

〈
F fr(A), q̇

〉
+

P∑

A<B

JAB

(
1

TB
− 1

TA

)

(TB − TA),

which becomes always positive because of the second law. This is consistent with
the phenomenological relations of the form

F
fr(A)
i = −λA

ij q̇
j and JAB

TA − TB

TATB
= LAB(TB − TA). (6)

In the above, λA
ij and LAB are functions of the state variables, where the

symmetric part of λA
ij are positive semi-definite and with LAB ≥ 0 for all

A,B. From the second relation, we get JAB = −LABTATB = −κAB , with
κAB = κAB(q, SA, SB) the heat conduction coefficients between ΣA and ΣB .

2 Dirac Formulation of Non-simple Systems

In this section, we develop the Dirac formulation for the dynamics of non-simple
systems by means of an induced Dirac structure the Pontryagin bundle; for the
details, see [1,5,6].

2.1 Dirac Structures in Thermodynamics

Thermodynamic Configuration Space. For our class of non-simple sys-
tems, let Q = Q × V be a thermodynamic configuration space, where Q
denotes the mechanical configuration space with mechanical variables q ∈ Q
as before and V = R

P × R
P × R

P is the thermodynamic space with ther-
modynamic variables (SA, ΓA, ΣA) ∈ V . We denote by x = (q, SA, ΓA, ΣA)
an element of Q, by (x, v) an element in the tangent bundle TQ where
v = (vq, vSA

, vΓA , vΣA
) ∈ TxQ, and by (x, p) an element of the cotangent bundle

T ∗Q, where p = (pq, pSA
, pΓA , pΣA

) ∈ T ∗
xQ.

Nonlinear Constraints of Thermodynamic Type. Let CV ⊂ TQ ×Q TQ
be the variational constraint locally given as

CV =

{

(x, v, δx) ∈ TQ ×Q TQ

∣
∣
∣
∣
∣

∂L

∂SA
δΣA =

〈
F fr(A), δq

〉

+
P∑

B=1

JABδΓB, A = 1, ..., P

}

.

(7)

For every (x, v) ∈ TQ, we consider the subspace of TxD given by

CV (x, v) := CV ∩ ({(x, v)} × TxQ
) ⊂ TxQ.
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The kinematic constraint associated to CV is defined by

CK = {(x, v) ∈ TQ | (x, v) ∈ CV (x, v)}, (8)

which is given locally as

CK =

{

(x, v) ∈ TQ

∣
∣
∣
∣
∣

∂L

∂SA
vΣA

=
〈
F fr(A), vq

〉
+

P∑

B=1

JABvΓB , A = 1, ..., P

}

. (9)

Variational and kinematic constraints CV and CK are called nonlinear con-
straints of thermodynamic type if they are related as in (8).

Note also that the annihilator of CV (x, v) ⊂ TxQ, defined by

CV (x, v)◦ =
{
(x, ζ) ∈ T ∗

xQ
∣
∣ 〈ζ, δx〉 = 0, ∀δx ∈ CV (x, v)

} ⊂ T ∗
xQ,

is given, in coordinates ζ = (ζq, ζSA
, ζΓA , ζΣA

) ∈ T ∗
xQ, by

CV (x, v)◦ =

{

(x, ζ) ∈ T ∗
xQ

∣
∣
∣
∣
∣
ζq +

ζΣA

∂L
∂SA

F fr(A) = 0, ζSA
= 0,

ζΓA
=

ζΣA

∂L
∂SA

P∑

B=1

JAB , A = 1, ..., P

}

.

Dirac Structures on the Pontryagin Bundle. P =TQ⊕T ∗Q. The Pon-
tryagin bundle P is defined as the Whitney sum bundle of P = TQ ⊕ T ∗Q,
with vector bundle projection, π(P ,Q) : P = TQ⊕T ∗Q → Q, x = (x, v, p) → x.
Given a variational constraint CV ⊂ TQ×Q TQ as in (7), we define the induced
distribution ΔP on P by

ΔP (x, v, p) :=
(
T(x,v,p)π(P ,Q)

)−1 (CV (x, v)) ⊂ T(x,v,p)P,

for each (x, v, p) ∈ P. Locally, this distribution reads

ΔP (x, v, p) =
{
(x, v, p, δx, δv, δp) ∈ T(x,v,p)P | (x, δx) ∈ CV (x, v)

}
.

Further, the presymplectic form on P is defined from the canonical symplectic
form ΩT ∗Q on T ∗Q as ΩP := π∗

(P ,T ∗Q)ΩT ∗Q , which is locally given by using
local coordinates (x, v, p) = (q, SA, ΓA, ΣA, vq, vSA

, vΓA , vΣA
, pq, pSA

, pΓA , pΣA
)

for each x = (x, v, p) ∈ P as

ΩP = dq ∧ dpq + dSA ∧ dpSA
+ dΓA ∧ dpΓ + dΣA ∧ dpΣA

.

Definition 1. The Dirac structure DΔP
induced on P from ΔP and ωP is

defined by, for each x ∈ P,

DΔP
(x) : =

{
(ux, αx) ∈ TxP × T ∗

xP | ux ∈ ΔP (x) and

〈αx, wx〉 = ΩP (x)(ux, wx) for all wx ∈ ΔP (x)
}
.
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Proposition 1. The local expression of the Dirac condition, for each x =
(x, v, p), (

(x, v, p, ẋ, v̇, ṗ), (x, v, p, α, β, γ)
) ∈ DΔP

(x, v, p)

is equivalent to

(x, ẋ) ∈ CV (x, v), β = 0, γ = ẋ, ṗ + α ∈ CV (x, v)◦.

In coordinates (α, β, γ) = (αq, αSA
, αΓA , αΣA

, βq, βSA
, βΓA , βΣA

, γq, γSA
, γΓA ,

γΣA
), this condition reads as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṗq + αq + (ṗΣA
+ αΣA

)
1

∂L
∂SA

F fr(A) = 0, ṗSA
+ αSA

= 0,

ṗΓA
+ αΓA

= ṗΣA
+ αΣA

1
∂L

∂SA

P∑

B=1

JAB ,

βq = 0, βSA
= 0, βΓA = 0, βΣA

= 0,

q̇ = γq, ṠA = γSA
, Γ̇A = γΓA , Σ̇A = γΣA

,

∂L

∂SA
γΣA

=
〈
F fr(A), γq

〉
+

P∑

B=1

JABγΣB
.

2.2 Dirac Formulation for Thermodynamics of Non-simple Systems

Dirac Dynamical Systems on P = TQ⊕T ∗Q. For a given Lagrangian
L (q, vq, SA) on TQ × R

P , we introduce an augmented Lagrangian by
L (q, SA, ΓA, ΣA, vq, vΓA) := L (q, vq, SA) + vΓA(SA − ΣA).

In the above, note that the augmented Lagrangian may be regarded as a
(degenerate) Lagrangian function L (x, v) on TQ. Further, define the generalized
energy E on P = TQ ⊕ T ∗Q as

E (x, v, p) := 〈p, v〉 − L (x, v).

Given an external force F ext(q, vq, SA), which may be regarded as a map
F ext : TQ → T ∗Q, a horizontal one-form F̃ ext : P → T ∗P is induced by

〈
F̃ ext(x, v, p), u

〉
=

〈
F ext(x, v), Tπ(P ,Q)(u)

〉
, for all u ∈ T(x,v,p)P.

Theorem 1. Given CV and CK as in (7) and (9), the solution curve x =
(x(t), v(t), p(t)) of the Dirac system

(
(x, v, p, ẋ, v̇, ṗ),dE (x, v, p) − F̃ ext(x, v, p)

)
∈ DΔP

(x, v, p), (10)
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satisfies the equations of motion

(x, ẋ) ∈ CV (x, v), p−∂L

∂v
= 0, ẋ = v, ṗ−∂L

∂x
−F ext(x, v) ∈ CV (x, v)◦.

In coordinates, we obtain the system
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṗq =
∂L

∂q
−

P∑

A=1

Γ̇A

∂L
∂SA

F fr(A) + F ext = 0, ṗΓA +
P∑

B=1

Γ̇A

∂L
∂SA

JBA = 0,

q̇ = vq, Γ̇A = vΓA , Σ̇A = vΣA
,

pq =
∂L

∂vq
, pΓA = SA − ΣA,

∂L

∂SA
+ Γ̇A = 0,

∂L

∂SA
vΣA

=
〈
F fr(A), vq

〉
+

P∑

B=1

JABvΓB .

(11)

This system yields the Lagrange-d’Alembert evolution Eq. (4) for non-simple
thermodynamic systems with friction and heat conduction.,

Along the solution curve (x(t), v(t), p(t)) ∈ P of the Dirac dynamical system
in (10), the energy balance equation holds as

d

dt
E (x, v, p) =

〈
F ext(x, v), ẋ

〉
.

2.3 Example of the Adiabatic Piston

The Adiabatic Piston. Now we consider a piston-cylinder system that is
consisted of two cylinders connected by a rod, each of which contains a fluid (or
an ideal gas) and is separated by a movable piston, as in Fig. 1 (see [2]).

Fig. 1. The adiabatic piston problem

The system Σ is an interconnected system that is composed of three simple
systems; the two pistons Σ1,Σ2 with mass m1,m2 and the connecting rod Σ3
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with mass m3. As in Fig. 1, q and r = D−�−q denote the distances between the
bottom and the top in each piston where D = const. Choose the state variables
(q, vq, S1, S2) (the entropy of Σ3 is constant), and the Lagrangian is

L(q, vq, S1, S2) =
1
2
Mv2

q − U1(q, S1) − U2(q, S2),

where M := m1 + m2 + m3, U1(q, S1) := U1(S1, V1 = α1q,N1), and U2(q, S2) :=
U2(S2, V2 = α2r,N2), with Ui(Si, Vi, Ni) the internal energies of the fluids, Ni the
constant numbers of moles, and αi the constant areas of the cylinders, i = 1, 2.
As in (6), we have F fr(A)(q, q̇, SA) = −λAq̇, with λA = λA(q, SA) ≥ 0, A = 1, 2
and JAB = −κAB =: −κ, where κ = κ(S1, S2, q) ≥ 0 is the heat conductivity of
the connecting rod.

From the Dirac system formulation (11), we obtain the evolution equations
as ⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ṗq = Π1(q, S1)α1 − Π2(q, S2)α2 − (λ1 + λ2)q̇,

q̇ = vq, pq = Mvq,

T 1(q, S1)Ṡ1 = λ1q̇2 + κ
(
T 2(q, S2) − T 1(q, S1)

)
,

T 2(q, S2)Ṡ2 = λ2q̇2 + κ
(
T 1(q, S1) − T 2(q, S2)

)
,

where T i(q, Si) = ∂Ui

∂Si
(q, Si), ∂U1

∂q = −Π1(q, S1)α1, and ∂U2
∂q = Π2(q, S2)α2.

Since the system is isolated, we recover the first law d
dtE = 0, where E =

1
2Mq̇2 + U1(q, S1) + U(q, S2). The second law is also recovered as

d

dt
S =

(
λ1

T 1
+

λ2

T 2

)

q̇2 + κ
(T 2 − T 1)2

T 1 T 2
≥ 0.
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