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Abstract. We review the variational formulation of nonequilibrium
thermodynamics as an extension of the Hamilton principle and the
Lagrange-d’Alembert principle of classical mechanics. We focus on the
case of open systems that include the power exchange due to heat and
matter transfer, with special emphasis on reacting systems which are
very important in biological science.
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1 Variational Formulation in Nonequilibrium
Thermodynamics

In this section we review the variational formulations of isolated and open ther-
modynamic systems as extensions of the variational formulation of classical
mechanics [2–5]. In a similar way to the Lagrange-d’Alembert principle of non-
holonomic mechanics, the variational formulation consists of a critical action
principle subject to two types of constraints: a kinematic constraints on the
critical curve and a variational constraint on the variations to be considered
in the critical action principle. For nonequilibrium thermodynamics, these two
constraints are related in a specific way, which are referred to as constraints
of thermodynamic type. The kinematic constraints are phenomeneological con-
straints since they are constructed from the thermodynamic fluxes Jα associated
to the irreversible processes α of the system, which are given by phenomenologi-
cal expressions [1]. An important ingredient in the variational formulation is the
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concept of thermodynamic displacements Λα, such that Λ̇α = Xα, with Xα the
thermodynamic force of the process α.

1.1 Variational Formulation in Mechanics

Consider a mechanical system with configuration manifold Q and Lagrangian
L : TQ → R, defined on the tangent bundle of Q. In absence of nonholonomic
constraints and irreversible processes, the equations of motion are given by the
Euler-Lagrange equations which arise from the Hamilton principle

δ

∫ t1

t0

L(q, q̇)dt = 0 (1)

for arbitrary variations δq of the curve q(t) with δqt=t0,t1 = 0. Assume now that
the system is subject to linear nonholonomic constraints on velocities given by
a vector subbundle Δ ⊂ TQ. The equations of motion for the nonholonomic
system follow from the Lagrange-d’Alembert principle given as follows:

δ

∫ t1

t0

L(q, q̇)dt = 0 (2)

with q̇ ∈ Δ(q) and δq ∈ Δ(q). (3)

The first condition in (3) is the constraint on the critical curve q(t) of (2), called
the kinematic constraint, while the second condition is the constraint on the
variation δq to be considered in (2), called the variational constraint. In local
coordinates, the constraints (3) take the form

Al
i(q)q̇

i = 0 and Al
i(q)δq

i = 0, l = 1, ..., N. (4)

1.2 Variational Formulation for Isolated Thermodynamic Systems

The variational formulation of isolated systems [2,3] is an extension of the Hamil-
ton principle (1) and the Lagrange-d’Alembert principle (2)–(3) which falls into
the following abstract formulation. Let Q be a manifold and L : TQ → R

a Lagrangian. Let CV be a variational constraint, i.e., a submanifold CV ⊂
TQ ×Q TQ such that the set CV (x, v) := CV ∩ ({(x, v)} × TxQ) is a vector
subspace of TxQ for every (x, v) ∈ TQ. We consider the variational formulation:

δ

∫ t1

t0

L(x, ẋ)dt = 0 (5)

with ẋ ∈ CV (x, ẋ) and δx ∈ CV (x, ẋ). (6)

In a similar way to (3), the first condition in (6) is a kinematic constraint on the
critical curve x(t) while the second condition in (6) is a variational constraint.
Variational and kinematic constraints related as in (6) are called constraints of
the thermodynamic type. In local coordinates the constraints (6) take the form

Al
i(x, ẋ)ẋi = 0 and Al

i(x, ẋ)δxi = 0, l = 1, ..., N.
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Example 1: A Thermomechanical System. One of the simplest example of a ther-
modynamic system is the case of a mechanical system with only one entropy
variable. The Lagrangian of this system is a function L : TQ × R → R depend-
ing on the position and velocity of the mechanical part of the system and on
the entropy. A standard expression is L(q, q̇, S) = 1

2m|q̇|2 − U(q, S) where U is
an internal energy depending on both the position q and the entropy S of the
system. We assume that the irreversible process is described by a friction force
F fr : TQ × R → T ∗Q. The variational formulation is

δ

∫ t1

t0

L(q, q̇, S)dt = 0, subject to (7)

∂L

∂S
Ṡ =

〈
F fr, q̇

〉
and

∂L

∂S
δS =

〈
F fr, δq

〉
. (8)

It yields the equations of motion
d

dt

∂L

∂q̇
− ∂L

∂q
= F fr,

∂L

∂S
Ṡ =

〈
F fr, q̇

〉
. (9)

One checks that the total energy Etot = 〈∂L
∂q̇ , q̇〉−L is preserved by the equations

of motion (9) while the entropy equation is Ṡ = − 1
T

〈
F fr, q̇

〉
, where T = −∂L

∂S is
the temperature. It is assumed that L is such that T is strictly positive. Hence,
from the second law, F fr must be a dissipative force.

One easily checks that (7)–(8) is a particular instance of (5)–(6) with x =
(q, S), L(x, ẋ) = L(q, q̇, S), and CV given from (8).

Example 2: The Heat and Matter Exchanger. We consider a thermodynamic sys-
tem made from several compartments exchanging heat and matter. We assume
that there is a single species and we denote by NA and SA the number of moles
and the entropy of the species in the compartment A, A = 1, ....,K. The inter-
nal energies are given as UA(SA, NA) where we assume that the volume of each
compartment is constant. The variational formulation is based on the concept of
thermodynamic displacement associated to an irreversible process, defined such
that its time rate of change equals the thermodynamic force of the process. In our
case, the thermodynamic forces are the temperatures TA = ∂U

∂SA
and the chemi-

cal potentials μA = ∂U
∂NA

, so the thermodynamic displacements are variables ΓA

and WA with Γ̇A = TA and ẆA = μA. We denote by JA→B the molar flow
rate from compartment A to compartment B due to diffusion of the species. We
also introduce the heat fluxes JAB , A �= B associated to heat transfer and define
JAA := −∑

A �=B JAB . The variational formulation for this class of systems is

δ

∫ t1

t0

[
L(S1, ..., SK , N1, ..., NK) +

∑
A

ẆANA +
∑
A

Γ̇A(SA − ΣA)
]
dt = 0 (10)

∂L

∂SA
Σ̇A =

∑
B

JABΓ̇B +
∑
B

JB→AẆA, A = 1, ...,K

∂L

∂SA
δΣA =

∑
B

JABδΓB +
∑
B

JB→AδWA, A = 1, ...,K.

(11)
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In our case, the Lagrangian is L(S1, ..., SK , N1, ..., NK) = −∑
A UA(SA, NA)

and from (10)–(11) one gets the system of equations

ṄA =
∑
B

JB→A, TAṠA = −
∑
B

JAB(TB −TA)−
∑
B

JB→AμA, A = 1, ...,K,

together with Γ̇A = TA, ẆA = μA, and Σ̇A = ṠA. One checks that the total
energy and number of moles are preserved while the total entropy satisfies

Ṡ =
∑
A<B

(
1

TB
− 1

TA

)
JAB(TB − TA) +

∑
A<B

(
μA

TA
− μB

TB

)
JB→A,

which dictates the phenomenological expressions for JAB and JB→A, see [5].
One easily checks that (10)–(11) is a particular case of (5)–(6) with x =

(S1, N1, Γ
1,W 1,Σ1, ...), with L(x, ẋ) given by the integrand in (10), and with

CV given by (11).

1.3 Variational Formulation for Open Thermodynamics Systems

The variational formulation of open systems [4] is an extension of the Hamilton
principle (1), the Lagrange-d’Alembert principle (2)–(3), and the variational
formulation (5)–(6) with constraints of thermodynamic type. It falls into the
following abstract formulation.

Let Q be a manifold and L : R × TQ → R be a Lagrangian, possibly time
dependent. Let Fext : R × TQ → T ∗Q be a given exterior force. We consider a
time dependent variational constraint CV given by a submanifold CV ⊂ (R ×
TQ)×R×QT (Q×R) such that the set CV (t, x, v) := CV ∩({(t, x, v)}×T(t,x)(R×Q))
is a vector subspace of T(t,x)(R×Q) for every (t, x, v) ∈ R×TQ. It is thus locally
defined with the help of functions Al

i(t, x, ẋ) and Bl(t, x, ẋ). We consider the
variational formulation:

δ

∫ t1

t0

L(t, x, ẋ)dt +
∫ t1

t0

〈
Fext(t, x, ẋ), δx

〉
dt = 0, subject to (12)

Al
i(t, x, ẋ)ẋi + Bl(t, x, ẋ) = 0 and Al

i(t, x, ẋ)δxi = 0, l = 1, ..., N. (13)

In a similar way to the previous cases, the first condition in (13) is a kinematic
constraint on the critical curve x(t) while the second condition in (13) is a
variational constraint. Variational and kinematic constraints related as in (6)
in the time-dependent setting are also called constraints of the thermodynamic
type.

Remark 1. The constraints in (13) are explicitly time dependent. Allowing this
time dependence is important for the applications to open thermodynamic sys-
tems. Consistently with this, we have considered that both L and Fext may
be explicitly time dependent in (12), by defining them on R × TQ 	 (t, x, ẋ). It
turns out that this time dependence is very natural if one considers the geometric
setting underlying (12)–(13), see Remark 2.
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Remark 2. The appropriate geometric setting underlying (12)–(13) is that of
time dependent mechanics, seen as a special instance of the geometric setting
of classical field theories. The basic object is the configuration bundle Y → X,
here given by Y = R × Q → R where X = R. Then, the Lagrangian in (12) is
defined on the first jet bundle J1Y = R × TQ of R × Q → R and the variational
constraint CV mentioned above is CV ⊂ J1Y ×Y TY, see [6].

2 Open Reacting Systems

In this section we show how the variational formulation (12)–(13) for open ther-
modynamic systems is used to model the dynamics of an open system exchanging
heat and mass with the exterior and involving chemical reactions.

2.1 General Setting, Thermodynamic Forces and Displacements

We assume that the system involves R chemical species I = 1, ..., R and r chem-
ical reactions a = 1, ..., r. Chemical reactions may be represented by

∑
I

ν′a
I I

a(1)

�
a(2)

∑
I

ν′′a
I I, a = 1, ..., r,

where a(1) and a(2) are the forward and backward reactions associated to the
reaction a, and ν′′a

I , ν′a
I are the forward and backward stoichiometric coefficients.

Mass conservation during each reaction is given by
∑

I

mIν
a
I = 0 for a = 1, ..., r (Lavoisier law),

where νa
I := ν′′a

I − ν′a
I and mI is the molecular mass of species I.

We denote by U = U(S, V,N1, ..., NR) the internal energy of the system,
written in terms of the entropy S, the volume V , and the number of moles NI

of each species I = 1, ..., R.
We have already seen above the thermodynamic forces, displacements, and

fluxes associated to heat and matter transfer. For chemical reactions, the ther-
modynamic forces are the affinities of the reactions defined by

Aa = −
∑

I

νa
I μI , a = 1, ..., r.

Following our definition, the corresponding thermodynamic displacement,
denoted νa, satisfies

ν̇a = −Aa, a = 1, ..., r.

The thermodynamic fluxes are the rates of extent denoted Ja given by phe-
nomenological laws, see Sect. 2.4.

We assume that the system has several ports through which species can flow
into or out of the system. To fix the ideas, we assume that for each species there
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is one inlet (i) and one outlet (o) with corresponding molar flow rates into the
system denoted Ji

I > 0 and Jo
I < 0, I = 1, ..., R. The associated entropy flow

is Jk
S,I = Jk

IS
k
I , where Sk

I is the molar entropy of species I at k = i, o. We also
assume that there is a heat source with entropy flow rate JS,h. We denote by
μI

k, T I
k , k = i, o, the chemical potentials and temperatures at the ports and by

Th the temperature of the heat source.

2.2 Variational Setting

Following the general approach mentioned above, the variational formulation is:

δ

∫ t1

t0

[
L(q, q̇, S, N1, ..., NR) +

∑
I

Ẇ INI + Γ̇ (S − Σ)
]
dt +

∫ t1

t0

〈
F ext, δq

〉
dt = 0 (14)

with kinematic and variational constraints

∂L

∂S
Σ̇ =

〈
F fr, q̇

〉
+

∑
a

Jaν̇a +
∑
I,k

(
J
k
I (Ẇ I − μI

k) + J
k
S,I(Γ̇ − T I

k )
)

+ JS,h(Γ̇ − Th)

ν̇a =
∑
I

νa
I Ẇ I

(15)
∂L

∂S
δΣ =

〈
F fr, δq

〉
+

∑
a

Jaδνa +

k∑
I

(
J
k
I δW I + J

k
S,IδΓ

)
+ JS,hδΓ

δνa =
∑
I

νa
I δW I .

(16)

We note that the variational constraint (16) follows from the phenomenologi-
cal constraint (15) by formally replacing the time derivatives Σ̇, q̇, ν̇a, Ẇ I , Γ̇ by
the corresponding virtual displacements δΣ, δq, δνa, δW I , δΓ , and by removing
all the terms that depend uniquely on the exterior, i.e., the terms Jk

IμI
k, Jk

S,IT
I
k ,

and JS,hTh. This is consistent with the general setting in (13).
Taking variations of the integral in (14), integrating by parts, and using

δq(t0) = δq(t1) = 0, δW I(t0) = δW I(t1) = 0, and δΓ (t0) = δΓ (t1) = 0 and
using the variational constraint (16), we get the following conditions:

δq :
d

dt

∂L

∂q̇
− ∂L

∂q
= F fr + F ext, δΓ : Ṡ = Σ̇ +

∑
I,k

Jk
S,I + JS,h,

δNI : Ẇ I = − ∂L

∂NI
, δS : Γ̇ = −∂L

∂S
, δW I : ṄI =

∑
k

Jk
I +

∑
a

Jaνa
I .

(17)

By the third and fourth equations the variables Γ and W I are thermodynamic
displacements. Using (15), we get the following system of evolution equations
for the curves q(t), S(t), NI(t):
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt

∂L

∂q̇
− ∂L

∂q
= F fr + F ext,

d

dt
NI =

∑
k

Jk
I +

∑
a

Jaνa
I ,

∂L

∂S

(
Ṡ −

∑
I,k

Jk
S,I − JS,h

)
=

〈
F fr, q̇

〉 −
∑
a,I

Jaνa
I

∂L

∂NI

−
∑
I,k

[
Jk

I

( ∂L

∂NI
+ μI

k

)
+ Jk

I,S

(∂L

∂S
+ T I

k

)]
− JS,h

(∂L

∂S
+ Th

)
.

(18)

2.3 The First and Second Law of Thermodynamics

The energy balance for this system is computed as

d

dt
E =

〈
F ext, q̇

〉
+ JS,hTh +

∑
I,k

(Jk
IμI

k + Jk
S,IT

I
k ) =: P ext

W + P ext
H + P ext

M ,

with the three terms representing the power associated to the transfer of mechan-
ical work, heat, and matter into the system, respectively. From the last equation
in (18), the entropy equation reads

Ṡ = I +
∑
I,k

Jk
S,I + JS,h, (19)

where I is the rate of internal entropy production given by

I = − 1
T

〈
F fr, q̇

〉
︸ ︷︷ ︸

mechanical friction

+
1
T

∑
a

JaA
a

︸ ︷︷ ︸
chemistry

+
1
T

∑
I,k

[
Jk

I

(
μI

k − μI
)

+ Jk
S,I

(
T I

k − T
)]

︸ ︷︷ ︸
mixing of matter flowing into the system

+
1
T
JS,h

(
Th − T

)

︸ ︷︷ ︸
heating

.
(20)

From the second equation in (17) and from (19) we obtain the interpretation of
the variable Σ, namely, Σ̇ = I is the rate of internal entropy production. The
second and third terms in (19) represent the entropy flow rate into the system
associated to the ports and the heat sources. The second law requires I ≥ 0,
whereas the sign of the rate of entropy flow into the system is arbitrary. Of
course, at the outlet in which μI

o = μI and T I
o = T I , the corresponding entropy

production term vanishes. The second term in (19) can be written in terms of
the molar enthalpy Hk

I of species I at k = i, o, as 1
T

∑k
I J

k
I

(
HI

k − TSI
k − μI

)
.

2.4 Entropy Production Associated to Chemical Reactions

We give here the expression of the entropy production for elementary chemical
reactions in a form general enough to cover the case of real gas mixtures and
non-isothermal chemical reactions.
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For a mixture of gas, the affinity of a reaction can be written in the form

Aa(T, p,N1, ..., NR) = RT ln
(
K◦

a(T )
∏
A

(fA/p0)
−νa

A

)
,

where the state function fA is the fugacity of component A, p0 is a standard or
reference pressure, and

K◦
a(T ) := exp

(
− 1

RT

∑
A

νa
AμA

0 (T, p0)
)

is the thermodynamic equilibrium constant of reaction a, with μA
0 the chemical

potential of component A seen as a perfect gas. The quotient aA = fA/p0 is the
activity of component A, defined with respect to the prefect gas reference state.
The rates of extend Ja have the general expression

Ja

V
= Ra

f − Ra
r = ka

f (T )
R∏

A=1

a
κ′a

A

A − ka
r (T )

R∏
A=1

a
κ′′a

A

A

with Ra
f , Ra

r the forward and reverse reaction rates, ka
f , ka

r the forward and
reverse rate constants, and κ′a

A, κ′′a
A the order of the reactants and of the

products [7]. The quantities ka
f , ka

r are given by phenomenological expressions,
the most widely used being the Arrhenius equation, and satisfy the condition
K◦

a(T ) = ka
f (T )/ka

r (T ). For elementary reactions, we have κ′a
A = ν′a

A, κ′a
A = ν′a

A,
hence the entropy production term in (20) associated to chemical reactions is

1
T

∑
a

JaA
a =

∑
a

V R
(
Ra

f − Ra
r

)
ln

Ra
f

Ra
r

≥ 0.

Remark 3. The Lagrangian variational formulation presented above can be
transformed into the Hamiltonian setting when the given Lagrangian is nonde-
generate with respect to the mechanical variable. We will show the Hamiltonian
variational formulation for thermodynamics as a future work.
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