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Abstract. In this paper, we present a robust version of the empiri-
cal likelihood estimator for semiparametric moment condition models.
This estimator is obtained by minimizing the modified Kullback-Leibler
divergence, in its dual form, using truncated orthogonality functions.
Some asymptotic properties regarding the limit laws of the estimators
are stated.
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1 Introduction

We consider a moment condition model, namely a family M of probability
measures Q, all defined on the same measurable space (Rm,B(Rm)), such that∫
Rm g(x, θ) dQ(x) = 0. The unknown parameter θ belongs to the interior of a

compact set Θ ⊂ R
d, and the function g := (g1, . . . , g�)�, with � ≥ d, is defined

on the set R
m × Θ, each gi being a real valued function. Denoting by M the set

of all probability measures on (Rm,B(Rm)) and defining the sets

Mθ :=
{

Q ∈ M s.t.
∫

Rm

g(x, θ) dQ(x) = 0
}

, θ ∈ Θ,

then the moment condition model M can be written under the form

M =
⋃

θ∈Θ

Mθ. (1)
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Let X1, . . . , Xn be an i.i.d. sample with unknown probability measure P0.
We assume that the equation

∫
Rm g(x, θ) dP0(x) = 0 has a unique solution (in

θ) which will be denoted θ0. We consider the estimation problem of the true
unknown value θ0.

Among the most known methods for estimating the parameter θ0, we recall
the Generalized Method of Moments (GMM) of [6], the Continuous Updating
(CU) estimator of [7], the Empirical Likelihood (EL) estimator of [8,14,15], the
Exponential Tilting (ET) of [11], as well as the Generalized Empirical Likelihood
(GEL) class of estimators of [13] that contains the EL, ET and CU estimators
in particular. Some alternative methods have been proposed in order to improve
the finite sample accuracy or the robustness under misspecification of the model,
for example in [4,8,11,12,16].

The authors in [3] have developed a general methodology for estimation and
testing in moment condition models. Their approach is based on minimizing
divergences in dual form and allows the asymptotic study of the estimators
(called minimum empirical divergence estimators) and of the associated test
statistics, both under the model and under misspecification of the model. Using
the approach based on the influence function, [18] studied robustness properties
for these classes of estimators and test statistics, showing that the minimum
empirical divergence estimators of the parameter θ0 of the model are generally
not robust. This approach based on divergences and duality was initially used
in the case of parametric models, the results being published in the articles,
[2,19,20].

The classical EL estimator represents a particular case of the class of esti-
mators from [3], namely, when using the modified Kullback-Leibler divergence.
Although the EL estimator is superior to other above mentioned estimators in
what regards higher-order asymptotic efficiency, this property is valid only in
the case of the correct specification of the moment conditions. It is a known
fact that the EL estimator and the EL ratio test for moment condition mod-
els are not robust with respect to the presence of outliers in the sample. Also,
[17] showed that, when the support of the p.m. corresponding to the model and
the orthogonality functions are not bounded, the EL estimator is not root n
consistent under misspecification.

In this paper, we present a robust version of the EL estimator for moment
condition models. This estimator is defined by minimizing an empirical ver-
sion of the modified Kullback-Leibler divergence in dual form, using truncated
orthogonality functions. For this estimator, we present some asymptotic proper-
ties regarding both consistency and limit laws. The robust EL estimator is root
n consistent, even under misspecification, which gives a solution to the problem
noticed by [17] for the EL estimator.

2 A Robust Version of the Empirical Likelihood
Estimator

Let {Pθ; θ ∈ Θ} be a reference identifiable model, containing probability mea-
sures such that, for each θ ∈ Θ, Pθ ∈ Mθ, meaning that

∫
Rm g(x, θ) dPθ(x) = 0,
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and θ is the unique solution of the equation. We assume that the p.m. P0 of the
data, corresponding to the true unknown value θ0 of the parameter to be esti-
mated, belongs to this reference model. The reference model will be associated
to the truncated orthogonality function gc, defined hereafter, that will be used
in the definition of the robust version of the EL estimator of the parameter θ0.
We use the notation ‖ · ‖ for the Euclidean norm. Similarly as in [16], using the
reference model {Pθ; θ ∈ Θ}, define the function gc : R

m × Θ → R
�,

gc(x, θ) := Hc (Aθ [g(x, θ) − τθ]) , (2)

where Hc : R
� → R

� is the Huber’s function

Hc(y) :=

{
y · min

(
1, c

‖y‖
)

if y �= 0,

0 if y = 0,
(3)

and Aθ, τθ are determined by the solutions of the system of implicit equations
{∫

gc(x, θ) dPθ(x) = 0,∫
gc(x, θ) gc(x, θ)� dPθ(x) = I�,

(4)

where I� is the � × � identity matrix and c > 0 is a given positive constant.
Therefore, we have ‖gc(x, θ)‖ ≤ c, for all x and θ. We also use the function

hc(x, θ,A, τ) := Hc (A [g(x, θ) − τ ]) , (5)

when needed to work with the dependence on the � × � matrix A and on the
�-dimensional vector τ . Then,

gc(x, θ) = hc(x, θ,Aθ, τθ), (6)

where Aθ and τθ are the solution of (4). For given Pθ from the reference model,
the triplet (θ,Aθ, τθ) is the unique solution of the system

⎧
⎨

⎩

∫
g(x, θ) dPθ(x) = 0,∫
gc(x, θ) dPθ(x) = 0,∫
gc(x, θ) gc(x, θ)� dPθ(x) = I�.

(7)

The uniqueness is justified in [16], p. 48.

In what follows, we will use the so-called modified Kullback-Leibler diver-
gence between probability measures, say Q and P , defined by

KLm(Q,P ) :=
∫

Rm

ϕ

(
dQ

dP
(x)

)

dP (x), (8)

if Q is absolutely continuous with respect to P , and KLm(Q,P ) := +∞, else-
where. The strictly convex function ϕ is defined by ϕ(x) := − log x + x − 1, if
x > 0, respectively ϕ(x) := +∞, if x ≤ 0. Straightforward calculus show that
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the convex conjugate1 of the convex function ϕ is ψ(u) = − log(1 − u) if u < 1,
respectively ψ(u) = +∞, if u ≥ 1. Recall that the Kullback-Leibler divergence,
between any probability measures Q and P , is defined by

KL(Q,P ) :=
∫

Rm

ϕ

(
dQ

dP
(x)

)

dP (x),

if Q is absolutely continuous with respect to P , and KLm(Q,P ) := +∞, else-
where. Here, the strictly convex function ϕ is defined by ϕ(x) = x log x − x + 1,
if x ≥ 0, and ϕ(x) = +∞, if x < 0. Notice also that KLm(Q,P ) = KL(P,Q),
for all probability measures Q and P . For any subset Ω of M , we define the
KLm-divergence, between Ω and any probability measure P , by

KLm(Ω,P ) := inf
Q∈Ω

KLm(Q,P ).

Define the moment condition model

Mc :=
⋃

θ∈Θ

Mc,θ :=
⋃

θ∈Θ

{

Q ∈ M s.t.
∫

Rm

gc(x, θ) dQ(x) = 0
}

. (9)

For any θ ∈ Θ, define the set

Λc,θ := Λc,θ(P0) :=
{

t ∈ R
� s.t.

∫

Rm

|ψ (
t� gc(x, θ)

) | dP0(x) < ∞
}

.

Since gc(x, θ) is bounded (with respect to x), then on the basis of Theorem 1.1
in [1] and Proposition 4.2 in [3], the following dual representation of divergence
holds

KLm(Mc,θ, P0) = sup
t∈Λc,θ

∫

Rm

mc(x, θ, t) dP0(x), (10)

where
mc(x, θ, t) := −ψ(t�gc(x, θ)) = log(1 − t�gc(x, θ)), (11)

and the supremum in (10) is reached, provided that KLm(Mc,θ, P0) is finite.
Moreover, the supremum in (10) is unique under the following assumption

P0

(
{x ∈ R

m s.t. t
�

gc(x, θ) �= 0}
)

> 0, for all t ∈ R
1+�\{0}, (12)

where t := (t0, t1, . . . , t�)� and g := (g0, gc,1, . . . , gc,�)�. This last condition
is satisfied if the functions g0(·) := 1Rm(·), gc,1(·, θ), . . . , gc,�(·, θ) are linearly
independent and P0 is not degenerate. The empirical measure, associated to the
sample X1, . . . , Xn, is defined by

Pn(·) :=
1
n

n∑

i=1

δXi
(·),

1 The convex conjugate, called also Fenchel-Legendre transform, of ϕ, is the function
defined on R by ψ(u) := supx∈R

{ux − ϕ(x)}, ∀u ∈ R.



Robust Empirical Likelihood 845

δx(·) being the Dirac measure at the point x. Denote

Λc,θ,n := Λc,θ(Pn) =
{

t ∈ R
� s.t.

∫

Rm

|ψ (
t� gc(x, θ)

) | dPn(x) < ∞
}

(13)

=

⎧
⎨

⎩
t ∈ R

� s.t.
1
n

n∑

i=1

∣
∣
∣
∣
∣
∣
log(1 −

�∑

j=1

tj gc,j(Xi, θ))

∣
∣
∣
∣
∣
∣

< ∞
⎫
⎬

⎭
.

In view of relation (10), for given θ ∈ Θ, a natural estimator of

tc,θ := arg sup
t∈Λc,θ

∫
mc(x, θ, t) dP0(x), (14)

can be defined by “plug-in” as follows

t̂c,θ := arg sup
t∈Λc,θ,n

∫
mc(x, θ, t) dPn(x). (15)

A “dual” plug-in estimator of the modified Kullback-Leibler divergence, between
Mc,θ and P0, can then be defined by

K̂Lm(Mc,θ, P0) := sup
t∈Λc,θ,n

∫
mc(x, θ, t) dPn(x) (16)

= sup
(t1,...,t�)∈R�

⎧
⎨

⎩
1
n

n∑

i=1

log

⎛

⎝1 −
�∑

j=1

tj gc,j(Xi, θ)

⎞

⎠

⎫
⎬

⎭
,

where log(·) is the extended logarithm function, i.e., the function defined by
log(u) = log(u) if u > 0, and log(u) = −∞ if u ≤ 0. Hence,

KLm(Mc, P0) := inf
θ∈Θ

KLm(Mc,θ, P0) (17)

can be estimated by

K̂Lm(Mc, P0) := inf
θ∈Θ

K̂Lm(Mc,θ, P0)

= inf
θ∈Θ

sup
(t1,...,t�)∈R�

{
1

n

n∑
i=1

log

(
1 −

�∑
j=1

tj gc,j(Xi, θ)

)}
. (18)

Since θ0 = arg inf
θ∈Θ

KLm(Mc,θ, P0), where the infimum is unique, we propose

then to estimate θ0 by

θ̂c := arg inf
θ∈Θ

sup
t∈Λc,θ,n

∫
mc(x, θ, t) dPn(x) (19)

= arg inf
θ∈Θ

sup
(t1,...,t�)∈R�

⎧
⎨

⎩
1
n

n∑

i=1

log

⎛

⎝1 −
�∑

j=1

tj gc,j(Xi, θ)

⎞

⎠

⎫
⎬

⎭
,
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which can be seen as a “robust” version of the classical EL estimator. Recall
that the EL estimator, see e.g. [14], can be written as

θ̂ = arg inf
θ∈Θ

sup
(t1,...,t�)∈R�

⎧
⎨

⎩
1
n

n∑

i=1

log

⎛

⎝1 −
�∑

j=1

tj gj(Xi, θ)

⎞

⎠

⎫
⎬

⎭
.

A slightly different definition of an estimator for the parameter θ0 was introduced
in [10], where robustness and consistency properties are also stated. However,
the limiting distribution of the estimator in [10] is not standard, and not easy
to be obtained, due to the fact that the used bounded orthogonality functions
depend on both θ and the data. The present version is simpler and does not
present this difficulty. We give in the following sections, the influence function
of the estimator (19), and state both consistency and the limiting distributions
of all the proposed estimators (15), (16), (19) and (18).

2.1 Robustness Property

The classical EL estimator of the parameter θ0 of a moment condition model
can be obtained as a particular case of the class of minimum empirical diver-
gence estimators introduced by [3]. [18] showed that the influence functions for
the estimators from this class, so particularly the influence function of the EL
estimator, are each proportional to the orthogonality function g(x, θ0) of the
model. These influence functions also coincide with the influence function of the
GMM estimator obtained by [16]. Therefore, when g(x, θ) is not bounded in x,
all these estimators, and particularly the EL estimator of θ0, are not robust.

Denote Tc(·) the statistical functional associated to the estimator θ̂c, so that
θ̂c = Tc(Pn). The influence function IF(x;Tc, P0) of Tc at P0 is defined by

IF(x;Tc, P0) :=
∂

∂ε
Tc(Pε,x)

∣
∣
∣
∣
ε=0

,

where Pε,x(·) = (1−ε)P0(·)+ε δx(·), ε ∈ ]0, 1[; see e.g. [5]. The influence function
IF(x;Tc, P0) of the estimator θ̂c presented in this paper is linearly related to the
bounded function gc(x, θ), more precisely, the following result holds

IF(x;Tc, P0) =

{[∫
∂

∂θ
gc(y, θ0) dP0(y)

]� ∫
∂

∂θ
gc(y, θ0) dP0(y)

}−1

·

·
[∫

∂

∂θ
gc(y, θ0) dP0(y)

]�
gc(x, θ0),

which implies the robustness of the estimator θ̂c of the parameter θ0. The proof
of this result is similar to the one presented in [10].
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2.2 Asymptotic Properties

In this subsection, we give the limiting distributions of the proposed estimators,
under some regularity assumptions similar to those used by [3].

Proposition 1. For any fixed θ ∈ Θ, under some regularity assumptions, we
have

(1)
√

n(t̂c,θ − tc,θ) converges in distribution to a centered normal random vector;
(2) If P0 �∈ Mc,θ, then

√
n(K̂Lm(Mc,θ, P0)−KLm(Mc,θ, P0)) converges in dis-

tribution to a centered normal random variable;
(3) If P0 ∈ Mc,θ, then 2n K̂Lm(Mc,θ, P0) convergences in distribution to a χ2(�)

random variable.

Proposition 2. Under some regularity assumptions, we have

(1)
√

n
(
θ̂c − θ0

)
converges in distribution to a centered normal random vector;

(2) If � > d, then 2n K̂Lm(Mc, P0) converges in distribution to a χ2(� − d)
random variable.
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