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Abstract. The recently introduced wald space models phylogenetic
trees from an evolutionary perspective. We show that it is a stratified
space and propose algorithms to compute geodesics. In application we
compute a Fréchet mean of three trees of different topologies that is fully
resolved, unlike in BHV-space. Both, preliminary results on geodesics
and on means suggest that wald space features less stickiness than BHV-
space, making it an alternative model for statistical investigations.

1 Introduction

Phylogenetic trees reflect biological species’ evolution. They are built from
genetic variation over a set of taxa. Curiously, building them for the same set
of taxa, from different genes, however, often result in fundamentally different
trees, e.g. Rokas et al. (2003). This generates a call for statistics, for instance
averaging over different trees while controlling their uncertainty. Also, this is a
call for geometry, designing suitable spaces of trees that are both, biologically
meaningful and numerically tractable.

A seminal model has been proposed twenty years ago by Billera et al. (2001),
abbreviated as the BHV-model. It has the favorable property of being a Rie-
mann stratified space of globally nonpositive curvature, thus admitting unique
geodesics and unique Fréchet means. Additionally, since it is locally flat, an
abundance of successful algorithms have been developed for their computation
that suffer only from inherent combinatorial complexity, e.g. Owen (2011); Bačák
(2014); Miller et al. (2015); Brown and Owen (2018).

While this model is mathematically intriguing, more recently new models
have been developed with geometries more closely reflecting stochastic biological
fundamentals of gene mutations, e.g. Moulton and Steel (2004); Shiers et al.
(2016); Garba et al. (2020). In Garba et al. (2018), metrics for phylogenetic
trees based on the information geometry of the two-state and four-state model
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were proposed (four states because gene entries are taken from one of the four
nucleotide bases). This study was continued in Garba et al. (2020, 2021) and - as
a further simplification - a continuous model has been proposed with moments
matching those of the two-state model.

In this contribution, we briefly review the definition of our new wald space (cf.
Garba et al. (2020)) and propose algorithms to compute geodesics and Fréchet
means. On the one hand, the wald space is geometrically more challenging. It is a
stratified space that is isometrically embedded in the space of positive symmetric
N × N matrices P (where N ∈ N is the number of taxa) equipped with the well
known affine invariant geometry of globally nonpositive curvature – hence the
need for algorithms as sophisticated as those of the BHV-space. On the other
hand, we believe it is biologically more meaningful than the BHV-space. For
example, in BHV-space the distance of two different trees with edge lengths
becoming arbitrary large diverges to infinity. In wald space, such trees converge
to the completely disconnected forest, a member of the wald space, along with
other forests. Hence these two trees become more and more similar. Simulations
and data analyses reveal advantage of wald space: degenerate trees seem to be
less sticky (sticky means have degenerate limiting distributions) in wald space
than in BHV-space, cf. Hotz et al. (2013); Huckemann et al. (2015); Barden et al.
(2013, 2018), thus more easily allowing for statistical inference.

Wald space was first proposed at the Oberwolfach workshop 1804 (2018) in
the black forest which is the Schwarzwald in German.

2 Wald Space

Let N ∈ N denote the number of taxa. A phylogenetic forest (F, �) is

(i) a forest F = (V,E) with a finite number of vertices V , undirected edges
E such that any two vertices u, v ∈ V are connected by at most one edge
denoted by {u, v} and labeled vertices L = {1, . . . , N} ⊆ V , where v ∈ V \L
implies that deg(v) ≥ 3,

(ii) with a mapping � : E → (0,∞).

Two phylogenetic forests are equivalent, (F1, �1) ∼ (F2, �2), if their label sets
agree L1 = L = L2 and if there is a graph isomorphism f : V1 → V2 such that

(i) f(u) = u for all u ∈ L, and
(ii) �1({u, v}) = �2({f(u), f(v)}) for all {u, v} ∈ E1.

Definition 1. Every equivalence class W = [F, �] is called a wald and all equiv-
alence classes form the wald space W, its geometric structure is defined further
below. Disregarding the edge lengths map �, every equivalence class of forests F
with regards to (i) above, is a wald topology. For a given wald W = [F, �], the
grove of W is WW which comprises all W ′ = [F ′, �′] ∈ W where F ′ and F have
the same wald topology.
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In the following, for any connected u, v ∈ V , E(u, v) is the set of edges along
the unique path connecting u and v. For u = v, we set any sum over E(u, u)
equal zero.

With this notation, the map φ sending W = [F, �] to the N ×N matrix with
coordinate entry at u, v ∈ L,

(
φ(W )

)
uv

=
(
φ([F, �])

)
uv

:=

{
exp

(
− ∑

e∈E(u,v) �(e)
)
, if u and v are connected,

0, else,

(1)

is well defined and maps W injectively into the set of symmetric positive N ×N
matrices P, cf. Garba et al. (2020).

Recall from Garba et al. (2020, 2021) that the affine invariant Riemannian
metric on P corresponds to the Fisher information geometry for zero-mean
nondegenerate N -dimensional Gaussians induced by tree-indexed Gaussian pro-
cesses, a continuous generalisation of the two-state model. This metric has the
advantage of turning P into a Riemannian manifold of global nonpositive curva-
ture (e.g. Lang (1999)), guaranteeing unique geodesics and unique Fréchet means
(e.g. Sturm (2003)). The squared distance induced on P is given by

d2P(P,Q) = Tr
[

log
(√

P
−1

Q
√

P
−1

)2
]

=
N∑

i=1

log(μi)2,

where
√

P is the unique positive definite square root of P and μi are the eigen-
values of P−1Q.

Definition 2. The metric dW of the wald space is the pullback of dP under φ,
which is given for W1,W2 ∈ W by

dW(W1,W2) = inf
γ : [0,1]→W

φ◦γ cont. path,
γ(0)=W1,γ(1)=W2

LdP (φ ◦ γ),

where LdP (γ) is the length of the path γ measured in dP . If no such path exists,
we set dW(W1,W2) = ∞.

As previously noted, trees with edge lengths � tending to infinity move infini-
tively far apart in the BHV geometry. In the wald geometry the distance between
these trees goes to zero. This is reflected in the following reparametrization
W = [F, λ] with λ := 1 − exp(−�), recasting (1) as

(
φ(W )

)
uv

=
(
φ([F, λ])

)
uv

:=

{∏
e∈E(u,v)

(
1 − λ(e)

)
, if u and v are connected,

0, else.

In particular, if W = [F, λ], F = (V,E), has |E| edges, vectorizing λ ∈ (0, 1)|E|,
we have the following identification for the grove of W :

WW
∼= (0, 1)|E| .
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Theorem 1. 1. For every wald W = [F, λ], F = (V,E) with grove WW , the

mapping (0, 1)|E| ∼= WW
φ→ P is an embedding.

2. If W = [F, λ] with a fully resolved (i.e. binary) tree F then WW is an open
subset of W.

Proof. cf. Lueg et al. (2021).

In consequence, W is a stratified space with strata given by groves. As BHV-
space can be viewed as a subset of wald space, cf. Garba et al. (2020), BHV-
orthants are subsets of groves. In contrast to BHV-space, groves are not only
connected to the star stratum (trees without interior edges), they are also con-
nected to forest strata including the completely disconnected forest (consisting
of N isolated vertices, no edges), which lies on the boundary of the star stratum.

3 Geodesics in Wald Space

We propose different algorithms to compute geodesics between two fully resolved
trees W1 and W2, where Algorithm 4 is only applicable if W1 and W2 lie in a
common grove WW . Dropping the embedding map φ, we consider wald space
W as a subset of the ambient space P. To this end, for P,Q ∈ P, denote the
unique geodesic between P and Q by γP,Q : [0, 1] → P, the Riemann exponen-
tial and logarithm by Exp(P)

P : TP P → P and Log(P)
P : P → TP P, respectively,

the orthogonal tangent space projection by πW : TP P → TW W and define the
projection π : P → W, P 
→ π(P ) := argminW∈W dP(P,W ), where π is only
well-defined for P ∈ P close enough to W. The following is a very simple but
naive algorithm.

Algorithm 1 (Naive Projection (NP)). Given 3 ≤ n ∈ N, W1,W2 ∈ W, for
i = 1, . . . , n compute

(1) Xi = π
(
γW1,W2(

i−1
n−1 )

)
.

Return (X1, . . . , Xn).

The next algorithm makes small (approximately geodesic) steps and successively
takes the geodesic from the newest point to the destination (note the Xi−1 and
Yi−1 in the subscript in the update step).

Algorithm 2 (Successive Projection (SP)). Given 3 ≤ n ∈ N, W1,W2 ∈
W, set X1 := W1 and Y1 := W2. For i = 2, . . . , �n

2 , do

(1) Xi := π
(
γXi−1,Yi−1(

1
n−i+1 )

)
and

(2) Yi := π
(
γYi−1,Xi−1(

1
n−i+1 )

)
.

If n is even, return (X1, . . . , X� n
2 �, Y�n

2 �, . . . , Y1).
If n is odd, set Z := π

(
γX� n

2 �,Y� n
2 �(

1
2 )

)
and return (X1, . . . , X� n

2 �, Z,

Y�n
2 �, . . . , Y1).
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The following two algorithms are inspired by Schmidt et al. (2006). They
update a given path iteratively and perform a straightening of the path, even-
tually leading to a geodesic (cf. Figs. 1–4).

Algorithm 3 (Extrinsic Path Straightening (EPS)). Let 3 ≤ n ∈ N, m ∈
N, W1,W2 ∈ W and suppose (X1, . . . , Xn) is a path in W from W1 to W2. For
j = 1, . . . , m, do

(1) for i = 2, . . . , n − 1 compute Vi = 1
2

(
LogXi

(Xi−1) + LogXi
(Xi+1)

)
and

(2) update (X2, . . . , Xn−1): for i = 2, . . . , n − 1 compute Xi := π
(
Exp(P)

Xi
(Vi)

)
.

Return (X1, . . . , Xn).

Exploiting the manifold structure of groves, for two walds W1,W2 ∈ W[F ]

with the same fully resolved tree F , we change Algorithm 3 slightly and thus
avoid using the projection.

Algorithm 4 (Intrinsic Path Straightening (IPS)). Let 3 ≤ n ∈ N, m ∈ N,
W1,W2 ∈ WW and suppose (X1, . . . , Xn) is a path in WW from X1 := W1 to
Xn := W2. For j = 1, . . . , m, do

(1) for i = 2, . . . , n − 1 compute Vi = 1
2πXi

((
LogXi

(Xi−1) + LogXi
(Xi+1)

))
and

(2) update (X2, . . . , Xn−1): for i = 2, . . . , n − 1 compute Xi := Exp(WW )
Xi

(Vi).

Return (X1, . . . , Xn).

We measure the quality of a proposal (X1, . . . , Xn), 3 ≤ n ∈ N by its length,

L(X1, . . . , Xn) =
n−1∑
i=1

dP(Xi,Xi+1)

and its energy,

E(X1, . . . , Xn) =
1
2

n−1∑
i=1

dP(Xi,Xi+1)2.

1 λ
1

2 λ
2

λ
6

λ
7

3
λ
3

4λ
4

5λ
5

Fig. 1. Tree with edge weights λ(1) = (0.5, . . . , 0.5, 0.1, 0.8) and λ(2) =
(0.5, . . . , 0.5, 0.9, 0.1) for computation of geodesics in Fig. 2.
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Fig. 2. Length (left) and energy (center) of paths between the two trees from Fig. 1
obtained from the four algorithms for n = 4, 7, . . . , 46, 49. Right: coordinates λ6, λ7 of
the paths obtained from the four algorithms for n = 10. Note that (NP), (IPS), (EPS)
almost coincide.

Fig. 3. Left: the coordinate representation (only interior edges) of different neighbour-
ing groves and two walds W1, W2 ∈ W. Second to left to right: Selected iterations of
the (EPS) algorithm for different starting paths: the output of the (SP) algorithm, the
cone path and a round path, respectively. All paths have n = 25 points.

Fig. 4. Left: length of the paths for the iterations of the (EPS) algorithm for different
starting paths. Right: energy of the paths for the iterations of the (EPS) algorithm for
different starting paths.



716 J. Lueg et al.

Fig. 5. Three trees W1, W2, W3 ∈ W from Nye et al. (2016). Their Fréchet means are
depicted in Fig. 6.

Fig. 6. Fréchet means from the three trees from Fig. 5. Left: in BHV-space, right: in
wald space.

4 Comparing Fréchet Means

For illustration, we take n = 3 trees W1, . . . ,Wn ∈ W from Nye et al. (2016)
depicted in Fig. 5, each of which having N = 5 leaves (3 taxa and the root were
removed from the original trees for computational tractability). We compute
their Fréchet means

W ∗ ∈ argmin
W∈W

n∑
k=1

dW
(
Wk,W

)2

in BHV-space and in wald space, cf. Fig. 6. For computation we use the algorithm
of Sturm (2003). In general, the computation of other types of means is also
possible (e.g. the Riemannian 1-center, cf. Arnaudon et al. (2013)).

While in BHV-space, the Fréchet mean is unique, in wald space its uniqueness
is dubious. For both spaces we have performed 15 iterations after which the final
subsequent iterates were less than 0.05 apart, respectively. Remarkably, the mean
tree in BHV-space is a star tree. In wald space, however, it is a fully resolved
tree.
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