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Abstract. Network neuroscience investigates brain functioning through
the prism of connectivity, and graph theory has been the main frame-
work to understand brain networks. Recently, an alternative framework
has gained attention: topological data analysis. It provides a set of met-
rics that go beyond pairwise connections and offer improved robustness
against noise. Here, our goal is to provide an easy-to-grasp theoretical
and computational tutorial to explore neuroimaging data using these
frameworks, facilitating their accessibility, data visualisation, and com-
prehension for newcomers to the field. We provide a concise (and by
no means complete) theoretical overview of the two frameworks and a
computational guide on the computation of both well-established and
newer metrics using a publicly available resting-state functional magnetic
resonance imaging dataset. Moreover, we have developed a pipeline for
three-dimensional (3-D) visualisation of high order interactions in brain
networks.

Keywords: Network neuroscience · Data visualisation · Topological
data analysis

1 Introduction

Network neuroscience sees the brain through an integrative lens by mapping
and modelling its elements and interactions [3,21]. The main theoretical frame-
work from complex network science used to model, estimate, and simulate brain
networks is graph theory [9,24]. A graph is comprised of a set of intercon-
nected elements, also known as vertices and edges. Vertices (also known as
nodes) in a network can be, for example, brain areas, while edges (also known
as links) are a representation of the functional connectivity between pairs of
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vertices [42]. Several descriptive graph metrics1 [16] can then be calculated
to describe the brain network’s characteristic [21,26], and they have consis-
tently allowed researchers to identify non-random features of brain networks.
An example is the ground-breaking discovery that the brain (like most other
real-world networks) follows a ‘small-world network’ architecture [2,43], indi-
cating a compromise between wiring cost and optimal efficiency. Using graph
theory, many insights have been gathered on the healthy and diseased brain neu-
robiology [19,26]. Algebraic topological data analysis (TDA) provides another
prism on brain connectivity investigation beyond the ‘simple’ pairwise connec-
tions (i.e., higher-order interactions). With TDA, one can identify a network’s
shape and its invariant properties (i.e., coordinate and deformation invariances
[47]). Moreover, TDA often provides more robustness against noise than graph
theoretical analysis [41], a significant neuroimaging data issue [30]. Although
TDA has only recently been adopted to network neuroscience [15,39], it has
already shown exciting results on brain network data [14,18]. However, clinical
scientists’ comprehension and application can be hindered by TDA’s complexity
and mathematical abstraction. Here, we want to facilitate the use of network
neuroscience and its constituents graph theory and TDA by the general neu-
roscientific community by providing both computational and theoretical expla-
nation of the primary metrics, strongly inspired by [21]. The work is divided
into a longer manuscript [13] containing several resources (see Table in [13])
and more theoretical explanations, and a publicly available Jupyter Notebook
online (https://github.com/multinetlab-amsterdam/network TDA tutorial). In
these notebooks, we use third-party Python packages for part of the computa-
tions (e.g., networkx [25] for the graph theory metrics and gudhi [32] for per-
sistent homology) and provide practical scripts for some TDA metrics and 3-D
visualisations of simplicial complexes (a new addition to the field). Our tutorial
focuses on resting-state functional magnetic resonance imaging (rsfMRI) data;
however, the main concepts and tools discussed in this paper can be extrapolated
to other imaging modalities, biological or complex networks. The extended ver-
sion [13] covers the most commonly used graph metrics in network neuroscience,
also in line with reference [21], and TDA. However, due to the size constraint,
here we prioritize the latter.

1.1 Starting Point: The Adjacency Matrix

The basic unit on which graph theory and TDA are applied in the context
of rsfMRI is the adjacency or functional connectivity matrix [3,21]. Typically,
rsfMRI matrices are symmetric and do not specify the direction of connectivity
(i.e., activity in area A drives activity in area B), therefore yielding undirected
networks. To further analyse the sfMRI connectivity matrix, one has to decide

1 Notice that the notion of metric in mathematics defines distance between two points
in a set [16], which is distinct from what we are using in this work. We denote as
metric any quantity that can be computed, i.e., “measured”, in a brain network or
simplicial complex.

https://github.com/multinetlab-amsterdam/network_TDA_tutorial
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whether to keep or not edges’ weights (e.g., correlation values in rsfMRI con-
nectivity) or to absolutise negative weights (or anticorrelations) [21,27]. These
decisions influence the computation of the different metrics described in the
tutorial and matter for the biological interpretation of the results [21]. In this
tutorial we use an undirected, weighted, and absolutised connectivity matrix.

1.2 Topological Data Analysis

TDA uses topology and geometry methods to study the shape of the data [11]
and can identify a network’s different characteristics by addressing a network’s
high-order structure [4,10,28]. A core success of TDA is the ability to provide
robust results when compared with alternative methods, even if the data are
noisy [18,41]. One of the benefits of using TDA in network neuroscience is the
possibility of finding global properties of a network that are preserved regardless
of the way we represent the network [35], as we illustrate below. Those properties
are the so-called topological invariants. Here, we cover some fundamental TDA
concepts: filtration, simplicial complexes, Euler characteristic, phase-transitions,
Betti numbers, curvature, and persistent homology.

Simplicial Complexes. In TDA, we consider that the network as a multidi-
mensional structure called the simplicial complex. Such a network is not only
made up of the set of vertices (0-simplex) and edges (1-simplex) but also of trian-
gles (2-simplex), tetrahedrons (3-simplex), and higher k-dimensional structures.
In short, a k-simplex is an object in k-dimensions and, in our work, is formed
by a subset of k + 1 vertices of the network.

Filtration. Consists of a nested sequence of simplicial complexes. Here, a fil-
tration is defined by changing the density d of the network, from 0 ≤ d ≤ 1.
This yields a nested sequence of networks, in which increasing d leads to a more
densely connected network. In neuroscience, It can be used to avoid arbitrary
threshold/density choices, which are usually made in the field.

We can encode a network into a simplicial complex in several ways [17,29,31].
Here, we focus on building a simplicial complex only from the brain network’s
cliques, i.e., we create the so-called clique complex of a brain network. In a net-
work, a k-clique is a subset of the networkwith k all-to-all connected nodes. 0-clique
corresponds to the empty set, 1-cliques correspond to nodes, 2-cliques to links, 3-
cliques to triangles, etc.. In the clique complex, each k + 1 clique is associated
with a k-simplex. This choice for creating simplexes from cliques has the advan-
tage that we can still use pairwise signal processing to create a simplicial complex
from brain networks, such as in [23]. It is essential to mention that other strate-
gies to build simplicial complexes beyond pairwise signal processing are still under
development, such as applications using multivariate information theory together
with tools from algebraic topology [1,5–7,22,36]. In our Jupyter Notebook [12], we
provide the code to visualise the clique complex developed in [38] (Fig. 1).

The Euler Characteristic. The Euler characteristic is one example of topo-
logical invariants: the network properties that do not depend on a specific graph
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representation. We first introduce the Euler characteristic for polyhredra. Later,
we translate this concept to brain networks. In 3-D convex polyhedra, the Euler
characteristic is defined as the numbers of vertices minus edges plus faces. For
convex polyhedra without cavities (holes in its shape), which are isomorphous
to the sphere, the Euler characteristic is always two. If we take the cube and
make a cavity, the Euler drops to zero as it is in the torus. If we make two
cavities in a polyhedral (as in the bitorus), the Euler drops to minus two. We
can understand that the Euler characteristic tells us something about a polyhe-
dron’s topology and its analogous surface. In other words, if we have a surface
and we make a discrete representation of it (e.g., a surface triangulation), its
Euler characteristic is always the same, regardless of the way we do it. We can
now generalise the definition of Euler characteristic to a simplicial complex in
any dimension. Thus, the high dimensional version of the Euler characteristic is
expressed by the alternate sum of the numbers Clk(d) of the k-cliques (which
are (k − 1)-simplexes) present in the network’s simplicial complex for a given
value of the density threshold d:

χ(d) = Cl1 − Cl2 + ... + Cln =
n∑

k=1

(−1)kCl(k)(d).

Betti Numbers. Another set of topological invariants are the Betti numbers
(β). Given that a simplicial complex is a high-dimensional structure, βk counts
the number of k-dimensional holes in the simplicial complex. These are topolog-
ical invariants that correspond, for each k ≥ 0, to the number of k-dimensional
holes in the simplicial complex [47]. In a simplicial complex, there can be many
of these k-holes and counting them provide the Betti number β, e.g., if β2 is
equal to five, there are 5 two-dimensional holes. The Euler characteristics of a
simplicial complex can also be computed using the β via the following formula
[17]:

χ = β0 − β1 + β2 − . . . (−1)kmax βkmax
=

kmax∑

k=0

(−1)k βk ,

where kmax the maximum dimension that we are computing the cycles.

Curvature. Curvature is a TDA metric that can link the global network proper-
ties described above to local features [20,38,44]. It allows us to compute topolog-
ical invariants for the whole-brain set of vertices and understand the contribution
of specific individual nodal, or subnetwork, geometric proprieties to the brain
network’s global properties. Several approaches to defining a curvature for net-
works are available [33,44], including some already used in neuroscientific inves-
tigations [38]. We illustrate the curvature approach linked to topological phase
transitions, previously introduced for complex systems [20,33,45]. To compute
the curvature, filtration is used to calculate the clique participation rank (i.e.,
the number of k-cliques in which a vertex i participates for density d) [40], which
we denote here by Clik(d). The curvature of the vertex based on the participation
rank is then defined as:
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Fig. 1. Simplex 3-D visualisation. Here we visualise the number of 3-cliques (triangles)
in a functional brain network as we increase the edge density d (0.01, 0.015, 0.02, and
0.025, from A to D). For higher densities, we have a more significant number of 3-cliques
compared to smaller densities. The vertex colour indicates the clique participation rank.
We used fMRI data from the 1000 Functional Connectome Project [8].

κi =
kmax∑

k=1

(−1)k+1
,

Clik (d)
k

where Clik = 1 since each vertex i participates in a single 1-clique (the vertex
itself), and kmax the maximum number of vertices that are all-to-all connected
in the network (see in Fig. 1 the participation in 3-cliques). We use the Gauss-
Bonnet theorem for networks to link the local (nodal) curvature to the network’s
global properties (its Euler characteristic). Conversely, by summing up all the
curvatures of the network across different thresholds, one can reach the alternate
sum of the numbers Clk of k-cliques (a subgraph with k all-to-all connected
vertices) present in the network’s simplicial complex for a given density threshold
d ∈ [0, 1]. By doing so, we also write the Euler characteristics as a sum of the
curvature of all network vertices, i.e.,

χ (d) =
N∑

i=1

ki (d).

1.3 Discussion

This tutorial explains some of the primary metrics related to two network neu-
roscience branches - graph theory and TDA -, providing short theoretical back-
grounds and code examples accompanied by a publicly available Jupyter Note-
book, with a special section on visualisations of simplicial complexes and cur-
vature computation in brain data. Here, we did not aim to provide a use-case



670 E. G. Z. Centeno et al.

report but rather a hands on computational resource. Finally, we would like to
mention some relevant limitations in interpretation when using these metrics in
connectivity-based data. Considering that rsfMRI data is often calculated as a
temporal correlation between time series using Pearson’s correlation coefficient,
a bias on the number of triangles can emerge [46]. This affects TDA (where
the impact depends on how high-order interactions are defined) and graph-
theoretical metrics (such as the clustering coefficient), with networks based on
this statistical method being automatically more clustered than random models.
The proper way to determine and infer high-order interactions in the brain is an
ongoing challenge in network neuroscience [1,5–7,22,36]. Moreover, it is essen-
tial to think about the computational cost. The computation of cliques falls in
the clique problem, an NP (nonpolynomial time) problem; thus, listing cliques
may require exponential time as the size of the cliques or networks grows [34].
What we can do for practical applications is to limit the clique size that can be
reached by the algorithm, which determines the dimension of the simplicial com-
plex in which the brain network is represented. This arbitrary constraint implies
a theoretical simplification, limiting the space or the dimensionality in which we
would analyse brain data. Another issue is that, to finish TDA computations in
a realistic time frame, the researcher might need to establish a maximal thresh-
old/density for convergence even after reducing the maximal clique size. Even
though TDA approaches lead to substantial improvements in network science,
apart from applications using the Mapper algorithm [37], the limitations men-
tioned above contribute to losing information on the data’s shape. In conclusion,
graph theory has been widely used in network neuroscience, but newer methods
such as TDA are gaining momentum. To further improve the field, especially for
users in the domain of clinical network neuroscience, it is imperative to make
the computation of the developed metrics accessible and easy to comprehend
and visualise. We hope to have facilitated the comprehension of some aspects
of network and topological neuroscience, the computation and visualisation of
some of its metrics.
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