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Preface

At the turn of the twenty-first century, new and fruitful interactions were discovered
between several branches of science: information sciences (information theory, digital
communications, statistical signal processing, etc.), mathematics (group theory,
geometry and topology, probability, statistics, sheaves theory, etc.), and physics
(geometric mechanics, thermodynamics, statistical physics, quantum mechanics, etc.).
The aim of the Geometric Science of Information (GSI) biannual international con-
ference is to discover mathematical structures common to all these disciplines by
elaborating a “General Theory of Information” embracing physics, information science,
and cognitive science in a global scheme.

As for GSI 2013, GSI 2015, GSI 2017, and GSI 2019 (https://franknielsen.github.io/
GSI/), the objective of the 5th International SEE Conference on Geometric Science of
Information (GSI 2021), hosted in Paris, was to bring together pure and applied
mathematicians and engineers with a common interest in geometric tools and their
applications for information analysis. GSI emphasizes the active participation of young
researchers to discuss emerging areas of collaborative research on the topic of
“Geometric Science of Information and their Applications”. In 2021, the main theme
was “LEARNING GEOMETRIC STRUCTURES”, and the conference took place at
Sorbonne University, France, during July 21–23, 2021, both in-person and virtually via
video conferencing.

The GSI conference cycle was initiated by the Léon Brillouin Seminar team as early
as 2009 (http://repmus.ircam.fr/brillouin/home). The GSI 2021 event was motivated in
the continuity of the first initiative launched in 2013 (https://www.see.asso.fr/gsi2013)
at Mines ParisTech, consolidated in 2015 (https://www.see.asso.fr/gsi2015) at Ecole
Polytechnique, and opened to new communities in 2017 (https://www.see.asso.fr/
gsi2017) at Mines ParisTech, and 2019 (https://www.see.asso.fr/gsi2019) at ENAC. In
2011, we organized an Indo-French workshop on the topic of “Matrix Information
Geometry” that yielded an edited book in 2013, and in 2017, we collaborated with the
CIRM seminar in Luminy, TGSI 2017 “Topological & Geometrical Structures of
Information” (http://forum.cs-dc.org/category/94/tgsi2017).

GSI satellites events were organized in 2019 and 2020 as FGSI 2019 “Foundation of
Geometric Science of Information” in Montpellier, France (https://fgsi2019.
sciencesconf.org/) and SPIGL 2020 “Joint Structures and Common Foundations of
Statistical Physics, Information Geometry and Inference for Learning” in Les Houches,
France (https://www.springer.com/jp/book/9783030779566), respectively.

The technical program of GSI 2021 covered all the main topics and highlights in the
domain of the “Geometric Science of Information” including information geometry
manifolds of structured data/information and their advanced applications. This Springer
LNCS proceedings consists solely of original research papers that have been carefully
peer-reviewed by at least two or three experts. Accepted contributions were revised
before acceptance.

https://franknielsen.github.io/GSI/
https://franknielsen.github.io/GSI/
http://repmus.ircam.fr/brillouin/home
https://www.see.asso.fr/gsi2013
https://www.see.asso.fr/gsi2015
https://www.see.asso.fr/gsi2017
https://www.see.asso.fr/gsi2017
https://www.see.asso.fr/gsi2019
http://forum.cs-dc.org/category/94/tgsi2017
https://fgsi2019.sciencesconf.org/
https://fgsi2019.sciencesconf.org/
https://www.springer.com/jp/book/9783030779566


As with the previous GSI conferences, GSI 2021 addressed interrelations between
different mathematical domains like shape spaces (geometric statistics on manifolds
and Lie groups, deformations in shape space, etc.), probability/optimization and
algorithms on manifolds (structured matrix manifold, structured data/information, etc.),
relational and discrete metric spaces (graph metrics, distance geometry, relational
analysis, etc.), computational and Hessian information geometry, geometric structures
in thermodynamics and statistical physics, algebraic/infinite dimensional/Banach
information manifolds, divergence geometry, tensor-valued morphology, optimal
transport theory, manifold and topology learning, and applications like geometries of
audio-processing, inverse problems, and signal/image processing. GSI 2021 topics
were enriched with contributions from Lie group machine learning, harmonic analysis
on Lie groups, geometric deep learning, geometry of Hamiltonian Monte Carlo, geo-
metric and (poly)symplectic integrators, contact geometry and Hamiltonian control,
geometric and structure preserving discretizations, probability density estimation and
sampling in high dimension, geometry of graphs and networks, and geometry in
neuroscience and cognitive sciences.

The GSI 2021 conference was structured in 22 sessions as follows:

• Probability and Statistics on Riemannian Manifolds - Chairs: Xavier Pennec,
Cyrus Mostajeran

• Shapes Spaces - Chairs: Salem Said, Joan Glaunès
• Geometric and Structure Preserving Discretizations - Chairs: Alessandro

Bravetti, Manuel de Leon
• Lie Group Machine Learning - Chairs: Frédéric Barbaresco, Gery de Saxcé
• Harmonic Analysis on Lie Groups - Chairs: Jean-Pierre Gazeau, Frédéric

Barbaresco
• Geometric Mechanics - Chairs: Gery de Saxcé, Frédéric Barbaresco
• Sub-Riemannian Geometry and Neuromathematics - Chairs: Alessandro Sarti,

Dario Prandi
• Statistical Manifold and Hessian Information Geometry - Chairs: Noemie

Combe, Michel Nguiffo Boyom
• Information Geometry in Physics - Chairs: Geert Verdoolaege, Jun Zhang
• Geometric and Symplectic Methods for Hydrodynamical Models - Chairs:

Cesare Tronci, François Gay-Balmaz
• Geometry of Quantum States - Chairs: Florio Maria Ciaglia, Michel Berthier
• Deformed Entropy, Cross-Entropy, and Relative entropy - Chairs: Ting-Kam

Leonard Wong, Léonard Monsaingeon
• Geometric Structures in Thermodynamics and Statistical Physics - Chairs:

Hiroaki Yoshimura, François Gay-Balmaz
• Geometric Deep Learning - Chairs: Gabriel Peyré, Erik J. Bekkers
• Computational Information Geometry 1 - Chairs: Frank Nielsen, Clément

Gauchy
• Computational Information Geometry 2 - Chairs: Giovanni Pistone, Goffredo

Chirco
• Optimal Transport and Learning - Chairs: Yaël Frégier, Nicolas Garcia Trillos
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• Statistics, Information, and Topology - Chairs: Pierre Baudot, Michel Nguiffo
Boyom

• Topological and Geometrical Structures in Neurosciences - Chairs: Pierre
Baudot, Giovani Petri

• Manifolds and Optimization - Chairs: Stéphanie Jehan-Besson, Bin Gao
• Divergence Statistics - Chairs: Michel Broniatowski, Wolfgang Stummer
• Transport information geometry - Chairs: Wuchen Li, Philippe Jacquet

In addition, GSI 2021 has hosted 6 keynote speakers:

• Yvette Kosmann-Schwarzbach on “Structures of Poisson Geometry: old and new”
• Max Welling on “Exploring Quantum Statistics for Machine Learning”
• Michel Broniatowski on “Some insights on statistical divergences and choice of

models”
• Maurice de Gosson on “Gaussian states from a symplectic geometry point of view”
• Jean Petitot on “The primary visual cortex as a Cartan engine”
• Giuseppe Longo on “Use and abuse of “digital information” in life sciences, is

Geometry of Information a way out?”

We would like to thank everyone involved in GSI 2021 for helping to make it such
an engaging and successful event.

June 2021 Frank Nielsen
Frédéric Barbaresco
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Abstracts of Keynotes



Structures of Poisson Geometry: Old and New

Yvette Kosmann-Schwarzbach

Professeur des Universités honoraire, CNRS, France
http://www.cmls.polytechnique.fr/perso/kosmann/

Abstract: How did the brackets that Siméon-Denis Poisson introduce in 1809
evolve into the Poisson geometry of the 1970’s? What are Poisson groups and,
more generally, Poisson groupoids? In what sense does Dirac geometry gen-
eralize Poisson geometry and why is it relevant for applications? I shall sketch
the definition of these structures and try to answer these questions.

References

. Libermann, P., Marle, C.-M.: Symplectic Geometry and Analytical Mechanics. D. Reidel Pub-
lishing Company (1987)

. Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry. Texts in Applied Mathe-
matics, vol. 17, 2nd edn. Springer, New York. https://doi.org/10.1007/978-0-387-21792-5
(1998)

. Laurent-Gengoux, C., Pichereau, and Vanhaecke, P.: Poisson Structures, Grundlehren der
mathematischen Wissenschaften 347, Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-31090

. Kosmann-Schwarzbach, Y.: Multiplicativity from Lie groups to generalized geometry. In: Gra-
bowska, K., et al., (eds.) Geometry of Jets and Fields, vol. 110. Banach Center Publications
(2016)

. Alekseev, A., Cattaneo, A., Kosmann-Schwarzbach, Y., Ratiu, T.: Lett. Math. Phys. 90 (2009).
Special volume of LMP on Poisson Geometry, guest editors

. Kosmann-Schwarzbach, Y., (éd.) Siméon-Denis Poisson : les Mathématiques au service de la
science, Editions de l’Ecole Polytechnique (2013)

. Kosmann-Schwarzbach, Y.: The Noether Theorems: Invariance and Conservation Laws in the
Twentieth Century, Sources and Studies in the History of Mathematics and Physical Sciences.
Springer, New York (2011). https://doi.org/10.1007/978-0-387-87868-3. translated by B. E.
Schwarzbach

http://www.cmls.polytechnique.fr/perso/kosmann/
https://doi.org/10.1007/978-0-387-21792-5
https://doi.org/10.1007/978-3-642-31090
https://doi.org/10.1007/978-3-642-31090
https://doi.org/10.1007/978-0-387-87868-3


Exploring Quantum Statistics for Machine
Learning

Max Welling

Informatics Institute, University of Amsterdam and Qualcomm Technologies
https://staff.fnwi.uva.nl/m.welling/

ELLIS Board Member (European Laboratory for Learning
and Intelligent Systems)
https://ellis.eu/

Abstract: Quantum mechanics represents a rather bizarre theory of statistics that
is very different from the ordinary classical statistics that we are used to. In this
talk I will explore if there are ways that we can leverage this theory in devel-
oping new machine learning tools: can we design better neural networks by
thinking about entangled variables? Can we come up with better samplers by
viewing them as observations in a quantum system? Can we generalize prob-
ability distributions? We hope to develop better algorithms that can be simulated
efficiently on classical computers, but we will naturally also consider the pos-
sibility of much faster implementations on future quantum computers. Finally, I
hope to discuss the role of symmetries in quantum theories.

Reference

. Bondesan, R., Welling, M.: Quantum Deformed Neural Networks, arXiv:2010.11189v1 [quant-
ph], 21 October 2020. https://arxiv.org/abs/2010.11189

https://staff.fnwi.uva.nl/m.welling/
https://ellis.eu/
https://arxiv.org/abs/2010.11189v1
https://arxiv.org/abs/2010.11189


Some Insights on Statistical Divergences
and Choice of Models

Michel Broniatowski

Sorbonne Université, Paris

Abstract: Divergences between probability laws or more generally between
measures define inferential criteria, or risk functions. Their estimation makes it
possible to deal with the questions of model choice and statistical inference, in
connection with the regularity of the models considered; depending on the
nature of these models (parametric or semi-parametric), the nature of the criteria
and their estimation methods vary. Representations of these divergences as large
deviation rates for specific empirical measures allow their estimation in non-
parametric or semi parametric models, by making use of information theory
results (Sanov’s theorem and Gibbs principles), by Monte Carlo methods. The
question of the choice of divergence is wide open; an approach linking non-
parametric Bayesian statistics and MAP estimators provides elements of
understanding of the specificities of the various divergences in the Ali-Silvey-
Csiszar-Arimoto class in relation to the specific choices of the prior
distributions.

References

. Broniatowski, M., Stummer, W.: Some universal insights on divergences for statistics, machine
learning and artificial intelligence. In: Nielsen, F., (eds.) Geometric Structures of Information.
Signals and Communication Technology, pp. 149–211 (2019). Springer, Cham. https://doi.
org/10.1007/978-3-030-02520-5_8

. Broniatowski, M.: Minimum divergence estimators, Maximum Likelihood and the generalized
bootstrap, to appear in “Divergence Measures: Mathematical Foundations and Applications in
Information-Theoretic and Statistical Problems” Entropy (2020)

. Csiszár, I., Gassiat, E.: MEM pixel correlated solutions for generalized moment and interpolation
problems. IEEE Trans. Inf. Theory 45 (7), 2253–2270 (1999)

. Liese, F., Vajda, I.: On divergences and informations in statistics and information theory. IEEE
Trans. Inf. Theory 52(10), 4394–4412 (2006)

https://doi.org/10.1007/978-3-030-02520-5_8
https://doi.org/10.1007/978-3-030-02520-5_8


Gaussian States from a Symplectic Geometry
Point of View

Maurice de Gosson

Faculty of Mathematics, NuHAG group, Senior Researcher at the University
of Vienna

https://homepage.univie.ac.at/maurice.de.gosson

Abstract: Gaussian states play a ubiquitous role in quantum information theory
and in quantum optics because they are easy to manufacture in the laboratory,
and have in addition important extremality properties. Of particular interest are
their separability properties. Even if major advances have been made in their
study in recent years, the topic is still largely open. In this talk we will discuss
separability questions for Gaussian states from a rigorous point of view using
symplectic geometry, and present some new results and properties.

References

. de Gosson, M.: On the Disentanglement of Gaussian quantum states by symplectic rotations 358
(4), 459–462 (2020). C.R. Acad. Sci. Paris

. de Gosson, M.A.: On Density operators with Gaussian weyl symbols. In: Boggiatto, P., et al.
(eds.) Advances in Microlocal and Time-Frequency Analysis. Applied and Numerical Har-
monic Analysis, pp. 191–206. Birkhäuser, Cham (2020). https://doi.org/10.1007/978-3-030-
36138-9_12

. de Gosson, M.: Symplectic coarse-grained classical and semiclassical evolution of subsystems:
new theoretical aspects. J. Math. Phys. 9, 092102 (2020)

. Cordero, E., de Gosson, M., Nicola, F.: On the positivity of trace class operators. in Advances in
Theoretical and Mathematical Physics 23(8), 2061–2091 (2019). to appear

. Cordero, E., de Gosson, M., Nicola, F.: A characterization of modulation spaces by symplectic
rotations. J. Funct. Anal. 278(11), 108474 (2020). to appear in

https://homepage.univie.ac.at/maurice.de.gosson
https://doi.org/10.1007/978-3-030-36138-9_12
https://doi.org/10.1007/978-3-030-36138-9_12


The Primary Visual Cortex as a Cartan Engine

Jean Petitot

CAMS, École des Hautes Études en Sciences Sociales, France
http://jean.petitot.pagesperso-orange.fr/

Abstract: Cortical visual neurons detect very local geometric cues as retinal
positions, local contrasts, local orientations of boundaries, etc. One of the main
theoretical problem of low level vision is to understand how these local cues can
be integrated so as to generate the global geometry of the images perceived, with
all the well-known phenomena studied since Gestalt theory. It is an empirical
evidence that the visual brain is able to perform a lot of routines belonging to
differential geometry. But how such routines can be neurally implemented?
Neurons are «point-like» processors and it seems impossible to do differential
geometry with them. Since the 1990s, methods of “in vivo optical imaging
based on activity-dependent intrinsic signals” have made possible to visualize
the extremely special connectivity of the primary visual areas, their “functional
architectures.” What we called «Neurogeometry» is based on the discovery that
these functional architectures implement structures such as the contact structure
and the sub-Riemannian geometry of jet spaces of plane curves. For reasons of
principle, it is the geometrical reformulation of differential calculus from Pfaff to
Lie, Darboux, Frobenius, Cartan and Goursat which turns out to be suitable for
neurogeometry.

References

. Agrachev, A., Barilari, D., Boscain, U.: A Comprehensive Introduction to Sub-Riemannian
Geometry, Cambridge University Press (2020)

. Citti, G., Sarti, A.: A cortical based model of perceptual completion in the roto-translation space.
J. Math. Imaging Vis. 24(3), 307–326 (2006). https://doi.org/10.1007/s10851-005-3630-2

. Petitot, J.: Neurogéométrie de la vision. Modèles mathématiques et physiques des architectures
fonctionnelles, Les Éditions de l’École Polytechnique, Distribution Ellipses, Paris (2008)

. Petitot J.: Landmarks for neurogeometry. In: Citti, G., Sarti, A., (eds.) Neuromathematics of
Vision. LNM, pp. 1–85. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-
34444-2_1

. Petitot, J.: Elements of Neurogeometry. Functional Architectures of Vision. LNM, Springer,
2017. https://doi.org/10.1007/978-3-319-65591-8

. Prandi, D., Gauthier, J.-P.: A Semidiscrete Version of the Petitot Model as a Plausible Model for
Anthropomorphic Image Reconstruction and Pattern Recognition, https://arxiv.org/abs/1704.
03069v1 (2017)

http://jean.petitot.pagesperso-orange.fr/
https://doi.org/10.1007/s10851-005-3630-2
https://doi.org/10.1007/978-3-642-34444-2_1
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https://doi.org/10.1007/978-3-319-65591-8
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Use and Abuse of “Digital Information”
in Life Sciences, is Geometry
of Information a Way Out?

Giuseppe Longo

Centre Cavaillès, CNRS & Ens Paris and School of Medicine,
Tufts University, Boston

http://www.di.ens.fr/users/longo/

Abstract: Since WWII, the war of coding, and the understanding of the
structure of the DNA (1953), the latter has been considered as the digital
encoding of the Aristotelian Homunculus. Till now DNA is viewed as the
“information carrier” of ontogenesis, the main or unique player and pilot of
phylogenesis. This heavily affected our understanding of life and reinforced a
mechanistic view of organisms and ecosystems, a component of our disruptive
attitude towards ecosystemic dynamics. A different insight into DNA as a major
constraint to morphogenetic processes brings in a possible “geometry of
information” for biology, yet to be invented. One of the challenges is in the need
to move from a classical analysis of morphogenesis, in physical terms, to a
“heterogenesis” more proper to the historicity of biology.

References

. Islami, A., Longo, G.: Marriages of mathematics and physics: a challenge for biology,
invited paper. In: Matsuno, K., et al. (eds.) The Necessary Western Conjunction to
the Eastern Philosophy of Exploring the Nature of Mind and Life, vol. 131,
pp. 179¬192, December 2017. SpaceTimeIslamiLongo.pdf. Special Issue of Progress
in Biophysics and Molecular Biology

. Longo, G.: How Future Depends on Past Histories and Rare Events in Systems of Life,
Foundations of Science, (DOI), (2017). biolog-observ-history-future.pdf

. Longo, G.: Information and causality: mathematical reflections on cancer biology. In
Organisms. Journal of Biological Sciences, vo. 2, n. 1, 2018. BiologicalConseq-
ofCompute.pdf

. Longo, G.: Information at the threshold of interpretation, science as human con-
struction of sense. In: Bertolaso, M., Sterpetti, F. (eds.) A Critical Reflection on
Automated Science Will Science Remain Human? Springer, Dordrecht (2019).
Information-Interpretation.pdf

. Longo, G., Mossio, M.: Geocentrism vs genocentrism: theories without metaphors,
metaphors without theories. Interdisciplinary Sci. Rev. 45 (3), 380–405 (2020).
Metaphors-geo-genocentrism.pdf

http://www.di.ens.fr/users/longo/
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Abstract. The present work is motivated by the problem of Bayesian
inference for Gaussian distributions in symmetric Hadamard spaces (that
is, Hadamard manifolds which are also symmetric spaces). To investigate
this problem, it introduces new tools for Markov Chain Monte Carlo, and
convex optimisation: (1) it provides easy-to-verify sufficient conditions
for the geometric ergodicity of an isotropic Metropolis-Hastings Markov
chain, in a symmetric Hadamard space, (2) it shows how the Riemannian
gradient descent method can achieve an exponential rate of convergence,
when applied to a strongly convex function, on a Hadamard manifold.
Using these tools, two Bayesian estimators, maximum-a-posteriori and
minimum-mean-squares, are compared. When the underlying Hadamard
manifold is a space of constant negative curvature, they are found to be
surprisingly close to each other. This leads to an open problem: are these
two estimators, in fact, equal (assuming constant negative curvature)?

Keywords: Hadamard manifold · Gaussian distribution · Bayesian
inference · MCMC · Convex optimisation

1 MAP Versus MMS

In the following, M is a symmetric Hadamard space: a Hadamard manifold,
which is also a symmetric space (for a background discussion, see AppendixA).
Recall the definition of a Gaussian distribution on M [9]. This is P (x, σ) whose
probability density function, with respect to Riemannian volume, reads

p(y|x, σ) = (Z(σ))−1 exp
[
−d2(y, x)

2σ2

]
(1)

where Z(σ) is a normalising constant, and d(·, ·) is the distance in M .
The maximum-likelihood estimator of the parameter x, based on independent

samples (y1, . . . , yN ), is equal to the Riemannian barycentre of these samples.
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The one-sample maximum-likelihood estimator, given a single observation y, is
therefore x̂ML = y.

Instead of maximum-likelihood, consider a Bayesian approach to estimating
x, based on the observation y. Assign to x a prior density, which is also Gaussian,

p(x|z, τ) = (Z(τ))−1 exp
[
−d2(x, z)

2τ2

]
(2)

Then, Bayesian inference concerning x is carried out using the posterior density

π(x) ∝ exp
[
−d2(y, x)

2σ2
− d2(x, z)

2τ2

]
(3)

where ∝ indicates a missing (unknown) normalising factor.
The maximum-a-posteriori estimator x̂MAP of x is equal to the mode of the

posterior density π(x). From (3), x̂MAP minimises the weighted sum of squared
distances d2(y, x)/σ2 + d2(x, z)/τ2. This is expressed in the following notation,

x̂MAP = z #ρ y where ρ =
τ2

σ2 + τ2
(4)

which means x̂MAP is a geodesic convex combination of the prior barycentre z
and the observation y, with respective weights σ2/(σ2 + τ2) and τ2/(σ2 + τ2).

The minimum-mean-squares estimator x̂MMS of x is the barycentre of the
posterior density π(x). That is, x̂MMS is the global minimiser of the variance
function (in the following, vol denotes the Riemannian volume)

Eπ(y) =
1
2

∫
M

d2(y, x)π(x)vol(dx) (5)

whose existence and uniqueness are established in [7] (Chapter 4). While it is easy
to compute x̂MAP from (4), it is much harder to find x̂MMS , as this requires
minimising the integral (5), where π(x) is known only up to normalisation. Still,
there is one special case where these two estimators are equal.

Proposition 1. If σ2 = τ2 (that is, if ρ = 1/2), then x̂MMS = x̂MAP .

Remark: the proof of this proposition, and of all the propositions introduced
in the following, can be found in [7] (Chapter 4).

2 Are They Equal?

Proposition 1 states that x̂MMS = x̂MAP , if ρ = 1/2. When M is a Euclidean
space, it is famously known that x̂MMS = x̂MAP for any value of ρ. In general,
one expects these two estimators to be different from one another, if ρ �= 1/2.

However, when M is a space of constant negative curvature, numerical exper-
iments show that x̂MMS and x̂MAP lie surprisingly close to each other, and that
they even appear to be equal.
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It is possible to bound the distance between x̂MMS and x̂MAP , using the
so-called fundamental contraction property [10] (Theorem 6.3).

d(x̂MMS , x̂MAP ) ≤ W (π, δx̂MAP
) (6)

where W denotes the Kantorovich distance, and δx̂MAP
is the Dirac distribution

at x̂MAP . Now, the right-hand side of (6) is equal to the first-order moment

m1(x̂MAP ) =
∫

M

d(x̂MAP , x)π(x)vol(dx) (7)

Of course, the upper bound in (6) is not tight, since it is strictly positive, even
when ρ = 1/2, as one may see from (7).

It will be seen below that a Metropolis-Hastings algorithm can be used to
generate geometrically ergodic samples (x1, x2, . . .), from the posterior density π.
Using these samples, it is possible to approximate (7), by an empirical average,

m̄1(x̂MAP ) =
1
N

N∑
n=1

d(x̂MAP , xn) (8)

In addition, these samples can be used to compute a convergent approximation
of x̂MMS . Precisely, the empirical barycentre x̄MMS of the samples (x1, . . . , xN )
converges almost-surely to x̂MMS (see the discussion after Proposition 3, below).

Numerical experiments were conducted in the case when M is a space of
constant curvature, equal to −1, and of dimension n. The following table was
obtained for σ2 = τ2 = 0.1, using samples (x1, . . . , xN ) where N = 2 × 105.

dimension n 2 3 4 5 6 7 8 9 10

m̄1(x̂MAP ) 0.28 0.35 0.41 0.47 0.50 0.57 0.60 0.66 0.70

d(x̄MMS , x̂MAP ) 0.00 0.00 0.00 0.01 0.01 0.02 0.02 0.02 0.03

and the following table for σ2 = 1 and τ2 = 0.5, again using N = 2 × 105.

dimension n 2 3 4 5 6 7 8 9 10

m̄1(x̂MAP ) 0.75 1.00 1.12 1.44 1.73 1.97 2.15 2.54 2.91

d(x̄MMS , x̂MAP ) 0.00 0.00 0.03 0.02 0.02 0.03 0.04 0.03 0.12

The first table confirms Proposition 1. The second table, more surprisingly,
shows that x̂MMS and x̂MAP can be quite close to each other, even when
ρ �= 1/2. Other values of σ2 and τ2 lead to similar orders of magnitude for
m̄1(x̂MAP ) and d(x̄MMS , x̂MAP ). While m̄1(x̂MAP ) increases with the dimen-
sion n, d(x̄MMS , x̂MAP ) does not appear sensitive to increasing dimension.

Remark: from numerical experiments, it appears that x̂MMS and x̂MAP may be
equal to one another. It is an open problem to mathematically prove or disprove
this equality (x̂MMS = x̂MAP ).
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3 Metropolis-Hastings

Often, the first step in Bayesian inference is sampling from the posterior density.
Here, this is π(x), given by (3). Since π(x) is known only up to normalisation,
a suitable sampling method is afforded by the Metropolis-Hastings algorithm.
This algorithm generates a Markov chain (xn ;n ≥ 1), with transition kernel [6]

Pf(x) =
∫

M

α(x, y)q(x, y)f(y)vol(dy) + ρ(x)f(x) (9)

for any bounded measurable f : M → R, where α(x, y) is the probability of
accepting a transition from x to dy, and ρ(x) is the probability of staying at x,
and where q(x, y) is the proposed transition density

q(x, y) ≥ 0 and
∫

M

q(x, y)vol(dy) = 1 for x ∈ M (10)

In the following, (xn) will be an isotropic Metropolis-Hastings chain, in the sense
that q(x, y) = q(d(x, y)) only depends on the distance d(x, y). In this case, the
acceptance probability α(x, y) is given by α(x, y) = min {1, π(y)/π(x)}.

The aim of the Metropolis-Hastings algorithm is to produce a Markov chain
(xn) which is geometrically ergodic. Geometric ergodicity means the distribution
πn of xn converges to π, at a geometric rate (that is, exponentially fast – See [3],
Theorem 15.0.2). If the chain (xn) is geometrically ergodic, then it satisfies the
strong law of large numbers (for any suitable function f : M → R) [3]

1
N

N∑
n=1

f(xn) −→
∫

M

f(x)π(dx) (almost-surely) (11)

as well as a corresponding central limit theorem (see [3], Theorem 17.0.1). Then,
in practice, the Metropolis-Hastings algorithm generates samples (x1, x2, . . .)
from the posterior density π(x).

In [7] (Chapter 4), the following general statement is proved, concerning the
geometric ergodicity of isotropic Metropolis-Hastings chains.

Proposition 2. Let M be a symmetric Hadamard space. Assume (xn ;n ≥ 1)
is a Markov chain in M , with transition kernel given by (9), with proposed
transition density q(x, y) = q(d(x, y)), and with strictly positive invariant density
π. The chain (xn) is geometrically ergodic if the following assumptions hold,
(a1) there exists x∗ ∈ M , such that r(x) = d(x∗, x) and �(x) = log π(x) satisfy

lim sup
r(x)→∞

〈grad r, grad �〉x

r(x)
< 0

(a2) if n(x) = grad �(x)‖grad �(x)‖ , then n(x) satisfies

lim sup
r(x)→∞

〈grad r, n〉x < 0

(a3) there exist δq > 0 and εq > 0 such that d(x, y) < δq implies q(x, y) > εq
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Remark: the posterior density π in (3) verifies the Assumptions (a1) and (a2).
To see this, let x∗ = z, and note that,

grad �(x) = − 1
τ2

r(x)grad r(x) − 1
σ2

grad fy(x)

where fy(x) = d2(x, y)/2. Then, taking the scalar product with grad r,

〈grad r, grad �〉x = − 1
τ2

r(x) − 1
σ2

〈grad r, grad fy〉x (12)

since grad r(x) is a unit vector [5] (see Page 41). Now, grad fy(x) = −Exp−1
x (y)

(Exp is the Riemannian exponential map). Since r(x) is a convex function of x,

r(y) − r(x) ≥ 〈grad r,Exp−1
x (y)〉

for any y ∈ M . Thus, the right-hand side of (12) is strictly negative, as soon as
r(x) > r(y), and Assumption (a1) is indeed verified. That Assumption (a2) is
also verified can be proved by a similar reasoning.

Remark: on the other hand, Assumption (a3) holds, if the proposed transition
density q(x, y) is a Gaussian density, q(x, y) = p(y|x, τ2

q ). In this way, all the
assumptions of Proposition 2 are verified, for the posterior density π in (3).
Proposition 2 therefore implies that the Metropolis-Hastings algorithm generates
geometrically ergodic samples from this posterior density.

4 The Empirical Barycentre

Let (xn ;n ≥ 1) be a Metropolis-Hastings Markov chain in M , with transition
kernel (9), and invariant density π. Assume that the chain (xn) is geometrically
ergodic, so it satisfies the strong law of large numbers (11).

Let x̄N denote the empirical barycentre of the first N samples (x1, . . . , xN ).
This is the unique global minimum of the variance function

EN (y) =
1

2N

N∑
n=1

d2(y, xn) (13)

Assuming it is well-defined, let x̂ denote the barycentre of the invariant density
π. It turns out that x̄N converges almost-surely to x̂.

Proposition 3. Let (xn) be any Markov chain in a Hadamard manifold M , with
invariant distribution π. Denote x̄N the empirical barycentre of (x1, . . . , xN ), and
x̂ the Riemannian barycentre of π (assuming it is well-defined). If (xn) satisfies
the strong law of large numbers (11), then x̄N converges to x̂, almost-surely.

According to the remarks after Proposition 2, the Metropolis-Hastings Markov
chain (xn), whose invariant density is the posterior density π(x), given by (3), is
geometrically ergodic. Then, by Proposition 3, the empirical barycentre x̄MMS ,
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of the samples (x1, . . . , xN ), converges almost-surely to the minimum mean
square error estimator x̂MMS (since this is the barycentre of the posterior den-
sity π). This provides a practical means of approximating x̂MMS . Indeed, x̄MMS

can be computed using the Riemannian gradient descent method, discussed in
the following section.

Remark: the proof of Proposition 3 is nearly a word-for-word repetition of the
proof in [1] (Theorem 2.3), which first established the strong consistency of
empirical barycentres (in [1], these are called Fréchet sample means). In [1], the
focus is on i.i.d. samples (x1, x2, . . .), but the proof only uses the strong law of
large numbers (11), and nowhere requires the samples to be independent.

5 Riemannian Gradient Descent

Since the minimum mean square error estimator x̂MMS could not be computed
directly, it was approximated by x̄MMS , the global minimum of the variance
function EN , defined as in (13). This function EN being (1/2)-strongly convex,
its global minimum can be computed using the Riemannian gradient descent
method, which even guarantees an exponential rate of convergence.

This method is here studied from a general point of view. The aim is to
minimise a function f : M → R, where M is a Hadamard manifold, with sectional
curvatures in the interval [−c2, 0], and f is an (α/2)-strongly convex function.

This means f is (α/2)-strongly convex along any geodesic in M . In particular,

f(y) − f(x) ≥ 〈Exp−1
x (y), grad f(x)〉x + (α/2)d2(x, y) (14)

for x, y ∈ M .
This implies that f has compact sublevel sets. Indeed, let x∗ be the global

minimum of f , so grad f(x∗) = 0. Putting x = x∗ and y = x in (14), it follows
that

f(x) − f(x∗) ≥ (α/2)d2(x∗, x) (15)

Accordingly, if S(y) is the sublevel set of y, then S(y) is contained in the closed
ball B̄(x∗, Ry), where Ry = (2/α)(f(y) − f(x∗)). Therefore, S(y) is compact,
since it is closed and bounded [5].

The Riemannian gradient descent method is based on the iterative scheme

xt+1 = Expxt(−μgrad f(xt)) (16)

where μ is a positive step-size, μ ≤ 1. If this is chosen sufficiently small, then the
iterates xt remain within the sublevel set S(x0). In fact, let B̄0 = B̄(x∗, Rx0) and
B̄′

0 = B̄(x∗, Rx0 + G), where G denotes the supremum of the norm of grad f(x),
taken over x ∈ B̄0. Then, let H ′

0 denote the supremum of the operator norm of
Hess f(x), taken over x ∈ B̄′

0.

Lemma 1. For the Riemannian gradient descent method (16), if μ ≤ 2/H ′
0,

then the iterates xt remain within the sublevel set S(x0).
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Once it has been ensured that the iterates xt remain within S(x0), it is even
possible to choose μ in such a way that these iterates achieve an exponential
rate of convergence towards x∗. This relies on the fact that x∗ is a “strongly
attractive” critical point of the vector field grad f . Specifically, putting y = x∗

in (14), it follows that

〈Exp−1
x (x∗), grad f(x)〉x ≤ − (α/2)d2(x, x∗) + (f(x∗) − f(x)) (17)

Now, let C0 = cRx0 coth(cRx0).

Proposition 4. Let H̄ ′
0 = max{H ′

0, 1}. If μ ≤ 1/(H̄ ′
0C

′
0) (this implies μ ≤

2/H ′
0) and μ ≤ 1/α, then the following exponential rate of convergence is

obtained
d2(xt, x∗) ≤ (1 − μα)td2(x0, x∗) (18)

A Symmetric Hadamard Spaces

The present work focuses on symmetric Hadamard spaces. These are Hadamard
manifolds which are also symmetric spaces. This class of spaces includes: spaces
of constant negative curvature (precisely, hyperbolic spaces), cones of covariance
matrices (real, complex, or quaternion), as well as Siegel domaines (recently used
in describing spaces of block-Toeplitz covariance matrices). These spaces play a
prominent role in several applications [2,4,8].

A.1 Hadamard Manifolds

Definition
A Hadamard manifold is a Riemannian manifold which is complete, simply
connected, and has negative sectional curvatures [5]. Completeness means that
geodesics extend indefinitely in both directions, and is equivalent to the prop-
erty that closed and bounded sets are compact (by the Hopf-Rinow theorem [5]).
The simple connectedness and negative curvature properties combine to ensure
that the Riemannian exponential map is a diffeomorphism. In particular, any
two points x, y in a Hadamard manifold M are connected by a unique length-
minimising geodesic c : [0, 1] → M , with c(0) = x, and dc/dt|t=0 = Exp−1

x (y).

Convexity
Now, this geodesic c : [0, 1] → M is called the segment between x and y. For
t ∈ [0, 1], the point x#t y = c(t) is said to be a geodesic convex combination of
x and y, with respective weights (1 − t) and t. In a Hadamard manifold [5], any
open geodesic ball B(x∗, R) (or any closed geodesic ball B̄(x∗, R)) is convex: if
x and y belong to this ball, so does x#t y for all t ∈ (0, 1).

A function f : M → R is called (α/2)-strongly convex, if (f ◦ c)(t) is an
(α/2)-strongly convex function of t, for any geodesic c : [0, 1] → M . That is, if
there exists α > 0, such that for any x and y in M , and t ∈ [0, 1],

f(x#t y) ≤ (1 − t)f(x) + tf(y) − (α/2)t(1 − t)d2(x, y) (19)



10 S. Said et al.

When f is C2-smooth, this is equivalent to (14).

Squared Distance Function
For y ∈ M , consider the function fy : M → R, where fy(x) = d2(x, y)/2. If M
is a Hadamard manifold, then this function has several remarkable properties.

Specifically, it is both smooth and (1/2)-strongly convex (irrespective of y).
It’s gradient is given by grad fy(x) = −Exp−1

x (y), in terms of the Riemannian
exponential map. On the other hand, on any geodesic ball B(y,R), the operator
norm of its Hessian is bounded by cR coth(cR), where c > 0 is such that the
sectional curvatures of M lie in the interval [−c2, 0] (see [5], Theorem 27).

A result of the strong convexity of these functions fy is the uniqueness of
Riemannian barycentres. If π is a probability distribution on M , its Riemannian
barycentre x̂π is the unique global minimiser of the so-called variance function
Eπ(x) =

∫
M

fy(x)π(dy). If M is a Hadamard manifold, each function fy is
(1/2)-strongly convex, and therefore Eπ is (1/2)-strongly convex. Thus, Eπ has
a unique global minimiser.

A.2 Symmetric Spaces

Definition
A Riemannian symmetric space is a Riemannian manifold M , such that for each
x ∈ M there exists an isometry sx : M → M , which fixes x and reverses geodesics
passing through x: if c is a geodesic curve with c(0) = x, then sx(c(t)) = c(−t).
As a consequence of this definition, a Riemannian symmetric space is always
complete and homogeneous. Completeness was discussed in Appendix A.1. On
the other hand, homogeneity means that for each x and y in M , there exists
an isometry g : M → M , with g(x) = y. A symmetric space M may always be
expressed as a quotient manifold M = G/K, where G is a certain Lie group of
isometries of M , and K is the subgroup of elements of G which fix some point
x ∈ M .

A Familiar Example
A familiar example of a symmetric Hadamard manifold is the cone Pd of d × d
symmetric positive-definite matrices, which was discussed in some length in [8,9].
A geodesic curve through x ∈ Pd is of the form c(t) = x exp(tx−1u) where exp is
the matrix exponential, and u a symmetric matrix, dc/dt|t=0 = u. The isometry
sx is given by sx(y) = xy−1x for y ∈ Pd, and one easily checks sx(c(t)) = c(−t).

Let G = GL(d,R) denote the group of invertible d × d real matrices. Then,
g ∈ G defines an isometry τg : Pd → Pd, given by τg(x) = gxg† († the transpose).
Typically, one writes τg(x) = g(x). Note that x = Id (the identity matrix) belongs
to Pd, and then g(x) = x if and only if g ∈ K, where K = O(d) is the orthogonal
group. In fact, one has the quotient manifold structure Pd = GL(d,R)/O(d).
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Abstract. Finite Sample Smeariness (FSS) has been recently discov-
ered. It means that the distribution of sample Fréchet means of underly-
ing rather unsuspicious random variables can behave as if it were smeary
for quite large regimes of finite sample sizes. In effect classical quantile-
based statistical testing procedures do not preserve nominal size, they
reject too often under the null hypothesis. Suitably designed bootstrap
tests, however, amend for FSS. On the circle it has been known that
arbitrarily sized FSS is possible, and that all distributions with a non-
vanishing density feature FSS. These results are extended to spheres
of arbitrary dimension. In particular all rotationally symmetric distribu-
tions, not necessarily supported on the entire sphere feature FSS of Type
I. While on the circle there is also FSS of Type II it is conjectured that
this is not possible on higher-dimensional spheres.

1 Introduction

In non-Euclidean statistics, the Fréchet mean [6] takes the role of the expected
value of a random vector in Euclidean statistics. Thus an enormous body of
literature has been devoted to the study of Fréchet means and its exploitation
for descriptive and inferential statistics [1,2,7,9,12]. For the latter, it was only
recently discovered that the asymptotics of Fréchet means may differ substan-
tially from that of its Euclidean kin [5,8]. They are called smeary, if the rate
of convergence of sample means to a limiting distribution is slower than the
usual Euclidean 1/

√
n where n denotes sample size. Initially, such examples

were rather exotic. More recently, however, it has been discovered by [11] that
also for a large class of classical distributions (e.g. all with nonvanishing den-
sities on the circle, like, e.g. all von-Mises-Fisher distributions) Fréchet means
behave in a regime up to considerable sample sizes as if they were smeary. We
call this effect finite sample smeariness (FSS), also the term lethargic means has
been suggested. Among others, this effect is highly relevant for asymptotic one-
and two-sample tests for equality of means. In this contribution, after making
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the new terminology precise, we illustrate the effect of FSS on statistical tests
concerning the change of wind directions in the larger picture of climate change.

Furthermore, while we have shown in [11] that FSS of any size can be present
on the circle and the torus, here we show in Theorem 6, using results from [3],
that FSS of arbitrary size is also present on spheres of arbitrary dimension, at
least for local Fréchet means. For such, on high dimensional spheres, distribu-
tions supported by barely more than a geodesic half ball may feature arbitrary
high FSS. Moreover, we show that the large class of rotationally symmetric dis-
tributions on spheres of arbitrary dimension, e.g. all Fisher distributions, feature
FSS. This means not only that the finite sample rate may be wrong, also the
rescaled asymptotic variance of Fréchet means may be considerably different
from the sample variance in tangent space. Although the modulation of FSS is
small for concentrated distributions, one has to take care to avoid these pitfalls.

2 Finite Sample Smeariness on Spheres

In this section, we introduce the concepts smeariness and finite sample smeari-
ness. While they extend at once to general manifolds, here, we restrict ourselves
to spheres. Let S

m be the unit sphere in R
m+1 for m > 1 and S

1 = [−π, π)/ ∼
with −π and π identified be the unit circle, with the distance

d(x, y) =
{

arccos(xT y) for x, y ∈ S
m,

min{|y − x|, 2π − |y − x|} for x, y ∈ S
1.

For random variables X1, . . . , Xn
i.i.d.∼ X on S

m , m ≥ 1, with silently underlying
probability space (Ω,P) we have the Fréchet functions

F (p) = E[d(X, p)2] and Fn(p) =
1
n

n∑
j=1

d(Xj , p)2 for p ∈ S
m . (1)

We work under the following assumptions. In particular, the third Assumption
below is justified by [15, Lemma 1].

Assumption 1. Assume that

1. X is not a.s. a single point,
2. there is a unique minimizer μ = argminp∈SmF(p), called the Fréchet popula-

tion mean,
3. for m > 1, μ is the north pole (1, 0, . . . , 0) and μ = 0 on S

1,
4. μ̂n ∈ argminp∈SmFn(p) is a selection from the set of minimizers uniform with

respect to the Riemannian volume, called a Fréchet sample mean,

Note that P{X = −μ} = 0 for m > 1 and P{X = −π} = 0 on S
1 due to

[8,12].
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Definition 2. We have the population variance

V := F (μ) = E[d(X,μ)2] ,

which on S
1 is just the classical variance V[X], and the Fréchet sample mean

variance
Vn := E[d(μ̂n, μ)2]

giving rise to the modulation

mn :=
nVn

V
.

Conjecture 3. Consider X1, . . . , Xn
i.i.d.∼ X on S

1 and suppose that J ⊆ S
1 is

the support of X. Assume Assumption 1 and let n > 1.
Then mn = 1 under any of the two following conditions

(i) J is strictly contained in a closed half circle,
(ii) J is a closed half circle and one of its end points is assumed by X with zero

probability.

Further, mn > 1 under any of the two following conditions

(iii) the interior of J contains a closed half circle,
(iv) J contains two antipodal points, each of which is assumed by X with positive

probability.

Finally, suppose that X has near −π a continuous density f .

(v) If f(−π) = 0 then limn→∞ mn = 1,
(vi) if 0 < f(−π) < 1

2π then limn→∞ mn = 1
(1−2πf(−π))2 > 1 .

For μ = 0, claims (i) and (ii) follow from Equation (10) in [8] which yields
μ̂n = n−1

∑n
i=1 Xi, thus nVn = E[X2] = V . The rest of the conjecture will be

proved in a future version of [11]. In [8] it has been shown that 2πf(−π) can be
arbitrary close to 1, i.e. that limn→∞ mn can be arbitrary large. In fact, whenever
2πf(−π) = 1, then limn→∞ mn = ∞. These findings give rise to the following.

Definition 4. We say that X is

(i) Euclidean if mn = 1 for all n ∈ N,
(ii) finite sample smeary if 1 < supn∈N mn < ∞,
(ii1) Type I finite sample smeary if limn→∞ mn > 1,
(ii2) Type II finite sample smeary if limn→∞ mn = 1,

(iii) smeary if supn∈N mn = ∞.
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3 Why is Finite Sample Smeariness Called Finite Sample
Smeariness?

Under FSS on the circle in simulations we see typical shapes of modulation
curves in Fig. 1. For statistical testing, usually building on smaller sample sizes,
as detailed further in Sect. 4, the initial regime is decisive, cf. Fig. 2:

There are constants C+, C−,K > 0, 0 < α− < α+ < 1 and integers 1 <
n− < n+ < n0 satisfying C+n

α+
− ≤ C−n

α−
+ , such that

(a) ∀n ∈ [n−, n+] ∩ N : 1 < C−nα− ≤ mn ≤ C+nα+ .
(b) ∀n ∈ [n0,∞) ∩ N : mn ≤ K.
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Fig. 1. Modulation mn for von Mises distribution (Mardia & Jupp, 2000) with mean
μ = 0 and concentration κ = 1/2 (left), conditioned on [−π +0.2, π −0.2] (center), and
conditioned on [−π, −π + 0.1] ∪ [−π + 0.2, π + 0.2] ∪ [π − 0.1, π) (right). The dashed
lines represent the respective limits of mn obtained by Conjecture 3 (v), (vi).

Although under FSS, mn is eventually constant, i.e. the asymptotic rate of μ̂n

is the classical n−1/2, for nonvanishing intervals of sample sizes [n−, n+], the
“finite sample” rate is (in expectation) between

(
n− 1

2 <
)

n− 1−α−
2 and n− 1−α+

2 ,

i.e. like a smeary rate, cf. [11].
Of course, as illustrated in Fig. 1, the modulation curve can be subject to

different regimes of α− and α+, in applications, typically the first regime is of
interest, cf. Sect. 4.
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Fig. 2. Schematically illustrating the modulation curve n �→ mn for FSS on the circle.
Along [n−, n+] the curve is between the lower (C−nα−) and upper (C+nα+) bounds
(dashed), satisfying the condition C+n

α+
− ≤ C−n

α−
+ , and for n ≥ n0 it is below the

horizontal upper bound (dashed).

4 Correcting for Finite Sample Smeariness in Statistical
Testing

The central limit theorem by [2] and [7] for an m-dimensional manifold M , cf.
also [1,9,10] for sample Fréchet means μ̂n, has been extended by [5] to random
variables no longer avoiding arbitrary neighborhoods of possible cut points of
the Fréchet mean μ. Under nonsmeariness it has the following form:

√
n φ(μ̂n) D→ N (

0, 4H−1ΣH−1
)

.

Here φ : M → R
m is a local chart mapping μ to the origin of Rm, H is the

expected value of the Hessian of the Fréchet function F from (1) in that chart
at μ and Σ is the covariance of φ(X). In practical applications, H is usually
ignored, as it has got no straightforward plugin estimators, and 4H−1ΣH−1 is
simply estimated by the empirical covariance Σ̂n of φ(X1), . . . , φ(Xn) giving rise
to the approximation

nφ(μ̂n)T Σ̂−1
n φ(μ̂n) D→ χ2

m , (2)

e.g. [1,2]. For finite samples sizes, this approximation depends crucially on

mn =
E[n‖φ(μ̂n)‖2]
E[trace(Σ̂n)]

= 1 ,

and it is bad in regimes whenever mn  1.
This is illustrated in Fig. 3 where two samples from von Mises distributions

with concentration κ = 1/2 are tested for equality of Fréchet means. Indeed the
quantile based test does not keep the nominal level, whereas the bootstrap based
test, see [4], keeps the level fairly well and is shown to be consistent under FSS
on S

1, cf. [11].
Moreover, Table 1 shows a comparison of p-values of the quantile test based

on (2) and the suitably designed bootstrap test for daily wind directions taken at
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Fig. 3. Empirical rejection probabilities of quantile based tests (red) and bootstrap
based tests (blue) to test for significance 95% if two samples of size n = 50 (left) and n =
100 (right) have identical Fréchet means. The two samples are taken independently from
a von Mises distribution with mean μ = 0 and μ = p, respectively, and concentration
κ = 1/2. The dashed line represents 5%.

Table 1. Comparing p-values of the quantile based test for equality of means of yearly
wind data from Basel (Fig. 4), based on (2) with the bootstrap test amending for FSS
proposed in [11] for B = 10.000 bootstrap realizations.

p-value 2018 vs. 2019 2019 vs. 2020 2018 vs. 2020

Quantile based test 0.00071 0.27 0.019

Bootstrap based test 0.047 0.59 0.21
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Fig. 4. Histograms of daily wind directions for Basel (provided by meteoblue AG) for
2018 (left), 2019 (center), and 2020 (right).

Basel for the years 2018, 2019, and 2020, cf. Fig. 4. While the quantile based test
asserts that the year 2018 is highly significantly different from 2019 and 2020,
the bootstrap based test shows that a significant difference can be asserted at
most for the comparison between 2018 and 2019. The reason for the difference
in p-values between quantile and bootstrap based test is the presence of FSS in
the data, i.e. mn  1. Indeed, estimating for n = 365 the modulation mn of the
yearly data using B = 10.000 bootstrap repetitions, as further detailed in [11],
yields m2018

n = 2.99, m2019
n = 2.97, and m2020

n = 4.08.



18 B. Eltzner et al.

5 Finite Sample Smeariness Universality

Consider p ∈ S
m parametrized as (θ, sin θq) ∈ S

m where θ ∈ [0, π] denotes
distance from the north pole μ ∈ S

m and q ∈ S
m−1, which is rescaled by sin θ.

Theorem 5. Let m ≥ 4, Y uniformly distributed on S
m−1 and K > 1 arbitrary.

Then there are θ∗ ∈ (π/2, π) and α ∈ (0, 1) such that for every θ ∈ (θ∗, π) a
random variable X on S

m with P{X = (θ, sin θ Y )} = α and P{X = μ} = 1 − α
features sup

n∈N

mn ≥ lim
n→∞mn > K. In particular, θ∗ = π

2 + O(m−1) .

Proof. The first assertion follows from [3, Theorem 4.3] and its proof in Appendix
A.5 there. Notably θ∗ = θm,4 there. The second assertion has been shown in [3,
Lemma A.5].

Theorem 6. Let X be a random variable on S
m with m ≥ 2 with unique non-

smeary mean μ, whose distribution measure is invariant under rotation around
μ and is not a point mass at μ. Then μ is Type I finite sample smeary.

Proof. From [3], page 17, we see that the Fréchet function F (θ) for a uniform
distribution on the S

m−1 at polar angle θ evaluated at a point with polar angle
ψ from the north pole is

a(ψ, θ, φ) := arccos (cos ψ cos θ + sin ψ sin θ cos φ)

F (θ)(ψ) =
(∫ 2π

0

sinm−2 φ dφ

)−1 ∫ 2π

0

sinm−2 φ a2(ψ, θ, φ) dφ .

Defining a probability measure dP(θ) on [0, π], the Fréchet function for the cor-
responding rotation invariant random variable is

F (ψ) =
∫ π

0

F (θ)(ψ) dP(θ) .

On page 17 of [3] the function

f2(θ, ψ) :=
1
2

sinm−1 θ

∫ 2π

0

sinm−2 φ dφ
d2

dψ2
F (θ)(ψ)

is defined and from Eq. (5) on page 19 we can calculate

f2(θ, 0) = sinm−2 θ

(
1

m − 1
sin θ + θ cos θ

)∫ 2π

0

sinm φ dφ

= sinm−1 θ

∫ 2π

0

sinm−2 φ dφ

(
1
m

+
m − 1

m
θ cot θ

)
,

which yields the Hessian of the Fréchet function for dP(θ) as

HessF (0) = 2Idm

∫ π

0

(
1
m

+
m − 1

m
θ cot θ

)
dP(θ) .
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One sees that θ cot θ ≤ 0 for θ ≥ π/2. For θ ∈ (0, π/2) we have

tan θ > θ ⇔ θ cot θ < 1 ⇔
(

1
m

+
m − 1

m
θ cot θ

)
< 1 .

Using Σ[μ] to denote the CLT limit nCov[μ̂n] → Σ[μ], cf. [2], we get the result

HessF (μ) < 2Idm ⇒ Σ[μ] > Cov
[
logμ X

] ⇒ trace (Σ[μ]) > Var[X] .

The claim follows at once.

Conjecture 7. Let X be a random variable supported on a set A ⊂ S
m whose

convex closure has nonzero volume and which has a unique mean μ. Then μ is
Type I finite sample smeary.
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Abstract. We consider the challenging problem of computing normal-
ization factors of Gaussian distributions on certain Riemannian symmet-
ric spaces. In some cases, such as the space of Hermitian positive definite
matrices or hyperbolic space, it is possible to compute them exactly using
techniques from random matrix theory. However, in most cases which
are important to applications, such as the space of symmetric positive
definite (SPD) matrices or the Siegel domain, this is only possible numer-
ically. Moreover, when we consider, for instance, high-dimensional SPD
matrices, the known algorithms can become exceedingly slow. Motivated
by notions from theoretical physics, we will discuss how to approximate
these normalization factors in the large N limit: an approximation that
gets increasingly better as the dimension of the underlying symmetric
space (more precisely, its rank) gets larger. We will give formulas for
leading order terms in the case of SPD matrices and related spaces. Fur-
thermore, we will characterize the large N limit of the Siegel domain
through a singular integral equation arising as a saddle-point equation.

Keywords: Gaussian distributions · Riemannian symmetric spaces ·
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1 Gaussian Distributions on Riemannian Symmetric
Spaces

It is widely known that an isotropic Gaussian distribution on R
N takes the form

pRN (x; x̄, σ) = (2πσ)−n/2 exp(− 1
2σ2 (x − x̄)2), where x̄ and σ denote the mean

and standard deviation, respectively. Gaussian distributions can naturally be
generalized to Riemannian manifolds (M, g) with the property
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ZM (x̄, σ) :=
∫

M

exp(− 1
2σ2

dg(x, x̄)2) dvolg(x) < ∞, (1)

where dvolg(x) denotes the Riemannian volume measure on M and dg : M ×
M → R denotes the induced Riemannian distance function. ZM will be referred
to as the partition function. In this case,

pM (x; x̄, σ) :=
1

ZM (x̄, σ)
exp(− 1

2σ2
dg(x, x̄)2), (2)

is a well-defined probability distribution on M .
In numerous applications requiring the statistical analysis of manifold-valued

data, it is important to be able to compute the partition function ZM . A key
difference between pRN and pM in general is that ZM is typically a complicated
integral while ZRN (x̄, σ) = (2πσ)n/2 is readily available. On a general Rieman-
nian manifold, ZM will depend in a highly non-linear and intractable way on the
mean x̄ as the dominant contribution to ZM will come from local data such as
the curvature at x̄. Hence, to have a chance of actually computing the full parti-
tion function analytically, we should restrict to spaces that look the same locally
at any point. Riemannian symmetric spaces formalize this intuition and we are
fortunate that precisely such spaces appear in most applications of interest (see,
for example, [2,4,6,10–12,18]).

Definition 1. A Riemannian symmetric space is a Riemannian manifold
(M, g) such that for each point p ∈ M there is a global isometry sp : M → M
such that sp(p) = p and dpsp = −idTpM , where dpsp is the differential of sp at
p and idTpM denotes the identity operator on the tangent space TpM .

In the general theory of symmetric spaces [3,5], it can be shown that any
symmetric space is isomorphic to a quotient of Lie groups M ∼= G/H, where H
is a compact Lie subgroup of G, and that integrals over M can be reduced to
integrals over the respective Lie groups and their Lie algebras (more precisely,
certain subspaces thereof) by the following proposition [12].

Proposition 2. Given an integrable function on a non-compact symmetric
space (M = G/H, g), we can integrate in the following way:

∫
M

f(x)dvolg(x) = C

∫
H

∫
a

f(a, h)D(a)dadh (3)

where dh is the normalized Haar measure on H and da is the Lebesgue measure
on a certain subspace a ⊂ g = Lie(G) [5,12]. The function D : a → R

+ is given
by the following product over roots λ : a → R

+ (with mλ-dimensional root space)
D(a) =

∏
λ>0 sinhmλ(|λ(a)|).

Proposition 2 and the fact that its isometry group acts transitively on a sym-
metric space allows us to prove that the partition function of a symmetric space
does not depend on x̄: ZG/H(x̄, σ) = ZG/H(σ) (see [12]). Moreover, with Propo-
sition 2 at hand, the problem of determining ZG/H reduces to calculating an inte-
gral over a, which is a linear space. Computing the resulting integrals can now



22 S. Heuveline et al.

be achieved numerically using a specifically designed Monte-Carlo algorithm [11].
Even though this works well for small dimensions, a ∼= R

N is typically still a
high-dimensional vector space when G/H is high-dimensional. The known algo-
rithms start to break down for N ≈ 40 [12], even though cases involving N > 250
are of relevance to applications such as electroencephalogram (EEG) based brain-
computer interfaces [2,15]. It should be noted as an aside, however, that for some
spaces, N does not depend on the dimension of the underlying symmetric space.
For instance, in hyperbolic d-space, N = 1 independently of d [6].

Fortunately, for the space of positive definite Hermitian matrices, the result-
ing integrals have previously been studied in the context of Chern-Simons theory
[8,17] and, in fact, they fit within the general theory of random matrices [9]. In
this paper, we will extend such approaches to study the corresponding integrals
for a broader range of symmetric spaces of interest, including the space of sym-
metric positive definite (SPD) matrices and the Siegel domain. We should like
to note that we have recently discovered that ideas similar to the ones explored
in this paper were developed independently by [14] from a slightly different per-
spective, which we will draw attention to throughout this work. However, we
expect that our work will complement [14] by providing a stronger emphasis on
the large N limit, including an analysis of the saddle-point equation.

2 Partition Functions at Finite N and Random Matrices

Motivated by applications, we will study the following spaces:

1. The spaces of symmetric, Hermitian and quaternionic Hermitian positive
definite matrices will be denoted by PF(N) ∼= GL(N,F)/K where K ∈
{U(N),O(N), Sp(N)} for F ∈ {R,C,H}, respectively. In each case, a ⊂
Lie(GL(N,F)) ∼= End(N,F) is the N -dimensional space of diagonal matri-
ces. We will denote the partition functions by Zβ(σ) where β ∈ {1, 2, 4},
respectively. P(N) := PR(N) is commonly referred to as the space of SPD
matrices.

2. The Siegel domain D(N) ∼= Sp(2N,R)/U(N) is the space of complex sym-
metric N × N matrices z such that the imaginary part Im(z) is a positive
definite matrix. We will denote its partition function by ZS .

Using Proposition 2, it can be seen [6] that their respective partition functions
are given by

Zβ(σ) =
CN,β(σ)
(2π)NN !

∫
RN

+

N∏
i=1

(
exp

( − log2(ui)
2σ2

))|Δ(u)|β
N∏

i=1

dui (4)

where Δ(u) :=
∏

i<j(ui − uj) is the Vandermonde determinant, CN,β(σ) :=
ωβ(N)(2π)N

2NNβ
exp

(
− NN2

β
σ2

2

)
and Nβ := β

2 (N − 1) + 1. This is in the well-known
form of a random matrix partition function:

Z(σ) =
∫
(a,b)N

N∏
i=1

(
exp

( − V (ui;σ))
)
|Δ(u)|β

N∏
i=1

dui, (5)
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even though the potential takes the non-standard form VSW (x;σ) := 1
2σ2 log2(x)

in our case. For instance, with the quadratic potential VQ(x;σ) := 1
2σ2 x2, the

random matrix partition function from Equation (5) corresponds to the famous
orthogonal, unitary and symplectic random matrix ensembles for β ∈ {1, 2, 4},
respectively [9], on which we will comment further in Example 8. In fact, matrix
models with the potential VSW also appear in the physics literature as the par-
tition functions of U(N) Chern-Simons theory on S3 ([8,17]). Moreover, the
large N limit of U(N) Chern-Simons theory is of physical interest and has been
well studied in the theoretical and mathematical physics literature such as [7]
Chap. 36.2 and [1], which motivates Sect. 3. ZS also turns out to be of the form
(5) with β = 1 and the potential VS(u;σ) := log2(u+

√
u2−1)

8σ2 :

ZS(σ) = vol(U(N))2
N(N+1)

2 N !
∫
(1,∞)N

N∏
i=1

exp
( − VS(ui;σ)

)
Δ(u)

N∏
i=1

dui. (6)

Integrals of the form (5) can generally be calculated, by bringing the Vander-
monde determinant to a suitable form involving orthogonal or skew-orthogonal
polynomials.

Definition 3. Let V : (a, b) → R be a given potential. A set of polynomials
{Ri : i = 1, . . . , N}, with Rj(x) = ajx

j + . . . being of degree j is called

1. orthogonal with potential V if they form an orthonormal basis for the
space of degree N polynomials with respect to the inner product

〈f, g〉2 =
∫ b

a

exp
( − V (x)

)
f(x)g(x)dx. (7)

2. skew-orthogonal with potential V if they bring the skew-symmetric prod-
uct

1
2
〈f, g〉1 =

∫ b

a

∫ b

a

f(x)g(y) sign(x − y) exp(−V (x)) exp(−V (y))dxdy (8)

to the standard form, meaning
{

〈R2k, R2l〉1 = 〈R2k+1, R2l+1〉1 = 0
〈R2k, R2l+1〉1 = −〈R2l+1, R2k〉1 = δkl.

(9)

If we are given orthogonal or skew-orthogonal polynomials for a given poten-
tial V , then its corresponding partition function with β = 1 or β = 2, respec-
tively, can be calculated in terms of the polynomials’ leading order coefficients
[9]. A similar story, which we will not go into also works for the quaternionic
case β = 4. Fortunately, orthogonal polynomials for the potential VSW have
previously appeared in the literature as Stieltjes-Wigert polynomials [16],
which can be used to arrive at the following result [6].
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Proposition 4. The partition function Z2 for PC(N) is given by

Z2(σ) =
ω2(N)
2N2 (2πσ2)

N
2 exp

(
(N3 − N)

σ2

6

) N−1∏
k=1

(1 − e−kσ2
)N−k.

Unfortunately, even though [14] provides explicit calculations for the first few
skew-orthogonal polynomials of VSW , general expressions for such polynomials
have yet to be found as noted in [6,14]. However, if we let ai and bi denote the
leading order coefficients of skew-orthogonal polynomials {Pi = aix

i + . . . |i =
1, . . . , N} for VSW and skew-orthogonal polynomials {Qi = bix

i + . . . |i =
1, . . . , N} for VS , respectively, then we can obtain exact formulas for Z1 and
ZS at finite N in terms of ai and bi [6]. For technical convenience, we will focus
on the even-dimensional cases (N = 2m) in this work. The odd-dimensional
cases can be treated in a similar manner subject to a number of technical mod-
ifications. See [14] for details on the treatment of the odd-dimensional case.

Proposition 5. If N = 2m, the partition functions Z1 and ZS are given by

Z1(σ) =
ω1(N)
2Nm

exp
( − N((N − 1)/2 + 1)2(σ2/2)

)( N∏
l=1

al

)−1

(10)

ZS(σ) = vol(U(N))2m2(N+1)

( N∏
l=1

bl

)−1

. (11)

The coefficients ai and bi can be found by bringing the inner product (8) into
the standard form (9), which can be achieved numerically via a symplectic Gram-
Schmidt algorithm [13]. Nonetheless, such a computation becomes exceedingly
challenging for large N , which motivates the consideration of the large N limit
provided in the following section.

3 Partition Functions in the Large N Limit and the
Saddle-Point Equation

We will now change our point of view and compute the large N limit of the
partition function Z, rather than try to compute it at finite N . Here, the large
N limit specifically refers to the limit where N → ∞ while the ‘t Hooft
parameter t := σ2N is kept fixed. In this limit, Z has an asymptotic expansion
in N−2, known as the genus expansion [6,8]: log(Z(σ)) ∼ ∑∞

g=0 fg(t)N2−2g.
The first term in this series becomes an increasingly good approximation as N
gets larger, which is very useful since we are able to compute it.

Since fixing t implies that σ2 → 0, the large N limit is also referred to as
the double scaling limit [14]. Interestingly, one may also consider other limits
such as σ2 → 0 and σ2 → ∞ while N is fixed, which we will not consider in this
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work (see [14] (II, 3. a, b) for further details). In the case of Z2, the large N
limit can be directly computed from Proposition 4 and is found to be

1
N2

log(Z2(σ)) ∼ −1
2

log
(

2N

π

)
+

3
4

+
t

6
− Li3(e−t) − ζ(3)

t2
(12)

where Li3(x) :=
∞∑

k=1

xk

k3 (for |x| < 1) is the trilogarithm.

Equation (12) crucially relies on having a closed form expression for the
partition function Z2 for any finite N in the first place (Proposition 4). This is
not the case for Z1 and ZS , since we do not know the asymptotics of ai and
bi from Proposition 5. Therefore, we will now discuss a different, more powerful
approach to the large N limit inspired by ideas from theoretical physics: a saddle-
point approximation. This will enable us to directly obtain the large N limit of
Z2 in Proposition 9 by solving a certain singular integral equation, the saddle-
point equation.

As above, we split Zβ(σ) = CN,β(σ)Z̃β(σ), where Z̃β is in an appropriate
form for the use of saddle-point methods as discussed in [8] (Equation (1.46)):

Z̃β(σ) =
1

N !

∫
RN

+

exp
(
N2ṼSW (λ, β; t)

) N∏
k=1

dλk

2π
, (13)

where we have introduced the effective potential:

ṼSW (λ, β; t) := − 1
2tN

N∑
i=1

log2(λi) +
β

N2

∑
i<j

log |λi − λj |. (14)

In the large N limit, the dominant contributions to Z̃β will come from the saddle
points of ṼSW . Note that this is analogous to a semiclassical limit, which
is further discussed in [6]. For the Siegel domain, we have a similar effective
potential, which takes the form

ṼS (λ; t) := − 1
8tN

N∑
i=1

log2
(

λi +
√

λ2
i − 1

)
+

1
N2

∑
i<j

log |λi − λj |. (15)

Remark 6. The effective potential ṼSW gives rise to a physical interpretation
of the theory and its large N limit: the N eigenvalues can be seen as static par-
ticles in the potential VSW interacting through a logarithmic Coulomb repulsion
(the second term of the effective potential). As σ2 = t

N decreases, the repulsion
becomes weak and all particles can sit next to each other close to the minimum
of the potential (λ = 1), while the particles tend to spread out for large σ2

as observed in Fig. 1. Now, the large N limit can be seen to correspond to the
addition of more and more particles (i.e. N → ∞) while letting their repulsion
become increasingly weak (fixing t = Nσ2). Finding the limiting distribution ρt

(that still depends on t) turns out to characterize the large N limit of the parti-
tion function. It can be obtained by solving the saddle-point equation for Ṽ in a
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continuum limit as discussed below. Motivated by the physics literature, we will
refer to this ρt as the master field. In the random matrix theory literature, this
approach is known as the Coulomb gas method [9].

Remark 7. A further observation, from the effective action (14) is that up to
an overall factor of Ṽ (which leaves the saddle-point equation invariant), we can
absorb the β by rescaling t 
→ t/β. So, in the large N limit, Z̃β(σ) ∼ Z̃2(

√
β/2 σ)

irrespective of the choice of β ∈ {1, 2, 4}, which is remarkable considering the
quite distinct geometric origins associated with the different values of β. We
refer to this phenomenon as universality: the three cases K ∈ {R,C,H} start
out differently, but “flow” to a universal limit (characterized by the master field)
as N → ∞. This is specially useful for the particularly important case of β = 1,
which can now be related to the large N limit of Z2 derived in Equation (12):

1
N2

log(Zβ(σ)) ∼ 1
N2

⎡
⎣log

(
Z2

(√
β
2σ

))
− log

⎛
⎝ C∞,β(σ)

C∞,2(
√

β
2σ)

⎞
⎠

⎤
⎦ (16)

where C∞,β are the large N limits of the prefactors, which are discussed in [6].
Below, we will give another formula for the large N limit of Zβ, by solving the
saddle-point equation explicitly.

Example 8 (Wigner’s semicircle law). For simplicity, since VQ(λ;σ) =
1

2σ2 λ2 has a simpler form than VSW or VS yet illustrates all the necessary
ideas, we will begin by considering its saddle-point equation. As motivated in
Remark 6 and following [8] ((1.47)–(1.53)), we are interested in the saddle
points of the effective potential, which in this case reads ṼQ(λ; t) := − 1

tN

∑
i λ2

i +
β

N2

∑
i<j log |λi −λj | in analogy with equations (14) and (15). The saddle points

are characterized by d
dλk

ṼQ (λ; t) = 0 for all k = 1, . . . , N , which is simply

1
βt

λk =
1
N

∑
j �=k

1
λk − λj

=: P

(∫
ρt,N (λ′)
λ′ − λk

dλ′
)

(17)

where ρt,N is formally given by ρt,N (λ) = 1
N

∑
j δ(λ − λj) and P is a discrete

Cauchy principal value. The large N limit can now be regarded as a continuum
limit, in which ρt,N becomes a continuous function ρt. Equation (17) becomes

1
βt

λ = P

(∫ ∞

−∞

ρt(λ′)dλ′

λ − λ′

)
⇐⇒ 1

2t
λ = P

(∫ ∞

−∞

ρ 2
β t(λ′)dλ′

λ − λ′

)
(18)

where now P is the actual Cauchy principal value. The saddle-point equation
(18) can be solved using resolvent methods and in [8] (Equation (1.82)) it
is shown that the solution in this case is simply a semicircle of radius 2

√
t:

ρQ
t (λ) = 1

2πt

√
4t − λ2χC(t)(λ), where χC(t) denotes the characteristic function

supported on the interval C(t) = [−2
√

t, 2
√

t]. This celebrated semicircle law was
first derived by Wigner in 1955 [19].
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Fig. 1. The master field ρQ
βt/2 of Wigner’s semicircle law (left) and ρSW

βt/2 (right) for

fixed t = 1/4 and different choices of β. The red, blue and green curves correspond to
the real, complex and quaternionic cases, respectively (β = 1, 2, 4).

In fact, the steps of Example 8 that lead to the saddle-point equation (18)
can be performed analogously for the potentials VSW and VS . Moreover, the
saddle-point equation for VSW can even be solved analytically using resolvent
methods [6,8], which leads to the following result.

Proposition 9. Let β > 0. If N → ∞ while the ‘t Hooft parameter t = Nσ2 is
fixed, we get

1
N2

log(Z̃β(σ)) ∼ Funi

(
β

2
t

)
+ O(N−2) (19)

where

Funi(t) = − 1
2t

∫
C(t)

ρSW
t (λ) log2 λ dλ +

∫
C(t)2

ρSW
t (λ)ρSW

t (λ′) log(|λ − λ′|)dλdλ′

and the master field ρSW
t is given by

ρSW
t (λ) =

1
πtλ

tan−1

[√
4λ − (1 + e−tλ)2

1 + e−tλ

]
χC(t) (20)

where C(t) = [2e2t − et + 2e
3t
2
√

et − 1, 2e2t − et − 2e
3t
2
√

et − 1].

In Fig. 1, Wigner’s semicircle distribution ρQ
t is plotted alongside ρSW

t for
different choices of β ∈ {1, 2, 4}. It can be observed that as t decreases (or equiv-
alently, β decreases), the distibutions tend to concentrate around the classical
minima λ = 0 (for VQ) and λ = 1 (for VSW ). Conversely, they tend to spread
out as t increases.

Finally, we note a similar equation that characterizes the master field in the
case of the Siegel domain:

log
(
λ +

√
λ2 − 1

)
4t

√
λ2 − 1

= P

(∫ ∞

1

ρS
t (λ′)dλ′

λ − λ′

)
. (21)
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At present, we are unaware of a solution to this equation and finding one either
numerically or using resolvent methods is to be carried out in future work.
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Abstract. Fréchet means are indispensable for nonparametric statistics
on non-Euclidean spaces. For suitable random variables, in some sense,
they “sense” topological and geometric structure. In particular, smeari-
ness seems to indicate the presence of positive curvature. While smeariness
may be considered more as an academical curiosity, occurring rarely, it has
been recently demonstrated that finite sample smeariness (FSS) occurs
regularly on circles, tori and spheres and affects a large class of typical
probability distributions. FSS can be well described by the modulation
measuring the quotient of rescaled expected sample mean variance and
population variance. Under FSS it is larger than one – that is its value
on Euclidean spaces – and this makes quantile based tests using tangent
space approximations inapplicable. We show here that near smeary prob-
ability distributions there are always FSS probability distributions and as
a first step towards the conjecture that all compact spaces feature smeary
distributions, we establish directional smeariness under curvature bounds.

1 Introduction

For nonparametric statistics of manifold data, the Fréchet mean plays a central
role, both in descriptive and inferential statistics. For quite some while it was
assumed that its asymptotics can be approximated under very general conditions
by that of means of data projected to a suitable tangent space, e.g. [1,2,7,9,10].
Under existence of second moments, these follow a classical central limit theo-
rem. In the last decade, however, other asymptotic regimes have been discovered,
yielding so called smeary limiting rates, limiting rates that are slower than the
classical n−1/2, where n denotes sample size, e.g. [5,8]. While such smeary dis-
tributions are rather exceptional, more recently, it was discovered that these
exceptional distributions affect the asymptotics of a large class of otherwise
unsuspicious distributions, for instance all Fisher-von-Mises distributions on the
circle, cf. [11]: for rather high sample sizes the rates are slower than n−1/2 and
eventually an asymptotic variance can be reached that is higher than that of
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tangent space data. While this effect on the circle and the sphere is explored in
more detail by [6], here we concentrate on rather general manifolds and discuss
recent findings concerning two conjectures.

Conjecture 1

(a) Whenever there is a random variable featuring smeariness, there are nearby
random variables featuring finite sample smeariness.

(b) All compact Riemannian manifolds feature smeariness.

Here, we prove Conjecture (a) under the rather general concept of power
smeariness and Conjecture (b) for directional smeariness under curvature
bounds. We also provide for simulations, showing that classical quantile based
tests fail under the presence of finite sample smeariness, suitably designed boot-
strap tests, however, amend for it.

2 Assumptions, Notation and Definitions

Let M be a complete Riemannian manifold of dimension m ∈ N with induced
distance d on M . Random variables X1, . . . , Xn

i.i.d.∼ X on M with silently under-
lying probability space (Ω,P) induce Fréchet functions

F (p) = E[d(X, p)2] and Fn(p) =
1
n

n∑

j=1

d(Xj , p)2 for p ∈ M.

We also write FX and FX
n to refer to the underlying X.

Lemma 2. If F (p) < ∞ for some p ∈ M , the set of minimizers argminp∈M F (p)
is not void and compact. In particular, argminp∈M Fn(p) admits a probability
measure.

Proof. If F (p) < ∞ for some p ∈ M , then due to the triangle inequality F (p) <
∞ for all p ∈ M . Further, by the completeness of M a minimizer of the Fréchet
function is assumed, by continuity the set of minimizers is closed and due to

d(μ1, μ2) ≤ E[d(μ1,X)] + E[d(μ2,X)] ≤
√

E[d(μ1,X)2] +
√

E[d(μ2,X)2]

it is bounded. Due to [13], M can be isometrically embedded in a finite dimensional
Euclidean space, hence the set of minimizers is compact. Thus one can define prob-
ability measures on the set of minimizers on F (p), and as well on Fn(p).

We work under the following additional assumptions.

Assumption 3. Assume

1. X is not a.s. a single point,
2. F (p) < ∞ for some p ∈ M ,
3. there is a unique minimizer μ = argminp∈M F (p), called the Fréchet popula-

tion mean,
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4. μ̂n ∈ argminp∈M Fn(p) is a measurable selection from the empirical mean set,
called a Fréchet empirical mean,

5. and that the cut locus Cut(μ) of μ is either void or can be reached by two
different geodesics from μ.

The last point ensures that P{X ∈ Cut(μ)} = 0 due to [12].

Definition 4. With the Riemannian exponential expμ, well defined on the tan-
gent space TμM , let

ρ(X,x) := d(X, expμ x)2,
f(x) := F (expμ(x)),

fn(x) := Fn(expμ(x)).

We also write fX and fX
n to refer to the underlying X. Further, with the Rie-

mannian logarithm logμ p = (expμ)−1(p), well defined outside of Cut(μ), we
have, for x ∈ TμM close to 0,

ρ(X,x) = ‖ logμ X − x‖2 + O(‖x‖2). (1)

We define

i. the population variance

V := F (μ) = f(0) = E[d(X,μ)2] = trace
(
Cov[logμ X]

)
;

ii. the Fréchet sample mean variance

Vn := E[d(μ̂n, μ)2]; and

iii. the modulation

mn :=
nVn

V
.

We shall also write x̂n := logμ μ̂n for the image of the empirical Fréchet mean
μ̂n in the tangent space at μ. Again, if necessary, we write V X , V X

n , μ̂X
n , x̂X

n and
mX

n to refer to the underlying X.

Remark 5. The modulation factor mn was introduced in [15] to indicate the
influence of curvature on the rate of convergence of Fréchet empirical mean.

Assumption 6. In order to reduce notational complexity, we also assume that

f(x) =
m∑

j=1

Tj |(Rx)j |r+2 + o(‖x‖r+2) (2)

with some r ≥ 0, where (Rx)j is the j-th component after multiplication with an
orthogonal matrix R and T1, . . . , Tm are positive.
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With these definitions, we can define various asymptotic regimes.

Definition 7. We say that X is

(i) Euclidean if mn = 1 for all n ∈ N,
(ii) finite sample smeary if 1 < supn∈N mn < ∞,
(iii) smeary if supn∈N mn = ∞,
(iv) r-power smeary if (2) holds with r > 0.

If the manifold M is a Euclidean space and if second moments of X exist,
then Assumptions 3 hold and due to the classical central limit theorem, X is
then Euclidean (cf. Definition 7). In case of M being a circle or a torus, as shown
in [11], X is Euclidean only if it is sufficiently concentrated. As further shown
there, if X is spread beyond a geodesic half ball on the circle or the torus, it
features finite sample smeariness, which, on the circle and the Torus manifests,
among others, in two specific subtypes, cf. [6]

In consequence of the general central limit theorem (GCLT) from [5] under
Assumptions 3 and 6,

n
1

2r+2 (Rtx̂n)j
D→ Hj for all 1 ≤ j ≤ m (3)

whereRt is the transpose ofR,T = diag(T1, . . . .Tm) and (H1|H1|r, . . . ,Hm|Hm|r)
is multivariate Gaussian with zero mean and covariance

4
(r + 2)2

T−1 Cov[logμ X]T−1,

we have at once that r-power-smeary for r > 0 implies smeariness.

3 Smeariness Begets Finite Sample Smeariness

Theorem 8. Under Assumptions 3 and 6, if there is a random variable on M that
is r-power smeary, r > 0, then there is one that is finite sample smeary. More
precisely, for every K > 1 there is a random variable Y with supn∈N mY

n ≥ K.

Proof. Suppose that X is r-power smeary, r > 0 on M . For given K > 1 let
0 < κ < 1 such that κ−2 = K and define the random variable Xκ via

P{Xκ = μ} = κ and P{Xκ = X} = 1 − κ.

With the sets A = {Xκ = μ} and B = {Xκ = X}, the Fréchet function of Xκ is
given by

FXκ(p) =
∫

A

d(p, μ)2 dPXκ +
∫

B

d(X,μ)2 dPXκ

= κd(p, μ)2 + (1 − κ)FX(p) = κ‖ logμ(p)‖2 + o(‖ logμ(p)‖2),
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where we use Eq. (1) for the last equality. Thus, Assumption 6 holds with Tj = κ,
r = 0 and R = id, therefore Xκ has the unique mean μ and population variance

V Xκ = FXκ(μ) = (1 − κ)FX(μ) = (1 − κ)V X (4)

by hypothesis. Since Cov[logμ Xκ] = (1 − κ)Cov[logμ X], we have thus with the
GCLT (3) for Tj = κ, r = 0 and R = id,

√
nx̂Xκ

n
D→N

(
0,

1 − κ

κ2
Cov[logμ X]

)
.

This yields nV Xκ
n = 1−κ

κ2 V X and in conjunction with (4) we obtain

mXκ
n =

1
κ2

.

Thus, Y = XK−1/2 has the asserted property.

4 Directional Smeariness

Definition 9 (Directional Smeariness). We say that X is directional smeary
if (2) holds for r = 2 with some of the T1, . . . , Tm there equal to zero.

Theorem 10. Suppose that M is a Riemannian manifold with the sectional
curvature bounded from above by K > 0 such that there exists a simply con-
nected geodesic submanifold of constant sectional curvature K. Then M features
a random variable that is directional smeary.

Proof. Suppose N ⊂ M is a simply connected, totally geodesic submanifold of
M with constant sectional curvature K. Let μ ∈ N and consider orthogonal
unit vectors V,W ∈ TμN . Let us consider a point mass random variable X with
P ({X = μ}) = 1, a geodesic γ(t) = exp(tV ), and a family of random variables
Xt defined as

P{Xt = δγ(t)} = P{Xt = δγ(−t)} =
1
2
.

We shall show that we can choose t close to π/
√
K and ε > 0 sufficiently small

such that the random variable Yt,ε, which is defined as

P{Yt,ε = Xt} = ε, P{Yt,ε = X} = 1 − ε,

is directional smeary.
Let us write F t,ε(p) for the Fréchet function of Yt,ε. Suppose for the moment

that μ is the unique Fréchet mean of Yt,ε, we shall show that for sufficient small
ε and t close to π/

√
K, the Hessian at μ of F t,ε vanishes in some directions,

which will imply that Yt,ε is directional smeary as desired.
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We claim that ∇2F t,ε(μ)[W,W ] = 0, which will fulfill the proof. Indeed, it
follows from [16, Appendix B.2] that

∇2F t,ε(μ)[W,W ] = (1 − ε) + 2ε(t
√
K) cot(t

√
K).

Hence, if we choose t close to π/
√
K such that

t
√
K cot(t

√
K) = −1 − ε

2ε
(5)

then ∇2F t,ε(μ)[W,W ] = 0 as claimed.
It remains to show that μ is the unique Fréchet mean of Yt,ε for t close to

π/
√
K and ε satisfies Eq. 5. Indeed, for any p ∈ M we have

F t,ε(p) =
1
2
εd2(p, γ(t)) +

1
2
εd2(p, γ(−t)) + (1 − ε)d2(p, μ).

For small ε then F t,ε(μ) ≤ F t,ε(p) if d(p, μ) ≥ π/
√
K. Thus, it suffices to

show that μ is the unique minimizer of the restriction of F t,ε on the open ball
B(μ, π/

√
K). Let us consider a model in the two dimensional sphere S2

K of
curvature K with geodesic distance ds. Let μ̃ be the South Pole, Ṽ ∈ Tμ̃S2

K be
a unit vector and γ̃(t) = expμ̃ tṼ . Let t and ε satisfy Eq. (5) and consider the
following measure on S2

K

ζ = (1 − ε)δμ̃ +
ε

2
(δγ̃(t) + δγ̃(−t)).

Write Fζ for the Fréchet function of ζ, then for any q ∈ S2
K,

Fζ(q) =
1
2
εd2

s(q, γ̃(t)) +
1
2
εd2

s(q, γ̃(−t)) + (1 − ε)d2
s(q, μ̃).

It follows from the definition of ζ that Fζ(μ̃) = F t,ε(μ). Direct computation of
Fζ on the sphere S2

K verifies that μ̃ is the unique Fréchet mean of ζ.
On the other hand, suppose that p̃ ∈ S2

K with ds(p̃, μ̃) = d(p, μ) < π/
√
K

and ∠(logμ̃ p̃, Ṽ ) = ∠(logμ p, V ). Because K is the maximum sectional curvature
of M , Toponogov’s theorem, c.f. [3, Theorem 2.2] implies that

ds(p̃, γ̃(−t)) ≤ d(p, γ(−t)) and ds(p̃, γ̃(t)) ≤ d(p, γ(t)).

Thus Fζ(p̃) ≤ F t,ε(p). Because μ̃ is the unique minimizer of Fζ and Fζ(μ̃) =
F t,ε(μ) it follows that μ is the unique minimizer of F t,ε|B(μ,π/

√
K) as needed.

Remark 11. Examples for spaces that fulfill conditions in Theorem10 include
spheres, the Grassmanians, compact simple Lie groups, or in general globally
symmetric spaces of compact type.

5 Simulations

In the analysis of biological cells’ filament structures, buckles of microtubules
play an important role, e.g. [14]. For illustration of the effect of FSS in Kendall’s
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shape spaces Σk
m of k landmark configurations in the m-dimensional Euclidean

space, e.g. [4], we have simulated two groups of 20 planar buckle structures each
without and with the presence of intermediate vimentin filaments (generating
stiffness) and placed 5 mathematically defined landmarks on them, leading to
two groups in Σ5

2 as detailed in [17]. Figure 1 shows typical buckle structures.
We compare the two-sample test based on suitable χ2-quantiles in tangent

space with the test based on a suitable bootstrap procedure amending for FSS,
cf. [6,11]. In order to assess the effective level of the test we have generated a
control sample of another 20 buckles in the presence of vimentin filaments. As
clearly visible in Table 1, the presence of FSS results in a higher level of the
quantile-based test and a reduced power, thus making it useless for further eval-
uation. In contrast the bootstrap-based test keeps the level, making its rejection
of equality of buckling with and without vimentin credible.

Fig. 1. Microtubule buckle structures with 5 landmarks. Upper row: without vimentin
filaments. Lower row: in the presence of vimentin filaments (generating stiffness).

Table 1. Reporting fraction of rejected hypothesis of equality of means using 100
simulations of two-sample test at nominal level α = 0.05 based on quantiles (top row)
and a suitable bootstrap procedure (bottom row) under equality (left column) and
under inequality (right column).

Both with vimentin One with and the other without vimentin

Quantile based 0.11 0.37

Bootstrap based 0.03 0.84
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Abstract. Hidden Markov models with observations in a Euclidean
space play an important role in signal and image processing. Previous
work extending to models where observations lie in Riemannian mani-
folds based on the Baum-Welch algorithm suffered from high memory
usage and slow speed. Here we present an algorithm that is online, more
accurate, and offers dramatic improvements in speed and efficiency.

Keywords: Hidden Markov model · Riemannian manifold · Gaussian
distribution · Expectation-maximization · k-means clustering ·
Stochastic gradient descent

1 Introduction

Hidden Markov chains have played a major role in signal and image processing
with applications to image restoration, speech recognition, and protein sequenc-
ing. The extensive and well-developed literature on hidden Markov chains is
almost exclusively concerned with models involving observations in a Euclidean
space. This paper builds on the recent work of [10] in developing statistical tools
for extending current methods of studying hidden Markov models with obser-
vation in Euclidean space to models in which observations take place on Rie-
mannian manifolds. Specifically, [10] introduces a general formulation of hidden
Markov chain models with Riemannian manifold-valued observations and derives
an expectation-maximization (EM) algorithm for estimating the parameters of
such models. However, the use of manifolds often entails high memory usage. As
such, here we investigate an “online” low memory alternative for fitting a hidden
Markov process. Since this approach only ever “sees” a limited subset of the data, it
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may be expected to inherently sacrifice some accuracy. Nonetheless, the dramatic
increase in speed and efficiency often justifies such online algorithms.

The motivation for the development of hidden Markov models on manifolds
and associated algorithms is derived from the wide variety of data encoded as
points on various manifolds, which fits within the broader context of intense and
growing interest in the processing of manifold-valued data in information sci-
ence. In particular, covariance matrices are used as descriptors in an enormous
range of applications including radar data processing [5], medical imaging [7],
and brain-computer interfaces (BCI) [1]. In the context of BCI, where the objec-
tive is to enable users to interact with computers via brain activity alone (e.g.
to enable communication for severely paralysed users), the time-correlation of
electroencephalogram (EEG) signals are encoded by symmetric positive definite
(SPD) matrices [1]. Since SPD matrices do not form a Euclidean space, standard
linear analysis techniques applied directly to such data are often inappropriate
and result in poor performance. In response, various Riemannian geometries on
SPD matrices have been proposed and used effectively in a variety of applications
in computer vision, medical data analysis, and machine learning. In particular,
the affine-invariant Riemannian metric has received considerable attention in
recent years and applied successfully to problems such as EEG signal processing
in BCI where it has been shown to be superior to classical techniques based on
feature vector classification [1]. The affine-invariant Riemannian metric endows
the space of SPD matrices of a given dimension with the structure of a Hadamard
manifold, i.e. a Riemannian manifold that is complete, simply connected, and
has non-positive sectional curvature everywhere. In this work, we will restrict
our attention to Hadamard manifolds, which encompass SPD manifolds as well
as examples such as hyperbolic d-space.

2 Hidden Markov Chains

In a hidden Markov model, one is interested in studying a hidden, time-varying,
finitely-valued Markov process (st; t = 1, 2, . . .) that takes values in a set S.
When st = i for i ∈ S, we say that the process is in state i at time t. We assume
that the process is time-stationary, so that there exists a transition matrix Aij ,
which specifies the conditional probabilities Aij = P(st+1 = j|st = i). If πi(t) =
P(st = i) is the distribution of st, then πj(t + 1) =

∑
i∈S πi(t)Aij describes the

transition from time t to t + 1. The states st are “hidden”, meaning that we
can never know their true values and can only observe them through random
outputs yt that take their values in a Riemannian manifold M and are assumed
to be generated independently from each other.

We assume that M is a homogeneous Riemannian manifold that is also a
Hadamard space, and that yt is distributed according to a Riemannian Gaussian
distribution [9] with probability density

p(y; c, σ) =
1

Z(σ)
exp

(

− 1
2σ2

d2(y, c)
)

, (1)
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where c ∈ M and σ > 0 denote the mean and standard deviation of the
distribution, respectively, and Z(σ) is the normalization factor. In particular,
on the space of d × d symmetric positive definite matrices M = Pd, we have
Pd = GL(d)/O(d), where GL(d) is the general linear group of invertible d × d
matrices, which acts transitively on Pd by g · y = gyg†, where g† denotes the
transpose of g. The isotropy group is the space of d × d orthogonal matrices
O(d). The affine-invariant Riemannian distance takes the form

d2(y, z) = tr
[(

log(y−1z)
)2]

, (2)

where tr denotes the trace operator and log the principal matrix logarithm. It
is easy to see that this distance indeed satisfies the group invariance property
d(y, z) = d(g · y, g · z) for all g ∈ G, y, z ∈ Pd.

Our assumption that yt is distributed according to a Riemannian Gaussian
distribution is expressed as

p(yt|st = i) = p(yt; ci, σi), (3)

where p(yt|st = i) denotes the conditional density with respect to the Rieman-
nian volume measure. It follows that the probability density of yt is a time-
varying mixture density

p(yt) =
∑

i∈S

πi(t)p(yt; ci, σi). (4)

The objective is to estimate the transition matrix (Aij) and the parameters
(ci, σi) given access only to the observations (yt; t = 1, 2, . . .). This problem
is addressed in [10] via an expectation-maximization (EM) algorithm using an
extension of Levinson’s forward-backward algorithm [3,8].

3 Online Estimation of Hidden Markov Models

The algorithm that we propose consists of a combination of an initialization
phase and a fine-tuning phase. The initialization phase consists of running Rie-
mannian k-means on a limited subset of the data, while the fine-tuning phase
is based on an algorithm described by Krishnamurthy and Moore [6]. Specifi-
cally, [6] describes a hidden Markov model as a length n chain s1, . . . sn that
switches between N different states, according to a transition matrix A, so that
Aij = P(sk+1 = j|sk = i), and starts in an initial state π = π(1) ∈ R

N given by
πi = P(s1 = i). As before, we assume that this Markov chain is “hidden”, mean-
ing that we never know the true state sk, but instead only see a representative
yk of sk. In our case specifically, we assume that yk is a Riemannian Gaussian
random variable yk ∼ N(ci, σ

2
i ) with mean ci and standard deviation σi.

Initializing the algorithm using k-means on a limited subset of the data is
straightforward. After k-means has been completed using the Riemannian center
of mass [2], we count transitions between clusters to estimate the transition
matrix, and estimate the means ci of the Gaussian distributions as the means of
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the clusters. Estimating the standard deviation of these Gaussian distributions
is more tricky. Here we introduce

δ =
∂

∂η
log(Z(η)), (5)

where η is the natural parameter η = −1
2σ2 . In the Gaussian case, where Z(η)

is the normalization constant of the distribution, it is not hard to see that
δ = E(d2(y, c)), the expected value of the square Riemannian distance from the
Gaussian mean c to an observation y. In general, it can be quite challenging to
compute Z(η). Fortunately, recent work by Santilli et al. [11] outlines a method
for calculating Z(η) for SPD matrices in arbitrary dimension using orthogonal
polynomials. In particular, [11] provides explicit formulas for dimensions 2, 3,
and 4, which could be used to establish a relationship between δ and σ, allowing
us to estimate σ. While this completes the initialization phase of the algorithm,
we will continue to use this conversion frequently during the fine-tuning section
of the algorithm as well.

For the fine-tuning step, we use a stochastic approximation method derived
in [6] based on the Kullback-Leibler information measure, which leads to a
stochastic gradient descent algorithm based on

λ(k+1) = λ(k) + J −1∂λ(k) log f(y1, . . . , yk+1|λ(k)) (6)

where λ(k) = (A(k), c
(k)
i , σ

(k)
i , π

(k)
i ) is the kth estimate of the model parame-

ters, yk is the kth observation, J is the Fisher information matrix, and the last
derivative term can be called the score vector. Using superscript k to denote the
kth approximation of each quantity (so, for instance, A(k) is the kth approxima-
tion to the transition matrix), we collect definitions of the relevant conditional
probabilities in Table 1, where f(x|y) denotes the conditional probability density
function on the distribution of the observation and pi(y) denotes the probabil-
ity density function of the ith Gaussian distribution. Here Δ is the size of the
“minibatch” of observations that the algorithm can see (so stores in memory) at
any given moment, and the formulas given are the approximations used given
the limited size of the minibatch.

To continue working out what Eq. (6) means in this case, we find that for the
Fisher information matrix of the transition matrix, it is helpful to define

μ
(i)
j =

∑k+1
t=1 ζt|k+1(i, j)

(A(k+1)
ij )2

, (7)

which is truncated to the size of the minibatch in practice. Similarly, for the
score vector of the transition matrix we find it useful to define

g
(i)
j =

ζk+1|k+1(i, j)

A
(k+1)
ij

, (8)

from which we can express our transition matrix update rule as

A
(k+1)
ij = A

(k)
ij +

1

μ
(i)
j

(

g
(i)
j −

∑N
h=1 g

(i)
h /μ

(i)
h

∑N
h=1 1/μ

(i)
h

)

. (9)
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Table 1. Conditional probabilities

Symbol Definition Calculation

αt(i) f(y1, . . . , yt, st = i|λ(t−1)) αt(j) =
∑N

i=1 αt−1(i)A
(t−1)
ij p

(t−1)
j (yt),

α1(i) = πi(i)p
(1)
i (y1)

βt|k(i) f(yt+1, . . . , yk|st = i, λ(k−1)) βk|k+Δ = A(k−1)P (k−1)(k+1) . . . A(k−1)P (k−1)(k+Δ)1

where P (k)(s) = diag(p
(k)
1 (ys), . . . , p

(k)
N

(ys)) and 1 is a

vector of ones

γt|k(i) f(st = i|y1, . . . , yk, λ(k−1)) γt|k(i) =
αt(i)βt|k(i)

∑N
j=1 αt(j)βt|k(j)

ζt|k(i, j) f(st = i, st+1 =

j|y1, . . . , yk, λ(k−1))

αt(i)A
(t−1)
ij

βt+1|k(j)p
(t−1)
j

(yt+1)
∑

i
∑

j αt(i)A
(t−1)
ij

βt+1|k(j)p
(t−1)
j

(yt+1)

Similar work on the means and standard deviations yields the following update
rules when working with Gaussian distributions on the real line [6]:

c
(k+1)
i = c

(k)
i +

γk+1|k+1(i)(yk+1 − c
(k)
i )

∑k+1
t=1 γt|k+1(i)

(10)

(σ2
i )(k+1) = (σ2

i )(k) +
γk+1|k+1(i)((yk+1 − c

(k)
i )2 − (σ2

i )(k))
k + 1

, (11)

which, after adjusting the step sizes used, can be converted to update rules on
a Riemannian manifold as

c
(k+1)
i = c

(k)
i #τyk+1, τ =

γk+1|k+1(i)
∑k+1

t=1 γt|k+1(i)
, (12)

δ
(k+1)
i = δ

(k)
i +

γk+1|k+1(i)
(

d
(
yk+1, c

(k)
i

)2

− δ
(k)
i

)

√
k

, (13)

where x#τz denotes the unique point on the Riemannian geodesic from x to z
that satisfies d(x, x#τz) = τd(x, z) for τ ∈ [0, 1]. In particular, in the case of Pd

equipped with the Riemannian distance given in Eq. (2), we have

x#τz = x1/2(x−1/2zx−1/2)τx1/2. (14)

Finally, we may note that since these intermediate calculations, particularly
the conditional probabilities mentioned, function as the “memory” of the algo-
rithm, it is not sufficient to initialize the algorithm by transferring only the values
of A, ci, δi. Instead, one must calculate values of α, β, γ, ζ from the k-means data
as well. Fortunately, using the clusters obtained, one can do this easily by using
the final estimates obtained for A, ci, δi from the k-means algorithm.

4 Computational Experiment

We consider a computational experiment comparing the EM algorithm from [10]
with our algorithm. For that, we generate a chain of length 10000 with values
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taken in a three-element set S = {1, 2, 3}, an initial distribution π =
(
1 0 0

)
(i.e.

certainly starting in state i = 1), and transition matrix

A = (Aij) =

⎛

⎝
0.4 0.3 0.3
0.2 0.6 0.2
0.1 0.1 0.8

⎞

⎠ (15)

with means and standard deviations given by (c1, σ1) = (0, 0.2), (c2, σ2) =
(0.29+0.82i, 1), and (c3, σ3) = (−0.29+0.82i, 1) as in [10]. Here, the outputs yt

are generated from a Riemannian Gaussian model in the Poincaré disk model of
hyperbolic 2-space. That is, each yt takes values in M = {z ∈ C : |z| < 1}, and

d(y, z) = acosh
(

1 +
2|y − z|2

(1 − |y|2)(1 − |z|2)
)

(16)

Z(σ) = (2π)3/2σe
σ2
2 erf

(
σ√
2

)

(17)

where erf denotes the error function. We use the Poincaré disk here rather than
P2 simply for ease of visualization. Moreover, the Poincaré disk with distance
(16) is isometric to the space of 2 × 2 symmetric positive definite matrices of
unit determinant equipped with the affine-invariant Riemannian distance (2).

Applying our algorithm to this example, we obtain the results in Table 2.
We begin by comparing the speed and accuracy of our algorithm with the EM
algorithm. Here, the online algorithm is the clear winner, since it matches or
exceeds the EM algorithm on accuracy, and for Δ = 200 is around 450 times
faster (all tests performed on a standard personal laptop computer)—a remark-
able improvement. We observe a pattern that accuracy decreases rapidly for very
small Δ and is roughly stable for Δ ≥ 200. Also, if we only use k-means without
any fine-tuning, we see accuracy is slightly lower (0.90), although it is quite fast
(5 s runtime). Finally, we note that the runtimes scale sublinearly with Δ, and
in particular, the scaling is very linear for small Δ.

Regarding the estimates of the transition matrix, we measure the error in the
transition matrix as the root mean squared error (RMSE) in the Frobenius norm
of the difference between the estimated and true transition matrices ‖A−A′‖Frob.
We consequently see that the EM algorithm underperforms all forms of the online
algorithm for Δ < 200. However, we also observe that the full online algorithm
rarely outperforms pure k-means significantly. In fact, when data clusters are
spread out as they are in this example, we find that the fine-tuning step does
not improve on k-means. However, for data clusters that do overlap significantly,
we have observed instances where the fine-tuning step improves significantly on
k-means.

Figure 1 depicts results on mean estimation for minibatch sizes of Δ = 100
and Δ = 200. Note that the clustering of estimated means is more focused
and closer to the true mean for Δ = 200 than for Δ = 100, as expected. We
also observe that the EM mean appears to consistently struggle to accurately
estimate the mean at the center of the disk.
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Table 2. Online algorithm accuracy, runtime, and estimates for selected transition
matrix elements for different minibatch sizes Δ.

Minibatch size, Δ Accuracy Runtime/s A11 A22 A33 Transition RMSE

True values – – 0.4 0.6 0.8 0

40 0.48 1.37 0.40 0.30 0.40 1.49

60 0.50 1.93 0.31 0.34 0.28 1.39

80 0.76 2.54 0.36 0.49 0.45 1.26

100 0.86 3.21 0.48 0.63 0.59 1.13

200 0.98 5.81 0.46 0.60 0.77 1.12

300 0.94 8.39 0.57 0.63 0.75 0.95

1000 0.95 28.58 0.51 0.64 0.76 0.94

5000 0.95 70.69 0.41 0.58 0.70 0.91

k-means only 0.90 4.99 0.53 0.65 0.56 0.93

EM 0.90 2623.69 0.31 0.88 0.96 1.29

Δ = 100 Δ = 200

Fig. 1. Mean estimates for multiple runs of the online algorithm for the example in
the Poincaré disk for minibatch sizes of Δ = 100 and Δ = 200 compared with the
EM algorithm estimates. As expected, the quality of the online algorithm estimates
improves with minibatch size Δ. We observe that for a relatively modest minibatch
size of Δ = 200, the online algorithm is more accurate than the EM algorithm while
being several orders of magnitude faster.

5 Conclusion

We have implemented an online algorithm for the learning of hidden Markov
models on Hadamard spaces, i.e. an algorithm that uses a constant amount
of memory instead of one that scales linearly with the amount of available
data. We found that our algorithm outperforms a previous algorithm based on
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expectation-maximization in all measures of accuracy when the right minibatch
size is used. Furthermore, this improvement is achieved while running nearly 450
times faster and using 50 times less memory in the example considered.

Future work will consider strategies that would allow the removal of the k-
means initialization step and automatically tune the minibatch size without the
need for experimentation. Furthermore, significant challenges arise with increas-
ing N , the number of states and hence dimension of the transition matrix. Here
difficulties include identifying the correct number of clusters, preventing the
algorithm from merging separate clusters (undercounting), and preventing the
algorithm from double-counting clusters (overcounting) by assigning two means
to the same cluster. These challenges have proven to be the main obstacles in
increasing N . By contrast, increasing the dimension of the Hadamard space in
which observations take place (e.g. the space of positive definite matrices) does
not pose significant challenges and is straightforward using recent work on com-
puting normalization factors of Riemannian Gaussian distributions [4,11].
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Abstract. We extend to a Engel type structure a cortically inspired
model of perceptual completion initially proposed in the Lie group of
positions and orientations with a sub-Riemannian metric. According to
this model, a given image is lifted in the group and completed by a
minimal surface. The main obstacle in extending the model to a higher
dimensional group, which can code also curvatures, is the lack of a good
definition of codimension 2 minimal surface. We present here this notion,
and describe an application to image completion.

Keywords: Perceptual completion · Graded structures · Fixed degree
surfaces · Area formula · Degree preservig variations

1 Introduction

Mathematical models of the visual cortex expressed in terms of differential geom-
etry were proposed for the first time by Hoffman in [17], Mumford in [23], August
Zucker in [2] to quote only a few. Petitot and Tondut in 1999 in [26] described
the functional architecture of area V1 by a contact structure, and described the
propagation in the cortex by a constrained Lagrangian operator. Only in 2003
Sarti and Citti in [6] and J. Petitot in [24] recognized that the geometry of
the cortex is indeed sub-Riemannian. In [6], the functional architecture of V1 is
described as a Lie group with a sub-Riemannian geometry: if the visual stimulus
is corrupted, it is completed via a sub-Riemannian minimal surface. A large lit-
erature has been provided on sub-Riemannian models both for image processing
or cortical modelling (we refer to the monograph [25] for a list of references).
In Sect. 2 we will present the model [6], and its extension in the Engel group
provided in [1,25].

The notion of minimal surface in a sub-Riemannian setting as critical points
of the first variation of the area functional is well known for co-dimension 1
surfaces (see [11,12] for the area formula, and [7,9,16,18] for the first variation).
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For higher codimension very few results are available: the notion of area has been
introduced in [10,19,20], but the first variation, well-known for curves (see [21]),
was studied for surfaces only very recently in [4,5,13]. We will devote Sect. 3 to
the description of these results.

We conclude this short presentation with an application of this result to the
completion model in the Engel group, contained in Sect. 4.

2 A Subriemannian Model of the Visual Cortex

The primary visual cortex is the first part of the brain processing the visual
signal coming from the retina. The receptive profile (RP) ψ(ξ) is the function
that models the activation of a cortical neuron when a stimulus is applied to a
point ξ = (ξ1, ξ2) of the retinal plane. The hypercolumnar structure organizes the
cortical cells of V1 in columns corresponding to different features. As a results
we will identify cells in the cortex by means of two parameters (x, f), where
x = (x1, x2) is the position of the point, and f a vector of extracted features.
We will denote F the set of features, and consequently the cortical space will be
identified with R

2 × F . In the presence of a visual stimulus I = I(ξ) the whole
hypercolumn fires, giving rise to an output

OF (x, f) =
∫

I(ξ)ψ(x,f)(ξ)dξ. (1)

It is clear that the same image, filtered with a different family of cells, produces
a different output.

For every cortical point, the cortical activity, suitably normalized, can be
considered a probability density. Hence its maximum over the fibre F can be
considered the most probable value of f , and can be considered the feature
identified by the system (principle of non maxima suppression):

|OF (x, fI(x))| = max
f

|OF (x, f)|. (2)

The output of a family of cells is propagated in the cortical space R
2 × F via

the lateral connectivity.

2.1 Orientation and Curvature Selectivity

In [6] the authors considered only simple cells sensible to a direction θ ∈ S
1.

Hence the set F becomes in this case S
1 and the underlying manifold reduces

to N := R
2 × S

1 with a sub-Riemannian metric. The image I is lifted by the
procedure (2) to a graph is this structure. If it is corrupted, it is completed via
a sub-Riemannian minimal surface.

The geometric description of the cortex was extended by Citti-Petitot-Sarti
to a model of orientation and curvature selection, appeared in [25]. In this case
the non maxima suppression process (2) selects a function

Ψ : R
2 → N2 = R

2 × S
1 × R, Ψ(x) = (x, fI(x)) = (x, θ(x), k(x)).
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Level lines of the input I are lifted to integral curves in N of the vector fields

X1 = cos θ
∂

∂x1
+ sin θ

∂

∂x2
+ k

∂

∂θ
, X2 =

∂

∂k
(3)

where x = (x1, x2). The vector fields define an Hörmander type manifold since
the whole space is spanned at every point by the vectors X1, X2 and their
commutators

X3 := [X1,X2] = − ∂

∂θ
, X4 := [X1,X3] = − sin θ

∂

∂x1
+ cos θ

∂

∂x2
. (4)

These commutation conditions identify the structure of and Engel-type algebra.
Integral curves of this model allow better completion of more complex images.
In the image below we represent a grouping performed in [1] with an eigenvalue
method in the sub-Riemannian setting. Precisely for every point xi of the curves,
we compute the orientation θi and the curvature ki, and obtain a point pi =
(xi, θi, ki) in R

2 × S
1 × R. Calling d the sub-Riemannian distance induced by

the choice of vector fields, we can compute the affinity matrix A, with entries
aij = d(pi, pj). The eigenvalues of this matrix, reprojected on R

2 can be identified
with the perceptual units present in the image. In Fig. 1 (from [1] the same
curve is segmented in the geometry dependent only on orientation, and in the
geometry of orientation and curvature: the second method correctly recovers the
logarithmic spirals.

Fig. 1. Grouping using orientation (left), or orientation and curvature (right).

It could be nice to see if it is possible to extend in this setting also the
minimal surface algorithm for image completion [6]. The main obstacle in doing
this was the fact that the notion of area and curvature was not well defined for
codimension two surfaces in a sub-Riemannian metric, and that characterizing
admissible variations presents intrinsic difficulties.

3 Graded Structures

In the next section we will present the results obtained in [4,5,13] to define the
notion of area of high codimension surfaces and its first variation in the setting
of a graded structure. A graded structure is defined as following
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Definition 31. Let N be a smooth manifold and let H1 ⊂ . . . ⊂ Hs be an
increasing filtration of sub-bundles of the tangent bundle TN s.t.

X ∈ Hi, Y ∈ Hj ⇒ [X,Y ] ∈ Hi+j and Hs
p = TpN for all p

We will say that the fibration H1 ⊂ . . . ⊂ Hs is equiregular if dim(Hj) is
constant in N . For such a manifold, we can define an homogeneous dimension
Q =

∑s
i=1 i

(
dim(Hi) − dim(Hi−1)

)
. We will say that a basis (X1, . . . , Xn) of

the tangent plane at every point is an adapted basis if X1, . . . , Xn1 generate H1,
X1, . . . , Xn1 ,Xn1+1, . . . , Xn2 generate H2, and so on. The presence of a filtration
naturally allows to define the degree of a vector field and of an m-vector. In
particular, we say that a vector v ∈ Tp(M) has degree l, and we denote it
deg(v) = l, if v ∈ Hl

�Hl−1. Given m < n, a multi-index J = (j1, · · · , jm), with
1 ≤ j1 < . . . < jm ≤ n, and an m-vector field XJ = Xj1 ∧ . . . ∧ Xjm we define
deg(XJ ) = deg(Xj1) + . . . + deg(Xjm).

If a Riemannian metric g is defined on the graded manifold N we can intro-
duce an orthogonal decomposition of the tangent space, which respects the grad-
ing, as follows: K1

p := H1
p, Ki+1

p := (Hi
p)

⊥ ∩ Hi+1
p , 1 ≤ i ≤ (s − 1). So that

TpN = K1
p ⊕ K2

p ⊕ · · · ⊕ Ks
p.

Example 1. A Carnot manifold with a bracket generating distribution is a
graded manifold.

The interest of graded manifolds, is that a submanifold of a sub-Riemannian
manifold, is not in general a sub-Riemannian manifold, but submanifolds of
graded manifolds are graded.

3.1 Regular Submanifolds

Given an immersion Φ : M̄ → N. M = Φ(M̄). the manifold M inherits the
graded structure H̃i

p = TpM ∩ Hi
p. The pointwise degree (introduced in [14]) or

local homogenous dimension is defined by

degM (p) =
s∑

i=1

idim(H̃i(p) − H̃i−1(p)).

For submanifolds, it is not possible in general to assume that the local homoge-
neous dimension is constant so that we will define the degree of M

d := deg(M) = max
p∈M

degM (p).

Given a graded manifold N with a Riemannian metric g, we are able to
introduce a notion of area, as a limit of the corresponding Riemannian areas. To
begin with we define a family of Riemannian metrics gr, adapted to the grading
of the manifold as follows:

gr|Ki =
1

ri−1
g|Ki , i = 1, . . . , s, for any r > 0.
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Now we assume that M is a submanifold of degree d = deg(M), defined by a
parametrization Φ : (M̄, μ) → N . Also assume that μ is a Riemannian metric on
M̄ . For each M ′ ⊂ M̄ we consider the Riemannian area, weighted by its degree

r
d−m

2

∫
M ′

|E1 ∧ . . . ∧ Em|grdμ(p),

where E1, . . . , Em a μ-orthonormal basis of TpM . If the limit as r → 0 exists,
we call it the d-area measure. It can be explicitly expressed as

Ad(M ′) =
∫
M ′

| (E1 ∧ . . . ∧ Em)d |g dμ(p).

where (·)d the projection onto the space of m-vectors of degree d:

(E1 ∧ . . . ∧ Em)d =
∑

XJ ,deg(XJ )=d

〈E1 ∧ . . . ∧ Em,XJ 〉XJ .

The same formula had been already established by [19].

3.2 Admissible Variations

It would be natural to define the curvature as the first variation of the area.
However in this case the area functional depends on the degree of the manifold.
Hence we need to ensure that the degree does not change during variation, and
we define degree preserving variations.

Definition 32. A smooth map Γ : M̄ × (−ε, ε) → N is said to be an admissible
variation of Φ if Γs : M̄ → N , defined by Γs(p̄) := Γ (p̄, s), satisfies

(i) Γ0 = Φ,
(ii) Γs(M̄) is an immersion of the same degree as Φ(M̄) for small enough s,
(iii) Γs(p̄) = Φ(p̄) for p̄ outside a given compact subset of M̄ .

We can always choose an adapted frame to a submanifold manifold M .
First we choose a tangent basis (E1, · · · , Em), then we complete it to a basis of
the space Xm+1, · · · ,Xn, where Xm+1, · · · ,Xm+k have degree less or equal to
deg(E1) while Xm+k+1, · · · ,Xn have degree bigger than deg(E1).

Definition 33. With the previous notation we define the variational vector field
W as

W (p̄) =
∂Γ (p̄, 0)

∂s
.

It is always possible to assume that W has no tangential components, so that it
will be represented as

W (p̄) =
m+k∑

i=m+1

hiXi +
n∑

r=m+k+1

vrXr = H + V,
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where H =
∑m+k

i=m+1 hiXi and V =
∑n

r=m+k+1 vrXr.
Using the fact that if Γ is an admissible variation, which means that the

degree of Γs(M̄) is constant with respect to s, it is possible to prove the following

Proposition 1 (see [5]). If W is an admissible vector field, then there exist
matrices A,B such that

E(V ) + BV + AH = 0, where E is the tangent basis. (5)

This property suggests the following definition

Definition 34. We say that a compactly supported vector field W is admissible
when it satisfies the admissibility system E(V ) + BV + AH = 0.

3.3 Variation for Submanifolds

The phenomenon of minima which are isolated and do not satisfy any geodesic
equation (abnormal geodesic) was first discovered by Montgomery [22] for
geodesic curves. In 1992 Hsu [15] proved a characterization of integrable vec-
tor fields along curves. We obtained in [4] a partial analogous of the previous
result for manifolds of dimension bigger than one. Precisely we defined

Definition 35. Φ : M̄ → N is strongly regular at p̄ ∈ M̄ if A(p̄) has full rank,
where A is defined in Proposition 1.

Theorem 1 [4]. Φ : M̄ → (N, H1 ⊂ . . . ⊂ Hs) with a Riemannian metric g.
Assume that Φ of degree d is strongly regular at p̄. Then there exists an open
neighborhood Up̄ of p̄ such every admissible vector field W with compact support
on Up̄ is integrable.

The following properties are satisfied

Remark 1. The admissibility of a vector field is independent of the Riemannian
metric g.

Remark 2. All hypersurfaces in a sub-Riemannian manifold are deformable.

4 Application to Visual Perception

Let us go back to the model of orientation and curvature introduced in Sect. 2.1.
The underlying manifold is then N = R

2×S
1×R. Let us call g the metric which

makes the vector fields X1,X2,X3,X4 in (3) and (4) an orthonormal basis. Let
us consider a submanifold M defined by the parametrization

Φ : R
2 ⊃ M̄ → R

2 × S
1 × R, M = Φ(M̄).

In particular the surfaces obtained by non maxima suppression are expressed in
the form

Φ(x) = (x, θ(x), κ(x)).
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If we impose the constraint κ = X1(θ) the tangent vectors to M become
X1 + X1(κ)X2, X4 − X4(θ)X3 + X4(κ)X2, and the area functional reduces to

A4(M) =
∫
M̄

√
1 + X1(κ)2 dx. (6)

We will denote X̄1 and X̄4 the projection of the vector fields X1,X4 onto
M̄ . Then the admissibility system for a variational vector field W = h2(X2 −
X1(κ)X1) + v3X3 is given by

X̄1(v3) = −X̄4(θ)v3 − Ah2, where A = (1 + (X̄2
1 (θ))2).

Since rank(A) = 1 we deduce by Theorem 1 that for this type of surfaces each
admissible vector is integrable, which implies that the minimal surfaces can be
obtained via variational methods.

This property is quite important, since in [5] the authors proved that the
manifold {(0, 0, θ, k)} do not admit degree preserving variation, so that it is
isolated. This provides a generalization of the notion of abnormal geodesic.

4.1 Implementation and Results

We directly implement the Euler Lagrangian of the functional (6). Since it is
non linear, we compute a step 0 image with Euclidean Laplacian. After that,
we compute at each step, orientation and curvature of level lines of the image
at the previous step, update curvature and orientation via the linearized Euler
Lagrangian equation and complete the 2D image diffusing along the vector field
X̄1. We provide here a result in the simplified case with non corrupted points
in the occluded region, and a preliminary result for the impainting problem.
We plan to study the convergence of the algorithm and compare with existing
literature in a forthcoming paper (Fig. 2).

Fig. 2. Two examples of completion using the proposed algorithm.
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3 Université de Paris, CNRS, Laboratoire de Linguistique Formelle, UMR 7110,

Paris, France
gturco@linguist.univ-paris-diderot.fr
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Abstract. The reconstruction mechanisms built by the human auditory
system during sound reconstruction are still a matter of debate. The
purpose of this study is to refine the auditory cortex model introduced
in [9], and inspired by the geometrical modelling of vision. The algo-
rithm lifts the time-frequency representation of the degraded sound to the
Heisenberg group, where it is reconstructed via a Wilson-Cowan integro-
differential equation. Numerical experiments on a library of speech
recordings are provided, showing the good reconstruction properties of
the algorithm.
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1 Introduction

Human capacity for speech recognition with reduced intelligibility has mostly
been studied from a phenomenological and descriptive point of view (see [17] for
a review on noise in speech, as well as a wide range of situations in [2]). What is
lacking is a proper mathematical model informing us on how the human auditory
system is able to reconstruct a degraded speech sound. The aim of this study
is to provide a neuro-geometric model for sound reconstruction based on the
description of the functional architecture of the auditory cortex.
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Knowledge on the functional architecture of the auditory cortex and the
principles of auditory perception are limited. For that reason, we turn to recent
advances in the mathematical modeling of the functional architecture of the pri-
mary visual cortex and the processing of visual inputs [8,12,20] (which recently
yield very successful applications to image processing [10,14,21] ) to extrapolate
a model of the auditory cortex. This idea is not new: neuroscientists take models
of V1 as a starting point for understanding the auditory system (see, e.g., [18]).
Indeed, biological similarities between the structure of the primary visual cortex
(V1) and the primary auditory cortex (A1) are well-known to exist. V1 and A1
share a “topographic” organization, a general principle determining how visual
and auditory inputs are mapped to those neurons responsible for their process-
ing [23]. Furthermore, the existence of receptive fields of neurons in V1 and A1,
allowing for a subdivision of neurons in “simple” and “complex” cells, supports
the idea of a “common canonical processing algorithm” [25].

2 The Contact Space Approach in V1

The neuro-geometric model of V1 finds its roots in the experimental results of
Hubel and Wiesel [15]. This gave rise to the so-called sub-Riemannian model of
V1 in [8,12,20,21]. The main idea behind this model is that an image, seen as
a function f : R2 → R+ representing the grey level, is lifted to a distribution on
R

2×P 1, the bundle of directions of the plane. Here, P 1 is the projective line, i.e.,
P 1 = R/πZ. More precisely, the lift is given by Lf(x, y, θ) = δSf (x, y, θ)f(x, y)
where δSf

is the Dirac mass supported on the set Sf ⊂ R
2×P 1 of points (x, y, θ)

such that θ is the direction of the tangent line to f at (x, y).
When f is corrupted (i.e. when f is not defined in some region of the plane),

the reconstruction is obtained by applying a deeply anisotropic diffusion mim-
icking the flow of information along the horizontal and vertical connections of
V1, with initial condition Lf . This diffusion is known as the sub-Riemannian
diffusion in R

2 × P 1, cf. [1]. One of the main features of this diffusion is that it
is invariant by rototranslation of the plane, a feature that will not be possible
to translate to the case of sounds, due to the special role of the time variable.

The V1-inspired pipeline is then the following: first a lift of the input signal
to an adequate contact space, then a processing of the lifted signal according to
sub-Riemannian diffusions, then projection of the output to the signal space.

3 The Model of A1

The sensory input reaching A1 comes directly from the cochlea. The sensors are
tonotopically organized (in a frequency-specific fashion), with cells close to the
base of the ganglion being more sensitive to low-frequency sounds and cells near
the apex more sensitive to high-frequency sounds. This implies that sound is
transmitted to the primary auditory cortex A1 in the form of a ‘spectrogram’:



58 R. Asswad et al.

when a sound s : [0, T ] → R is heard, A1 is fed with its time-frequency repre-
sentation S : [0, T ] × R → C. If s ∈ L2(R2), as given by the short-time Fourier
transform of s, that is

S(τ, ω) := STFT(s)(τ, ω) =
∫
R

s(t)W (τ − t)e2πitω dt. (1)

Here, W : R → [0, 1] is a compactly supported (smooth) window, so that S ∈
L2(R2). The function S depends on two variables: the first one is time, that here
we indicate with the letter τ , and the second one is frequency, denoted by ω.
Since S is complex-valued, it can be thought as the collection of two black-and-
white images: |S| and arg S. Roughly speaking, |S(τ, ω)| represents the strength
of the presence of the frequency ω at time τ . In the following, we call S the sound
image. The V1-inspired approach is then to apply image perception models on
|S|. However, in this case time plays a special role: the whole sound image does
not reach the auditory cortex simultaneously, but sequentially, and invariance
by image rotations is lost.

A more precise modelling of cochlear processing would replace the STFT with
a wavelet transform [24,27]. This allows to account for the logarithmic scale for
high frequencies and the progressively linear scale for low frequencies.

3.1 The Lift Procedure

We propose an extension of the time-frequency representation of a sound, which
is at the core of the proposed algorithm. Sensitivity to variational information,
such as the tangent to curves for V1, is now translated in a manner that takes
into account the role of time. A regular curve t �→ (t, ω(t)) in the time frequency
domain (τ, ω) is lifted to a 3-dimensional augmented space by adding a new vari-
able ν = dω/dτ . The variation ν in instantaneous frequency is then associated
to the chirpiness of the sound. Alternatively, a curve t �→ (τ(t), ω(t), ν(t)) is a lift
of planar curve t �→ (t, ω(t)) if τ(t) = t and if ν(t) = dω/dt. Setting u(t) = dν/dt
we can say that a curve in the contact space t �→ (τ(t), ω(t), ν(t)) is a lift of a
planar curve if there exists a function u(t) such that:

d

dt

⎛
⎝τ

ω
ν

⎞
⎠ =

⎛
⎝1

ν
0

⎞
⎠ + u

⎛
⎝0

0
1

⎞
⎠ = X0(τ, ω, ν) + uX1(τ, ω, ν) (2)

The vector fields (X0,X1) generate the Heisenberg group. However, we are not
dealing here with the proper sub-Riemannian distribution, since {X0 + uX1 |
u ∈ R} is only one-dimensional.

Following [8], when s is a general sound signal, we lift each level line of |S|. By
the implicit function theorem, this yields the following subset of the augmented
space:

Σ =
{
(τ, ω, ν) ∈ R

3 | ν∂ω|S|(τ, ω) + ∂τ |S|(τ, ω) = 0
}

. (3)
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The external input from the cochlea to the augmented space is then given by

I(τ, ω, ν) = S(τ, ω)δΣ(τ, ω, ν) =

{
S(τ, ω) if ν∂ω|S|(τ, ω) = −∂τ |S|(τ, ω),
0 otherwise,

(4)

with δΣ denoting the Dirac delta distribution concentrated on Σ.

3.2 Associated Interaction Kernel

Considering A1 as a slice of the augmented space allows to deduce a natural
structure for neuron connections. For a single time-varying frequency t �→ ω(t),
its lift is concentrated on the curve t �→ (ω(t), ν(t)), such that

d

dt

(
ω
ν

)
= Y0(ω, ν) + u(t)Y1(ω, ν), (5)

where Y0(ω, ν) = (ν, 0)�, Y1(ω, ν) = (0, 1)�, and u : [0, T ] → R.
As in the case of V1 [7], we model neuronal connections via these dynamics.

In practice, this amounts to assume that the excitation starting at a neuron
X0 = (ω′, ν′) evolves as the stochastic process {At}t≥0 following the SDE dAt =
Y0(At)dt + Y1(At)dWT , {Wt}t≥0 being a Wiener process, with initial condition
A0 = (ω′, ν′). The generator of {At}t≥0 is the operator L = Y0 + (Y1)2.

The influence kδ(ω, ν‖ω′, ν′) of neuron (ω′, ν′) on neuron (ω, ν) at time δ > 0
is then modeled by the transition density of the process {At}t≥0, given by the
integral kernel at time δ of the Fokker-Planck equation

∂tI = L∗I, where L∗ = −Y0 + (Y1)2 = −ν∂ω + b∂2
ν . (6)

The vector fields Y0 and Y1 are interpreted as first-order differential operators
and the scaling parameter b > 0 models the relative strength of the two terms.
We stress that an explicit expression of kδ is well-known (see, for instance [3])
and is a consequence of the hypoellipticity of (∂t − L∗).

3.3 Processing of the Lifted Signal

As we already mentioned, the special role played by time in sound signals does
not permit to model the flow of information as a pure hypoelliptic diffusion, as
was done for static images in V1. We thus turn to a different kind of model:
Wilson-Cowan integro-differential equations [26]. This model has been success-
fully applied to describe the evolution of neural activations, in V1 in particular,
where it allowed to predict complex perceptual phenomena such as the emer-
gence of patterns of hallucinatory [11,13] or illusory [4–6] nature. It has also
been used in various computational models of the auditory cortex [16,22,28].

Wilson-Cowan equations also present many advantages from the point of
view of A1 modelling: i) they can be applied independently of the underlying
structure, which is only encoded in the kernel of the integral term; ii) they allow
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for a natural implementation of delay terms in the interactions; iii) they can be
easily tuned via few parameters with a clear effect on the results.

On the basis of these positive results, we emulate this approach in the A1
context. Namely, we consider the lifted sound image I(τ, ω, ν) to yield an A1
activation a : [0, T ] × R × R → C, solution of

∂ta(t, ω, ν) =−αa(t, ω, ν) + βI(t, ω, ν) (WC)

+ γ

∫
R2

kδ(ω, ν‖ω′, ν′)σ(a(t − δ, ω′, ν′)) dω′ dν′,

with initial condition a(t, ·, ·) ≡ 0 for t ≤ 0. Here, α, β, γ > 0 are parameters, kδ

is the interaction kernel, and σ : C → C is a (non-linear) saturation function, or
sigmoid. We pick σ(ρeiθ) = σ̃(ρ)eiθ where σ̃(x) = min{1,max{0, κx}}, x ∈ R,
for some fixed κ > 0.

The presence of a delay δ in the activation appearing in the integral inter-
action term (WC) models the fact that the time-scale of the input signal and
of the neuronal activation are comparable. When γ = 0, equation (WC) is a
standard low-pass filter ∂ta = −αa + I. Setting γ 	= 0 adds a non-linear delayed
interaction term on top of this exponential smoothing, encoding the inhibitory
and excitatory interconnections between neurons.

3.4 Algorithm Pipeline

Both operations in the lift procedure are invertible: the STFT by inverse STFT,
and the lift by integration along the ν variable (that is, summation of the dis-
cretized solution). The final output signal is thus obtained by applying the
inverse of the pre-processing (integration then inverse STFT) to the solution
a of (WC). That is, the resulting signal is given by

ŝ(t) = STFT−1

(∫ +∞

−∞
a(t, ω, ν) d ν

)
. (7)

It is guaranteed that ŝ is real-valued and thus correctly represents a sound signal.
From the numerical point of view, this implies that we can focus on solutions of
(WC) in the half-space {ω ≥ 0}, which can then be extended to the whole space
by mirror symmetry.

The resulting algorithm to process a sound signal s : [0, T ] → R is then:

A. Preprocessing:
(a) Compute the time-frequency representation S : [0, T ] × R → C of s, via

standard short time Fourier transform (STFT);
(b) Lift this representation to the Heisenberg group, which encodes redundant

information about chirpiness, obtaining I : [0, T ] × R × R → C;
B. Processing: Process the lifted representation I via a Wilson-Cowan equa-

tion adapted to the Heisenberg structure, obtaining a : [0, T ] × R × R → C.
C. Postprocessing: Project a to the processed time-frequency representation

Ŝ : [0, T ] × R → C and then apply an inverse STFT to obtain the resulting
sound signal ŝ : [0, T ] → R.
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4 Numerical Implementation

The discretization of the time and frequency domains is determined by the sam-
pling rate of the original signal and the window size chosen in the STFT proce-
dure. That is, by the Nyquist-Shannon sampling theorem, for a temporal sam-
pling rate δt and a window size of Tw, we consider the frequencies ω such that
|ω| < 1/(2δt), with a finest discretization rate of 1/(2Tw). Observe, in particular,
that the frequency domain is bounded. Nevertheless, the chirpiness ν defined as
ν∂ω |S| (τ, ω) + ∂τ |S| (τ, ω) = 0 is unbounded and, since generically there exists
points such that ∂ω|S|(τ0, ω0) = 0, it stretches over the entire real line.

Fig. 1. Chirpiness of a speech signal com-
pared to Cauchy distribution

Fig. 2. Box plots for estimated Cauchy
distributions of speech signals chirpiness.
Left: Kolmogorov-Smirnov statistic values.
Right: percentage of values falling in I0.95

To overcome this problem, a natural strategy is to model the chirpiness val-
ues as a random variable, and considering only chirpinesses falling inside the
confidence interval Ip for some reasonable p-value (e.g., p = 0.95). A reason-
able assumption for the distribution of X is that it follows a Cauchy distribution
Cauchy(x0, γ). Indeed, this corresponds to assuming that ∂ω|S| and ∂τ |S| are nor-
mal (and independent) distributions [19]. As it is customary, we chose as estimator
for the location parameter x0 the median of X and for the scale parameter γ half
the interquartile distance.

Although statistical tests on a library of real-world speech signals1 rejected
the assumption that X ∼ Cauchy(x0, γ), the fit is quite good according to the
1 The speech material used in the current study is part of an ongoing psycholinguis-

tic project on spoken word recognition. Speech material comprises 49 Italian words
and 118 French words. The two sets of words were produced by two (40-year-old)
female speakers (a French monolingual speaker and an Italian monolingual speaker)
and recorded using a headset microphone AKG C 410 and a Roland Quad Capture
audio interface. Recordings took place in the soundproof cabin of the Laboratoire
de Phonétique et Phonologie (LPP) of Université de Paris Sorbonne-Nouvelle. Both
informants were told to read the set of words as fluently and naturally as possible.
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Kolmogorov-Smirnov statistic Dn = supx |Fn(x) − FX(x)|. Here, FX is the cumu-
lative distribution function of X and Fn is the empirical distribution function eval-
uated over the chirpiness values (Fig. 1, 2).

5 Denoising Experiments

For simple experiments on synthetic sounds, highligting the characteristics of
the proposed algorithm, we refer to [9].

Fig. 3. Distance of noisy sound to original one before (blue) and after (red) the process-
ing, plotted against the standard deviation of the noise (ε). Left: standard deviation
metric. Right: ‖·‖ norm. (Color figure online)

In Fig. 3 we present the results of the algorithm applied to a denoising task.
Namely, given a sound signal s, we let sε = s+ gε, where gε ∼ N (0, ε) is a gaus-
sian random variable. We then apply the proposed sound processing algorithm
to obtain ŝε. As a reconstruction metric we present both the norm ‖·‖ where for
a real signal s, ‖s‖ = ‖s‖1 /dim(s) with ‖·‖1 as the L1 norm and the standard
deviation std(ŝε − ŝ). We observe that according to both metrics the algorithm
indeed improves the signal.
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20. Petitot, J., Tondut, Y.: Vers une neurogéométrie. fibrations corticales, structures
de contact et contours subjectifs modaux. Mathématiques et Sci. humaines 145,
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Abstract. A conformal spherical model of hypercolumns of primary
visual cortex V1 is proposed. It is a modification of the Bressloff-Cowan
Riemannian spherical model. The main assumption is that simple neu-
rons of a hypercolumn, considered as Gabor filters, obtained for the
mother Gabor filter by transformations from the Möbius group Sl(2,C).
It is shown that in a small neighborhood of a pinwheel, which is respon-
sible for detection of high (resp., low) frequency stimuli, it reduces to
the Sarti-Citti-Petitot symplectic model of V1 cortex. Application to
the visual stability problem is discussed.

Keywords: Conformal model of hypercolumn · Möbius group ·
Stability problem

1 Introduction

D. Hubel and T. Wiesel [9] described the structure of the primary visual cor-
tex V1 from a neurophysiological point of view and proposed the first model
of the V1 cortex (“ice cube model”). Moreover, they justified the existence of
hypercolumns, later described as fiber bundles over the retina.

Fiber of the bundle corresponds to different internal parameters (orienta-
tion, spatial frequency, ocular dominance, direction of motion, curvature, etc.)
that affect the excitation of visual neurons. N.V. Swindale [18] estimated the
dimension of the fibers (= the number of internal parameters) as 6−7 or 9−10.

In 1989, W. Hoffman [8] hypothesized that the primary visual cortex is a
contact bundle. The realization of this conjecture was started by J. Petitot [16]
and continued in [3,4,14,15]. J. Petitot [14] proposed the contact model of V1
cortex as the contact bundle π : P = PT ∗R → R of orientations (directions) over
the retina R = R

2 (identified with the plane) with circle fibers S1. The manifold
P has coordinates (x, y, θ) where (x, y) ∈ R

2 and the orientation θ is the angle
between the tangent line to a contour in retina and the axis 0x. The manifold
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P is identified with the bundle of (oriented) orthonormal frames in R and with
the group SE(2) = SO(2) · R2 of unimodular Euclidean isometries.

The basic assumption is that simple neurons are parametrized by points of
P = SE(2). More precisely, the simple neuron, associated to a frame f ∈ P , is
working as the Gabor filter in the Euclidean coordinates defined by the frame f .

Note that in this model, “points” of retina correspond to pinwheels, that
is, singular columns of cortex, which contains simple neurons of any orientation.
Recall that all simple neurons of a regular column act as (almost) identical Gabor
filters with (almost) the same receptive field D and receptive profile and they fire
only if a contour on the retina, which crosses D, has an appropriate orientation θ.

Recently, this model (equiped with an appropriate sub-Riemannian metric)
had been successfully applied by B. Franceschiello, A. Mashtakov, G. Citti and
A. Sarti [6] for explanation of optical illusions.

The contact model had been extended by Sarti, Citti and Petitot [17] to a
symplectic model, with two-dimensional fibers, associated with the orientation
θ and the scaling σ. In this model, simple cells are parametrized by conformal
frames or points of the Euclidean conformal group Sim(E2) = R

+ ·SE(2). More
precisely, this means that the simple neuron, associated to a conformal frame
f , works as the Gabor filter, obtained form the mother Gabor filter, associated
to the standard frame f0, by the transformation Af ∈ Sim(E2) which maps f0
onto f . Note that the receptive profiles are transformed as density, see [17].

P. Bressloff and J. Cowan [1,2] proposed a Riemannian spherical model of a
hypercolumn H of V1 cortex, associated with two internal parameters: the ori-
entation θ and the spatial frequency p (more precisely, the normalized logarithm
σ of p). This means that a simple neuron n = n(θ, σ) fires if the contour on
retina which crosses the receptive field of n has (approximately) the orientation
θ and the frequency σ. They assume that a hypercolumn H is associated with
two pinwheels S,N (singular columns), which has simple neurons of any orien-
tation and the minimum value σ = −π/2 and, respectively, the maximum value
σ = π/2 of the normalized frequency. All other columns of the hypercolumn H
are regular. Simple neurons of a regular column fire if the contour has fixed value
(θ, σ) of the orientation and the normalized frequency. In other words, columns
of a hypercolumn are parametrized by coordinates θ, σ and these coordinates
may be considered as the spherical coordinates (longitude and latitude) of the
sphere. The pinwheels S,N correspond to the south pole and the north pole of
the sphere S2 = H. The neighborhood of S detects the low frequency images
and the neighborhood of N detects the high frequency images.

We present a modification of this model, based on the assumption that a
hypercolumn H is a conformal sphere. In this model, simple neurons of H are
parametrized by second order conformal frames, obtained from the standard
frame by transformations from the Möbius group G = SL(2,C).

This corresponds to the Cartan approach to conformal geometry, bases on
the construction of so-called Cartan connection. For the conformal sphere, the
Cartan connection is the principal bundle G = SL(2,C) → S2 = G/Sim(E2)
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with the Maurer-Cartan form μ : TG → sl(2,C) (which identifies tangent spaces
TgG with the Lie algebra sl(2,C)). Moreover, points of the sphere (which cor-
respond to columns of the hypercolumn H) are parametrized by the stability
subgroups. This corresponds to the Tits model of the conformal sphere (where
points are defined as stability subgroups).

We show that in a neighborhood of a pinwheel, the conformal model formally
reduces to the symplectic model of Sarti, Citti and Petitot.

We discuss the problem of visual stability and relation of the proposed model
with stability. The visual stability problem consists in explanation how we per-
ceive stable objects as stable despite the change of their retinal images caused
by the rotation of the eyes, see e.g. [19].

2 Riemannian Spinor Model of Conformal Sphere

To describe our conformal model of hypercolumns, which is a conformal modifi-
cation of the model by Bressloff and Cowan, we recall Riemann spinor model of
conformal sphere as Riemann sphere S2 = Ĉ = C∪ {∞} with two distinguished
points S = 0 and N = ∞ and complex coordinate z ∈ S2\N and w = 1

z ∈ S2\S.
The group G = SL(2,C) acts on S2 as the conformal group by fractional-linear
transformations

z �→ Az =
az + b

cz + d
, a, b, c, d ∈ C,det A = 1.

Remark that this group acts non-effectively and the quotient group PSL(2,C) =
SL(2,C)/{±Id}, which is isomorphic to the connected Lorentz group SO0(1, 3),
acts effectively.

Denote by

G = G− · G0 · G+ =
(

1 0
C 1

)
·
{(

a 0
0 a−1

)
, a ∈ C

∗
}

·
(

1 C

0 1

)

the Gauss decomposition. Then the stability subgroups GS , GN of the points S =
0 and N = ∞ are B∓ = G0 ·G∓ � Sim(E2) = CO2 ·R2. As a homogeneous man-
ifold, the conformal sphere may be writtes as S2 = G/B∓ = SL2(C)/Sim(E2).

3 Conformal Spherical Model of Hypercolumns

We present a conformal modification of the Bressloff-Cowan model. We assume
that as in Bressloff-Cowan model the hypercolumn, associated with two pin-
wheels N,S, is the conformal sphere with the spherical coordinates θ, σ. Simple
neurons, considered as Gabor filters, are parametrized by the conformal Möbius
group G � SL(2,C) and depend of 6 parameters. More precisely, the Gabor
filter n(g) (i.e. the simple neuron), associated with a transformation g ∈ G, is
obtained from the mother Gabor filter (associated to the standard coordinate
system) by the conformal transformation g.
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We show that in a small neighborhood DS of the south pole (respectively,
in a small neighborhood DN of the north pole N), responsible for perception of
low (respectively, high) frequency stimuli, the model reduces to the symplectic
Sarti-Citti-Petitot model.

3.1 Relation with Symplectic Sarti-Citti-Petitot Model

Let σN : S2 → TSS2 = E2 be the stereographic projection from the north pole
N to the tangent space at the south pole. The transitive action of the stability
subgroup GN = G0 · G+ � Sim(E2) on S2 \ N induces its action on the tangent
plane TSS2 = E2 as the group Sim(E2) of similarity transformations.
More precisely, the subgroup G+ acts on TSS2 = E2 by parallel translations,
the group SO2 = {diag(eiα, e−iα)} acts by rotations,
the group R

+ = {diag(λ, λ−1)} acts by homotheties,
Note also that the subgroup G− ⊂ GS preserves S and acts trivially on TSS2.
Hence in a small neighborhood of S, the action of the conformal group is approx-
imated by the action of the similarity group GN � Sim(E2) in TSS2 � E2. We
conclude:
Simple neurons of a hypercolumn in a small neighbourhood of the
south pole S (resp., the north pole N) depends only on 4-parameters
and are parametrized by points of the group GN (resp., GS ) of simi-
larities according to the Sarti-Citti-Petitot model.

3.2 Principle of Invariancy

We will state the following obvious general principle of invariancy:
Let G be a group of transformations of a space V and O = Gx an orbit.

Principle of Invariancy. The information, which observers, distributed along
the orbit O, send to some center is invariant w.r.t. the group G.

Application. The information about the low spatial frequency stimuli, encoded
in simple cells of a hypercolumn H near south pinwheel, parametrized by the
group GN , is invariant w.r.t. GN .

Similarly, the information about the high spatial frequency stimuli is invari-
ant w.r.t. the group GS .

The information about local structure of a stimulus, encoded in simple cells
of a hypercolumn, are parametrized by the conformal group G = SL2(C) and is
invariant with respect to the conformal group G.

In particular, if we assume that the remapping of the retinal image after
a microsaccade is carried out by a conformal transformation, then the simple
neurons of a hypercolumns contain information, which is sufficient to identify
the retina images before and after the saccade.

In the next section, we discuss the conjecture that the remapping after a
(micro and macro) saccade is described by a conformal transformation of the
retinal image.
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4 The Cental Projection and the Shift of Retina Images
After Post-saccade Remappling

4.1 The Central Projection onto the Retina

Let M ⊂ E3 be a surface, whose points are sources of diffuse reflected light.
We assume that all the light rays emitted from a point A ∈ M carry the same
energy density E(A). The retina image of the surface is described by the central
projection of the surface to the eye sphere S2 with respect to the nodal point F
of the eye.

We will assume that the nodal point F (or optical center) of the eye B
(considered as a ball) belongs to the eye sphere S2 = ∂B.

It is not completely true, the nodal point is located inside the eye ball, but
very close to the eye sphere.

The central projection of a surface M ⊂ E3 onto a sphere S2 ⊂ E3 with
center F ∈ S2 is defined by the map

πF : M 	 A → Ā = �AF ∩ S2 ⊂ S2

where �AF ∩ S2 is the second point of intersection of the sphere S2 with the ray
�AF , passing through the point F .

We may assume that the central projection is a (local) diffeomorphism and
that the energy density I(Ā) at a point Ā is proportional to E(A). So the input
function I : S2 → R ⊂ S2 on the retina R contains information about illumina-
tion of points of the surface M .

With respect to the retinal coordinates (fixed w.r.t. to the eye ball B3) the
eye rotation R is equivalent to inverse rotation R−1 of the external space E3.
It transforms M onto another surface M ′ = R−1M with the new retina image
πF (M ′) = πF (R−1(M)). The transformation πF (M) → πF M ′ is called the
post-saccade remapping. This means that a visual neuron n with a receptive
field D ⊂ R, which detects the retina image Ā = πF (A) of an external point A
after a saccade will detect the image Ā′ = πF (A′) where A′ = R−1(A).

J.-R. Duhamel, C.L. Colby and M.E. Goldberg [5], see also [12,13] discovered
the fundamental and mysterious fundamental phenomenon of “shift of receptive
field” for visual neurons in various systems of visual cortex:

100 ms before the saccade, the neuron n with the receptive field D, which
detected the retinal image Ā ∈ D, starts to detect the retina image Ā′ of the
point A′ = R−1(A), which will be in its receptive field after the saccade.

Art historian Ernst Gombrich proposed an important Etcetera Principle,
see [5,7]. It states that for saccade remapping, the brain controls information
about new retinal image of only 3–4 salient points of the scene. It is sufficient
to reconstruct the new retinal image of all scene, using redundancy in the scene
and previous experience with the given type of environment.

Gombrich wrote that “only a few (3–4) salient stimuli are contained
in the trans-saccadic visual memory and update.”
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We propose an implementation of this idea, based on assumption that remapping
of retinal images are described by conformal transformations. First of all, we
recall the Möbius projective model of the conformal sphere.

4.2 Möbius Projective Model of Conformal Sphere

Let (V = R
1,3, g) be the Minkowski vector space with the metric of signature

(−,+,+,+) and (e0, e1, e2, e3) an orthonormal basis of V .
Up to scaling, there are three orbits of the connected Lorentz group G =

SO0(V ) in V :
VT = Ge0 = G/SO3 (the Lobachevski space),
VS = Ge1 = G/SO1,2 (the De Sitter space),
V0 = Gp = G/SE(2) - isotropic (light) cone, where p = e0+e1 is the null vector,
SE(2) = SO2 · R2.
Projectivization of these orbits gives three G-orbits in the projective space P 3 =
PV : the open ball B3 = PVT � VT ,
its exterior PVS and
the projective quadric ((or conformal sphere)

Q = PV0 = G/Sim(E2) = G/(R+ · SE(2))

with induces conformal metric and conformal action of G.
The metric g defines correspondence PV 	 [v] ⇔ P (v⊥) ⊂ P 3 between

projective points and projective planes.
The projective plane P (v⊥) does not intersect (resp., intersect) the quadric

Q if v = n ∈ VT (resp., v = m ∈ VS). For p ∈ V0, the plane P (p⊥) = T[p]Q is
the tangent plane of the quadric.

Euclidean Interpretation
Intersection of these objects with the Euclidean hyperplane E3

e0
= e0 + e⊥

0 pro-
vides an Euclidean interpretation of the quadric Q and projective planes:
S2 := Q ∩ E3

e0
is the unite sphere in the Euclidean space E3

e0
,

An Euclidean plane Πv = v⊥ ∩ E3
e0

⊂ E3
e0

does not intersect (resp, intersect)
the sphere S2 if v = n ∈ VT (resp., v = m ∈ VS) and Πp = TF S2 is the tangent
plane of S2 at the point F = Rp ∩ E3

e0
for p ∈ V0.

Lemma 1. The stability group GF = Sim(E2) of a point F = Rp ∩ E3
e0

acts
transitivity on VT , hence, on the set of planes {Πn, n ∈ VT } which do not
intersect the sphere S2.

4.3 Remapping as a Conformal Transformation

Due to Lemma, there is a Lorentz transformation L ∈ SO(V )F which fixes the
nodal point F ∈ S2 and transforms the plane Π = Πn, n ∈ VT into any other
plane Π ′ = Πn′ which does not intersect S2.

Let Π,⊂ E3 be a plane and Π ′ = R−1Π another plane, where
R ∈ SO(3) is the eye rotation, which describes a saccade. Suppose
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that the brain identifies the planes by means of the Lorentz transfor-
mation L which preserves F and transform Π into Π ′. Then the retinal
images πF (Π), πF (Π ′) ⊂ S2 before and after a saccade are related by
the conformal transformation L|S2.

Such conformal transformation (and the Lorentz transformation L) is deter-
mined by the images of three generic points of the eye sphere S2. Hence, the new
position of a three points of retina after a saccade is sufficient for reconstruction
of the remapping as Etcetera Principle by E.H. Gombrich states.

Note that is the rotation is small, then the Lorentz transformation L is closed
to the rotation R.

Our conjecture reduces the problem of stability for contours to the classical
problem of conformal geometry - description of curves on the conformal sphere
up to a conformal transformation. (It is the conformal generalisation of the
Frenet theory). It was solved by Fialkov, Sulanke, Sharp, Shelechov and others.
Recently V. Lychagin and N. Konovenko [11] gave an elegant description of the
algebra of conformal differential invariants for the conformal sphere.
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Extremal Controls for the Duits Car

Alexey Mashtakov(B)

Ailamazyan Program Systems Institute of RAS, Pereslavl-Zalessky, Russia

Abstract. We study a time minimization problem for a model of a car
that can move forward on a plane and turn in place. Trajectories of this
system are used in image processing for the detection of salient lines. The
problem is a modification of a well-known sub-Riemannian problem in
the roto-translation group, where one of the controls is restricted to be
non-negative. The problem is of interest in geometric control theory as a
model example in which the set of admissible controls contains zero on the
boundary. We apply a necessary optimality condition—Pontryagin max-
imum principle to obtain a Hamiltonian system for normal extremals. By
analyzing the Hamiltonian system we show a technique to obtain a single
explicit formula for extremal controls. We derive the extremal controls
and express the extremal trajectories in quadratures.

Keywords: Sub-Riemannian · Geometric control · Reeds-Shepp car

1 Introduction

Consider a model of an idealized car moving on a plane, see Fig. 1. The car
has two parallel wheels, equidistant from the axle of the wheelset. Both wheels
have independent drives that can rotate forward and backward so that the cor-
responding rolling of the wheels occurs without slipping. The configuration of
the system is described by the triple q = (x, y, θ) ∈ M = R

2 × S1, where
(x, y) ∈ R

2 is the central point, and θ ∈ S1 is the orientation angle of the car.
Note that the configuration space M forms the Lie group of roto-translations
SE(2) � M = R

2 × S1.
From the driver’s point of view, the car has two controls: the accelerator u1

and the steering wheel u2. Consider the configuration e = (0, 0, 0), which cor-
responds to the car located in the origin and oriented along the positive direc-
tion of abscissa. An infinitesimal translation is generated by the vector ∂x and
rotation—by ∂θ. They are possible motions controlled by u1 and u2 respectively.
The remaining direction ∂y is forbidden since the immediate motion of the car
in direction perpendicular to its wheels is not possible. Thus, the dynamics of
the car in the origin is given by ẋ = u1, ẏ = 0, θ̇ = u2.
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u

u

1

2

Fig. 1. Left: classical model of a car that can move forward and backward and rotate in
place. Its trajectory represents a cusp when the car switches the direction of movement
to opposite. Arcs of the trajectory where the car is moving forward/backward are
depicted in green/red correspondingly. Right: control u1 is responsible for translations
and u2 for rotations of the car. For the Duits car motion backward is forbidden u1 ≥ 0.
(Color figure online)

Fig. 2. Set of admissible controls for various models of a car moving on a plane.

The origin e is unit element of the group SE(2). Any other element q ∈ SE(2)
is generated by left multiplication Lqe = q · e. Dynamics in a configuration q is

q̇ = u1X1(q) + u2X2(q), (1)

where the vector fields Xi are obtained via push-forward of left multiplication
X1(q) = Lq∗∂x, X2 = Lq∗∂θ, and the forbidden direction is X3(q) = Lq∗∂y:

X1(q) = cos θ ∂x + sin θ ∂y, X2(q) = ∂θ, X3(q) = sin θ ∂x − cos θ ∂y.

Various sets of admissible controls U � (u1, u2) lead to different models of
the car, see [1]. e.g., see Fig. 2, the time minimization problem for

– u1 = 1, |u2| ≤ κ, κ > 0 leads to Dubins car [2];
– |u1| = 1, |u2| ≤ κ, κ > 0 leads to Reeds-Shepp car [3];
– u2

1 + u2
2 ≤ 1 leads to the model of a car, which trajectories are given by

sub-Riemannian length minimizes, studied by Sachkov [4];
– u1 ≥ 0, u2

1 + u2
2 ≤ 1 leads to the model of a car moving forward and turning

in place, proposed by Duits et al. [5].
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System (1) appears in robotics as a model of a car-like robot. The system
also arises in the modelling of the human visual system and image process-
ing. A mathematical model of the primary visual cortex of the brain as a sub-
Riemannian structure in the space of positions and orientations is developed
by Petitot [6], Citti and Sarti [7]. According to this model, contour completion
occurs by minimizing the excitation energy of neurons responsible for the area
of the visual field, where the contour is hidden from observation.

The principles of biological visual systems are actively used in computer
vision. Based on these principles, effective methods of image processing are cre-
ated, e.g.: image reconstruction [8,9], detection of salient lines in images [10].

In particular, the problem of salient curves detection arises in the analysis of
medical images of the human retina when searching for blood vessels. In [10], the
set of admissible controls is the disk u2

1+u2
2 ≤ 1. A disadvantage of this model is

the presence of cusps, see Fig. 2. Such curves are not desirable for vessel tracking.
To eliminate this drawback, the restriction of the set of admissible control to a
half-disc was proposed in [5]. The results of vessel tracking via the minimal paths
in this model, which we call the Duits car, can be found in [11].

The problem of optimal trajectories of the Duits car with a given external
cost is studied in [5]. In particular, the authors develop a numerical method
for finding optimal trajectories using Fast-Marching algorithm [12]. They also
study the special case of uniform external cost, which we consider in this paper,
and formulate a statement that cusp points are replaced by so-called key points,
which are points of in-place rotations, see [5, Theorem 3].

In this paper, we study the time-minimization problem for the Duits car. By
direct application of Pontryagin maximum principle (PMP) and analysis of the
Hamiltonian system of PMP, we show a formal proof of the statement regarding
the replacement of cusps by key points. We also present a technique of obtaining
the explicit form of extremal controls by reducing the system to the second-order
ODE and solving it in Jacobi elliptic functions.

The problem under consideration is of interest in geometric control the-
ory [13], as a model example of an optimal control problem in which zero control
is located on the boundary of the set of admissible controls. A general app-
roach [14] to similar problems is based on convex trigonometry. The approach
covers the class of optimal control problems with two-dimensional control belong-
ing to an arbitrary convex compact set containing zero in its interior. However,
this approach does not admit immediate generalization to the case when zero
lies on the boundary. For systems of this type, the development of new methods
is required. This article examines in detail a particular case of such a system.

2 Problem Formulation

We consider the following control system:
⎧
⎨

⎩

ẋ = u1 cos θ,
ẏ = u1 sin θ,

θ̇ = u2,

(x, y, θ) = q ∈ SE(2) = M,
u2
1 + u2

2 ≤ 1, u1 ≥ 0.
(2)



76 A. Mashtakov

We study a time minimization problem, where for given boundary conditions
q0, q1 ∈ M, one aims to find the controls u1(t), u2(t) ∈ L∞([0, T ],R), such that
the corresponding trajectory γ : [0, T ] → M transfers the system from the initial
state q0 to the final state q1 by the minimal time:

γ(0) = q0, γ(T ) = q1, T → min . (3)

System (2) is invariant under action of SE(2). Thus, w.l.o.g., we set q0 = (0, 0, 0).

3 Pontryagin Maximum Principle

It can be shown that, in non-trivial case, problem on the half-disc is equivalent
to the problem on the arc u2

1 + u2
2 = 1. Denote u = u2, then u1 =

√
1 − u2.

A necessary optimality condition is given by PMP [13]. Denote hi = 〈λ,Xi〉,
λ ∈ T ∗

M. It can be shown that abnormal extremals are given by in-place rota-
tions ẋ = ẏ = 0. Application of PMP in normal case gives the expression of
extremal control u = h2 and leads to the Hamiltonian system

⎧
⎨

⎩

ẋ =
√

1 − h2
2 cos θ,

ẏ =
√

1 − h2
2 sin θ,

θ̇ = h2,

⎧
⎨

⎩

ḣ1 = −h2h3,

ḣ2 =
√

1 − h2
2h3,

ḣ3 = h2h1,

(4)

with the (maximized) Hamiltonian

H = 1 =
{ |h2|, for h1 ≤ 0,√

h2
1 + h2

2, for h1 > 0,
(5)

The subsystem for state variables x, y, θ is called the horizontal part, and
the subsystem for conjugate variables h1, h2, h3 is called the vertical part of
the Hamiltonian system. An extremal control is determined by a solution of the
vertical part, while an extremal trajectory is a solution to the horizontal part.

The vertical part has the first integrals: the Hamiltonian H and the Casimir

E = h2
1 + h2

3. (6)

Remark 1. Casimir functions are universal conservation laws on Lie groups. Con-
nected joint level surfaces of all Casimir functions are coadjoint orbits (see [15]).

In Fig. 3 we show variants of the mutual arrangement of the level surface of
the Hamiltonian H = 1, which consists of two half-planes glued with half of the
cylinder, and the level surface of the Casimir E ≥ 0, which is a cylinder. In Fig. 4
we show the phase portrait on the surface H = 1.

Depending on the sign of h1, we have two different dynamics. When h1

switches its sign, the dynamics switches from one to another. We denote by
t0 ∈ {t00 = 0, t10, t

2
0, . . .} the instance of time when the switching occurs. Note,

that at the instances t0 the extremal trajectory (x(t), y(t), θ(t)) intersects the
so-called ‘cusp-surface’ in SE(2), analytically computed and analysed in [16].
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Fig. 3. Level surfaces of the Hamiltonian H (in green) and the Casimir E (in red). The
intersection line is highlighted in yellow. Left: E < 1. Center: E = 1. Right: E > 1.
(Color figure online)

Fig. 4. Phase portrait on the level surface H = 1 of the Hamiltonian.

3.1 The Case h1 < 0.

Due to (5), we have h2 = h20 = ±1. Denote s2 = h2. We study the system
⎧
⎨

⎩

ẋ = 0, x(t0) = x0,
ẏ = 0, y(t0) = y0,

θ̇ = s2, θ(t0) = θ0,

{
ḣ1 = −s2h3, h1(t0) = h10,

ḣ3 = s2h1, h3(t0) = h30.
(7)

We immediately see that solutions to the horizontal part (extremal trajecto-
ries) are rotations around the fixed point (x0, y0) with constant speed s2 = ±1.

Solutions to the vertical part are given by arcs of the circles. The motion is
clockwise, when s2 = −1, and counterclockwise, when s2 = 1:

h1(t)=h10 cos(t−t0)−s2 h30 sin(t−t0), h3(t)=h30 cos(t−t0)+s2 h10 sin(t−t0).

It remains to find the first instance of time t1 > t0, at which the dynamics
switches. That is the moment when the condition h1 < 0 ceases to be met:

t1 − t0 = arg (−s2h30 − ih10) ∈ (0, π]. (8)
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Note that in the case t0 > 0, that is, when at least one switch has already
occurred, the formula (8) is reduced to t1 − t0 = π.

3.2 The Case h1 > 0

By (5) we have h1 =
√

1 − h2
2. The Hamiltonian system of PMP has the form

⎧
⎨

⎩

ẋ = h1 cos θ, x(t0) = x0,
ẏ = h1 sin θ, y(t0) = y0,

θ̇ = h2, θ(t0) = θ0,

⎧
⎨

⎩

ḣ1 = −h2h3, h1(t0) = h10,

ḣ2 = h1h3, h2(t0) = h20,

ḣ3 = h2h1, h3(t0) = h30.

(9)

This system is a model example in geometric control theory [13]. An explicit solu-
tion in Jacobi elliptic functions was obtained in [4], where the authors reduced
the vertical part to the equation of mathematical pendulum. The solution is
given by different formulas in different areas of the phase portrait. The specific
form is determined by the nature of the movement of the pendulum: oscillation,
rotation, movement along the separatrix, stable or unstable equilibrium.

We propose another technique that leads to an explicit parameterization of
the solutions by a single formula. First, we derive the ODE on the function h2.
Then we find its explicit solution. Finally, we express the remaining components
h1, h3 in terms of the already found function h2 and initial conditions.

Denote M = E − 2. By virtue of (9), we have

ḧ2 + Mh2 + 2h3
2 = 0, (10)

with initial conditions h2(t0) = h20 =: a, ḣ2(t0) = h10h30 =: b.
An explicit solution of this Cauchy problem, see [18, Appendix A], is given

by
h2(t) = scn

(
t−t0

k + sF (α, k), k
)
, k = 1√

E
,

α = arg
(
s a + i s

√
1 − a2

) ∈ (−π, π], s = −sign(b),

where F denotes the elliptic integral of the first kind in the Legendre form, and
cn denotes the elliptic cosine [17].

Next, we express h1 and h3 via h2 and initial conditions.
Since h2 ∈ C(R) is bounded, there exists an integral

H2(t) =

t∫

t0

h2(τ)d τ = s arccos
(

dn
(

t − t0
k

+ sF (α, k), k
)) ∣

∣
∣
∣
∣

τ=t

τ=t0

,

where dn denotes the delta amplitude [17].
It can be shown that the Cauchy problem on (h1, h3) has a unique solution

h1(t) = h10 cos H2(t)−h30 sin H2(t), h3(t) = h30 cos H2(t)+h10 sin H2(t). (11)

The extremal trajectories are found by integration of the horizontal part:

x(t) = x0+

t∫

t0

h1(τ) cos θ(τ) dτ, y(t) = y0+

t∫

t0

h1(τ) sin θ(τ) dτ, θ(t) = θ0+H2(t).



Extremal Controls for the Duits Car 79

4 Extremal Controls and Trajectories

We summarize the previous section by formulating the following theorem

Theorem 1. The extremal control u(t) in problem (2)–(3) is determined by the
parameters h20 ∈ [−1, 1], h10 ∈ (−∞, 0] ∪

{√
1 − h2

20

}
, h30 ∈ R.

Let s1 = sign(h10) and σ = s1+1
2 . The function u(t) is defined on time intervals

formed by splitting the ray t ≥ 0 by instances t0 ∈ {0 = t00, t
1
0, t

2
0, t

3
0, . . .} as

u(t) =
{

u
(
ti−σ
0

) ∈ {−1, 1}, for t ∈ [ti−σ+s1
0 , ti−σ+s1+1

0 ),
scn

(
t−t0

k + sF (α, k), k
)
, for t ∈ [ti−σ

0 , ti−σ+1
0 ),

(12)

where i ∈ {2n − 1 | n ∈ N},
k = 1√

h2
10+h2

30

, s = −sign(h30), α = arg
(
s h20 + i s

√
1 − h2

20

)
.

The corresponding extremal trajectory has the form θ(t) =
t∫

0

u(τ) dτ ,

x(t) =
t∫

0

√
1 − u2(τ) cos θ(τ) dτ, y(t) =

t∫

0

√
1 − u2(τ) sin θ(τ) dτ.

Proof relies on the expression of the extremal controls u1 =
√

1 − u2,
u2 = h2 = u, which follows from maximum condition of PMP, see Sect. 3.
The index i together with the parameters s1 and σ specify the dynamics on
the corresponding time interval. The dynamics switches, when h1 changes its
sign. Explicit formula (12) for the extremal control is obtained in Sect. 3.1 and
Sect. 3.2. The extremal trajectory is obtained by integration of the horizontal
part of (4).

Fig. 5. Projection to the plane (x, y) of two different extremal trajectories. The gray
arrow indicates the orientation angle θ at the instances of time t ∈ {0, 0.5, 1, . . . , 20}.
Left: h0

1 = 0.5, h0
2 =

√
3/2, h0

3 = 1 Right: h0
1 = 0.5, h0

2 =
√

3/2, h0
3 = 0.7.
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By analyzing the solution, we note that there is a relation between the
extremal trajectories of the Duits car and the sub-Riemannian geodesics in
SE(2). Projection to the plane (x, y) of the trajectories in two models coin-
cide, while the dynamics of the orientation angle θ differs: in Duits model, the
angle θ uniformly increases/decreases by π radians at a cusp point. See Fig. 5.
Note that an optimal motion of the Duits car can not have internal in-place
rotations, see [5]. The in-place rotations may occur at the initial and the final
time intervals.
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Abstract. Based on a Sub-Riemannian framework, deformation mod-
ules provide a way of building large diffeomorphic deformations satisfying
a given geometrical structure. This allows to incorporate prior knowledge
about object deformations into the model as a means of regularisation
[10]. However, diffeomorphic deformations can lead to deceiving results
if the deformed object is composed of several shapes which are close to
each other but require drastically different deformations. For the related
Large Deformation Diffemorphic Metric Mapping, which yields unstruc-
tured deformations, this issue was addressed in [2] introducing object
boundary constraints. We develop a new registration problem, marrying
the two frameworks to allow for different constrained deformations in
different coupled shapes.
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1 Introduction

The improvement of medical imaging techniques increase the need for automated
tools to analyse the generated data. Matching two shapes (curves, images) in
order to understand the differences or the evolution between two observations is
often a key step. Large deformations, defined as flows of time-dependent vector
fields [5,9], allow to perform efficient shape registration [4,6,12]. In some cases,
in order to analyse the estimated deformation, it is required to only consider
a subset of suitable deformations [10,14–16]. In addition, the regularity of such
deformations often prevents the simultaneous registration of several shapes close
to each other, but requiring different types of motions, as it appears in medical
imaging (with several organs for instance, see [13]). We present in this article a
modular multi-shape registration framework, combining the deformation module
framework [10] with the multi-shape registration developed in [2].
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t = 0 t = 0.3 t = 0.7 t = 1.0

Fig. 1. Registration of unparametrized curves using LDDMM (top) and deformation
modules (bottom). The red dotted curve is the target, the black curve the evolving
shape. The two points are the centers of the local scaling. (Color figure online)

2 Background

2.1 Structured Large Deformations

A strategy to restrict large deformations to an appropriate subset is to incorporate
a structure in the deformation model via chosen field generators [10,14,16,17] or
constraints [1]. We will use a simplified version of the deformation module frame-
work [10] which allows to build an appropriate vocabulary of interpretable fields.
A deformation module is defined as a quadruple (O,H, ζ, c). The field generator
ζ : O × H �→ Cl

0(Ω,Rd), allows to parameterise structured vector fields such as
a local scaling, or physically motivated deformation. The geometrical descriptor
q ∈ O contains the ’geometrical information’ of the generated vector field, such
as its location. In this article we will assume O is a space of landmarks of Rd,
which includes the case of discretised curves. The control h ∈ H selects a partic-
ular field amongst the allowed ones. Finally, the cost function c : O × H �→ R

+

associates a cost to each couple in O × H. Under some conditions (see Sect. 3),
the trajectory ζqt(ht) can be integrated via the flow equation ϕ̇t = ζqt(ht) ◦ ϕt,
ϕt=0 = Id, so that the structure imposed on vector fields can be transferred
to a structure imposed on large deformations [10]. The evolution of q is then
given by q̇t = ζqt(ht)(qt), where v(q) = (v(x1), . . . , v(xp)) if q consists of the
points xi ∈ R

d. The framework comes with the possibility to combine several
deformation modules Mi = (Oi,Hi, ζi, ci), 1 ≤ i ≤ N , into the compound
module C(M1, . . . ,MN ) = (O,H, ζ, c) defined by O =

∏
i Oi, H =

∏
i H

i,
ζ : (q, h) �→ ∑

i ζ
i
qi(h

i) and c : (q, h) �→ ∑
i c

i
qi(h

i) with q = (q1, . . . , qN ) and
h = (h1, . . . , hN ). This combination enables to define a complex deformation
structure as the superimposition of simple ones. Note that in modular large defor-
mations generated by a compound module, each component qi of the geometrical
descriptor is transported by

∑
i ζ

i
qi(h

i).
Figure 1 shows the result of the registrations of two unparametrized curves1

(modelled as varifolds [8]) with unstructured large deformations (with the Large
Deformation Diffeomorphic Metric Mapping (LDDMM) framework [5]), and

1 Data courtesy of Alain Trouvé.
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Fig. 2. Examples of vector fields generated by the scaling (left and middle) and trans-
lation (right) deformation modules.

modular deformations. The deformation module used here is a compound mod-
ule generating two scalings (one for each lobe) and a large scale local translation
(translating the whole curve)2. Figure 2 shows examples of vector fields gener-
ated by these modules. Even though both models give good curve registration,
the prior in the structure ensures that the modular deformation is composed of
uniform scalings. In addition, each component of the global deformation can be
studied separately [7,18].

t = 0 t = 0.3 t = 0.7 t = 1.0

Fig. 3. Simultaneous registration using compound modules with single-shape (top) and
multi-shape (bottom) frameworks. The evolving shape is in black, the target in red.
(Color figure online)

2.2 Multi-shape Registration

Deformation modules generate smooth deformations, modelling shapes as one
homogeneous medium. Studying several shapes using one diffeomorphism (i.e.
with a single-shape framework) leads to huge interactions between the shapes as
they are moving close. Performing a simultaneous registration using a compound
module leads to unsatisfying results due to the close location of shapes, as in
Fig. 3.

To solve this problem, it would be desirable to have the deformation mod-
ule for each shape only deform the inside of the curve, without influencing the
deformation outside, while maintaining consistency between deformations. The
multi-shape registration framework introduced in [2] addresses this problem for
LDDMM [5], by considering deformations for each subshape and linking them

2 For a more detailed description of how these modules are built, we refer to [10].
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at the boundaries. In general, N source and corresponding target shapes qiS and
qiT , i = 1, . . . , N are considered. Each shape qi is associated with an open set
U i of Rd such that qi ⊂ U i, ∪Ū i = R

d and U i ∩ U j = ∅ if i �= j. For curves, for
example, the shape qi represents the boundary of U i. The total deformation is
defined by ϕ : x ∈ R

d �→ ϕi(x) if x ∈ U i.
In order to ensure the consistency at boundaries ∂U i, such as continuity

or prevention of overlapping deformations, authors introduce a continuous con-
straints operator C : O → L(V, Y ) where V =

∏
i Vi, Vi is a space of vector

fields for each i, Y is a Banach space and L(V, Y ) is the set of continuous lin-
ear operators between V and Y . Furthermore, consider a continuous function
D : (

∏
i Oi)2 → R+, measuring the similarity of shapes. The multi-shape regis-

tration problem [2] reads

min
v∈L2([0,1],V )

1
2

N∑

i=1

∫ 1

0

‖vi
t‖22dt + D(qit=1, q

i
T )

s.t. q̇it = vi
t(q

i
t), q0 = qS , and Cqtvt = 0.

Two different types of constraints Cq have been introduced in [2]: identity
constraints (modelling shapes ‘stitched’ to each other at the boundaries), and
sliding constraints (allowing the shapes to slide tangential to the boundary).

3 Modular Multi-shape Registration Problem

In order to address the case where the shapes under study are composed of several
subshapes whose deformations should satisfy a certain structure, we design here
a modular multi-shape registration framework. Let us consider N shapes and
N deformation modules. Following [2], each of these shapes will be displaced by
a modular large deformation generated by the associated module. We impose
boundary constraints to ensure consistent combination of the deformations. The
modular multi-shape registration problem is stated as follows.

Problem 1. Let Mi = (Oi,Hi, ζi, ci), i = 1, ..., N , be N deformation modules
and C :

∏
i Oi �→ L(V, Y ) be a continuous constraints operator with V =

∏
i Vi,

Vi RKHS of vector fields, and Y a finite dimensional vector space. Let qS and
qT in

∏
i Oi and let D : (

∏
i Oi)2 → R+ be continuous. Minimise the functional

J (q, h) =
1
2

N∑

i=1

∫ 1

0

ciqit
(hi

t)dt + D(qt=1, qT ) (1)

with respect to q = (q1, . . . , qN ) and h = (h1, . . . , hN ), where qt=0 = qS , and for
almost every t ∈ [0, 1] and for all i, Cqtζqt(ht) = 0 and q̇it = ζi

qit
(hi

t)(q
i
t).
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To formalize it, we introduce the external combination of deformation modules.

Definition 1 (External Combination of Deformation Modules). Let
Mi = (Oi,Hi, ζi, ci), i = 1, ..., N be Ck-deformation modules on R

d of
order l. Then their external combination M(M1, . . . ,MN ) is the quintu-
ple (O,H,F,X, c) where O =

∏
i Oi, H =

∏
i H

i, F: (q, h) ∈ O ×
H �→ (ζ1(q1, h1), ..., ζN (qN , hN )) ∈ ∏

i C
li

0 (Rdi ,Rdi), F: (q, h) ∈ O ×
H �→ (ζ1(q1, h1), ..., ζN (qN , hN )) ∈ ∏

i C
li

0 (Rdi ,Rdi), X: (q, v) ∈ O ×
∏

i C
li

0 (Rdi ,Rdi) → (v1(q1), . . . , vN (qN )) ∈ ∏
i TOi, and cost c : (q, h) ∈ O ×

H → cq(h) =
∑

i c
i
qi(h

i) ∈ R+, where q = (q1, . . . , qN ), h = (h1, . . . , hN ) and
v = (v1, . . . , vN ).

Remark 1. Unlike the compound module presented in Sect. 2, the external com-
bination does not result in a deformation module.

In the following, we will assume that all the deformation modules (O,H, ζ, c)
satisfy the Uniform Embedding Condition (UEC [10]) for a RKHS V continuously
embedded in C1

0 (Rd), i.e. that there exists β > 0 such that for all (q, h) ∈ O×H,
ζq(h) is in V and |ζq(h)|2V ≤ βcq(h). An easy way to ensure it is to choose
cq(h) = (1/β)|ζq(h)|2V + f(q, h) (with f : O × H −→ R

+ smooth), which is the
case in the numerical examples in Sect. 4. In order to minimise equation (1), we
first need to specify the trajectories (q, h) that will be considered.

Definition 2 (Constrained Controlled Path of Finite Energy). Let
M(M1, . . . ,MN ) = (O,H,F,X, c) be an external combination of the modules
Mi and let C :

∏
i Oi �→ L(V, Y ) be a continuous constraints operator with

V =
∏

i Vi, Vi RKHS of vector fields, and Y a finite dimensional vector space.
We denote by Ω the set of measurable curves t �→ (qt, ht) ∈ O × H where q
is absolutely continuous such that for almost every t ∈ [0, 1], q̇t = Fqt(ht)(qt),
Cqtζqt(ht) = 0 and E(q, h) :=

∫ 1

0
cqt(ht)dt < ∞.

Remark 2. If t �→ (qt, ht) is a constrained controlled path of finite energy of
M(M1, . . . ,Mn), each component qi is displaced by the action of ζiqi(h

i) only,
instead of the sum of all vector fields like in the compound module (Sect. 2).

If (q, h) is in Ω, for each (qi, hi) a modular large deformation ϕi of Rd as the
flow of ζiqi(h

i) can be built [10,11]. Then (see [3] and Sect. 2.2), we can combine
all ϕi into one deformation ϕ. If the constraints operator C prevents overlapping
between sets ϕi(U i) and ϕj(U j), such as the aforementioned identity or sliding
constraints, then ϕ defines a bijective deformation (except potentially on the
boundaries) which respects the topology and the desired deformation structure
within each set U i. We show now that Eq. (1) has a minimiser on Ω.

Proposition 1. Let V1, . . . , VN be a N RKHS continuously embedded in
C2

0 (Rd), and let for i = 1, . . . , N , Mi = (Oi,Hi, ζi, ξi, ci) be deformation
modules satisfying the UEC for Vi. Let D : O × O �→ R

+ be continuous. Let
qS and qT ∈ O :=

∏
i Oi and C : O × V �→ Y be a constraints operator
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with Y a finite dimensional vector space. Then the minimiser of the energy
J(q, h) =

∫ 1

0
cqt(ht)dt + D(qt=1, qT ) on {(q, h) ∈ Ω | qt=0 = qS} exists.

We sketch the proof here and refer to [11] for a detailed version.

Proof. Let (qj , hj)j = ((q(i,j), h(i,j))1≤i≤N )j be a minimising sequence in Ω.
Up to successive extractions, we can suppose that for each i, Ei((q(i,j), h(i,j))) =
∫ 1

0
ciqi(h

i) converges to Ei,∞. It can be shown similarly to [10] that h(i,j) ⇀ h(i,∞)

in L2([0, 1],Hi) and q(i,j) −→ q(i,∞) uniformly on [0, 1] with (q(i,∞), h(i,∞))
absolutely continuous such that for almost every t, q̇it = ζi

qit
(ht)(qit) and

Ei(q(i,∞), h(i,∞)) ≤ Ei,∞. Then with (q∞, h∞) = (q(i,∞), h(i,∞))1≤j≤N ∈ Ω,
inf{J(q, h) | (q, h) ∈ Ω} = lim J(qj , hj) = J(q∞, h∞). In addition, it is shown
in [10] that Fqj (hj) converges weakly to Fq∞(h∞), so (see [3]), Cq∞

t
◦Fq∞

t
(h∞

t ) =
0 for almost every t in [0, 1] which concludes the proof.

Let us define the Hamiltonian function H : O × TqO∗ × H × Y → R by

H(q, p, h, λ) := (p|Fq(h)(q))T∗
qO,TqO − 1

2
(Zqh|h)H∗,H − (λ|CqFq(h))Y ∗,Y ,

where Zq : H → H∗ is the invertible symmetric operator such that cq(h) =
(Zqh|h)H∗,H ( [10]). Similarly to [3], it can be shown that minimising trajectories
(q, h) are such that there exists absolutely continuous p : t ∈ [0, 1] �→ T ∗

qtO and
λ : t �→ F such that

q̇ =
∂

∂p
H(q, p, h, λ) ṗ = − ∂

∂q
H(q, p, h, λ)

∂

∂h
H(q, p, h, λ) = 0

∂

∂λ
H(q, p, h, λ) = 0 .

The last two equations can be solved, so that for minimising trajectories
h = Z−1

q (ρ∗
qp − (CqFq)∗λ) and λ = (CqFqZ

−1
q (CqFq)∗)−1CqFqZ

−1
q ρ∗

qp with
ρq : h ∈ H �→ Fq(h)(q) and assuming CqFqZ

−1
q (CqFq)∗ is invertible. The pre-

vious system of equations then has a unique solution associated to each initial
condition (q0, p0). In order to minimise equation (1), we optimise it with respect
to the initial momentum p0.

Proposition 2 [3,11]. Let Cqζq : H → Y be surjective. Then the operator
CqFqZ

−1
q (CqFq)∗ is invertible.

Remark 3. The surjectivity of CqFq is in general not guaranteed but is easily
obtained in practice (see Sect. 4).

Remark 4. Compared to the frameworks of (single-shape) structured deforma-
tions [7,10] and multi-shape (unstructured) large deformations [2], it is necessary
to invert the operator CqFqZ

−1
q (CqFq)∗ at each time to compute the final defor-

mation. This increases drastically the time-complexity and the memory print.
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4 Numerical Results

In the practical study of multi-shapes, we encounter two main cases where a
multi-shape setting is needed. For example, to study the motion of lungs and
abdominal organs during the breath cycle, it is natural to model the organs as
separate shapes embedded in a background which represents the surrounding
tissue. On the other hand, if two organs are in contact, they can be modelled
as several subshapes sharing a boundary. Here the boundary constraints are
expressed only on the discretisation points (the convergence of this approxima-
tion is studied in the case of unstructured deformations in [2]). All the results
here were generated using the library IMODAL [7].

Shapes in a Background. We consider again the simultaneous registration of two
peanut-shaped curves. They define three open sets (two bounded ones delimited
by the curves, and the background) so we need to define three deformation
modules. For each curve qi, i = 1, 2, we choose deformation modules modelling
scalings of the left and right half, and a translation of the whole shape. We define
the background shape as q3 = (q31, q32), where q31 = q1 and q32 = q2, and the
third deformation module is chosen to generate a sum of local translations carried
by q3. We impose identity constraints on corresponding boundary points of each
qi and q3i, with the constraints operator Cq(v) = (v1(q1) − v3(q31), v2(q2) −
v3(q32)) with v = (v1, v2, v3). The unstructured background deformation module
ensures that the operator CqFq is surjective. Figure 3 shows the result of the
multi-shape registration. The two curves move closely, without influencing each
other. Unlike the compound module, the deformations inside the curves resemble
the deformation we obtain from the registration of a single shape, see Fig. 1.

Subshapes with Shared Boundary. We consider two tree-shaped curves, modelled
as varifolds [8], where the trunk of the source is thinner than the target’s while the
crown of the source is larger (see Fig. 4). Such differences require a multi-shape
registration where a sliding is allowed at the boundary between the trunk and the
crown. We place ourselves in the typical use case of the registration of a synthetic
segmented template to a new unsegmented subject. For each subshape (trunk
and crown) we define a compound deformation module as the combination of 4
modules generating respectively a uniform horizontal scaling, a uniform vertical
scaling, a global translation and a sum of local translations centered at the
curve and boundary points (with a high penalty so that the deformation prior
is only changed slightly). The last one ensures the surjectivity of the operator
CqFq. Figure 4 shows the registration using the modular multi-shape framework.
The interest of the sliding constraints can be seen in the grid deformation. In
addition, similar to [7,18] the trajectory of the controls can then be analysed to
understand the difference between the two shapes.



Multi-shape Registration with Constrained Deformations 89

t = 0 t = 0.3 t = 0.7 t = 1

Fig. 4. Registration of unparametrized curves with the modular multi-shape frame-
work. The deformed (segmented) source is in black, the (unsegmented) target in red.
(Color figure online)

5 Conclusion

We have provided a framework and synthetic examples for using a vocabulary
of structured deformations for multiple shape registration. In future work we
will optimise our use of the IMODAL tools to improve the computation time
and memory print. There are promising perspectives for the application on, e.g.,
medical images with a known segmentation, in order to incorporate physical
properties in different tissues and analyse the resulting registration.
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Abstract. Correlation matrices are used in many domains of neuro-
sciences such as fMRI, EEG, MEG. However, statistical analyses often
rely on embeddings into a Euclidean space or into Symmetric Positive
Definite matrices which do not provide intrinsic tools. The quotient-affine
metric was recently introduced as the quotient of the affine-invariant met-
ric on SPD matrices by the action of diagonal matrices. In this work, we
provide most of the fundamental Riemannian operations of the quotient-
affine metric: the expression of the metric itself, the geodesics with initial
tangent vector, the Levi-Civita connection and the curvature.

Keywords: Riemannian geometry · Quotient manifold ·
Quotient-affine metric · SPD matrices · Correlation matrices

1 Introduction

Correlation matrices are used in many domains with time series data such as
functional brain connectivity in functional MRI, electroencephalography (EEG)
or magnetoencephalography (MEG) signals. Full-rank correlation matrices form
a strict sub-manifold of the cone of Symmetric Positive Definite (SPD) matrices
sometimes called the (open) elliptope [1]. However, very few geometric tools
were defined for intrinsic computations with correlation matrices. For example,
[2] rely on a surjection from a product of n spheres of dimension n − 1 onto
the space of correlation matrices in order to sample valid correlation matrices
for financial applications: a point in the former space can be represented by an
n × n matrix A with normed rows and therefore encodes a correlation matrix
AA�. Since low-rank matrices have null measure, one gets a full-rank correlation
matrix almost surely. More recently, the open elliptope was endowed with the
Hilbert projective geometry [3] which relies on its convexity.

Since there exist efficient tools on SPD matrices (affine-invariant/Fisher-Rao
metric, log-Euclidean metric...), correlation matrices are often treated as SPD
matrices [4]. Nevertheless, these extrinsic tools do not respect the geometry of
correlation matrices. Moreover, most of these tools on SPD matrices are invari-
ant under orthogonal transformations which is not compatible with correlation
c© Springer Nature Switzerland AG 2021
F. Nielsen and F. Barbaresco (Eds.): GSI 2021, LNCS 12829, pp. 93–102, 2021.
https://doi.org/10.1007/978-3-030-80209-7_11
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matrices. The elliptope is not even stable by the orthogonal action. Hence using
the tools designed for SPD matrices may not be relevant for correlation matrices.
One could restrict a Riemannian metric from the cone of SPD matrices to the
open elliptope to define intrinsic tools by embedding. To the best of our knowl-
edge, this hasn’t been studied in depth. However, a key property of correlation
matrices in applications with respect to covariance matrices is that the scale
is renormalized independently for each axis. This physically corresponds to an
invariance under a group action, namely the action of diagonal matrices on SPD
matrices. The previously cited structures do not rely on this physical reality.
This is why we are more interested in the recently introduced quotient-affine
metric which corresponds to the quotient of the affine-invariant metric on SPD
matrices by the action of diagonal matrices [5,6].

In this work, we investigate the geometry of this quotient-affine metric and we
contribute additional tools to compute on this manifold. Based on the formaliza-
tion of the quotient manifold with vertical and horizontal distributions, we com-
pute in closed form some fundamental Riemannian operations of the quotient-
affine metrics, notably the exponential map and the curvature. In Sect. 2, we
recall how quotient-affine metrics are introduced, as well as the basics on quo-
tient manifolds. In Sect. 3, we provide the following fundamental quotient and
Riemannian operations of quotient-affine metrics: the vertical and horizontal
projections, the metric, the exponential map, the Levi-Civita connection and
the sectional curvature. This opens the way to many practical algorithms on the
open elliptope for different applications. Considering SPD matrices as the Carte-
sian product of positive diagonal matrices and full-rank correlation matrices, it
also allows to define new Riemannian metrics which preserve the quotient-affine
geometry on correlation matrices. Thus in Sect. 4, we illustrate the quotient-
affine metric in dimension 2 by coupling it with the diagonal power-Euclidean
metrics g

E(p)
D (Δ,Δ) = tr(D2(p−1)Δ2) for p ∈ {−1, 0, 1, 2}, where D is positive

diagonal and Δ diagonal, and then by comparing it with the affine-invariant and
the log-Euclidean metrics on SPD matrices.

2 Quotient-Affine Metrics

2.1 The Quotient Manifold of Full-Rank Correlation Matrices

The group of positive diagonal matrices Diag+(n) acts on the manifold of SPD
matrices Sym+(n) via the congruence action (Σ,D) ∈ Sym+(n)×Diag+(n) �−→
DΣD ∈ Sym+(n). The manifold of full-rank correlation matrices Cor+(n) can
be seen as the quotient manifold Sym+(n)/Diag+(n) via the invariant submer-
sion π which computes the correlation matrix from a covariance matrix, π :
Σ ∈ Sym+(n) �−→ Diag(Σ)−1/2 Σ Diag(Σ)−1/2 ∈ Cor+(n), where Diag(Σ) =
diag(Σ11, ..., Σnn). Hence, any Riemannian metric G on Sym+(n) which is invari-
ant under Diag+(n) induces a quotient metric g on Cor+(n). The steps to define
it are the following.



Geodesics and Curvature of the Quotient-Affine Metrics 95

1. Vertical distribution. VΣ = ker dΣπ for all Σ ∈ Sym+(n).
2. Horizontal distribution. HΣ := V⊥

Σ for all Σ ∈ Sym+(n), where the orthogo-
nality ⊥ refers to the inner product GΣ .

3. Horizontal lift. The linear map dΣπ restricted to the horizontal space HΣ is
a linear isomorphism onto the tangent space of full-rank correlation matrices
(dΣπ)|HΣ

: HΣ
∼−→ Tπ(Σ)Cor+(n). The horizontal lift # is its inverse:

# : X ∈ Tπ(Σ)Cor+(n) ∼−→ X# ∈ HΣ . (1)

4. Quotient metric. It is defined by pullback through the horizontal lift:

∀C ∈ Cor+(n),∀X ∈ TCCor+(n), gC(X,X) = GΣ(X#,X#), (2)

where Σ ∈ π−1(C) and the definition does not depend on the chosen Σ.

So the only missing ingredient is a Riemannian metric on SPD matrices which
is invariant under the congruence action of positive diagonal matrices. In [5,6],
the authors chose to use the famous affine-invariant/Fisher-Rao metric.

2.2 The Affine-Invariant Metrics and the Quotient-Affine Metrics

The affine-invariant metric is the Riemannian metric defined on SPD matrices
by GΣ(V, V ) = tr(Σ−1V Σ−1V ) for all Σ ∈ Sym+(n) and V ∈ TΣSym+(n)
[7–9]. It is invariant under the congruence action of the whole real general lin-
ear group GL(n) which contains Diag+(n) as a subgroup. It provides a Rie-
mannian symmetric structure to the manifold of SPD matrices, hence it is
geodesically complete and the geodesics are given by the group action of one-
parameter subgroups. We recall the exponential map, the Levi-Civita connection
and the sectional curvature below for all Σ ∈ Sym+(n) and vector fields V,W ∈
Γ(TSym+(n)) where we also denote V ≡ VΣ and W ≡ WΣ ∈ TΣSym+(n):

ExpG
Σ(V ) = Σ1/2 exp(Σ−1/2V Σ−1/2)Σ1/2, (3)

(∇G
V W )|Σ = dΣW (V ) − 1

2
(V Σ−1W + WΣ−1V ), (4)

κG
Σ(V, W ) =

1

4

tr((Σ−1V Σ−1W − Σ−1WΣ−1V )2)

G(V, V )G(W, W ) − G(V, W )2
� 0. (5)

The metrics that are invariant under the congruence action of the general
linear group GL(n) actually form a two-parameter family of metrics indexed by
α > 0 and β > −α/n [10]: Gα,β

Σ (V, V ) = α tr(Σ−1V Σ−1V ) + β tr(Σ−1V )2. We
call them all affine-invariant metrics. In particular, these metrics are invariant
under the congruence action of diagonal matrices so they are good candidates
to define Riemannian metrics on full-rank correlation matrices by quotient. In
[5,6], the authors rely on the “classical” affine-invariant metric (α = 1, β = 0).
We generalize their definition below.

Definition 1 (Quotient-affine metrics on full-rank correlation matri-
ces). The quotient-affine metric of parameters α > 0 and β > −α/n is the
quotient metric gα,β on Cor+(n) induced by the affine-invariant metric Gα,β via
the submersion π : Σ ∈ Sym+(n) �−→ Diag(Σ)−1/2 Σ Diag(Σ)−1/2 ∈ Cor+(n).



96 Y. Thanwerdas and X. Pennec

3 Fundamental Riemannian Operations

In this section, we detail the quotient geometry of quotient-affine metrics gα,β .
We give the vertical and horizontal distributions and projections in Sect. 3.1. We
contribute the formulae of the metric itself in Sect. 3.2, the exponential map in
Sect. 3.3, and finally the Levi-Civita connection and the sectional curvature in
Sect. 3.4. To the best of our knowledge, all these formulae are new. The proof
of the sectional curvature is given in Appendix A while the other proofs can be
found on HAL: https://hal.archives-ouvertes.fr/hal-03157992.

3.1 Vertical and Horizontal Distributions and Projections

– Let • be the Hadamard product on matrices defined by [X • Y ]ij = XijYij .
– Let A : Σ ∈ Sym+(n) �−→ A(Σ) = Σ • Σ−1 ∈ Sym+(n). This smooth map is

invariant under the action of positive diagonal matrices. The Schur product
theorem ensures that A(Σ) ∈ Sym+(n). A fortiori, In + A(Σ) ∈ Sym+(n).

– Let ψ : μ ∈ R
n �−→ (μ1� + 1μ�) ∈ Sym(n). This is an injective linear map.

– Let SΣ(V ) the unique solution of the Sylvester equation ΣSΣ(V )+SΣ(V )Σ =
V for Σ ∈ Sym+(n) and V ∈ Sym(n).

– Let HolS(n) be the vector space of symmetric matrices with vanishing diag-
onal (symmetric hollow matrices). Each tangent space of the manifold of
full-rank correlation matrices can be seen as a copy of this vector space.

Theorem 1 (Vertical and horizontal distributions and projections).
The vertical distribution is given by VΣ = Σ • ψ(Rn) and the horizontal distri-
bution is given by HΣ = SΣ−1(HolS(n)). The vertical projection is:

ver : V ∈ TΣSym+(n) �−→ Σ • ψ((In + A(Σ))−1Diag(Σ−1V )1) ∈ VΣ . (6)

Then, the horizontal projection is simply hor(V ) = V − ver(V ).

3.2 Horizontal Lift and Metric

Theorem 2 (Horizontal lift). Let Σ ∈ Sym+(n) and C = π(Σ) ∈ Cor+(n).
The horizontal lift at Σ of X ∈ TCCor+(n) is X# = hor(ΔΣXΔΣ) with ΔΣ =
Diag(Σ)1/2. In particular, the horizontal lift at C ∈ Sym+(n) is X# = hor(X).

Theorem 3 (Expression of quotient-affine metrics). For all C ∈ Cor+(n)
and X ∈ TCCor+(n), gα,β

C (X,X) = α gQA
C (X,X) (independent from β) where:

gQA
C (X,X) = tr((C−1X)2)−21�Diag(C−1X)(In+A(C))−1Diag(C−1X)1. (7)

https://hal.archives-ouvertes.fr/hal-03157992
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3.3 Geodesics

The geodesics of a quotient metric are the projections of the horizontal geodesics
of the original metric. This allows us to obtain the exponential map of the
quotient-affine metrics.

Theorem 4 (Geodesics of quotient-affine metrics). The geodesic from
C ∈ Cor+(n) with initial tangent vector X ∈ TCCor+(n) is:

∀t ∈ R, γQA
(C,X)(t) = ExpQA

C (tX) = π(C1/2 exp(t C−1/2hor(X)C−1/2)C1/2). (8)

In particular, the quotient-affine metric is geodesically complete.

The Riemannian logarithm between C1 and C2 ∈ Cor+(n) is much more
complicated to compute. It amounts to find Σ ∈ Sym+(n) in the fiber above C2

such that LogG
C1

(Σ) is horizontal. Then we have LogQA
C1

(C2) = dC1π(LogG
C1

(Σ)).
This means finding Σ that minimizes the affine-invariant distance in the fiber:

D = arg minD∈Diag+(n)d(C1,DC2D),

from which we get Σ = DC2D. This is the method used in the original paper
[5,6]. Note that the uniqueness of the minimizer has not been proved yet.

3.4 Levi-Civita Connection and Sectional Curvature

In this section, we give the Levi-Civita connection and the curvature. The com-
putations are based on the fundamental equations of submersions [11]. We denote
sym(M) = 1

2 (M + M�) the symmetric part of a matrix.

Theorem 5 (Levi-Civita connection and sectional curvature of
quotient-affine metrics). The Levi-Civita connection of quotient-affine met-
rics is:

(∇QA
X Y )|C = dCY (X) + sym[Diag(X#)Y # + Diag(Y #)X# + Diag(X#C−1Y #)C

− X#C−1Y # − 1
2
Diag(X#)CDiag(Y #) − 3

2
Diag(X#)Diag(Y #)C]. (9)

The curvature of quotient-affine metrics is:

κQA
C (X, Y ) = κG

C(X#, Y #) +
3

4

GC(ver[X#, Y #], ver[X#, Y #])

gC(X, X)gC(Y, Y ) − gC(X, Y )2
, (10)

=
2 tr((C−1X#C−1Y # − C−1Y #C−1X#)2) + 31�D(In + A(C))−1D1

8(gC(X, X)gC(Y, Y ) − gC(X, Y )2)
(11)

where [V,W ] = dW (V ) − dV (W ) is the Lie bracket on Sym+(n) and
D = D(X,Y ) − D(Y,X) with D(X,Y ) = Diag(C−1Diag(X#)Y # −
C−1Y #C−1Diag(X#)C). There is a slight abuse of notation because
ver[X#, Y #] induces that X# and Y # are vector fields. Indeed here, they are
horizontal vector fields extending the horizontal lifts at C.
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The first term of the sectional curvature is negative, the second one is positive
so we don’t know in general the sign of the curvature of quotient-affine metrics.

The quotient-affine metrics not only provide a Riemannian framework on
correlation matrices but also provide correlation-compatible statistical tools on
SPD matrices if we consider that the space of SPD matrices is the Cartesian
product of positive diagonal matrices and full-rank correlation matrices. We
give a taste of such construction in the next section.

4 Illustration in Dimension 2

In dimension 2, any correlation matrix C ∈ Cor+(2) writes C = C(ρ) :=
(

1 ρ
ρ 1

)

with ρ ∈ (−1, 1). In the following theorem, we give explicitly the logarithm, the
distance and the interpolating geodesics of the quotient-affine metric.

Theorem 6 (Quotient-affine metrics in dimension 2). Let C1 =
C(ρ1), C2 = C(ρ2) ∈ Cor+(n) with ρ1, ρ2 ∈ (−1, 1). We denote f : ρ ∈ (−1, 1) �→
1+ρ
1−ρ ∈ (0,∞) which is a smooth increasing map. We denote λ = λ(ρ1, ρ2) =
1
2 log f(ρ2)

f(ρ1)
which has the same sign as ρ2 − ρ1. Then the quotient-affine opera-

tions are:

1. (Logarithm) LogQA
C1

(C2) = λ

(
0 1 − ρ21

1 − ρ21 0

)
,

2. (Distance) dQA(C1, C2) =
√

2|λ|,
3. (Geodesics) γQA

(C1,C2)
(t) = C(ρQA(t)) where ρQA(t) = ρ1 cosh(λt)+sinh(λt)

ρ1 sinh(λt)+cosh(λt) ∈
(−1, 1) is monotonic (increasing if and only if ρ2 − ρ1 > 0).

Let Σ1, Σ2 ∈ Sym+(2) and C1, C2 their respective correlation matrices. We
denote γAI, γLE the geodesics between Σ1 and Σ2 for the affine-invariant and
the log-Euclidean metrics respectively. We define ρAI, ρLE such that the cor-
relation matrices of γAI(t), γLE(t) are C(ρAI(t)), C(ρLE(t)). Figure 1(a) shows

ρAI, ρLE, ρQA with Σ1 =
(

4 1
1 100

)
and Σ2 =

(
100 19
19 4

)
. When varying numer-

ically Σ1 and Σ2, it seems that ρLE and ρAI always have three inflection
points. In contrast, ρQA always has one inflection point since (ρQA)′′ =
−2λ2ρQA(1 − (ρQA)2). Analogously, we compare the interpolations of the deter-
minant (Fig. 1(b)) and the trace (Fig. 1(c)) using several Riemannian metrics:
Euclidean (trace-monotonic); log-Euclidean and affine-invariant (determinant-
monotonic); power-Euclidean × quotient-affine (correlation-monotonic).
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(a) Interpolation and extrapolation of the corre-
lation coefficient. All the interpolations relying
on product metrics on Sym+(2) = Diag+(2) ×
Cor+(2) with the quotient-affine metric on
Cor+(2) lead to the same correlation coefficient,
labelled as “Quotient-affine”.

(b) Interpolation of the determinant

(c) Interpolation of the trace

Fig. 1. Extrapolation and interpolation between the SPD matrices Σ1 and Σ2 using
various Riemannian metrics. The metrics E(p) × QA refer to the p-power-Euclidean
metric on the diagonal part and the quotient-affine metric on the correlation part.
When p tends to 0, E(p) tends to the log-Euclidean metric LE ≡ E(0).

On Fig. 2, we compare the geodesics of these metrics. The determinant is the
area of the ellipsis and the trace is the sum of the lengths of the axes. Thus the
product metrics of the form power-Euclidean on the diagonal part and quotient-
affine on the correlation part can be seen as performing a correlation-monotonic
trade-off between the trace-monotonicity and the determinant-monotonicity.

5 Conclusion

We investigated in this paper the very nice idea of quotienting the affine-
invariant metrics on SPD matrices by the action of the positive diagonal group
to obtain the principled quotient-affine metrics on full-rank correlation matri-
ces. The quotient-affine metric with α = 1 and β = 0 was first proposed in Paul
David’s thesis [6] and in the subsequent journal paper [5]. We contribute here
exact formulae for the main Riemannian operations, including the exponential
map, the connection and the sectional curvature. The exponential map is par-
ticularly interesting to rigorously project tangent computations to the space of
full-rank correlation matrices. This opens the way to the implementation of a
number of generic algorithms on Riemannian manifolds. However, we could not
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Fig. 2. Interpolations between SPD matrices Σ1 and Σ2.

find a closed form expression for the logarithm which remains to be computed
through an optimization procedure. Thus, computing distances with these met-
rics remains computationally expensive. In order to obtain more efficient meth-
ods, this leads us to look for other principled Riemannian metrics on correlation
matrices for which the logarithm could be expressed in closed form.
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A Proof of the Sectional Curvature

The detail of the proofs can be found on the HAL version of the paper:
https://hal.archives-ouvertes.fr/hal-03157992. The proofs of Theorem 1 (verti-
cal/horizontal projections), Theorem 2 (horizontal lift) and Theorem 3 (metric)
consist in elementary computations, the geodesics of Theorem 4 are simply the
projections of horizontal geodesics [12], and the formula of the Levi-Civita con-

https://hal.archives-ouvertes.fr/hal-03157992
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nection consists in elementary computations as well. Hence we only give here
the proof of the formula of the sectional curvature of quotient-affine metrics.

The curvature in formula (10) directly comes from the fundamental equations
of submersions [11]. The curvature of the affine-invariant metric comes from
[8]. Hence we only have to compute GC(ver[X#, Y #], ver[X#, Y #]) where G
is the affine-invariant metric, [·, ·] is the Lie bracket on the manifold of SPD
matrices (it is not the matrix commutator), C ∈ Cor+(n) and X#, Y # are
horizontal vector fields on SPD(n) extending X#

C and Y #
C respectively, where

X,Y ∈ TCCor+(n) are tangent vectors at C. For example, we can consider that
X,Y are constant vector fields on Cor+(n) and simply define X#, Y # as their
horizontal lifts everywhere:

Y #
Σ = hor(ΔΣY ΔΣ),

= ΔΣY ΔΣ − ver(ΔΣY ΔΣ),

= ΔΣY ΔΣ − 2Σ • ψ((In + Σ • Σ−1)−1Diag(Σ−1ΔΣY ΔΣ)1),

= ΔΣY ΔΣ − 2Σ • ψ((In + Σ • Σ−1)−1Diag(π(Σ)−1Y )1),

with ΔΣ = Diag(Σ)1/2 and ψ(μ) = μ1�+1μ� for μ ∈ R
n. Now we can compute

[X#, Y #] = ∂X#Y # − ∂Y #X# and evaluate it at C. We have:

∂X#Y # =
1
2
(Δ−1

Σ Diag(X#)Y ΔΣ + ΔΣY Diag(X#)Δ−1
Σ )

− X# • ψ((In + Σ • Σ−1)−1Diag(Σ−1Y )1 + vΣ(X,Y ),

where vΣ(X,Y ) = Σ • ψ[(In + Σ • Σ−1)−1(X# • Σ−1 − Σ • Σ−1X#Σ−1)(In +
Σ • Σ−1)−1Diag(Σ−1Y )1+ (In + Σ • Σ−1)−1Diag(π(Σ)−1Xπ(Σ)−1Y )1] ∈ VΣ .

We evaluate it at C ∈ Cor+(n) so that ΔC = In. We denote B =
(In + C • C−1)−1 to simplify the notations. Note that the last term is sym-
metric in X and Y so we can define v0

C(X,Y ) = C • ψ[B(X# • C−1 − C •
C−1X#C−1)BDiag(C−1Y )1]. Then:

[X#, Y #] =
1
2
(Diag(X#)Y + Y Diag(X#) − Diag(Y #)X − XDiag(Y #)), (12)

− (X# • ψ(BDiag(C−1Y )1) − Y # • ψ(BDiag(C−1X)1)), (13)

+ v0
C(X,Y ) − v0

C(Y,X). (14)

Fortunately, the computation of ver[X#, Y #] = C • ψ(BDiag(C−1[X#, Y #])1)
brings some simplifications. Indeed, to simplify line (12), we plug Y = Y # −
1
2 (Diag(Y #)C + CDiag(Y #)). Firstly, we have Diag(C−1Diag(X#)Y ) =
Diag(C−1Diag(X#)Y #) − 1

2Diag(C−1Diag(X#)Diag(Y #)C) − 1
2Diag(C−1

Diag(X#)CDiag(Y #)) whose second term is symmetric in X and Y . Sec-
ondly, the other term is Diag(C−1Y Diag(X#)) = Diag(C−1Y #Diag(X#)) −
1
2Diag(C−1Diag(Y #)CDiag(X#)) − 1

2Diag(Y #)Diag(X#) whose first term is
null, whose third term is symmetric in X and Y and whose second term is the
symmetric of the third term of the previous expression. Hence, the vertical pro-
jection of the line (12) reduces to the vertical projection of 1

2 (Diag(X#)Y # −



102 Y. Thanwerdas and X. Pennec

Diag(Y #)X#). To simplify line (13), we can show by computing coordi-
nate by coordinate that Diag(C−1(X# • ψ(BDiag(C−1Y )1)))1 = (C−1 •
X#)BDiag(C−1Y )1. Hence, line (13) cancels the first term of v0. Finally, a
nicer expression of the second term of v0 can be obtained by noticing that
Diag(Y #)1 = −2BDiag(C−1Y )1. After simple calculations, we get (C •
C−1X#C−1)BDiag(C−1Y )1 = − 1

2Diag(CDiag(X#)C−1Y #C−1)1.
To summarize, we have ver[X#, Y #] = C • ψ( 12BD1) with D =

D(X,Y ) − D(Y,X) ∈ Diag(n) and D(X,Y ) = Diag(C−1Diag(X#)Y # −
C−1Y #C−1Diag(X#)C). Finally, since GC(C • ψ(μ), C • ψ(μ)) = 2μ�Bμ for
any vector μ ∈ R

n, we get GC(ver[X#, Y #], ver[X#, Y #]) = 1
21

�DBD1, as
expected.
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Abstract. Kendall shape spaces are a widely used framework for the
statistical analysis of shape data arising from many domains, often
requiring the parallel transport as a tool to normalise time series data
or transport gradient in optimisation procedures. We present an imple-
mentation of the pole ladder, an algorithm to compute parallel transport
based on geodesic parallelograms and compare it to methods by integra-
tion of the parallel transport ordinary differential equation.

Keywords: Parallel transport · Shape spaces

1 Introduction

Kendall shape spaces are a ubiquitous framework for the statistical analysis of
data arising from medical imaging, computer vision, biology, chemistry and many
more domains. The underlying idea is that a shape is what is left after removing
the effects of rotation, translation and re-scaling, and to define a metric account-
ing for those invariances. This involves defining a Riemannian submersion and
the associated quotient structure, resulting in non trivial differential geometries
with singularities and curvature, requiring specific statistical tools to deal with
such data.

In this context parallel transport is a fundamental tool to define statistical
models and optimisation procedures, such as the geodesic or spline regression
[5,10], intrinsic MANOVA [4], and for the normalisation of time series of shapes
[1,7]. However the parallel transport of a tangent vector v along a curve γ is
defined by the ordinary differential equation (ODE) ∇γ̇X = 0,X(0) = v (where
∇ is the Levi-Civita connection in our case), and there is usually no closed-form
solution. Approximation methods have therefore been derived, either by direct
integration [5], or by integration of the geodesic equation to approximate Jacobi
fields (the fanning scheme [8]). Another class of approximations, referred to as
ladder methods, relies on iterative constructions of geodesic parallelograms that
only require approximate geodesics [3].

In this work, we present an implementation of the pole ladder that leverages
the quotient structure of Kendall shape spaces and strongly relies on the open-
source Python package geomstats. We compare it to the method of Kim et al. [5]
by approximate integration.
c© Springer Nature Switzerland AG 2021
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We first recall the quotient structure of Kendall shape spaces and its use by
Kim et al. to compute parallel transport in Sect. 2, then in Sect. 3 we recall the
pole ladder scheme and the main result from [3] on its convergence properties.
Numerical simulations to compare the two methods are reported in Sect. 4.

2 The Quotient Structure of Kendall Shape Spaces

We first describe the shape space, as quotient of the space of configurations of
k points in R

m (called landmarks) by the groups of translations, re-scaling and
rotations of Rm. For a thorough treatment this topic, we refer the reader to [2,6].

2.1 The Pre-shape Space

We define the space of k landmarks of R
m as the space of m × k matrices

M(m, k). For x ∈ M(m, k), let xi denote the columns of x, i.e. points of Rm and
let x̄ be their barycentre. We remove the effects of translation by considering the
matrix with columns xi−x̄ instead of x and restrict to non-zero centred matrices,
i.e. matrices which represent configurations with at least two distinct landmarks.
We further remove the effects of scaling by dividing x by its Frobenius norm
(written ‖·‖). This defines the pre-shape space Sk

m = {x ∈ M(m, k) | ∑k
i=1 xi =

0, ‖x‖ = 1}, which is identified with the hypersphere of dimension m(k−1)−1.
The pre-shape space is therefore a differential manifold whose tangent space at
any x ∈ Sk

m is given by TxSk
m = {w ∈ M(m, k) | ∑k

i=1 wi = 0, Tr(wT x) = 0}.
The ambient Frobenius metric 〈·, ·〉 thus defines a Riemannian metric on

the pre-shape space, with constant sectional curvature and known geodesics: let
x, y ∈ Sk

m with x �= y, and w ∈ TxSk
m

xw = Expx(w) = cos(‖w‖)x + sin(‖w‖)
w

‖w‖ , (1)

Logx(y) = arccos(〈y, x〉) y − 〈y, x〉x
‖y − 〈y, x〉x‖ . (2)

Moreover, this metric is invariant to the action of the rotation group SO(m).
This allows to define the shape space as the quotient Σk

m = Sk
m/SO(m).

2.2 The Shape Space

To remove the effect of rotations, consider the equivalence relation ∼ on Sk
m by

x ∼ y ⇐⇒ ∃R ∈ SO(m) such that y = Rx. For x ∈ Sk
m, let [x] denote its

equivalence class for ∼. This equivalence relation results from the group action
of SO(m) on R

m. This action is smooth, proper but not free everywhere when
m ≥ 3. This makes the orbit space Σk

m = {[x] | x ∈ Sk
m} a differential manifold

with singularities where the action is not free (i.e. at x ∈ Sk
m where there exists

R �= Im ∈ SO(m) s.t. Rx = x).
One can describe these singularities explicitly: they correspond to the matri-

ces of Sk
m of rank m − 2 or less [6]. For k ≥ 3, the spaces Σk

1 and Σk
2 are always
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smooth. Moreover, as soon as m ≥ k, the manifold acquires boundaries. As an
example, while the space Σ3

2 of 2D triangles is identified with the sphere S2(1/2),
the space Σ3

3 of 3D triangles is isometric to a 2-ball [6].
Away from the singularities, the canonical projection map π : x → [x] is a

Riemannian submersion, i.e. dπ is everywhere surjective, and plays a major role
in defining the metric on the shape space. Let dxπ be its differential map at
x ∈ Sk

m, whose kernel defines the vertical tangent space, which corresponds to
the tangent space of the submanifold π−1([x]), called fiber above [x]:

Verx = {Ax | A ∈ Skew(m)} = Skew(m) | x

where Skew(m) is the space of skew-symmetric matrices of size m.

2.3 The Quotient Metric

The Frobenius metric on the pre-shape space allows to define the horizontal
spaces as the orthogonal complements to the vertical spaces:

Horx = {w ∈ TxSk
m | Tr(AxwT ) = 0 ∀A ∈ Skew(m)}

= {w ∈ TxSk
m | xwT ∈ Sym(m)}

where Sym(m) is the space of symmetric matrices of size m. Lemma 1 from [10]
allows to compute the vertical component of any tangent vector:

Lemma 1. For any x ∈ Sk
m and w ∈ TxSk

m, the vertical component of w can be
computed as Verx(w) = Ax where A solves the Sylvester equation:

AxxT + xxT A = wxT − xwT (3)

If rank(x) ≥ m − 1, A is the unique skew-symmetric solution of (3).

In practice, the Sylvester equation can be solved by an eigenvalue decomposition
of xxT . This defines verx, the orthogonal projection on Verx. As TxSk

m = Verx ⊕
Horx, any tangent vector w at x ∈ Sk

m may be decomposed into a horizontal and
a vertical component, by solving (3) to compute verx(w), and then horx(w) =
w − verx(w).

Furthermore, as Verx = ker(dxπ), dxπ is a linear isomorphism from Horx to
T[x]Σ

k
m. The metric on Σk

m is defined such that this isomorphism is an isometry.
Note that the metric does not depend on the choice of the y in the fiber π−1([x])
since all y in π−1([x]) may be obtained by a rotation of x, and the Frobenius
metric is invariant to the action of rotations. This makes π a Riemannian sub-
mersion. Additionally, π is surjective so for every vector field on Σk

m there is a
unique horizontal lift, i.e. a vector field on Sk

m whose vertical component is null
everywhere. The tangent vectors of Σk

m can therefore be identified with horizon-
tal vectors of Sk

m. One of the main characteristics of Riemannian submersions
was proved by O’Neill [11, Chapter 7, Lemma 45]:
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Theorem 1 (O’Neill). Let π : M → B be a Riemannian submersion. If γ
is a geodesic in M such that γ̇(0) is a horizontal vector, then γ̇ is horizontal
everywhere and π ◦ γ is a geodesic of B of the same length as γ.

Remark 1. We emphasise that an equivalent proposition cannot be derived for
the parallel transport of a tangent vector. Indeed the parallel transport of a hor-
izontal vector field along a horizontal geodesic may not be horizontal. This will
be detailed in the next subsection and constitutes a good example of metric for
which computing geodesics is easier than computing parallel transport, although
the former is a variational problem and the latter is a linear ODE.

Furthermore, the Riemannian distances d on Sk
m and dΣ on Σk

m are related
by

dΣ(π(x), π(y)) = inf
R∈SO(m)

d(x,Ry). (4)

The optimal rotation R between any x, y is unique in a subset U of Sk
m × Sk

m,
which allows to define the align map ω : U → Sk

m that maps (x, y) to Ry. In
this case, dΣ(π(x), π(y)) = d(x, ω(x, y)) and xω(x, y)T ∈ Sym(m). It is use-
ful to notice that ω(x, y) can be directly computed by a pseudo-singular value
decomposition of xyT . Finally, x and ω(x, y) are joined by a horizontal geodesic.

2.4 Implementation in geomstats

The geomstats library [9], available at http://geomstats.ai, implements classes
of manifolds equipped with Riemannian metrics. It contains an abstract class for
quotient metrics, that allows to compute the Riemannian distance, exponential
and logarithm maps in the quotient space from the ones in the top space.

In the case of the Kendall shape spaces, the quotient space cannot be seen
explicitly as a submanifold of some R

N and the projection π and its differential
dπ cannot be expressed in closed form. However, the align map amounts to
identifying the shape space with a local horizontal section of the pre-shape space,
and thanks to the characteristics of Riemannian submersions mentioned in the
previous subsections, all the computations can be done in the pre-shape space.

Recall that Exp, Log, and d denote the operations of the pre-shape space Sk
m

and are given in (1). We obtain from Theorem 1 for any x, y ∈ Sk
m and v ∈ TxSk

m

ExpΣ,[x](dxπv) = π(Expx(horx(v))),

LogΣ,[x]([y]) = dxπLogx(ω(x, y)),

dΣ([x], [y]) = d(x, ω(x, y)).

2.5 Parallel Transport in the Shape Space

As noticed in Remark 1, one cannot use the projection of the parallel transport
in the pre-shape space Sk

m to compute the parallel transport in the shape space
Σk

m. Indeed [5] proved the following

http://geomstats.com
http://geomstats.ai
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Proposition 1 (Kim et al. [5]). Let γ be a horizontal C1-curve in Sk
m and v

be a horizontal tangent vector at γ(0). Assume that rank(γ(s)) ≥ m − 1 except
for finitely many s. Then the vector field s → v(s) along γ is horizontal and the
projection of v(s) to T[γ(s)]Σ

k
m is the parallel transport of dγ(0)πv along [γ(s)] if

and only if s → v(s) is the solution of

v̇(s) = −Tr(γ̇(s)v(s)T )γ(s) + A(s)γ(s), v(0) = v (5)

where for every s, A(s) ∈ Skew(m) is the unique solution to

A(s)γ(s)γ(s)T + γ(s)γ(s)T A(s) = γ̇(s)v(s)T − v(s)γ̇(s)T . (6)

Equation (5) means that the covariant derivative of s → v(s) along γ must be
a vertical vector at all times, defined by the matrix A(s) ∈ Skew(m). These
equations can be used to compute parallel transport in the shape space. To
compute the parallel transport of dγ(0)πw along [γ], [5] propose the following
method: one first chooses a discretization time-step δ = 1

n , then repeat for every
s = i

n , i = 0 . . . n

1. Compute γ(s) and γ̇(s),
2. Solve the Sylvester Eq. (6) to compute A(s) and the r.h.s. of (5),
3. Take a discrete Euler step to obtain ṽ(s + δ)
4. Project ṽ(s + δ) to Tγ(s)Sk

m to obtain v̂(s + δ),
5. Project to the horizontal subspace: v(s + δ) ← hor(v̂(s + δ))
6. s ← s + δ

We notice that this method can be accelerated by a higher-order integration
scheme, such as Runge-Kutta (RK) by directly integrating the system v̇ = f(v, s)
where f is a smooth map given by (5) and (6). In this case, steps 4. and 5. are
not necessary. The precision and complexity of this method is then bound to
that of the integration scheme used. As ladder methods rely only on geodesics,
which can be computed in closed-form and their convergence properties are well
understood [3], we compare this method by integration to the pole ladder. We
focus on the case where γ is a horizontal geodesic, such that step 1 does not
require solving an ODE. Thus, it introduces no additional complexity.

3 The Pole Ladder Algorithm

3.1 Description

The pole ladder is a modification of the Schild’s ladder proposed by [7]. The pole
ladder is more precise and cheaper to compute as shown by [3]. It is also exact
in symmetric spaces [12]. We thus focus on this method. We describe it here in
a Riemannian manifold (M, 〈, 〉).

Consider a geodesic curve γ : t → γ(t) ∈ M , with initial conditions x =
γ(0) ∈ M and w = γ̇(0) ∈ TxM . In order to compute the parallel transport of
v ∈ TxM along γ, between times x and y = γ(1), the pole ladder consists in
first dividing the main geodesic γ in n segments of equal length and computing
the geodesic from x with initial velocity v

nα , obtaining xv = Expx( v
nα ). Then for

each segment it repeats the following construction (see Fig. 1):
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Fig. 1. Schematic representation of the pole ladder

1. Compute the midpoint of the segment m = Expx( w
2n ) and the initial speed

of the geodesic from m to xv: a = Logm(xv).
2. Extend this diagonal geodesic by the same length to obtain z = Expm(−a).
3. Repeat steps 2 and 3 with xv ← z and m ← Expm(w

n ).

After n steps, compute ṽ = nα(−1)nLogy(z). According to [3], α ≥ 1 can be
chosen, and α = 2 is optimal. This vector is an approximation of the parallel
transport of v along γ, Πxw

x v. This is illustrated on the 2-sphere and in the case
k = m = 3 on Fig. 2.

3.2 Properties

The pole ladder is studied in depth in [3]. We give here the two main properties.
Beside its quadratic convergence speed, the main advantage is that this method
is available as soon as geodesics are known (even approximately). It is thus
applicable very easily in the case of quotient metrics.

Theorem 2 (Guigui and Pennec [3])

– The pole ladder converges to the exact parallel transport when the number of
steps n goes to infinity, and the error decreases in O( 1

n2 ), with rate related to
the covariant derivative of the curvature tensor.

– If M is a symmetric space, then the pole ladder is exact in just one step.

For instance, Σ3
2 is symmetric [6], making pole ladder exact in this case.

Fig. 2. Visualisation of the pole ladder on S2 (left) and Σ3
3 (middle and right)



Parallel Transport on Kendall Shape Spaces 109

3.3 Complexity

The main drawback of ladder schemes is that logarithms are required. Indeed the
Riemannian logarithm is only locally defined, and often solved by an optimisation
problem when geodesics are not known in closed form.

In the case of Kendall shape spaces, it only requires to compute an alignment
step, through a singular value decomposition, with usual complexity O(m3), then
the log of the hypersphere, with linear complexity. Moreover, the result of log ◦ ω
is horizontal, so the vertical component needs not be computed for the exponen-
tial of step 2, and only the Exp of the hypersphere, also with linear complexity,
needs to be computed. The vertical projection needs to be computed for the first
step. Solving the Sylvester equation through an eigenvalue decomposition also
has complexity m3. For n rungs of the pole ladder, the overall complexity is thus
O((n + 1)(m3 + 2mk)) + mk + m3) = O(nm3).

On the other hand, the method by integration doesn’t require logarithms
but requires solving a Sylvester equation and a vertical decomposition at every
step. The overall complexity is thus O(2nm3 + mk). Both algorithms are thus
comparable in terms of computational cost for a single step.

4 Numerical Simulations and Results

We draw a point x at random in the pre-shape space, along with two orthogonal
horizontal unit tangent vectors v, w, and compute the parallel transport of dxπv
along the geodesic with initial velocity dxπw. We use a number of steps n between
10 and 1000 and the result with n = 1100 as the reference value to compute
the error made by lower numbers of steps. The results are displayed on Fig. 3
for the cases k = 4, 6 and m = 3 in log-log plots. As expected, the method
proposed by [5] converges linearly, while RK schemes of order two and four show
significant acceleration. The pole ladder converges with quadratic speed and thus
compares with the RK method of order two, although the complexity of the RK
method is multiplied by its order. The implementation of the two methods and

Fig. 3. Error of the parallel transport of v along the geodesic with initial velocity w
where v and w are orthonormal.
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an illustrative notebook on Kendall shapes of triangles can be found in the
geomstats library [9], available at http://geomstats.ai.

5 Conclusion and Future Work

We presented the Kendall shape space and metric, highlighting the properties
stemming from its quotient structure. This allows to compute parallel trans-
port with the pole ladder using closed-form solution for the geodesics. This
off-the-shelf algorithm can now be used in learning algorithms such as geodesic
regression or local non-linear embedding. This will be developed in future works.
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Abstract. We introduce diffusion means as location statistics on man-
ifold data spaces. A diffusion mean is defined as the starting point of an
isotropic diffusion with a given diffusivity. They can therefore be defined
on all spaces on which a Brownian motion can be defined and numerical
calculation of sample diffusion means is possible on a variety of spaces
using the heat kernel expansion. We present several classes of spaces, for
which the heat kernel is known and sample diffusion means can there-
fore be calculated. As an example, we investigate a classic data set from
directional statistics, for which the sample Fréchet mean exhibits finite
sample smeariness.

1 Introduction

In order to analyze data which are represented not on a vector space but a more
general space M, where we focus on manifolds here, it is necessary to generalize
concepts from Euclidean spaces to more general spaces. Important examples of
data on non-Euclidean spaces include directional data, cf. [14], and landmark
shape spaces, see [16].

In the field of general relativity where similar generalizations are required,
one usually relies on the correspondence principle as a minimal requirement for
quantities on curved spaces. It states that an observable in curved space should
reduce to the corresponding observable in the flat case. In terms of statistics
this means that any generalization SM of a statistic S on Euclidean space to a
manifold M should reduce to S on Euclidean space.

The mean is the most widely used location statistic and was generalized to
metric spaces by [6], who defined it as the minimizer of expected squared dis-
tance. This definition of the Fréchet mean satisfies the correspondence principle.
However, as is often the case in physics, it is by far not the only parameter that
has this property. In order to judge which potential other generalizations of the
mean are meaningful, we recall that one of the reasons the mean is so widely
used and useful is that it is an estimator of (one of) the model parameter(s)
in many parametric families of probability distributions including Normal, Pois-
son, Exponential, Bernoulli and Binomial distributions. It is therefore useful to
c© Springer Nature Switzerland AG 2021
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link potential generalizations of the mean to parametric families on general data
spaces.

Few parametric families of probability distributions have been widely gen-
eralized to non-Euclidean data spaces or even to Rm with m > 1. One class of
distributions which can be widely generalized are isotropic normal distributions,
as these can be defined as the distribution of a Brownian motion after unit time.
Since Brownian motion can be defined on any manifold, this definition is very
general. The thus defined probability distributions have one location parame-
ter μt ∈ M and a spread parameter t ∈ R+. Its clear interpretation in terms
of the generalized normal distribution family makes the diffusion mean μt an
interesting contender for a generalization of the Euclidean mean [9].

The location parameter of Brownian motion can be defined using the heat
kernels p(x, y, t), which are the transition densities of Brownian motions. For a
fixed t > 0, we define the diffusion t-mean set as the minima

Et(X) = argmin
μt∈P

E[− ln p(X,μt, t)]. (1)

The logarithmic heat kernel is naturally connected to geodesic distance due to
the limit lim

t→0
−2t ln p(x, y, t) = dist(x, y)2, cf. [11], which means that the Fréchet

mean can be interpreted as the μ0 diffusion mean, i.e. the limit for t → 0. In
Euclidean space, Eq. (1) reduces to the MLE of the normal distribution, which
means that μt does not depend on t. On other data spaces, the two parameters
do not decouple in general and μt can be different depending on t. Since all
diffusion means satisfy the correspondence principle for the Euclidean mean, it
is not immediately clear why the Fréchet mean should be preferred over diffusion
means for finite t > 0.

Explicit expressions for the heat kernel are known for several classes of man-
ifolds and for a more general class a recursively defined asymptotic series expan-
sion exists. This means that diffusion means can be numerically determined on
many data spaces and their dependence on t can be studied. In this article, we
focus on smeariness of means as described by [4,5,10], more precisely finite sam-
ple smeariness as described by [12]. A smeary mean satisfies a modified central
limit theorem with a slower asymptotic rate than n−1/2. This affects samples
drawn from such a population, whose sample means can exhibit finite sample
smeariness.

After a brief overview of the relevant concepts, we will give a number of
examples of data spaces in which diffusion means can be readily computed.
Lastly, we investigate the diffusion means for a directional data set on S1 whose
Fréchet mean exhibits finite sample smeariness. We find that the diffusion means
exhibit less finite sample smeariness with increasing t.

2 Basic Concepts and Definitions

A Riemannian manifold (M, g) is a smooth manifold equipped with inner prod-
ucts 〈., .〉x on the tangent spaces TxM for each x ∈ M such that x �→ 〈vx, ux〉x is
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smooth for all vector fields u, v ∈ TM. Curves which are locally length minimiz-
ing are called geodesics. The Riemannian distance between two points is defined
by the infimum over the lengths of geodesics connecting the points. If a geodesic
from x through y is length minimizing exactly up to and including y, but not
for any point after that, we say that y is in the cut of x and define the cut locus
C(x) as the collection of all such points.

For every starting point x ∈ M and velocity vector v ∈ TxM there is a
unique geodesic γx,v and the exponential map expx : TxM → M maps v to the
point reached in unit time γx,v(1). The exponential map is a diffeomorphism
on a subset D(x) ⊂ TxM such that its image coincides with M\C(x), and the
logarithm logx : M\C(x) → TxM is defined as the inverse map.

The heat kernel is the fundamental solution to the heat equation

d

dt
p(x, y, t) =

1
2
Δxp(x, y, t)

where Δ is the Laplace Beltrami operator on M and it is also the transition
density of Brownian motions on M. A Riemannian manifold is stochastically
complete if there exists a minimal solution p satisfying

∫
M p(x, y, t)dy = 1 for

all x ∈ M and t > 0. The minimal solution is strictly positive, smooth and
symmetric in its first two arguments.

Let (Ω,F ,P) be the underlying probability space of the random variable
X on the stochastically complete manifold M with minimal heat kernel p. We
define the negative log-likelihood function Lt : M → R to be

Lt(y) = E[− ln p(X, y, t)] (2)

for t > 0. This gives rise to the diffusion means as the global minima of the log-
likelihood function, i.e. the points maximizing the log-likelihood of a Brownian
motion.

Definition 1. With the underlying probability space (Ω,F ,P), let X be a ran-
dom variable on M and fix t > 0. The diffusion t-mean set Et(X) of X is the
set of global minima of the log-likelihood function Lt, i.e.

Et(X) = argmin
y∈M

E[− ln(p(X, y, t))].

If Et(X) contains a single point μt, we say that μt is the diffusion t-mean of X.

We consider the asymptotic behavior and smeariness of the following estimator.

Definition 2. For samples X1, ...,Xn
i.i.d.∼ X on M we define the sample log-

likelihood function Lt
n : M → R,

Lt
n(y) = − 1

n
ln

( n∏

i=1

p(Xi, y, t)
)

= − 1
n

n∑

i=1

ln p(Xi, y, t)

for every n ∈ N and the sample diffusion t-mean sets Et,n = argmin
y∈M

Lt
n(y).
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Definition 3 (Smeariness of Diffusion Means). Consider a random vari-
able X on M, an assume that there is ζ > 0 such that for every x ∈ Bζ(0) \ {0}
one has Lt(expμt(x)) > Lt(μt). Suppose that the minimal κ ∈ R such that for
fixed constants CX > 0 and for every sufficiently small δ > 0

sup
x∈Tμt M, ‖x‖<δ

∣
∣Lt(expμt(x)) − Lt(μt)

∣
∣ ≥ CXδκ

satisfies κ > 2. Then we say that the diffusion mean μt of X is smeary.

Definition 4 (Finite Sample Smeary Mean). For the population mean μt ∈
M and its corresponding sample estimator μ̂t

n let

mt
n :=

nE[d2(μ̂t
n, μt)]

E[d2(X,μt)]

be the variance ratio of μt. Then μt is called finite sample smeary, if

St
FSS := sup

n∈N
mt

n > 1 and St
FSS < ∞ .

The latter requirement distinguishes finite sample smeariness from smeariness,
where lim

n→∞mt
n = ∞.

A consistent estimator for mt
n can be given using the n-out-of-n bootstrap

m̂t
n :=

n 1
B

∑B
b=1 d2(μt,∗b

n,n , μ̂t
n)

1
n

∑n
j=1 d2(μ̂t

n,Xj)
.

This estimator is used in the application below.

3 Examples of Known Heat Kernels

Example 5. The heat kernel p on the Euclidean space Rm is given by the
function

p(x, y, t) =
(

1
(4πt)m/2

)

e
−|x−y|2

4t .

for x, y ∈ Rm and t > 0. The diffusion t-means of a random variable X do not
depend on t and coincide with the expected value E[X] since

argmin
y∈Rm

Lt(y) = argmin
y∈Rm

E[(X − y)2]

Thus, μt = E[X] for all t > 0.
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Example 6. The heat kernel on the circle S1 is given by the wrapped Gaussian

p(x, y, t) =
1√
4πt

( ∑

k∈Z

exp
(−(x − y + 2πk)2

4t

))

for x, y ∈ R/Z ∼= S1 and t > 0, and the log-likelihood function for the random
variable X : Ω → S1 becomes

Lt(y) = − ln
(√

4πt
)

+
∫

S1
ln

( ∑

k∈Z

exp
(−(x − y + 2πk)2

4t

))
dPX(x) (3)

Notably, even on this simple space, the t-dependence in the exponentials is not
a simple prefactor and μt is therefore explicitly dependent on t.

Example 7. The heat kernel on the spheres Sm for m ≥ 2 can be expressed as
the uniformly and absolutely convergent series, see [19, Theorem 1],

p(x, y, t) =
∞∑

l=0

e−l(l+m−1)t 2l + m − 1
m − 1

1
Am

S
C

(m−1)/2
l (〈x, y〉Rm+1)

for x, y ∈ Sm and t > 0, where Cα
l are the Gegenbauer polynomials and Am

S =
2π(m+1)/2

Γ((m+1)/2) the surface area of Sm. For m = 2, the Gegenbauer polynomials C
1/2
l

coincide with the Legendre polynomials P 0
l and the heat kernel on S2 is

p(x, y, t) =
∞∑

l=0

e−l(l+1)t 2l + 1
4π

P 0
l (〈x, y〉R3).

Again, μt is explicitly dependent on t on these spaces.

Example 8. The heat kernel on the hyperbolic space Hm can be expressed by
the following formulas, see [8], for n ≥ 1. For odd m = 2k + 1, the heat kernel
is given by

p(x, y, t) =
(−1)k

2kπk

1√
4πt

ρ

sinh ρ

(
1

sinh ρ

∂

∂ρ

)k

e−k2t− ρ2

4t

where ρ = distHm(x, y) and for even m = 2k + 2, it is given by

p(x, y, t) =
(−1)k

2k+ 5
2 πk+ 3

2
t−

3
2

ρ

sinh ρ

(
1

sinh ρ

∂

∂ρ

)k ∫ ∞

ρ

s exp
(
− s2

4t

)

(cosh s − cosh ρ)
1
2
ds.

Again, μt is explicitly dependent on t on these spaces.

Example 9. The fundamental solution to the heat equation on a Lie group G
of dimension m is

p(x, e, t) = (2πt)−m/2
∏

α∈Σ+

iα(H)
2 sin(iα(H)/2)

exp
(‖H‖2

2t
+

‖ρ‖2t

2

)

· Ex(Xτ > t)
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where e is the neutral element, x = exp(Ad(g)H) ∈ G\C(e) for some g ∈ G, Σ+

is the set of positive roots, ρ =
∑

α∈Σ+ α, and τ is the hitting time of C(e) by
(xs)0≤s≤t. Lie groups are relevant data spaces for many application, e.g. in the
modeling of joint movement for robotics, prosthetic development and medicine.

The symmetry in the example above is quite noticeable and in fact when t > 0
and x ∈ M where M = Rm,Sm or Hm, the heat kernel only depends on the
geodesic distance, see [1].

Remark 10. For spaces where a closed form has not been obtained, we can turn
to various estimates. We include some of the most well known below.

1. For complete Riemannian manifolds of dimension m, we have the asymptotic
expansion, see [11],

p(x, y, t) ∼
(

1
2πt

)m
2

e
−d(x,y)2

2t

∞∑

n=0

Hn(x, y)tn

on compact subset with x /∈ C(y). Here Hn are smooth functions satisfying

a recursion formula, see [2], with H0(x, y) =
√

J(expx)(exp−1
x (y)) and J

denoting the Jacobian.
2. Assuming also non-negative Ricci curvature, the heat kernel is bounded from

both sides, see [7,15],

c1

vol(x,
√

t)
exp

(
dist(x, y)2

c2t

)

≤ p(x, y, t) ≤ c3

vol(x,
√

t)
exp

(
dist(x, y)2

c4t

)

where vol(x,
√

t) denotes the volume of the ball around x of radius
√

t and
positive constants ci for i = 1, ..., 4.

3. Using bridge sampling, the heat kernel can be estimated by the expectation
over guided processes, see [3,13]. An example of this is the estimated heat
kernel on landmark manifolds by [17].

4 Application to Smeariness in Directional Data

In this Section we apply diffusion means to the classic data set denoting the
compass directions of sea turtles leaving their nest after egg laying, cf. [18] and
Mardia and Jupp [14, p. 9]. The data set is clearly bimodal with two antipodal
modes. It was shown in [5] that the Fréchet mean for this data set exhibits
pronounced finite sample smeariness. We let the sum in the likelihood (3) run
from k = −3 to k = 3, thus excluded terms are smaller than e−(6π)2/3 < 10−50.
To avoid local minima, we run each optimization with 10 random initial values.

In Fig. 1a, we show that increasing the diffusivity t, the likelihood function
at the minimum, starting out unusually flat, approaches a parabolic shape. In
Fig. 1b, we show the corresponding curves of estimated variance ratio m̂t

n, whose
maxima can be used as estimators for the magnitude St

FSS of finite sample
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Fig. 1. Diffusion means for nesting sea turtles. Panel (a) shows that most turtles head
towards the sea shore (east-northeast) while some move in exactly opposite direction.
Panel (b) shows that, correspondingly, finite sample smeariness decreases in magnitude
with increasing t.

smeariness. The flatter the likelihood is at the minimum, the higher we expect
the magnitude of finite sample smeariness to be. From visual inspection of the
likelihoods, we thus expect the magnitude of finite sample smeariness to decrease
with increasing t, which is confirmed by Fig. 1b.

This behavior of reducing the effects of smeariness has been found analo-
gously in other applications and simulations. These results suggest that diffusion
means can provide a more robust location statistic than the Fréchet mean for
spread out data on positively curved spaces. This point is reinforced by estimat-
ing t and μt jointly, which yields t̂ = 0.963. As one can see from the case t = 1 in
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Fig. 1, this leads to a very low magnitude of finite sample smeariness compared
to the Fréchet mean.
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6. Fréchet, M.: Les éléments aléatoires de nature quelconque dans un espace distancié.
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Abstract. This paper presents a derivation of the parallel transport
equation expressed in the Lie algebra of a Lie group endowed with a left-
invariant metric. The use of this equation is exemplified on the group
of rigid body motions SE(3), using basic numerical integration schemes,
and compared to the pole ladder algorithm. This results in a stable and
efficient implementation of parallel transport. The implementation lever-
ages the python package geomstats and is available online.

Keywords: Parallel transport · Lie groups

1 Introduction

Lie groups are ubiquitous in geometry, physics and many application domains
such as robotics [3], medical imaging [14] or computer vision [9], giving rise to
a prolific research avenue. Structure preserving numerical methods have demon-
strated significant qualitative and quantitative improvements over extrinsic
methods [10]. Moreover, machine learning [2] and optimisation methods [11,15]
are being developed to deal with Lie group data.

In this context, parallel transport is a natural tool to define statistical models
and optimisation procedures, such as the geodesic or spline regression [12,19],
or to normalise data represented by tangent vectors [4,21].

Different geometric structures are compatible with the group structure, such
as its canonical Cartan connection, whose geodesics are one-parameter sub-
groups, or left-invariant Riemannian metrics. In this work we focus on the lat-
ter case, that is fundamental in geometric mechanics [13] and has been stud-
ied in depth since the foundational papers of Arnold [1] and Milnor [17]. The
fundamental idea of Euler-Poincarré reduction is that the geodesic equation
can be expressed entirely in the Lie algebra thanks to the symmetry of left-
invariance [16], alleviating the burden of coordinate charts.

However, to the best of our knowledge, there is no literature on a similar
treatment of the parallel transport equation. We present here a derivation of the
parallel transport equation expressed in the Lie algebra of a Lie group endowed
with a left-invariant metric. We exemplify the use of this equation on the group
c© Springer Nature Switzerland AG 2021
F. Nielsen and F. Barbaresco (Eds.): GSI 2021, LNCS 12829, pp. 119–126, 2021.
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of rigid body motions SE(3), using common numerical integration schemes, and
compare it to the pole ladder approximation algorithm. This results in a stable
and efficient implementation of parallel transport. The implementation leverages
the python package geomstats and is available online at http://geomstats.ai.

In Sect. 2, we give the general notations and recall some basic facts from Lie
group theory. Then we derive algebraic expressions of the Levi-Civita connec-
tion associated to the left-invariant metric in Sect. 3. The equation of parallel
transport is deduced from this expression and its integration is exemplified in
Sect. 4.

2 Notations

Let G be a lie group of (finite) dimension n. Let e be its identity element, g = TeG
be its tangent space at e, and for any g ∈ G, let Lg : h ∈ G �→ gh denote the
left-translation map, and dLg its differential map. Let gL be the Lie algebra of
left-invariant vector fields of G: X ∈ gL ⇐⇒ ∀g ∈ G,Xg = dLgXe.

g and gL are in one-to-one correspondence, and we will write x̃ the left-
invariant field generated by x ∈ g: ∀g ∈ G, x̃g = dLgx. The bracket defined
on g by [x, y] = [x̃, ỹ]e turns g into a Lie algebra that is isomorphic to gL.
One can also check that this bracket coincides with the adjoint map defined by
adx(y) = de(g �→ Adgy), where Adg = de(h �→ ghg−1). For a matrix group, it is
the commutator.

Let (e1, . . . , en) be an orthonormal basis of g, and the associated left-invariant
vector fields ẽi = g �→ dLgei. As dLg is an isomorphism, (ẽ1,g, . . . , ẽn,g) form
a basis of TgG for any g ∈ G, so one can write Xg = f i(g)ẽ1,g where for
i = 1, . . . , n, g �→ f i(g) is a smooth real-valued function on G. Any vector field
on G can thus be expressed as a linear combination of the ẽi with function
coefficients.

We use Einstein summation convention to express decomposition in a given
basis. Summation occurs along the indices that are repeated in sub and super-
scripts, e.g.

∀x ∈ g, write x =
n∑

i=1

xiei = xiei.

Finally, let θ be the Maurer-Cartan form defined on G by:

∀g ∈ G,∀v ∈ TgG, θg(v) = (dLg)−1v ∈ g (1)

It is a g-valued 1-form and for a vector field X on G we write θ(X)g = θg(Xg)
to simplify the notations.

3 Left-Invariant Metric and Connection

A Riemannian metric 〈·, ·〉 on G is called left-invariant if the differential map of
the left translation is an isometry between tangent spaces, that is

∀g, h ∈ G,∀u, v ∈ TgG, 〈u, v〉g = 〈dLhu, dLhv〉hg.

geomstats
http://geomstats.ai
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It is thus uniquely determined by an inner product on the tangent space at
the identity TeG = g of G. Furthermore, the metric dual to the adjoint map is
defined such that

∀a, b, c ∈ g, 〈ad∗
a(b), c〉 = 〈b, ada(c)〉 = 〈[a, c], b〉. (2)

As the bracket can be computed explicitly in the Lie algebra, so can ad∗ thanks
to the orthonormal basis of g. Now let ∇ be the Levi-Civita connection associated
to the metric. It is also left-invariant and can be characterised by a bi-linear form
on g that verifies [6,15,20]:

∀x, y ∈ g, α(x, y) := (∇x̃ỹ)e =
1
2
(
[x, y] − ad∗

x(y) − ad∗
y(x)

)
(3)

Indeed by the left-invariance, for two left-invariant vector fields x̃, ỹ ∈ gL, the
map g �→ 〈x̃, ỹ〉g is constant, so for any vector field z̃ we have z̃(〈x̃, ỹ〉) = 0.
Kozsul formula thus becomes

2〈∇x̃ỹ, z̃〉 = 〈[x̃, ỹ], z̃〉 − 〈[ỹ, z̃], x̃〉 − 〈[x̃, z̃], ỹ〉 (4)
2〈∇x̃ỹ, z̃〉e = 〈[x, y], z〉e − 〈ady(z), x〉e − 〈adx(z), y〉e

2〈α(x, y), z〉e = 〈[x, y], z〉e − 〈ad∗
y(x), z〉e − 〈ad∗

x(y), z〉e.

Note however that this formula is only valid for left-invariant vector fields. We
will now generalise to any vector fields defined along a smooth curve on G, using
the left-invariant basis (ẽ1, . . . , ẽn).

Let γ : [0, 1] → G be a smooth curve, and Y a vector field defined along
γ. Write Y = giẽi, γ̇ = f iẽi. Let’s also define the left-angular velocities ω(t) =
θγ(t)γ̇(t) = (f i ◦ γ)(t)ei ∈ g and ζ(t) = θ(Y )γ(t) = (gj ◦ γ)(t)ej ∈ g. Then the
covariant derivative of Y along γ is

∇γ̇(t)Y = (f i ◦ γ)(t)∇ẽi

(
giẽi

)

= (f i ◦ γ)(t)ẽi(gj)ẽj + (f i ◦ γ)(t)(gj ◦ γ)(t)(∇ẽi
ẽj)γ(t)

dL−1
γ(t)∇γ̇(t)Y = (f i ◦ γ)(t)ẽi(gj)ej + (f i ◦ γ)(t)(gj ◦ γ)(t)∇ei

ej

where Leibniz formula and the invariance of the connection is used in (∇ẽi
ẽj) =

dLγ(t)∇ei
ej . Therefore for k = 1..n

〈dL−1
γ(t)∇γ̇(t)Y, ek〉 = (f i ◦ γ)(t)ẽi(gj)〈ej , ek〉

+ (f i ◦ γ)(t)(gj ◦ γ)(t)〈∇ei
ej , ek〉 (5)

but on one hand

ζ(t) = (gj ◦ γ)(t)ej (6)

ζ̇(t) = (gj ◦ γ)′(t)ej = dγ(t)g
j γ̇(t)ej

= dγ(t)g
j
(
(f i ◦ γ)(t)ẽi,γ(t)

)
ej

= (f i ◦ γ)(t)ẽi(gj)ej (7)
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and on the other hand, using (4):

(f i ◦ γ)(gj ◦ γ)〈∇ei
ej , ek〉 =

1
2
(f i ◦ γ)(gj ◦ γ)(〈[ei, ej ], ek〉
− 〈[ej , ek], ei〉 − 〈[ei, ek], ej〉)

=
1
2
(〈[(f i ◦ γ)ei, (gj ◦ γ)ej ], ek〉
− 〈[(gj ◦ γ)ej , ek], (f i ◦ γ)ei〉
− 〈[(f i ◦ γ)ei, ek], (gj ◦ γ)ej〉)

=
1
2
([ω, ζ] − ad∗

ωζ − ad∗
ζω) = α(ω, ζ) (8)

Thus, we obtain an algebraic expression for the covariant derivative of any vector
field Y along a smooth curve γ. It will be the main ingredient of this paper.

dL−1
γ(t)∇γ̇(t)Y (t) = ζ̇(t) + α(ω(t), ζ(t)) (9)

A similar expression can be found in [1,7]. As all the variables of the right-hand
side are defined in g, they can be computed with matrix operations and an
orthonormal basis.

4 Parallel Transport

We now focus on two particular cases of (9) to derive the equations of geodesics
and of parallel transport along a curve.

4.1 Geodesic Equation

The first particular case is for a geodesic curve γ and Y (t) = γ̇(t). It is then
straightforward to deduce from (9) the Euler-Poincaré equation for a geodesic
curve [5,13]. Indeed in this case, recall that ω = θ|γ(t)γ̇(t) is the left-angular
velocity, ζ = ω and α(ω, ω) = − ad∗

ω(ω). Hence γ is a geodesic if and only if
dL−1

γ(t)∇γ̇(t)γ̇(t) = 0 i.e. setting the left-hand side of (9) to 0. We obtain
{

γ̇(t) = dLγ(t)ω(t)
ω̇(t) = ad∗

ω(t)ω(t).
(10)

Remark 1. One can show that the metric is bi-invariant if and only if the adjoint
map is skew-symmetric (see [20] or [6, Prop. 20.7]). In this case ad∗

ω(ω) = 0 and
(10) coincides with the equation of one-parameter subgroups on G.

4.2 Reduced Parallel Transport Equation

The second case is for a vector Y that is parallel along the curve γ, that is,
∀t,∇γ̇(t)Y (t) = 0. Similarly to the geodesic equation, we deduce from (9) the
parallel transport equation expressed in the Lie algebra.
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Theorem 1. Let γ be a smooth curve on G. The vector Y is parallel along γ if
and only if it is solution to

⎧
⎪⎨

⎪⎩

ω(t) = dL−1
γ(t)γ̇(t)

Y (t) = dLγ(t)ζ(t)
ζ̇(t) = −α(ω(t), ζ(t))

(11)

One would think this result to be well-known, as it is straightforward to deduce
from (9), but we are not aware of a reference of its use for a reduced system of
equation for the parallel transport of a vector along a curve. Note that in order
to parallel transport along a geodesic curve, (10) and (11) are solved jointly.

4.3 Application

We now exemplify Theorem 1 on the group of isometries of R3, SE(3), endowed
with a left-invariant metric g. SE(3), is the semi-direct product of the group of
three-dimensional rotations SO(3) with R

3, i.e. the group multiplicative law for
R,R′ ∈ SO(3), t, t′ ∈ R

3 is given by

(R, t) · (R′, t′) = (RR′, t + Rt′).

It can be seen as a subgroup of GL(4) and represented by homogeneous coordi-
nates:

(R, t) =
(

R t
0 1

)
,

and all group operations then correspond to the matrix operations. Let the
metric matrix at the identity be diagonal: G = diag(1, 1, 1, β, 1, 1) for some
β > 0, the anisotropy parameter. An orthonormal basis of the Lie algebra se(3)
is

e1 =
1√
2

⎛

⎜⎜⎝

0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

⎞

⎟⎟⎠ e2 =
1√
2

⎛

⎜⎜⎝

0 0 1 0
0 0 0 0

−1 0 0 0
0 0 0 0

⎞

⎟⎟⎠ e3 =
1√
2

⎛

⎜⎜⎝

0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟⎟⎠

e4 =
1√
β

⎛

⎜⎜⎝

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟⎟⎠ e5 =

⎛

⎜⎜⎝

0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

⎞

⎟⎟⎠ e6 =

⎛

⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞

⎟⎟⎠ .

Define the corresponding structure constants Ck
ij = 〈[ei, ej ], ek〉, where the Lie

bracket [·, ·] is the usual matrix commutator. It is straightforward to compute

Ck
ij =

1√
2

if ijk is a direct cycle of {1, 2, 3}; (12)

C6
15 = −C5

16 = −
√

βC6
24 =

1√
β

C4
26 =

√
βC5

34 = − 1√
β

C4
35 =

1√
2
. (13)
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Fig. 1. Comparison of the integration of the reduced equation with the pole ladder.
The norm of the absolute error is represented with respect to the number of steps.

and all others that cannot be deduced by skew-symmetry of the bracket are
equal to 0. The connection can then easily be computed using

α(ei, ej) = ∇ei
ej =

1
2

∑

k

(Ck
ij − Ci

jk + Cj
ki)ek,

For β = 1, (SE(3), G) is a symmetric space and the metric corresponds to the
direct product metric of SO(3) × R

3. However, for β = 1, the geodesics cannot
be computed in closed-form and we resort to a numerical scheme to integrate
(10). According to [8], the pole ladder can be used with only one step of a fourth-
order scheme to compute the exponential and logarithm maps at each rung of
the ladder. We use a Runge-Kutta (RK) scheme of order 4. The Riemannian
logarithm is computed with a gradient descent on the initial velocity, where the
gradient of the exponential is computed by automatic differentiation. All of these
are available in the InvariantMetric class of the package geomstats [18].

We now compare the integration of (11) to the pole ladder [8] for β = 1.5, 2
to parallel transport a tangent vector along a geodesic. We sample a random
initial point in SE(3), and two tangent vectors at this point, that are then
orthonormalised.

The results are displayed on Fig. 1 in a log-log plot representing the error
between a reference value for the parallel transport and the value obtained with
n steps in the discretization of the integral scheme, or in the pole ladder. The
reference value is the one obtained by the integration scheme with RK steps of

InvariantMetric
http://geomstats.ai
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order four for n = 1000. As expected, we reach convergence speeds of order two
for the pole ladder and the RK2 scheme, while the RK4 schemes is of order four.
Both integration methods are very stable, while the pole ladder is less stable for
∼ n ≥ 200.
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Abstract. Analysis of images of sets of fibers such as myelin sheaths
or skeletal muscles must account for both the spatial distribution of
fibers and differences in fiber shape. This necessitates a combination of
point process and shape analysis methodology. In this paper, we develop
a K-function for fiber-valued point processes by embedding shapes as
currents, thus equipping the point process domain with metric structure
inherited from a reproducing kernel Hilbert space. We extend Ripley’s K-
function which measures deviations from complete spatial randomness of
point processes to fiber data. The paper provides a theoretical account of
the statistical foundation of the K-function, and we apply the K-function
on simulated data and a data set of myelin sheaths. This includes a fiber
data set consisting of myelin sheaths configurations at different debts.

Keywords: Point processes · Shape analysis · K-function · Fibers ·
Myelin sheaths

1 Introduction

We present a generalization of Ripley’s K-function for fiber-valued point pro-
cesses, i.e., processes where each point is a curve in R

3. Fiber structures appear
naturally in the human body, for example in tracts in the central nervous sys-
tem and in skeletal muscles. The introduced K-function captures both spatial
and shape clustering or repulsion, thus providing a powerful descriptive statistic
for analysis of medical images of sets of fibers or more general shape data. As
an example, Fig. 1 displays myelin sheaths in four configurations from different
debts in a mouse brain. We develop the methodology to quantify the visually
apparent differences in both spatial and shape distribution of the fibers.

Ripley’s K-function [6] is a well-known tool for analyzing second order
moment structure of point processes [1] providing a measure of deviance from
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Fig. 1. K-functions for samples of myelin sheaths. Each column corresponds to mea-
sured on a data set. (top row): the centerlines of the myelin sheathed axons. (middle
row): The K-function for fixed values of t. (bottom row): The K-function for fixed
values of s.

complete spatial randomness in point sets. For a stationary point process, K(t)
gives the expected number of points within distance t from a typical point. An
estimator of Ripley’s K-function for a point set {pi}n

i=1 inside an observation
window W is,

K̂(t) =
1

nλ̂

∑

i�=j

1[dist(pi, pj) < t] (1)

where λ̂ = n
|W | is the sample intensity, |W | is the volume of the observation

window, and 1 is the indicator function. By comparing K̂(t) with the K-function
corresponding to complete spatial randomness, we can measure the deviation
from spatial homogeneity. Smaller values of K̂(t) indicate clustering whereas the
points tend to repel each other for greater values.

Generalizations of Ripley’s K-function have previously been considered for
curve pieces in [4] and several approaches were presented in [7] for space curves.
In this paper, we present a K-function inspired by the currents approach from [7]
and provide the theoretical account for the statistical foundation. We construct
the following K-function for a fiber-valued point process X
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K̂(t, s) =
1

|W |λ
∑

γ∈X:c(γ)∈W

∑

γ′∈X\{γ}
1[‖c(γ) − c(γ′)‖ ≤ t, d(γc, γ

′
c) ≤ s] (2)

for t, s > 0, where c(γ) is the center point of the curve γ and γc, γ
′
c the centered

curves, d the currents distance and λ is the spatial intensity of the center points.
By introducing a second distance parameter, we separate the spatial distance of
the curves from the difference in shape, allowing us to measure both spatial and
shape homogeneity. The paper presents the following contributions:

1. A K-function for fiber-valued point processes along with a theoretical account
for the statistical foundation.

2. We suggest a certain fiber process which we argue corresponds to complete
randomness of points, an analogue of the Poisson process.

3. An application of the K-function to several generated data set and a real
data set of myelin sheaths.

2 Fibers as Currents

We model a random collection of fibers as a point process on the space of fibers.
Shape spaces are usually defined as the space of embeddings Be(M,Rd) of a
manifold M into R

d [2], where the space of fibers is Be(I,R3) for some real
interval I. A point process X on a metric space S is a measurable map from
some probability space (Ω,F , P ) into the space of locally finite subsets of S. In
this paper, we consider how Be(I,R3) is endowed with a metric by considering
fibers as currents.

We can characterize a piece-wise smooth curve γ ∈ Be(I,Rd) by computing
its path-integral of all vector fields w [3,5,8]

Vγ(w) =
∫

γ

w(x)tτγ(x)dλ(x), (3)

where τγ(x) is the unit tangent of γ at x and λ is the length measure on the
curve. This is a way of representing the curve as a current, i.e. as elements in the
dual space of the space of vector fields on R

d. Formally, the space of m-currents
Cm is the dual space of the space C0(Rd, (Λm

R
d)∗) of differential m-forms.

The space of m-currents Cm is continuously embedded into the dual space
of a reproducing kernel Hilbert space (RKHS) H with arbitrary kernel KH :
R

d × R
d → R

d×d [5]. It follows from Riesz representation theorem that v ∈ H
can be embedded in the dual space H∗ as the functional LH(v) ∈ H∗ defined by
LH(v)(w) = 〈v, w〉H for w ∈ H.

Elements v(y) = KH(x, y)α form a basis for H where x, α ∈ R
d, and basis

elements in H are lifted to basis elements in H∗ as δα
x := LH(v) which are

called the Dirac delta currents. The element Vγ from (3) can be written in terms
of the basis elements δ

τγ(x)
x as the 1-current Vγ(w) =

∫
γ

δ
τγ(x)
x (w)dλ(x). It is

approximated by the Riemann sum of Dirac delta currents Vγ(w) ≈ Ṽγ(w) =
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∑
i δ

τ(xi)Δxi
xi (w) where xi are sampled points along the curve according to λ. The

dual space H∗ inherits the inner product from the inner product on the RKHS
via the inverse mapping L−1

H , so that the inner product for two curves γ1 and
γ2 in H∗ is

〈Vγ1 , Vγ2〉H∗ =
∫

γ1

∫

γ2

τ t
γ1

(x)KH(x, y)τγ2(y)dλγ2(x)dλγ1(y). (4)

Writing ||Vγ ||2H∗ = 〈Vγ , Vγ〉H∗ , we finally arrive at the currents distance of two
curves γ1 and γ2

dc(Vγ1 , Vγ2) = ||Vγ1 − Vγ2 ||H∗ =
(
||Vγ1 ||2H∗ + ||Vγ2 ||2H∗ − 2〈Vγ1 , Vγ2〉H∗

)1/2

.

(5)

In practice, we usually don’t know the orientation of the curves, thus we choose
to consider the minimal distance between them,

d(Vγ1 , Vγ2) = min{dc(Vγ1 , Vγ2), dc(Vγ1 , V−γ2)} (6)

where −γ2 denotes the curve with opposite orientation of γ2.

3 The K-function

3.1 Statistical Setup

Let S be the image of the embedding of Be(I,Rd) into C1. For brevity, γ is iden-
tified with its representation in C1. We model a random collection of curves as a
point process X in S. Here we endow S with the metric obtained by combining,
using the two-norm, Eucledian distance between fiber center points and currents
distance between the centered fibers. A subset of S is said to be locally finite if
its intersection with any bounded subset of S is finite. We denote by N the set
of locally finite fiber configurations.

Let c : S → R
d be a center function on the space of fibers in R

d that
associates a center point to each fiber. A center function should be translation
covariant in the sense that c(γ + x) = c(γ) + x for all x ∈ R

d. Let Sc denote the
space of centered fibers wrt. c, i.e., those γ ∈ S for which c(γ) = 0. We define
γc := γ − c(γ) ∈ Sc to be the centering of γ.

For Borel sets B1, A1 ⊂ R
d and B2, A2 ⊂ Sc, define the first moment measure

μ(B1 × B2) = E

∑

γ∈X

1[c(γ) ∈ B1, γc ∈ B2]

and the second moment measure

α((A1 ×A2)× (B1 ×B2)) = E

�=∑

γ,γ′∈X

1[c(γ) ∈ A1, γc ∈ A2]1[c(γ′) ∈ B1, γ
′
c ∈ B2].
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We assume that μ is translation invariant in its first argument. This is for
instance the case if the distribution of X is invariant under translations. This
implies that μ(· × B2) is proportional to the Lebesgue measure for all B2. Thus
we can write

μ(B1 × B2) = |B1|ν(B2)

for some measure ν(·) on Sc. Note that the total measure ν(Sc) is the spatial
intensity of the center points, i.e. the expected number of center points in a unit
volume window. In applications, this will typically be finite. In this case, we may
normalize ν to obtain a probability measure which could be interpreted as the
distribution of a single centered fiber. For subsets A1, A2 ⊂ R

d and F ⊆ N , we
define the reduced Campbell measure

C !(A1 × A2 × F ) = E

∑

γ∈X

1[c(γ) ∈ A1, γc ∈ A2,X \ {γ} ∈ F ].

By disintegration and the standard proof, we get for any measurable function
h : Rd × Sc × N → [0,∞)

E

∑

γ∈X

h(c(γ), γc,X \ {γ}) =
∫

Rd×Sc

E
!
c,γc

h(c, γc,X)μ(d(c, γc)), (7)

where E
!
c,γc

is a point process expectation that can be interpreted as expectation
with respect to X conditional on that X contains the fiber γ with c(γ) = c
and γ − c(γ) = γc. Assuming that α is invariant under joint translation of the
arguments A1, B1,

Kc,γc
(B1 × B2) := E

!
c,γc

∑

γ′∈X

1[c(γ′) ∈ B1, γ
′
c ∈ B2] (8)

= E
!
0,γ0

∑

γ′∈X

1[c(γ′) ∈ B1 − c, γ′
c ∈ B2] = K0,γ0((B1 − c) × B2). (9)

Assume that also E
!
c,γc

h(γc,X − c) = E0,γ0h(γ0,X) which is true if the distribu-
tion of X is invariant over translations. Then, using the above,

E

∑

γ∈X

1[c(γ) ∈ W ]h(γc,X \ {γ} − c(γ)) =
∫

W×Sc

E
!
c,γc

h(γc,X − c)μ(d(c, γc))

=
∫

W×Sc

E
!
0,γ0

h(γ0,X)μ(d(c, γ0)) = |W |
∫

Sc

E
!
0,γ0

h(γ0,X)ν(dγ0). (10)

From this it follows that

Eh =
1

|W |
∑

γ∈X

1[c(γ) ∈ W ]h(γc,X \ {γ} − c(γ))

is an unbiased estimator of
∫

Sc
E
!
0,γ0

h(γ0,X)ν(dγ0). Furthermore, if ν(Sc) is
finite, ∫

Sc

E
!
0,γ0

h(γ0,X)ν(dγ0) = ν(Sc)Eν̃E
!
0,Γ0

h(Γ0,X)



132 P. E. H. Hansen et al.

where Γ0 is a random centered fiber with distribution ν̃(·) = ν(·)/ν(Sc) and Eν̃

is expectation with respect to this distribution of Γ0.

3.2 K-function for Fibers

In order to define a K-function, we must make an appropriate choice of h. We
choose h as

h(γc,X) =
∑

γ′∈X

1[‖c(γ′)‖ ≤ t, d(γc, γ
′
c) ≤ s]

for s, t > 0, where ‖ · ‖ is the usual distance in R
d between center points. Thus

we define the empirical K-function for t, s > 0 as

K̂(t, s) =
1

|W |ν(Sc)

∑

γ∈X

1[c(γ) ∈ W ]h(γc,X \ {γ} − c(γ))

=
1

|W |ν(Sc)

∑

γ∈X:c(γ)∈W,
γ′∈X\{γ}

1[‖c(γ) − c(γ′)‖ ≤ t, d(γc, γ
′
c) ≤ s]. (11)

Since ν(Sc) is the intensity of fiber centers, it is estimated by N/|W | where N is
the observed number of centers c(γ) inside W . The K-function is the expectation
of the empirical K-function

K(t, s) = EK̂(t, s) = Eν̃E
!
0,Γ0

h(Γ0,X) = Eν̃K0,Γ0(B(0, t) × Bc(Γ0, s))

where B(x, r) = {y : ||x − y|| ≤ r} and Bc(γ, s) = {γ′ : d(γ, γ′) ≤ s}.

4 Experiments

To obtain a measure of spatial homogeneity, Ripley’s K-function for points is
usually compared with the K-function for a Poisson process, KP (t) = vol(Bd(t)),
corresponding to complete spatial randomness. The aim of the experiments on
generated data sets is to analyze the behavior of the K-function on different
types of distributions and suggest a fiber process that corresponds to complete
randomness.

4.1 Generated Data Sets

The four generated data sets X1,X2,X3 and X4 each contain 500 fibers with
curve length l = 40 and center points in [0, 100]3 and is visualized in the first row
of Fig. 2. For X1,X2,X3 the center points are generated by a Poisson process
and the fibers are uniformly rotated lines in X1, uniformly rotated spirals in X2

and Brownian motions in X3. The data set X4 has clustered center points and
within each cluster the fibers are slightly perturbed lines.

To avoid most edge effects, we choose the window W ≈ [13, 87]3 ⊂ R
3 for

the calculation of the K-function. Furthermore, we choose a Gaussian kernel
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Fig. 2. K-function on the generated data, where each column corresponds to one data
set. (top row): The data sets X1, X2, X3 and X4 described in Sect. 4.1. (middle row):
The K-function of the data set above for fixed values of t. (Bottom row): The K-
function of the data set above for fixed values of s.

Kσ(x, y) = exp
(

−|x−y|2
2σ

)
Id with σ = 100

3 . Finally, c is defined to be the mass
center of the curve.

The first row of Fig. 2 shows the generated data sets and the respective K-
functions are visualized in the second and third row. In the second row, s �→
K(t, s) is plotted for fixed values of t and in the third row, t �→ K(t, s) is plotted
for fixed values of s. The graphs in the second row capture the fiber shape
difference of each data set whereas the graphs in the third row capture spatial
difference.

It is distribution X3 that we consider to be a natural suggestion for a uni-
form random distribution of fibers. This is because Brownian motions are well-
known for modelling randomness, thus representing shape randomness. And by
translating these Brownian motion with a Poisson process, we argue that this
distribution is a good choice.

Considering only the data sets with uniformly distributed center points, i.e.,
the first three columns of Fig. 2, we see a big difference in the second row of
plots. This indicates that the K-function is sensitive to the change in shape.
The K-function for the Brownian motions captures much more mass for smaller
radii compared to the lines, with the spirals being somewhere in-between.
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4.2 Application to Myelin Sheaths

Myelin surrounds the nerve cell axons and is an example of a fiber structure
in the brain. Based on 3D reconstructions from the region motor cortex of the
mouse brain, centre lines were generated in the myelin sheaths. The data sets
ST01, ST06, ST17 and ST20 displayed in the first row of Fig. 1 represent the
myelin sheaths from four samples at different debts.

Since myelin sheaths tend to be quite long, we chose to divide the fibers of
length greater than 40 into several fibers segments of length 40. This has the
benefits, that the mass center is an appropriate choice for c and that the results
are comparable with the results of Fig. 2, since the curves are of similar length.

The results of the estimated K-function on the four data sets ST01, ST06,
ST17 and ST20 are visualized in Fig. 1, where s �→ K(t, s) is plotted in the
second row for fixed values of t and t �→ K(t, s) is plotted in the third row for
fixed values of s. The plots in the second row showing the fiber shape are very
similar, resembling the fiber distribution of X2. We notice a slight difference in
ST20, where the graphs have a more pronounced cut off. When noticing the
scale of the y-axis, we see that the expected number of neighbor fibers vary
significantly between the data sets.
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5. Durrleman, S., Pennec, X., Trouvé, A., Ayache, N.: Statistical models of sets of
curves and surfaces based on currents. Med. Image Anal. 13(5), 793–808 (2009)

6. Ripley, B.D.: The second-order analysis of stationary point processes. J. Appl.
Probal. 13(2), 255–266 (1976)

7. Sporring, J., Waagepetersen, R., Sommer, S.: Generalizations of Ripley’s K -function
with application to space curves. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A.,
Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 731–742. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-20351-1 57

8. Vaillant, M., Glaunès, J.: Surface matching via currents. In: Biennial International
Conference on Information Processing in Medical Imaging, pp. 381–392 (2005)

https://doi.org/10.1007/978-3-030-20351-1_57


Geometry of Quantum States



Q-Information Geometry of Systems

Christophe Corbier(B)
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Abstract. This paper proposes a generalization of information geome-
try named Q-information geometry (Q-IG) related to systems described
by parametric models, based R-Complex Finsler subspaces and lead-

ing to Q-spaces. A Q-space is a pair
(
Mn

SX
, |F Q,n

J,x |
)

with Mn
SX

a C-

manifold of systems and |F Q,n
J,x | a continuous function such that F Q,n

3,x =

F n
H,x +

√−1F n
H,x

with a signature (+, +, −) where F n
H,x and F n

H,x
are

τ -Hermitian and τ -non-Hermitian metrics, respectively. Experimental
results are presented from a semi-finite acoustic waves guide.

Keywords: Information geometry · R-Complex Finsler spaces ·
Q-space · Parametric model · Maximum phase system

1 Introduction

Among manifolds in information geometry, there exist Kählerian manifolds as
an interesting topic in many domains. Kählerian geometry generalizes Hessian
geometry since this latter is locally expressed in real coordinates [13]. The
tangent bundle of a Hessian manifold naturally admits Kählerian structure,
and that a Hessian structure is formally analogous to a Kählerian structure
because a Kählerian metric is locally expressed as a complex Hessian. In [9]
the aim is to classify compact, simply connected Kählerian manifolds which
admit totally geodesic, holomorphic complex homothetic foliations by curves. A
relation between sections in globally generated holomorphic vector bundles on
Kählerian manifolds, isotropic with respect to a non-degenerate quadratic form
and totally geodesic folations on Euclidean open domains is established in [2].
On a Kählerian manifold, the tensor metric and the Levi-Civita connection are
determined from a Kählerian potential [14] and the Ricci tensor is yielded from
the determinant of the metric tensor. A fundamental work in [5] has been carried
out related to the correspondence between the information geometry of a signal
filter and a Kähler manifold. This work focused on a minimum phase (mP) signal
filter, i.e. when the filter and its inverse are causal and stable or when all zeros
(resp poles) are inside the unit disc of the z-plane.

In this paper, the study is extended and focused on the parametric models
of linear systems ML

S both with external input and zeros outside the unit disc
of the z-plane in estimated discrete transfer functions. For example acoustic
c© Springer Nature Switzerland AG 2021
F. Nielsen and F. Barbaresco (Eds.): GSI 2021, LNCS 12829, pp. 137–144, 2021.
https://doi.org/10.1007/978-3-030-80209-7_16
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propagation systems present of such properties (see Carmona and Alvarado in
[4]). This movement of zeros outside the unit disc changes Kähler information
geometry into a new geometry named Q-information geometry (Q-IG) based
R-Complex Finsler [1,3,10–12] subspaces denoted R

Cw(Fn
Q,x) and leading to a Q-

space. Such a space is a pair
(
Mn

SX
, |FQ,n

J,x |
)

with Mn
SX

a C-manifold of systems

and |FQ,n
J,x | : TQMn

SX
→ R+ a Finsler metric with signature (+,+,−) where

TQMn
SX

is a holomorphic tangent bundle given by TQMn
SX

=
⊕

w TwMn
SX

. For
J = 1 the corresponding Q-IG is the Kähler information geometry with metric
tensor g1,0

μν,x where Im(FQ,0
1,x ) = 0 for all minimum phase (mP) systems with

FQ,0
1,x =

(
g1,0

μν,xΩμΩ
ν
)1/2

. Q-IG for maximum phase (MP) systems corresponds

to J = 3 with FQ,n
3,x = Fn

H,x+
√−1Fn

H,x
where Fn

H,x and Fn
H,x

are τ -Hermitian and
τ -non-Hermitian metrics. Such an information geometry leads to three metric
tensors

(
g1,n

μoνo,x, g2,n
μν,x, g3,n

μoν,x

)
where

(
g1,n

μoνo,x, g2,n
μν,x

)
are square metric tensors

and g3,n
μoν,x a non-square metric tensor. Table 1 shows the Q-information geometry

theory.

Table 1. Q-information geometry theory.

MS Parametric model of system

↓
Φsys

j Power density function

↓
logΦsys

j Cepstrum

↓
Ψμ = ∂μ logΦsys

j Ψ -function

↓
Mn

SX
C-Manifold of system

↓
|F Q,n

J,x | Finsler metric

↙ ↘
mP system J = 1 MP system J = 3

↓ ↓
Kähler IG R-complex Finsler IG Information geometry

↓ ↓
Im(F Q,0

1,x ) = 0 Im(F Q,n
3,x ) �= 0 Metric

↓ ↓
h1,0

μν,x g1,n
μoνo,x, g2,n

μν,x, g3,n
μoν,xMetric tensors

The remainder of this article is structured as follows. Section 2 describes
Q-information geometry. Section 3 focuses on experimental results on a real
acoustic system. Conclusions and perspectives are drawn in Sect. 4.
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2 Q-Information Geometry

Let us consider a stationary and stable discrete-time system SX with external
scalar input x(t), additive scalar disturbance e(t) (Ee(t) = 0,Ee2(t) = λ) and
the scalar output sx(t) described as

sx(t) = G(q,θ)x(t) + H(q,θ)e(t) (1)

where q is the lag operator such that q−1x(t) = x(t − 1) and θ =
[b1...bn+m+1a1...as]

T the parameter vector. Therefore the power spectral den-
sity (psd) of sx(t) is

ΦS(eiωTs ,θ) = G(eiωTs ,θ)G(eiωTs ,θ)Φx(eiωTs) + λH(eiωTs ,θ)H(eiωTs ,θ) (2)

Let ΦY
j,x(eiωTs ,θ) be the joint-power spectral density (j-psd) defined as

ΦY
j,x(eiωTs ,θ) =

√
ΦA(eiωTs ,θ)ΦB(eiωTs ,θ) (3)

A correspondence can be used between frequency domain and complex z-domain
for information geometry (IG) objects. Therefore the adopted correspondence is
ΦY (eiωTs ,θ) IG→ ΦY (z;Z,Z). Some conditions on G and H are necessary for
defining the IG of SX . Stability and minimum phase property remain main
conditions. Therefore the ℵ-dimentional C-manifold of SX where SX is described
from parametric model structures can be written as

Mn
SX

=

{
ΦS,n

j,x (z,Z,Z)/
1

2iπ

∮

|z|=1

(
log(ΦS,n

j,x (z,Z,Z))
)2 dz

z
< ∞

}
(4)

where n is the number of zeros outside the unit disc.
Let Ew (w = {1, 2, .., J}) be a subset related to holomorphic coordinates

and E
w

to antiholomorphic coordinates. Let us denote Zw = (Zμ)μ∈Ew and
Ωw = (Ωμ)μ∈Ew a complex coordinates system on TwMn

SX
a holomorphic tan-

gent subbundle given by TwMn
SX

=
⋃

Zw∈Mn
SX

Tw
ZMn

SX
where Tw

ZMn
SX

are holo-

morphic tangent subspaces in Zw spanned by
{

∂
∂Zμ

}
μ∈Ew . In uw = (Zw,Ωw)

the holomorphic tangent space Tw
u (TwMn

SX
) is spanned by

{
∂

∂Zμ , ∂
∂Ωμ

}
μ∈Ew and

each holomorphic tangent subbundle can be decomposed from horizontal and
vertical distributions as Tw(TwMn

SX
) = Hw(TwMn

SX
)⊕Vw(TwMn

SX
). A subspace

R
Cw(Fn

Q,x) is a pair
(
Mn

SX
, Qw,n

x

)
on TwMn

SX
such that Qw,n

x : TwMn
SX

→ R+

satisfying

– (i) Lw,n
x (Zw,Ωw,Z

w
,Ω

w
) = (Qw,n

x )2(Zw,Ωw,Z
w
,Ω

w
) is smooth on

T̃
w
Mn

SX
= TwMn

SX
\0;

– (ii) Qw,n
x (Zw,Ωw,Z

w
,Ω

w
) ≥ 0;

– (iii) Qw,n
x (Zw, λΩw,Z

w
, λΩ

w
) = λQw,n

x (Zw,Ωw,Z
w
,Ω

w
), λ ∈ R+;
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It follows that Lw,n
x (Zw,Ωw,Z

w
,Ω

w
) is (2, 0) homogeneous with respect to λ

where identities are fulfilled for (μ, ν, ρ) ∈ Ew (resp. E
w

)

– (a) ∂Lw,n
x

∂Ωμ Ωμ + ∂Lw,n
x

∂Ω
μ Ω

μ
= 2Lw,n

x ; gw,n
νμ,xΩμ + gw,n

νμ,xΩ
μ

= ∂Lw,n
x

∂Ων

– (b) 2Lw,n
x = gw,n

μν,xΩμΩν + gw,n
μν,xΩ

μ
Ω

ν
+ gw,n

μν,xΩμΩ
ν

+ gw,n
νμ,xΩνΩ

μ
;

– (c) ∂gw,n
νρ,x

∂Ωμ Ωμ + ∂gw,n
νρ,x

∂Ω
μ Ω

μ
= 0 ;

∂gw,n
νρ,x

∂Ωμ Ωμ +
∂gw,n

νρ,x

∂Ω
μ Ω

μ
= 0

Let TwMn
SX

be the holomorphic tangent subbundle of Mn
SX

and (TwMn
SX

)
be its antiholomorphic. Let us define the Ψ -function in the z-domain at Z and

Z as ΨS,n
μ,x(z,Zw,Z

w
) =

∂ log ΦS,n
j,x (z,Zw,Z

w
)

∂Zμ where μ ∈ Ew (resp. E
w
). For short

expressions let us denote ∂μ = ∂
∂Zμ , ∂μ = ∂

∂Z
μ , ∂̇μ = ∂

∂Ωμ and ∂̇μ = ∂
∂Ω

μ . The
square of the Finsler metric dsw(x) in TwMn

SX
between two neighboring system

model structures ΦS,n
j,x (z,Zw(τ),Z

w
(τ)) and ΦS,n

j,x (z,Zw(τ) + dZw(τ),Z
w
(τ) +

dZ
w
(τ)) is

ds2w(x, n) =
〈
d log ΦS,n

j,x (z,Zw(τ),Z
w
(τ)), d log ΦS,n

j,x (z,Zw(τ),Z
w
(τ))

〉
(5)

From Xw,n
Z,x(τ) = Ωμ(τ)ΨS,n

μ,x(z,Zw(τ),Z
w
(τ)) and the inner product (Pw,n

x (τ))2

=
〈
Xw,n

Z,x(τ),Xw,n
Z,x(τ)

〉
, we get (Pw,n

x (τ))2 = hn
μν,x(Zw(τ),Z

w
(τ))Ωμ(τ)Ω

ν
(τ)

with hn
μν,x(Zw(τ),Z

w
(τ)) the metric tensor given by

1
2iπ

∮

|z|=1

ΨS,n
μ,x(z,Zw(τ),Z

w
(τ))ΨS,n

ν,x (z,Zw(τ),Z
w
(τ))

dz

z

Since (μ, ν) run over holomorphic and antiholomorphic coordinate systems
then Ωμ(τ) = Ω

μY (τ) for μ = μY and Ω
νY

(τ) = ΩνY (τ) for ν =
νY . Define the Qw-metric by Qw,n

x (τ) = |Pw,n
x (τ)| with (Pw,n

x (τ))2 =
hn

μν,x(Zw(τ),Z
w
(τ))Ωμ(τ)Ων(τ), where hn

μν,x(Zw(τ),Z
w
(τ)) are components of

metric structures given by

hw,n
μν,x =

1
8iπ

∮

|z|=1

(Ψw,A,n
μ,x (z)Ψw,A,n

ν,x (z) + Ψw,A,n
μ,x (z)Ψw,B,n

ν,x (z)

+ Ψw,B,n
μ,x (z)Ψw,A,n

ν,x (z) + Ψw,B,n
μ,x (z)Ψw,B,n

ν,x (z))
dz

z
(6)

Let Mn
SX

be a ℵ-dimensional C-manifold, Zw = (Zμ)μ∈Ew be complex coor-
dinates and TwMn

SX
be the holomorphic tangent subbundle which has a nat-

ural structure of C-manifold with uw = (Zw,Ωw) its local complex coordi-
nates. Let TQMn

SX
be a C-manifold spanned by

{
∂

∂Zμ , ∂
∂Ωμ

}
μ∈⋃J

w=1 Ew given by

TQMn
SX

=
⊕J

w=1 TwMn
SX

. A Q-space denoted QS,n
J,x =

⋃J
w R

Cw(Fn
Q,x) is a pair

(Mn
SX

, |FQ,n
J,x |) where |FQ,n

J,x | is a Finsler metric |FQ,n
J,x | : TQMn

SX
→ R+ defined

by

|FQ,n
J,x |2 =

J∑
w=1

αwhw,n
μν,xΩμΩν , (μ, ν) ∈ Ew(resp.E

w
) (7)
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with FQ,n
J,x a complex continuous function and αw the signature of the Finsler

metric with αw = 1 for J = 1 and αw = (+,+,−) for J = 3. Q-spaces gen-
eralize spaces related to manifold of systems with minimum and maximum
phase properties. For J = 1 corresponding to mP systems with a Kähler
manifold MK

SX
the Hermitian metric h1,0

μν,x for an associated 2-form is FQ,0
1,x =(

g1,0
μν,xΩμΩ

ν
)1/2

, g1,0
μν,x = h1,0

μν,x. Conversely for J = 3 corresponding to MP sys-

tems , FQ,n
3,x is a complex valued function given by FQ,n

3,x = Fn
H,x+

√−1Fn
H,x

where
Fn

H,x and Fn
H,x

are R-Complex Hermitian and non-Hermitian Finsler metrics,
respectively. For each holomorphic tangent subbundle TwMn

SX
a Qw-metric is

defined and its associated metric tensor gw,n
μν,x is expressed with the fundamental

condition |Zμ| < 1 for all μ ∈ Ew (resp. E
w
). Therefore P 1,n

x is a quadratic form
in Ωμo∗ Ω

νo

∗ where Ωμo∗ = dZμo∗
dτ with τ named Finsler paramater and Zμo∗ = 1

Zμo

involving Ωμo∗ = −Z2μo∗ Ωμo and g1μoνo,x as a function of Zμo∗ . In the same vein
P 2,n

x is a quadratic form in ΩμΩ
ν

and P 3,n
x as a function of Ωμo∗ Ω

ν
with g3,n

μoν,x

a mixture of Zμo∗ and Zν . Therefore

(
P 1,n

x

)2
= 2g1,n

μoνo,xΩμo∗ Ω
νo

∗ , g1,n
μoνo,x =

h1
μoνo,x

(Zμo∗ Z
νo

∗ )2
(8)

(
P 2,n

x

)2
= 2g2,n

μν,xΩμΩ
ν
, g2,n

μν,x = h2
μν,x (9)

and (
P 3,n

x

)2
= i2

(
g3,n

μoν,xΩμo∗ Ω
ν

+ g3,n
μoν,xΩ

μ0
Ω

ν
)

; g3,n
μoν,x =

h3,n
μoν,x

Z2μo∗
(10)

From Eq. (8) (9) (10) we have |FQ,n
3,x |2 =

(
P 1,n

x

)2 +
(
P 2,n

x

)2 − (
P 3,n

x

)2 leading to
a (+,+,−) signature. Q-information geometry shows a new point of view on the
behavior in τ of mP and MP systems. Each system has an evolution in τ due to
the motions of its zeros/poles in estimated transfer functions. For J = 3

FQ,n
H,x (τ) =

√
2g1,n

μoνo,x(τ)Ωμo∗ (τ)Ω
νo

∗ (τ) + 2g2,n
μν,x(τ)Ωμ(τ)Ω

ν
(τ)

FQ,n

H,x
(τ) =

√
g3,n

μoν,x(τ)Ωμo∗ (τ)Ων(τ) + g3,n
μoν,x(τ)Ω

μ0

∗ (τ)Ω
ν
(τ)

Model trajectories in τ of mP and MP systems can be represented in a new
graph named Q-graph. Real axis corresponds to Hermitian coordinates, imag-
inary axis to non-Hermitian coordinates. For mP systems, model trajectories
from |FQ,n

1,x (τ)| run over the real plan only. Conversely for MP systems, those
trajectories from |FQ,n

3,x (τ)| are in the z-plane.
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3 Application

Consider a process model described by an OutPut Error (OE) model with trans-
fer functions G(z,θ) and H(z,θ) given by

G(z,θ) =
∑nB

k=1 bkz−k

1 +
∑nA

k=1 akz−k
= b1z

−1
nB−1+nA∏

k=1

(
1 − Zkz−1

)ck
, H(z,θ) = 1

(11)
with ck = −1 for AutoRegressive part and ck = +1 for MovingAverage part,
where Zμ are all zeros-poles of G and H. Let Vo and Wip be two sets of
holomorphic indices such that Vo = {Zμ/|Zμ| > 1, μ = 1o, 2o, ..., no} and
Wip = {Zν/|Zν | < 1, ν = 1i, 2i, ...,mi, 1p, 2p, ..., lp}. Let Vo and Wip be two
sets of antiholomorphic indices such that Vo = {Z

μ
/|Zμ| > 1, μ = 1o, 2o, ..., no}

and Wip = {Z
ν
/|Zν | < 1, ν = 1i, 2i, ...,mi, 1p, 2p, ..., lp}. Subscripts o and i, p

are related to the zeros outside the unit disc (exogenous zeros) and to the (zeros,
poles) inside the unit disc (endogenous zeros, poles), respectively. Haykin in [8]
showed that a discrete transfer functions defined as a backward system-model fil-
ters can be changed into discrete transfer functions defined as a forward system-
model filters with same frequency responses using Gn

Vo,b(z,Z) = z−nG
n

Vo,f ( 1z ,Z).
Therefore

Gn(z,Z,Z) = b1z
1−n

n∏
μ=1

(
1 − Z

μo
z
) m∏

μ=1

(
1 − Zμiz−1

) l∏
μ=1

(
1 − Zμpz−1

)−1

(12)
From (6) (12) hw,n

μν,X metric tensors are

g1,n
μoνo,X =

1
8iπ

∮

|z|=1

∂μo
log G

1,n
(z)∂νo

log G1,n(z)
dz

z
=

α1,MS

μoνo,X(Zμo∗ Z
νo

∗ )−2

1 − (Zμo∗ Z
νo

∗ )−1

(13)
with α1,OE

μoνo,X = −1
4 .

g2,n
μν,X =

1
2iπ

∮

|z|=1

∂μ log G2,n(z)∂ν log G
2,n

(z)
dz

z
=

α2,MS

μν,X

1 − ZμZ
ν (14)

with α2,OE
μν,X = (1/4; 1/4;−1/4;−1/4) for (μν) = (μiνi;μpνp;μiνp;μpνi), respec-

tively

g3,n
μoν,X =

1
2iπ

∮

|z|=1

∂μo
log G

3,n
(z)∂ν log G3,n(z)

dz

z
=

β3,MS

μoν,X

1 − Zμo∗ Zν
(15)

with β3,OE
μν,X = (−1/4;−1/4; 1/4; 1/4) for (μν) = (μoνi;μiνo;μoνp;μpνo), respec-

tively.

For application Fig. 1 shows the plant including the secondary loudspeaker,
amplifier, acoustic secondary path, measurement microphone and amplifier/anti-
aliasing filter [4]. For OE model nB = 9, nA = 8. Finsler parameter τ was equal to
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Fig. 1. Experimental setup for identification.

the slope/threshold parameter γi in the estimation function [6,7] and was varied
from 0.01 to 2 with 50 values such that γi = τi. Finsler complex coordinates
system was Ωμ

i ≈ Zμ
i −Zμ

i−1
τi−τi−1

with Ωμ
i = Ωμ(τi) and Zμ

i = Zμ(τi) for two adjacent
system model structures Mi

S and Mi−1
S (i = 1..50) in the same manifold Mn

SX
.

Comparisons between two adjacent system models (oei
S ,oei−1

S ) in Mn
SX

was led
to form two clusters. For OE system models two manifolds was defined: M3

Soe
,

M4
Soe

. This means that two clusters have been given: 23 estimated models with
3 exogenous zeros (for example at τ8 = 0.2399, Z1o

8 = −2.2296, Z2o
8 = −1.0985,

Z3o
8 = 1.0657) and 27 with 4 zeros (for example at τ17 = 0.5378, Z1o

17 = −1.9844,
Z2o
17 = 1.0579 + i0.0354, Z3o

17 = 1.0579 − i0.0354, Z4o
17 = −1.1726). Figure 2

shows trajectories in the Q-graphs for 3 (left) and 4 (right) exogenous zeros.
Remark a different trajectory since for 3 exogenous zeros, the corresponding
Finsler trajectory is bounded in [0, 300] × [0, 254] while for 4 exogenous zeros
the Finsler trajectory is in [0, 800] × [0, 100]. In conclusion the Q-graph is a
fundamental aspect of this new information geometry and characterizes different
propagative systems.
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Fig. 2. (left): Q-graph of OE models for 3 exogenous zeros at τi (i = 1..23). (right):
Q-graph of OE models for 4 exogenous zeros at τi (i = 1..27).
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4 Conclusions

A generalization of the information geometry related to manifolds of systems
described by parametric models has been presented in this paper. The Q-
information geometry based R-complex Finsler spaces allows to study infor-
mation geometry of systems with exogenous zeros in estimated system model
structures outside the unit disc. The motions of estimated system model struc-
tures are characterized from different Q-graphs. For the future, high investiga-
tions should be done on linear and non-linear connections, curvatures, geodesics,
Randers metrics, Kropina metrics.
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Abstract. In recent works, a link between group actions and informa-
tion metrics on the space of faithful quantum states has been highlighted
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1 Introduction

Because of Wigner’s theorem, it is difficult to overestimate the role of the unitary
group U(H) when dealing with symmetries in standard quantum mechanics.
Consequently, it is not surprising that, in the context of quantum information
geometry, U(H) again plays a prominent role when dealing with symmetries.
More specifically, let H be the Hilbert space of a finite-level quantum system.
The space of quantum states of this system is denoted by S (H) and consists of
all density operators on H, that is, ρ ∈ S (H) is such that ρ ≥ 0 and Tr(ρ) = 1.
Clearly, S (H) is a convex set, and its interior is denoted by S (H) and consists
of density operators on H that are invertible, that is, ρ ∈ S (H) is such that
ρ > 0. It is well-known that S (H) is a smooth manifold whose topological
closure is S (H) [8,11], and the tangent space TρS (H) may be identified with
the space of self-adjoint operators on H with vanishing trace. In the context of
quantum information geometry, if K is the Hilbert space of another finite-level
quantum system, the allowed quantum channels between the two systems are
mathematically described by the so-called completely-positive, trace-preserving
(CPTP) maps between B(H) and B(K) sending S (H) into S (K) [12]. These
maps are linear on the whole B(H), and the standard action of U(H) on B(H)
given by a �→ UaU† is easily seen to give rise to a CPTP map from B(H) into
itself for every U ∈ U(H). Moreover, it can be proved that, modulo isomorphisms
between Hilbert spaces, a CPTP map Φ is invertible if and only if Φ(a) = UaU†

for some U ∈ U(H).
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Following what Cencov did for the classical case of probability distributions
and Markov maps [6], Petz classified the family of all the Riemannian metric
tensors GH on every S (H) satisfying the monotonicity property

GK
Φ(ρ) (TρΦ(a), TρΦ(a)) ≤ GH

ρ (a,a) , (1)

where Φ : B(H) → B(K) is a CPTP map sending S (H) into S (K), and a ∈
TρS (H) [15]. Unlike the classical case, it turns out that GH is not unique, and
there is a one-to-one correspondence between the metric tensors satisfying the
monotonicity property in Eq. (1) and the operator monotone functions f : R+ →
R satisfying f(1) = 1 and f(t) = tf(t−1).

Moreover, since Φ(a) = UaU† is an invertible CPTP map for every U ∈
U(H), it follows that every monotone quantum metric tensor must be invariant
with respect to the standard action of U(H), and thus the unitary group may be
thought of as a universal symmetry group for quantum information geometry.
From the infinitesimal point of view, this means that the fundamental vector
fields of the standard action of U(H) on S (H) are Killing vector fields for every
monotone quantum metric tensor. Since we can write U = e

1
2ıa with a a self-

adjoint operator on H, it follows that the Lie algebra u(H) of U(H) may be
identified with the space of self-adjoint operators on H endowed with the Lie
bracket

[a,b] :=
1
2ı

(ab − ba) , (2)

and the fundamental vector fields of the action of U(H) on S (H) may be labelled
by self-adjoint elements in B(H). We will write these vector fields as XH

b with
b ∈ u(H).

It is easy to see that the fundamental vector field associated with the iden-
tity elements vanishes identically on S (H). Therefore, in the following, we will
focus on the special unitary group SU(H) rather than on U(H). This is the Lie
subgroup of U(H) generated by the Lie subalgebra su(H) consisting of traceless
elements in u(H).

Elements in the Lie algebra su(H) are not only associated with the fundamen-
tal vector fields of SU(H) on S (H), they are also associated with the functions
lHa on S (H) given by

lHa (ρ) := TrH (ρa) . (3)

According to the standard postulate of quantum mechanics, every such function
lHa provides the expectation value of the (linear) observable represented a, and
thus plays the role of a quantum random variable.

It was observed in [9] that, when the so-called Bures-Helstrom metric ten-
sor GH

BH is selected among the monotone quantum metric tensors, the gradi-
ent vector fields associated with the expectation value functions are complete
and, together with the fundamental vector fields of SU(H), close on an anti-
representation of the Lie algebra sl(H) integrating to a transitive left action of
the special linear group SL(H) given by

ρ �→ g ρ g†

TrH(gρg†)
, (4)
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where g = e
1
2 (a−ıb), with a,b self-adjoint operators on H.

In [7], it was observed that the Bures-Helstrom metric tensor is not the only
monotone quantum metric tensor for which a similar instance is verified. Indeed,
if the so-called Wigner-Yanase metric tensor is selected, the gradient vector fields
associated with the expectation value functions are complete and, together with
the fundamental vector fields of SU(H), close on an anti-representation of the
Lie algebra sl(H) integrating to a transitive left action of the special linear group
SL(H) which is different than that in Eq. (4) and is given by

ρ �→
(
g

√
ρ g†)2

TrH
((

g
√

ρ g†)2
) , (5)

where g = e
1
2 (a−ıb), with a,b self-adjoint operators on H.

Moreover, if the so-called Bogoliubov-Kubo-Mori metric tensor is selected,
the gradient vector fields associated with the expectation value functions are
complete, commute among themselves, and, together with the fundamental vec-
tor fields of SU(H), close on an anti-representation of the Lie algebra of the
cotangent group T ∗SU(H) which integrates to a transitive left action given by

ρ �→ eU ln(ρ)U†+a

TrH
(
eU ln(ρ)U†+a

) , (6)

where U = e
1
2ıb, and a,b are self-adjoint operators on H.

It is then natural to ask if these three instances are just isolated mathemati-
cal coincidences valid only for these very special monotone quantum metric ten-
sors, or if there is an underlying geometric picture waiting to be uncovered and
studied. Specifically, we would like to first classify all those monotone quantum
metric tensors for which the gradient vector fields associated with the expec-
tation value functions, together with the fundamental vector fields of SU(H),
provide a realization of some Lie algebra integrating to a group action. Then,
we would like to understand the geometric significance (if any) of the gradient
vector fields thus obtained with respect to the dualistic structures and their
geodesics, with respect to quantum estimation theory, and with respect to other
relevant structures and tasks in quantum information geometry (a first hint for
the Bogoliubov-Kubo-Mori metric tensor may be found in [1,10,13]). Finally, we
would like to understand the role (if any) of the “new” Lie groups and Lie alge-
bras appearing in quantum information theory because of these constructions.

At the moment, we do not have a satisfying understanding of the global
picture, but we will give a complete classification of the group actions associated
with monotone metrics for the case of the simplest quantum system, namely, the
qubit.
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2 Group Actions and Monotone Metrics for the Qubit

In the case of a qubit, we have H ∼= C
2, and by selecting an orthonormal basis

on H, say {|1〉, |2〉}, a basis in su(H) is given by the Pauli operators

σ1 = |1〉〈2| + |2〉〈1|, σ2 = ı|1〉〈2| − ı|2〉〈1|, σ3 = |1〉〈1| − |2〉〈2|, (7)

so that we have

[σ1, σ2] = σ3, [σ3, σ1] = σ2, [σ2, σ3] = σ1. (8)

It is well-known that a quantum state ρ may be written as

ρ =
1
2

(σ0 + xσ1 + yσ2 + zσ3) , (9)

where σ0 is the identity operator on H and x, y, z satisfy x2 + y2 + z2 ≤ 1. If
we want ρ to be invertible, then we must impose x2 + y2 + z2 < 1, which means
that S (H) is diffeomorphic to the open interior of a 3-ball of radius 1.

Passing from the Cartesian coordinate system (x, y, z) to the spherical coor-
dinate system (r, θ, φ), the monotone quantum metric tensor Gf associated with
the operator monotone function f reads

Gf =
1

1 − r2
dr ⊗ dr +

r2

1 + r

(

f

(
1 − r

1 + r

))−1

(dθ ⊗ dθ + sin2 θ dφ ⊗ dφ). (10)

In the spherical coordinate system, the fundamental vector fields of SU(H) read

X1 = − sin φ ∂θ − cot θ cos φ ∂φ

X2 = cos φ ∂θ − cot θ sin φ ∂φ

X3 = ∂φ

(11)

where we have set Xj ≡ Xσj
for j = 1, 2, 3.

For a generic traceless self-adjoint operator a = a1σ1 + a2σ2 + a3σ3, we have

la =
1
2
(a1r sin θ cos φ + a2r sin θ sinφ + a3r cos θ), (12)

and the gradient vector field Yaf associated with la by means of Gf is

Ya = G−1
f (dla , •) = G−1

f (•,dla). (13)

Setting lj ≡ lσj
and Y f

j ≡ Y f
σj

, straightforward computations bring us to

Y f
1 = (1 − r2) sin θ cos φ ∂r + g(r)

(
cos θ cos φ ∂θ − sinφ

sin θ
∂φ

)

Y f
2 = (1 − r2) sin θ sinφ ∂r + g(r)

(
cos θ sin φ ∂θ +

cos φ

sin θ
∂φ

)

Y f
3 = (1 − r2) cos θ ∂r − g(r) sin θ ∂θ,

(14)
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where

g(r) =
1 + r

r
f

(
1 − r

1 + r

)
. (15)

Then, the commutators between the gradient vector fields can be computed to
be:

[Y f
1 , Y f

2 ] = F (r) X3

[Y f
2 , Y f

3 ] = F (r) X1

[Y f
3 , Y f

1 ] = F (r) X2

(16)

where we have used the expressions in Eq. (11), and we have set

F (r) = (1 − r2)g′(r) + g2(r) (17)

for notational simplicity.
In order to get a representation of a Lie algebra out of the gradient vector

fields and the fundamental vector fields of SU(H) we must set F (r) = A with A
a constant, obtaining the following ordinary differential equation

(1 − r2)g′(r) + g2(r) = A (18)

for the function g(r). Performing the change of variable t = 1−r
1+r and separating

variables, we obtain the ordinary differential equation

g′(t)
g2(t) − A

=
1
2t

. (19)

This ODE has a different behavior depending on the sign of A, thus we will deal
separately with the cases where A is zero, positive and negative.

2.1 First Case (A = 0)

This case is peculiar, since it is the only case in which the gradient vector fields
close a Lie algebra by themselves, albeit a commutative one. In this case, inte-
gration of the ODE in Eq. (19) leads to

g0(t) =
−2

log t + c
, (20)

with c being an integration constant arising in the solution of the differential
equation. Taking into account Eq. (15), we obtain the function

f0(t) =
t − 1

log t + c
. (21)

If we want f0 to belong to the class of functions appearing in Petz’s classification
[15], we need to impose limt→1 f0(t) = 1, which is easily seen to impose c = 0,
and thus we obtain the function

f0(t) =
t − 1
log t

. (22)
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This function is operator monotone and gives rise to the Bogoliubov-Kubo-Mori
(BKM) metric [14]. Following the results presented in [7], we conclude that the
fundamental vector fields of SU(H), together with the gradient vector fields
associated with the expectation value functions by means of the BKM metric
tensor, provide an anti-representation of the Lie algebra of the cotangent group
T ∗SU(H) integrating to the action in Eq. (6).

It is worth noting that the BKM metric tensor also appears as the Hessian
metric obtained from the von Neumann entropy following [2–4], and this instance
has profound implications from the point of view of Quantum Information
Theory.

2.2 Second Case (A > 0)

In the case where A > 0, integration of the ODE in Eq. (19), together with the
expression of g(r) in Eq. (15), leads to

fA(t) =
√

A

2
(1 − t)

1 + e2c
√

At
√

A

1 − e2c′√At
√

A
, (23)

where c is an integration constant arising in the solution of the differential equa-
tion. If we want fA to belong to the class of functions appearing in Petz’s clas-
sification [15], we need to impose limt→1 fA(t) = 1, which implies c = 0, and
thus

fA(t) =
√

A

2
(1 − t)

1 + t
√

A

1 − t
√

A
. (24)

We now consider the gradient vector fields

Y A
a := G−1

fA

(
1√
A

dla , •
)

(25)

associated with the (renormalized) expectation value functions 1√
A

la by means
of the monotone metric tensor GfA

with fA given in Eq. (24). Recalling Eq. (16)
and the fact that F (r) = A > 0, we conclude that the fundamental vector
fields of the action of SU(H) given in Eq. (11), together with the gradient vector
fields given in Eq. (25), provide an anti-representation of the Lie algebra sl(H)
of SL(H). Exploiting theorem 5.3.1 in [5], it is possible to prove that the anti-
representation of sl(H) integrates to an action of SL(H) on S (H) given by

αA(g, ρ) =

(
gρ

√
Ag†

) 1√
A

Tr
(
gρ

√
Ag†

) 1√
A

(26)

Notice that when A = 1, this action reduces exactly to the action of SL(H)
in Eq. (4). Accordingly, the associated monotone metric Gf1 turns out to be
the Bures-Helstrom metric, in agreement with [9]. A similar discussion can be



Group Actions and Monotone Metric Tensors: The Qubit Case 151

carried out in the case A = 1
4 . In this case, we get the action in Eq. (5) and

the monotone metric given by this choice is Wigner-Yanase metric. Again, this
is in agreement with results in [7]. The function fA is continuous on [0,∞] and
differentiable with continuous derivative in (0,∞) for all A > 0. Also, whenever
A > 1, its derivative tends to the value −√

A/2 for t approaching 0 from the right.
From these two considerations, it follows that fA can not be operator monotone
whenever A > 1, since there exists an interval in which its derivative is negative.
Let us stress that it is still an open problem to find all values 0 < A < 1 for
which the function fA is operator monotone.

2.3 Third Case (A < 0)

In this case, setting B = −A
4 , the integration of the ODE in Eq. (19), leads us to

fB(t) =
√

B
1 − t

2
tan

(√
B log t −

√
Bc

)
, (27)

where c is an integration constant. Since S (H) is diffeomorphic to the open
interior of a 3-ball of radius 1, we have that 0 ≤ r < 1 and thus 0 < t ≤ 1.
Consequently, in this range for t, the function fB(t) presents a countable infinity
of points where it is not defined, regardless of the values of B and c. Thus we
are led to exclude this case, which would give rise to a metric tensor GfB

that
is not defined everywhere on the space of quantum states S (H).

3 Conclusions

Guided by results presented in [7] and [9], we investigated the relation between
the fundamental vector fields of the canonical action of SU(H) on the space of
faithful quantum states and the gradient vector fields associated with the expec-
tation value functions by means of the monotone metric tensors classified by
Petz. In particular, we give a complete classification of all those metric tensors for
which the above-mentioned gradient vector fields, together with the fundamental
vector fields of the canonical action of SU(H), provide an anti-representation of
a Lie algebra having su(H) as a Lie subalgebra. We found that there are only two
possible such Lie algebras, namely, the Lie algebra of the cotangent Lie group
T ∗SU(H), and the Lie algebra of SL(H) (the complexification of su(H)).

In the first case, there is only one monotone metric tensor associated with
the Lie algebra anti-representation, namely the Bogoliubov-Kubo-Mori metric
tensor. Also, this is the only case in which the gradient vector fields close a
(commutative) Lie algebra.

In the second case, we found an infinite number of metric tensors associated
with an anti-representation of sl(H). These metric tensors are labelled by the
function fA, with A > 0, given in Eq. 24, and, among them, we recover the Bures-
Helstrom metric tensor when A = 1, and the Wigner-Yanase metric tensor when
A = 1

4 , in accordance with the results in [7]. As already mentioned, we know that
fA is never operator monotone when A > 1, however, besides the cases A = 1
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and A = 1
4 , it is still an open problem to find all values 0 < A < 1 for which

the function fA is operator monotone. We also found that all these Lie algebra
anti-representations integrate to Lie group actions. The explicit forms of these
actions are given in Eq. (6) and Eq. (26).

The analysis presented here is clearly preliminar because it addresses only
the qubit case. However, building upon the results obtained for the qubit, we
have been able to recover the group actions presented here also in the case of a
quantum system in arbitrary finite dimension. We are not able to include these
cases in this contribution because of space constraints. Also, while for the qubit
case we showed that the group actions of SL(H) and T ∗SU(H) are the only
possible, for an arbitrary finite-dimensional quantum system, we are only able
to show that these actions are there, but not that they exhaust all the possible
group actions compatible with monotone quantum metrics in the sense specified
before. This clearly calls for a more deep investigation we plan to pursue in
future publications.
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Abstract. This work studies a parametrized family of symmetric diver-
gences on the set of Hermitian positive definite matrices which are defined
using the α-Tsallis entropy ∀α ∈ R. This family unifies in particular the
Quantum Jensen-Shannon divergence, defined using the von Neumann
entropy, and the Jensen-Bregman Log-Det divergence. The divergences,
along with their metric properties, are then generalized to the setting of
positive definite trace class operators on an infinite-dimensional Hilbert
space ∀α ∈ R. In the setting of reproducing kernel Hilbert space (RKHS)
covariance operators, all divergences admit closed form formulas in terms
of the corresponding kernel Gram matrices.

Keywords: Quantum Jensen-Shannon divergences · Positive definite
operators · Trace class operators

1 Introduction

This work studies the infinite-dimensional generalization of a parametrized fam-
ily of symmetric divergences on the set of Hermitian positive matrices to the
set of Hermitian positive trace class operators on a Hilbert space. These diver-
gence/distance functions have found numerous practical applications, including
brain imaging [8], computer vision [4], brain computer interfaces [5], and quan-
tum information theory [2,6,10].

Previous Work. Our starting point is the Quantum Jensen-Shannon divergence
(QJSD) [10]. Let Sym+(n) and Sym++(n) denote the sets of n × n Hermitian
positive semi-definite and positive definite matrices, respectively. Then for any
pair A,B ∈ Sym++(n), QJSD(A,B) is defined by [10]

QJSD(A,B) = S

(
A + B

2

)
− 1

2
[S(A) + S(B)], (1)

where S(A) = −tr[A log A] is the von Neumann entropy. This is a special case of
the Jensen-Bregman divergences [14], where S is a strictly concave, differentiable
function on Sym++(n). More general Bregman matrix divergences are described
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in [15]. QJSD has been applied in quantum information theory [2,6,10], graph
theory [1,16], network theory [7], among other fields. In [20], it was proved that√

QJSD is a metric on Sym+(n). In [18], QJSD as defined in (1) was generalized
to the following parametrized family of symmetric divergences

QJSDα(A,B) = Sα

(
A + B

2

)
− 1

2
[Sα(A) + Sα(B)] (2)

where Sα is the α-Tsallis entropy, defined by

Sα(A) =
trAα − tr(A)

1 − α
, 0 ≤ α ≤ 2, α �= 1, (3)

with limα→1 Sα(A) = S(A). In particular,
√

QJSDα was proved in [18] to be
a metric for 0 < α < 2. For α = 2, the metric property is obvious since
QJSD2(A,B) = 1

4 ||A−B||2F , with || ||F being the Frobenius norm. Both proofs in
[20] and [17] are based on the fact that the square root of the symmetric Log-Det
divergence (also called Jensen Bregman Log-Det [4] or S-divergence [17])

Dlogdet(A,B) = log det
(

A + B

2

)
− 1

2
[log det(A) + log det(B)] (4)

is a metric on Sym++(n) [17]. For α = 0, we have S0(A) = n − tr(A) and thus
QJSDα (A,B) = 0 ∀A,B ∈ Sym+(n), so that QJSD0 is degenerate.

Contributions of This Work

1. We first give a new definition of QJSDα, instead of Eq. (2), that is a valid sym-
metric divergence on Sym++(n) ∀α ∈ R, unifying in particular the quantum
Jensen-Shannon divergence with the symmetric Log-Det divergence.

2. Our main focus is on generalizing this new QJSDα to a family of symmetric
divergences, ∀α ∈ R, on the set of Hermitian positive trace class operators
on an infinite-dimensional Hilbert space, along with their metric properties.

3. In the setting of reproducing kernel Hilbert space (RKHS) covariance oper-
ators, QJSDα is expressed explicitly via the corresponding Gram matrices.
Our study of the RKHS setting is motivated in particular by applications in
computer vision, see e.g. [9,13].

2 Finite-Dimensional Setting

We start by introducing a new definition of the quantum Jensen-Shannon diver-
gence given in Eq. (2), which is valid ∀α ∈ R. Throughout the remainder of the
paper, QJSDα refers to that given in Definition 1 below.

Definition 1 (Alpha Quantum Jensen-Shannon Divergence - finite-
dimensional setting). Let α ∈ R be fixed. The α-quantum Jensen-Shannon
divergence on Sym++(n) is defined to be

QJSDα(A,B) =
1
α

[
Sα

(
A + B

2

)
− 1

2
(Sα(A) + Sα(B))

]
, α �= 0, 1, (5)
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=
1

α(1 − α)

[
tr

(
A + B

2

)α

− 1
2
tr(Aα) − 1

2
tr(Bα)

]
, (6)

QJSD0(A,B) = lim
α→0

QJSDα(A,B), QJSD1(A,B) = lim
α→1

QJSDα(A,B). (7)

The validity of QJSDα as a divergence on Sym++(n) is due to the convexity
of the power trace function on Sym++(n), which follows Theorem 2.10 in [3].

Lemma 1. The function F : Sym++(n) → R defined by F (A) = tr(Aα) is
strictly convex for α < 0 and α > 1 and strictly concave for 0 < α < 1.

Theorem 1. QJSDα as defined in Definition 1 is a symmetric divergence on
Sym++(n) for all α ∈ R. Specifically, ∀A,B ∈ Sym++(n),

1. QJSDα(A,B) = QJSDα(B,A) ≥ 0, QJSDα(A,B) = 0 ⇐⇒ A = B.
2. At the limiting points α = 0 and α = 1,

QJSD0(A,B) = log det
(

A + B

2

)
− 1

2
log det(A) − 1

2
log det(B), (8)

QJSD1(A,B) = tr
[
−A + B

2
log

A + B

2
+

1
2
A log A +

1
2
B log B

]
. (9)

Special cases. For α = 2, QJSD2(A,B) = 1
8 ||A−B||2F . Thus the family QJSDα

encompasses (i) squared Euclidean distance (α = 2), (ii) quantum Jensen-
Shannon divergence (α = 1), and (iii) symmetric Log-Det divergence (α = 0).

Proposition 1. For −∞ < α < 2, limr→∞ QJSDα[(A + rI), (B + rI)] = 0 and

QJSDα(A,B) = (2 − α)
∫ ∞

0

QJSDα−1[(A + rI), (B + rI)]dr. (10)

Theorem 2 (Metric property - finite-dimensional setting). The distance√
QJSDα is a metric on Sym++(n) for 0 ≤ α ≤ 2. For −∞ < α < 2,

√
QJSDα

is a Hilbert space distance on any set S of commuting matrices in Sym++(n).
Specifically, there is a Hilbert space F and a map Φα : Sym++(n) → F such that

QJSDα(A,B) = ||Φα(A) − Φα(B)||2F ∀A,B ∈ S. (11)

3 The Infinite-Dimensional Setting

We now generalize Definition 1 to the setting of positive trace class operators
on a Hilbert space. Throughout the following, let H be a separable Hilbert
space with dim(H) = ∞ unless explicitly stated otherwise. Let L(H) denote
the set of bounded linear operators on H. Let Sym(H) ⊂ L(H) denote the set
of bounded, self-adjoint operators, Sym+(H) the set of positive operators, i.e.
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Sym+(H) = {A ∈ Sym(H) : 〈x,Ax〉 ≥ 0∀x ∈ H}. Let Tr(H) and HS(H) denote
the sets of trace class and Hilbert-Schmidt operators on H, respectively.

For A ∈ Sym+(H) ∩ Tr(H), let {λk}k∈N denote its eigenvalues, with cor-
responding orthonormal eigenvectors {φk}k∈N. Using the spectral decomposi-
tion A =

∑∞
k=1 λkφk ⊗ φk, for α ≥ 0, the power Aα is uniquely defined by

Aα =
∑∞

k=1 λα
k φk ⊗ φk ∈ Sym+(H). Since A ∈ Tr(H), we have Aα ∈ Tr(H) for

all α ∈ R, α ≥ 1. However, this is no longer true for 0 < α < 1. For α = 1/2, we
only have A1/2 ∈ Sym+(H)∩HS(H). Furthermore, for α < 0, Aα is unbounded.

Extended Trace Class Operators. To obtain the infinite-dimensional gener-
alization of Definition 1 that is valid ∀α ∈ R, we consider the setting of positive
definite unitized trace class operators [12]. Let us denote by P(H) the set of
self-adjoint, positive definite operators on H, namely P(H) = {A ∈ L(H), A∗ =
A,∃MA > 0 s.t.〈x,Ax〉 ≥ MA||x||2 ∀x ∈ H}. We write A > 0 ⇐⇒ A ∈ P(H).
The set of extended (unitized) trace class operators is defined by [12]

TrX(H) = {A + γI : A ∈ Tr(H), γ ∈ R}. (12)

For (A + γI) ∈ TrX(H), the extended trace is defined to be [12]

trX(A + γI) = tr(A) + γ. (13)

By this definition, trX(I) = 1, in contrast to the standard trace tr(I) = ∞. Along
with the extended trace, [12] introduced the extended Fredholm determinant,
which, for dim(H) = ∞ and γ �= 0, is given by

detX(A + γI) = γ det (I + [A/γ]) , (14)

where det is the Fredholm determinant, det(I + A) =
∏∞

k=1(1 + λk).
The set of positive definite unitized trace class operators is then defined to be

PC 1(H) = P(H) ∩ TrX(H) = {A + γI > 0 : A ∈ Tr(H), γ ∈ R}. (15)

In particular, for A ∈ Sym+(H) ∩ Tr(H), we have (A + γI) ∈ PC 1(H)∀γ > 0.
With (A + γI) ∈ PC 1(H), the following operators are always bounded

(A + γI)α =
∞∑

k=1

(λk + γ)α(φk ⊗ φk), α ∈ R, (16)

log(A + γI) =
∞∑

k=1

log(λk + γ)(φk ⊗ φk). (17)

Moreover (Lemma 3 in [12], Lemmas 10,11 in [11]), if (I + A) ∈ PC 1(H), then
log(I +A) ∈ Sym(H)∩Tr(H) and (I +A)α −I ∈ Sym(H)∩Tr(H) ∀α ∈ R. Thus
if (A + γI) ∈ PC 1(H), then log(A + γI) ∈ TrX(H) and (A + γI)α ∈ TrX(H)
∀α ∈ R. Therefore, the following extended traces are always finite ∀γ > 0

trX[(A + γI)α] = γα + γαtr[(I + A/γ)α − 1], (18)
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trX[log(A + γI)] = log(γ) + tr
[
log

(
I +

A

γ

)]
= log detX(A + γI). (19)

Thus the following generalized version of the Tsallis entropy is well-defined.

Definition 2 (Extended α-Tsallis entropy). Let γ ∈ R, γ > 0 be fixed. For
A ∈ Sym+(H) ∩ Tr(H), the extended α-Tsallis entropy is defined to be

Sα,γ(A) =
trX(A + γI)α − trX(A + γI)

1 − α
, α �= 1, (20)

S1,γ(A) = −trX[(A + γI) log(A + γI)]. (21)

The definition of S1,γ is motivated by the following limits.

Lemma 2. Let A ∈ Sym+(H) ∩ Tr(H), γ ∈ R, γ > 0. Then

lim
α→1

trX[(A + γI)α − (A + γI)]
1 − α

= −trX[(A + γI) log(A + γI)]. (22)

In particular, for γ = 1, limα→1
tr[(I+A)α−(I+A)]

1−α = −tr[(I + A) log(I + A)].

Lemma 3. Let A ∈ Sym+(H) ∩ Tr(H). Let γ ∈ R, γ > 0 be fixed. Then

lim
α→0

trX[(A + γI)α − I]
α

= log detX(A + γI). (23)

In particular, for γ = 1, limα→0
tr[(I+A)α−I]

α = log det(I + A).

Definition 3 (Alpha Quantum Jensen-Shannon Divergence - infinite-
dimensional version). Let γ ∈ R, γ > 0 be fixed. The α-Quantum Jensen-
Shannon divergence on Sym+(H) ∩ Tr(H) is defined by, for α �= 0, α �= 1,

QJSDα,γ(A, B) =
1

α

(
Sα,γ

(
A + B

2

)
− 1

2
[Sα,γ(A) + Sα,γ(B)]

)
(24)

=
1

α(1 − α)

[
trX

(
A + B

2
+ γI

)α

− 1

2
[trX(A + γI)α + trX(B + γI)α]

]

QJSD0,γ(A,B) = lim
α→0

QJSDα,γ(A,B), (25)

QJSD1,γ(A,B) = lim
α→1

QJSD1,γ(A,B). (26)

The quantities QJSDα,γ(A,B) for α = 0, 1 are well-defined, as follows.
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Theorem 3 (Limiting behavior). At the limiting points α = 0 and α = 1,

QJSD0,γ(A,B) = log detX

(
A + B

2
+ γI

)

− 1
2

[log detX(A + γI) + log detX(B + γI)] . (27)

QJSD1,γ(A,B) = −trX

[(
A + B

2
+ γI

)
log

(
A + B

2
+ γI

)]

+
1
2
trX [(A + γI) log(A + γI) + (B + γI) log(B + γI)] . (28)

Special Case: Finite-dimensional Setting. For A,B ∈ Sym++(n), setting
γ = 0 in Eqs.(24), (27), and (28), we recover Eqs. (6), (8), and (9), respectively.

Special Cases: QJSD2,γ(A,B) = 1
8 ||A − B||2HS ∀γ ∈ R, and QJSD0,γ is the

infinite-dimensional Symmetric Log-Det divergence [12].
The validity of QJSDα as a divergence on Sym+(H) ∩ Tr(H) follows from

Lemma 4. The function F : Sym+(H) ∩ Tr(H) → R, F (A) = tr[(I + A)α − I],
is strictly concave for 0 < α < 1 and strictly convex for α > 1 and α < 0.

Theorem 4 (Divergence properties). Let γ ∈ R, γ > 0 be fixed. QJSDα is
a symmetric divergence on Sym+(H) ∩ Tr(H) ∀α ∈ R. Specifically,

1. QJSDα,γ(A,B) = QJSDα,γ(B,A) ≥ 0 ∀A,B ∈ Sym+(H) ∩ Tr(H).
2. QJSDα,γ(A,B) = 0 ⇐⇒ A = B.
3. (Unitary invariance) Let U be any unitary operator on H. Then

QJSDα,γ(UAU∗, UBU∗) = QJSDα,γ(A,B). (29)

Theorem 5 (Continuity in trace norm). Let γ > 0 be fixed. Let
A,B,{An}n∈N, {Bn}n∈N ∈ Sym(H) ∩ Tr(H), with A + γI > 0, B + γI > 0,
An + γI > 0, Bn + γI > 0 ∀n ∈ N, and limn→∞ ||An − A||tr = limn→∞ ||Bn −
B||tr = 0. Then

lim
n→∞ QJSDα,γ(An, Bn) = QJSDα,γ(A,B). (30)

Theorem 6 (Metric property - infinite-dimensional setting). Let γ ∈
R, γ > 0 be fixed. For 0 ≤ α ≤ 2,

√
QJSDα,γ is a metric on Sym+(H) ∩ Tr(H).

For −∞ < α < 2,
√

QJSDα,γ is a Hilbert space distance on S ∩ Tr(H), where
S is any set of commuting operators in Sym+(H).
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4 The RKHS Setting

We now present the RKHS setting where QJSDα,γ can be computed in closed
form. Let X be a complete separable metric space and K be a continuous positive
definite kernel on X × X . Then the reproducing kernel Hilbert space (RKHS)
HK induced by K is separable ([19], Lemma 4.33). Let Φ : X → HK be the
corresponding canonical feature map, so that K(x, y) = 〈Φ(x), Φ(y)〉HK

∀(x, y) ∈
X × X . Let ρ be a Borel probability measure on X such that

∫
X

||Φ(x)||2HK
dρ(x) =

∫
X

K(x, x)dρ(x) < ∞. (31)

Then the RKHS mean vector μΦ ∈ HK and covariance operator CΦ : HK → HK

are both well-defined and are given by

μΦ =
∫

X
Φ(x)dρ(x) ∈ HK , (32)

CΦ =
∫

X
(Φ(x) − μΦ) ⊗ (Φ(x) − μΦ)dρ(x) : HK → HK , (33)

where, for u, v, w ∈ HK , (u ⊗ v)w = 〈v, w〉HK
u. In particular, the covariance

operator CΦ is a positive trace class operator on HK (see e.g. [13]).
Let X = [x1, . . . , xm],m ∈ N, be a set randomly sampled from X according

to ρ. The feature map Φ on X defines the bounded linear operator Φ(X) : Rm →
HK , Φ(X)b =

∑m
j=1 bjΦ(xj),b ∈ R

m. The corresponding empirical mean vector
and empirical covariance operator for Φ(X) are defined by (see e.g. [12])

μΦ(X) =
1
m

Φ(X)1m =
1
m

m∑
j=1

Φ(xj) ∈ HK , (34)

CΦ(X) =
1
m

Φ(X)JmΦ(X)∗ : HK → HK , (35)

where Jm = Im − 1
m1m1T

m is the centering matrix, with 1m = (1, . . . , 1)T ∈ R
m.

Let X = [xi]mi=1, Y = [yi]mi=1, be two sets randomly sampled from X according
to two Borel probability distributions and CΦ(X), CΦ(Y) be the corresponding
empirical covariance operators induced by K. Define the m × m Gram matrices

K[X] = Φ(X)∗Φ(X), K[Y] = Φ(Y)∗Φ(Y),K[X,Y] = Φ(X)∗Φ(Y), (36)

(K[X])ij = K(xi, xj), (K[Y])ij = K(yi, yj), (K[X,Y])ij = K(xi, yj), (37)
i, j = 1, . . . ,m.
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Define A = 1√
m

Φ(X)Jm : Rm → HK , B = 1√
m

Φ(Y)Jm : Rm → HK , so that

AA∗ =
1
m

Φ(X)JmΦ(X) = CΦ(X), BB∗ =
1
m

Φ(Y)JmΦ(Y) = CΦ(Y), (38)

A∗A =
1
m

JmK[X]Jm, B∗B =
1
m

JmK[Y]Jm, A∗B =
1
m

JmK[X,Y]Jm. (39)

Theorem 7 (QJSDα between RKHS covariance operators). Assume that
dim(HK) = ∞. Let H1 = R

m. Let CΦ(X), CΦ(Y) and A∗A,A∗B,B∗B be defined
as above. Then for α �= 0, 1,

QJSDα,γ(CΦ(X), CΦ(Y)) =
γα

α(1 − α)
tr

([
1
2γ

(
A∗A A∗B
B∗A B∗B

)
+ IH2

1

]α

− IH2
1

)

− γα

2α(1 − α)
tr

[(
A∗A

γ
+ IH1

)α

+
(

B∗B
γ

+ IH1

)α

− 2IH1

]
. (40)

At the limiting points α = 0 and α = 1,

QJSD0,γ(CΦ(X), CΦ(Y)) = log det
[

1
2γ

(
A∗A A∗B
B∗A B∗B

)
+ IH2

1

]

− 1
2

[
log det

(
A∗A

γ + IH1

)
+ log det

(
B∗B

γ + IH1

)]
, (41)

QJSD1,γ(CΦ(X), CΦ(Y))

= −tr

([
1

2γ

(
A∗A A∗B
B∗A B∗B

)
+ IH2

1

]
log

[
1

2γ

(
A∗A A∗B
B∗A B∗B

)
+ IH2

1

])
(42)

+
1

2
tr

[
(A∗A + γIH1) log

(
A∗A

γ
+ IH1

)
+ (B∗B + γIH1) log

(
B∗B

γ
+ IH1

)]
.

Remark 1. A much more detailed mathematical formulation, along with all the
proofs, with be presented in the full version of the current paper.
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Abstract. In this paper, we show how the restriction of the Quan-
tum Geometric Tensor to manifolds of states that can be generated
through local interactions provides a new tool to understand the con-
sequences of locality in physics. After a review of a first result in this
context, consisting in a geometric out-of-equilibrium extension of the
quantum phase transitions, we argue the opportunity and the usefulness
to exploit the Quantum Geometric Tensor to geometrize quantum chaos
and complexity.

Keywords: Geometry of quantum states · Local interactions ·
Quantum phase transitions · Quantum complexity · Quantum chaos

1 Introduction

In quantum mechanics, the state of a closed system can be represented by a point
in the complex projective space CPn, also referred to as the manifold of pure
states S. The tangent space of this manifold can be endowed with an Hermitian
structure called Quantum Geometric Tensor (QGT) [1]. This geometrical struc-
ture arises from the inner product on the Hilbert space and has a meaningful
physical interpretation: its real part is the Fubini-Study metric and in quantum
information theory it encodes the operational distinguishability between two
neighboring states of S [2], while its imaginary part is called Berry’s curvature
and determines the phase acquired by a state during an adiabatic cycle [3].

The Fubini-Study metric on the manifold of pure states is homogeneous and
isotropic [4]. This mathematical property reflects the fact that in the space S
there are neither privileged states nor privileged evolutions. On the other side,
from the physical point of view, we know that some states are privileged, in the
sense that they are more easily experimentally accessible, e.g., ground states of
frustration free Hamiltonians, while others can be extremely difficult to both
prepare or keep from decohering in microscopic times, e.g., macroscopic super-
positions (Schrodinger’s cats) [5]. The fundamental constraints on Hamiltonians
and the limited resources available in terms of time, energy, and the form of
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interactions determine the very small region of the Hilbert space that can actu-
ally be explored by a state during its evolution [6]. Since these constraints are
at the origin of the difference between a generic quantum state and a physically
accessible quantum state, we will refer to a manifold M of accessible quantum
states in relation to some reasonably constrained Hamiltonian, e.g., the ground
states of a given family of Hamiltonians or the states that can be generated by
evolution with these Hamiltonians in a finite amount of time.

Hamiltonians are constrained in the sense that not all the Hermitian oper-
ators that could in principle act on the state of a system are actually realized
in nature. For example, interactions must respect some symmetry or they must
observe some locality constraint. The latter request consists in the fact that the
algebraic properties of accessible observables define on the Hilbert space H a
privileged isomorphism H ∼= ⊗N

i Cdi [7] such that the interactions only involve
some subsets of the local Hilbert spaces Cdi . These subsets can be considered as
edges of a graph and therefore such a privileged tensorization of the Hilbert space
is endowed with a graph structure, and the number N of these edges represents
the size of the physical system in exam. For example, the Ising Hamiltonian only
involves two-spin interactions between nearest-neighbors.

One might ask whether the geometry of a manifold of quantum states can be
used to investigate some physical phenomena related to the locality of the Hamil-
tonian exploited to access the manifold. For example, the QGT on the manifold
of ground states of an Hamiltonian can reflect the capability of Hamiltonian to
generate long range correlations. An insight in this direction comes from the
information geometric interpretation of quantum phases by Zanardi et al. [8–10]
where it is shown that the scaling of the first energy gap of a local Hamiltonian,
and therefore its quantum phase diagram, is reflected in the scaling of the QGT
on the manifold of ground states, allowing for a new information-theoretical
definition of quantum phases.

In this paper, we demonstrate a formalism to describe the time evolution of
quantum geometry [11] defining a protocol to study the evolution of the Fubini-
Study geometry on the manifold of ground states of a smooth family of local
Hamiltonians, that is, the out-of-equilibrium evolution of the phase diagram. We
show that quantum phases are robust after a quantum quench and the geometry
of the manifold of evolving states is affected by a process of equilibration.

Our results exemplify how the geometry of a manifold of states evolving
with a local Hamiltonian can provide new answers to several problems in local
dynamics. This first step serves as motivation to exploit the geometry of these
manifolds as a tool to investigate many questions related to locality, like the
notion of quantum complexity [12], the emergence of quantum phases [13], equi-
libration processes [14], operator spreading [15], information scrambling [16–19]
and Quantum Darwinism [5]. Motivated by these goals, in the conclusions we
outline a path towards a geometric approach to quantum complexity and chaos.
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2 Time Evolved QGT and Spreading of Local
Correlations

In this section, we demonstrate a protocol to take the manifold of ground states of
an Hamiltonian out of equilibrium, obtaining time-evolving manifolds of experi-
mentally accessible quantum states on which out-of-equilibrium quantum phases
can be defined through the QGT. We show that, as it happens in the static
case [8], the QGT encodes some properties of the system that arise from the
locality of the Hamiltonian. In particular, we show that the evolution of this
tensor, and therefore the geometry of the evolving manifold, is determined by
the spreading of correlations between local operators. This link will be exploited
in the next sections to prove some remarkable features of the quantum phases
away from equilibrium.

Following the approach of the information-theoretical formulation of quan-
tum phase transitions, we initially consider a manifold M0 of non-degenerate
ground states of a given family of local Hamiltonians H(λ), smooth in the con-
trol parameters λi. The states of this manifold can be experimentally accessed
with high accuracy in a tunable synthetic quantum system at low tempera-
ture. A coordinate map on M0 is inherited by the control parameters λ of
the corresponding parent Hamiltonian H(λ). To take the system out of equilib-
rium we introduce a family of unitary operators Ut(λ) := e−itHq(λ) smooth
in the control parameters λi. These operators describe the effect of a sud-
den local perturbation Hq(λ), called quantum quench, on the corresponding
state |ψ(λ)〉. At each time t we define a manifold of out-of-equilibrium states
Mt = {|ψ0t(λ)〉 = Ut(λ)|ψ0(λ)〉}, representing the evolution induced on the ini-
tial states of M0 by the family of quantum quenches Hq(λ). As a consequence of
the locality of Hq, Mt is a manifold of dynamically accessible quantum states.
The geometrical features of this manifold can be investigated thanks to the
restriction of the QGT on Mt, that allows the definition of an out-of-equilibrium
phase diagram corresponding to regions in which the QGT diverges most than
linearly in the thermodynamic limit.

Given the coordinate map xi(ψ) for the manifold in exam, the QGT on this
manifold can be defined via its coordinate representation

qij(ψ) := 〈∂iψ|(1 − |ψ〉〈ψ|)|∂jψ〉. (1)

Taking advantage of the fact that for any t ≥ 0 Mt is a manifold
of non-degenerate ground states for the family of Hamiltonians H(λ)t :=
Ut(λ)H(λ)Ut(λ)†, one can prove [11] that, in a coordinate map ai(ψ) which diag-
onalizes the tensor, the eigenvalues qa of the QGT are bounded as follows

q0 + q1(t) − 2
√

q0q1(t) ≤ q(t) ≤ q0 + q1(t) + 2
√

q0q1(t) (2)
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where for the sake of simplicity we have eliminated the index a. In the last
expression the term q0 :=

∑
n�=0 |〈ψ0|∂H|ψn〉|2/(E0 −En)2 keeps memory of the

initial geometry of the manifold, while the term q1(t) =
∑

n�=0 |〈ψ0|D|ψn〉|2 =
〈ψ0|D|ψ0〉2−〈ψ0|D2|ψ0〉 describes the effect of the quench on the geometry, with
D(t) :=

∫ t

0
dt′U(t′)†∂HqU(t′). We can deduce that the geometry of Mt is mainly

determined by the behaviour of q1. To represent q1 as the sum of local correla-
tions, we exploit the locality of the quench Hamiltonian. We can indeed represent
the operator D as D =

∑
i Di, where Di :=

∫ t

0
dt′U(t′)†∂Hq

i U(t′) [11]. As a con-
sequence q1 =

∑
ij〈DiDj〉C , where 〈DiDj〉C := 〈ψ0|DiDj |ψ0〉−〈ψ0|Di|〉〈|Dj |ψ0〉

is the correlation function of a local operator Di which support spreads in time.
Finally, making explicit the operators Di, we represent the rescaled eigenvalues
q1(λ, t)/N as

q1(λ, t)/N =
∑

j

∫ t

0

dt′
∫ t

0

dt′′〈∂Hq
0 (λ, t′)∂Hq

j (λ, t′′)〉C , (3)

where N is the system size. This equation made explicit the role of the spreading
of local correlations in determining the geometry of Mt.

3 The Phase Diagram Away from Equilibrium

3.1 Time Evolution

Here we show that, because of the finite velocity at which local correlations
are propagated, the phase diagram, thought of as the analiticity domain of the
rescaled QGT Q/N , is robust under a quantum quench. This means that quan-
tum phases are stable when the system is taken out of equilibrium and that a
local Hamiltonian is not capable of dynamically generating areas of fast-scaling
distinguishability between states.

We suppose that the graph structure defined by the Hamiltonian on the
tensorization of the Hilbert space is a lattice and we define the spacing a of this
lattice as the length associated with each link of the graph. In this context we
say that local correlations between the operators Oi and Oj decay exponentially

when 〈OiOj〉C ≈ O
(
e− a|i−j|

χ

)
and we call χ the correlation length of the state.

Clearly the scaling in N of Eq. (3) directly depends on whether or not a finite
correlation length in the state |ψ(λ, t)〉 exists.

To answer this question we exploit the Lieb-Robinson bound on the spread-
ing of local correlations [15], that states that, if the evolution of the system is
generated by a local Hamiltonian Hq acting on a state with exponential decaying
correlations, the latter spread out at a finite velocity vLR called Lieb-Robinson
velocity. From this bound some important results descend, as the existence of
a finite correlation length χ for non-degenerate ground states [20]. Generalizing
these results it is possible to prove [11] the following:

|q1(t)|/N ≤ k

⎡

⎣4t2 exp
(

2vLRt

χ + a

)∑

j

exp
(

− doj

χ + a

)⎤

⎦ (4)
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where k does not depend on the time and on the size of the system. The scaling of
the above equation for large N depends on the behavior of the correlation length
χ for the initial state |ψ0(λ)〉 and, because of this bound, it is unaffected by the
criticalities of the quench Hamiltonian. As a consequence the rescaled QGT, that
depends on q1/N via the triangular inequality Eq. (2), does not diverge in the
thermodynamic limit if and only if the correlation length χ is finite. This means
that the phase diagram on Mt is preserved in time and a local quench can not
affect the scaling of the QGT inducing new phase transitions for some value of
the the control parameters or of the time.

3.2 Equilibration

We are going to show that the correlation function structure of the QGT implies
its equilibration in probability in the thermodynamic limit. Given a function
f(t) of the state of the system we say that f(t) equilibrates in probability if
limN→∞ σ2[f ] ≈ O(e−N ), where σ2[f ] =

∫ T

0
(f(t) − f(t))2dt/T is the time-

variance of the function over the interval of observation T and N is the size of
the system. This behavior, that is weaker than the usual equilibration condition
in which limt→∞ f(t) = feq, has been proven for the expectation value of local
observables evolving with a local Hamiltonian under the non-resonance condi-
tion [14]. This consists for the Hamiltonian in having a non-degenerate spectrum
with also non-degenerate energy gaps. Since the degeneration is a fine-tuning
condition, this request is generally satisfied. Physically this means that in a
large-scale quantum system it is extremely unlikely for an experimenter to mea-
sure a local expectation value that is different from a fixed equilibration value.
To extend this result to the QGT on Mt, we show that equilibration in prob-
ability also applies to the correlation functions of local operators. In particular
the following holds [11]

Theorem 1. Consider a Hamiltonian Hq =
∑

Eq
nP q

n satisfying the non-
resonance condition and an observable A(t) = e−itHq

AeitHq

evolving under
the action of Hq. Then the temporal variance σ2(C) of unequal-time correla-
tion functions C(t′, t′′) = 〈A(t′)A(t′′)〉 is upper-bounded as σ2(C) ≤ ‖A‖4Trρ2,
where Tr(ρ2) is the purity of the completely dephased state ρ =

∑
n P q

nρP q
n.

As a corollary, the same bound holds also for connected correlation functions.
This theorem is a direct extension of a previous result in literature [14], and

can be proven by making explicit the role of energy gaps in the time-averages
involved in the definition of the time-variance. The equilibration of correlations
directly influences the evolution of the QGT. Indeed from Eq. (3) one can easily
show that

q1(t) = αt2 + X(t)t2 (5)

where α is a constant and the error X(t) is a temporal variance for the involved
correlation functions, that, as showed above, scales linearly in the dephased
state purity. As confirmed for the Cluster-XY model in Sect. 3.3, the dephased
purity Tr(|ψ0〉〈ψ0|2) generally decays exponentially in the system size N , as a



168 D. Rattacaso et al.

consequence time fluctuations X vanish very fast and q1 equilibrates to αt2. An
analogous behavior also affects the whole QGT because of the inequality Eq. (2).

3.3 Application to the Cluster-XY Model Phase Diagram

Here we analyze the evolution of the QGT on the manifold of out-of-equilibrium
ground states of an exactly solvable model: the Cluster-XY model [21]. In this
way we show an example of phase-diagram evolution and how it is affected by our
previous statements about scaling and equilibration in the thermodynamic limit.
The Cluster-XY model consists in a spin chain evolving with the Hamiltonian

HCXY (h, λx, λy) = −
N∑

i=1

σx
i−1σ

z
i σx

i+1 − h

N∑

i=1

σz
i + λy

N∑

i=1

σy
i σy

i+1 + λx

N∑

i=1

σx
i σx

i+1

This model shows a very rich phase diagram on the equilibrium manifold M.
Here we induce the evolution through a so-called orthogonal quench: we pre-

pare the initial manifold M0 as the ground states manifold of the Hamiltonians
H(λ) = HCXY (h = 0, λx, λy), and consider a sudden change in the control
parameter of the transverse field, making the system evolve with the quench
Hamiltonian Hq(λ) = HCXY (h = hq, λx, λy). Mt is therefore the manifold of
the states |Ω(λ, t)〉 := e−iHq(λ)t |GS(H(λ))〉. As a consequence of the possibility
to exactly diagonalize the Cluster-XY model, these states can be represented via
the action of suited fermionic creation and annihilation operator on their vac-
uum state. This allows us to exactly calculate the overlaps between the states
of the manifold and, consequently, also the metric g induced from the Fubini-
Study metric of the ambient projective space. Indeed, from the squared fidelity
F2 ≡ |〈Ω(λ′, t)|Ω(λ, t)〉|2, one finds that gμνdλμdλν := |〈Ω(λ + dλ, t)|Ω(λ, t)〉|2.
The Berry’s curvature instead can be easily shown to be zero.

The possible divergences of the metric are related to the energy gaps of the
initial Hamiltonian H(λ) and of the quench Hamiltonian Hq(λ), anyway one
can show by standard analytic techniques in [11] that in the thermodynamic
limit the only divergences of gμν(t) are the ones in gμν(0), determined by the
disclosure of the first energy gap of H(λ). As a consequence the phase diagram
is conserved by temporal evolution, as we have proven in the previous section. In
the previous section we have also demonstrated that the equilibration properties
for the QGT are determined by the purity of the dephased state ρ, where ρ =
|Ω(λ, t)〉〈Ω(λ, t)|. Exploiting the exact diagonalization of the Cluster-XY model
one can show that this purity reads Tr(ρ2) =

∏
k(1 − 1/2 sin2(2χk)), where

χk is different from zero for a non-null quench. As a consequence the purity is
exponentially small in N , determining the equilibration of the phase diagram.
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4 Conclusions and Outlook

The results that we have shown in this review can be considered as a first step
towards the understanding of the role of the natural Hermitian structure of
quantum states in determining the properties of dynamically accessible manifold
of states. We extended the geometric approach to out-of-equilibrium quantum
phases and, exploiting the QGT and its relation with the spreading of local
correlations, we have demonstrated the robustness and equilibration of the phase
diagram after a quantum quench.

Other aspects of out of equilibrium many-body physics could be investigated
exploiting this geometric approach. One of the most important ones is the inves-
tigation of quantum chaotic behaviour of the Hamiltonian, which is revealed in
butterfly effect and scrambling of local information [16,17]. A unified approach to
investigate these behaviors is indeed provided by the study of out-of-time-order
correlators (OTOCs) and their generalizations [18,19]. As a direct consequence of
Eq. (3), we have proven [11] that the QGT is upper-bounded by a superposition
of OTOCs. We can deduce that if a quench Hamiltonian generates higher dis-
tinguishability then it also generate a larger spreading of local operators. This is
a first evidence of the possibility for a geometric picture of quantum chaos and
scrambling. As an example, divergences in a suitable scrambling metric could
allow us to identify possible quantum models of black holes thanks to the fast
scrambling conjecture [22].

Beyond the geometrization of chaos, the QGT could be related to quantum
complexity. A metric representation of complexity has been proposed for the
manifold of unitary operators [23,24] and extended to the manifold of states [4].
The latter consist in modified versions of the Fubini-Study metric, in which the
matrix elements associated with the infinitesimal evolutions generated only by
non-local interactions are enlarged through a penalty factor. As pointed out by
Nielsen [23], such a geometric notion of complexity could play a central role in
quantum computing, reducing the search for the most efficient algorithm to the
search of a geodesic. Here we suggest a different approach, that does not involve
an arbitrary penalty. Given a target path of states we consider the best local
approximation of its generator. This time-dependent operator, that is an optimal
time-dependent parent Hamiltonian, applied to the initial point of the target path
of states, generates an accessible approximation of the latter. The functional
distance between the target path and its accessible approximation measures
the capability to access the target path exploiting only local interactions, so
we expect that it is linked to quantum complexity. Therefore, one of our next
goals will be to exploit this distance to find a natural notion of complexity
metric, or also accessibility metric, on the manifold of quantum states. Our point
of view on complexity geometry arises form the search for an optimal parent
Hamiltonian [25]. Since this search is directly linked to several practical goals,
such as the verification of quantum devices [26] and the quantum control of time-
dependent states [27], the accessibility metric could provide a unified framework
to understand the limits of our ability to manipulate quantum matter.
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Abstract. The main aim of this paper is to describe how the colorimet-
ric phenomenon known as ‘Hunt effect’ can be understood in the quantum
framework developed by the authors to model color perception of trichro-
matic observers. In classical colorimetry, the most common definition of
the Hunt effect is that the colorfulness of a color increases with its lumi-
nance, however several other definitions are available. The need to estab-
lish a unique and precise characterization of the features involved in the
Hunt effect led us to propose novel mathematical definitions of colorimet-
ric attributes. Within the newly established nomenclature, we show how
the Hunt effect can be rigorously explained thanks to the duality between
quantum states and effects.

Keywords: Color perception · Quantum states · Quantum effects ·
Hunt’s effect

1 Introduction

The main aim of this paper is to explain the well known Hunt colorimetric effect
in the quantum framework first introduced in [4] and then refined and further
formalized in [2] and [3]. Due to space limitation, here we will recall only the
elements of this framework that are strictly necessary for the following.

The work of the founding fathers of colorimetry, Newton, Maxwell, Grass-
mann and von Helmholtz, was elegantly resumed by Schrödinger in [13] in a set of
axioms which imply that the space of perceptual colors C is a 3-dimensional con-
vex regular cone. In [12], Resnikoff added an homogeneity axiom which implied
that C, as a set, can only take two forms: either C1 = R

+ × R
+ × R

+ or
C1 = R

+ × H, where H is a 2-dimensional hyperbolic space, see also [11].
The core of our approach is a mathematical axiom called trichromacy axiom

that summarizes the set of Schrödinger’s and Resnokoff’s axioms into a single
one: the space of perceptual colors is the positive cone C of a formally real Jordan
algebra of real dimension 3. Jordan algebras are commutative but non necessarily
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associative algebras used as the foundation of the algebraic formulation of quan-
tum theory developed by Jordan, von Neumann and Wigner.

Using the classification theorem of finite dimensional formally real Jordan
algebras one can check that C1 is the positive cone of the commutative and
associative Jordan algebra R ⊕ R ⊕ R, and C2 is H+(2,R), the cone of positive-
definite 2×2 real matrices, which is the positive cone of the commutative but non-
associative Jordan algebra H(2,R) of 2 × 2 real symmetric matrices equipped
with the Jordan matrix product. The first case corresponds to the classical CIE
(Commission International de l’Éclairage) colorimetry, whereas the second case
corresponds to a non classical colorimetric theory. From now on, we focus only
on the latter case and we will give several motivations to consider it as a genuine
quantum theory of color perception.

Among other reasons, a striking fact leads us to think that the classical CIE
approach should be abandoned: all CIE color spaces are founded on either the
RGB or the XYZ spaces, which are built with the only aim at codifying the
output of the three retinal cone photoreceptors through values that are obtained
via color matching experiments. The flaw in this procedure is that the outcome
of those experiments is the result of the action of the whole human visual system,
not only of the cones. Moreover, the fundamental processing known as Hering’s
opponency, due to the action of ganglion cells, which detect and magnify the
differences between the outputs of the different cones, is not incorporated in
the RGB or XYZ spaces. This fact is confirmed by our interpretation of the
classical color space as the positive cone of the commutative and associative
Jordan algebra R ⊕ R ⊕ R. Instead, as we are going to recall, if we consider
as color space the positive cone of the commutative but non-associative Jordan
algebra H(2,R) and we use the self-duality of this cone, then we can intrinsically
account for both the trichromatic and Hering’s opponency stages.

The key to exhibit Hering’s opponency is to exploit the Jordan algebras
isomorphism between H(2,R) and the spin factor R⊕R

2, which implies that the
trichromacy cone C can be identified with the 3-dimensional future lightcone:

L+ =
{
(α + v) ∈ R ⊕ R

2 : α > 0, ‖(α + v)‖M > 0
}

, (1)

where ‖(α +v)‖2M = α2 − ‖v‖2 denotes the squared Minkowski norm, ‖ ‖ being
the Euclidean norm. The state space S of a rebit, the real analog of the usual
(complex) qubit, can be identified with

{
v ∈ R

2 : ‖v‖ ≤ 1
}

and, crucially, see
e.g. [2–4], it can be naturally embedded in the closure L+ of L+ via the map

S =
{
v ∈ R

2 : ‖v‖ ≤ 1
} � v �→ 1

2
(1 + v) ∈ D1/2 = {(α + v) ∈ L+ : α = 1/2}. (2)

The properties of this so-called Hering’s rebit allow us to give a meaningful
mathematical interpretation of Hering’s color opponency. Let us consider the
embedding

S � v = (r cos θ, r sin θ) �→ ρ(v) = ρ(r, θ) =
1

2

(
1 + r cos θ r sin θ

r sin θ 1 − r cos θ

)
∈ DM, (3)

where, 0 ≤ θ < 2π and DM denotes the space of density matrices of H(2,R).
One can easily checks that
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ρ(r, θ) = ρ0 +
r cos θ

2
[ρ(1, 0) − ρ(1, π)] +

r sin θ

2
[ρ (1, π/2) − ρ (1, 3π/2)] . (4)

From a colorimetric viewpoint, this decomposition means that the generic quan-
tum chromatic state represented by a density matrix ρ(r, θ) can be seen as the
superposition of the maximal von Neumann entropy state ρ0 = ρ(0, 0) (see
Sect. 3 for more information), which represents the achromatic state, with two
diametrical oppositions of pure hues (or pure tints). We refer to [3] or [2] for
further information, especially for what concerns the hyperbolic metric aspects
of this theory.

The fact that a rebit system emerges naturally from the sole trichromacy
axiom is one of the reasons that led us to consider this non-classical colorimetric
theory as a quantum-like theory in which we assume that:

– a visual scene is a setting where we can perform psycho-visual measurements
in conditions that are as isolated as possible from external influences;

– a perceptual chromatic state is represented by the preparation of a visual scene
for psycho-visual experiments;

– a perceptual color is the observable identified with a psycho-visual measure-
ment performed on a given perceptual chromatic state.

Of course, the instrument used to measure the observables is the visual system
of a human and not a technological device used to perform physical experiments.

So far we have recalled basic information from our quantum-like theory of
color perception, in the next sections we are going to introduce in this framework
the concept of quantum effect which will allow us to describe the Hunt effect
from a mathematical point of view.

2 States and Effects in Colorimetry

Operationally speaking, the concept of a state in quantum mechanics refers to
an ensemble of identically prepared systems, while the concept of effect refers to
a measurement apparatus that produces an outcome. The duality between states
and effects means essentially that when a state and an effect are specified, one
can compute a probability distribution which is the only meaningful information
that we can obtain about the experiment. In other words, quantum mechanics
deals with a collection of possible preparations and measurements, which can be
combined together to form an experiment leading to a probability distribution
of measurement outcomes [7].

In order to translate in mathematical terms what just stated, let us introduce
the state cone:

C(S) = {α(1,v), α ≥ 0,v ∈ S}, (5)

that, using the embeddings (2) and (3), can be easily checked to satisfy

C(S) �
{

2α

[
1
2
(1 + v)

]
, α ≥ 0,v ∈ S

}
= L+, (6)
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and
C(S) � {2αρ(v), α ≥ 0,v ∈ S} = H+(2,R), (7)

where H+(2,R) is the set of positive semi-definite 2 × 2 real matrices.
Consequently, since the positive cone of a formally real Jordan algebra is self

dual1, the state cone C(S) is itself self dual, i.e. C∗(S) = C(S). The effect space
of S is defined as follows:

E(S) = {e ∈ C∗(S), e ≤ Id} , (8)

where Id is the unit element of either R⊕R
2 or H(2,R), accordingly to the iden-

tification (6) or (7), respectively. To obtain a geometric description of E(S), one
can consider an effect e = α(1,v) as an element 2αρ(v) of H+(2,R) that satisfies
the two conditions Tr(Id−e) ≥ 0 and det(Id−e) ≥ 0. Direct computations show
that

E(S) =
{

α(1, v1, v2), α ∈ [0, 1], v2
1 + v2

2 ≤ min
{

(1 − α)2

α2
, 1

}}
. (9)

By using self duality, a straightforward computation leads to

E(S) �
⎧
⎨

⎩
e =

⎛

⎝
a0

a1

a2

⎞

⎠ : e(1, v1, v2) = a0 + a1v1 + a2v2 ∈ [0, 1], ∀(v1, v2) ∈ S
⎫
⎬

⎭
. (10)

Every effect is thus uniquely associated to a [0, 1]-valued affine function
(denoted again with e for simplicity) on the set of states. This is in fact the
simplest way to associate a probability to each state. Equation (9) implies that
the effect space E(S) can be represented as a double cone in the 3-dimensional
Minkowski space, as shown in Fig. 1.

Fig. 1. The convex double cone representing E(S).

1 Given a formally real Jordan algebra A, its positive cone agrees with its the dual cone
C∗ := {a ∈ A : ∀b ∈ C, 〈a, b〉 > 0}, where 〈a, b〉 = Tr(La◦b), La◦b(c) = (a ◦ b) ◦ c,
∀c ∈ A. C∗ can be identified with the set of positive linear functionals on A.
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Remarkably, this double cone coincides with that introduced in [5] as a rep-
resentation of a so-called perceptual color space whose shape results from the
description of the physiological mechanisms of neural coding of colors. Since this
perceptual color space is, up to our knowledge, the only color space that has
been proposed to take into account the spectrally opponent and non-opponent
interactions of Hering’s opponency, we consider this as particularly relevant.

All the previous considerations lead us quite naturally to introduce the fol-
lowing definition: a color effect (also called a perceived color in [2]), is an element
c of the effect space E(S).

3 Colorimetric Attributes of Color Effects

In order to give a meaningful mathematical formulation of Hunt’s effect it is
necessary to introduce supplementary definitions related to the colorimetric
attributes of a color effect. These definitions involve the notion of entropy which
aims at measuring the mathematical expectation of the possible information gain
about a given system. Dealing with quantum-like states, one usually considers
the von Neumann entropy S(ρ) of a density matrix ρ, which in our context, see
e.g. [1], can be taken to be:

S(ρ) = −Tr(ρ ◦ log ρ), (11)

where ◦ denotes the Jordan product of H(2,R). By using the parametrization
ρ(r, θ) it can be checked that the von Neumann entropy is given by:

S(ρ) = − log
(

1 − r

2

) 1−r
2

(
1 + r

2

) 1+r
2

, (12)

with S(1) = lim
r→1−

S(r) = 0. Pure state density matrices are characterized by

a null entropy: pure states provide the maximum of information. The density
matrix ρ0 = ρ(0, 0) is the unique density matrix with maximal von Neumann
entropy: the state (0, 0) ∈ S is the state of maximal entropy that provides no
chromatic information.

Let v = (v1, v2) = (r cos θ, r sin θ) be a state of S. Given the color effect
c = α(1, v1, v2) � 2αρ(r, θ), we call the real α, 0 ≤ α ≤ 1, the magnitude of c.
This magnitude is nothing but the result of the evaluation of c on the maximal
entropy state ρ0:

α = 〈c〉ρ0 = Tr(ρ0 ◦ 2αρ(r, θ)). (13)

The extreme simplicity of this definition stands out even more if compared to
the plethora of definitions of chromatic attributes corresponding to α in classical
colorimetry. Readers can refer for instance to the paper [9] to make up their own
mind about this topic.

If we divide the effect c by 2α, we obtain the density matrix ρ(r, θ) that
characterizes the chromatic state of c. As its name suggests, this chromatic state
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retains only the chromatic information of c. In order to recover this latter, one
can perform measurements using the two Pauli-like matrices of Hering’s rebit:

σ1 =
(

1 0
0 −1

)
, σ2 =

(
0 1
1 0

)
. (14)

In fact, the expected values

〈σ1〉ρ(r,θ) = Tr(ρ(r, θ) ◦ σ1) = r cos θ, 〈σ2〉ρ(r,θ) = Tr(ρ(r, θ) ◦ σ2) = r sin θ, (15)

give the degree of opposition between the two pairs of pure chromatic states
involved in Hering’s opposition, i.e. the two spectrally opponent interactions of
the neural coding of colors. Let us insist on the fact that, in practice, perform-
ing such measurements is not straightforward: the matrices σ1 and σ2 refer to
mechanisms implemented by the sensory system of a human being and not by
technological devices. The reader can refer for instance to [8] for related psycho-
visual experiment descriptions. Due to the lack of space, we do not investigate
here the fascinating problem that consists of explaining the relation between the
well-known phenomenon of color indistinguishability, illustrated by MacAdam
ellipses, and the measurement uncertainty inherent to the fact that the matrices
σ1 and σ2 do not commute. This will be the subject of forthcoming studies.

Since the von Neumann entropy S(ρ) of ρ = ρ(r, θ) allows us to measure the
purity degree of the chromatic state ρ of the color effect c, it seems natural to
relate it with the classical notion of saturation widely used in colorimetry by
defining the saturation of the color effect c as follows

σ(c) =
log(2) − S(ρ)

log(2)
, (16)

the graph of σ(c) is depicted in Fig. 2.

Fig. 2. A proposal for the saturation of a color effect from built from the von Neumann
entropy of its chromatic state.
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Notice that this proposal is the simplest one which agrees with the classical
constraints: 0 for achromatic colors and 1 for pure (spectral) colors.

The final colorimetric attribute that remains to be defined is hue. Actually,
this is the only definition that remains identical to that of classical colorimetry,
as we will consider the angle θ as the hue of the color effect c.

4 Hunt’s Colorimetric Effect

In order to introduce this effect (which is not a quantum effect, but a psycho-
visual effect!) we quote the classical reference on colorimetry [6]: ‘The color
appearances of objects change significantly when the overall luminance level
changes. The Hunt effect can be summarized by the statement that colorfulness
of a given stimulus increases with luminance level’.

To give an idea about the extreme difficulty of discussing color in words,
let us quote how the terms involved in this description of Hunt’s effect are
defined in [6]: ‘Colorfulness is the attribute of a visual perception according to
which the perceived colour of an area appears to be more or less chromatic.
Chroma is the colorfulness of an area judged as a proportion of the brightness of
a similarly illuminated area that appears white or highly transmitting. Saturation
is the colorfulness of an area judged in proportion to its brightness’.

In spite of the involved way of dealing with these concepts, it is clear that
the Hunt effect reveals that the colorimetric attributes are not independent.
This has the immediate consequence that color spaces such as XYZ, RGB, HSV,
HCV and so on (see e.g. [6]), in which color is encoded by three uncorrelated
values, are not suitable to represent perceived colors. Instead, the category of
color spaces as CIELab, CIECAM and so on, issued from the so-called color
appearance models, are built in such a way that color coordinates are correlated
and, in fact, experimental data about the Hunt effect are available, see [10].
Nonetheless, also these spaces come from XYZ and so their account of Hunt’s
effect is a posteriori and with several ad-hoc parameters difficult to control.

Contrary to this, the quantum-like approach that we have described above
allows to derive the Hunt effect intrinsically and rigorously. To show this, con-
sider a visual scene and a chromatic state with density matrix ρ = ρ(r, θ), i.e. a
preparation of the visual scene for psycho-visual experiments. Let c = 2αρ(r, θ)
be the corresponding color effect, i.e. the observable identified with a psycho-
visual measurement performed on ρ. Suppose that c is adapted to the maximal
entropy state ρ0, then, by direct computation, we have that the evaluation of c
on ρ0 and on the chromatic state ρ are, respectively, the magnitude α and

〈c〉ρ = Tr(ρ ◦ c) = α(1 + r2). (17)

Let us discuss particular cases in order to understand this evaluation.

– If α = 1/2 then 〈c〉ρ = (1 + r2)/2. This evaluation holds for every ρ and 〈c〉ρ

is maximal, and equal to 1, when ρ is a pure chromatic state, i.e. when r = 1.
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– If α < 1/2 then 〈c〉ρ = α(1 + r2)/2 holds for every ρ and 〈c〉ρ < 1 for every
ρ. It is maximal, and equal to 2α < 1, when r = 1, i.e. for pure chromatic
states.

– If α > 1/2, then the evaluation 〈c〉ρ can only be performed when ρ is such
that r2 ≤ (1 − α)/α. It is maximal, and equal to 1, when r2 = (1 − α)/α. For
instance, if α = 2/3, then 〈c〉ρ = 1 when r =

√
2/2.

Now, the chromatic state ρ1 = ρ(
√

2/2, θ) is perceived by the effect c1 =
4/3ρ1 in the same way as the chromatic state ρ2 = ρ(1, θ) is perceived by the
effect c2 = ρ2 since 〈c1〉ρ1 = 〈c2〉ρ2 = 1. This means that the non-pure chromatic
state ρ1 is perceived in the same way as the a pure chromatic state ρ2, and
thus, it is perceived more saturated than it really is. Consequently, increasing the
magnitude α from 1/2 to 2/3 increases the perceived saturation of the chromatic
state ρ1. Note that when α = 1, the color effect c is the so-called unit effect
that gives the same response equal to 1 on all states, this is the mathematical
translation of the glare limit.

5 Discussion and Future Perspectives

We have shown mathematical objects known as effects in quantum theory allow
us to mathematically account for the Hunt phenomenon of interdependence
between (what are classically called) colorfulness and luminance without the
need of introducing any exterior ad-hoc structures or parameters. What we find
remarkable is that quantum concepts as rebit and effects, well-known in modern
quantum information but less-known in ordinary quantum mechanics, seem to
find a natural place in color perception theory.
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Abstract. In this paper we study vakonomic dynamics on contact sys-
tems with nonlinear constraints. In order to obtain the dynamics, we con-
sider a space of admisible paths, which are the ones tangent to a given
submanifold. Then, we find the critical points of the Herglotz action
on this space of paths. This dynamics can be also obtained through an
extended Lagrangian, including Lagrange multiplier terms.

This theory has important applications in optimal control theory for
Herglotz control problems, in which the cost function is given implicitly,
through an ODE, instead of by a definite integral. Indeed, these control
problems can be considered as particular cases of vakonomic contact sys-
tems, and we can use the Lagrangian theory of contact systems in order
to understand their symmetries and dynamics.

Keywords: Contact Hamiltonian systems · Constrained systems ·
Vakonomic dynamics · Optimal control

1 Introduction

Given a Lagrangian L : TQ → R and a submanifold N ⊆ TQ, one can look for
the critical points of the Euler-Lagrange action restricted to the paths which are
tangent to N . This critical points are the solutions of the Euler-Lagrange equa-
tions for the extended Lagrangian [3] L(qi, q̇i, λa) = L(qi, q̇i)−λaφa, where {φa}
are a set of independent constraints defining N . We remark that the dynamics
obtained from this principle is, in general, different to nonholonomic dynam-
ics [6,13], in which the critical points of the action are computed on the uncon-
strained space of paths, but the admisible variations are constrained.

While nonholonomic dynamics has applications in engineering problems,
vakonomic mechanics can be used to study optimal control problems. This opens
up the possibility to apply results and techniques from Lagrangian mechanics
to the study of optimal control problems, such as the Noether theorem and its
generalizations [15], or variational integrators constructed from the theory of
discrete mechanics [4].
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On the other hand, in the Herglotz variational principle one considers a
Lagrangian L : TQ ×R → R, L(qi, q̇i, z) that depends not only on the positions
and velocities of the system, but also on the action z itself. The action is then
defined implicitly, through the ODE ż = L(qi, q̇i, z). The critical points of this
action are the solutions of the Herglotz equations [12,14]:

∂L

∂qi
− d

dt

∂L

∂q̇i
=

∂L

∂q̇i

∂L

∂z
. (1)

It has recently been acknowledged that the Herglotz principle provides the
dynamics for the Lagrangian counterpart of contact Hamiltonian systems [9].
This has allowed the developement of a theory of symmetries [10,11] which in
this setting are not related to conserved quantities, but to dissipated ones, which
decay at the same rate as the energy. Furthermore variational integrators based
on the Herglotz principle have been developed [2,19].

Contact dynamics and the Herglotz principle have applications on the
description of many physical systems, such as mechanical systems with friction,
thermodynamic systems and some cosmological models [5,16–18].

While the dynamics of contact systems with (linear) nonholonomic con-
straints [7] has been studied, a theory of contact vakonomic dynamics has not still
been developed. This theory could be useful for the study of the Herglotz Opti-
mal Control Problem, introduced in [8], in which the cost function is defined by
an ODE, instead of an integral. This will allow a new way to obtain the dynami-
cal equations (on [8] they were obtained rather indirectly, throught Pontryaguin
maximum principle) and to apply some of the results of contact Lagrangian
systems to this situation.

The paper is structured as follows. In Sect. 2 we review the Herglotz principle.
Its traditional formulation, in which the action is defined implicitly, makes the
implementation of the constraints difficult. We present and alternative in which
the action is defined explicitly, but vakonomic constraints are present. This will
make the addition of new constraints almost trivial. In Sect. 3 we obtain the
vakonomic dynamical equations for a constrained contact system, and see that
this dynamics can also be obtained through an extended contact Lagrangian.
Finally, in Sect. 4, we sketch the relationship between the vakonomic dynamics
of contact Lagrangian systems and the Herglotz optimal control problem.

1.1 The Herglotz Variational Principle, Revisited

Let Q be the configuration manifold and let L : TQ × R → R be the contact
Lagrangian.

Consider the (infinite dimensional) manifold Ω(q0, q1) of curves c : [0, 1] → Q
with endpoints q0, q1 ∈ Q. That is, c(0) = q0, c(1) = q1. The tangent space of
Ω(q0, q1) at the curve c, is the space of vector fields along c vanishing at the
endpoints. That is,

TcΩ(q0, q1) = {δc : [0, 1] → TQ |δc(t) ∈ Tc(t)Q for all t ∈ [0, 1],
δc(0) = 0, δc(1) = 0}.

(2)
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We fix a real number z0 ∈ R and consider the following operator:

Z : Ω(q0, q1) → C∞([0, 1] → R), (3)

which assigns to each curve c the function Z(c) that solves the following ODE:
⎧
⎨

⎩

dZ(c)
dt

= L(c, ċ,Z(c)),

Z(c)(0) = z0,
(4)

that is, it assigns to each curve on the base space, its action as a function of
time.

Now, the contact action functional maps each curve c ∈ Ω(q0, q1) to the
increment of the solution of the ODE:

A : Ω(q0, q1) → R,

c �→ Z(c)(1) − Z(c)(0).
(5)

Note that, by the fundamental theorem of calculus,

A(c) =
∫ 1

0

L(c(t), ċ(t),Z(c)(t))dt. (6)

Thus, in the case that L does not depend on z, this coincides with the classical
Euler-Lagrange action.

Remark 1. The Herglotz action is usually defined as A0(c) = Z(c)(1). However,
this definition and our definition only differ by a constant. Indeed,

A(c) = A0(c) − z0. (7)

In particular they have the same critical points. However the computations in
the vakonomic principle are simpler for A.

As it is proved in [9], the critical points of this action functional are precisely
the solutions to Herglotz equation:

Theorem 1 (Herglotz variational principle). Let L : TQ × R → R be a
Lagrangian function and let c ∈ Ω(q0, q1) and z0 ∈ R. Then, (c, ċ,Z(c)) satisfies
the Herglotz equations:

d
dt

∂L

∂q̇i
− ∂L

∂qi
=

∂L

∂q̇i

∂L

∂z
,

if and only if c is a critical point of A.

1.2 An Alternative Formulation of Herglotz Variational Principle

Another way to approach this problem is to consider a constrained variational
principle for curves on Q ×R constrained to a hypersurface N . We see that this
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is equivalent to the dynamics produced by a Lagrangian L when considering
unconstrained curves on Q.

We will work on the manifold Ω̄(q0, q1, z0) of curves c̄ = (c, cz) : [0, 1] → Q×R

such that c(0) = q0, c(1) = q1, cz(0) = z0. We do not constraint cz(1). The
tangent space at the curve c is given by

TcΩ̄(q0, q1, z0) = {δc̄ = (δc, δcz) : [0, 1] → T (Q × R) |
δc̄(t) ∈ Tc(t)(Q × R) for all t ∈ [0, 1], δc(0) = 0, δc(1) = 0, δcz(0) = 0}.

(8)

In this space, the action functional Ā can be defined as an integral

Ā : Ω̄(q0, q1, z0) → R,

c̄ �→ z1 − z0 =
∫ 1

0

ċz(t)dt.
(9)

We will restrict this action to the set of paths that satisfy ċz = L. For this,
consider the hypersurface N ⊆ T (Q ×R), which is the zero set of the constraint
function φ:

φ(q, q̇, z, ż) = ż − L(q, q̇, z). (10)

Conversely, given any hypersurface N transverse to the ż-parametric curves,
by the implicit function theorem there exists locally a function L such that
N is given by the equation ż = L. In this sense, we see that an hypersurface
N ⊆ T (Q × R) is roughly equivalent to a Lagrangian L : TQ × R → R.

We consider the submanifold of curves tangent to N

Ω̄N (q0, q1, z0) = {c̄ ∈ Ω̄(q0, q1, z0) | ˙̄c(t) ∈ N for all t} (11)

Notice that the map Id × Z : Ω(q0, q1) → Ω̄N (q0, q1, z0) given by
(Id × Z)(c) = (c,Z(c)) is a bijection, with inverse prQ(c, cz) = c. Here, Z, is
defined on (3). Moreover, the following diagram commutes

R

Ω(q0, q1) Ω̄N (q0, q1, z0)
Id×Z

A Ā (12)

Hence c̄ ∈ Ω̄N (q0, q1, z0) is a critical point of Ā if and only if c is a critical
point of A. So the critical points of A restricted to Ω̄(q0, q1, z0) are precisely the
curves that satisfy the Herglotz equations.

We will also provide an alternate proof. We find directly the critical points
of Ā restricted to Ω̄N (q0, q1, z0) ⊆ Ω̄(q0, q1, z0) using the following infinite-
dimensional version of the Lagrange multiplier theorem [1, 3.5.29].

Theorem 2 (Lagrange multiplier Theorem). Let M be a smooth manifold
and let E be a Banach space such that g : M → E is a smooth submersion,
so that A = g−1({0}) is a smooth submanifold. Let f : M → R be a smooth
function. Then p ∈ A is a critical point of f |A if and only if there exists λ̂ ∈ E∗

such that p is a critical point of f + λ̂ ◦ g.
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We will apply this result to our situation. In the notation of this last theorem,
M = Ω̄(q0, q1, z0) is the smooth manifold. We pick the Banach space E =
L2([0, 1] → R) of square integrable functions. This space is, indeed, a Hilbert
space with inner product

〈α, β〉 =
∫ 1

0

α(t)β(t)dt. (13)

We remind that, by the Riesz representation theorem, there is a bijection between
L2([0, 1] → R) and its dual such that for each α̂ ∈ L2([0, 1] → R)∗ there exists
α ∈ L2([0, 1] → R) with α̂(β) = 〈α, β〉 for all β ∈ L2([0, 1] → R).

Our constraint function is

g : Ω̄(q0, q1, z0) → L2([0, 1] → R),
c̄ �→ (φ) ◦ (c̄, ˙̄c),

(14)

where φ is a constraint locally defining N . Note that A = g−1(0) =
Ω̄N (q0, q1, z0).

By Theorem 2, c is a critical point of f = Ā restricted to Ω̄N (q0, q1, z0) if and
only if there exists λ̂ ∈ L2([0, 1] → R)∗ (which is represented by λ ∈ L2([0, 1] →
R)) such that c is a critical point of Āλ = Ā + λ̂ ◦ g.

Indeed,

Āλ =
∫ 1

0

Lλ(c̄(t), ˙̄c(t))dt, (15)

where
Lλ(q, z, q̇, ż) = ż − λφ(q, z, q̇, ż). (16)

Since the endpoint of cz is not fixed, the critical points of this functional Āλ

are the solutions of the Euler-Lagrange equations for Lλ that satisfy the natural
boundary condition:

∂Lλ

∂ż
(c̄(1), ˙̄c(1)) = 1 − λ(1)

∂φ

∂ż
(c̄(1), ˙̄c(1)) = 0. (17)

For φ = ż − L, this condition reduces to λ(1) = 1.
The Euler-Lagrange equations of Lλ are given by

d
dt

(

λ(t)
∂φ(c̄(t), ˙̄c(t))

∂q̇i

)

− λ(t)
∂φ(c̄(t), ˙̄c(t))

∂qi
= 0 (18a)

d
dt

(

λ(t)
∂φ(c̄(t), ˙̄c(t))

∂ż

)

− λ(t)
∂φ(c̄(t), ˙̄c(t))

∂z
= 0, (18b)

since φ = ż − L, the equation (18b) for z is just

dλ(t)
dt

= −λ(t)
∂L

∂z
, (19)

substituting on (18a) and dividing by λ, we obtain Herglotz equations.
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1.3 Vakonomic Constraints

If we have more constraints, we can obtain vakonomic dynamics, just by changing
φ by φa and λ by λa on (18), where a ranges from 0 to the number of constraints
k. Indeed, we restrict our path space to the ones tangent to submanifold Ñ ⊆
N ⊆ T (Q × R), where N is the zero set of φ0, given by φ0 = ż − L. Repeating
the similar computations, we would find that the critical points of A|Ω(q0,q1,Ñ)

are the solutions of

d
dt

(

λa(t)
∂φa(c̄(t), ˙̄c(t))

∂q̇i

)

− λa(t)
∂φa(c̄(t), ˙̄c(t))

∂qi
= 0 (20a)

d
dt

(

λa(t)
∂φa(c̄(t), ˙̄c(t))

∂ż

)

− λa(t)
∂φa(c̄(t), ˙̄c(t))

∂z
= 0, (20b)

φa(c̄(t), ˙̄c(t)) = 0, (20c)

where (φa)k
a=0 are constraints defining Ñ as a submanifold of TQ × R. Since

∂φ0

∂ż = 0, the rest of the constraints can be chosen to be independent of ż. We
denote

ψα(q, q̇, z) = φα(q, q̇, z, L(q, q̇, z)), (21)

μα =
λα

λ0
(22)

Lμ(q, q̇, z, t) = L(q, q̇, z) − μα(t)ψα(q, q̇, z) (23)

for α ∈ {1, . . . k}, provided that λ0 	= 0.
From this, we can write the Eqs. (20) as

− d
dt

(

λ0(t)
∂Lμ

∂q̇i

)

+ λ0(t)
∂Lμ

∂qi
= 0 (24a)

dλ0(t)
dt

= λ0(t)
∂Lμ

∂z
= 0, (24b)

ψα(c̄(t), ċ(t)) = 0, (24c)
ċz(t) = Lμ(c̄(t), ċ(t), t). (24d)

Substituting (24b) onto (24a), dividing by λ0 and reordering terms, we obtain

d
dt

(
∂Lμ

∂q̇i

)

− ∂Lμ

∂qi
=

∂Lμ

∂q̇i

∂Lμ

∂z
(25a)

ψα(c̄(t), ċ(t)) = 0, (25b)
ċz(t) = Lμ(c̄(t), ċ(t), t). (25c)

We remark that these equations are just the Herglotz equations for the
extended Lagrangian L:

L : T (Q × R
k) × R → R

(q, μ, q̇, μ̇, z) �→ L(q, q̇, z) − μαψα(q, q̇, z)
(26)
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1.4 Applications to Control

The Herglotz optimal control problem [8] can be formulated by working on the
control bundle W × R → Q × R, with local coordinates (xi, ua, z): the variables
xi, the controls ua and the action z.

The problem consists on finding the curves γ : I = [a, b] → W , γ =
(γQ, γU , γz), such that

1) end points conditions: γQ(a) = xa, γQ(b) = xb, γz(a) = z0,
2) γQ is an integral curve of X: γ̇Q = X ◦ (γQ, γU ) ,
3) γz satifies the differential equation ż = F (x, u, z), and
4) maximal condition: γz(b) is maximum over all curves satisfying 1)–3).

We remark that this can be interpreted as a vakonomic Herglotz principle on
TW , with constraints given by the control equations φi = Xi(x, u, z)−q̇i and the
Lagrangian being the cost function L(xi, ua, q̇i, u̇a, z) = F (x, u, z). The equations
of motion obtained through the contact vakonomic principle coincides with the
ones obtained indirectly through Pontryaguin maximum principle in [8, Eq. 28]

q̇i = Xi, (27a)

μ̇i =
∂F

∂xi
− μj

∂Xj

∂xi
− μj

(
∂F

∂z
− μi

∂Xj

∂z

)

(27b)

= μi
∂F

∂z
− μj

∂Xj

∂xi
+

∂F

∂xi
− ∂Xj

∂z
μiμj ,

ż = F (27c)

subjected to the constraints

∂F

∂ua
− μj

∂Xj

∂ua
= 0. (27d)
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Abstract. The heat-wave system is recast as the coupling of port-
Hamiltonian subsystems (pHs), and discretized in a structure-preserving
way by the Partitioned Finite Element Method (PFEM) [10,11]. Then,
depending on the geometric configuration of the two domains, different
asymptotic behaviours of the energy of the coupled system can be recov-
ered at the numerical level, assessing the validity of the theoretical results
of [22].

Keywords: Port-Hamiltonian Systems · Partitioned finite element
method · Long time asymptotics

1 Introduction and Main Results

Multi-physical systems arise in many areas of science, and high-fidelity simula-
tions are often needed to reduce the number of real-life experiments, hence the
cost of optimal design in industry. Such problems can be encountered for instance
in aeronautics [12], in chemistry [1] and so on [20]. A first difficulty consists in
finding an admissible way to model each physical subsystem of the experiment,
with a precise identification of negligible phenomena, as well as feasible controls
and available measurements. The second difficulty lies in the coupling of the
subsystems altogether to build the final system to simulate. And the last diffi-
culties are obviously the construction of appropriate discretization schemes and
the simulations themselves.

Port-Hamiltonian systems (pHs) have been extended to infinite-dimensional
setting in [21] two decades ago, allowing to tackle Partial Differential Equations
(PDE), and especially those appearing in physics. One of the major force of the
port-Hamiltonian approach lies in its ease of use for coupling, since the resulting
system remains a pHs [13]. Another strength is its versatility with respect to the
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conditions of experiment: on the one hand, axioms of (classical) physics are used
to derive an algebraic structure, namely the Stokes-Dirac structure, and on the
other hand, physical laws, state equations, and definitions of physical variables
close the system (in the algebraic sense).

This formalism seems very appropriate also for structured computer codes
dedicated to efficient simulation. Indeed, each subsystem of the general exper-
iment can be separately discretized before the interconnection: provided that
the discretization is structured-preserving, meaning that it leads to a finite-
dimensional pHs, the final simulation will enjoy the aforementioned advantages.
Furthermore, if each subsystem is also well-structured, meaning that it keeps
the separation of axioms and laws, the final simulation codes should be easy
to enrich with more and more models. This is the purpose of the discretization
scheme known as the Partitioned Finite Element Method (PFEM) [11], which
can be seen as an adaptation of the well-known, well-proved, and robust Mixed
Finite Element Method (MFEM) [5], not to mention that most, if not all, scien-
tific programming languages already propose finite element libraries [9]. PFEM
proves to be very well-adapted to discretized pHs and shows an ever-growing
range of applications [6,7,17,19]. Nevertheless, only a few of them tackle and
test the interconnection problem [8].

The goal of this work is to provide an application of PFEM, together with
numerical simulations, for a simplified and linearised system of fluid-structure
interaction (FSI), for which long-time behaviour is known [2,22]. Since PFEM
aims at mimicking the pHs structure at the discrete level, hence the power bal-
ance satisfied by the energy of the system, a good approximation of the long-time
behaviour provided in [22] is expected.

1.1 A Simplified and Linearised Fluid-Structure Model

Let Ω ⊂ R
n be a bounded domain with a C2 boundary Γ := ∂Ω. Let Ω1 be a

subdomain of Ω and Ω2 := Ω \ Ω1. Denote Γint the interface, Γj := ∂Ωj \ Γint

(j = 1, 2), and nj the unit outward normal vector to Ωj . Note that Γ = Γ1 ∪ Γ2.

wave
Ω2

heat
Ω1

Γ1

Γint heat
Ω1

wave
Ω2

Γ2

Γint heat
Ω1

wave
Ω2

Γ1 Γ2
Γint

Fig. 1. Different geometrical configurations

We are interested in the structure-preserving discretisation of the following
system, ∀t > 0:

{
∂tT (t, x) − ΔT (t, x) = 0, x ∈ Ω1,

T (t, x) = 0, x ∈ Γ1,

{
∂ttw(t, x) − Δw(t, x) = 0, x ∈ Ω2,

w(t, x) = 0, x ∈ Γ2,
(1)
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together with transmission conditions across the boundary Γint:

T (t,x) = ∂tw(t,x), and ∂n1T (t,x) = −∂n2w(t,x), ∀ t > 0, x ∈ Γint, (2)

and initial data T (0,x) = T0(x),∀x ∈ Ω1, and w(0,x) = w0(x), ∂tw(0,x) =
w1(x),∀x ∈ Ω2.

From [22, Thm. 1], it is known that (1)–(2) is well-posed in the finite energy
space X := L2(Ω1) × H1

Γ2
(Ω2) × L2(Ω2), endowed with the following norm:

‖u‖2X := ‖u1‖2L2(Ω1)
+ ‖u2‖2L2(Ω2)

+ ‖∇ (u2)‖2(L2(Ω2))
n + ‖u3‖2L2(Ω1)

. (3)

The semi-norm |u|2X := ‖u1‖2L2(Ω1)
+ ‖∇ (u2)‖2(L2(Ω2))

n + ‖u3‖2L2(Ω1)
is a norm

on X , equivalent to (3), when Γ2 has strictly positive measure.
In [22, Thm. 11 & 13], the asymptotic behaviours of these (semi-)norms have

been proved, depending on the geometry of Ω (see Fig. 1).

1.2 Main Contributions and Organisation of the Paper

As a major result, we provide a numerical method able to mimick the expected
time behaviour in the different geometrical configurations of Fig. 1.

In Sect. 2, the heat and wave PDEs are recast as port-Hamiltonian systems
(pHs). In Sect. 3, the Partitioned Finite Element Method (PFEM) is recalled
and applied to the coupled system. In Sect. 4, numerical results are provided
and compared with the theoretical results of [22].

2 Port-Hamiltonian Formalism

The physical models are recast as port-Hamiltonian systems. However, all phys-
ical parameters are taken equal to 1, to stick to system (1)–(2) studied in [22].

2.1 The Fluid Model

The simplified linearised model used for the fluid is the heat equation. The chosen
representation corresponds to the Lyapunov case already presented in [16,18],
with Hamiltonian H1(t) = 1

2

∫
Ω1

T 2(t,x) dx, where T denotes the temperature.
Denoting JQ the heat flux, the port-Hamiltonian system reads:

(
∂tT

−∇T

)

=
[

0 −div
−∇ 0

] (
T

JQ

)

, (4)

together with boundary ports:

∇T (t,x) · n1(x) = u1(t,x), y1(t,x) = T (t,x), ∀ t > 0, x ∈ Γint, (5)
T (t,x) = 0, yT (t,x) = ∇T (t,x) · n1(x), ∀ t > 0, x ∈ Γ1. (6)

To close the system, Fourier’s law has been used as constitutive relation: JQ =
−∇T . The power-balance of the lossy heat subsystem classically reads:

d
dt

H1 = −
∫

Ω1

|∇T |2 + 〈u1, y1〉
H− 1

2 (Γint),H
1
2 (Γint)

. (7)
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2.2 The Structure Model

The structure model is the wave equation, a hyperbolic equation widely studied
as a pHs (see e.g. [19]). The Hamiltonian is the sum of the kinetic and potential
energies, H2(t) = 1

2

∫
Ω2

(∂tw(t,x))2+ |∇w(t,x)|2 dx, w being the deflection and
∂tw its velocity. The port-Hamiltonian system reads:

(
∂t(∂tw)
∂t(∇w)

)

=
[

0 div
∇ 0

] (
∂tw
∇w

)

, (8)

together with boundary ports:

∂tw(t,x) = u2(t,x), y2(t,x) = ∇w(t,x) · n2(x), ∀ t > 0, x ∈ Γint, (9)
∂tw(t,x) = 0, yw(t,x) = ∇w(t,x) · n2(x), ∀ t > 0, x ∈ Γ2. (10)

The power-balance of the lossless wave subsystem is:

d
dt

H2 = 〈y2, u2〉
H− 1

2 (Γint),H
1
2 (Γint)

. (11)

2.3 The Coupled System

First note that the homogeneous boundary conditions of (1) have already been
taken into account in (6) and (10). The coupling is then obtained by a gyrator
interconnection of the boundary ports on Γint, meaning that the input of one
system is fully determined by the output of the other one, namely:

u1(t,x) = −y2(t,x), u2(t,x) = y1(t,x), ∀ t > 0, x ∈ Γint. (12)

As a consequence, the closed coupled system proves dissipative, since the power
balance for the global Hamiltonian, H = H1 + H2 := 1

2 |(T,w, ∂tw)|2X , reads:

d
dt

H = −
∫

Ω1

|∇T |2 . (13)

3 The Partitioned Finite Element Method

The main idea of PFEM, as in the mixed finite element method, is to integrate
by parts only one line of the weak formulation of the system. For our purpose,
the choice of which line is to be integrated by parts is dictated by the desired
boundary control, see [11] and references therein for more details.

The method leads to a finite-dimensional pHs, which enjoys a discrete power
balance, mimicking the continuous one: it is thus structure-preserving. The inter-
connection of each subsystem is then made using the pHs structure, ensuring an
accurate discrete power balance for the coupled system.
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3.1 For the Fluid

The heat equation with Hamiltonian H1 has already been addressed in [17].
The difficulty lies in the mixed Dirichlet–Neumann boundary conditions. Here,
following [8], we choose the Lagrange multiplier approach. Let ψ1, ϕ1 and ξ1 be
smooth test functions (resp. vectorial, scalar, and scalar at the boundary). Using
γ0 the Dirichlet trace, the weak form of (4)–(5)–(6) reads, after integration by
parts of the first line and taking Fourier’s law into account in the second:

⎧
⎪⎪⎨

⎪⎪⎩

∫
Ω

∂tT ϕ1 =
∫

Ω
JQ · ∇(ϕ1) − ∫

Γ1
yT γ0(ϕ1) − ∫

Γint
u1 γ0(ϕ1),∫

Ω
JQ · ψ1 = − ∫

Ω
∇(T ) · ψ1,∫

Γ1
γ0(T ) ξ1 = 0,∫
Γint

y1 ξ1 =
∫

Γint
γ0(T ) ξ1.

The output yT is the Lagrange multiplier of the Dirichlet constraint on 3rd line.
Let (ψ1

i )1≤i≤NQ
, (ϕ1

j )1≤j≤NT
, (ξ1k)1≤k≤NΓ1

and (ξintk )1≤k≤NΓint
be finite ele-

ments (FE) bases. Note that boundary functions ξ1 have been divided in
two distinct families, on Γ1 and Γint. Approximating each quantity in the
appropriate basis leads to a port-Hamiltonian Differential Algebraic Equation
(pHDAE) [4,15]:

⎡

⎢
⎢
⎣

MT 0 0 0
0 MQ 0 0
0 0 M1 0
0 0 0 Mint

⎤

⎥
⎥
⎦

⎛

⎜
⎜
⎝

Ṫ
JQ

0
−y1

⎞

⎟
⎟
⎠ =

⎡

⎢
⎢
⎣

0 D1 B1 Bint

−D�
1 0 0 0

−B�
1 0 0 0

−B�
int 0 0 0

⎤

⎥
⎥
⎦

⎛

⎜
⎜
⎝

T
JQ

yT

u1

⎞

⎟
⎟
⎠ , (14)

where M� is the mass matrix of the FE basis corresponding to �, � is the column
vector collecting the coefficients of the approximation of � in its FE basis, and:

(D1)j,i =
∫

Ω1

ψ1
i · ∇(ϕ1

j ) ∈ R
NT ×NQ , (B�)j,k = −

∫

Γ�

ξ�
k γ0(ϕ1

j ) ∈ R
NT ×NΓ� .

Defining the discrete Hamiltonian Hd
1 as the evaluation of H1 on T d :=

∑NT

j=1 Tjϕ
1
j , one gets Hd

1(t) = 1
2T�MT T . Thanks to the structure of (14), it

satisfies a perfectly mimicking discrete counterpart of (7):

d
dt

Hd
1 = −JQ

�MQJQ + u1
�Minty1. (15)

3.2 For the Structure

The wave equation, studied in e.g. [19], does not present difficulty here, since
only Dirichlet boundary conditions are considered. One can integrate by parts
the second line of the weak form of (8)–(9)–(10) and project on FE bases
(ψ2

i )1≤i≤Nq
, (ϕ2

j )1≤j≤Np
, (ξ2k)1≤k≤NΓ2

and (ξintk )1≤k≤NΓint
, where q-type quanti-

ties are related to stress and strain (αq := ∇(w)) and p-type quantities to linear
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momentum and velocity (αp := ∂tw). The finite-dimensional pHs then reads:

⎡

⎢
⎢
⎣

Mp 0 0 0
0 Mq 0 0
0 0 M2 0
0 0 0 Mint

⎤

⎥
⎥
⎦

⎛

⎜
⎜
⎝

α̇p

α̇q

−yq

−y2

⎞

⎟
⎟
⎠ =

⎡

⎢
⎢
⎣

0 D2 0 0
−D�

2 0 B2 Bint

0 −B�
2 0 0

0 −B�
int 0 0

⎤

⎥
⎥
⎦

⎛

⎜
⎜
⎝

αp

αq

0
u2

⎞

⎟
⎟
⎠ , (16)

with (D2)j,i =

∫
Ω2

div(ψ2
j ) ϕ2

i ∈ R
Np×Nq , (B�)j,k = −

∫
Γ�

ξ�
k φ2

j · n2 ∈ R
Nq×NΓ� .

Defining the discrete Hamiltonian Hd
2(t) = 1

2

(
αp

�Mpαp + αq
�Mqαq

)
, thanks

to the structure of (16), one easily gets the discrete counterpart of (11):

d
dt

Hd
2 = u2

�Minty2. (17)

3.3 Coupling by Gyrator Interconnection

The gyrator interconnection (12) is now imposed weakly, at the discrete level:
for all ξint, smooth boundary test functions on Γint:

∫

Γint

ξintu1 = −
∫

Γint

ξinty2,

∫

Γint

ξintu2 =
∫

Γint

ξinty1.

After projection on the FE basis (ξintk )1≤k≤NΓint
, this becomes:

Mintu1 = −Minty2, Mintu2 = Minty1. (18)

In Sect. 4, the interconnection matrix C := B1M
−1
int B�

2 (and its transpose) is
used. However, the inverse M−1

int appearing is not a drawback, since only the
interface mass matrix is involved, which is of very small size.

The total discrete Hamiltonian Hd = Hd
1 + Hd

2 then satisfies thanks to (18):

d
dt

Hd = −JQ
�MQJQ − y2

�Minty1 + y1
�Minty2 = −JQ

�MQJQ,

which perfectly mimics (13) with no approximation (compare with [3,14]): hence,
PFEM also proves to be a reliable structure-preserving method for coupled pHs.

4 Numerical Simulations

In order to test numerically the behaviours proved in [22], two geometries are
chosen. Switching the domains Ω1 and Ω2, four cases are covered. These geome-
tries are given in Fig. 2. The time integration is performed by IDA SUNDIALS
(BDF adaptative scheme) via assimulo. Moreover, P

1 Lagrange elements of
order 1 (both distributed and at the boundary) have been used for scalar fields,
while RT1 Raviart-Thomas elements of order 1 have been used for vector fields.
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Fig. 2. The colors define the subdomains Ω1 and Ω2. On the left, either Γ1 or Γ2

is empty. On the right, either Ω1 is the L-shape subdomain and the geometric optic
condition (GCC) is satisfied in Ω, or Ω1 is the rectangle and the GCC fails.

Fig. 3. On the left, the “circles” cases. On the right, the “L-shape” cases.

On the one hand, when Γ2 = ∅ or when the GCC is satisfied by Ω1, [22,
Thm. 11] asserts a polynomial decay, of rate at least −1/3. One can appreciate
the blue curves on both plots of Fig. 3, showing this polynomial decay (dashed
blue lines) in the long time range. On the other hand, when Γ1 = ∅ or when the
GCC fails, [22, Thm. 13, Rem. 20 & 22] assert that the best decay that could
be expected is logarithmic. This is indeed the asymptotic behaviour of the red
curves on both plots of Fig. 3.

Note that even in the case of a very coarse mesh (see the “L-shape” case on
Fig. 2) and the apparent loss of precision on the right plot of Fig. 3, PFEM still
captures the underlying structure, hence the expected decays.

5 Conclusion

PFEM also proves efficient for the structure-preserving simulation of coupled
pHs, and long time (polynomial) behaviour can be recovered in many cases.

Further works concern more realistic fluid-structure interactions, i.e. non-
linear ones, also moving body, hence moving interface, applied e.g. to piston
dynamics.
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Exterior, Ciudad Universitaria, Coyoacán, 04510 Mexico City, Mexico

miguel.eva.alv@matem.unam.mx, {jcpanta,pablo}@im.unam.mx

Abstract. We developed two Python modules for symbolic and numer-
ical computation in Poisson Geometry. We explain how to use them
through illustrative examples, which include the computation of Hamil-
tonian and modular vector fields.

Keywords: Poisson geometry · Computer algebra · Python

1 Introduction

This paper is invitation to use our two Python modules for symbolic and numer-
ical computation in Poisson Geometry. Leisurely introductions to the history,
relevance and multiple applications of this branch of Differential Geometry
can be found in our two papers that detail these algorithms, and the refer-
ences therein [2,3]. Comprehensive treatments of Poisson Geometry are avail-
able [1,5,9].

Our Python module PoissonGeometry1 may be used for investigating theo-
retical properties that occur symbolically (and depends almost only on SymPy).
Our module NumPoissonGeometry2 integrates with machine learning frameworks
(and might be prone to follow the future changes in these too). The theoretical
motivation behind these implementations, a list of current and potential appli-
cations, and an overview of the code structure is available [3].

We will first explain the syntax required to code objects such as functions and
bivector fields, so that they can be used as inputs. This is covered in Sect. 2. Then
we start with an overview of examples in Sect. 3, serving as simple illustrations of
how our two modules can be used. We hope to encourage users to perform their
own experiments and computations. The results can be included in research
papers with LATEX code as output, or be used in numerical experiments with
NumPy, TensorFlow or PyTorch outputs, as we explain below.

This research was partially supported by CONACyT and UNAM-DGAPA-PAPIIT-
IN104819. JCRP thanks CONACyT for a postdoctoral fellowship held during the pro-
duction of this work.
1 https://github.com/appliedgeometry/PoissonGeometry.
2 https://github.com/appliedgeometry/NumericalPoissonGeometry.
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2 Installation and Syntax

Our modules work with Python 3. To download the latest stable versions
via pip3,4, run: >>> pip install poissongeometry for PoissonGeometry, and
>>>pip install numericalpoissongeometry for NumPoissonGeometry.

The syntax of PoissonGeometry and NumPoissonGeometry are the same.

Scalar Functions. A scalar function is written using string type expressions.

Example 1. The function f = ax1 + bx2
2 + cx3

3 on R3, with a, b, c ∈ R, should be
written exactly as follows: >>> "a * x1 + b * x2**2 + c * x3**3" .

Here, x1, x2, x3 are symbolic variables that our modules define by default
and that here represent the coordinates (x1, x2, x3) on R3. A character that is
not a coordinate is treated as a symbolic parameter, like a, b, c above.

Multivector Fields. A multivector field is written using python dictionaries
where all the keys are tuples of integers and all the values are string type expres-
sions, i.e., when we have a (non–trivial) multivector A of degree a on Rm

A =
∑

1≤i1<i2<···<ia≤m

Ai1i2···ia ∂

∂xi1

∧ ∂

∂xi2

∧ · · · ∧ ∂

∂xia

,

the keys of the dictionary are tuples (i1, i2, . . . , ia) corresponding to the ordered
indices i1i2 · · · ia of Ai1i2···ia and the values are the corresponding string expres-
sion of the coefficient (scalar function) Ai1i2···ia .

Example 2. The vector field x1
∂

∂x1
+ x2

∂
∂x2

+ x3
∂

∂x3
on R3 it should be written

as: >>> (1,): "x1", (2,): "x2", (3,): "x3" .

Writing keys with null values is not needed.

Example 3. The bivector field x3
∂

∂x1
∧ ∂

∂x2
− x2

∂
∂x1

∧ ∂
∂x3

+ x1
∂

∂x2
∧ ∂

∂x3
on Rm,

m ≥ 3, may be written as: >>> (1,2): "x3", (1,3): "-x2", (2,3): "x1"

.

The order of the indices in each tuple can be changed, according to the
skew–symmetry of the exterior algebra operations.

Example 4. The bivector field x1x2
∂

∂x1
∧ ∂

∂x2
on Rm, m ≥ 2, may be written

as >>> (1,2): "x1 * x2" or as >>> (2,1): "-x1 * x2" , where this last
dictionary corresponds to the bivector field −x1x2

∂
∂x2

∧ ∂
∂x1

.

Differential Forms. The syntax for differential forms is the same as for multi-
vectors fields.

Example 5. The differential form −dx1∧dx2−(x3+x4) dx5∧dx6 on Rm, m ≥ 6,
is written as >>> (1,2): "-1", (5,6): "-(x3 + x4)" .
3 https://pypi.org/project/poissongeometry/.
4 https://pypi.org/project/numericalpoissongeometry/.

https://pypi.org/project/poissongeometry/
https://pypi.org/project/numericalpoissongeometry/
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3 Examples of Our Symbolic and Numerical Methods

First instantiate PoissonGeometry or NumPoissonGeometry by entering the
dimension and the letter/word for the symbolic variable to be used.

Example 6. To work with PoissonGeometry in dim = 6 and coordinates
(x1, . . . , x6):

# Import the module PoissonGeometry with the alias pg for simplicity

>>> from poisson.poisson import PoissonGeometry as pg

# Instantiate the module to work in dimension 6 and with the symbolic variable x (by default)

>>> pg6 = pg(6)

Example 7. To work with NumPoissonGeometry in dim = 6 and coordinates
(z1, . . . , z6):

# Import the module PoissonGeometry with the alias npg for simplicity

>>> from numpoisson.numpoisson import NumPoissonGeometry as npg

# Instantiate the module to work in dimension 6 and with the symbolic variable z

>>> npg6 = npg(6, variable="z")

In NumPoissonGeometry it is necessary to define meshes to evaluate the
objects described in Sect. 2. The inputs have to be written as lists of lists. For
example, as a NumPy array.

Example 8. To create a (106, 6) NumPy array with random samples from a uni-

form distribution over [0, 1) execute >>> numpy.random.rand(10**6, 6) .

3.1 Poisson Brackets

Consider the Poisson bivector field on R6, used in the context of the infinitesimal
geometry of Poisson submanifolds [7]:

Π = x3
∂

∂x1
∧ ∂

∂x2
− x2

∂

∂x1
∧ ∂

∂x3
+ x6

∂

∂x1
∧ ∂

∂x5
− x5

∂

∂x1
∧ ∂

∂x6
+ x1

∂

∂x2
∧ ∂

∂x3

− x6
∂

∂x2
∧ ∂

∂x4
+ x4

∂

∂x2
∧ ∂

∂x6
+ x5

∂

∂x3
∧ ∂

∂x4
− x4

∂

∂x3
∧ ∂

∂x5

Example 9. We can verify that Π is a Poisson bivector field with the function
is poisson bivector as follows:

>>> P = {(1,2): "x3", (1,3): "-x2", (1,5): "x6", (1,6): "-x5",
(2,3): "x1", (2,4): "-x6", (2,6): "x4", (3,4): "x5",
(3,5): "-x4"} # dictionary encoding Π

>>> pg6.is poisson bivector(P) # run is poisson bivector function

True
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Example 10. The Poisson bracket of f = x2
1 + x2

2 + x2
3 and g = x4 + x5 + x6,

induced by Π, can be computed using the function poisson bracket:

>>> f, g = "x1**2 + x2**2 + x3**2", "x4 + x5 + x6"
# string variables encoding f and g

>>> pg6.poisson bracket(P, f, g) # run poisson bracket function

-2*x1*x5 + 2*x1*x6 + 2*x2*x4 - 2*x2*x6 - 2*x3*x4 + 2*x3*x5

Hence, {f, g}Π = −2x1x5 + 2x1x6 + 2x2x4 − 2x2x6 − 2x3x4 + 2x3x5. We can
easily conclude that {f, g}Π = 0 at points x ∈ R6 such that x4 = x5 = x6.

Example 11. We can check this last fact with num poisson bracket, using a
random mesh of shape {a1, b1} × {a2, b2} × {a3, b3} × {1} × {1} × {1}. Here, the
samples ai, bi are uniformly randomly selected from [0, 1). In this example, the
output is a PyTorch tensor (using the flag >>> torch output=True ):

>>> npg6.num poisson bracket(P, f, g, mesh, torch output=True)
# run num poisson bracket function with torch output flag

tensor(-0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0,
-0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0,
-0.0, -0.0 dtype=torch.float64)

Example 12. The output of Example 10 can be obtained in LATEX code, adding
the flag >>> latex format=True :

>>> pg6.poisson bracket(P, f, g, latex format=True)
# run poisson bracket function with latex format flag

"- 2x {1}x {5} + 2x {1}x {6} + 2x {2}x {4} - 2x {2}x {6}
- 2x {3}x {4} + 2x {3}x {5}"

3.2 Hamiltonian Vector Fields

Consider the Poisson bivector field Π = ∂
∂x1

∧ ∂
∂x4

+ ∂
∂x2

∧ ∂
∂x5

+ ∂
∂x3

∧ ∂
∂x6

on
R6, and h = 1

2 (x2
4 + x2

5 + x2
6) − 1

|x2−x1| − 1
|x3−x1| − 1

|x3−x2| on R6 \{x1=x2=x3}.

Example 13. Computes the Hamiltonian vector field Xh with respect to Π:

>>> P = {(1,4): "1", (2,5): "1", (3,6): "1"} # dictionary encoding Π
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>>> h = "
1/2 * (x4**2 + x5**2 + x6**2) # string variable encoding h

- 1 / sqrt((x2 - x1)**2) - 1 / sqrt((x3 - x1)**2)
- 1 / sqrt((x3 - x2)**2)"

>>> pg6.hamiltonian vf(P, h) # run hamiltonian vf method

{(1,): "-x4", (2,): "-x5", (3,): -x6,
(4,): " 1 / ((x1 - x3) * sqrt((x1 - x3)**2))

+ 1 / ((x1 - x2) * sqrt((x1 - x2)**2))",
(5,): " 1 / ((x2 - x3) * sqrt((x2 - x3)**2))

+ 1 / ((x1 - x2) * sqrt((x1 - x2)**2))",
(6,): " 1 / ((x2 - x3) * sqrt((x2 - x3)**2))

+ 1 / ((x1 - x3) * sqrt((x1 - x3)**2))"}

Therefore, the Hamiltonian vector field Xh can be written as:

Xh = −x4
∂

∂x1
− x5

∂

∂x2
− x6

∂

∂x3
+

[
1

(x1−x3)|x1−x3| +
1

(x1−x2)|x1−x2|
] ∂

∂x4

+
[

1
(x2−x3)|x2−x3| +

1
(x1−x2)|x1−x2|

] ∂

∂x5
−

[
1

(x2−x3)|x2−x3| +
1

(x1−x3)|x1−x3|
] ∂

∂x6

Example 14. To evaluate Xh on a mesh in R6 we can use the method num hamil
tonian vf. First we generate a (106, 6) NumPy array following Example 8:

>>> mesh = numpy.random.rand(10**6, 6)
# numpy array with random samples from a uniform distribution over [0,1)

>>> npg6.num hamiltonian vf(P, h, mesh, torch output=True)
# run num hamiltonian vf method with torch output flag

tensor([ [[-5.07], [-3.30], [-9.95], [-1.34], [ 1.28], [5.43]],
...
[[-9.42], [-3.60], [-2.44], [-1.08], [-1.14], [2.23]]],
dtype=torch.float64)

Observe that we only need the algebraic expression for Π and h to carry out
the numerical evaluation (and not Xh explicitly).

3.3 Modular Vector Fields

Consider the Poisson bivector field Π = 2x4
∂

∂x1
∧ ∂

∂x3
+2x3

∂
∂x1

∧ ∂
∂x4

−2x4
∂

∂x2
∧

∂
∂x3

+ 2x3
∂

∂x2
∧ ∂

∂x4
+ (x1 − x2) ∂

∂x3
∧ ∂

∂x4
on R4.

Our method modular vf computes the modular vector field of a Poisson
bivector field on Rm with respect to a volume form fΩ0, where f is a non–
vanishing function and Ω0 the Euclidean volume form on Rm.

Example 15. Computing the modular vector field Z of Π on (R4, Ω0):
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>>> P = {(1,3): "2 * x4", (1,4): "2 * x3", (2,3): "-2 * x4",
(2,4): "2 * x3", (3,4):"x1 - x2"} # dictionary encoding Π

>>> pg4.modular vf(P, 1) # run modular vf method

{ }

We thus conclude that Z = 0, and hence Π is unimodular on all of R4.

Example 16. We can use random meshes to numerically test the triviality of Z:

>>> mesh = numpy.random.rand(10**6, 4)
# (106, 4) numpy array with random samples from a uniform distribution over [0,1)

>>> npg4.num modular vf(P, 1, mesh, torch output=True)
# run modular vf method with torch output flag

tensor([ [[-0.0],[-0.0],[-0.0],[-0.0]], [[-0.0],[-0.0],[-0.0],[-0.0]],
...,
[[-0.0],[-0.0],[-0.0],[-0.0]], [[-0.0],[-0.0],[-0.0],[-0.0]],
dtype=torch.float64)

3.4 Poisson Bivector Fields with Prescribed Casimirs

Consider the functions K1 = 1
2x4 and K2 = −x2

1 + x2
2 + x2

3 on R4.

Example 17. We can construct a Poisson bivector field Π on R4 that admits
K1 and K2 as Casimir functions using the flaschka ratiu bivector function
(with respect to the canonical volume form):

>>> casimirs = ["1/2 * x4", "-x1**2 + x2**2 + x3**2"]
# list containing string expressions for K1 and K2

>>> pg4.flaschka ratiu bivector(casimirs)
# run flaschka ratiu bivector function

{(1,2): "x3", (1,3): "-x2", (2,3): "-x1"}

This yields Π = x3
∂

∂x1
∧ ∂

∂x2
− x2

∂
∂x1

∧ ∂
∂x3

− x1
∂

∂x2
∧ ∂

∂x3
.

Example 18. The is casimir method verifies that K1,K2 are Casimirs of Π:

>>> P = {(1,2): "x3", (1,3): "-x2", (2,3): "-x1"}
# dictionary encoding Π

>>> pg4.is casimir(P, "1/2 * x4"), # run is casimir function

pg4.is casimir(P, "-x1**2 + x2**2 + x3**2")
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True, True

Example 19. To evaluate Π of Example 17 at the ‘corners’ Q4 := {0, 1}4 of the
unit cube in R4 we can use the function num flaschka ratiu bivector. In this
example the output is—by default—a list of dictionaries:

>>> npg4.num flaschka ratiu bivector(functions, Qmesh 4)
# run num flaschka ratiu bivector function with Qmesh 4 a NumPy array encoding Q4

[{(1, 2): 0.0, (1, 3): 0.0, (2, 3): 0.0}, {(1, 2): 0.0, (1, 3): 0.0, (2, 3): 0.0},
...
{(1, 2): 1.0, (1, 3): -1.0, (2, 3): -1.0}, {(1, 2): 1.0, (1, 3): -1.0, (2, 3): -1.0}]

Example 20. The bivector Π from Example 17 can be evaluated on Q4 using
num bivector:

>>> npg4.num bivector(P, Qmesh 4, tf output=True)
# run num bivector method with Qmesh 4 a NumPy array encoding Q4 with tf output flag

tensor([ [[-0.0, 1.0,-1.0,-0.0], [-1.0,-0.0,-0.0,-0.0],
[ 1.0,-0.0,-0.0,-0.0], [-0.0,-0.0,-0.0,-0.0]],

...
[[-0.0, 1.0,-1.0,-0.0], [-1.0,-0.0,-1.0,-0.0],
[ 1.0, 1.0,-0.0,-0.0], [-0.0,-0.0,-0.0,-0.0]] ],

dtype=float64)

The output here is a TensorFlow tensor, invoked via >>> tf output=True .

3.5 Classification of Lie–Poisson Bivector Fields on R3

A Lie–Poisson structure is a Poisson structure induced by the Lie bracket on a
given Lie algebra (see [1,5]).

Consider the Lie–Poisson bivector Π = −10x3
∂

∂x1
∧ ∂

∂x2
+ 10x2

∂
∂x1

∧ ∂
∂x3

−
10x1

∂
∂x2

∧ ∂
∂x3

on R3.

Example 21. To compute a normal form Π0 of Π, run:

>>> P = {(1,2): "-10*x3", (1,3): "10*x2", (2,3): "-10*x1"}
# dictionary encoding Π

>>> pg3.linear normal form R3(P), # run linear normal form R3 function

{(1,2): "x3", (1,3): "-x2", (2,3): "x1"}
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Yielding Π0 = x3
∂

∂x1
∧ ∂

∂x2
− x2

∂
∂x1

∧ ∂
∂x3

+ x1
∂

∂x2
∧ ∂

∂x3
, which simplifies Π.

Example 22. Π is isomorphic to Π0, verified by isomorphic lie poisson R3:

>>> P0 = {(1,2): "x3", (1,3): "-x2", (2,3): "x1"}
# dictionary encoding Πso(3)

>>> pg3.isomorphic lie poisson R3(P, P so3)
# run isomorphic lie poisson function

True

Example 23. To evaluate Π0 at points of Q3 := {0, 1}3 we can use the method
num linear normal form R3:

>>> npg4.num linear normal form R3(P, Qmesh 3)
# run num linear normal form R3 method with Qmesh 3 a NumPy array encoding Q3

[{(1, 2): 0.0, (1, 3): -1.0, (2, 3): 0.0}, {(1, 2): 0.0, (1, 3): 0.0, (2, 3): 1.0},
...
{(1, 2): 1.0, (1, 3): -1.0, (2, 3): -1.0}, {(1, 2): 1.0, (1, 3): -1.0, (2, 3): -1.0}]

Related Work and Conclusion
As far as we know this is the first comprehensive implementation of these

methods. The only other related works are, a Sage implementation of the Schout-
en bracket, a test of the Jacobi identity for a given generalized Poisson bracket [4],
and symbolical and numerical analysis of Hamiltonian systems on the symplectic
vector space R2n [8]. However, they only address specific problems of Poisson
Geometry. We systematically generalised and unified these efforts within the
same scripting language and modules. In terms of development of computational
tools from Differential Geometry, the package GeomStats [6] is a great resource
for computations and statistics on manifolds, implementing concepts such as
Riemannian metrics, estimation, and clustering.

Our work differs in that we compute in (local) coordinates, which is sufficient
for analysing some physical systems or with global operations, like the trace or
coboundary operators. Furthermore, the objects can be defined symbolically
for both modules, allowing exterior calculus operations to be worked out using
a simple syntax. Our modules contribute to the development of computational
methods. They can assist the progress of theoretical aspects of Poisson Geometry
and abet the creation of novel applications. We hope to stimulate the use of these
methods in Machine Learning, Information Geometry, and allied fields.
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Abstract. Contact integrators are a family of geometric numerical
schemes which guarantee the conservation of the contact structure. In
this work we review the construction of both the variational and Hamil-
tonian versions of these methods. We illustrate some of the advantages
of geometric integration in the dissipative setting by focusing on models
inspired by recent studies in celestial mechanics and cosmology.

Keywords: Contact geometry · Contact mechanics · Geometric
integrators · Numerical methods · Celestial mechanics

1 Introduction

With the range of applications of contact geometry growing rapidly, geometric
numerical integrators that preserve the contact structure have gained increasing
attention [5,6,13,14,17,19]. Deferring to the above literature for detailed pre-
sentations of contact systems, their properties and many of their uses, in this
work we will present new applications of the contact geometric integrators intro-
duced by the authors in [6,17,19] to two particular classes of examples inspired
by celestial mechanics and cosmology.

A contact manifold is a pair (M, ξ) where M is a (2n + 1)-dimensional man-
ifold and ξ ⊂ TM is a contact structure, that is, a maximally non-integrable
distribution of hyperplanes. Locally, such distribution is given by the kernel of a
one form η satisfying η ∧ (dη)n �= 0 (see e.g. [8] for more details). The 1-form η
is called the contact form. Darboux’s theorem for contact manifolds states that
for any point on M there exist local coordinates (q1, . . . , qn, p1, . . . , pn, s) such
that the contact 1-form can be written as η = ds − ∑

i pi dqi. Moreover, given
η, we can associate to any smooth function H : M → R a contact Hamiltonian
vector field XH, defined by

LXHη = −Rη(H)η and η(XH) = −H,

where L is the Lie derivative and Rη is the Reeb vector field corresponding to
η [8]. In canonical coordinates the flow of XH is given by

q̇ =
∂H
∂p

, ṗ = −∂H
∂q

− p
∂H
∂s

, ṡ = p
∂H
∂p

− H.
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The flow of a contact Hamiltonian system preserves the contact structure, but
it does not preserve the Hamiltonian:

d
dt

H = −H∂H
∂s

. (1)

Using the this differential equation we can split the contact manifold in invariant
parts for the Hamiltonian dynamics separated by the sub-manifold H = 0, unique
situation in which the Hamiltonian is conserved.

Contact Hamiltonian systems, like symplectic Hamiltonian systems, benefit
from an associated variational principle, which is due to Herglotz: let Q be an
n-dimensional manifold with local coordinates qi and let L : R × TQ × R → R.
For any given smooth curve q : [0, T ] → Q we consider the initial value problem

ṡ = L(t, q(t), q̇(t), s), s(0) = sinit.

Then the value s(T ) is a functional of the curve q. We say that q is a critical
curve if s(T ) is invariant under infinitesimal variations of q that vanish at the
boundary of [0, T ]. It can be shown that critical curves for the Herglotz’ vari-
ational principle are characterised by the following generalised Euler-Lagrange
equations:

∂L
∂qa

− d
dt

∂L
∂q̇a

+
∂L
∂s

∂L
∂q̇a

= 0.

Furthermore, the corresponding flow consists of contact transformations with
respect to the 1-form η = ds − padqa.

This work is structured as follows: after a brief recap of the construction of
contact integrators in Sect. 2, we showcase in Sect. 3 some interesting properties
of the numerical integrators on some explicit examples. Finally, in Sect. 4 we
present some considerations and ideas for future explorations.

2 Contact Integrators: Theory

In this section we summarize the main results of [6,17] on the development of
variational and Hamiltonian integrators for contact systems.

2.1 Contact Variational Integrators (CVI)

There is a natural discretisation of Herglotz’ variational principle [14,17].

Definition 1 (Discrete Herglotz’ variational principle). Let Q be an n-
dimensional manifold with local coordinates qi and let L : R × Q2 × R

2 → R.
For any given discrete curve q : {0, . . . , N} → Q we consider the initial value
problem sk+1 = sk + τL(kτ, qk, qk+1, sk, sk+1), s0 = sinit. Then the value sN is
a functional of the discrete curve q. We say that q is a critical curve if

∂sN

∂qk
= 0 ∀k ∈ {1, . . . , N − 1} .
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From this, one can derive the discrete generalised Euler-Lagrange equations. As
in the conventional discrete calculus of variations, they can be formulated as the
equality of two formulas for the momentum [12].

Proposition 1. Let

p−
k =

∂qkL((k − 1)τ, qk−1, qk, sk−1, sk)

1− τ∂skL((k − 1)τ, qk−1, qk, sk−1, sk)
, p+k = − ∂qkL(kτ, qk, qk+1, sk, sk+1)

1 + τ∂skL(kτ, qk, qk+1, sk, sk+1)
.

Then solutions to the discrete Herglotz variational principle are characterised by
p−

k = p+k . Furthermore, the map (qk, pk, sk) �→ (qk+1, pk+1, sk+1) induced by a
critical discrete curve preserves the contact structure ker(ds − padqa).

Without loss of generality it is possible to take the discrete Lagrange function
depending on only one instance of s: L(kτ, qk, qk+1, sk). Then the discrete gen-
eralised Euler-Lagrange equations read

∂qkL(kτ, qk, qk+1, sk) + ∂qkL((k − 1)τ, qk−1, qk, sk−1) (1 + τ∂skL(kτ, qk, qk+1, sk)) = 0 .

For a discrete Lagrangian of the form

L(kτ, qk, qk+1, sk) =
1

2

(qk+1 − qk

τ

)2

− V (qk, kτ) + V (qk+1, (k + 1)τ)

2
− F (sk, kτ),

which includes all the examples treated below, the CVI is explicit and takes the
remarkably simple form

qk+1 = qk − τ2

2
∂qk

V (qk, kτ) + pk

(

τ − τ2

2
∂sk

F (sk, kτ)
)

,

sk+1 = sk + τL(kτ, qk, qk+1, sk),

pk+1 =

(
1 − τ

2∂sk
F (sk, kτ)

)
pk − τ

2

(
∂qk

V (qk, kτ) + ∂qk+1V (qk+1, (k + 1)τ)
)

1 + τ
2∂sk+1F (sk+1, (k + 1)τ)

.

Higher order CVIs can be constructed with a Galerkin discretisation [6,14].

2.2 Contact Hamiltonian Integrators (CHI)

In [6], the authors derive a contact analogue of the symplectic integrators intro-
duced by Yoshida [18] for separable Hamiltonians.

Proposition 2 [6]. Let the contact Hamiltonian H be separable into the sum
of n functions φj(q, p, s), j = 1, . . . , n. Assume that each of the vector fields Xφj

is exactly integrable and denote its flow by exp(tXφj
). Then the integrator

S2(τ) = e
τ
2 Xφ1 e

τ
2 Xφ2 · · · eτXφn · · · e τ

2 Xφ2 e
τ
2 Xφ1 ,

is a second-order contact Hamiltonian integrator (CHI) for the flow of H.
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Note that exact integrability is not a necessary condition in general. The same
construction gives in fact rise to contact compositional integrators in a straight-
forward manner, but we will not digress further on this.

Starting from Proposition 2, it is possible to construct CHIs of any even
order: the construction is presented in detail in [6], where it was also shown
how to use the modified Hamiltonian in order to obtain error estimates for the
integrator.
For a contact Hamiltonian of the form

H =
p2

2︸︷︷︸
C

+V (q, t)
︸ ︷︷ ︸

B

+ f(s, t)
︸ ︷︷ ︸

A

, (2)

one obtains for a time step τ the following discrete maps

A :

⎧
⎪⎪⎨

⎪⎪⎩

qi = qi−1

pi = pi−1
f(si,ti−1)

f(si−1,ti−1)∫ si
si−1

dξ
f(ξ,ti−1)

= −τ

B :

⎧
⎪⎨

⎪⎩

qi = qi−1

pi = −V ′(qi−1, ti−1)τ + pi−1

si = si−1 − V (qi−1,ti−1)

2
τ

C :

⎧
⎪⎪⎨

⎪⎪⎩

qi = pi−1τ + qi−1

pi = pi−1

si = si−1 +
p2

i−1
2

τ

The time is advanced by an extra map, D : ti = ti−1 + τ . Altogether, this can be
seen in fluid dynamical terms as a streamline approximation of each piece of the
Hamiltonian. All the examples in this paper are of the form (2) with an explicit
map A.

3 Contact Integrators: Applications

Until recently, the main focus in the literature on contact mechanical systems
has been on models with linear dependence on the action, see e.g. [4,17]. In
general, however, for a contact system to have non-trivial periodic trajectories
in the contact space, ∂H

∂s has to change sign. This can be achieved either with a
time-varying damping coefficient, as is the case in [11] and in our first example
below, or by including a non-linear dependence on the action, as is done in [10]
and in our second example.

Even though the contact oscillator that we use in the simulation is of purely
theoretical interest and not associated to physical systems (that we know of), the
reduction presented in [15,16] shows that contact Hamiltonians with quadratic
dependence on the action appear naturally in the study of the intrinsic dynamics
of Friedman-Lemaitre-Robertson-Walker and Bianchi universes in cosmology.

The source code for all the simulations is provided in [7].

3.1 Perturbed Kepler Problem

Many relevant systems in celestial mechanics fall in the realm of Newtonian
mechanics of systems with time-varying non-conservative forces [6]. Their equa-
tions of motion are the solution of the Newton equations

q̈ +
∂V (q, t)

∂q
+ f(t)q̇ = 0 . (3)
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A direct computation, shows that (3) coincide with the equations of motion of
the contact Hamiltonian

H(p, q, s, t) =
n∑

a=1

p2a
2

+ V (q, t) + f(t) s. (4)

Since (4) is separable in the sense of Proposition 2, one can directly apply the
CVI and CHI to such Hamiltonian systems. Even in presence of singularities,
like in the perturbed Kepler problem re-discussed here, contact integrators show
a remarkable stability also for large time steps.

Here we consider a Kepler potential V (qa, t) = −α/|q|, α ∈ R, with an
external periodic forcing f(t)q̇ = α sin(Ωt)q̇. This choice of the perturbation
is selected in order to have some sort of energy conservation on average, to
emphasise the stability of the methods and their applicability to time-dependent
problems.

It is well-known that, in presence of Keplerian potentials, Euclidean integra-
tors become unstable for long integration times or large time steps: a Runge-
Kutta integrator drifts toward the singularity and explodes in a rather short
amount of iterations.

Fig. 1. Long-time integration of a perturbed Kepler problem with time step τ ∈ {0.1}.

In Fig. 1, the same perturbed Kepler problem with Ω = π and α = 0.01
is integrated over a very long time interval [0, 200.000] with the second-order
contact integrators and a fixed-step fourth-order Runge-Kutta (RK4). One can
clearly observe the long-time stability of the contact method. The price to pay
for this is the introduction of an artificial precession of the trajectory. This is
more evident in Fig. 2: here the problem with Ω = π and α = 0.05 is integrated
with time step τ = 0.3 with the aforementioned integrators and with a 6th order
CHI from [6].

3.2 Contact Oscillator with Quadratic Action

Motivated by the analysis in [10] and [15,16], in this section we study contact
Hamiltonians of the form H(p, q, s) =

∑n
a=1

p2
a

2 + γ s2

2 + V (qa). In particular,
we consider the 1-dimensional quadratic contact harmonic oscillator, V (q) =
+ q2

2 −C, γ,C > 0. As shown by Eq. (1), the value of the contact Hamiltonian is
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Fig. 2. Integration of a perturbed Kepler problem with time step τ = 0.3. The plot is
truncated after the first 1.000 units of time to emphasize the blow-up of the Runge-
Kutta 4 method. The contact integrators present no visible difference for the whole
integration time.

not preserved unless its initial value is equal to zero [3]. This generally defines
an (hyper)surface in the contact manifold that separates two invariant basins
for the evolution. In the case at hand, the surface H = 0 is an ellipsoid, or a
sphere with radius

√
2C if γ = 1. Furthermore, the quadratic contact oscillator

presents two equilibrium points of different nature on H = 0: the stable north
pole N =

(
0, 0,

√
2Cγ−1

)
and the unstable south pole S =

(
0, 0,−

√
2Cγ−1

)
.

In the case of geometric integrators, the explicit nature of the modified Hamil-
tonian allows to analyze this process and confirm that H = 0 remains, for τ
small enough, bounded and close to the original unperturbed surface. For our
particular example, a direct analysis of the fixed points of the integrator allows
to control analytically the equilibrium points of the numerical map: these are
simply shifted to

(
0, 0,± 1

2

√
8Cγ−1 + τ2C2

)
, and maintain their stability.

In Fig. 3 we show the dynamics of trajectories starting on, outside and inside
H = 0. The deformed invariant surface is so close to the sphere that they are

Fig. 3. The yellow sphere of radius 6 is the invariant surface H = 0, for γ = 1 and
C = 18. The trajectories are coloured according to their initial conditions: blue starts
on the surface, purple outside and green inside. The half-line below S is an unstable
invariant submanifold of the system. Left is the CHI, right the CVI, both of 2nd order.
(Color figure online)
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Fig. 4. Trajectory with initial conditions (q0, p0, s0) = (0, −1, −7) integrated with dif-
ferent time steps. Close to the unstable fixed point (0, 0, −6), the system becomes stiff:
here the Runge-Kutta 4 integrator shows a higher degree of instability compared to
the contact methods.

Table 1. Integration of a contact oscillator with τ = 0.1 and t ∈ [0, 500].

Integrator type (order) Mean time (from 10 runs) Standard deviation

CHI (2nd) 0.0986 ±0.0083

CVI (2nd) 0.0724 ±0.0052

Runge-Kutta (4th) 0.1375 ±0.0075

Midpoint (2nd) 0.0363 ±0.0031

practically indistinguishable even from a close analysis of the three dimensional
dynamical plot.

The unstable south pole provides an excellent opportunity to compare the
performance of our low-order integrators against the common Runge-Kutta 4
method: initial conditions close to the unstable point are subject to fast acceler-
ations away from the sphere, making the problem stiff. One can clearly see this
in Fig. 4: for very small time steps we see that the trajectories are all converging
towards the north pole, but as the time step gets larger we see the instability
overcoming the Runge-Kutta integrator first and for larger τ also the CVI. For
this problem, in fact, the CHI displays a remarkable stability for larger times
steps. Moreover, in terms of vector field evaluations, the low-order contact inte-
grators are comparable to an explicit midpoint integrator [19] and this reflects
also in the comparable running time (see Table 1).

4 Conclusions

In this manuscript we discussed some new directions for contact integrators.
Even though from a physical perspective we presented basic examples, they show
some of the generic advantages provided by contact integrators. In particular,
they show the remarkable stability of our low-order integrators in comparison to
standard higher-order methods.

The study of contact integrators started in [6,17,19] is still at its early stages.
The recent work [14] has shown that they are underpinned by a beautiful geo-
metric construction which appears to be closely related to non-holonomic and
sub-Riemannian systems and which will require further investigation on its own.
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Furthermore, contact integrators for systems with non-linear dependence in the
action might boost the analysis of new systems that can be of interest both for
their dynamical structure and for their modelling capabilities, as it is already
happening with their use in molecular dynamics [2], Monte Carlo algorithms [1]
and relativistic cosmology [9,15,16].
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Abstract. The object of this article is to introduce a covariant descrip-
tion for a thermo-mechanical continuum. The conservation equations are
written in this context and a constitutive model is derived for a reversible
transformation. It is then possible to formulate a weak form of the prob-
lem to be solved for the finite transformations of a solid. A finite-element
computation is next proposed using this approach for thermo-mechanical
problems. The advantages of such a formulation are highlighted through-
out the article.

Keywords: Space-time formalism · Covariance · Thermo-mechanics of
continua

1 Introduction

The notion of frame-indifference, classically used in continuum mechanics, can be
advantageously replaced with the principle of covariance introduced by Einstein
in his theory of relativity. Since the transformations corresponding to changes of
observer involve space and time, we explore the possibilities offered by a space-
time description of thermo-mechanical problems. This approach, developed in
previous articles [6,7,9] is first briefly introduced. Then, we express the first and
second principles of thermodynamics in this framework and derive a covariant
form for an equivalent to Clausius-Duhem Inequality. A constitutive model is
deduced and a weak form of the problem is proposed. Then, space-time numerical
simulations are performed.

The advantages of the approach are: i) the space-time approach enables to
write covariant (= frame indifferent) conservation and constitutive equations, as
opposed to Galilean relativity, which is limited to inertial frame ii) the energy
conservation and the momentum equation correspond to the conservation of
energy-momentum: the numerical solution verifies thus automatically the con-
servation of energy; iii) the numerical resolution is performed in one step, time
being considered as another mesh coordinate.
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2 Framework for a Space-Time Formulation of
Continuum Mechanics

Consider a space-time domain Ω of a four-dimensional differentiable manifold M
with an ambient metric tensor ggg of signature (1,−1,−1,−1). Let M be a point
in Ω, called an event and corresponding to a representative elementary hyper-
volume of the system. Let {xμ} , μ = 1, 2, 3, 4, be a local coordinate system in an
open neighborhood containing M . Continuously distributed state variables and
functions are introduced to represent the thermodynamic state of the system
under consideration.

A motion is defined by world-lines in Ω, the flow associated to the four-
velocity field uuu, the vector tangent to the world-line at each event:

uμ =
dxμ

ds
with ds2 = gμν dxμdxν . (1)

The principle of covariance states that the formulation of the laws of physics
should be independent of observers. The most appropriate geometrical frame-
work to describe this situation is the so-called fiber bundle structure.

A natural basis in the tangent space at M , TM (M), is given by the set of
4 derivations (∂/∂xμ). Under a local change of the coordinate system, xμ →
yν (xμ), a 4D basis, defining an observer, transforms as ∂

∂xμ →
(

∂xκ

∂yν

)
∂

∂xκ =(
∂

∂yν

)
. Consider now all possible local bases defined as eμ = Xν

μ(x) ∂
∂xν . The

matrix Xν
μ has to be non-singular and therefore belongs to the group GL(4,R).

This group acts naturally on the right by the group multiplication of the matri-
ces. Therefore, the set M × GL(4,R) has the natural structure of a principal
fibre bundle over M, named the principle bundle of frames. Its dimension is
equal to dimM + dim (GL(4,R)) = 20.

We then define two specific observers: the inertial observer, an orthonormal
basis for which the components of the metric tensor ggg are equal to the compo-
nents of Minkowski’s metric and a proper observer related to the evolving matter
for which the components of the four-velocity are (1, 0, 0, 0) for all events.

By construction, the velocity vector, is a unit vector in the direction of time.
The projection on time of a vector ααα is thus αμuμ; the projection on space of
ααα is then αμ = αν(gμν − uμuν). These projection operations can be generalized
to be applied to tensors of higher ranks; in this document, an over-line indicates
that the quantity is a projection on space.

We will use the Lie derivative with respect to the velocity field noted Lu(.)
and the covariant derivative with a metric connection noted ∇μ(.).

We define a body B as a 3D domain of Ω. Consider the congruence of the
world-lines that cross the domain B. This set of world-lines is called a world-
tube and defines the motion of B. We define the inertial motion of a body B
corresponding to a motion for which the proper observer is inertial. The events
of this motion are noted Xμ. Define a bijective transformation φ such that
xμ = φ(Xν) with existing and continuous derivatives. The tangent application
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of φ is given by dxμ =
∂xμ

∂Xν
dXν . The transformation φ is a diffeomorphism that

defines another motion of B. Define the four-dimensional Cauchy deformation
tensor bbb as:

bμν = gαβ
∂Xα

∂xμ

∂Xβ

∂xν
. (2)

Define the 4D Eulerian strain tensor eee as eμν =
1
2
(gμν − bμν) and the rate of

deformation ddd as dμν =
1
2
Lu(gμν); it can be verified that ddd = ddd and Lu(eμν) =

1
2Lu(gμν).

3 Energy-Momentum Tensor

The energy-momentum tensor T , a symmetric covariant second-rank tensor, is
introduced, defined for each event [5]. The projection on space and time of this
tensor leads to the decomposition:

Tμν = Uuμuν + (qμuν + qνuμ) + Tμν
σ . (3)

The scalar density U is the energy density, the result of the double projection of T
on the time axis: U = Tμνuμuν . The vector q is the result of the projection of T
on space and time: qμ = (δμ

α−uμuα)Tαβuβ ; its interpretation is discussed in the
next Section. The tensor Tσ is the result of the double projection of T on space:
Tμν

σ = (δμ
α − uμuα)(δν

β − uνuβ)Tαβ , interpreted as a stress tensor. Because
mass is equivalent to energy in relativistic theories [8], the tensor Uuμuν can be
interpreted as the mass energy-momentum tensor and we have U = ρ̃c

(
c2 + eint

)
where ρ̃c is the rest mass density, a scalar density of weight one and eint is a
scalar quantity, the specific internal energy. The principle of conservation of the
energy-momentum tensor states that:

∇νTμν = 0. (4)

The projection on time of the equation above corresponds to the conservation of
energy while the projection on space corresponds to the momentum principle [4].
Also, we consider that there is no coupling between the energy-momentum tensor
and the metric tensor. The space is thus flat: without space-time curvature.

4 Space-Time Thermodynamics

We propose to construct a space-time thermodynamics in the context of the
theory of irreversible processes. We therefore introduce the entropy current as
a field on space-time, represented by the vector S. The decomposition of this
vector on time and space, Sν = ρ̃cηuμ+S

μ
, leads to the definition of the quantity

ρ̃cη, the entropy per unit volume, a scalar density where η is the specific entropy;
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S
μ

is the projection on space of the entropy vector. The generalization of the
second principle of thermodynamics is:

∇μSμ ≥ 0. (5)

Following the 3D classical approach, it is supposed that the transfer of entropy
to a 3D volume is only due to heat. We further make the hypothesis that S

μ
=

(δμ
α−uμuα)Tαβuβ = qμ

θ where θ is the absolute temperature, a strictly positive
scalar; qμ, the projection of the energy-momentum tensor (see Eq. 3) is thus the
heat flux. These definitions are equivalent to the one proposed in [3] in the
case of Galilean transformations. After some derivation, the generalized second
principle of thermodynamics may be written, with the use of the conservation
of the rest mass (∇μ(ρ̃cu

μ) = 0):

θρ̃cLu(η) + ∇μqμ − qμ

θ
∇μθ ≥ 0. (6)

To construct a covariant Clausius-Duhem inequality we substract Eq. 6 from the
equation of conservation of energy-momentum projected on time ( uμ∇νTμν =
0) to obtain:

ρ̃c

(
θLu(η) − Lu(eint)

)
+ Tμν

σ dμν + qμ
(
aμ − ∇μθ

θ

) ≥ 0 (7)

where aμ = uλ∇λ(uμ) is the acceleration. We next introduce the Helmholtz
specific free energy Ψ = eint − θη and Eq. 7 becomes:

Tμν
σ dμν − ρ̃c

(
Lu(Ψ) + ηLu(θ)

)
+ qμ

(
aμ − ∇μθ

θ

) ≥ 0. (8)

5 A Space-Time Constitutive Model for Thermo-Elastic
Solids

A constitutive model has next to be written, describing the behavior of a material
to close the thermo-mechanical problem. In this work, we limit the scope to
isotropic thermo-elastic transformations and consider a specific free energy of
the form [2]:

Ψ(θ, II , III) = − C
2θ0

(θ − θ0)2 − 3
κα

ρ̃c
(θ − θ0)II +

λ

2ρ̃c
(II)2 +

μ

ρ̃c
III (9)

where θ0 is a reference temperature, C is a constant scalar equivalent to the
specific heat and where the coefficients (κα), λ and μ are scalar densities; the
quantities II = eμνgμν and III = eμνeμν are two invariants of the projected
strain tensor e. With the fact that Lu(II) =

(
gμν −2eμν

)
dμν , Lu(III) = 2(eμν −

eμ
β eβν−eν

β e μβ)dμν and Lu(C) = 0, Clausius-Duhem Inequality (Eq. 8) is verified
for any path thus:
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qμ (∇μθ − θaμ) ≤ 0 (10)

η = 3
κα

ρ̃c
eμνgμν +

C
θ0

(θ − θ0) (11)

T μν
σ = −3κα(θ − θ0)g

μν + λeγβgγβgμν + 2μeμν − 3κα(θ − θ0)
(

eγβgγβgμν − 2eμν
)

+ λ

(

−2eγβgγβeμν +

(

eγβgγβ
)2

2
gμν

)

+ 2μ
(

eγβeγβgμν − 2
(

eμ
βeβν

)sym)

(12)

because a reversible case is considered. Equation 12 corresponds to a thermo-
dynamically compatible constitutive model for isotropic thermo-elastic transfor-
mations.

6 Formulation of the Space-Time Problem for Isotropic
Thermo-Elastic Transformations

We now propose a four-dimensional weak formulation for the case of the isotropic
reversible material presented in Sect. 5. Define a virtual vector r∗. The conser-
vation of the energy momentum tensor is then written:

∫

Ω

r∗
ν∇μTμνdΩ = 0 ∀r∗. (13)

To solve the problem, we need to find θ(xμ) and u(xμ) such that:
∫

∂Ω

[Tμνnμr∗
ν ] dV −

∫

Ω

[Tμν∇μr∗
ν ] dΩ = 0 ∀r∗ (14)

where TTT is given by Eq. 3, TσTσTσ is given by Eq. 12, the internal energy is (with the
definition of the free energy in Sect. 4 and Eq. 11):

eint =
C

2θ0
(θ2 − θ20) + 3θ0

κα

ρ̃c
(eμνgμν) +

λ

2ρ̃c
(eμνgμν)2 +

μ

ρ̃c
(eμνeμν) (15)

and we choose for the heat flux qμ = Kgμν (∇νθ − θaν) where K a constant
scalar, the thermal conductivity [4]. The Dirichlet boundary conditions are given
by θ(xμ

D) and u(xμ
D) on ∂ΩD; the Neumann boundary conditions are given by

Tμν(xμ
N )nν(xμ

N ) = Tμ
N on ∂ΩN .

The equations above correspond to a non-linear covariant weak formulation
of a problem for the finite transformations of an isotropic thermo-elastic solid.
When solved, we obtain the field of temperature and velocity that verify both
the conservation of energy and the principle of momentum.
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7 Space-Time Finite Element Computation

To illustrate the approach, we propose here a space-time finite-element resolution
of a thermo-mechanical problem. The system under consideration is 2D plate
made of Aluminum with a hole in its center; the material is thermo-elastic. A
displacement in the y direction is imposed on two opposite edges of the plate and
an increase in temperature is imposed on the edge of the hole (see Fig. 1). Both
the displacement amplitude and the temperature increase linearly with time. The
corresponding finite-element discretization is presented in Fig. 1. The space-time
volume is constructed with the 2D plate and the third direction represents time.
Note that the mesh is not regular in time: it is refined where the gradients are
expected to be important (both in time and space) and coarse where the solution
is expected to be smooth. The resolution is performed in one step, for space and
time: there is no need for a finite discretization in time. We use Fenics [1] for
the resolution.

The results of the finite-element computation are presented in Fig. 2 and 3.
The solution gives the evolution of the temperature and the displacements in
space and time. We present here the internal energy and the yy component of
the stress, two components of the energy-momentum tensor; a comparison is
proposed with a solution obtained without thermal loading.

Fig. 1. Left: geometry of the plate (2 m high and 4 m wide), the hole has a radius of
10 cm; a displacement is imposed in the y direction and an increase in temperature is
imposed on the edge of the hole. Right: mesh of the system; only one quarter of the
plate is discretized using the symmetries of the problem; the 2D plate is extruded in
the time direction to construct a space-time volume; the final time is 10 000 s.
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Fig. 2. Space-time solution fields for, from left to right, the temperature and displace-
ments (y and z direction) in the plate.

Fig. 3. Space-time solution fields for components of the energy-momentum tensor in
the plate; from left to right: the internal energy and the yy component of the stress.
The figure on the right presents the yy component of the stress for a computation for
which there is no temperature variation imposed on the edge of the hole.
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Abstract. Entropic dynamics is a framework for defining dynamical
systems that is aligned with the principles of information theory. In an
entropic dynamics model for motion on a statistical manifold, we find
that the rate of changes for expected values is linear with respect to the
gradient of entropy with reciprocal (symmetric) coefficients. Reciprocity
principles have been useful in physics since Onsager. Here we show how
the entropic dynamics reciprocity is a consequence of the information
geometric structure of the exponential family, hence it is a general prop-
erty that can be extended to a broader class of dynamical models.

Keywords: Exponential family · Information theory · Information
geometry · Entropic dynamics

1 Introduction

Entropic dynamics (EntDyn) is a method to characterize dynamical processes
that is aligned to the principles of information theory taking into account the
differential geometric structure of probability distributions given by information
geometry (IG) [2,3,6,16,17]. EntDyn has been successful in deriving dynamical
processes in fundamental physics [5,7,11], but has also been expanded to other
fields such as renormalization groups [20], finance [1], machine learning [8] and
network science [10] some advances have also been made towards EntDyn appli-
cations in ecology [21]. Particularly in [22] EntDyn is presented as a general
method for dynamical systems of probability distributions in the exponential
family – also referred to as Gibbs or canonical distributions. Under a particular
choice of sufficient statistics, the space of exponential families is parametrized
by the expected values of these sufficient statistics and the Riemmanian metric
obtained from IG is the covariance matrix between the sufficient statistics [6,17].
The EntDyn obtained in [22] is a diffusion process in the exponential family sta-
tistical manifold.

Here we focus on a particular consequence of the EntDyn presented in [22]:
the geometrical reciprocity in the linear regime. Meaning, as the dynamics
evolves, the time derivative of the expected value of parameters is proportional
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to the gradient of entropy with reciprocal (symmetric) values. In the present arti-
cle, we show how this reciprocity is a consequence of IG. This relates to what
is known, in physics, as Onsager reciprocity principle (ORP) [18] – also referred
to as Onsager reciprocal relations – for non-equilibrium statistical mechanics. A
brief review of ORP is presented in Sect. 4 below. Moreover, a diffusion process
that reduces to a reciprocal relation in the linear regime is known in physics as
the Onsager-Machlup process [19]. Unlike in EntDyn, the reciprocity found by
Onsager is a consequence of the time reversal symmetry in an underlying dynam-
ics, hence ORP is not trivially generalizable to dynamical processes beyond
physics.

Gibbs distributions arise in equilibrium statistical mechanics as the maxi-
mum entropy distributions obtained when one chooses the conserved quantities
in the Hamiltonian dynamics as sufficient statistics [12]. The generality of maxi-
mum entropy and the concept of sufficiency ensures that the exponential family
is not limited to thermodynamics. Since both the information theory and the IG
approach guiding EntDyn are consequences of fundamental concepts in proba-
bility theory, the reciprocity presented here is applicable for dynamical systems
beyond physics. Just like ORP found applicability in non-equilibrium statistical
mechanics1, awarding Onsager with a Nobel prize in 1968, it is remarkable that
a similar principle arises from a geometric framework.

The layout of the present article is as follows: In the following section we will
establish notation and give a brief review on exponential family/Gibbs distri-
butions and their geometric structure endowed by IG. In Sect. 3 we will review
the assumptions and results in [22], obtaining the transition probabilities and
expressing EntDyn as a diffusion process on the statistical manifold. In Sect. 4
we comment on the similarities and differences in the reciprocity emerging from
EntDyn and the one found by Onsager.

2 Background - Exponential Family

We start by defining the exponential family of distributions ρ for a given set X
with elements x ∈ X :

ρ(x|λ) .=
q(x)
Z(λ)

exp

[
−

n∑
i=1

λia
i(x)

]
, (1)

which can be obtained either as a result of maximization of entropy (as in [22]) or
as a consequence of sufficiency (as in [17]). In (1) the functions ai – indexed up to
a finite number n – are the sufficient statistics, the set of real values λ = {λi} are
the parameters for the exponential family (or the Lagrange multipliers arising

1 It is also relevant to say that information theory ideas have been applied to nonequi-
librum statistical mechanics (see [13] and posterior literature on maximum caliber
e.g. [23]) which, unlike EntDyn, are approaches based on Hamiltonian dynamics.
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from maximization of entropy), q(x) is an underlying measure (or the maximum
entropy prior) and Z(λ) is a normalization factor computed as

Z(λ) =
∫

dx q(x) exp
[−λia

i(x)
]
. (2)

Here and for the remainder of this article we use the Einstein’s summation
notation, AiBi =

∑n
i=1 AiBi. Details on how many well-known distributions

can be put in the exponential form (1) are found in [17].
The expected values of sufficient statistics ai(x) in the exponential family

can be found using

Ai .= 〈ai(x)〉 = − ∂

∂λi
log Z(λ). (3)

Moreover, the entropy for ρ in (1) with a prior given by q(x) is

S(A) .= S[ρ|q] = −
∫

dx ρ(x|λ(A)) log
ρ(x|λ(A))

q(x)

= λi(A)Ai + log Z(λ(A)).
(4)

Thus, the entropy of the exponential family, as a function of the expected values
A = {Ai}, is the Legendre transform of − log Z. It also follows that λi = ∂S

∂Ai .
Hence, each set of expected values A corresponds to a single λ thus we will use
the expected values A as coordinates for the space of probability distributions
ρ(x|λ(A)) written, for simplicity, as just ρ(x|A). IG consists of assigning a Riem-
manian geometry structure to the space of probability distributions. Meaning, if
we have a family of probability distributions parametrized by a set of coordinates,
P (x|θ) where, θ = {θi}, the distance d� between the neighbouring distributions
P (x|θ+dθ) and P (x|θ) is given by d�2 = gijdθidθj where gij is the Riemmanian
metric. For probability distributions the only metric that is appropriate2 is the
Fisher-Rao information metric (FRIM)

gij =
∫

dx P (x|θ)∂ log P (x|θ)
∂θi

∂ log P (x|θ)
∂θj

. (5)

For the exponential family – θ = A and P (x|θ) = ρ(x|A) in (5) – FRIM can be
expressed in the useful form

gij = − ∂2S

∂Ai∂Aj
. (6)

Having the exponential family and its IG established, we will explain the EntDyn
obtained from it.

2 The formal argument is that, as proven by Čencov ( , also written in Latin
alphabet as Chentsov or Cencov) [9], FRIM is the only metric that is invariant
under Markov embeddings, see also [3]. Therefore, it is the only metric leading to a
geometry consistent with the grouping property of probability distributions.
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3 Entropic Dynamics on the Exponential Family
Manifold

The dynamical process in EntDyn consists of evolving the probability distri-
bution for a system in an instant ρ(x|A) to the distribution describing a later
instant ρ(x′|A′). This is done by assigning a probability P (A) from which the
system’s state probabilities can be obtained as

P (x) =
∫

dA P (A)ρ(x|A), (7)

which means that the conditional probability of x given A has to be of the expo-
nential form defined in (1). Under EntDyn, we find the transition probabilities
P (A′|A) through the methods of information theory – maximizing an entropy.
As we will see below, the constraint presented establishes that the motion does
not leave the manifold of exponential distributions.

3.1 Obtaining the Transition Probability

The entropy we opt to maximize must be so that the dynamical process
accounts for both the change in state of the system – evolving from x to x′ –
and the change in the underlying distribution – from ρ(x|A) to ρ(x′|A′). Hence,
it is the entropy for the joint transition, P (x′, A′|x,A), given by

S[P |Q] = −
∫

dx′dA′ P (x′, A′|x,A) log
(

P (x′, A′|x,A)
Q(x′, A′|x,A)

)
, (8)

where Q is the prior which we will determine below. Since the maximization of
S will define the dynamics, we will call it the dynamical entropy. One should not
confuse the entropy for the exponential distribution, S in (4), with the dynamical
entropy, S in (8).

The prior for the maximization of (8) must implement a continuous motion
– meaning implementing short steps so that A′ converges in probability to A.
As explained in [22], the least informative prior that does so is

Q(x′, A′|x,A) ∝ g1/2(A′) exp
(

− 1
2τ

gijΔAiΔAj

)
, (9)

where ΔAi = A′i − Ai and g = det gij . The parameter τ establishes continuity
– ΔA converges to 0 in probability when τ → 0. Later we will see how τ takes
the role of time.

The constraint for the maximization of (8) that implements a motion that
does not leave the exponential manifold is

P (x′, A′|x,A) = P (x′|x,A,A′)P (A′|x,A) = ρ(x′|A′)P (A′|x,A). (10)

which means that the posterior distribution for x′ has to be conditioned only on
A′ and to be in the exponential form (1).
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The transition that maximizes (8) with the prior (9) and under (10) is

P (x′, A′|x,A) ∝ ρ(x|A′)e−S(A)g1/2(A′) exp
(

− 1
2τ

gijΔAiΔAj

)
. (11)

In order to obtain the transition probability from A to A′, we must identify
that from conditional probabilities in (10) we have P (A′|x,A) = P (x,A′|x,A)

ρ(x′|A′)
then apply a linear approximation of S(A′) near S(A). As explained in [22] this
results in

P (A′|A) =
g1/2(A′)
Z(A)

exp
(

∂S

∂Ai
ΔAi − 1

2τ
gijΔAiΔAj

)
, (12)

where Z(A) is a normalization factor. In the following subsection, we will explain
how this transition probability results in a diffusion process on the statistical
manifold.

3.2 Entropic Dynamics as a Diffusion Process

Since according to (9) τ → 0 for short steps, we will compute the moments for
ΔA in (12) up to order τ obtaining, as in [22],

〈
ΔAi

〉
= τgij ∂S

∂Aj
− τ

2
Γ i + o(τ), (13)

where the upper indexes in g to represent the inverse matrix, gijg
jk = δk

i , Γ i =
Γ i

jkgjk and Γ i
jk are the Christoffel symbols. In [22] we also show that the second

and third moments of ΔA are〈
ΔAiΔAj

〉
= τgij + o(τ) and

〈
ΔAiΔAjΔAk

〉
= o(τ). (14)

The rules for a change from A to A′ must be the same for a posterior change
from A′ to A′′. To keep track of the accumulation of changes, we will design the
transitions as a Markovian process. Time is introduced so that it parametrizes
different instants, meaning P (A) = Pt(A) and P (A′) = Pt′(A) for t′ > t. Two
important consequences of this dynamical design are: (i) time is defined as an
emerging parameter for the motion – the system is its own clock – and (ii) the
dynamic is Markovian by design, rather than proven to be a Markov chain in an
existing time. The way to assign the time duration, Δt = t′ − t, so that motion
looks the simplest is in terms of its fluctuations, meaning Δt

.= τ ∝ gijΔAiΔAj .
Using τ as the time duration, the moments calculated in (13) and (14) are

what is known as smooth diffusion (see e.g. [15]). Therefore the dynamics can be
written as a Fokker-Planck (diffusion) equation which written in invariant form
is (see [22])

∂p

∂t
= − 1

g1/2

∂

∂Ai

(
g1/2pvi

)
, where vi = gij ∂S

∂Aj
− gij

2p

∂p

∂Aj
, (15)
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and p is the invariant probability density p(A) .= P (A)√
g(A)

. The first term for

vi in (15) is the diffusion drift velocity – related to the average motion in the
diffusion process – while the second term is the osmotic velocity – guided by
the differences in probability density. The drift velocity is linear with respect to
the gradient of entropy, ∂S

∂Ai , with symmetric proportionality factors – since the
metric tensor is symmetric – hence, we say that the drift velocity is reciprocal to
the gradient of entropy. In the following section we will make further comments
on reciprocity in both EntDyn and ORP.

4 Reciprocity

In Onsager’s approach to nonequilibrim statistical mechanics [18], we suppose
that a thermodynamical system is fully described by a set of parameters ξ evolv-
ing in time ξ(t) = {ξi(t)}. ORP states that, near an equilibrium point ξ0, the
rate of change for ξ is reciprocal to the entropy gradient, meaning

dξi

dt
= γij ∂S

∂ξj
(16)

where γij = γji and S is the thermodynamical entropy – in mathematical terms
it is the Gibbs distribution entropy (4) written in terms of ξ.

In ORP, the equilibrium value, ξ0, has to both be a local maxima of entropy
and a fixed point for the dynamics of ξ. That means

dξi

dt

∣∣∣∣
ξ=ξ0

= 0 and
∂S

∂ξi

∣∣∣∣
ξ=ξ0

= 0. (17)

If we make a linear approximation for both S and dξi

dt around ξ0 we obtain

dξi

dt
= −Li

kβkj ∂S

∂ξj
, (18)

where

Li
j

.=
∂

∂ξj

dξi

dt

∣∣∣∣
ξ=ξ0

and βij
.= − ∂2 S

∂ξi∂ξj

∣∣∣∣
ξ=ξ0

. (19)

which, when compared to (16), yields γij = −Li
kβkj . Hence proving ORP equates

to proving Li
j = Lj

i , since β is already symmetric3 for being defined as a second
derivative (19). The usual proof of the symmetry of L (see e.g. [14]) consists of
assuming that the fluctuations of ξ are symmetric through time reversal, meaning〈
ξi(0)ξj(t)

〉
=

〈
ξi(t)ξj(0)

〉
. Unlike the formalism derived by EntDyn, this cannot

be expected to be general for dynamical systems. For further discussion on how
the macrostates dynamics arise from Hamiltonian dynamics see e.g. [4].
3 Note that although in (6) β matches FRIM for ξ = A, one cannot say that β is

FRIM in general since (6) does not transform covariantly for an arbitrary change of
coordinates A → ξ(A).
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A direct comparison with (13) means that when the system is described by
the expected value parameters, ξ = A, EntDyn reduces, in the first moment, to a
motion that is reciprocal to the gradient of entropy. The second term for

〈
ΔAi

〉
in (13) is a correction for motion that probes the manifold’s curvature. Also, as
discussed, in (15) we see that the diffusion process resulting from EntDyn has
drift velocity reciprocal to the gradient of entropy, analogous to the Onsager-
Machlup process [19].

Although it would make a trivial connection between EntDyn and nonequi-
librium statistical mechanics, one might find the rates of change described by it
to be a physically unrealistic model since substituting γij by gij for ξ = A in
(16) and comparing to (18) implies:

Li
j = −δi

j → dξi

dt
∝ (ξi

o − ξi). (20)

The right hand side above is obtained by substituting the left hand side into the
definition of L in (19) and integration. In thermodynamics, one can not expect
macroscopic parameters, such as internal energy and number of particles, to
evolve independently.

5 Conclusion and Perspectives

An entropic framework for dynamics on the exponential family manifold was
presented here. The change in the expected values in (13) is reciprocal to the
gradient of entropy in the manifold, while (15) gives a drift velocity that is also
reciprocal to the gradient of entropy. The proportionality factors in this recipro-
cal motion is given by the inverse FRIM, therefore reciprocity is a consequence
of IG.

From (20), one should not consider the dynamics developed here as a method
for nonequilibrum statistical mechanics. The reciprocity found here does not nec-
essarily substitute ORP. That said, EntDyn offers a systematic method to find
dynamics aligned with information theory, while Onsager’s approach is based
solely on calculus considerations around a supposed fixed point. Another way
to present it is to say that ORP is based on an understanding of thermody-
namics guided by Hamiltonian dynamics, while the EntDyn developed here is
inspired by the generality of exponential families, not relying on an underlying
Hamiltonian dynamics. Both arrive at reciprocal relations.
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Abstract. In this paper, (M, Ω) is a connected symplectic manifold
on which a Lie group G acts by a Hamitonian action, with a moment
map J : M → g∗. A short reminder of the definitions of statistical
states, Gibbs states, entropy, generalized temperatures and associated
thermodynamic functions is first given. Then several examples of such
Gibbs states are presented, together with the associated thermodynamic
functions. Examples are given too of symplectic manifolds on which a
Lie group acts by a Hamiltonian action on which no Gibbs state built
with a moment map of this action can exist. Most of these examples are
obtained with the use of a remarkable isomorphism of a fully oriented
three-dimensional Euclidean or pseudo-Euclidean vector space onto the
Lie algebra of its Lie group of symmetries.

Keywords: Gibbs states · Symplectic manifolds · Moment map ·
Coadjoint orbits · Poincaré disk · Poincaré half-plane

1 Introduction

The French mathematician and physicist Jean-Marie Souriau (1922–2012) con-
sidered, first in [14], then in his book [15], Gibbs states on a symplectic manifold
built with the moment map of the Hamiltonian action of a Lie group, and the
associated thermodynamic functions. In several later papers [16–18], he devel-
oped these concepts and considered their possible applications in Physics and
in Cosmology. More recently, under the name Souriau’s Lie groups thermody-
namics, these Gibbs states and the associated thermodynamic functions were
considered by several scientists, notably by Frédéric Barbaresco, for their possi-
ble applications in Geometric Information Theory, Deep Learning and Machine
Learning [1–5,12,13].

Long before the works of Souriau, in his book [6] published in 1902 (formula
(98), chapter IV, page 43), the American scientist Josiah Willard Gibbs (1839–
1903) clearly described Gibbs states in which the components of the total angular
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momentum (which are the components of the moment map of the action of the
group of rotations on the phase space of the considered system) appear, on the
same footing as the Hamiltonian. He did not discuss the properties of these
Gibbs states as thoroughly as Souriau did much later, but presented an example
of mechanical system, made of point particles contained in a spherical shell, for
which such a Gibbs state appears as a state of thermodynamic equilibrium. He
even considered Gibbs states involving conserved quantities more general than
those associated with the Hamiltonian action of a Lie group. Souriau’s main
merits do not lie, in my opinion, in the consideration of these Gibbs states, but
rather in the use of the manifold of motions of a Hamiltonian system instead
of the use of its phase space, and his introduction, under the name of Maxwell’s
principle, of the idea that a symplectic structure should exist on the manifold of
motions of systems encountered as well in classical Mechanics as in relativistic
Physics.

For physicists, Gibbs states are states of thermodynamic equilibrium of a
physical system, mathematically described by the flow of a Hamiltonian vector
field on a symplectic manifold. Such Gibbs states are built with the Hamiltonian
of the considered system, infinitesimal generator of the action, on the symplectic
manifold, of the one dimensional group of translations in time. They are indexed
by a single real parameter, interpreted in Physics as the inverse of the absolute
temperature, which must lie in some open interval, corresponding to the range
of temperatures for which the considered physical system exists. Gibbs states
on a symplectic manifold built with the moment map of the Hamiltonian action
of a Lie group are indexed by an element of the Lie algebra of this group,
which must lie in some open subset of this Lie algebra, for which integrals which
appear in the definition of thermodynamic functions are normally convergent.
They were already presented in several papers [3,4,7], sometimes with full proofs
of all the stated results [9]. Their definition and main properties are briefly
presented in Sect. 2. Then in Sect. 3 examples of such Gibbs states are presented,
together with examples of symplectic manifolds on which a Lie group acts by a
Hamiltonian action, on which no Gibbs state can exist. More details about some
of these examples can be found in [10].

2 Gibbs States Built with the Moment Map of the
Hamiltonian Action of a Lie Group

In this section (M,ω) is a connected, 2n-dimensional symplectic manifold and G
is a Lie group, whose Lie algebra is denoted by g, which acts on the left on this
manifold by a Hamiltonian action Φ. We denote by λω the Liouville measure on
the Borel σ-algebra of M . Let J : M → g∗ be a moment map of this action (see
for example [8,9,11] for the definitions of Hamiltonian actions, moment maps,
Liouville measure, . . .).

Definitions. 1. A statistical state on M is a probability measure μ on the Borel
σ-algebra of M . The statistical state μ is said to be continuous (respectively,
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smooth) when it can be written as μ = ρλω, where ρ is a continuous function
(respectively, a smooth function) defined on M , called the probability density (or
simply the density) of μ with respect to λω.
2. The entropy of a continuous statistical state of density ρ with respect to λω

is the quantity

s(ρ) =
∫

M

log
(

1
ρ(x)

)
ρ(x)λω(dx) = −

∫
M

log
(
ρ(x)

)
ρ(x)λω(dx). (1)

with the conventions 0 log 0 = 0 and s(ρ) = −∞ when the integral in the right
hand side of the above equality is divergent. The map ρ �→ s(ρ) on M is called
the entropy functional.
3. For each β ∈ g, the integral in the right hand side of the equality

P (β) =
∫

M

exp
( − 〈J(x),β〉)λω(dx) (2)

is said to be normally convergent when there exists an open neighbourhood U of
β in g and a function f : M → R

+, integrable on M with respect to the Liouville
measure λω, such that for any β′ ∈ U , the inequality exp

(−〈J(x),β′〉) ≤ f(x) is
satisfied for all x ∈ M . In this case β is called a generalized temperature. When
the set Ω of generalized temperatures is not empty, the function P : Ω → R

defined by the above equality is called the partition function.
4. Let β ∈ Ω be a generalized temperature. The statistical state on M whose
probability density, with respect to the Liouville measure λω, is expressed as

ρβ (x) =
1

P (β)
exp

( − 〈J(x),β〉), x ∈ M, (3)

is called the Gibbs state associated to (or indexed by) β.
The reader is referred to [10,11] for comments about the links between the

definition of entropy of a statistical state given here and Claude Shannon’s
entropy.

Proposition. The assumptions and notations are those of the above Definitions.
1. The set Ω of generalized temperatures does not depend on the choice of the
moment map J . When it is not empty, this set is an open convex subset of the
Lie algebra g, invariant by the adjoint action of G. The partition function P is
of class C∞ and its differentials of all orders can be calculated by differentiation
under the integration sign

∫
. The mean value of J , denoted by EJ , and the

entropy S (for the Gibbs state indexed by β), are other thermodynamic functions,
whose expressions are

EJ (β) =
1

P (β)

∫
M

J(x) exp
( − 〈J(x),β〉)λω(dx), S(β) = s(ρβ ), (4)

which are of class C∞ on Ω and can be expressed in terms of the partition
function P and its differentials.
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2. For any other continuous statistical state with a probability density ρ1 with
respect to the Liouville measure λω, such that the mean value of J in this sta-
tistical state is equal to EJ (β), the entropy functional s satisfies the inequality
s(ρ1) ≤ s(ρβ ) = S(β), and the equality s(ρ1) = s(ρβ ) occurs if and only if
ρ1 = ρβ.

3 Examples of Gibbs States on Symplectic Manifolds
with Symmetries

3.1 Three-Dimensional Real Oriented Vector Spaces with a Scalar
Product

In what follows, ζ is a real integer whose value is either +1 or −1, and F is a
three-dimensional real vector space endowed with a scalar product denoted by
(v,w) �→ v ·w, with v and w ∈ F, whose signature is (+,+,+) when ζ = 1 and
(+,+,−) when ζ = −1. A basis (ex, ey, ez) of F is said to be orthonormal when
ex ·ex = ey ·ey = 1, ez ·ez = ζ, ex ·ey = ey ·ez = ez ·ex = 0. When ζ = −1, the
vector space F is called a three-dimensional Minkowski vector space. A non-zero
element v ∈ F is said to be space-like when v · v > 0, time-like when v · v < 0
and light-like when v · v = 0. The subset of F made of non-zero time-like or
light-like elements has two connected components. A temporal orientation of F
is the choice of one of these connected components whose elements are said to
be directed towards the future, while those of the other component are said to
be directed towards the past. The words future and past, purely conventional,
do not refer to the flow of physical time. Both when ζ = 1 and when ζ = −1,
we will assume in what follows that an orientation of F in the usual sense is
chosen, and when ζ = −1, that a temporal orientation of F is chosen too. The
orthonormal bases of F used will always be chosen positively oriented and, when
ζ = −1, their third element ez will be chosen time-like and directed towards
the future. Such bases of F will be called admissible bases. We denote by G the
subgroup of GL(F) made of linear automorphisms g of F which transform any
admissible basis into an admissible basis. It is a connected Lie group isomorphic
to the rotation group SO(3) when ζ = 1, and to the restricted three-dimensional
Lorentz group SO(2, 1) when ζ = −1. Its Lie algebra, denoted by g, is therefore
isomorphic to so(3) when ζ = 1, and to so(2, 1) when ζ = −1. The scalar product
determines an isomorphism, denoted by scal, of F onto its dual vector space F∗,
such that, for all u and v ∈ F,

〈
scal(u),v

〉
= u · v. Moreover, there exists a

smooth vector spaces isomorphism j of F onto the Lie algebra g, considered as
a vector subspace of the space L(F,F) of linear endomorphisms of F. Given an
admissible basis (ex, ey, ez) of F, for any (a, b, c) ∈ R

3, the isomorphism j is
such that

matrix of j(aex + bey + cez) =

⎛
⎝ 0 −c b

c 0 −a
−ζb ζa 0

⎞
⎠ . (5)

The isomorphism j : F → g does not depend on the admissible basis of F
used for stating the above equality and can be expressed in terms of the Hodge
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star operator [10,11]. There exists a unique bilinear and skew-symmetric map
F × F → F, (v,w) �→ v×̇w called the cross product on F, which turns F
into a Lie algebra, such that j becomes a Lie algebras isomorphism. We have
indeed, for all v and w ∈ F, j(v×̇w) =

[
j(v), j(w)

]
= j(v) ◦ j(w) − j(w) ◦

j(v). These properties, well known when ζ = 1, still hold when ζ = −1 and
allow the definition on F of a rich structure. Of course F has a Riemannian or
pseudo-Riemannian metric determined by its scalar product. Moreover, when it
is identified with g by means of j, F has a Lie algebra structure and the natural
action of G becomes the adjoint action of this group on its Lie algebra. When
F is identified with the dual vector space g∗ of this Lie algebra by means of
(j−1)T ◦ scal (composed of scal : F → F∗ with the transpose (j−1)T : F∗ → g∗

of j), is becomes endowed with a Lie-Poisson structure, the natural action of
G on F becomes the coadjoint action on the left of G on the dual g∗ of its Lie
algebra, so the coadjoint orbits of G can be considered as submanifolds of F .
With the coordinate functions x, y and z in an admissible basis (ex, ey, ez) of
F, coadjoint orbits are connected submanifolds of F determined by an equation

x2 + y2 + ζz2 = Constant, (6)

for some Constant ∈ R. The singleton {0}, whose unique element is the origin
of F, is a zero-dimensional coadjoint orbit. All other coadjoint orbits are two-
dimensional.

When ζ = 1, all two-dimensional coadjoint orbits are spheres centered on the
origin 0 of F. Their radius can be any real R > 0. We will denote by SR the
sphere of radius R centered on 0.

When ζ = −1, there are three kinds of two-dimensional coadjoint orbits,
described below.

– The orbits, denoted by P+
R and P−

R , whose respective equations are

z =
√

R2 + x2 + y2 for P+
R and z = −

√
R2 + x2 + y2 for P−

R , (7)

with R > 0. They are called pseudo-spheres of radius R. Each one is a sheet
of a two-sheeted two-dimensional hyperboloid with the z axis as revolution
axis. They are said to be space-like submanifolds of F, since all their tangent
vectors are space-like vectors.

– The orbits, denoted by HR, defined by the equation

x2 + y2 = z2 + R2, with R > 0. (8)

Each of these orbits is a single-sheeted hyperboloid with the z axis as revolu-
tion axis. The tangent space at any point to such an orbit is a two-dimensional
Minkowski vector space.

– The two orbits, denoted by C+ and C−, defined respectively by

z2 = x2 + y2 and z > 0, z2 = x2 + y2 and z < 0. (9)

They are the cones in F (without their apex, the origin 0 of F), made of
light-like vectors directed, respectively, towards the future and towards the
past.



242 C.-M. Marle

3.2 Gibbs States on Two-Dimensional Spheres

We assume here that ζ = 1. The Lie group G is therefore isomorphic to SO(3)
and its Lie algebra g is isomorphic to so(3). Let us consider the sphere SR of
radius R > 0 centered on the origin 0 of the vector space F ≡ g∗. This sphere is
a coadjoint orbit, and the moment map of the Hamiltonian action of G on it is
its canonical injection into F ≡ g∗.

The open subset Ω of generalized temperatures, for the Hamiltonian action
of G ≡ SO(3) on its coadjoint orbit SR, is the whole Lie algebra g. For each
β ∈ F ≡ g, we can choose an admissible basis (ex, ey, ez) of F such that ez and
β are parallel and directed in the same direction. Then β = βez, with β ≥ 0. The
partition function P and the probability density ρβ of the Gibbs state indexed
by β are expressed as

P (β) =

⎧⎨
⎩

4π sinh(Rβ)
β

if β > 0,

4πR if β = 0,
(10)

ρβ (r) =

⎧⎪⎨
⎪⎩

β exp(−βz)
4π sinh(Rβ)

if β > 0,

1
4πR

if β = 0,
with r = xex + yey + zez ∈ SR. (11)

When β > 0, the thermodynamic functions mean value of J and entropy are

EJ(β) =
1 − Rβ coth(Rβ)

β2
β, (12)

S(β) = 1 + log
(

4π sinh(Rβ)
β

)
− Rβ coth(Rβ). (13)

3.3 Gibbs States on Pseudo-spheres and Other Coadjoint Orbits

We assume here that ζ = −1. The Lie group G is therefore isomorphic to SO(2, 1)
and its Lie algebra g is isomorphic to so(2, 1).

We first consider the pseudo-sphere P+
R defined, in the coordinates x, y and

z associated to any admissible basis, by the equation z =
√

R2 + x2 + y2, for
some R > 0. The set Ω of generalized temperatures is the subset of F ≡ g made
of time-like vectors directed towards the past. For each β ∈ Ω, let (ex, ey, ez) be
an admissible basis of F such that β = βez, with β < 0. The partition function
P and the probability density ρβ of the Gibbs state indexed by β, with respect
to the Liouville measure λωP

R+
, are given by the formulae, where we have set

‖β‖ =
√−β · β, since β · β < 0,

P (β) =
2π

‖β‖ exp
(−‖β‖R

)
, β ∈ F timelike directed towards the past, (14)

ρβ (r) =
‖β‖ exp

(
−‖β‖(z(r) − R

))

2π
, r ∈ P+

R . (15)
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The thermodynamic functions mean value of J and entropy are

EJ(β) = −1 + R‖β‖
‖β‖2 β, S(β) = 1 + log

2π

‖β‖ . (16)

When the considered coadjoint orbit is the pseudo-sphere P−
R , with R > 0, the

open subset Ω of generalized temperatures is the subset of F made of time-like
vectors directed towards the future. The probability density of Gibbs states and
the corresponding thermodynamic functions are given by the same formulae as
those indicated above, of course with the appropriate sign changes.

When the considered coadjoint orbit is either a one-sheeted hyperboloid HR,
for some R > 0, or one of the light cones C+ and C−, the set Ω of generalized
temperatures is empty. Therefore no Gibbs state, for the coadjoint action of the
Lie group G ≡ SO(2, 1), can exist on these coadjoint orbits.

4 Final Comments

For spheres and pseudo-spheres, and more genearlly when the Hamiltonian
action of the Lie group G is effective, the map EJ is a diffeomorphism of the
set Ω of generalized temperatures onto an open subset Ω∗ of g∗. It is therefore
possible to express the Gibbs probability density ρβ as a funcion of EJ(β)

The choice of any admissible basis (ex, ey, ez) of F determines, for each R >
0, a diffeomorphism ψR of the pseudo-sphere P+

R onto the Poincaré disk DP ,
subset of the complex plane C whose elements w satisfy |w| < 1. Its expression
is

ψR(r) =
x + iy

R +
√

R2 + x2 + y2
, r = xex + yey +

√
R2 + x2 + y2ez ∈ P+

R . (17)

Using this diffeomorphism and an appropriate Möbius transformation, one can
easily deduce the Gibbs states and the thermodynamic functions on the Poincaré
disk and on the Poincaré half-plane from those on the pseudo-sphere P+

R . From
the non-existence of Gibbs states on the light cones C+ an C−, one can deduce
that no Gibbs state can exist on a two-dimensional symplectic vector space, for
the Hamiltonian action of SL(2,R). Similar calculations allow the determination
of Gibbs states and thermodynamic functions on an Euclidean and symplectic
plane, for the Hamiltonian action of the group of its displacements (translations
and rotations) [10,11]. Extensions of these results for the Siegel upper half-spaces
seem to be possible.
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Gaussian Distributions on the Space
of Symmetric Positive Definite Matrices

from Souriau’s Gibbs State for Siegel Domains
by Coadjoint Orbit and Moment Map
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THALES Land and Air Systems, Limours, France
frederic.barbaresco@thalesgroup.com

Abstract. We will introduce Gaussian distribution on the space of Symmetric
Positive Definite (SPD) matrices, through Souriau’s covariant Gibbs density by
considering this space as the pure imaginary axis of the homogeneous Siegel
upper half space where Sp (2n,R)/U(n) acts transitively. Gauss density of SPD
matrices is computed through Souriau’s moment map and coadjoint orbits. We
will illustrate the model first for Poincaré unit disk, then Siegel unit disk and
finally upper half space. For this example, we deduce Gauss density for SPD
matrices.

Keywords: Symmetric positive definite matrices � Lie groups
thermodynamics � Symplectic geometry � Maximum entropy � Exponential
density family

1 Statistics on Lie Groups Based on Souriau Model of Gibbs
Density

“There is nothing more in physical theories than symmetry groups, except the mathematical
construction which allows precisely to show that there is nothing more”

Jean-Marie Souriau

In this chapter, we will explain how to define statistics on Lie Groups and its
Symplectic manifold associated to the coadjoint orbits, and more especially how to
define extension of Gauss density as Gibbs density in the Framework of Geometric
Statistical Mechanics. Amari has proved that the Riemannian metric in an exponential
family is the Fisher information matrix defined by:

gij ¼ � @2U
@hi@hj

� �
ij

with UðhÞ ¼ � log
Z
R

e� h;yh idy ð1Þ

and the dual potential, the Shannon entropy, is given by the Legendre transform:
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SðgÞ ¼ h; gh i � UðhÞ with gi ¼
@UðhÞ
@hi

and hi ¼ @SðgÞ
@gi

ð2Þ

We can observe that UðhÞ ¼ � log
R
R
e� h;yh idy ¼ � logw hð Þ is related to the clas-

sical cumulant generating function. J.L. Koszul and E. Vinberg have introduced a
generalization through an affinely invariant Hessian metric on a sharp convex cone by
its characteristic function [17]:

UXðhÞ ¼ � log
Z
X�

e� h;yh idy ¼ � logwXðhÞ with h 2 X sharp convex cone

wXðhÞ ¼
Z
X�

e� h;yh idy with Koszul-Vinberg Characteristic function
ð3Þ

The name “characteristic function” come from the link underlined by Ernest
Vinberg:

Let X be a cone in U and X� its dual, for any k[ 0;HkðxÞ ¼ y 2 U= x; yh i ¼ kf g
and let dðkÞy denote the Lebesgue measure on HkðxÞ :

wXðxÞ ¼
Z
X�

e� x;yh idy ¼ m� 1ð Þ!
km�1

Z
X� \HkðxÞ

dðkÞy

ð4Þ

There exist a bijection x 2 X 7! x� 2 X�, satisfying the relation gxð Þ�¼ tg�1x� for
all g 2 G Xð Þ ¼ g 2 GLðUÞ=gX ¼ Xf g the linear automorphism group of X and x� is:

x� ¼
Z
X� \HkðxÞ

ydðkÞy

,Z
X� \HkðxÞ

dðkÞy ð5Þ

We can observe that x� is the center of gravity of X� \HkðxÞ. We have the property
that wXðgxÞ ¼ detðgÞj j�1wXðxÞ for all x 2 X; g 2 G Xð Þ and then that wXðxÞdx is an

invariant measure on X. Writing @a ¼
Pm
i¼1

ai @
@xi, one can write:

@aUXðxÞ ¼ @a � logwXðxÞð Þ ¼ wXðxÞ�1
Z
X�

a; yh ie� x;yh idy ¼ a; x�h i , a 2 U; x 2 X

ð6Þ
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Then, the tangent space to the hypersurface y 2 U=wXðyÞ ¼ wXðxÞf g at x 2 X is
given by y 2 U= x�; yh i ¼ mf g. For x 2 X; a; b 2 U, the bilinear form @a@b logwXðxÞ is
symmetric and positive definite, so that it defines an invariant Riemannian metric on X.

These relations have been extended by Jean-Marie Souriau in geometric statistical
mechanics, where he developed a “Lie groups thermodynamics” of dynamical systems
where the (maximum entropy) Gibbs density is covariant with respect to the action of
the Lie group. In the Souriau model, previous structures are preserved:

IðbÞ ¼ � @2U

@b2
with UðbÞ ¼ � log

Z
M

e� UðnÞ;bh idkx and U : M ! g� ð7Þ

We preserve the Legendre transform:

SðQÞ ¼ Q; bh i � UðbÞ with Q ¼ @UðbÞ
@b

2 g� and b ¼ @SðQÞ
@Q

2 g ð8Þ

In the Souriau Lie groups thermodynamics model [1, 2, 9, 10], b is a “geometric”
(Planck) temperature, element of Lie algebra g of the group, and Q is a “geometric”
heat, element of the dual space of the Lie algebra g� of the group. Souriau has proposed
a Riemannian metric that we have identified as a generalization of the Fisher metric:

I bð Þ ¼ gb
� �

with gb b; Z1½ �; b; Z2½ �ð Þ ¼ ~Hb Z1; b; Z2½ �ð Þ ð9Þ

with ~Hb Z1; Z2ð Þ ¼ ~H Z1; Z2ð Þþ Q; adZ1ðZ2Þh i where adZ1ðZ2Þ ¼ Z1; Z2½ � ð10Þ

Souriau has proved that all co-adjoint orbit of a Lie Group given by OF ¼
Ad�gF; g 2 G
n o

subset of g�;F 2 g� carries a natural homogeneous symplectic struc-

ture by a closed G-invariant 2-form. If we define K ¼ Ad�g ¼ Adg�1

� ��
and K�ðXÞ ¼

� adXð Þ� with:

Ad�gF; Y
D E

¼ F;Adg�1Y
� 	

; 8g 2 G; Y 2 g; F 2 g� ð11Þ

where if X 2 g, AdgðXÞ ¼ gXg�1 2 g, the G-invariant 2-form is given by the fol-
lowing expression:

rX adXF; adYFð Þ ¼ BF X; Yð Þ ¼ F; X; Y½ �h i;X; Y 2 g ð12Þ

Souriau Foundamental Theorem is that «Every symplectic manifold on which a Lie
group acts transitively by a Hamiltonian action is a covering space of a coadjoint
orbit». We can observe that for Souriau model, Fisher metric is an extension of this 2-
form in non-equivariant case:
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gb b;Z1½ �; b; Z2½ �ð Þ ¼ ~H Z1; b; Z2½ �ð Þþ Q; Z1; b; Z2½ �½ �h i ð13Þ

The Souriau additional term ~H Z1; b; Z2½ �ð Þ is generated by non-equivariance
through Symplectic cocycle. The tensor ~H used to define this extended Fisher metric is
defined by the moment map JðxÞ, application from M(homogeneous symplectic
manifold) to the dual space of the Lie algebra g�, given by:

~HðX;YÞ ¼ J X;Y½ � � JX ; JYf g ð14Þ

with JðxÞ : M ! g� such that JXðxÞ ¼ JðxÞ;Xh i, X 2 g

This tensor ~H is also defined in tangent space of the cocycle h gð Þ 2 g� (this cocycle
appears due to the non-equivariance of the coadjoint operator Ad�g , action of the group
on the dual space of the lie algebra; the action of the group on the dual space of the Lie
algebra is modified with a cocycle so that the momentu map becomes equivariant
relative to this new affine action):

Q AdgðbÞ
� � ¼ Ad�gðQÞþ h gð Þ ð15Þ

h gð Þ 2 g� is called nonequivariance one-cocycle, and it is a measure of the lack of
equivariance of the moment map.

~H X; Yð Þ : g � g ! R with HðXÞ ¼ Teh XðeÞð Þ
X,Y 7! HðXÞ; Yh i ð16Þ

Souriau has then defined a Gibbs density that is covariant under the action of the
group:

pGibbsðnÞ ¼ eUðbÞ� UðnÞ;bh i ¼ e� UðnÞ;bh iR
M
e� UðnÞ;bh idkx

with UðbÞ ¼ � log
Z
M

e� UðnÞ;bh idkx ð17Þ

Q ¼ @UðbÞ
@b

¼

R
M
UðnÞe� UðnÞ;bh idkxR
M
e� UðnÞ;bh idkx

¼
Z
M

UðnÞpðnÞdkx ð18Þ

We can express the Gibbs density with respect to Q by inverting the relation

Q ¼ @UðbÞ
@b ¼ H bð Þ. Then pGibbs;QðnÞ ¼ eUðbÞ� UðnÞ;H�1 Qð Þh i with b ¼ H�1 Qð Þ.

2 Gauss Density on Poincaré Unit Disk

We will introduce Souriau moment map for SU (1,1)/U(1) group that acts transitively
on Poincaré Unit Disk, based on moment map. Considering the Lie group:
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SUð1; 1Þ ¼ a b
b� a�


 �
¼ 1 ba��1

0 1


 �
a��1 0
0 a�


 �
1 0

a��1b� 1


 �
=a; b 2 C, aj j2� bj j2¼ 1

� 

ð19Þ

and its Lie algebra given by elements:

suð1; 1Þ ¼ ir g
g� �ir


 �
=r 2 R; g 2 C

� 
ð20Þ

A basis for this Lie algebra suð1; 1Þ is u1; u2; u3ð Þ 2 g with

u1 ¼ i
2

1 0
0 �1


 �
; u2 ¼ � 1

2
0 1
1 0


 �
and u3 ¼ 1

2
0 �i
i 0


 �
ð21Þ

with u1; u3½ � ¼ �u2; u1; u2½ � ¼ u3; u2; u3½ � ¼ �u1. The Harish-Chandra embedding
is given by u gx0ð Þ ¼ f ¼ ba��1. From aj j2� bj j2¼ 1, one has fj j\1. Conversely, for

any fj j\1, taking any a 2 C such that aj j ¼ 1� aj j2
� ��1=2

and putting b ¼ fa�, one

obtains g 2 G for which u gx0ð Þ ¼ f. The domain D ¼ uðMÞ is the unit disc
D ¼ f 2 C= fj j\1f g.

The compact subgroup is generated by u1, while u2 and u3 generate a hyperbolic
subgroup. The dual space of the Lie algebra is given by:

suð1; 1Þ� ¼ z xþ iy
�xþ iy �z


 �
=x; y; z 2 R

� 
ð22Þ

with the basis u�1; u
�
2; u

�
3

� � 2 g� : u�1 ¼
1 0

0 �1


 �
; u�2 ¼

0 i

i 0


 �
and

u�3 ¼
0 1

�1 0


 � ð23Þ

Let us consider D ¼ z 2 C= zj j\1f g be the open unit disk of Poincaré. For each
q[ 0, the pair D;xq

� �
is a symplectic homogeneous manifold with xq ¼ 2iq dz ^ dz�

1� zj j2ð Þ2,
where xq is invariant under the action:

SU 1; 1ð Þ � D ! D

g; zð Þ 7! g:z ¼ azþ b
b�zþ a�

ð24Þ

This action is transitive and is globally and strongly Hamiltonian. Its generators are
the hamiltonian vector fields associated to the functions:
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J1ðz; z�Þ ¼ q
1þ zj j2
1� zj j2 , J2ðz; z

�Þ ¼ q
i
z� z�

1� zj j2 , J3ðz; z
�Þ ¼ �q

zþ z�

1� zj j2 ð25Þ

The associated moment map J : D ! su�ð1; 1Þ defined by JðzÞ:ui ¼ Jiðz; z�Þ, maps
D into a coadjoint orbit in su�ð1; 1Þ. Then, we can write the moment map as a matrix
element of su�ð1; 1Þ [4–7]:

JðzÞ ¼ J1 z; z�ð Þu�1 þ J2 z; z�ð Þu�2 þ J3 z; z�ð Þu�3 ¼ q

1þ zj j2
1� zj j2 �2 z�

1� zj j2

2 z
1� zj j2 � 1þ zj j2

1� zj j2

0
@

1
A 2 g� ð26Þ

The moment map J is a diffeomorphism of D onto one sheet of the two-sheeted
hyperboloid in su�ð1; 1Þ, determined by the following equation J21 � J22 � J23 ¼
q2 , J1 � q with J1u�1 þ J2u�2 þ J3u�3 2 su�ð1; 1Þ. We note Oþ

q the coadjoint orbit
Ad�SUð1;1Þ of SU 1; 1ð Þ, given by the upper sheet of the two-sheeted hyperboloid given by
previous equation. The orbit method of Kostant-Kirillov-Souriau associates to each of
these coadjoint orbits a representation of the discrete series of SU 1; 1ð Þ, provided that q
is a half integer greater or equal than 1 (q ¼ k

2 ; k 2 N and q� 1). When explicitly
executing the Kostant-Kirillov construction, the representation Hilbert spaces Hq are
realized as closed reproducing kernel subspaces of L2 D;xq

� �
. The Kostant-Kirillov-

Souriau orbit method shows that to each coadjoint orbit of a connected Lie group is
associated a unitary irreducible representation of G acting in a Hilbert space H.

Souriau has oberved that action of the full Galilean group on the space of motions of
an isolated mechanical system is not related to any equilibrium Gibbs state (the open
subset of the Lie algebra, associated to this Gibbs state is empty). The main Souriau idea
was to define the Gibbs states for one-parameter subgroups of the Galilean group. We
will use the same approach, in this case We will consider action of the Lie group
SU 1; 1ð Þ on the symplectic manifold (M,x) (Poincaré unit disk) and its momentum map

J are such that the open subset Kb ¼ b 2 g=
R
D
e� JðzÞ;bh idkðzÞ\þ1

� 
is not empty.

This condition is not always satisfied when (M, x) is a cotangent bundle, but of course it
is satisfied when it is a compact manifold. The idea of Souriau is to consider a one
parameter subgroup of SU 1; 1ð Þ. To parametrize elements of SU 1; 1ð Þ is through its Lie
algebra. In the neighborhood of the identity element, the elements of g 2 SU 1; 1ð Þ can
be written as the exponential of an element b of its Lie algebra:

g ¼ exp ebð Þ with b 2 g ð27Þ

The condition gþMg ¼ M for M ¼ 1 0
0 �1


 �
can be expanded for e\\1 and

is equivalent to bþMþMb ¼ 0 which then implies b ¼ ir g
g� �ir


 �
; r 2 R; g 2 C.

We can observe that r and g ¼ gR þ igI contain 3 degrees of freedom, as required. Also
because det g ¼ 1, we get TrðbÞ ¼ 0. We exponentiate b with exponential map to get:
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g ¼ exp ebð Þ ¼
X1
k¼0

ebð Þk
k!

¼ aeðbÞ beðbÞ
b�e ðbÞ a�e ðbÞ


 �
ð28Þ

If we make the remark that we have the following rela-

tion b2 ¼ ir g
g� �ir


 �
ir g
g� �ir


 �
¼ gj j2�r2
� �

I, we develop the exponential map:

g ¼ exp ebð Þ ¼ cosh eRð Þþ ir sinh eRð Þ
R g sinh eRð Þ

R

g� sinh eRð Þ
R cosh eRð Þ � ir sinh eRð Þ

R

 !
ð29Þ

with R2 ¼ gj j2�r2

We can observe that one condition is that gj j2�r2 [ 0 then the subset to consider is

given by the subset Kb ¼ b ¼ ir g
g� �ir


 �
; r 2 R; g 2 C/ gj j2�r2 [ 0

� 
such thatR

D
e� JðzÞ;bh idkðzÞ\þ1. The generalized Gibbs states of the full SUð1; 1Þ group do not

exist. However, generalized Gibbs states for the one-parameter subgroups exp abð Þ,
b 2 Kb, of the SUð1; 1Þ group do exist. The generalized Gibbs state associated to b
remains invariant under the restriction of the action to the one-parameter subgroup of
SU 1; 1ð Þ generated by exp ebð Þ.

To go futher, we will develop the Souriau Gibbs density from the Souriau moment

map JðzÞ and the Souriau temperature b 2 Kb . If we note b ¼ 1
1� zj j2

1
�z

� �
, we can

write the moment map:

JðzÞ ¼ q 2Mbbþ � Tr Mbbþð ÞIð Þ with M ¼ 1 0
0 �1

� �
ð30Þ

We can the write the covariant Gibbs density in the unit disk given by moment map
of the Lie group SU 1; 1ð Þ and geometric temperature in its Lie algebra b 2 Kb:

pGibbs zð Þ ¼ e� J zð Þ;bh iR
D
e� J zð Þ;bh idkðzÞwith dkðzÞ ¼ 2iq

dz ^ dz�

1� zj j2
� �2 ð31Þ

pGibbs zð Þ = e� q 2=bbþ�Tr =bbþð ÞIð Þ;bh iR
D
e� J zð Þ;bh idkðzÞ =

e

� q

1þ zj j2
1� zj j2ð Þ

�2z�

1� zj j2ð Þ
2z

1� zj j2ð Þ � 1þ zj j2
1� zj j2ð Þ

0
B@

1
CA;

ir g
g� �ir


 �* +

R
D
e� J zð Þ;bh idkðzÞ

ð32Þ
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To write the Gibbs density with respect to its statistical moments, we have to
express the density with respect to Q ¼ E JðzÞ½ �. Then, we have to invert the relation

between Q and b, to replace this last variable b ¼ ir g
g� �ir


 �
2 Kb by

b = H�1 Qð Þ 2 g where Q ¼ @U bð Þ
@b ¼ H bð Þ 2 g� with U bð Þ ¼ � log

R
D
e� J zð Þ;bh idkðzÞ,

deduce from Legendre tranform. The mean moment map is given by:

Q ¼ E JðzÞ½ � ¼ E q

1þ wj j2
1� wj j2ð Þ

�2w�

1� wj j2ð Þ
2w

1� wj j2ð Þ � 1þ wj j2
1� wj j2ð Þ

0
B@

1
CA

2
64

3
75 where w 2 D ð33Þ

3 Gauss Density on Siegel Unit Disk

To address computation of covariant Gibbs density for Siegel Unit Disk
SDn ¼ Z 2 Mat n;Cð Þ=In � ZZ þ [ 0f g, we will consider in this section SUðp; qÞ
Unitary Group [3, 8, 12, 13, 15, 16]:

G ¼ SUðn; nÞ and K ¼ S UðnÞ � UðnÞð Þ ¼ A 0

0 D


 �
=A 2 UðnÞ;D 2 UðnÞ; detðAÞ detðDÞ ¼ 1

� 

We can use the following decomposition for g 2 GC(complexification of g), and
consider its action on Siegel Unit Disk given by:

g ¼ A B
C D


 �
2 GC; g ¼ In BD�1

0 In


 �
A� BD�1C 0

0 D


 �
In 0

D�1C In


 �
ð34Þ

Benjamin Cahen has studied this case and introduced the moment map by identi-
fing G-equivariantly g� with g by means of the Killing form b on gC:

g� G-equivariant with by g Killing form b X; Yð Þ ¼ 2ðpþ qÞTr XYð Þ

The set of all elements of g fixed by K is h:

h = element of G fixed by Kf g , n0 2 h; n0 ¼ ik
�nIp 0

0 nIq


 �

) n0; Z; Z
þ½ �h i ¼ �2ik 2nð Þ2Tr ZZ þð Þ; 8Z 2 D

ð35Þ
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Then, we the equivariant moment map is given by:

8X 2 gC ; Z 2 D; w Zð Þ ¼ Ad� exp �Z þð Þf exp Z þ exp Zð Þð Þn0
8g 2 G; Z 2 D then w g:Zð Þ ¼ Ad�gwðZÞ
w is a diffeomorphism from SD onto orbit O n0ð Þ

ð36Þ

wðZÞ ¼ ik
In � ZZ þð Þ�1 �nZZ þ � nInð Þ ð2nÞZ In � Z þ Zð Þ�1

�ð2nÞ In � Z þ Zð Þ�1Z þ nIq þ nZ þ Z
� �

In � Z þ Zð Þ�1

 !
ð37Þ

and

f exp Z þ exp Zð Þ ¼ Ip Z Iq � Z þ Z
� ��1

0 Iq


 �
ð38Þ

The moment map is then given by:

JðZÞ ¼ qn In � ZZ þð Þ�1 In þ ZZ þð Þ �2Z þ In � ZZ þð Þ�1

2 In � ZZ þð Þ�1Z In þ ZZ þð Þ In � ZZ þð Þ�1


 �
2 g� ð39Þ

Souriau Gibbs density is then given with b;M 2 g and Z 2 SDn by:

pGibbs Zð Þ = e
� qn

In � ZZ þð Þ�1 In þZZ þð Þ �2Z þ In � ZZ þð Þ�1

2 In � ZZ þð Þ�1Z In þ ZZ þð Þ In � ZZ þð Þ�1

 !
;b

* +
R
SDn

e� J Zð Þ;bh idkðZÞ with

b ¼ H�1 Qð Þ 2 g

Q ¼ E JðZÞ½ �
Q ¼ @U bð Þ

@b ¼ H bð Þ 2 g�

8><
>:

ð40Þ

Gauss density of SPD matrix is then given by Z ¼ Y � Ið Þ Y þ Ið Þ�1; Y 2 Sym nð Þþ

4 Gauss Density on Siegel Upper Half Plane

We conclude by consideringHn ¼ W ¼ Uþ iV=U;V 2 SymðnÞ;V [ 0f g Siegel Upper
Half Space, related to Siegel Unit Disk by Cayley transform Z ¼ W þ iInð Þ�1 W � iInð Þ,
that we will analyze as an homogeneous space with respect to Sp 2n;Rð Þ=UðnÞ
group action where the Sympletic group is given by the definition Sp 2n;Rð Þ ¼

A B
C D


 �
2 Matð2n;RÞ=A

TC ¼ CTA;BTD ¼ DTB
ATD� CTB ¼ In

� 
and the left action U :

Spð2n;RÞ � Hn ! Hn with U
A B
C D


 �
;W


 �
¼ CþDWð Þ AþBWð Þ�1 that is tran-

sitive U : Spð2n;RÞ � Hn ! Hn with U V�1=2 0
UV�1=2 V1=2


 �
; iIn


 �
¼ Uþ iV . The
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isotropy subgroup of the element iIn 2 Hn is Spð2n;RÞ \Oð2nÞ ¼ X Y
�Y X

� �
2

�
Matð2n;RÞ=XTXþ YTY ¼ In;XTY ¼ YTXg that is identified with UðnÞ by

Spð2n;RÞ \Oð2nÞ ! UðnÞ; X Y
�Y X

� �
7!X þ iY and then Hn ffi Spð2n;RÞ=UðnÞ that

is also a symplectic manifold with symplectic form XHn ¼ �dHHn with one-form
HHn ¼ �tr UdV�1ð Þ.

By identifying the symplectic algebra spð2n;RÞ with sym ð2n;RÞ [14] via e ¼
e11 e12
eT12 e22

� �
2 symð2n;RÞ 7!~e ¼ JTn e ¼ �eT12 �e22

e11 e12

� �
2 spð2n;RÞ with e; d½ �sym¼

eJTn d� dJTn e and ~e; ~d
h i

sp
¼ ~e~d� ~d~e, and the associated inner products e; dh isym¼ tr edð Þ

and ~e; ~d
D E

sp
¼ tr ~eT~d

� �
. With these inner products, we identify their dual spaces with

themselves symð2n;RÞ ¼ symð2n;RÞ�, spð2n;RÞ ¼ spð2n;RÞ�.
We define adjoint operator AdGe ¼ G�1ð ÞTeG�1;AdG~e ¼ G~eG�1 with G 2

Spð2n;RÞ and aded ¼ eJTn d� dJTn e ¼ e; d½ �sym, and co-adjoint operators Ad�G�1g ¼
GgGT and ad�e g ¼ Jneg� geJn. To coadjoint orbit O ¼ Ad�Gg 2 symð2n;RÞ�=G 2�
Spð2n;RÞg for each g 2 symð2n;RÞ�, we can associate a symplectic manifold with the

KKS (Kirillov-Kostant-Souriau) 2-form XO gð Þ ad�e g; ad
�
dg

� � ¼ g; e; d½ �sym
D E

¼ tr g e;½ð
d�symÞ. We then compute the moment map J : Hn ! spð2n;RÞ� such that ieXHn ¼
d Jð:Þ; eh i, given by JðWÞ ¼ V�1 V�1U

UV�1 UV�1UþV

� �
for W ¼ Uþ iV 2 Hn, we

deduce:

pGibbs Wð Þ ¼ e� J Wð Þ;eh iR
Hn

e� J Wð Þ;eh idkðWÞwith dkðWÞ ¼ 2iq V�1dW ^ V�1dW þ� � ð41Þ

With

JðWÞ; eh i ¼ Tr JðWÞeð Þ ¼ Tr V�1 V�1U
UV�1 UV�1UþV

� �
e11 e12
eT12 e22

� �
 �
ð42Þ

And then

JðWÞ; eh i ¼ Tr V�1e11 þ 2UV�1e12 þ UV�1UþV
� �

e22
� � ð43Þ

To consider Gibbs density and Gauss density for Symmetric Positive Definite
Matrix, we have to consider the case W ¼ iV with U ¼ 0 and JðWÞ; eh i ¼
Tr V�1e11 þVe22½ �.
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On Gaussian Group Convex Models
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Abstract. The Gaussian group model is a statistical model consisting
of central normal distributions whose precision matrices are of the form
gg�, where g is an element of a matrix group G. When the set of gg� is
convex in the vector space of real symmetric matrices, the set forms an
affine homogeneous convex domain studied by Vinberg. In this case, we
give the smallest number of samples such that the maximum likelihood
estimator (MLE) of the parameter exists with probability one. Moreover,
if the MLE exists, it is explicitly expressed as a rational function of the
sample data.

Keywords: Gaussian group model · Affine homogeneous convex
domain · Maximum likelihood estimator · Riesz distribution

1 Introduction

Let G be a subgroup of GL(N,R), and MG the set
{

gg� ; g ∈ G
}

⊂ Sym(N,R).
The Gaussian group model associated to G is a statistical model consisting of
central multivariate normal laws whose precision (concentration) matrices belong
to MG ([1]). It is an example of a transformation family, that is, an exponential
family whose parameter space forms a group (see [2]). A fundamental prob-
lem is to estimate an unknown precision matrix θ = gg� ∈ MG from samples
X1,X2, . . . , Xn ∈ R

N . In [1], the existence and uniqueness of the maximum
likelihood estimator (MLE) θ̂ of θ are discussed in connection with Geometric
Invariant Theory. In the present paper, under the assumption that MG �= {IN}
is a convex set, we compute the number n0 for which MLE exists uniquely with
probability one if and only if n ≥ n0 (Theorem 4). In this case, an expression of
the MLE as a rational function of the samples X1, . . . , Xn is given (Theorem 3).

Since MG is convex, it is regarded as a convex domain in an affine space
IN + V , where V is a linear subspace of the vector space Sym(N,R) of
real symmetric matrices of size N . Moreover MG is contained in the cone
Sym+(N,R) of positive definite symmetric matrices, so that MG does not con-
tain any straight line (actually, we shall see that MG is exactly the intersection
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(IN +V )∩Sym+(N,R), see Proposition 2 and Theorem 2). Thus MG is an affine
homogeneous convex domain on which G acts transitively as affine transforms.
Then we can apply Vinberg’s theory [9] to MG. In particular, using the left-
symmetric algebra structure on V explored in [6], we give a specific description
of MG as in Theorem 2, where the so-called real Siegel domain appears natu-
rally. On the other hand, every homogeneous cone is obtained as MG by [6]. In
particular, all the symmetric cones discussed in [3] as well as the homogeneous
graphical models in [8, Section 3.3] appear in our setting.

The rational expression of MLE is obtained by using the algebraic structure
on V , whereas the existence condition is deduced from the previous works [4]
and [5] about the Wishart and Riesz distributions on homogeneous cones. It
seems feasible to generalize the results of this paper to a wider class of Gaussian
models containing decomposable graphical models based on [7] in future.

The author should like to express his gratitude to Professor Fumihiro Sato for
the information of the paper [1] as well as the interest to the present work. He is
also grateful to Professors Piotr Graczyk, Bartosz Ko�lodziejek, Yoshihiko Konno,
and Satoshi Kuriki for the collaboration about applications of homogeneous
cones to mathematical statistics. The discussions with them yield most of the
featured ideas and techniques in this paper. Finally, the author sincerely thanks
the referees for their valuable comments and suggestions.

2 Structure of the Convex Parameter Set

In what follows, we assume that MG is a convex set in the vector space
Sym(N,R) and that MG �= {IN}. The affine subspace spanned by elements of
MG is of the form IN +V , where V is a linear subspace of Sym(N,R), and MG

is an open connected set in IN +V . Let G be the closure of G in GL(N,R). Then
we have MG = MG. Indeed, for g̃ ∈ G, the set g̃MGg̃� =

{
g̃θg̃� ; θ ∈ MG

}
is

contained in the closure MG of MG. On the other hand, since g̃ is invert-
ible, the set g̃MGg̃� is open in the affine space IN + V . Thus the point
g̃g̃� ∈ g̃MGg̃� ⊂ MG is an relatively interior point of the convex set MG,
so that g̃g̃� ∈ MG, which means that MG ⊂ MG. Therefore we can assume
that G is a closed linear Lie group without loss of generality. Furthermore, we
can assume that G is connected. Following Vinberg’s argument [9, Chapter 1,
Sect. 6], we shall show that MG0

alg
= MG, where G0

alg is the identity compo-
nent (in the classical topology) of the real algebraic hull of G in GL(N,R).
Let g be the Lie algebra of G. For h ∈ G0

alg, we have hh� ∈ IN + V and
h gh−1 = g because these are algebraic conditions that are satisfied by all
the elements of G. The second condition together with the connectedness of
G tells us that hGh−1 = G. Let U be a neighborhood of IN in G0

alg such that
hh� ∈ MG for all h ∈ U . Then for any θ = gg� ∈ MG (g ∈ G), we have
hθh� = (hgh−1)hh�(hgh−1)� ∈ g0MGg�

0 = MG, where g0 := hgh−1 ∈ G.
Thus, if h is the product h1h2 · · · hm ∈ G0

alg with h1, . . . , hm ∈ U , we see that
hh� ∈ MG inductively. Therefore we conclude that MG0

alg
= MG.



258 H. Ishi

By Vinberg [9], we have the generalized Iwasawa decomposition

G0
alg = T · (G0

alg ∩ O(N)),

where T is a maximal connected split solvable Lie subgroup of G0
alg. Moreover,

T is triangularized simultaneously by an orthogonal matrix U ∈ O(N), which
means that a group T U =

{
U−1hU ; h ∈ T

}
is contained in the group TN

of lower triangular matrices of size N with positive diagonal entries. Let MU
G

be the set
{

U�θU ; θ ∈ MG

}
, which is equal to MT U . By the uniqueness of

the Cholesky decomposition, we have a bijection T U � h �→ hh� ∈ MU
G. The

tangent space of MU
G at IN is naturally identified with V U :=

{
U�yU ; y ∈ V

}
.

In general, for x ∈ Sym(N,R), we denote by x
∨

the lower triangular matrix

for which x = x
∨

+ (x
∨
)�. Actually, we have (x

∨
)ij =

⎧
⎪⎨

⎪⎩

xij (i > j)
xii/2 (i = j)
0 (i < j).

Then we

define a bilinear product 
 on Sym(N,R) by

x
y := x
∨
y + y(x

∨
)� (x, y ∈ Sym(N,R)).

The algebra (Sym(N,R),
) forms a compact normal left-symmetric algebra
(CLAN), see [9, Chapter 2] and [6].

Lemma 1. The space V U is a subalgebral of (Sym(N,R),
). Namely, for any
x, y ∈ V U , one has x
y ∈ V U .

Proof. Let tU be the Lie algebra of T U . In view of the Cholesky decomposition
mentioned above, we have a linear isomorphism tU � T �→ T + T� ∈ V U . Thus
we obtain

tU =
{

x
∨

; x ∈ V U
}

. (1)

Let us consider the action of h ∈ T U on the set MU
G given by MU

G � θ �→
hθh� ∈ MU

G. This action is naturally extended to the affine space IN + V U

as affine transformations. The infinitesimal action of T = x
∨

∈ tU on IN + y ∈
IN + V U (y ∈ V U ) is equal to T (IN + y) + (IN + y)T� = x + x
y which must
be an element of V U . Therefore x
y ∈ V U . ��

Proposition 1 ([6, Theorem 2 and Proposition 2]). If V U contains the
identity matrix IN , after an appropriate permutation of the rows and columns,
V U becomes the set of symmetric matrices of the form

y =

⎛

⎜
⎜
⎜
⎝

Y11 Y �
21 . . . Y �

r1

Y21 Y22 Y �
r2

...
. . .

...
Yr1 Yr2 . . . Yrr

⎞

⎟
⎟
⎟
⎠

(
Ykk = ykkIνk

, ykk ∈ R, (k = 1, . . . , r)
Ylk ∈ Vlk (1 ≤ k < l ≤ r)

)

,

where N = ν1 + · · · + νr, and Vlk are subspaces of Mat(νl, νk;R) satisfying
(V1) A ∈ Vlk ⇒ AA� ∈ RIνl

for 1 ≤ k < l ≤ r,
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(V2) A ∈ Vlj , B ∈ Vkj ⇒ AB� ∈ Vlk for 1 ≤ j < k < l ≤ r,
(V3) A ∈ Vlk, B ∈ Vkj ⇒ AB ∈ Vlj for 1 ≤ j < k < l ≤ r.

Clearly IN ∈ V U if and only if IN ∈ V . In this case, Proposition 1 together
with [6, Theorem 3] tells us that T U = tU ∩ TN and MU

G = MT U = V U ∩
Sym+(N,R). It follows that we obtain:

Proposition 2. If IN ∈ V , one has MG = V ∩ Sym+(N,R).

Here we remark that every homogeneous cone is realized as MG this way by

[6]. For example, if U = IN , ν1 = · · · = νr = 2 and Vlk =
{(

a −b
b a

)
; a, b ∈ R

}

(1 ≤ k < l ≤ r), then MG = V ∩ Sym+(N,R) is linearly isomorphic to the cone
Herm+(r,C) of positive definite r × r Hermitian matrices, which is a realization
of the symmetric space GL(r,C)/U(r). See [4] and [6] for other examples.

If V U does not contain IN , we consider the direct sum Ṽ U := RIN ⊕ V U ,
which is also a subalgebra of (Sym(N,R),
). Then we apply Proposition 1
to Ṽ U . Since V U is a two-sided ideal of Ṽ U of codimension one, after some
renumbering of indices k and l, we see that V U equals the subspace of Ṽ U

costing of elements y with y11 = 0. Namely, we have the following.

Theorem 1. If V U does not contain the identity matrix IN , after an appro-
priate permutation of the rows and columns, V U becomes the set of symmetric
matrices of the form

y =

⎛

⎜
⎜
⎜
⎝

0 Y �
21 . . . Y �

r1

Y21 Y22 Y �
r2

...
. . .

...
Yr1 Yr2 . . . Yrr

⎞

⎟
⎟
⎟
⎠

(
Ykk = ykkIνk

, ykk ∈ R, k = 2, . . . , r

Ylk ∈ Vlk, 1 ≤ k < l ≤ r

)

,

where Vlk are the same as in Proposition 1.

In what follows, we shall consider the case where IN �∈ MU
G because our

results below for the case IN ∈ MU
G will be obtained formally by putting ν1 = 0

and Vk1 = {0}, as is understood by comparing Proposition 1 and Theorem 1.
Put N ′ := ν2 + · · ·+νr = N −ν1. Let W and V ′ be the vector spaces of matrices
w and y′ respectively of the forms

w =

⎛

⎜
⎝

Y21

...
Yr1

⎞

⎟
⎠ ∈ Mat(N ′, ν1;R), y′ =

⎛

⎜
⎝

Y22 Y �
r2

...
. . .

Yr2 . . . Yrr

⎞

⎟
⎠ ∈ Sym(N ′,R).

Let P ′ be the set V ′ ∩Sym+(N ′,R). Then P ′ forms a pointed open convex cone
in the vector space V ′.

Theorem 2. Under the assumptions above, one has

MG =
{

U

(
Iν1 w�

w y′

)
U� ; w ∈ W, y′ ∈ V ′, y′ − ww� ∈ P ′

}
.

Moreover MG equals the intersection of Sym+(N,R) and the affine space IN +V .
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Proof. Let t′ be the set of the lower triangular matrices y′
∨

with y′ ∈ V ′. Then

we see from [6] that t′ is a Lie algebra, and that the corresponding Lie group
T ′ := exp t′ ⊂ GL(N ′,R) equals t′ ∩ TN ′ . Namely, T ′ is the set of h′ of the form

h′ =

⎛

⎜
⎝

T22

...
. . .

Tr2 . . . Trr

⎞

⎟
⎠ ∈ TN ′

(
Tkk = tkkIνk

, tkk > 0, k = 2, . . . , r

Tlk ∈ Vlk, 2 ≤ k < l ≤ r

)

.

Since we have tU =
{ (

0
L T ′

)
; L ∈ W, T ′ ∈ t′

}
by (1), the corresponding Lie

group T U is the set of
(

Iν1 0
L h′

)
with L ∈ W and h′ ∈ T ′. Therefore, MU

G =

MT U is the set of matrices
(

Iν1 0
L h′

) (
Iν1 L�

0 (h′)�

)
=

(
Iν1 L�

L LL� + a′

)
with a′ =

h′(h′)� ∈ P ′. On the other hand, as is discussed in [6, Theorem 3], the map
T ′ � h′ �→ h′(h′)� ∈ P ′ is bijective, which completes the proof. ��

3 Existence Condition and an Explicit Expression of
MLE

Let X1, . . . , Xn be independent random vectors obeying the central multivari-
ate normal law N(0,Σ) with θ := Σ−1 ∈ MG. The density function f of
(X1, . . . , Xn) is given by

f(x1, . . . , xn; θ) := (2π)−nN/2(det θ)n/2
N∏

j=1

e−x�
j θxj/2 (xj ∈ R

N , j = 1, . . . , n).

Let π : Sym(N,R) → V be the orthogonal projection with respect to
the trace inner product. Putting y := π(

∑N
j=1 xjx

�
j /2) ∈ V , we have

f(x1, . . . , xn; θ) = c(x)(det θ)n/2e−tr θy, where c(x) := (2π)−nN/2 exp(tr {(IN −
π(IN ))

∑N
j=1 xjx

�
j /2}), which is independent of θ. Thus, given Y :=

π(
∑n

k=1 XjX
�
j /2) ∈ V , the maximum likelihood estimator θ̂ is an element of

MG at which the log likelihood function F (θ;Y ) := (n/2) log det θ − tr(Y θ)
attains the maximum value.

In what follows, we shall assume that U = IN . Indeed, a general case is easily
reduced to this case. For k = 2, . . . , r, let V[k] and Wk−1 be the vector spaces of
matrices y[k] and Zk−1 respectively of the forms

y[k] =

⎛

⎜
⎝

Ykk Y �
rk

...
. . .

Yrk . . . Yrr

⎞

⎟
⎠ ∈ Sym(Nk,R), Zk−1 =

⎛

⎜
⎝

Yk,k−1

...
Yr,k−1

⎞

⎟
⎠ ∈ Mat(Nk, νk−1;R),
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where Nk := νk + · · · + νr. Note that V ′ = V[2] and W = W1 in the previous
notation. We have an inductive expression of y ∈ V as

y =
(

0 Z�
1

Z1 y[2]

)
, y[k] =

(
ykkIνk

Z�
k

Zk y[k+1]

)
(k = 2, . . . r−1), y[r] = yrrIνr

. (2)

Let T[k] ⊂ TNk
be the group of lower triangular matrices y[k]

∨
(y[k] ∈ V[k]) with

positive diagonal entries. Then T ′ = T[2]. Any element h ∈ T is expressed as

h =
(

Iν1 0
L1 h[2]

)
, h[k] =

(
tkkIνk

0
Lk h[k+1]

)
∈ T[k] (k = 2, . . . , r − 1)

with Lk ∈ Wk and h[r] = trrIνr
∈ T[r]. We observe that

h[k]h
�
[k] =

(
t2kkIνk

tkkL�
k

tkkLk LkL�
k + h[k+1]h

�
[k+1]

)
∈ V[k].

We shall regard V[k] as a subspace of V ′ = V[2] by zero-extension. Define a map

qk : R>0 × Wk → V ′ for k = 2, . . . , r − 1 by qk(tkk, Lk) :=
(

t2kk tkkL�
k

tkkLk LkL�
k

)
∈

V[k] ⊂ V ′, and define also qr(trr) := t2rrInr
∈ V[r] ⊂ V ′. If θ = hh�, we have

θ =
(

Iν1 L1

L1 L1L
�
1 + θ′

)
, θ′ =

r−1∑

k=2

qk(tkk, Lk) + qr(trr). (3)

For y′ ∈ V ′ = V[2] and k = 2, . . . , r − 1, we have

tr (y′qk(tkk, Lk)) = νkykkt2kk + 2tkk tr (Z�
k Lk) + tr (y[k+1]LkL�

k ). (4)

Let mk (k = 1, . . . , r − 1) be the dimension of the vector space Wk, and take
an orthonormal basis {ekα}mk

α=1 of Wk with respect to the trace inner product.
For Lk ∈ Wk, let λk := (λk1, . . . , λkmk

)� ∈ R
mk be the column vector for

which Lk =
∑mk

α=1 λkαekα. Defining ζk ∈ R
mk for Zk ∈ Wk similarly, we have

ζ�
k λk = tr (Z�

k LK). Let ψk : V ′ → Sym(mk,R) be a linear map defined in such
a way that tr (y′LkL�

k ) = λ�
k ψk(y′)λk, and define φk : V ′ → Sym(1 + mk,R) by

φk(y′) :=
(

νkykk ζ�
k

ζk ψk(y)

)
. In view of (4), we have

tr(y′qk(tkk, Lk)) = tr
(

φk(y′)
(

t2kk tkkλ�
k

tkkλk λkλ�
k

))
. (5)

Let φ∗
k : Sym(1 + mk,R) → V ′ be the adjoint map of φk, which means that

tr φ∗
k(S)y′ = tr Sφ(y′) for S ∈ Sym(1 + mk,R). Define also φr(y′) := νryrr ∈

R ≡ Sym(1,R) and φ∗
r(c) = cIνr

∈ V[r] ⊂ V ′ for c ∈ R.
Let Q′ ⊂ V ′ be the dual cone of P ′ ⊂ V ′, that is, the set of y′ ∈ V ′ such

that tr (y′a) > 0 for all a ∈ P′ \ {0}. If y′ ∈ Q′, then φk(y′) and ψk−1(y′) are
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positive definite for k = 2, . . . , r. Moreover, it is known (see [4, Proposition 3.4
(iii)]) that

Q′ = { y′ ∈ V ′ ; det φk(y′) > 0 for all k = 2, . . . , r } . (6)

If Y := π(
∑n

j=1 XjX
�
j /2) is expressed as in (2), then we can show that Y ′ :=

Y[2] belongs to the closure of Q′, so that φk(Y ′) and ψk−1(Y ′) are positive
semidefinite for k = 2, . . . r.

Theorem 3. (i) If Y ′ ∈ Q′, then θ̂ = arg max
θ∈MG

F (θ;Y ) exists uniquely, and it

is expressed as θ̂ =
(

Iν1 L̂�
1

L̂1 L̂1L̂
�
1 + θ̂′

)
with λ̂1 = −ψ1(Y ′)−1ζ1 ∈ R

m1 , which is

the column vector corresponding to L̂1, and

θ̂′ =
nνr

2
φ∗

r(φr(Y ′)−1) +
r−1∑

k=2

nνk

2
φ∗

k

(
φk(Y ′)−1 −

(
0 0
0 ψk(Y ′)−1

))
. (7)

(ii) If Y ′ �∈ Q′, then F (θ;Y ) is unbounded, so that θ̂ does not exist.

Proof. (i) Keeping (2), (3) and (det θ)n/2 =
∏r

k=2(tkk)nνk in mind, we define

F1(L1;Y ) := −2tr(Z�
1 L1) − tr(Y ′L1L

�
1 ),

Fk(tkk, Lk;Y ) := nνk log tkk − tr (qk(tkk, Lk)Y ′) (k = 2, . . . , r − 1),

Fr(trr;Y ) := nνr log trr − νryrrt
2
rr,

so that F (θ;Y ) = F1(L1;Y )+Fr(trr;Y )+
∑r−1

k=2 Fk(tkk, Lk;Y ). It is easy to see
that Fr(trr;Y ) takes a maximum value at t̂rr =

√
n

2yrr
. Then qr(t̂rr) = n

2yrr
Iνr

=
nνr

2 φ∗
r(φr(Y ′)−1). On the other hand, F1(L1;Y ) = −2ζ�

1 λ1−λ�
1 ψ1(Y ′)λ1 equals

ζ�
1 ψ1(Y ′)−1ζ1 − (λ1 + ψ1(Y ′)−1ζ1)�ψ1(Y ′)(λ1 + ψ1(Y ′)−1ζ1),

which attains a maximum value when λ1 = −ψ1(Y ′)−1ζ1 because ψ1(Y ′) is
positive definite. Similarly, we see from (5) that

Fk(tkk, Lk) = nνk log tkk − (νkykk − ζ�
k ψk(Y ′)−1ζk)t2kk

− (λk + tkkψk(Y ′)−1ζk)�ψk(Y ′)(λk + tkkψk(Y ′)−1ζk).
(8)

Since νkykk − ζ�
k ψk(Y ′)−1ζk = det φk(Y ′)/det ψk(Y ′) > 0, we see that

Fk(tkk, Lk;Y ′) attains at (t̂kk, L̂k) with t̂kk =
√

nνk

2(νkykk−ζ�
k ψk(Y ′)−1ζk)

and

λ̂k = −t̂kkψk(Y ′)−1ζk ∈ R
mk , which is the column vector corresponding to

L̂k. By a straightforward calculation, we have
(

t̂2kk t̂kkλ̂�
k

t̂kkλ̂k λ̂kλ̂�
k

)
=

nνk

2

(
φk(Y ′)−1 −

(
0 0
0 ψk(Y ′)−1

))
∈ Sym(1 + mk,R),
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which maps to qk(t̂kk, L̂k) by φ∗
k : Sym(1+mk,R) → V ′ thanks to (5). Therefore

the assertion (i) is verified.
(ii) By (6), there exists k for which detφk(Y ′) = 0. If detφr(Y ′) = yνr

rr = 0, then
Fr(trr;Y ′) = nνr log trr → +∞ in trr → +∞. Let us consider the case where
det φl(Y ′) > 0 for l = k + 1, . . . , r and detφk(Y ′) = 0. Then one can show that
ψk(Y ′) is positive definite because in this case Y[k+1] ∈ V[k+1] belongs to the
dual cone of P[k+1] := V[k+1] ∩ Sym+(Nk,R) by the same reason as (6). Since
νkykk − ζ�

k ψk(Y ′)−1ζk = det φk(Y ′)/det ψk(Y ′) = 0, we see from (8) that

max
Lk∈Wk

Fk(tkk, Lk;Y ′) = nνk log tkk → +∞ (tkk → +∞),

which completes the proof. ��

We remark that a generalization of the formula (7) is found in [5, Theorem
5.1]. By Theorem 3, the existence of the MLE θ̂ is equivalent to that the random
matrix Y ′ belongs to the cone Q′ with probability one. On the other hand, the
distribution of Y ′ is nothing else but the Wishart distribution on Q′ studied in
[4] and [5]. The Wishart distribution is obtained as a natural exponential family
generated by the Riesz distribution μn on V ′ characterized by its Laplace trans-
form:

∫
V ′ e−tr(y′a)μn(dy′) = (det a)−n/2 for all a ∈ P ′. Note that, if a ∈ P ′ is a

diagonal matrix, we have (det a)−n/2 =
∏r

k=2 a
−nνk/2
kk . As is seen in [5, Theorem

4.1 (ii)], the support of the Riesz distribution μn is determined from the parame-
ter (nν2/2, . . . , nνr/2) ∈ R

r−1. In fact, suppμn = Q′ if and only if nνk/2 > mk/2
for k = 2, . . . , r, and Y ′ ∈ Q′ almost surely in this case. Otherwise, supp μn is
contained in the boundary of Q′, so that Y ′ never belongs to Q′. Therefore, if
n0 is the smallest integer that is greater than max

{
mk

νk
; k = 2, . . . , r

}
, we have

the following final result.

Theorem 4. The maximum likelihood estimator θ̂ = arg max
θ∈MG

F (θ;Y ) exists

with probability one if and only if n ≥ n0. If n < n0, then the log likelihood
function F (θ;Y ) of θ ∈ MG is unbounded.
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Abstract. In this paper we discuss the construction of probability dis-
tributions on the group SL(2,C) and the Möbius group using the expo-
nential map. In particular, we describe the injectivity and surjectivity
domains of the exponential map and provide its Jacobian determinant.
We also show that on SL(2,C) and the Möbius group, there are no
isotropic distributions in the group sense.

Keywords: Statistics on lie groups · Exponential map · Wrapped
distributions · Killing form

1 Introduction

Modelling and estimating probability densities on manifolds raises several diffi-
culties and is still an active research topic, see for instance [1,2]. In most cases
the manifolds studied are endowed with a Riemannian metric. It is for instance
the case for the manifold of positive definite matrices, or the rotations group of
an Euclidean space. In these contexts all the structures used in the statistical
analysis are related to the distance. The other important structure addressed in
the literature is the Lie group structure. Despite being a large class of manifolds,
a reason why it is less often studied than the Riemannian setting, is because com-
pact Lie groups admit a bi-invariant metric. In that case, the statistical analysis
based on the Riemannian distance satisfies all the group requirements. Most
examples of statistics problems on non-compact groups studied in the literature
arise from rigid and affine deformations of the physical space R

3. Due to their
role in polarization optics, see [7,8], we study here the group SL(2,C) and its
quotient, the Möbius group.

In Sect. 2, we review the main important facts about SL(2,C) and the Möbius
group. In Sect. 3, we describe the construction of exponential-wrapped distribu-
tions. In particular, we show that the non-surjectivity of the exponential map on
SL(2,C) is not a major obstacle and give an expression of its Jacobian. In Sect. 4,
we make a parallel between the notion of isotropy on a Riemannian manifold and
a notion of isotropy on a group. We show that unfortunately, except the Dirac
on the identity, there are no isotropic probability distributions on SL(2,C) and
the Möbius group in that sense.
c© Springer Nature Switzerland AG 2021
F. Nielsen and F. Barbaresco (Eds.): GSI 2021, LNCS 12829, pp. 265–272, 2021.
https://doi.org/10.1007/978-3-030-80209-7_30
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2 The Group SL(2,C) and the Möbius Group

SL(2,C) is the group of 2 by 2 complex matrices of determinant 1. Since it is
defined be the polynomial equation

det(M) = 1, M ∈ M2(C), (1)

it is a complex Lie group. Recall that a complex Lie group is a complex manifold
such that the group operations are holomorphic. Recall also that a complex
manifold is a manifold whose charts are open sets of Cd and whose transition
are holomorphic.

In this paper, we define the Möbius group, noted Möb, as the quotient of
SL(2,C) by the group +I,−I, where I is the identity matrix. Since

Möb = SL(2,C)/ {+I,−I} ∼ PGL(2,C),

the Möbius group can also be seen as a projective linear group. Recall that
PGL(2,C) is defined as a quotient of GL(2,C) by the multiples of the identity
matrix.

Since Möb is a quotient of SL(2,C) by a discrete subgroup, they have the same
Lie algebra, noted sl(2,C). The complex structure of SL(2,C) makes sl(2,C) a
complex vector space. By differentiating Eq. 1 around the identity matrix, we
can check that sl(2,C) is the vector space of complex matrices with zero trace.
It is easy to see that sl(2,C) is the complexification of real traceless matrices,
hence

e =
(

0 1
0 0

)
, h =

(
1 0
0 −1

)
, f =

(
0 0
1 0

)

generates sl(2,C) and it is of complex dimension 3. The Lie brackets are given
by

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h,

hence their adjoints in the basis (e, h, f) are

ade =

⎛
⎝0 −2 0

0 0 1
0 0 0

⎞
⎠ adh =

⎛
⎝2 0 0

0 0 0
0 0 −2

⎞
⎠ , adf =

⎛
⎝ 0 0 0

−1 0 0
0 2 0

⎞
⎠ .

The Killing form on a Lie algebra is given by

κ(X,Y ) = Tr(adXadY ).

It can be checked that on sl(2,C),

κ(X,Y ) = 4Tr(XY ),

and that for a matrix X = a.e + b.h + c.f ,

κ(X,X) = 8(b2 + ac) = −8 det(X) = 8λ2,

where λ is an eigenvalue of X. Recall that the eigenvalues of X ∈ SL(2,C) are
either distinct and opposite or null.
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3 Exponential-Wrapped Distributions

In this section, we determine domains on the Lie groups and Lie algebra involved
in the construction of exponential-wrapped distributions on SL(2,C) and the
Möbius group, and provide the expression of their densities.

Let us recall how the definition of the exponential map is defined on the Lie
algebra, and how it is extended to every tangent spaces. The exponential map
exp on a Lie group G maps a vector in the Lie algebra X ∈ TeG to γ(1), where γ
is the one parameter subgroup with γ′(0) = X. This map is defined on TeG but
can be extended to every tangent spaces TgG using pushforwards of the group
multiplications. The following identity

g expe(X)g−1 = expe(dLgdR−1
g (X)) = expe(dR−1

g dLg(X)),

ensures that the definition of the exponential at g is independent of the choice
of left or right multiplication:

expg :TgG → G

u �→ expg(X) = g. exp
(
dLg−1X

)
= exp

(
dRg−1X

)
g.

In the rest of the paper, exponentials without subscript refer to exponentials
at identity. The definition of exponential maps on arbitrary tangent space has a
deep geometric interpretation, as exponentials maps of an affine connection. See
[5] for a detailed description of this point of view.

Exponential-wrapped distributions refers to distributions pushed forward
from a tangent space to the group, by an exponential map. Given a probability
distribution μ̃ on TgG,

μ = expg∗(μ̃)

is a probability distribution on G. Consider a left or right invariant field of basis
on G and the associated Haar measure. Recall that since SL(2,C) is unimodular,
left invariant and right invariant measure are bi-invariant. When μ̃ has a density
f̃ , the density f of μ with respect to the Haar measure is the density f̃ divided
by the absolute value of the Jacobian determinant of the differential of the
exponential map. If f̃ is vanishing outside an injectivity domain,

f(expg(X)) =
f̃(X)
J(X)

, with J(X) = |det(d expg,X)|. (2)

The interest of this construction is dependent on the injectivity and surjectiv-
ity properties of the exponential map. The situation is ideal when the exponential
map is bijective: exponential-wrapped distributions can model every distribution
on the group. Non-surjectivity is a potentially bigger issue that non-injectivity.
As we will see, the injectivity can be forced by restricting the tangent space to
an injectivity domain. However when the ranges of the exponential maps are
too small, arbitrary distributions on the group might only be modeled by a mix-
ture of exponential-wrapped distributions involving a large number of tangent
spaces. On SL(2,C), the exponential map is unfortunately neither injective nor
surjective. However, we have the following.
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Fact 1. The range of the exponential map of the group SL(2,C) is

U = {M ∈ SL(2,C)|Tr(M) �= −2} ∪ {−I} ,

where I is the identity matrix. As a result, SL(2,C) \ exp (sl(2,C)) has zero
measure.

Fact 1 can be checked using the Jordan decomposition of SL(2,C) matrices. A
detailed study of the surjectivity of the exponential for SL(2,R) and SL(2,C) can
be found in [6]. This fact shows that the non surjectivity does not significantly
affect the modeling capacities of exponential-wrapped distributions. As a direct
consequence of Fact 1, we have

Corollary 1.

– SL(2,C) is covered by expI and exp−I

– The exponential map of the Möbius group is surjective.

Proof. For M ∈ SL(2,C), M or −IM has a positive trace and is in the range of
the SL(2,C) exponential. Since the Möbius group is SL(2,C) quotiented by the
multiplication by −I, at least one element of the equivalent classes is reached
by the exponential.

We now provide injectivity domains of the exponentials, which enable the
definition of the inverses.

Fact 2. The exponential of SL(2,C) is a bijection between U and U with,

U = {X ∈ sl(2,C)| Im(λ) ∈ ]−π, π] for any eigenvalueλ ofX} .

Recall that eigenvalues of X are always opposite. The exponential of the Möbius
group is bijective on

UMöb =
{

X ∈ sl(2,C)| Im(λ) ∈
]
−π

2
,
π

2

]
for any eigenvalueλ ofX

}
.

This is a direct consequence of Theorem 1.31 of [4], which defines the principal
matrix logarithm for matrices with no eigenvalues in R−, by setting the eigen-
values of the logarithm to the interval ]−π, π[. In order to have a bijective maps,
the intervals should contains exactly one of their extremities. UMöb is obtained
by noting that the quotient by {I,−I} in SL(2,C) translates to an quotient

by iπZ on eigenvalues in the Lie algebra. Note that since
√

κ(X,X)
2 = ±λ, the

injectivity domains can be expressed as the inverse image of subset of C by the
quadratic form X �→ κ(X,X).

Hence, when the support of f̃ is included in U or UMöb, Eq. 2 holds. We
address now the computation of the volume change term. Note that in Eq. 2, the
determinant is seen as a volume change between real vector spaces. Recall also
that for a complex linear map A on C

n, the real determinant over R
2n is given

by detR(A) = |detC(A)|2.
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The differential in a left invariant field of basis of the exponential map at
identity e evaluated on the vector X ∈ TeG is given by the following formula,
see [3],

d expX = dLexp(X) ◦

⎛
⎝∑

k≥0

(−1)k

(k + 1)!
adk

X

⎞
⎠ ,

where subscript e is dropped. Using the Jordan decomposition of adX , authors
of [2] pointed out the fact that this Jacobian can be computed for every Lie
group, even when the adjoint endmorphisms are not diagonalizable. We have,

detC (d expX) =
∏

λ∈ΛX

(
1 − eλ

λ

)dλ

,

where ΛX is the set of nonzero eigenvalues of adX and dλ the algebraic multi-
plicity of the eigenvalue λ. For the group SL(2,C), a calculation shows at the
matrix X of coordinates (a, b, c) in the basis (e, h, f), the eigenvalues of

adX = a.

⎛
⎝0 −2 0

0 0 1
0 0 0

⎞
⎠ + b.

⎛
⎝2 0 0

0 0 0
0 0 −2

⎞
⎠ + c.

⎛
⎝ 0 0 0

−1 0 0
0 2 0

⎞
⎠ ,

are

λ1 = 0, λ2 = 2
√

ac + b2 =

√
κ(X,X)

2
, λ3 = −λ2.

It is interesting to note that eigenvalues of X are also eigenvalues of adX . The
absolute value of the Jacobian becomes

J(a, b, c) = |detC (d expX)|2 =
∣∣∣∣ (1 − e−λ2)(1 − eλ2)

λ2
2

∣∣∣∣
2

=
∣∣∣∣21 − cosh(λ2)

λ2
2

∣∣∣∣
2

.

J is extended by continuity by J(0, 0, 0) = 1: it is not surprising since the
differential of the exponential at zero is the identity. Equation 2 can be rewritten
as,

f(exp(X)) =

∣∣∣∣∣∣∣
κ(X,X)

4
(
1 − cosh

(√
1
2κ(X,X)

))
∣∣∣∣∣∣∣
f̃(X). (3)

Recall that λ2,3 are complex numbers, and that cosh(ix) = cos(x). It is
interesting to note that on the one parameter subgroup generated by (0, 1, 0) the
Jacobian is increasing, which is a sign of geodesic spreading. On the other hand
on the one parameter subgroup generated by (0, i, 0) the Jacobian is decreasing
over [0, π], which is a sign of geodesic focusing.
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4 There Are No Group-Isotropic Probability
Distributions

When the underlying manifold is equipped with a Riemannian metric, it is pos-
sible to define the notion of isotropy of a measure. A measure μ is isotropic if
there is a point on the manifold such that μ is invariant by all the isometries
which preserve the point. They form an important class of probability, due to
their physical interpretation, and to the fact that their high degree of symmetries
enable to parametrize them with a small number of parameters.

On compact Lie groups, there exists Riemannian metrics such that left and
right translations are isometries, and the notion of isotropy can hence be defined
in term of the distance. Unfortunately there are no Riemannian metric on
SL(2,C) compatible with the group multiplications. This comes from the fact
that the scalar product at identity of such a metric should be invariant by the
adjoint action of the group. Since the adjoint representation of SL(2,C) is faith-
ful, this scalar product should be invariant by a non compact group, which is
not possible. Hence, isotropy cannot be defined by Riemannian distance.

However the role of the distance in the definition of isotropy is not crucial:
isotropy is defined by the invariance with respect to a set of transformations.
When the manifold is Riemannian, this set is the set of isometries that fix a
given point, when the manifold is a Lie group, the relevant set becomes a set of
group operations.

Definition 1 (group-isotropy). Let G be a Lie group and T be the set of
all maps T : G → G obtained by arbitrary compositions of left multiplications
and right multiplication. A measure μ on a Lie group G is group-isotropic with
respect to an element g if

T∗μ = μ, ∀T ∈ T , T (g) = g,

where T∗μ is the pushforward of μ by T .

It is easy to checked that the elements of T which preserve the identity are
the conjugations. Recall that the Killing form is invariant under the differential
of conjugations, and that the Jacobian of the exponantial is a function of the
Killing form, see Eq. 3. It can be checked that if a density f̃ on the Lie algebra is
a function of the Killing form, the push forward on the group is group-isotropic.
Hence wrapping measures to the group with the exponential map is a natural
way to construct group-isotropic measures on SL(2,C). However, the following
results shows that unfortunately, the group-isotropy notion is not relevant on
SL(2,C) for probability distributions: it contains only Dirac distributions.

Theorem 1. If μ is a finite positive measure on SL(2,C) isotropic with respect
to the identity, then μ is a Dirac at the identity.
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Proof. Assume that μ is a measure on SL(2,C) whose support contains a matrix

M =
(

a b
c d

)
different from the identity matrix. Since

(
1 t
0 1

)
.

(
a b
c d

)
.

(
1 t
0 1

)−1

=
(

a + tc b + t(d − a) − ct2

c −ct + d

)
,

M is always conjugated to a matrix whose upper right coefficient is not zero. By
the isotropic assumption, this matrix is still in the support of μ. Hence we can
suppose that b �= 0. Let B(M) be the open ball centered on M :

B(M) =
{(

a + ε1 b + ε2
c + ε3 d + ε4

)
, |εi| <

|b|
2

}
.

Since M is in the support of μ, μ(B(M)) > 0. Let g =
(

2 0
0 1

2

)
∈ SL(2,C). If we

can show that gnB(M)g−n and gn+kB(M)g−(n+k) for all n ∈ N and k ∈ N∗ are
disjoint, μ has to be infinite since there are countable disjoint sets of identical
nonzero mass. We have

gnMg−n =
(

2 0
0 1

2

)n (
a b
c d

)
.

(
1
2 0
0 2

)−n

=
(

a 22nb
c

22n d

)
.

Hence,

gnB(M)g−n ∩ gn+kB(M)g−(n+k) �= ∅
⇒ ∃ε, ε′, with |ε| and |ε′| < |b|

2 , such that, 22n(b + ε) = 22n22k(b + ε′)

Using the triangular inequalities |b + ε| < |b| + |ε| and |b| − |ε′| < |b + ε′|, we see
that such ε and ε′ do not exist when k is a positive integer. Hence the images of
B(M) by the conjugations by gn∈N are disjoints and the measure is infinite.

5 Conclusion

In this paper, we laid the foundations for density modeling using exponential-
wrapped distributions on SL(2,C) and the Möbius group. The Möbius group
plays an important role in polarization optics due to its action on wave polariza-
tion states. Future works will focus on applications of density modeling on the
Möbius group to the propagation of light through random media.
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Abstract. The present paper deals with a class of left-invariant semi-
definite metrics, called Fisher-Rao semi-definite metrics, on Lie groups
appearing in transformation models. It is assumed that a family of invari-
ant probability density functions on the sample manifold is given and
that these probability density functions are invariant under a smooth
Lie group action. As have been studied by Barndorff-Nielsen and his
coauthors, as well as Amari and his collaborators, the Fisher-Rao semi-
definite metric is naturally induced as a left-invariant semi-definite metric
on the Lie group, which is regarded as the parameter space of the family
of probability density functions. For a specific choice of family of proba-
bility density functions on compact semi-simple Lie group, the equation
for the geodesic flow is derived through the Euler-Poincaré reduction.
Certain perspectives are mentioned about the geodesic equation on the
basis of its similarity with the Brockett double bracket equation and with
the Euler-Arnol’d equation for a generalized free rigid body dynamics.

Keywords: Lie group · Information geometry · Hamiltonian systems

1 Introduction

For a statistical model, the Fisher-Rao metric is naturally defined on the param-
eter space for a family of probability density functions on the sample space. The
Fisher-Rao metric, as well as Amari-Chentsov cubic tensor, has given rise to
many important studies in information geometry from the viewpoint of differen-
tial geometry, which can now be formulated by the theory of dual connections,
α-connections, α-geodesics, and statistical manifolds. See e.g. [1,2].1 Particularly
many researches have been done for dually flat manifolds, formulated also in the
framework of the Hessian geometry. See e.g. [13,14,29].2

1 Note that the Fisher-Rao metric itself was first introduced by Fréchet in [11].
2 The Hessian geometry originates in the work by Koszul.
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In the theory of dynamical systems, the complete integrability of the geodesic
flows is one of the fundamental problems. In information geometry, the e- and
m-geodesics for finite sample spaces are particularly well known. The relations
between information geometry and completely integrable systems have been stud-
ied by Nakamura [20,22,23] and can now be found also in the textbooks [3, §8.3]
and [1, §13]. However, further studies are still possible in these directions and may
results in discoveries of interesting dynamical phenomena.

The present paper concerns a sample manifold admitting a smooth action
of a Lie group. Given a family of invariant probability density functions on the
sample manifold, the Lie group can be regarded as the parameter space of the
statistical model. Such a statistical model has already been studied by Barndorff-
Nielsen and his coauthors as the transformation models. In [3, §8.3], such statis-
tical models are also mentioned and analogues of the Fisher-Rao metric and the
Amari-Chentsov cubic tensor are considered with further perspectives of stud-
ies. It should also be pointed out that the exponential families on vector spaces
invariant under group actions were studied by Casalis e.g. in [9,10].

Section 2 deals with the Fisher-Rao semi-definite metric on Lie groups appear-
ing in transformation models, following [3, §8.3]. By left-invariance, the metric is
a positive-semi-definite bilinear form on the Lie algebra. Although it is not nec-
essarily positive-definite, one can define a Riemannian metric, called Fisher-Rao
Riemannian metric, on a homogeneous space, assuming that a Lie subgroup pre-
serves the Fisher-Rao semi-definite metric and that the restriction of the metric to
the complement to the Lie algebra of the Lie subgroup is positive-definite.

Section 3 deals with the case where the sample manifold coincides with the
parameter Lie group and a specific family of probability density functions is
introduced under the influence of the objective functions which appear in the
formulation of the generalized Toda lattice equations as the Brockett double
bracket equations for optimization problems. See e.g. [8] for the details of the
generalized Toda lattice equations. As a main result of the present paper, it is
shown that the Fisher-Rao Riemannian metric is induced on an adjoint orbit and
the geodesic equation is derived through the Euler-Poincaré reduction [17,26]. In
view of the similarities with the Brockett double bracket equations (cf. [8]) and
the Euler-Arnol’d equations for the generalized free rigid bodies (cf. [18,27,28]),
certain future perspectives of this geodesic equation are mentioned.

2 Fisher-Rao Semi-definite Metric and Amari-Chentsov
Cubic Tensor for the Transformation Models

In this section, we consider a sample manifold admitting a Lie group action.
Given an invariant family of probability density functions on the sample mani-
fold, we introduce a Fisher-Rao (semi-definite) metric on the Lie group, regarding
the Lie group as the parameter space of a family of certain probability density
functions on the sample manifold. These statistical models have been considered
by Barndorff-Nielsen and his collaborators as the transformation models. See e.g.
[5–7]. In this section, we discuss the Fisher-Rao (semi-definite) metric and the
Amari-Chentsov cubic tensor in the framework proposed in [3, §8.3].
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Let M be a compact smooth manifold and G a Lie group acting smoothly
on M from the left: G×M � (g, x) �→ g ·x ∈ M . We assume that M is endowed
with an invariant volume element dvolM with respect to the G-action. Consider
a probability density function ρ : G × M → R on M parameterized by elements
in G, such that ρ(g, x) > 0 for all (g, x) ∈ G × M . Note that∫

M

ρ(g, x)dvolM (x) = 1 (1)

for any g ∈ G. Now, we assume the probability density function ρ is G-invariant:

ρ(g · h, x) = ρ(g, h · x), ∀g, h ∈ G, ∀x ∈ M. (2)

Remark 1. The condition (2) may seem to be different from the one in [3, §7.3].
However, the Lie group action in [3] is from the right as G × M � (g, x) �→
g−1 · x ∈ M . As this is a conventional difference, the formulation in the present
article is essentially the same as in [3, §8.3]. �

We denote the Lie algebra of G by g. For any X ∈ g, we have the induced

vector fields XM on M defined through XM
x [f ] =

d

dt

∣∣∣∣
t=0

f (exp(−tX) · x) ,∀f ∈
C∞(M). For a smooth function f on M , the expectation with respect to ρ

given as E[f ] :=
∫

M

f(x)ρ(g, x)dvolM (x) is a smooth function in g ∈ G and in

particular we have E[1] = 1 by (1). For X ∈ g, we have

XM
x [ρ(g, x)] =

d

dt

∣∣∣∣
t=0

ρ
(
g, e−tX · x

)
=

d

dt

∣∣∣∣
t=0

ρ
(
g · e−tX , x

)
= −X(L)

g [ρ(g, x)],

at g ∈ G, x ∈ M , where X
(L)
g stands for the left-invariant vector field on G

induced by X ∈ g evaluated at g ∈ G. This yields the formula

E
[
XM [log ρ]

]
=

∫
M

XM
x [log ρ(g, x)]ρ(g, x)dvolM (x) =

∫
M

XM
x [ρ(g, x)]dvolM (x)

= −
∫

M

X(L)
g [ρ(g, x)]dvolM (x) = −X(L)

g

[∫
M

ρ(g, x)dvolM (x)
]

= −X(L)
g [E[1]] = −X(L)

g [1] = 0.

For X,Y ∈ g, we similarly have

0 = X(L)
g

[
Y (L)

g [E[1]]
]

= −X(L)
g

[∫
M

Y M
x [log ρ(g, x)]ρ(g, x)dvolM (x)

]

=
∫

M

XM
x

[
Y M

x [log ρ(g, x)]ρ(g, x)
]
dvolM (x)

=
∫

M

XM
x [log ρ(g, x)] · Y M

x [log ρ(g, x)]ρ(g, x)dvolM (x)

+
∫

M

XM
x

[
Y M

x [log ρ(g, x)]
]
ρ(g, x)dvolM (x)

= E
[
XM [log ρ] · Y M [log ρ]

]
+ E

[
XM

[
Y M [log ρ]

]]
.
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Taking these variation formulas into account, we introduce the Fisher-Rao
bilinear form on the Lie algebra g as well as Fisher-Rao (semi-definite) metric
on G. The following proposition is pointed out in [3, §8.3].

Proposition 1. The integral

E
[
XM [log ρ] Y M [log ρ]

]
=

∫
M

XM
x [log ρ(g, x)] Y M

x [log ρ(g, x)] ρ(g, x)dvolM (x)

is constant for all g ∈ G. �

Proof. This can be proved by a straightforward computation:

E
[
XM [log ρ] Y M [log ρ]

]
(g)

=
∫

M

XM
x [log ρ(g, x)] Y M

x [log ρ(g, x)] ρ(g, x)dvolM (x)

=
∫

M

XM
h·x [log ρ(g, h · x)] Y M

h·x [log ρ(g, h · x)] ρ(g, x)dvolM (h · x)

=
∫

M

XM
x [log ρ(g · h, x)] Y M

x [log ρ(g · h, x)] ρ(g · h, x)dvolM (x)

= E
[
XM [log ρ] Y M [log ρ]

]
(g · h),

where g, h ∈ G are arbitrary elements. �

Definition 1. For X,Y ∈ g, the Fisher-Rao bilinear form on g for the family
of probability density functions ρ is defined through

〈X,Y 〉 = E
[
XM [log ρ] Y M [log ρ]

]
= −E

[
XM

[
Y M [log ρ]

]]
. (3)

�

Note that the bilinear form 〈·, ·〉 is positive-semi-definite, since 〈X,X〉 =
E

[(
XM [log ρ]

)2] ≥ 0. However, it is not guaranteed that the Fisher-Rao bilin-
ear form be positive-definite as is concretely discussed in the next section. By
the right-trivialization of the tangent bundle TG to the Lie group G given as

TG ⊃ TgG � Xg ↔ (
g, dLg−1Xg

) ∈ G × g,

the scalar product (3) can naturally be extended to a left-invariant (0, 2)-tensor
on G, which we denote by the same symbol. Here, Lg : G � h �→ gh ∈ G is the
left-translation by g ∈ G.

Definition 2. The left-invariant (0, 2)-tensor 〈·, ·〉 on G is called Fisher-Rao
semi-definite metric with respect to the invariant family of the probability density
functions ρ. �

Similarly to the Fisher-type bilinear form on g, we introduce the following
(0, 3)-tensor on G.
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Definition 3. The left-invariant (0, 3)-tensor

C(X,Y,Z) = E
[
XM

x [log ρ] · Y M
x [log ρ] · ZM

x [log ρ]
]

=
∫

M

XM
x [logρ(g, x)] · Y M

x [logρ(g, x)] · ZM
x [logρ(g, x)]ρ(g, x)dvolM (x) (4)

is called Amari-Chentsov cubic tensor. �
By a similar computation to the proof for Proposition 1, we can easily prove
that the Amari-Chentsov cubic tensor is left-invariant.

Now, we assume that there is a Lie subgroup H ⊂ G whose Lie algebra h
gives the direct sum decomposition g = m+̇h and that the Fisher-Rao bilinear
form 〈·, ·〉 is positive-definite on m and invariant under the adjoint action by
H: 〈Adh(X),Adh(Y )〉 = 〈X,Y 〉 for all h ∈ H, X,Y ∈ g. As G is compact, so
is H and hence the homogeneous space G/H is reductive in the sense of [25,
§7] and the Fisher-Rao bilinear form 〈·, ·〉 induces a G-invariant Riemannian
metric on G/H, which we call Fisher-Rao Riemannian metric and denote by
the same symbol 〈·, ·〉. By [25, Theorem 13.1], the Levi-Civita connection ∇ on
(G/H, 〈·, ·〉) is given as

∇XY =
1
2

[X,Y ]m + U(X,Y ),

where U(X,Y ) is defined through 〈U(X,Y ), Z〉 =
1
2

〈[X,Z], Y 〉 + 〈X, [Y,Z]m〉
for X,Y,Z ∈ m, with [Y,Z]m being the m-component of [Y,Z].

The α-connection ∇(α) is defined through

〈∇(α)
X Y,Z〉 = 〈∇XY,Z〉 − α

2
C(X,Y,Z),

where X,Y,Z ∈ m. See e.g. [12,15].
The α-geodesic corresponding to ∇(α) is of much interest, which will be

studied in future studies. Here, in the present paper, we rather consider the
geodesic flow with respect to the Fisher-Rao Riemannian metric in a specific
situation as is discussed in the next section.

3 Fisher-Rao Geodesic Flow and Euler-Poincaré Equation
on Compact Semi-simple Lie Algebra

In this section, we consider the case where the parameter Lie group and the
sample manifold M is a compact semi-simple Lie group G. We denote the Killing
form of g by κ, which is a negative-definite symmetric bilinear form by the semi-
simplicity and the compactness of the Lie group G. We focus on the specific
family of probability density functions ρ : G × G � (g, h) �→ c · exp (F (gh)) ∈ R,
where F (θ) = κ (Q,AdθN), θ ∈ G, with Q,N being fixed elements in g. Here,

the constant c > 0 is chosen such that
∫

G

ρ(g, h)dvolG(h) = 1. The volume form

dvolG is chosen to be the Haar measure on G.
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The function F is earlier studied in [8] to investigate the generalized Toda
lattice equation and its expression in the Brockett double bracket equation. It is
shown for example that the generalized Toda lattice equations can be regarded as
gradient flows on a special adjoint orbits. In the present paper, we rather consider
the information geometry in relation to the probability density functions arising
from the same function.

For the above specific family of probability density functions, the correspond-
ing Fisher-Rao bilinear form on g is calculated by (3) as

〈X,Y 〉 = c ·
∫

G

XG
h

[
Y G

h [κ (Q,AdghN)]
]
ρ(g, h)dvolG(h)

= c · κ

(
Q,

[
X,

[
Y,

∫
G

AdghNρ(g, h)dvolM (h)
]])

= −c · κ ([X,Q] , [Y,N ′]) , (5)

where

N ′ :=
∫

G

AdghNρ(g, h)dvolM (h) =
∫

G

AdghNρ(e, gh)dvolM (gh)

= c ·
∫

G

AdhN exp(κ(Q,AdhN))dvolM (h).

Note that the vector fields XG, Y G are nothing but the left-invariant vector
fields on G associated to X,Y ∈ g.

In order for the scalar product (5) to be symmetric, we assume that the
elements N ′, Q both belong to a Cartan subalgebra h ⊂ g and regular.

Remark 2. By the decomposition of (quasi-)invariant measures discussed in [6,
§5], we can rewrite the integral formula for the element N ′ as follows:

N ′ = c ·
∫

ON

x exp (κ (Q,x)) dvolON
(x))

where ON denotes the adjoint orbit through N . This integral can be regarded
as orbital integral for a vector-valued function. �

We consider the Cartan subgroup H ⊂ G whose Lie algebra is h. The Fisher-
Rao bilinear form 〈·, ·〉 is invariant with respect to AdH and hence induces Fisher-
Rao Riemannian metric on the adjoint orbit ON = G/H.

The geodesic equation can be formulated through Euler-Poincaré reduction,

cf. [17,26], with respect to the Hamiltonian function H(X) :=
1
2
〈X,X〉 =

−cκ ([X,Q], [X,N ′]), X ∈ g.

Theorem 1. The Euler-Poincaré equation for the geodesic flow with respect to
the above Fisher-Rao Riemannian metric is given as

Ẋ = c · [X, [[X,Q] , N ′]] . (6)

�
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Note that the right hand side of the equation is nothing but ∇XX with respect
to the Levi-Civita connection appearing in the previous section.

We finally put several perspectives around the above Euler-Poincaré equa-
tion, which will be studied in the future works.

– The Eq. (6) has similar expression to the Brockett double bracket equation
discussed e.g. in [8,19,21,23,24], as well as Euler-Arnol’d equation for gener-
alized free rigid body dynamics studied e.g. in [18]. See also [3, §8.3] and [1,
§13]. It might be of interest to investigate the complete integrability of (6)
when restricted to an adjoint orbit in g.

– Besides the integrability, the stability of equilibria for (6) should be investi-
gated. If the system is integrable as in the above perspectives, some methods
in [27,28] might also be applicable.

– It is of much interests to compare the geodesic flows in the present paper with
the Souriau’s thermodynamical formulation of information geometry and the
associated Euler-Poincaré equations in [4,16].
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damental spacetime geometric structures of fluid mechanics in the
Lagrangian description in 2D and 3D. Based on this, multisymplectic
variational integrators are developed for barotropic and incompressible
fluid models, which satisfy a discrete version of Noether theorem. We
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1 Introduction

This abstract presents a multisymplectic variational integrator for barotropic flu-
ids and incompressible fluids with free boundaries in the Lagrangian description.
The integrator is derived from a spacetime discretization of the Hamilton prin-
ciple of fluid dynamics and is based on a discrete version of the multisymplectic
geometric formulation of continuum mechanics. As a consequence of its varia-
tional nature, the resulting scheme preserves exactly the momenta associated to
symmetries, it is symplectic in time, and energy is well conserved. In addition to
its conservative properties, the variational scheme can be naturally extended to
handle constraints, by augmenting the discrete Lagrangian with penalty terms.

Multisymplectic variational integrators were developed in [10,11] via a space-
time discretization of the Hamilton principle of field theories, which results in
numerical schemes that satisfy a discrete version of the multisymplectic form
formula and a discrete covariant Noether theorem. We refer to [2–5,10] for the
development of multisymplectic variational integrators for several mechanical
systems of interest in engineering.
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2 Barotropic and Incompressible Fluids

Assume that the reference configuration of the fluid is a compact domain B ⊂ IRn

with piecewise smooth boundary, and the fluid moves in the ambient space M =
IRn. We denote by ϕ : (t,X) ∈ IR × B �→ ϕ(t,X) ∈ M the fluid configuration
map. The deformation gradient is denoted F(t,X), given in coordinates by Fa

i =
ϕa

,i, with Xi, i = 1, ..., n the Cartesian coordinates on B and ma, a = 1, ..., n the
Cartesian coordinates on M.

2.1 Barotropic Fluids

A fluid is barotropic if it is compressible and the surfaces of constant pressure p
and constant density ρ coincide, i.e., we have a relation

p = p(ρ). (1)

The internal energy W of barotropic fluids in the material description depends on
the deformation gradient F only through the Jacobian J of ϕ, given in Cartesian
coordinates by J(t,m) = det(F(t,X)), hence in the material description we
have W = W (ρ0, J), with ρ0(X) the mass density of the fluid in the reference
configuration. The pressure in the material description is

PW (ρ0, J) = −ρ0
∂W

∂J
(ρ0, J). (2)

The continuity equation for mass is written as ρ0(X) = ρ(t, ϕ(t,X))J(t,X),
with ρ(t,m) the Eulerian mass density.

The Lagrangian of the barotropic fluid evaluated on a fluid configuration
map ϕ(t,X) has the standard form

L(ϕ, ϕ̇,∇ϕ) =
1
2
ρ0|ϕ̇|2 − ρ0W (ρ0, J) − ρ0Π(ϕ), (3)

with Π a potential energy, such as the gravitational potential Π(ϕ) = g ·ϕ. From
the Hamilton principle we get the barotropic fluid equations in the Lagrangian
description as

ρ0ϕ̈ +
∂

∂xi

(
PW JF−1

)i
= −ρ0

∂Π

∂ϕ
, (4)

together with the natural boundary conditions

PW J ni(F−1)i
aδϕa = 0 on ∂B, ∀ δϕ. (5)

Example 1. Isentropic Perfect Gas. For this case, we can use the general expres-
sion

W (ρ0, J) =
A

γ − 1

(
J

ρ0

)1−γ

+ B

(
J

ρ0

)
, (6)

for constants A, B, and adiabatic coefficient γ, see [1]. The boundary condition
(5) yields P |∂B = B, with P = A

(
ρ0
J

)γ the pressure of the isentropic perfect
gas.
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2.2 Incompressible Fluid Models

Incompressible models are obtained by inserting the constraint J = 1 with the
Lagrange multiplier λ(t,X) in the Hamilton principle, as explained in [12],

δ

∫ T

0

∫

B

(
L(ϕ, ϕ̇,∇ϕ) + λ(J − 1)

)
dt dX = 0. (7)

3 2D Discrete Barotropic and Incompressible Fluid
Models

3.1 Multisymplectic Discretizations

The geometric setting of continuum mechanics underlying the formulation
recalled in Sect. 2 is based on the configuration bundle Y = X×M → X = IR×B,
with the fluid configuration map ϕ(t,X) ∈ IR×B �→ ϕ(t,X) ∈ M naturally iden-
tified with a section of the configuration bundle. The discrete geometric setting
is described as follows

Yd = Xd × M
πd

��
Ud

φd

  �������������
φXd

�� φXd
(Ud) = Xd ⊂ X

ϕd

��

In this figure Ud := {0, ..., j, ..., N}×Bd is the discrete parameter space where
{0, ..., j, ..., N} encodes an increasing sequence of time and Bd parameterizes the
nodes and simplexes of the discretization of B. We focus on the 2D case and
assume B rectangular so that Bd = {0, . . . , A}×{0, . . . , B}. From the discretiza-
tion we get a set of parallelepipeds, denoted �

j
a,b, and defined by

�
j
a,b =

{
(j, a, b), (j + 1, a, b), (j, a + 1, b), (j, a, b + 1), (j, a + 1, b + 1),

(j + 1, a + 1, b), (j + 1, a, b + 1), (j + 1, a + 1, b + 1)
}
,

(8)

j = 0, ..., N − 1, a = 0, ..., A − 1, b = 0, ..., B − 1. The discrete base space
configuration φXd

is of the form φXd
(j, a, b) = sj

a,b = (tj , zj
a, zj

b) ∈ IR × B, see
bellow:
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Given a discrete base space configuration φXd
and a discrete field ϕd, we

define the following four vectors Fj
�;a,b ∈ IR2, 
 = 1, 2, 3, 4 at each node (j, a, b) ∈

Ud.

Fj
1;a,b =

ϕj
a+1,b − ϕj

a,b

|sj
a+1,b − sj

a,b|
and Fj

2;a,b =
ϕj

a,b+1 − ϕj
a,b

|sj
a,b+1 − sj

a,b|
:

Fj
3;a,b =

ϕj
a−1,b − ϕj

a,b

|sj
a,b − sj

a−1,b|
= −Fj

1;a−1,b and Fj
4;a,b =

ϕj
a,b−1 − ϕj

a,b

|sj
a,b − sj

a,b−1|
= −Fj

2;a,b−1.

We refer to Fig. 1 on the right for an illustration of these definitions.

φa,b
j

φd

(j,a+1,b+1)

(j,a,b) (j,a+1,b)

(j,a+1,b-1)(j,a,b-1)(j,a-1,b-1)

(j,a-1,b)

(j,a,b+1)(j,a-1,b+1)

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

φa,b+1
j φa+1,b+1

j

φa+1,b
j

φa+1,b-1
j

φa-1,b+1
j

φa-1,b
j

φa,b-1
jφa-1,b-1

j

F1;a,b
j

F2;a,b
j

F3;a,b
j

F4;a,b
j

Fig. 1. Discrete field φd = ϕd ◦ φXd evaluated on �
j
a,b, �

j
a,b, �

j
a,b, �

j
a,b at time tj .

Based on these definitions, the discrete deformation gradient is constructed
as follows.

Definition 1. The discrete deformation gradients of a discrete field ϕd at the
parallelepiped �

j
a,b are the four 2 × 2 matrices F�(�j

a,b), 
 = 1, 2, 3, 4, defined at
the four nodes at time tj of �

j
a,b, as follows:

F1(�
j
a,b) =

[
Fj

1;a,b Fj
2;a,b

]
, F2(�

j
a,b) =

[
Fj

2;a+1,b Fj
3;a+1,b

]
,

F3(�
j
a,b) =

[
Fj

4;a,b+1 Fj
1;a,b+1

]
, F4(�

j
a,b) =

[
Fj

3;a+1,b+1 Fj
4;a+1,b+1

]
.

The ordering 
 = 1 to 
 = 4 is respectively associated to the nodes (j, a, b),
(j, a, b + 1), (j, a + 1, b), (j, a + 1, b + 1), see Fig. 1 on the left.

It is assumed that the discrete field ϕd is such that the determinant of the
discrete gradient deformations are positive.

Definition 2. The discrete Jacobians of a discrete field ϕd at the parallelepiped
�

j
a,b are the four numbers J�(�

j
a,b), 
 = 1, 2, 3, 4, defined at the four nodes at

time tj of �
j
a,b as follows:
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J1(�
j
a,b) = |Fj

1;a,b × Fj
2;a,b| = det

(
F1(�

j
a,b)

)
,

J2(�
j
a,b) = |Fj

2;a+1,b × Fj
3;a+1,b| = det

(
F2(�

j
a,b)

)

J3(�
j
a,b) = |Fj

4;a,b+1 × Fj
1;a,b+1| = det

(
F3(�

j
a,b)

)

J4(�
j
a,b) = |Fj

3;a+1,b+1 × Fj
4;a+1,b+1| = det

(
F4(�

j
a,b)

)
.

(9)

As a consequence, from relations (9), the variation of the discrete Jacobian
is given at each �

j
a,b by

δJ� =
∂ det(F�)

∂ F�
: δF� = J�(F�)−T : δF�,

which is used in the derivation of the discrete Euler-Lagrange equations.

3.2 Discrete Lagrangian and Discrete Hamilton Principle

Let U �
d be the set of all parallelepipeds �

j
a,b in Ud. Its image in Xd by φXd

is

X �
d := φXd

(U �
d

)
. The discrete version of the first jet bundle is given by

J1Yd := X �
d × M × ... × M︸ ︷︷ ︸

8 times

→ X �
d . (10)

Given a discrete field ϕd, its first jet extension is the section of (10) defined by

j1ϕd(�
j
a,b)=

(
ϕj

a,b, ϕ
j+1
a,b , ϕj

a+1,b, ϕ
j+1
a+1,b, ϕ

j
a,b+1, ϕ

j+1
a,b+1, ϕ

j
a+1,b+1, ϕ

j+1
a+1,b+1

)
, (11)

which associates to each parallelepiped �
j
a,b, the values of the field at its nodes.

We consider a class of discrete Lagrangians associated to (3) of the form

Ld

(
j1ϕd(�)

)
= vol

(
�

)(
ρ0Kd

(
j1ϕd(�)

) − ρ0Wd

(
ρ0, j

1ϕd(�)
) − ρ0Πd

(
j1ϕd(�)

))
,

where vol
(
�

)
is the volume of the parallelepiped � ∈ X �

d . The discrete internal
energy Wd : J1Yd → R is defined as

Wd

(
ρ0, j

1ϕd(�
j
a,b)

)
:=

1
4

4∑

�=1

W
(
ρ0, J�(�

j
a,b)

)
, (12)

where W is the material internal energy of the continuous fluid model. To sim-
plify the exposition, we assume that the discrete base space configuration is fixed
and given by φXd

(j, a, b) = (jΔt, aΔs1, bΔs2), for given Δt, Δs1, Δs2. In this
case, we have vol

(
�

)
= ΔtΔs1Δs2 in the discrete Lagrangian and the mass of

each 2D cell in φXd
(Bd) is M = ρ0Δs1Δs2.
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The discrete action functional associated to Ld is obtained as

Sd(ϕd) =
∑

�∈X �
d

Ld

(
j1ϕd(�)

)
=

N−1∑

j=0

A−1∑

a=0

B−1∑

b=0

Ld

(
j1ϕd(�

j
a,b)

)
. (13)

We compute the variation δSd(ϕd) of the action sum and we get

N−1∑

j=0

A−1∑

a=0

B−1∑

b=0

[M

4

(
vj

a,b ·δϕj+1
a,b + vj

a+1,b ·δϕj+1
a+1,b + vj

a,b+1 ·δϕj+1
a,b+1 + vj

a+1,b+1 ·δϕj+1
a+1,b+1

)

− M

4

(
vj

a,b · δϕj
a,b + vj

a+1,b · δϕj
a+1,b + vj

a,b+1 · δϕj
a,b+1 + vj

a+1,b+1 · δϕj
a+1,b+1

)

+ A(�j
a,b) · δϕj

a,b + B(�j
a,b) · δϕj

a+1,b + C(�j
a,b) · δϕj

a,b+1 + D(�j
a,b) · δϕj

a+1,b+1

+ E(∂ �
j
a,b)·δϕj

a,b + F (∂ �
j
a,b)·δϕj

a+1,b + G(∂ �
j
a,b)·δϕj

a,b+1 + H(∂ �
j
a,b) · δϕj

a+1,b+1

]
,

where we have used the following expressions of the partial derivative of Ld:

D2Lj
a,b =

M

4
vj

a,b D6Lj
a,b =

M

4
vj

a,b+1

D4Lj
a,b =

M

4
vj

a+1,b D8Lj
a,b =

M

4
vj

a+1,b+1

and the following notations for the other partial derivatives

D1Lj
a,b = − M

4
v
j
a,b + A(�

j
a,b) + E(∂�

j
a,b) D5Lj

a,b = − M

4
v
j
a,b+1 + C(�

j
a,b) + G(∂�

j
a,b)

D3Lj
a,b = − M

4
v
j
a+1,b + B(�

j
a,b) + F (∂�

j
a,b) D7Lj

a,b = − M

4
v
j
a+1,b+1 + D(�

j
a,b) + H(∂�

j
a,b).

The quantities E(∂ �
j
a,b), F (∂ �

j
a,b), G(∂ �

j
a,b), H(∂ �

j
a,b) denote the boundary

terms associated to the outward unit normal to �
j
a,b in (tj , sa, sb), (tj , sa+1, sb),

(tj , sa, sb+1), (tj , sa+1, sb+1), respectively.
From the discrete Hamilton principle δSd(ϕd) = 0, we get the discrete Euler-

Lagrange equations by collecting the terms associated to variations δϕj
a,b at the

interior of the domain:

Mvj
a,b − Mvj−1

a,b − A(�j
a,b) − B(�j

a−1,b) − C(�j
a,b−1) − D(�j

a−1,b−1)

− E(∂�
j
a,b) − F (∂�

j
a−1,b) − G(∂�

j
a,b−1) − H(∂�

j
a−1,b−1) = 0.

(14)

3.3 Discrete Multisymplectic Form Formula and Discrete Noether
Theorem

The solution of the discrete Euler-Lagrange equations (14) exactly satisfies a
notion of discrete multisymplecticity as well as a discrete Noether theorem, see
[10]. See also [3,4,6] for more explanations concerning discrete conservation laws
for multisymplectic variational discretizations.
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3.4 Numerical Simulations

We consider a fluid subject to gravity and flowing without friction on a surface
until it comes into contact with an obstacle. See [6] for barotropic and incom-
pressible fluid numerical simulations in 2D.

Example 2. Impact against an obstacle of a barotropic fluid flowing on a surface.
(Fig. 2)

Fig. 2. Barotropic fluid, after 1.6 s, with ρ0 = 997 kg/m2, γ = 6, A = Ãρ−γ
0 with

Ã = 3.041 × 104 Pa, and B = 3.0397 × 104 Pa. Time-step Δt = 10−4.

Example 3. Barotropic and incompressible fluid motion in vacuum with free
boundaries. (Fig. 3)

Fig. 3. Left to right : Discrete barotropic and incompressible ideal fluid model
(Lagrangian multipliers r = 105 and r = 107). Top to bottom: Configuration after
2 s, relative energy, and momentum map evolution during 3 s.
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4 3D Discrete Barotropic and Incompressible Fluid
Models

The general discrete multisymplectic framework explained earlier can be adapted
to 3D fluids. The main step is the definition of the discrete Jacobian of a discrete
field ϕd at the eight nodes at time tj of �

j
a,b,c, based on the same principles as

those used previously for the 2D case. The discrete Euler-Lagrange equations in
3D are obtained in a similar way as in (10), (11), (12), (13), (14), see [6].

Example 4. Impact against an obstacle of an incompressible fluid flowing on a
surface. (Fig. 4)

Fig. 4. Fluid impact. Left to right : after 0.4 s, 1.1 s.

5 Concluding Remarks

This paper has presented new Lagrangian schemes for the regular motion of
barotropic and incompressible fluid models, which preserve the momenta asso-
ciated to symmetries, up to machine precision, and satisfy the nearly constant
energy property of symplectic integrators, see Fig. 3. The schemes are derived by
discretization of the geometric and variational structures underlying the space-
time formulation of continuum mechanics, seen as a particular instance of the
multisymplectic variational formulation of classical field theories.

These results form a first step towards the development of dynamic mesh
update from a structure preserving point of view, inspired by arbitrary
Lagrangian-Eulerian methods. Several approaches have been proposed, such as
[7–9,13].
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Abstract. Many systems from fluid dynamics and plasma physics pos-
sess a so-called metriplectic structure, that is the equations are comprised
of a conservative, Hamiltonian part, and a dissipative, metric part. Con-
sequences of this structure are conservation of important quantities, such
as mass, momentum and energy, and compatibility with the laws of ther-
modynamics, e.g., monotonic dissipation of entropy and existence of a
unique equilibrium state.

For simulations of such systems to deliver accurate and physically cor-
rect results, it is important to preserve these relations and conservation
laws in the course of discretisation. This can be achieved most easily
not by enforcing these properties directly, but by preserving the under-
lying abstract mathematical structure of the equations, namely their
metriplectic structure. From that, the conservation of the aforementioned
desirable properties follows automatically.

This paper describes a general and flexible framework for the construc-
tion of such metriplectic structure-preserving integrators, that facilitates
the design of novel numerical methods for systems from fluid dynamics
and plasma physics.

Keywords: Fluid dynamics · Geometric numerical integration ·
Metriplectic dynamics

1 Metriplectic Dynamics

Metriplectic dynamics [6–8,11,12,14–16] provides a convenient framework for
the description of systems that encompass both Hamiltonian and dissipative
parts. The Hamiltonian evolution of such a system is determined by a Poisson
bracket {·, ·} and the Hamiltonian functional H, usually the total energy of the
system. The dissipative evolution is determined by a metric bracket (·, ·) and
some functional S that evolves monotonically in time, usually some kind of
entropy.
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Let us denote by u(t, x) = (u1, u2, ..., um)T the dynamical variables, defined
over the domain D with coordinates x. The evolution of any functional F of the
dynamical variables u is given by

dF
dt

= {F ,G} + (F ,G) , (1)

with G = H − S a generalised free energy functional, analogous with the Gibb’s
free energy from thermodynamics, {·, ·} a Poisson bracket, and (·, ·) a metric
bracket. The Poisson bracket, describing the ideal, conservative evolution of the
system, is a bilinear, anti-symmetric bracket of the form

{A,B} =
∫

D

δA
δui

J ij(u)
δB
δuj

dx, (2)

where A and B are functionals of u and δA/δui is the functional derivative,
defined by

d

dε
A[

u1, ..., ui + εvi, ..., um
]∣∣∣

ε=0
=

∫
D

δA
δui

vi dx. (3)

The kernel of the bracket, J (u), is an anti-self-adjoint operator, which has the
property that

m∑

l=1

(
∂J ij(u)

∂ul
J lk(u) +

∂J jk(u)

∂ul
J li(u) +

∂J ki(u)

∂ul
J lj(u)

)
= 0 for 1 ≤ i, j, k ≤ m,

(4)

ensuring that the bracket {·, ·} satisfies the Jacobi identity,

{{A,B} , C} + {{B, C} ,A} + {{C,A} ,B} = 0, (5)

for arbitrary functionals A,B, C of u. Apart from that, J (u) is not required to be
of any particular form, and most importantly it is allowed to depend on the fields
u. If J (u) has a non-empty nullspace, there exist so-called Casimir invariants,
that is functionals C for which {A, C} = 0 for all functionals A. The monotonic
entropy functional S is usually one of these Casimir invariants.

The metric bracket (·, ·), describing non-ideal, dissipative effects, is a sym-
metric bracket, defined in a similar way as the Poisson bracket by

(A,B) =
∫

D

δA
δui

Gij(u)
δB
δuj

dx, (6)

where G(u) is now a self-adjoint operator with an appropriate nullspace such that
(H,G) = 0. All Casimirs C of the Poisson bracket should be Casimirs also of the
metric bracket, except the entropy functional S which is explicitly required not
to be a Casimir of the metric bracket.

In the following, we choose a convention that dissipates entropy and conserves
the Hamiltonian, so that the equilibrium state is reached when entropy is at
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minimum. For this framework and our conventions to be consistent, it is essential
that (i) H is a Casimir of the metric bracket, (ii) S is a Casimir of the Poisson
bracket, and that (iii) the metric bracket is positive semi-definite. With respect
to these choices, we then have

dH
dt

= {H,G} + (H,G) = {H,−S} = 0,
dS
dt

= {S,G} + (S,G) = − (S,S) ≤ 0,

(7)

reproducing the First and Second Law of Thermodynamics.
For an equilibrium state ueq, the time evolution of any functional F stalls

and the entropy functional reaches its minimum. If the metriplectic system has
no Casimirs, the equilibrium state satisfies an energy principle, according to
which the first variation of the free energy vanishes, δG[ueq] = 0, and its second
variation is strictly positive, δ2G[ueq] > 0 (for details see e.g. [10]). If Casimirs Ci

exist, the equilibrium state becomes degenerate, and the energy principle must
be modified to account for the existing Casimirs. This leads to the so-called
energy–Casimir principle [17]. In this case the the equilibrium state satisfies

δG[ueq] +
∑

i

λiδCi[ueq] = 0, (8)

where λi act as Lagrange multipliers and are determined uniquely from the
values of the Casimirs at the initial conditions for u. Lastly, for each x ∈ D the
equilibrium state of the free-energy functional G is unique. This can be verified
by employing a convexity argument, namely if D is a convex domain and G is
strictly convex, then G has at most one critical point (see e.g. [5] for details).
This is the case if

δ2(G +
∑

i

λiCi) > 0, (9)

for the non-vanishing field ueq.

2 Dissipative Hydrodynamics

Many dissipative systems from fluid dynamics and plasma physics feature a
metriplectic structure. Examples include Korteweg-type fluids [9,19–22], geo-
physical fluid flows [3,4] and extended magnetohydronamics [2]. In the follow-
ing we consider the example of viscous heat-conductive flows, whose state is
described in terms of the variables (ρ,m, σ), where ρ is the mass density, m is
the momentum density, and σ is the entropy density. The ideal dynamics of this
system are described by the Poisson bracket [1,9,17–19,21]

{A, B} =

∫
D

m(x, t) ·
[

δB
δm

· ∇ δA
δm

− δA
δm

· ∇ δB
δm

]
+

∫
D

ρ(x, t)

[
δB
δm

· ∇ δA
δρ

− δA
δm

· ∇ δB
δρ

]

+

∫
D

σ(x, t)

[
δB
δm

· ∇ δA
δσ

− δA
δm

· ∇ δB
δσ

]
, (10)



Metriplectic Integrators for Dissipative Fluids 295

and the Hamiltonian functional

H =
∫

D

[
1
ρ

|m|2
2

+ ρU(ρ, σ/ρ)
]

dx. (11)

Here, U denotes the internal energy, from which the pressure and temperature
follow as p = ρ2Uρ and T = ρUσ, respectively. The ideal dynamics preserves the
total mass, momentum and entropy,

dM
dt

= {M,H} = 0, M =
∫

D
ρ(x, t) dx, (12)

dP
dt

= {P,H} = 0, P =
∫

D
m(x, t) dx, (13)

dS
dt

= {S,H} = 0, S =
∫

D
σ(x, t) dx, (14)

where mass and entropy are Casimir invariants of the Poisson bracket (10), i.e.,
{M,B} = 0 and {S,B} = 0 for any B, and conservation of momentum follows
from a symmetry of the Hamiltonian (11), i.e., {M,H} = 0 only for H (for details
see e.g. Reference [17]). Dissipation due to viscous friction and heat conduction
is modelled by the metric bracket [19–21]

(A,B) =
∫

D
2μ

[
T

〈
∇ δA

δm

〉
− δA

δσ
〈∇v〉

]
:
[
T

〈
∇ δB

δm

〉
− δB

δσ
〈∇v〉

]
dx

+
∫

D
λ

[
T ∇ · δA

δm
− δA

δσ
∇ · v

]
·
[
T ∇ · δB

δm
− δB

δσ
∇ · v

]
dx

+
∫

D
κ T 2 ∇

[
1
T

δA
δσ

]
· ∇

[
1
T

δB
δσ

]
dx, (15)

and the entropy functional from (14). Here, v = m/ρ denotes the velocity, μ
the coefficient of shear viscosity, λ the coefficient of bulk viscosity, κ the thermal
conductivity, and 〈·〉 denotes the projection

〈∇v〉 =
1
2
(∇v + ∇vT ) − 1

3
(trace ∇v)1, (16)

with 1 the 3 × 3 identity matrix. Note that all of the coefficients μ, λ and
κ need to be non-negative for the metric bracket (15) to be positive semi-
definite. It is straightforward to verify that the metric bracket (15) preserves
mass (12), momentum (13) and energy (11). The equations of motion are com-
puted using (1) for F ∈ {ρ,m, σ} and G = H − S with H from (11) and S
from (14) as



296 M. Kraus

∂ρ

∂t
= −∇ · m, (17)

∂m

∂t
= −∇ · (m ⊗ v) + ∇ · [

(ρ∇ · ξ − p)1 − ∇ρ ⊗ ξ + 2μ 〈∇v〉 + λ(∇ · v)1
]
,

(18)

∂σ

∂t
= −∇ ·

[
σv − κ∇T

T

]
+

1
T

[
2μ 〈∇v〉 · 〈∇v〉 + λ(∇ · v)2 +

κ

T
|∇T |2

]
. (19)

With standard approaches such as finite element or discontinuous Galerkin
methods, numerical algorithms are obtained by direct discretisation of these
equations. The idea of metriplectic integrators [13] instead is to construct discrete
expressions of the brackets (10) and (15) and to obtain semi-discrete equations of
motion from the discrete brackets in analogy to (1). The advantage of the latter
approach is that important properties like energy conservation and monotonic
dissipation of entropy will automatically be preserved.

3 Metriplectic Integrators

In the following, we describe a general framework for the construction of
structure-preserving integrators for dissipative fluids and similar systems that
have a metriplectic structure. This framework facilitates the construction of
novel numerical methods that automatically preserve important physical quan-
tities, such as mass, energy and the laws of thermodynamics, independently
of the particular discretisation framework. Due to limited space, we do not go
into the details of a specific discretisation technique and we only consider the
spatial discretisation and its properties independently of a particular temporal
discretisation. The fully discrete setting together with numerical examples will
be described elsewhere.

The spatial discretisation consists of the following components: (a) choosing
approximations of the function spaces of the dynamical variables, (b) choosing
approximations of the inner products on these spaces, (c) choosing an approx-
imation of functionals, (d) choosing a finite-dimensional representation of the
functional derivative. The first step implies the choice of an appropriate finite
element or similar space. The second as well as the third step tend to boil down
to choosing a quadrature formula. And the last step usually amounts to the most
simple choice of a plain partial derivative. Apart from these degrees of freedom,
the whole construction is systematic and automatic. Everything follows from
these choices and the metriplectic structure of the system of equations.

In the following, we explain this methodology using a rather abstract con-
tinuous Galerkin approach, where we do not go into the details of an actual
discretisation of the domain or a specific choice of basis (that is we do not con-
cretise component (a) from above). This avoids certain technicalities that arise
in practical applications and specific frameworks such as discontinuous Galerkin
methods, and thus allows us to focus on conveying the general idea of metriplectic
integrators. Nonetheless, the following treatment should provide enough insight
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for applying and adapting the framework to other discretisation techniques. Con-
crete examples of discretisations using discontinuous Galerkin methods will be
discussed in consecutive publications.

Let v and w be elements of V = L2(D), that is the space of square integrable
functions over D with scalar product

〈v , w〉D =
∫

D
v(x)w(x) dx. (20)

Let Vh ⊂ V denote some finite dimensional subspace and {ϕi}N
i=1 a basis in Vh.

Then vh ∈ Vh can be written as

vh(t, x) =
N∑

i=1

vi(t)ϕi(x). (21)

The discretisation of the density ρ, the momentum m and the entropy density
σ follow in full analogy with the function spaces V chosen appropriately. Note
that while ρ and σ are scalar quantities, the momentum m is a three-vector.

In simple situations, we can retain the inner product 〈· , ·〉 on V and work
with the continuous functionals F evaluated on (ρh,mh, σh), however, in many
situations the resulting integrals cannot be computed easily. Therefore we intro-
duce an approximate inner product 〈· , ·〉h as well as approximate functionals Fh

by utilising some quadrature rule {(bn, cn)}R
n=1, where cn denotes the nodes of

the quadrature and bn the weights, such that

〈vh , wh〉h =
R∑

n=1

bnvh(cn)wh(cn) = V TMW, (22)

with V = (v1, v2, ..., vN )T the coefficient vector of vh when expressed in the basis
{ϕi}N

i=1 according to (21), analogously W for wh, and M the mass matrix

Mij =
R∑

n=1

bn ϕi(cn)ϕj(cn). (23)

In the same fashion, functionals of (ρ,m, σ) are approximated using the quadra-
ture rule {(bn, cn)}R

n=1, e.g., for the Hamiltonian (11) we obtain

Hh[ρh, mh, σh] =
R∑

n=1

bn

[ |mh(cn)|2
2ρh(cn)

+ ρh(cn)U
(
ρh(cn), σh(cn)/ρh(cn)

)]
≡ H(ρ̂, m̂, σ̂), (24)

for the mass (12), momentum (13), and entropy (14), respectively, we get

Mh[ρh] =
R∑

n=1

bn ρh(cn) = 1T
NMρρ̂ ≡ M(ρ̂), (25)

Ph[ρh] =
R∑

n=1

bn mh(cn) = 1T
3NMmm̂ ≡ P(m̂), (26)
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Sh[σh] =
R∑

n=1

bn σh(cn) = 1T
NMσσ̂ ≡ S(σ̂), (27)

where ρ̂ = (ρ1, ρ2, ..., ρN ) are the coefficients of ρh, cf. Equation (21), and analo-
gously m̂ = (m1,m2, ...,m3N ) and σ̂ = (σ1, σ2, ..., σN ) are the coefficients of the
discrete momentum mh and entropy density σh. By 1N ∈ RN and 13N ∈ R3N

we denote the respective vectors with all components being equal to 1, and Ma

denotes the mass matrices for a ∈ {ρ,m, σ} corresponding to the respective basis
functions ϕa following (23). Finally, we need to construct a discrete equivalent
to the functional derivative. To that end, we set A(v̂) = A[v] and require that

〈
δA
δv

[vh] , wh

〉
h

=
〈

∂A

∂v̂
, ŵ

〉
N

, (28)

where 〈· , ·〉N denotes the inner product in RN , i.e., the scalar product. The
functional derivative δA/δv is an element of the dual space V∗ of V. Restricting
A to elements vh of Vh, we can express δA/δv[vh] in the basis {ψi}N

i=1 of V∗
h as

δA
δv

[vh] =
N∑

i=1

ai ψi(x). (29)

By the Riesz representation theorem we can express the basis functions ψi

in terms of the basis {ϕi}N
i=1, and using the duality between the bases, i.e.,

〈ψi , ϕj〉 = δij , as well as (28), we find that

δA
δv

[vh] =
N∑

i,j=1

∂A

∂vi
M−1

ij ϕj(x). (30)

In order to obtain a semi-discrete metriplectic system, discretised in space
but not yet time, all that needs to be done is replace the functional derivatives
in (10) and (15) and replace the integrals with the quadrature rule {(bn, cn)}R

n=1.
Setting A(ρ̂, m̂, σ̂) = A[ρh,mh, σh] and B(ρ̂, m̂, σ̂) = B[ρh,mh, σh], for the Pois-
son bracket (10) this yields

{A,B}h =

3N∑
i,j,k

Pmm
ijk mk

[
∂B

∂mi

∂A

∂mj

− ∂A

∂mi

∂B

∂mj

]
+

3N∑
i

N∑
j,k=1

Pmρ
ijk ρk

[
∂B

∂mi

∂A

∂ρj

− ∂A

∂mi

∂B

∂ρj

]

+

3N∑
i

N∑
j,k=1

Pmσ
ijk σk

[
∂B

∂mi

∂A

∂σj

− ∂A

∂mi

∂B

∂σj

]
,

(31)

with

Pmm
ijk =

3N∑
p,q=1

Lmm
pqk (Mm)−1

ip (Mm)−1
qj , Lmm

ijk =
R∑

n=1

bn ϕm
k (cn)ϕm

i (cn) · ∇ϕm
j (cn),

(32)
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Pmρ
ijk =

3N∑
p=1

N∑
q=1

Lmρ
pqk (Mm)−1

ip (Mρ)−1
qj , Lmρ

ijk =
R∑

n=1

bn ϕρ
k(cn)ϕm

i (cn) · ∇ϕρ
j (cn),

(33)

Pmσ
ijk =

3N∑
p=1

N∑
q=1

Lmσ
pqk (Mm)−1

ip (Mσ)−1
qj , Lmσ

ijk =
R∑

n=1

bn ϕσ
k(cn)ϕm

i (cn) · ∇ϕσ
j (cn).

(34)

The discrete bracket (31) is anti-symmetric, but it does not satisfy the Jacobi
identity. In the context of metriplectic systems, this is not critical as the full
metriplectic bracket does not satisfy the Jacobi identity either. More impor-
tantly, the discrete bracket (31) preserves the discrete energy (24) as well as
mass (25) and entropy (27), and depending on the actual discretisation possibly
also momentum (26). Energy conservation follows immediately from the anti-
symmetry of (31), so that {H,H}h = 0. Mass and entropy conservation can be
seen by inserting (25) or (27) into (31), e.g.,

{M,B}h =
3N∑
i,l

N∑
j,k=1

Lmρ
ijk ρk 1j (Mm)−1

il

∂B

∂ml
= 0 as

N∑
j=1

Lmρ
ijk 1j = 0. (35)

Note that this holds for any B. Momentum conservation, on the other hand, relies
on the specific form of H and is not warranted for any discrete Hamiltonian of
the form (24), but only for specific choices of basis functions and quadrature
rules.

The discretisation of the metric bracket (15) and the proof of its conservation
properties follow exactly along the same lines. The semi-discrete equations of
motion are obtained by utilising Eq. (1) and thus computing

du

dt
= {u,G}h + (u,G)h for u ∈ {ρ1, ..., ρN , m1, ...,m3N , σ1, ..., σN}, (36)

where G = H − S approximates the free energy G.

4 Summary

The preceding paper outlines a flexible framework for the construction of
structure-preserving algorithms for the numerical integration of dissipative sys-
tems from fluid dynamics and plasma physics. This framework is very gen-
eral with respect to both, the system of equations and the particular numer-
ical method applied. Although here it was applied to the specific example of
Korteweg-type fluids, it is equally applicable e.g. to geophysical fluid flows, mag-
netohydrodynamics or kinetic systems. While in the above construction a con-
tinuous Galerkin discretisation was assumed, this approach is equally well appli-
cable to discontinuous Galerkin approximations, isogeometric analysis, spectral
methods or even finite differences.
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Note that in contrast to typical finite volume or discontinuous Galerkin meth-
ods, the metriplectic framework and the conservation properties of the resulting
schemes do not depend on the coordinate representation of the system. Although
conservative coordinates have been used here, this is not required in order to
obtain conservation of the corresponding invariants. The same can have been
achieved using, for example, the density ρ, velocity v = m/ρ and entropy s = σ/ρ
instead.

An important ingredient for a fully discrete algorithm is the temporal dis-
cretisation. It has not been discussed here due to the constrained space and
will be explained elsewhere, together with a thorough discussion of the discrete
conservation laws and the discrete H-theorem.
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Abstract. Based on Koopman’s theory of classical wavefunctions in
phase space, we present the Koopman-van Hove (KvH) formulation of clas-
sical mechanics as well as some of its properties. In particular, we show
how the associated classical Liouville density arises as a momentum map
associated to the unitary action of strict contact transformations on classi-
cal wavefunctions. Upon applying the Madelung transform from quantum
hydrodynamics in the new context, we show how the Koopman wavefunc-
tion picture is insufficient to reproduce arbitrary classical distributions.
However, this problem is entirely overcome by resorting to von Neumann
operators. Indeed, we show that the latter also allow for singular δ-like pro-
files of the Liouville density, thereby reproducing point particles in phase
space.

Keywords: Hamiltonian dynamics · Koopman wavefunctions ·
Momentum map · Prequantization

1 Introduction

Koopman wavefunctions on phase-space have a long history going back to Koop-
man’s earlywork [6] and their unitary evolutionwas revisited by vanHove [10], who
unfolded their role within a niche area of symplectic geometry now known as pre-
quantization [5,7,9]. In this context, classical mechanics possesses a Hilbert-space
formulation similar to quantum mechanics and our recent work [2] provided a new
geometric insight on the correspondence between Koopman wavefunctions and
classical distributions on phase-space. Then, classical wavefunctions were renamed
Koopman-van Hove wavefunctions to stress van Hove’s contribution.

Here, we show how the evolution of Koopman wavefunctions can be described
in terms of the same geometric quantities already emerging in Madelung’s hydro-
dynamic formulation of standard quantum mechanics [8]. In particular, after

CT acknowledges partial support by the Royal Society and the Institute of Mathematics
and its Applications, UK.

c© Springer Nature Switzerland AG 2021
F. Nielsen and F. Barbaresco (Eds.): GSI 2021, LNCS 12829, pp. 302–310, 2021.
https://doi.org/10.1007/978-3-030-80209-7_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80209-7_34&domain=pdf
http://orcid.org/0000-0001-9411-1382
http://orcid.org/0000-0002-8868-8027
https://doi.org/10.1007/978-3-030-80209-7_34


From Quantum Hydrodynamics to Koopman Wavefunctions I 303

reviewing the geometry of quantum hydrodynamics, we shall show how the intro-
duction of density and momentum variables on phase-space leads to an alterna-
tive geometric description of Koopman classical mechanics. While most of our
discussion is based on [4] (where further details can be found), here we shall
also show that this picture naturally allows for δ-like particle solutions, whose
occurrence is instead questionable in the Hilbert-space wavefunction picture.

2 Geometry of Quantum Hydrodynamics

Madelung’s equation of quantum hydrodynamics are obtained by replacing the
polar form ψ(t, x) =

√
D(t, x)e−iS(t,x)/� of the wavefunction into Schrödinger’s

equation i�∂tψ = −m−1
�
2Δψ/2 + V ψ. Then, defining the velocity vector field

v = ∇S/m leads to the well-known set of hydrodynamic equations

∂tv + v · ∇v = − 1
m

∇
(

V +
�
2

2m

Δ
√

D√
D

)
∂tD + div(Dv) = 0 . (1)

Madelung’s equations were the point of departure for Bohm’s interpretation
of quantum dynamics [1], in which the integral curves of v(x, t) are viewed as
the genuine trajectories in space of the physical quantum particles. The fact
that a hydrodynamic system arises from the Schrödinger equation is actually
a consequence of an intrinsic geometric structure underlying the hydrodynamic
density and momentum variables D and μ = D∇S.

Madelung’s Momentum Map. Madelung’s equations (1) can be geometri-
cally explained by noticing that the map

J : L2(M, C) → X(M)∗ × Den(M) ,

J (ψ) =
(
� Im(ψ∗∇ψ), |ψ|2) = (mDv,D) (2)

is an equivariant momentum map. Here, L2(M, C) is the Hilbert space of quan-
tum wavefunctions, while X(M)∗ × Den(M) is the dual space to the semidirect-
product Lie algebra X(M)� F(M). The momentum map structure of (2) is asso-
ciated to the following unitary representation of the semidirect-product group
Diff(M)� F(M,S1) on L2(M, C):

ψ �→
√

J−1
χ (e−iϕ/�ψ) ◦ χ−1, (χ, eiϕ) ∈ Diff(M)� F(M,S1) , (3)

where Jχ = det ∇χ is the Jacobian determinant of χ. The notation is as follows:
Diff(M) is the group of diffeomorphisms of M , X(M) is its Lie algebra of vector
fields, and F(M,S1) is the space of S1-valued functions on M . Being an equivari-
ant momentum map, J is a Poisson map hence mapping Schrödinger’s Hamilto-
nian dynamics on L2(M, C) to Lie-Poisson fluid dynamics on X(M)∗ ×Den(M).

Definition of Momentum Maps. Without entering the technicalities involved
in the construction of semidirect-product groups, here we simply recall the defi-
nition of momentum maps. Given a Poisson manifold (P, {, }) and a Hamiltonian
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action of a Lie group G on P , we call J : P → g∗ a momentum map if it sat-
isfies {f, 〈J , ξ〉} = ξP [f ]. Here, g denotes the Lie algebra of G and g∗ its dual
space, ξP is the infinitesimal generator of the G−action Φg : P → P and 〈·, ·〉
is the natural duality pairing on g∗ × g. A momentum map is equivariant if
Ad∗

g J (p) = J (Φg(p)) for all g ∈ G. When P is a symplectic vector space car-
rying a (symplectic) G-representation with respect to the symplectic form Ω,
the momentum map J (p) is given by 2〈J (p), ξ〉 := Ω(ξP (p), p), for all p ∈ P
and all ξ ∈ g. Here we specialize this definition to the symplectic Hilbert space
P = L2(M, C) of wavefunctions, endowed with the standard symplectic form
Ω(ψ1, ψ2) = 2� Im

´
M

ψ̄1ψ2 dx. Then, a momentum map associated to a unitary
G−representation on L2(M, C) is the map J (ψ) ∈ g∗ given by

〈J (ψ), ξ〉 = −� Im
ˆ

M

ψ̄ ξP (ψ) dx . (4)

It is easily checked that, if G = Diff(M)� F(M,S1) acts symplectically on
P = L2(M, C) via (3), expression (4) yields the Madelung momentum map.

3 Koopman-van Hove Formulation of Classical Mechanics

As anticipated in the introduction, we want to show how the geometric setting of
quantum hydrodynamics transfers to the case of classical wavefunctions in their
Koopman-van Hove (KvH) formulation. The latter possesses a deep geometric
setting which is reviewed in the present section.

3.1 Evolution of Koopman Wavefunctions

Let Q be the configuration manifold of the classical mechanical system and
T ∗Q its phase space, given by the cotangent bundle of Q. We assume that the
manifold Q is connected. The phase space is canonically endowed with the one-
form A = pidqi and the symplectic form ω = −dA = dqi∧dpi. For later purpose,
it is also convenient to consider the trivial circle bundle

T ∗Q × S1 → T ∗Q , (5)

known as prequantum bundle. Then, A identifies a principal connection A + ds
with curvature given by (minus) the symplectic form ω. A classical wavefunction
Ψ is an element of the classical Hilbert space HC = L2(T ∗Q, C) with standard
Hermitian inner product 〈Ψ1|Ψ2〉 :=

´
T ∗Q

Ψ̄1Ψ2 dz, where dz denotes the Liouville
volume form on T ∗Q. The corresponding real-valued pairing and symplectic form
on HC are defined by

〈Ψ1, Ψ2〉 = Re〈Ψ1|Ψ2〉 and Ω(Ψ1, Ψ2) = 2� Im〈Ψ1|Ψ2〉 . (6)

The KvH Equation. Given a classical Hamiltonian function H ∈ C∞(T ∗Q),
the KvH equation for classical wavefunctions is (see [2] and references therein)

i�∂tΨ = i�{H,Ψ} − LHΨ with LH := A·XH − H = pi∂pi
H − H . (7)
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Here, XH is the Hamiltonian vector field associated to H so that iXH
ω = dH,

and {H,K} = ω(XH ,XK) is the canonical Poisson bracket, extended to C-
valued functions by C-linearity. In addition, we recognize that LH identifies the
Lagrangian function (on phase-space) associated to the Hamiltonian H. The
right hand side of (7) defines the covariant Liouvillian operator

L̂H = i�{H, } − LH (8)

also known as prequantum operator, which is easily seen to be an unbounded
Hermitian operator on HC . As a consequence, the KvH equation (7) is a Hamil-
tonian system with respect to the symplectic form (6) and the Hamiltonian

h(Ψ) =
ˆ

T ∗Q

Ψ̄ L̂HΨ dz . (9)

Lie Algebraic Structure. We remark that the correspondence H �→ L̂H sat-

isfies
[L̂H , L̂F ] = i�L̂{H,F} , (10)

for all H,F ∈ C∞(T ∗Q). Hence, it follows that on its domain, the operator

Ψ �→ −i�−1L̂HΨ (11)

defines a skew-Hermitian (or, equivalently, symplectic) left representation of the
Lie algebra (C∞(T ∗Q), { , }) of Hamiltonian functions on HC . We shall show
that the Lie algebra action (11) integrates into a unitary action of the group of
strict contact transformations of (5) on HC , when the first cohomology group
H1(T ∗Q, R) = 0 (or, equivalently, H1(Q, R) = 0).

Madelung Transform. As discussed in the introduction, the KvH equation
possesses an alternative formulation arising from the Madelung transform. By
mimicking the quantum case, we write Ψ =

√
DeiS/� so that (7) yields

∂tS + {S,H} = LH , ∂tD + {D,H} = 0 . (12)

Then, the first Madelung equation is revealing of the dynamics of the classical
phase, which reads

d
dt

S(t, η(t, z)) = LH(η(t, z)) , (13)

where η(t) is the flow of XH . We remark that taking the differential of the first
equation in (12) leads to

(∂t + £XH
)(dS − A) = 0 , (14)

which is written in terms of the Lie derivative £XH
= diXH

+iXH
d. At this point,

one would be tempted to set dS = A so that the second equation in (12) simply
acquires the same meaning as the classical Liouville equation. However, things
are not that easy: unless one allows for topological singularities in the phase
variable S, the relation dS = A cannot hold and therefore the link between the
KvH equation (7) and the classical Liouville equation needs extra care. However,
we shall come back to the Madelung picture later on to show how this may be
extended beyond the current context.
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3.2 Strict Contact Transformations

Having characterized the KvH equation and the Lie algebraic structure of pre-
quantum operators, we now move on to characterizing their underlying group
structure in terms of (strict) contact transformations and their unitary repre-
sentation on Koopman wavefunctions.

Connection Preserving Automorphisms. Given the trivial prequan-
tum bundle (5), we consider its automorphism group given by Diff(T ∗Q)
� F(T ∗Q,S1). There is a unitary representation of this group on HC given
by

Ψ �→ U(η,eiϕ)Ψ =
√

J−1
η (e−iϕ/�Ψ) ◦ η−1 , (15)

where (η, eiϕ) ∈ Diff(T ∗Q)� F(T ∗Q,S1). This is essentially the same repre-
sentation as in (3), upon replacing the quantum configuration space M with
the classical phase space T ∗Q. A relevant subgroup of the automorphism group
Diff(T ∗Q)� F(T ∗Q,S1) is given by the group of connection-preserving auto-
morphisms of the principal bundle (5): this group is given by

AutA(T ∗Q×S1) =
{
(η, eiϕ) ∈ Diff(T ∗Q)� F(T ∗Q,S1)

∣
∣ η∗A+dϕ = A}

, (16)

where η∗ denotes pullback. The above transformations were studied extensively
in van Hove’s thesis [10] and are known as forming the group of strict contact
diffeomorphisms. Note that the relation η∗A + dϕ = A implies

η∗(dA) = 0 , ϕ(z) = θ +
ˆ z

z0

(A − η∗A) , (17)

so that η is a symplectic diffeomorphism, i.e. η ∈ Diffω(T ∗Q). Also, ϕ is deter-
mined up to a constant phase θ = ϕ(z0) since H1(T ∗Q, R) = 0 and thus the line
integral above does not depend on the curve connecting z0 to z. The Lie algebra
of (16) is

autA(T ∗Q × S1) =
{
(X, ν) ∈ X(T ∗Q)� F(T ∗Q)

∣∣ £XA + dν = 0
}

and we notice that this is isomorphic to the Lie algebra F(T ∗Q) endowed
with the canonical Poisson structure. The Lie algebra isomorphism is H ∈
F(T ∗Q) �−→ (XH ,−LH) ∈ autA(T ∗Q × S1).

The van Hove Representation. As a subgroup of the semidirect product
Diff(T ∗Q)� F(T ∗Q,S1), the group AutA(T ∗Q×S1) inherits from (15) a unitary
representation, which is obtained by replacing (17) in (15). First appeared in van
Hove’s thesis [10], we shall call this the van Hove representation. Then, a direct
computation shows that −i�−1L̂H emerges as the infinitesimal generator of this
representation, i.e., we have

d

dε

∣∣∣
∣
ε=0

U(ηε,eiϕε )Ψ = −i�−1L̂HΨ, (18)
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for a path (ηε, e
iϕε) ∈ AutA(T ∗Q×S1) tangent to (XH ,−LH) at (id, 1). Being an

infinitesimal generator of the representation (15) restricted to AutA(T ∗Q×S1),
L̂H is equivariant, namely

U†
(η,eiϕ)

L̂HU(η,eiϕ) = L̂H◦η , ∀ (η, eiϕ) ∈ AutA(T ∗Q × S1) . (19)

3.3 Momentum Maps and the Classical Liouville Equation

Having discussed the geometry underlying the KvH equation (7), we are now
in the position of presenting its relation to classical mechanics in terms of a
momentum map taking Koopman wavefunctions to distributions on phase-space
[2]. Since the representation (15) is unitary, it is symplectic with respect to
the symplectic form (6) and admits a momentum map J : HC → Den(T ∗Q),
where Den(T ∗Q) denotes the space of density distributions on T ∗Q. From the
general formula (4) for momentum maps for unitary representations, we have
〈J (Ψ), F 〉 =

´
T ∗Q

Ψ̄ L̂F Ψ dz, where 〈 , 〉 denotes the L2-pairing between F(T ∗Q)
and its dual Den(T ∗Q). This yields the expression

J (Ψ) = |Ψ |2 − div
(
JA|Ψ |2) + i�{Ψ, Ψ̄}

= |Ψ |2 − div
(
Ψ̄J(AΨ + i�∇Ψ)

)
. (20)

Here, the divergence is associated to the Liouville form and J : T ∗(T ∗Q) →
T (T ∗Q) is defined by {F,H} = 〈dF, J(dH)〉. This equivariant momentum map
is a Poisson map with respect to the symplectic Poisson structure {{f, h}}(Ψ) on
HC and the Lie-Poisson structure {{f, h}}(ρ) on Den(T ∗Q). With an abuse of
notation, we write

{{f, h}}(Ψ) =
1
2�

Im
ˆ

T ∗Q

δf

δψ

δh

δψ
dz −→ {{f, h}}(ρ) =

ˆ

T ∗Q

ρ

{
δf

δρ
,
δh

δψ

}
dz .

Hence, if Ψ(t) is a solution of the KvH equation, the density ρ(t) = J (Ψ(t)) in
(20) solves the Liouville equation ∂tρ = {H, ρ}. A density of the form (20) is
not necessarily positive definite. However, the Liouville equation generates the
sign-preserving evolution ρ(t) = η(t)∗ρ0, where η(t) is the flow of XH , thereby
recovering the usual probabilistic interpretation. In summary, we have the fol-
lowing scheme:

�� ��

�� �	

Koopman-van Hove
equation (7) for

Ψ ∈ HC

Momentum map J
for AutA(T ∗Q × S1)

��

�� ��

�� �	

Classical Liouville
equation for

ρ ∈ Den(T ∗Q).

Having characterized the classical phase-space density in terms of Koopman
wavefunctions (20), we ask if this representation is sufficient to reproduce all
the possible classical densities. For example, Gaussian densities allow for this
representation [2]. However, this may not be true in more general cases for which
KvH theory needs to be extended appropriately.
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4 Hydrodynamic Quantities and von Neumann Operators

Let us start our discussion by introducing Madelung’s hydrodynamic quantities
(
� Im(Ψ∗∇Ψ), |Ψ |2) = (D∇S,D) =: (σ,D)

as they arise from applying the momentum map (2) to the Koopman wavefunc-
tion. We notice that the KvH Hamiltonian (9) is rewritten in terms of these
variables as

h(σ,D) =
ˆ

T ∗Q

(XH · σ − DLH) dz . (21)

Then, upon using the results in Sect. 3.1, we write the evolution equations as

(∂t + £XH
)(σ − DA) = 0 , ∂tD + div(DXH) = 0 . (22)

These variables provide an alternative representation of the classical density via
the momentum map (20), that is

ρ = D + div(Jσ − JAD) . (23)

Once again, one is tempted to set σ = DA so that ρ = D, thereby eliminating all
possible restrictions arising from specific representations of the classical density.
However, we have d(σ/D) = 0 and even if one allows for topological singularities
in the phase so that ∇S = A and ρ = |Ψ |2, the last relation prevents the
existence of δ-like particle solutions. These observations lead us to the necessity
of extending the present construction in order to include more general classical
distributions.

Von Neumann Operator. Here, we exploit the analogy between classical and
quantum wavefunctions to introduce a self-adjoint von Neumann operator Θ̂.
We write the von Neumann evolution equation [2].

i�
∂Θ̂

∂t
=

[L̂H , Θ̂
]
, (24)

so that Θ̂ = ΨΨ † recovers that KvH equation (7). Here, the adjoint is defined so
that Ψ †

1Ψ2 = 〈Ψ1|Ψ2〉. However, in the present discussion, we allow for a general
von Neumann operator Θ̂ with unit trace, while we do not necessarily restrict Θ̂
to be positive-definite, although this can be set as a convenient initial condition.
As is well known, equation (24) is a Hamiltonian system with the following
Lie-Poisson structure:

{{f, h}}(Θ̂) = −i�−1 Tr
(

Θ̂

[
δf

δΘ̂
,

δh

δΘ̂

])
, h(Θ̂) = Tr

(L̂HΘ̂
)
. (25)

Momentum Map. As shown in [3], the representation (3) on the wavefunction
transfers naturally to a unitary action on the von Neumann operator that is
conveniently written in terms of its integral kernel K

̂Θ(z, z′). Indeed, one writes

K
̂Θ(z, z′) �→

√
J−1

χ (z)J−1
χ (z′) e−i�−1(ϕ(z)−ϕ(z′))K

̂Θ(χ−1(z), χ−1(z′)) ,
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where (χ, eiϕ) ∈ Diff(T ∗Q)� F(T ∗Q,S1). In turn, this action produces the
equivariant momentum map

J (Θ̂)(z) =
( i�

2
∂

∂z
K

̂Θ(z′, z) − i�
2

∂

∂z
K

̂Θ(z, z′), K
̂Θ(z, z′)

)∣
∣∣
z′=z

= (σ(z),D(z))

and we verify that the Hamiltonian h(Θ̂) in (25) may be rewritten exactly as in
(21). Then, as in the case of quantum hydrodynamics, J (Θ̂) is a Poisson map
hence mapping the von Neumann equation (24) to the Lie-Poisson dynamics
(22) on X(T ∗Q)∗ × Den(T ∗Q).

Point Particles in Phase-Space. At this point, we have d(σ/D) �= 0 and the
relation σ = DA can be adequately set as an initial condition that is preserved
in time. In this case, the momentum map (23) representing the classical density
reduces to ρ = D, which now is allowed to have the δ-like expression D(z) = δ(z−
ζ) reproducing a point particle located at the phase-space coordinates ζ. Then,
one may wish to identify a possible solution of the von Neumann equation (24)
ensuring that the relation σ = DA is indeed satisfied. Following the discussion
in [3], one can see that this is given by the integral kernel

K
̂Θ(z, z′)= D

(z + z′

2

)
exp

[ i
�
(z − z′)·A

(z + z′

2

)]
=D

(z + z′

2

)
e

i
2�

(p+p′)·(q−q′),

where the second step uses A = pkdqk. The origin of this (unsigned) form of the
von Neumann operator may be unfolded by resorting to the Wigner function
formalism, although this discussion would take us beyond the purpose of the
present work.
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Abstract. Based on the Koopman-van Hove (KvH) formulation of clas-
sical mechanics introduced in Part I, we formulate a Hamiltonian model
for hybrid quantum-classical systems. This is obtained by writing the
KvH wave equation for two classical particles and applying canonical
quantization to one of them. We illustrate several geometric properties
of the model regarding the associated quantum, classical, and hybrid den-
sities. After presenting the quantum-classical Madelung transform, the
joint quantum-classical distribution is shown to arise as a momentum
map for a unitary action naturally induced from the van Hove represen-
tation on the hybrid Hilbert space. While the quantum density matrix
is positive by construction, no such result is currently available for the
classical density. However, here we present a class of hybrid Hamiltonians
whose flow preserves the sign of the classical density. Finally, we provide
a simple closure model based on momentum map structures.

Keywords: Mixed quantum-classical dynamics · Koopman
wavefunctions · Hamiltonian systems · Momentum maps

1 Introduction

Following the first part of this work, here we deal with the dynamics of hybrid
systems where one subsystem is classical while the other is quantum. While con-
crete occurrences of quantum-classical physical systems still need to be identified,
quantum-classical models have been sought for decades in the field of quantum
chemistry. In this context, nuclei are treated as classical while electrons retain
their fully quantum nature. A celebrated example is given by Born-Oppenheimer
molecular dynamics. The formulation of hybrid classical-quantum dynamics is
usually based on fully quantum treatments, in which some kind of factorization
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ansatz is invoked on the wavefunction. This ansatz is then followed by a classical
limit on the factor that is meant to model the classical particle.

In our recent work [2,5], we followed a reverse route consisting in starting
with a fully classical formulation and then quantizing one of the subsystems.
The starting point is the Koopman-van Hove (KvH) equation considered in
Part I. After writing the KvH equation for e.g. a two-particle wavefunction
Ψ(z1, z2), we enforce ∂Ψ/∂p2 = 0 and then apply Dirac’s canonical quantization
rule p2 → −i�∂/∂q2. Here, the notation is such that zi = (qi, pi). In the case of
only one particle, one verifies that this process leads to the standard Schrödinger
equation i�∂tΨ = −(m−1

�
2/2)ΔΨ + V Ψ [6]. On the other hand, in the two-

particle case one obtains the quantum-classical wave equation

i�∂tΥ = {i� ̂H,Υ} − L
̂HΥ, with L

̂H := A·X
̂H − ̂H = p · ∂p

̂H − ̂H . (1)

Here, Υ ∈ HCQ = L2(T ∗Q × M, C) is a wavefunction on the hybrid coordinate
space T ∗Q × M comprising both the classical and the quantum coordinates z1
and q2, now relabelled simply by z = (q, p) ∈ T ∗Q and x ∈ M , respectively. The
function ̂H(z) is defined on T ∗Q and takes values in the space of unbounded
Hermitian operators on the quantum Hilbert space HQ = L2(M, C). Also, we
recall that A = pidqi ∈ Λ1(T ∗Q) is the canonical one form on T ∗Q.

After reviewing the main aspects of the quantum-classical wave equation, here
we shall extend the treatment in Part I by extending Madelung’s hydrodynamic
description to hybrid quantum-classical systems. Importantly, this unlocks the
door to the hybrid continuity equation for mixed quantum-classical densities.
Eventually,we shall extend the treatment to vonNeumannoperators and showhow
the latter may be used to treat more general classes on mixed quantum-classical
systems.

2 The Quantum-Classical Wave Equation

This section reviews the algebraic and geometric structure of the quantum-
classical wave equation (1). First, we introduce the hybrid Liouvillian operator

̂L
̂H = {i� ̂H, } − L

̂H , (2)

which is an unbounded self-adjoint operator on HCQ thereby making the hybrid
wavefunction Υ (z, x) undergo unitary dynamics. The name is due to the fact
that in the absence of the hybrid Lagrangian L

̂H , this reduces to the classical
Liouvillian operator appearing in Koopman’s early work. Also, we notice that
in the absence of quantum coordinates the hybrid Liouvillian reduces to the
prequantum operator from the classical KvH theory.

At this point, it is evident that Eq. (1) is Hamiltonian as it carries the same
canonical Poisson structure as the quantum Schrödinger equation. In addition,
its Hamiltonian functional (total energy) is conveniently written as

h(Υ ) =
ˆ

T ∗Q

〈

Υ
∣

∣ ̂L
̂HΥ

〉

dz =
ˆ

T ∗Q

ˆ

M

(

Ῡ ̂L
̂H Υ

)

dz ∧ dx . (3)
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Here, the L2-inner product is the immediate extension of the classical and quan-
tum cases. We proceed by emphasizing certain specific aspects of the quantum-
classical wave equation.
Properties of the Hybrid Liouvillian. As opposed to the prequantum opera-
tor from the KvH theory the hybrid Liouvillian (2) does not comprise a Lie alge-
bra structure. Indeed, while prequantum operators satisfy [ ̂LH , ̂LF ] = i� ̂L{H,F},
hybrid Liouvillians possess the following noncommutative variant:

[

̂L
̂H , ̂L

̂F

]

+
[

̂LH̄ , ̂LF̄

]T = i� ̂L{ ̂H, ̂F}−{ ̂F, ̂H}. (4)

Here, the bar denotes conjugate operators while T stands for transposition [5].
In addition, the hybrid Liouvillian enjoys relevant equivariance properties with
respect to classical and quantum transformations. In particular, if (η, eiϕ) ∈
AutA(T ∗Q × S1), we have:

U†
(η,eiϕ)

̂L
̂A U(η,eiϕ) = ̂Lη∗̂A , ∀ (η, eiθ) ∈ ̂Diffω(T ∗Q) . (5)

Here, AutA(T ∗Q × S1) denotes the group of connection-preserving automor-
phisms of the prequantum bundle, as explained in Part I. Alternatively, one
also has equivariance under the group U(HQ) unitary transformations of the
quantum Hilbert space space HQ, namely

U†
̂L

̂AU = ̂LU† ̂AU , ∀ U ∈ U(HQ) . (6)

These equivariance relations also apply to a hybrid density operator extending
the classical Liouville density as well as the quantum density matrix.

The Hybrid Density Operator. We define the hybrid quantum-classical den-
sity operator ̂D associated to Υ in such a way that the identity

ˆ

T ∗Q

〈

Υ
∣

∣ ̂L
̂AΥ

〉

dz = Tr
ˆ

T ∗Q

̂A ̂D dz,

holds for any hybrid quantum-classical observable ̂A(z). One gets the expression

̂D(z) = Υ (z)Υ †(z) − div
(

JA(z)Υ (z)Υ †(z)
)

+ i�{Υ (z), Υ †(z)} , (7)

so that Tr
´

T ∗Q
̂D(z) dz = 1. Here, the superscript † denotes the quantum adjoint

so that Υ †
1 (z)Υ2(z) =

´
M

Ῡ1(z, x)Υ2(z, x) dx. Even if unsigned, the operator ̂D(z)
represents the hybrid counterpart of the Liouville density in classical mechanics
and of the density matrix in quantum mechanics. This hybrid operator enjoys
the following classical and quantum equivariance properties

̂D(U(η,eiϕ)Υ ) = ̂D(Υ ) ◦ η−1 , ∀ (η, eiϕ) ∈ AutA(T ∗Q × S1) . (8)

̂D(̂UΥ ) = ̂U ̂D(Υ )̂U† , ∀ ̂U ∈ U(HQ) . (9)
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The equivariance properties (8)–(9) of the hybrid density operator under both
classical and quantum transformations have long been sought in the theory of
hybrid classical-quantum systems [3] and stand as one of the key geometric
properties of the present construction.

Quantum and Classical Densities. Given the hybrid density operator, the
classical density and the quantum density matrix are obtained as

ρc(z) = Tr ̂D(z) , ρ̂ :=
ˆ

T ∗Q

̂D(z) dz , (10)

respectively. While ρ̂ =
´

T ∗Q
ΥΥ † dz is positive by construction, at present there

is no criterion available to establish whether the dynamics of ρc preserves its
positivity, unless one considers the trivial case of absence of coupling, that is
̂H(z) = H(z) + ̂H. Possible arguments in favor of Wigner-like negative distri-
butions are found in Feynman’s work [4]. So far, all we know is that the hybrid
classical-quantum theory presented here is the only available Hamiltonian theory
beyond the mean-field approximation that (1) retains the quantum uncertainty
principle and (2) allows the mean-field factorization Υ (z, x) = Ψ(z)ψ(x) as an
exact solution in the absence of quantum-classical coupling. However, we recently
identified infinite families of hybrid Hamiltonians for which both ρ̂ and ρc are
positive in time. We will get back to this point later on.

3 Madelung Equations and Quantum-Classical
Trajectories

In this section we extend the usual Madelung transformation from quantum
mechanics to the more general setting of coupled quantum–classical systems.
Following Madelung’s quantum treatment, we shall restrict to consider hybrid
Hamiltonians of the type

̂H(q, p, x) = − �
2

2m
Δx +

1
2M

|p|2 + V (q, x) , (11)

thereby ignoring the possible presence of magnetic fields. Here Δx and the norm
|p| are given with respect to Riemannian metrics on M and Q. In this case, the
hybrid quantum–classical wave equation (1) reads

i�∂tΥ = −
(

LI +
�
2

2m
Δx

)

Υ + i� {HI , Υ} , (12)

where we have defined the following scalar functions LI ,HI on the hybrid space
T ∗Q × M :

HI(q, p, x) :=
1

2M
|p|2 + V (q, x) , LI(q, p, x) :=

1
2M

|p|2 − V (q, x) . (13)

These are respectively the classical Hamiltonian and Lagrangian both augmented
by the presence of the interaction potential.
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Madelung Transform. We apply the Madelung transform by writing the
hybrid wavefunction in polar form, that is Υ =

√
DeiS/�. Then, the quantum–

classical wave equation (12) produces the following hybrid dynamics

∂S

∂t
+

|∇xS|2
2m

− �
2

2m

Δx

√
D√

D
= LI + {HI , S} , (14)

∂D

∂t
+

1
m

divx(D∇xS) = {HI ,D} , (15)

where the operators ∇x, divx, and Δx = divx ∇x are defined in terms of the
Riemannian metric on M . Each equation carries the usual quantum terms on
the left-hand side, while the terms arising from KvH classical dynamics appear
on the right-hand side (see the corresponding equations in Part I). We observe
that (14) can be written in Lie derivative form as follows:

(∂t + £X) S = L , with X = (XHI
,∇xS/m) . (16)

Here, XHI
is the x-dependent Hamiltonian vector field on (T ∗Q,ω) associated

to HI . Moreover, we have defined the (time-dependent) hybrid Lagrangian

L := LI +
|∇xS|2

2m
+

�
2

2m

Δx

√
D√

D
,

in analogy to the so-called quantum Lagrangian given by the last two terms
above. Then, upon taking the total differential d (on T ∗Q × M) of (16) and
rewriting (15) in terms of the density D, we may rewrite (14)–(15) as follows:

(∂t + £X) dS = dL , ∂tD + div(DX) = 0 . (17)

Here, the operator div denotes the divergence operator induced on T ∗Q × M
by the Liouville form on T ∗Q and the Riemannian metric on M . This form of
the hybrid Madelung equations has important geometric consequences which we
will present below.

Hybrid Quantum-Classical Trajectories. Although the hybrid Madelung
equations (14)–(15) are distinctively different from usual equations of hydrody-
namic type, the equations (17) still lead to a similar continuum description to
that obtained in the quantum case. For example, the second equation in (17)
still yields hybrid trajectories, which may be defined by considering the density
evolution D(t) = (D0◦Φ(t)−1)

√

JΦ(t)−1 , where Φ(t) is the flow of the vector field
X and JΦ the Jacobian determinant. Then, this flow is regarded as a Lagrangian
trajectory obeying the equation

Φ̇(t, z, x) = X(Φ(t, z, x)) , (18)

which is the hybrid quantum–classical extension of quantum trajectories [1]. In
turn, the hybrid trajectories (18) are also useful to express (14) in the form
d
dt (S(t, Φ(t, z, x))) = L (t, Φ(t, z, x)), which is the hybrid analogue of the KvH
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phase evolution; see Part I. Additionally, in the absence of classical degrees of
freedom, this picture recovers the quantum Bohmian trajectories since in that
case the coordinate z plays no role. Similar arguments apply in the absence of
quantum degrees of freedom.

The Symplectic Form. The first equation in (17) can be rewritten in such a
way to unfold the properties of the flow Φ ∈ Diff(T ∗Q × M) on the quantum-
classical coordinate space. Since A ∈ Λ1(T ∗Q) and Λ1(T ∗Q) ⊂ Λ1(T ∗Q × M),
we denote A = p · dq ∈ Λ1(T ∗Q × M). Likewise, the differential dx : Λn(M) →
Λn+1(M) on M induces a one-form dxV = ∇xV · dx ∈ Λ1(T ∗Q × M) on the
hybrid coordinate space. Then, with a slight abuse of notation, one can rewrite
the first in (17) as

(∂t + £X)(dS − A) = d(L − LI) − dxV .

This equation is crucially important for deducing the quantum-classical dynam-
ics of the Poincaré invariant. Indeed, integrating over a loop γ0 in T ∗Q × M
leads to

d
dt

˛

γ(t)

p · dq =
˛

γ(t)

∇xV · dx , (19)

where γ(t) = Φ(t) ◦ γ0. Then, standard application of Stoke’s theorem yields the
following relation involving the classical symplectic form Ω = −dA:

d
dt

Φ(t)∗Ω = −Φ(t)∗d
(

dxV
)

, with d(dxV ) =
∂2 V

∂qj∂xk
dqj ∧ dxk , (20)

which reduces to the usual conservation Φ(t)∗Ω = Ω in the absence of coupling.

4 Joint Quantum-Classical Distributions

In standard quantum mechanics, the emergence of a probability current gives to
the evolution of the quantum density distribution ρq(x) = |ψ(x)|2 the structure
of a continuity equation. This structure transfers to the hybrid case for which
∂tρq = −divx

´
T ∗Q

(D∇xS/m) dz, which follows from (15). Here, we will present
the analogue of the continuity equation for joint quantum-classical distributions.

Hybrid Joint Distribution. Denoting by K
̂D(z;x, y) the kernel of the hybrid

density operator (7), we first introduce the joint quantum-classical distribution:

D(z, x) := K
̂D(z;x, x) (21)

= |Υ |2 − div
(

JA|Υ |2) + i�{Υ, Ῡ} . (22)

This represents the joint density for the position of the system in the hybrid
space T ∗Q × M . Then, the quantum probability density is given by ρq =´

T ∗Q
D(z, x) dz. As shown in [5], Eq. (22) identifies a momentum map Υ 
→

D(Υ ) for the natural action on HCQ of a slight generalization of the group
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Hybrid density operator
D ∈ Den(T ∗Q,Her(HQ))

(21)

Hybrid wavefunctions
Υ ∈ HCQ

Momentum map (22) for
F M,AutA(T ∗Q × S1)

(7)

Joint distribution
D ∈ Den(T ∗Q × M)

Fig. 1. Relations between hybrid wavefunctions Υ , the hybrid operator ̂D, and the
joint density D.

AutA(T ∗Q×S1), which we are now going to introduce. Denote by F(M,G) the
space of smooth mappings from M to a group G; this space is naturally endowed
with a group structure inherited by G. Then, we let G = AutA(T ∗Q×S1) so that
F(M,AutA(T ∗Q×S1)) possesses a unitary representation on HCQ that is inher-
ited from the van Hove representation of AutA(T ∗Q × S1) discussed in Part I.
We refer the reader to [5] for further details. In particular, the Lie algebra of
F(M,AutA(T ∗Q×S1)) coincides with the Poisson algebra of smooth phase-space
functions A(z;x) that are parameterized by the quantum coordinates x ∈ M ,
that is F(M, autA(T ∗Q×S1)) � F(M,C∞(T ∗Q)). Given A ∈ F(M,C∞(T ∗Q)),
the corresponding infinitesimal action on HCQ is then Υ 
→ −i�−1

̂LAΥ , so that
the associated momentum map Υ 
→ D(Υ ) is given by (22) (Fig. 1).

Quantum-Classical Continuity Equation. In analogy to the evolution of
the quantum mechanical probability density, the joint distribution satisfies a
continuity equation generally involving the hybrid wavefunction. Upon using
the polar form Υ =

√
DeiS/�, the continuity equation for the joint distribution

reads
∂tD = −div J = −divz JC − divx JQ , (23)

where the classical and quantum components of the hybrid current J = (JC , JQ)
are expressed in terms of the vector field X in (16) as follows:

JC := DXHI
, (24)

JQ :=
1
m

(

D∇xS + ∂pi
(piD∇xS) + {D∇xS, S} − �

2

4mD
{D,∇xD}

)

. (25)

Notice the emergence of the last term in JQ, which is reminiscent of the quantum
potential from standard quantum hydrodynamics. Now, does D conserve its
initial sign during its evolution? Obviously, this is what happens in the absence
of coupling, when ∂2

qjxkV = 0 and the symplectic form Ω is preserved in (20).
In addition, if the quantum kinetic energy is absent in (11), then JQ = 0 and
the hybrid continuity equation assumes the characteristic form ∂tD = {HI ,D}
thereby preserving the sign of D. Whether this sign preservation extends to more
general situations is a subject of current studies. Alternatively, one may ask if the
classical density ρc =

´
M

D dx is left positive in time by its equation of motion
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∂tρc =
´

M
{HI ,D}dx. The following statement provides a positive answer for

certain classes of hybrid Hamiltonians.

Proposition 1 ([5]). Assume a hybrid Hamiltonian of the form ̂H(z) =
H(z, α̂), where the dependence on the purely quantum observable α̂ is analytic.
Assume that the hybrid density operator ̂D(z) is initially positive, then the den-
sity ρc is also initially positive and its sign is preserved by the hybrid wave
equation (1).

5 A Simple Closure Model

The high dimensionality involved in mixed quantum-classical dynamics poses
formidable computational challenges that are typically addressed by devising
appropriate closure schemes. The simplest closure is derived by resorting to
the mean-field factorization Υ (z, x) = Ψ(z)ψ(x), as described in [2]. Alterna-
tively, one can resort to the von Neumann operator description: after defining
a quantum-classical von Neumann operator ̂Ξ satisfying i�∂t

̂Ξ = [ ̂L
̂H , ̂Ξ], a

mean-field factorization is obtained by writing ̂Ξ = ̂Θρ̂. Here, ̂Θ and ρ̂ are von
Neumann operators on the classical and the quantum Hilbert spaces HC and
HQ, respectively. Then, as discussed in Part I, one may set the integral kernel
of ̂Θ to be K

̂Θ(z, z′) = D(z/2 + z′/2) e
i

2�
(p+p′)·(q−q′).

Here, we will illustrate a slight extension of the mean-field factorization that
may again be obtained by following the final discussion in Part I. First, we per-
form a convenient abuse of notation by writing ̂Ξ(z, x, z′, x′) := K

̂Ξ(z, x, z′, x′).
Then, the quantity i�ρ̃ := i� ̂Ξ(z, x, z′, x′)|z=z′ emerges as a momentum map
for the natural action of F(T ∗Q,U(HQ)) on the Hilbert space HCQ, while the
quantum density matrix is

´
̂Ξ(z, x, z′, x′)|z=z′ dz (again, notice the slight abuse

of notation on the integral symbol). Likewise, the hydrodynamic variables

(σ(z),D(z)) =
( i�

2
∂

∂z

ˆ
̂Ξ(z′, x, z, x) dx− i�

2
∂

∂z

ˆ
̂Ξ(z, x, z′, x) dx, ̂Ξ(z, z′)

)∣

∣

∣

z′=z

comprise a momentum map structure associated to the action of the semidirect-
product group Diff(T ∗Q)� F(T ∗Q,S1) discussed in Part I. Overall, the map
̂Ξ 
→ (σ,D, i�ρ̃) identifies an equivariant momentum map for the action of the
semidirect-product Diff(T ∗Q)�

(F(T ∗Q,S1)×F(T ∗Q,U(HQ))
)

. At this point,
we express the total energy h( ̂Ξ) = Tr( ̂Ξ ̂L

̂H) in terms of the latter momentum
map by using the following ansatz (denote u = σ/D)

̂Ξ(z, x, z′, x′) = ρ̃
(

z/2 + z′/2, x, x′) e
i
�
(z−z′)·u(z/2+z′/2) . (26)

Then, the Hamiltonian functional reads h(σ,D, ρ̃) = Tr
´

ρ̃(D−1X
̂H ·σ − L

̂H) dz
and the resulting system for the dynamics of (σ,D, i�ρ̃) is Lie-Poisson on the dual
of the semidirect-product Lie algebra X(T ∗Q)�

(F(T ∗Q) × F(T ∗Q, u(HQ))
)

.
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Upon introducing ρ̂ = ρ̃/D and 〈 ̂A〉 = Tr( ̂Aρ̂), the equations of motion read
(

∂t + £〈X
̂H

〉
)

(u − A) = (u − A) · Tr
(

X
̂H∇z ρ̂

)

,

∂tD + divz

(〈X
̂H〉D)

= 0 , ∂tρ̂ + 〈X
̂H〉 · ∇z ρ̂ =

[

u · X
̂H − L

̂H , ρ̂
]

,

where we used £〈X
̂H

〉A = ∇z〈L ̂H〉 + Tr( ̂H∇z ρ̂). Then, setting u = A yields

∂tD + divz(D〈X
̂H〉) = 0 , ∂tρ̂ + 〈X

̂H〉 · ∇z ρ̂ =
[

̂H, ρ̂
]

.

Notice that, while ρ̂ must be positive, the operator ̂Ξ in (26) is unsigned. Also,
the classical density ρc = D does not follow a Hamiltonian flow, while the
quantum density operator ρ̂ evolves unitarily in the frame moving with velocity
〈X

̂H〉.
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Abstract. Curved exponential families are so general objects that they
seem to have no interesting universal properties. However Abram Kagan
[1] discovered in 1985 a remarkable inequality on their Fisher informa-
tion. This note gives a modern presentation of this result and examples,
comparing in particular noncentral and central Wishart distributions.

1 Introduction: Fisher Information

Fisher Models. A Fisher model

P = {Pθ(dw) = e�w(θ)ν(dw) ; θ ∈ Θ} (1)

on the measured space (Ω, ν) is defined with the help of a function (w, θ) �→ �w(θ)
on Ω × Θ where

1. Θ is a connected open subset of Rd.
2. For ν almost w then �w is twice continously differentiable on Θ.
3. Pθ(dw) = e�w(θ)ν(dw) is a probability.

Actually a more general definition could be that a Fisher model (Pθ(dw))θ∈Θ is
a model such that for all θ and θ′ ∈ Θ, we have that Pθ is absolutely continuous
with respect to Pθ′ . The existence of ν and of �w(θ) are consequences of this
more general choice, but we would have anyway to add condition (2) to this
second definition for being more useful and for being equivalent to the first.

Comments

1. A traditional presentation of a Fisher model is

(Pθ(dx))θ∈Θ = (f(x, θ)ν(dx))θ∈Θ

where in most of the cases ν(dx) is the Lebesgue measure on R
n. It could

also be for instance the counting measure on the set N of non negative inte-
gers. We part here from the tradition for several reasons: it is interesting to

c© Springer Nature Switzerland AG 2021
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replace (Rn, dx) by an abstract measured space (Ω, ν) which will simplify the
notations. It will avoid artificial distractions like the consideration of the set
Sθ = {x ∈ R

n; f(x, θ) > 0}. Actually, since we have to impose to the set
S = Sθ to be constant with respect to θ ∈ Θ, the formalism allows to replace
(Rn, dx) by (S, ν(dx)) where ν is simply the restriction to S of the Lebesgue
measure. Dealing with e�x(θ) instead of f(x, θ) will also avoid the plague
of the partial derivatives ∂

∂θi
f(x, θ) or ∂2

∂θi∂θj
f(x, θ), large Hessian matrices

and their cumbersome consequences. With the present formalism the partial
derivatives will never be used, since only differentials with respect to θ will
occur.

2. The representation (1) of a Fisher model is not unique, since ν(dw) can be
replaced by some f(w)ν1(dw) and thus the �w(θ) is replaced by �w(θ) +
log f(w). However, when θ �→ �w(θ) is differentiable, the �′

w are invariant
when replacing the reference measure ν by ν1.

3. Not all models are Fisher models: if Ω = Θ = (0,∞) and Pθ is the uniform
distribution on (0, θ) it is false that Pθ is absolutely continuous with respect
to Pθ′ when 0 < θ′ < θ.

Fisher Information. Of course the pair (ν(dw), �w(θ)) is not completely arbi-
trary since it satisfies

∫
Ω

Pθ(dw) = 1 =
∫

Ω

e�w(θ)ν(dw) (2)

Suppose now that θ �→ �w(θ) is differentiable and that there exists a positive and
ν integrable function f such that ‖�′

w(θ)‖e�w(θ) ≤ f(w) for all θ ∈ Θ. In these
circumstances we can differentiate (2) and we get the important vector equality

∫
Ω

�′
w(θ)Pθ(dw) = 0 (3)

Most of the authors call (w, θ) �→ �′
w(θ) the score function. Therefore �′

w(θ) is a
centered random variable valued in R

d with respect to the probability Pθ(dw).
The Fisher information IP (θ) is nothing but the covariance matrix of �′

w(θ) with
respect to the probability Pθ(dw). It has also an important representation by
the Hessian matrix �′′

w(θ) of �w, namely

IP (θ) =
∫

Ω

�′
w(θ) ⊗ �′

w(θ)Pθ(dw)
(∗)
= −

∫
Ω

�′′
w(θ)Pθ(dw) (4)

As usual, for a and b in R
d we write a ⊗ b for the matrix d × d representing the

linear endomorphism of Rd defined by x �→ (a ⊗ b)(x) = a〈b, x〉. Equality (*) in
(4) is obtained by differentiating (3) with respect to θ.

Finally one needs quite often a formula describing what happens to the Fisher
information while replacing the initial parameter θ ∈ Θ ⊂ R

d by a new parameter
λ ∈ Λ ⊂ R

k with k ≤ d. One assumes that Λ is open and that the map λ �→
θ(λ) is differentiable: thus one can imagine θ′(λ) as a matrix with d rows and
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k columns. Denote Qλ(dw) = Pθ(λ)(dw) and consider the Fisher model Q =
{Qλ;λ ∈ Λ}. The formula of change of variable for the Fisher models is easy to
prove from the definitions and is

IQ(λ) = θ′(λ)T IP (θ(λ))θ′(λ) (5)

Next proposition gives an example of calculation of Fisher information. Here we
have denoted the parameter of the model by t instead of θ for clarity while using
this example later in Sect. 3.

Proposition 1.1. Let (a, b) be an interval and t �→ (m(t), A(t)) a C2 applica-
tion of (a, b) to R

n × P(n) where P(n) is the convex cone of positive definite of
matrices of order n. Consider the following Fisher model of the Gaussian distri-
butions F = {N(m(t), A−1(t)) ; a < t < b}. Then the Fisher information of F
is

IF = m′T Am′ +
1
2

tr ((A−1A′)2).

Examples. For n = 1, classical examples for F are F1 = {N(t, t); t > 0}
and F2 = {N(t, t2); t > 0}. The proposition implies that IF1(t) = (2t +
1)/2t2, IF2(t) = 3/t2.

Proof. With the above notations, the Fisher model is described by

(Ω, ν) = (Rn, dx/(
√

2π)n), �x = −1
2

(x − m)T A(x − m) +
1
2

log det A.

Denote the trace of a square matrix X by tr (X). Recall that the first and
second differentials of the function f(X) = log detX defined on the space S(n)
of real symmetric matrices are the linear and bilinear forms on S(n) given by
f ′(X)(h) = tr (X−1h) and f ′′(X)(h, k) = − tr (X−1hX−1k) for h and k in S(n).
This implies that

d

dt
log det A = tr (A−1A′),

d2

dt2
log det A = tr (A−1A′′) − tr ((A−1A′)2).

This allows to compute �′
x and �′′

x

�′
x = −1

2
(x − m)T A′(x − m) + (x − m)T Am′ +

1
2

tr (A−1A′)

�′′
x = −1

2
(x − m)T A′′(x − m) + 2(x − m)T A′m′ − m′Am′

−1
2

tr ((A−1A′)2) +
1
2

tr (A−1A′′).

Now, using (4) we compute E(�′′
X(t)) = −IF (t) if X ∼ N(m,A−1). A quick

way to proceed is to use X − m = A−1/2Z where Z ∼ N(0, In) and, by diag-
onalization of P ∈ P(n), to observe that E(ZT PZ) = tr (P ). Applying this to
P = A−1/2A′′A−1/2 and tr (P ) = tr (A−1A′′) one gets the given value of IF (t).
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2 Exponential Families

Natural Exponential Families. A positive measure μ on the Euclidean
space R

d (not necessarily bounded) has the Laplace transform Lμ(θ) =∫
Rd e〈θ,x〉μ(dx) ≤ ∞. If D(μ) = {θ ∈ R

d;Lμ(θ) < ∞} the Hölder inequality
shows that D(μ) is convex and that kμ = log Lμ is a convex function. Denote by
Θ(μ) the interior of D(μ) and assume now two things: Θ(μ) is not empty and μ
is not concentrated on an affine hyperplane of Rd (let us call M(Rd) the set of
measures μ fulfilling these two conditions: the second one implies that kμ is now
strictly convex). With such a μ and with θ in Θ(μ) we create the probability
P (θ, μ)(dx) = e〈θ,x〉−kμ(θ)μ(dx). The model F (μ) = {P (θ, μ) ; θ ∈ Θ(μ)} is
called the natural exponential family generated by μ.

Fisher Information of a Natural Exponential Family. Here it is nec-
essary to point out that the Fisher information of the natural exponential fam-
ily F (μ) considered as a Fisher model parameterized by θ (called the natural
parameter) is the Hessian matrix k′′

μ(θ), which is the covariance of X ∼ P (θ, μ).
However, among other possible parameterizations of F (μ) a frequent one is the
parameterization by the mean m = k′

μ(θ) =
∫
Rd xP (θ, μ)(dx). Its set M(F (μ)) of

possible values is an open subset of Rd called the domain of the means: since kμ

is strictly convex, the inverse function m �→ θ = ψμ(m) of θ �→ m is well defined
from M(F (μ)) to Θ(μ). Denote for simplicity Qm(dx) = P (ψμ(m), μ)(dx) and
V (m) the covariance matrix of Qm. Observe that V (m) = k′′

μ(ψμ(m)) and that
ψ′

μ(m) = V (m)−1 (this inverse exists since Qm is not concentrated on a strict
affine subspace of Rd)

Now, using the change of variable formula (5), the Fisher information of the
Fisher model Q = (Qm m ∈ MF (μ)) is given by the somewhat paradoxical
formula:

IQ(m) = V (m)−1 (6)

which is exactly the inverse of the Fisher information of F (μ) when parameter-
ized by its natural parameter.

General Exponential Families. More generally consider an abstract mea-
sured space (Ω, ν) and a map w �→ x = t(w) from Ω to R

d such that the image
μ(dx) of ν by t belongs to M(Rd). Therefore for θ ∈ Θ(μ) one considers the prob-
ability P (t, ν, θ)(dw) on Ω defined by P (θ, t, ν)(dw) = e〈θ,t(w)〉−kμ(θ)ν(dw). The
model F (t, ν) = {P (θ, t, ν) ; θ ∈ Θ(μ)} is called the general exponential family
generated by (t, ν). The model F (μ) is called the associated natural exponential
family of F (t, ν). It is easy to check that the Fisher information IF (t,ν)(θ) coin-
cides with the Fisher information IF (μ)(θ) of the associated natural exponential
family.

Curved exponential families. If Λ is an open subset of Rk with k ≤ d and if
λ �→ θ(λ) is a map from Λ to Θ(μ) some authors consider the set of probabilities

P (θ(λ), t, ν)(dw) = e〈θ(λ),t(w)〉−c(λ)ν(dw)
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where c(λ) = kμ(θ(λ)) and when λ describes Λ. If k = d it is a reparameterisation
of F (t, ν). If k < d this submodel has few general properties. When k = 1
we will called it a curved exponential family, providing a model still valued on
R

d but with a one dimensional parameter. In general, replacing the general
exponential family- from which the curved exponential family is issued- by its
natural exponential family is harmless and clearer.

3 The Kagan Inequality

In this section we state in Proposition 3.1 and we illustrate by examples the
original Kagan inequality [1]. It considers actually rather a curved exponential
family. We eliminate the artificial role of general exponential families by going
to the core of the proof and by dealing only with a natural exponential family
and the curved one issued from it.

Proposition 3.1. Consider the natural exponential family (Gθ)θ∈Θ in R
d

defined by Gθ(dx) = e〈x,θ〉−k(θ)μ(dx), an open interval I ⊂ R, a smooth func-
tion t �→ θ(t) from I to Θ ⊂ R

d and the curved exponential family P = (Pt)t∈I

defined by Pt(dx) = Gθ(t)(dx). Consider also a Fisher model F = (Ft)t∈I on
R

d defined Ft(dy) = e�y(t)ν(dy) where ν and μ are absolutely continuous with
respect to each other.

For all t ∈ I we consider the random variables X ∼ Pt and Y ∼ Ft and we
assume that

E(X) = E(Y ), E(X ⊗ X) = E(Y ⊗ Y ), (7)

or equivalently, X and Y have same means and covariances. Then the respective
Fisher informations satisfy IP (t) ≤ IF (t) for all t ∈ I. Furthermore P = F if
and only if IP = IF .

Proof. Since μ and ν are absolutely continuous with respect to each other
without loss of generality we assume that μ = ν, by Comment 2 of Sect. 1. We
fix t ∈ I for a while. We consider the two Hilbert spaces L2(Pt) and L2(Ft)
of real functions defined on R

d. We consider also their subspaces Hx and Hy

respectively generated by 1, x1, . . . , xd and 1, y1, . . . , yd. Hypothese (7) implies
that they are isometric.

Consider now the element of L2(Ft) defined by �′
y(t). Since

∫
Rd �′

y(t)Ft(dy) =
0, we can claim that there exist a = (a1, . . . , ad)T ∈ R

d and c ∈ L2(Ft) such
that c is orthogonal to Hy and that

�′
y(t) = a1(y1 − E(Y1)) + · · · + ad(yd − E(Yd)) + c(y) = (y − E(Y ))T a + c(y).

We are going to prove that a = θ′(t). For this we observe that k′(θ) =∫
Rd xGθ(dx) gives

k′(θ(t)) =
∫
Rd

xPt(dx) = E(X) = E(Y ) =
∫
Rd

ye�y(t)μ(dy).
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Now we stop to have t fixed and we take derivative of the above line with respect
to t. We get the equality in R

d:

k′′(θ(t))(θ′(t)) =
∫
Rd

y�′
y(t)Ft(dy)

=
∫
Rd

(a1(y1 − E(Y1) + · · · + ad(yd − E(Yd))yFt(dy)

= Cov(Y )(a) = Cov(X)(a)

Since k′′(θ) is the covariance of X ∼ Gθ, hence k′′(θ(t)) is the covariance of
X ∼ Pt and therefore k′′(θ(t))(θ′(t)) = k′′(θ(t))(a). Since by hypothesis G is a
natural exponential family on R

d the matrix k′′(θ(t)) is invertible and a = θ′(t).
Finally we write

IF (t) =
∫
Rd

(�′
y(t))2Ft(dy) =

∫
Rd

〈y − E(Y ), θ′(t)〉2Ft(dy) +
∫
Rd

c2(y)Ft(dy)

= 〈θ′(t),Cov(Y )(θ′(t)〉 +
∫
Rd

c2(y)Ft(dy)

= 〈θ′(t),Cov(X)(θ′(t))〉 +
∫
Rd

c2(y)Ft(dy) ≥ 〈θ′(t),Cov(X)(θ′(t))〉 = IP (t)

If equality occurs for one t then c = 0. If equality occurs for all t then

�′
y(t) = 〈y − E(Y ), θ′(t)〉 = 〈y − k′(θ(t), θ′(t)〉.

Since a primitive of the right hand side is 〈y, θ(t)〉 − k(θ(t)), we get P = F.

Example 1. Consider the exponential family P = (Pt; t ∈ (− 1
2 π, 1

2 π)) defined
by

Pt(dx) = etx+log cos(t) dx

2 cosh(πx
2 )

.

Here the curved exponential family is the exponential family itself, with θ = t.

If X ∼ Pt the expectation and the variance of X are m(t) = − tan(t) and
σ2(t) = 1/ cos2(t). As recalled in Sect. 2, since P is an exponential family param-
eterized by its natural parameter t its Fisher information IP (t) is the variance
of Pt.

Now, consider another Fisher model F = (Ft; t ∈ (− 1
2 π, 1

2 π)) such that the
reference measures ν of F and μ of P are absolutely continuous with respect
to each other. Consider Y ∼ Ft. Assume that the expectation and the variance
of Y are also m(t) = − tan(t) and σ2(t) = 1/ cos2(t). Then IF ≥ IP . As an
example let us choose Ft = N(m(t), A−1(t)) as considered in Proposition 1.1,
with m(t) = tan(t) and A(t) = cos2(t). From Proposition 1.1 we can check
Proposition 3.1 as follows:

IF (t) = m′(t)2A(t) +
1
2

(A−1(t)A′(t))2 =
1

cos2(t)
+ 2 tan2(t) ≥ 1

cos2(t)
.
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One can also consider the same pair exponential family- Fisher model but using
the parameterization by the mean. With the help of (6) the Kagan inequality
can again be easily checked.

Example 2. Consider the exponential family

G = {Gθ = γ(p, a, σ);σ ∈ Pn}

of noncentral Wishart distributions with shape parameter p > n−1
2 , non central-

ity parameter a ∈ Pn and σ = (−θ)−1 ∈ Pn defined by its Laplace transform
∫
Pn

e− tr (sx)γ(p, a, σ)(dx) =
1

det(In + σs)p
e− tr (s(In+σs)−1w)

where w = σaσ. Note that the ordinary Wishart correspond to the case a = 0. If
X ∼ γ(p, a, σ) it is proved for instance in Letac and Massam [2] page 1407 that
mean and covariance of X are given by

E(X) = w + pσ, cov(X) : h �→ whσ + σhw + pσhσ

Of course, since the space on which the exponential family G is defined is the
space Sn of symmetric matrices of order n, it is simpler to present the covariance
as a linear operator h �→ cov(X)(h) on Sn instead of representing it by a matrix
of matrices. Our restriction to p > (n − 1)/2 and a ∈ P(n) insures the existence
of G: see Letac and Massam [3] for details and references on the delicate prob-
lem of the existence of G for other values of (p, a). Since G is an exponential
family parameterized by its natural parameter θ, its Fisher information IGθ

is
the covariance of Gθ, as explained in Sect. 2 above.

Next, from this natural exponential family, we extract the curved exponential
family P = (Pt; t0 < t < t1) defined by the curve t �→ θ(t) ∈ −P(n) and
Pt = Gθ(t), we use the formula giving the Fisher information for the change of
parameter t �→ θ(t). As a consequence, the Fisher information IP (t) is obtained
from IGθ

by the formula (5), leading to

IP (t) = tr (θ′(t)IG(θ(t))(θ′(t))
= 2 tr (θ′(t)w(t)θ′(t)σ(t) + p tr (θ′(t)σ(t)θ′(t)σ(t)), (8)

where we have denoted with some abuse σ(t) = (−θ(t))−1 and w(t) = σ(t)aσ(t).
Now we introduce the Fisher model F = (Ft; 0 < t < 1) such that Ft is the

Wishart distribution γ(p∗(t), 0, σ∗(t))(dx) where the functions p∗(t) and σ∗(t)
are chosen such that Y ∼ Ft has the mean and covariance of X ∼ Pt. In other
terms:

w(t) + pσ(t) = p∗(t)σ∗(t), (9)
w(t)hσ(t) + σ(t)hw(t) + pσ(t)hσ(t) = p∗(t)σ∗(t)hσ∗(t) (10)
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Clearly (10) cannot be realized for all h ∈ Sn without extra conditions on t �→
θ(t) and on a ∈ Pn. For this reason we take a = In, θ(t) = −In/t and 0 < t < 1.
With such a choice we get from (8), (9) and (10)

IP (t) = n
2t + p

t2
, p∗(t) =

(t + p)2

t(2t + p)
, σ∗(t) =

t(2t + p)
t + p

In.

The restriction 0 < t < 1 insures that p∗(t) > (n−1)/2. To see this observe that
t �→ p∗(t) is decreasing and that p∗(1) = (p+1)2

p+2 > p > n−1
2 .

On the other hand, the expression of IF (t) is too complicated to be displayed
here, since it starts from

�x(t) = − t + p

t(2t + p)
tr (x) − np∗(t) log

t(2t + p)
(t + p)

+
(

p∗(t) − n + 1
2

)
log det x − log Γn(p∗(t))

while the Kagan inequality says IF (t) ≥ IP (t).
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Abstract. We consider continuous wavelet transforms associated to uni-
tary representations of the semi-direct product of a vector group with
a linear Lie group realized on the Hilbert spaces of square-integrable
vector-valued functions. In particular, we give a concrete example of
an admissible vector-valued function (vector field) for the 3-dimensional
similitude group.

Keywords: Continuous wavelet transforms · Unitary representations ·
Similitude group · Divergence-free vector fields

1 Introduction

Let φ be a square-integrable function on R such that 2π
∫

R
|Fφ(ξ)|2 dξ

|ξ| = 1
(see below for the definition of the Fourier transform Fφ). Then for any
f ∈ L2(R), we have the reproducing formula f =

∫
R×(R\{0})(f |φb,a)L2φb,a

dbda
|a|2 ,

where φb,a(x) := |a|−1/2φ(x−b
a ) (a �= 0, b ∈ R), and the integral is interpreted in

the weak sense. Let Aff(R) be the group of invertible affine transforms gb,a(x) :=
b + ax (a �= 0, b ∈ R). We have a natural unitary representation π of Aff(R)
on L2(R) given by π(gb,a)f := fb,a. Then the reproducing formula above means
that the continuous wavelet transform Wφ : L2(R) � f �→ (f |π(·)φ) ∈ L2(G) is
an isometry, and as was pointed out in [6], the isometry property follows from
the orthogonal relation for square-integrable irreducible unitary representations.
After [6], theory of continuous wavelet transforms is generalized to a wide class
of groups and representations (cf. [1,3]). In particular, the continuous wavelet
transform associated to the quasi-regular representation of the semi-direct prod-
uct G = R

n
�H, where H is a Lie subgroup of GL(n, R), defined on the Hilbert

space L2(Rn) is studied thoroughly, whereas the assumption of the irreducibility
of the representation is relaxed by [5].

In the present paper, we consider continuous wavelet transforms for vector-
valued functions in a reasonably general setting. We show in Theorem3 that,
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under certain assumptions (A1), (A2) and (A3), one can construct a continuous
wavelet transform with an appropriate admissible vector. The conditions (A1)
and (A2) seem common in the wavelet theory, whereas the condition (A3) is
specific in our setting. The results can be applied to the natural action of the
similitude group R

n
� (R>0 × SO(n)) on vector fields and tensor fields on R

n

(see Sect. 3). In particular, we present a concrete example of admissible vector
for the 3-dimensional vector field (see (11)). Our example can be used for the
decomposition of vector fields into a sum of divergence-free and curl-free vector
fields. This result will shed some insight to the wavelet theory for such vector
fields [7,9]. A part of the contents of this paper is contained in the second author’s
doctoral thesis [8], where one can find other concrete examples of admissible
vectors.

Let us fix some notations used in this paper. The transposition of a matrix
A is denoted by A�. For w,w′ ∈ C

m, the standard inner product is defined by
(w|w′) := w�w̄′ =

∑m
i=1 wiw̄

′
i, where w and w′ are regarded as column vectors.

Write ‖w‖ :=
√

(w|w). A C
m-valued function f on R

n is said to be square-
integrable if ‖f‖2L2 :=

∫
Rn ‖f(x)‖2 dx < ∞, and the condition is equivalent to

that each of its components is square-integrable. Similarly, we say that f is
rapidly decreasing if so is each of its components. The space L2(Rn, Cm) of
square-integrable C

m-valued functions forms a Hilbert space, where the inner
product is given by (f1|f2)L2 =

∫
Rn(f1(x)|f2(x)) dx (f1, f2 ∈ L2(Rn, Cm)).

The Fourier transform F : L2(Rn, Cm) → L2(Rn, Cm) is defined as a unitary
isomorphism such that Ff(ξ) = (2π)−n/2

∫
Rn ei(ξ|x)f(x) dx (ξ ∈ R

n) if f is
rapidly decreasing. For two unitary representations π1 and π2 of a group, we
write π1 	 π2 if π1 and π2 are equivalent.

The authors would like to thank the referees’ comments and suggestions,
which are quite helpful for the improvement of the paper.

2 General Results

Let H ⊂ GL(n, R) be a linear Lie group. Then the semi-direct product G :=
R

n
� H acts on R

n as affine transforms:

g · x := v + hx (g = (v, h) ∈ G, x, v ∈ R
n, h ∈ H).

Let σ : H → U(m) be a unitary representation of H on C
m. We define a unitary

representation π of G on the Hilbert space L2(Rn, Cm) by

π(g)f(x) := |det h|−1/2σ(h)f(h−1(x − v))

(g = (v, h) ∈ G, f ∈ L2(Rn, Cm), x ∈ R
n).

We introduce another unitary representation π̂ of G on L2(Rn, Cm) defined by
π̂(g) := F ◦ π(g) ◦ F−1 for g ∈ G. By a straightforward calculation, we have

π̂(g)ϕ(ξ) = ei(ξ|v)|det h|1/2σ(h)ϕ(h�ξ)

(g = (v, h) ∈ G, ϕ ∈ L2(Rn, Cm), ξ ∈ R
n).

(1)
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This formula implies that the contragredient action ρ of H on R
n given by

ρ(h)ξ := (h�)−1ξ (h ∈ H, ξ ∈ R
n) plays crucial roles for the study of the

representation π 	 π̂ (cf. [1,5]). For ξ ∈ R
n, we write Oξ for the orbit ρ(H)ξ =

{ ρ(h)ξ ; h ∈ H } ⊂ R
n. Now we pose the first assumption:

(A1): There exists an element ξ ∈ R
n for which Oξ is an open set in R

n.

Let h ⊂ Mat(n, R) be the Lie algebra of H, and {X1, . . . , XN} (N := dim h) be
a basis of h. For ξ ∈ R

n, we consider the matrix R(ξ) ∈ Mat(n,N, R) whose i-th
column is X�

i ξ ∈ R
n for i = 1, . . . , N . Then the tangent space of Oξ at ξ equals

Image R(ξ) ⊂ R
n. In particular, Oξ is open if and only if the matrix R(ξ) is of

rank n, and the condition is equivalent to det(R(ξ)R(ξ)�) �= 0. Since p(ξ) :=
det(R(ξ)R(ξ)�) is a polynomial function of ξ, the set { ξ ∈ R

n ; p(ξ) �= 0 } has
a finite number of connected components with respect to the classical topol-
ogy by [10]. On the other hand, we see from a connectedness argument that
each of the connected components is an open ρ(H)-orbit. Summarizing these
observations, we have the following.

Lemma 1. There exist elements ξ[1], . . . ξ[K] ∈ R
n such that

(a) The orbit Ok := ρ(H)ξ[k] is open for k = 1, . . . ,K.
(b) If k �= l, then Ok ∩ Ol = ∅.
(c) The disjoint union

⊔K
k=1 Ok is dense in R

n.

For k = 1, . . . ,K, put Lk :=
{

f ∈ L2(Rn, Cm) ; Ff(ξ) = 0 (a.a. ξ ∈ R
n\Ok)

}
.

By (1) and Lemma 1, we have an orthogonal decomposition L2(Rn, Cm) =∑⊕
1≤k≤K Lk, which gives also a decomposition of the unitary representation π.

We shall decompose each (π, Lk) further into a direct sum of irreducible subrep-
resentations. Let Hk be the isotropy subgroup

{
h ∈ H ; ρ(h)ξ[k] = ξ[k]

}
of H at

ξ[k], and decompose the restriction σ|Hk
of the representation σ orthogonally as

C
m =

∑⊕

α∈Ak

Wk,α, (2)

where Ak is a finite index set, and Wk,α is an irreducible subspace of C
m. We

write σk,α for the irreducible representation Hk � h �→ σ(h)|Wk,α
∈ U(Wk,α).

For ξ ∈ Ok, take h ∈ H for which ξ = ρ(h)ξ[k] and put Wξ,α := σ(h)Wk,α. Note
that the space Wξ,α is independent of the choice of h ∈ H. For α ∈ Ak, define

Lk,α = {f ∈ Lk ; Ff(ξ) ∈ Wξ,α (a.a. ξ ∈ Ok)} . (3)

Then we have an orthogonal decomposition Lk =
∑⊕

α∈Ak
Lk,α, and each Lk,α

is an invariant subspace thanks to (1). Moreover, we can show that the subrep-
resentation (π, Lk,α) is equivalent to the induced representation IndG

Rn�Hk
σ̃k,α,

where (σ̃k,α,Wk,α) is a unitary representation of R
n
�Hk defined by σ̃k,α(v, h) :=

ei(ξ[k]|v)σk,α(h) (v ∈ R
n, h ∈ Hk). It follows from the Mackey theory (see [4,

Theorem 6.42]) that (π, Lk,α) is irreducible. Therefore we obtain:
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Theorem 1. Under the assumption (A1), an irreducible decomposition of the
representation (π, L2(Rn, Cm)) is given by

L2(Rn, Cm) =
∑⊕

1≤k≤K

∑⊕

α∈Ak

Lk,α. (4)

Let dH be a left Haar measure on the Lie group H. Then a measure dG on G
defined by dG(g) := |det h|−1dv dH(h) (g = (v, h) ∈ G) is a left Haar measure.

Theorem 2. If the group Hk is compact, then the representation (π, Lk,α) of G
is square-integrable for all α ∈ Ak. In this case, one has

∫

G

|(f |π(g)φ)L2 |2 dG(g) = (2π)n(dim Wk,α)−1‖f‖2L2

∫

H

‖Fφ(h�ξ[k])‖2 dH(h)

(5)
for f, φ ∈ Lk,α.

Proof. In order to show (5), it is sufficient to consider the case where f and φ
are rapidly decreasing. For g = (v, h) ∈ G, the isometry property of F together
with (1) implies that

(f |π(v, h)φ)L2 =
∫

Rn

(Ff(ξ) | F [π(v, h)φ](ξ)
)
dξ

=
∫

Rn

e−i(ξ|v)|det h|1/2
(Ff(ξ) |σ(h)Fφ(h�ξ)

)
dξ.

Note that the right-hand is the inverse Fourier transform of (2π)n/2|det h|1/2

(Ff(ξ)|σ(h)Fφ(h�ξ)), which is a rapidly decreasing function of ξ ∈ R
n, so that

the Plancherel formula tells us that
∫

Rn

|(f |π(v, h)φ)L2 |2dv = (2π)n|det h|
∫

Rn

|(Ff(ξ) |σ(h)Fφ(h�ξ)
)|2dξ. (6)

Thus, to obtain the formula (5), it is enough to show that
∫

H

|(Ff(ξ) |σ(h)Fφ(h�ξ)
)|2dH(h)

= (dim Wk,α)−1‖Ff(ξ)‖2
∫

H

‖Fφ(h�ξ[k])‖2dH(h)
(7)

for each ξ ∈ Ok. Let us take h1 ∈ H for which ξ = ρ(h1)ξ[k]. Then h�ξ =
ρ(h−1h1)ξ[k] = ρ(h−1

1 h)−1ξ[k]. By the left-invariance of the Haar measure dH ,
the left-hand side of (7) equals

∫

H

|(Ff(ξ) |σ(h1h)Fφ(ρ(h)−1ξ[k])
)|2 dH(h)

=
∫

H

|(σ(h1)−1Ff(ξ) |σ(h)Fφ(ρ(h)−1ξ[k])
)|2 dH(h).
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Writing dHk
for the normalized Haar measure on the compact group Hk, we

rewrite the right-hand side as
∫

H

∫

Hk

|(σ(h1)−1Ff(ξ) |σ(h′h)Fφ(ρ(h′h)−1ξ[k])
)|2 dHk

(h′)dH(h)

=
∫

H

∫

Hk

|(σ(h1)−1Ff(ρ(h1)ξ[k]) |σ(h′)σ(h)Fφ(ρ(h)−1ξ[k])
)|2 dHk

(h′)dH(h).

Now put w1 := σ(h1)−1Ff(ρ(h1)ξ[k]) and w2 := σ(h)Fφ(ρ(h)−1ξ[k]). Since
f, φ ∈ Lk,α, we see that w1 and w2 belong to Wk,α for almost all h, h1 ∈ H, so
that the Schur orthogonality relation for the representation σk,α yields

∫

Hk

|(σ(h1)−1Ff(ρ(h1)ξ[k]) |σ(h′)σ(h)Fφ(ρ(h)−1ξ[k])
)|2 dHk

(h′)

=
∫

Hk

|(w1|σk,α(h′)w2)|2 dHk
(h′) = (dim Wk,α)−1‖w1‖2‖w2‖2

= (dim Wk,α)−1‖σ(h1)−1Ff(ρ(h1)ξ[k])‖2‖σ(h)Fφ(ρ(h)−1ξ[k])‖2
= (dim Wk,α)−1‖Ff(ξ)‖2‖Fφ(h�ξ[k])‖2,

which leads us to (7).
Note that the formula (5) is valid whether both sides converge or not. On

the other hand, we can define a function φ ∈ Lk,α for which (5) converges
for all f ∈ Lk,α as follows. In view of the homeomorphism H/Hk � hHk �→
ρ(h)ξ[k] ∈ Ok, we take a Borel map hk : Ok → H such that ξ = ρ(hk(ξ))ξ[k]

for all ξ ∈ Ok. Let ψ be a non-negative continuous function on H with compact
support such that

∫
H

ψ(h−1)2 dH(h) = 1. Take a unit vector ek,α ∈ Wk,α and
define φk,α ∈ L2(Rn, Cm) by

φk,α(x) := (dim Wk,α)1/2(2π)−n

∫

Ok

e−i(ξ|x)ψ(hk(ξ))σ(hk(ξ))ek,α dξ (x ∈ R
n).

(8)
Note that the integral above converges because the support of the integrand is
compact. We can check that φk,α ∈ Lk,α and

(2π)n(dim Wk,α)−1

∫

H

‖Fφk,α(h�ξ[k])‖2 dH(h) = 1. (9)

The formula (5) together with (9) tells us that
∫

G

|(f |π(g)φk,α)L2 |2 dG(g) = ‖f‖2L2 (f ∈ Lk,α). (10)

In particular, the left-hand side converges for all f ∈ Lk,α, which means that
the unitary representation (π, Lk,α) is square-integrable. ��

Let us recall the decomposition (2). The multiplicity of the representation
σk,α of Hk in σ|Hk

, denoted by [σ|Hk
: σk,α], is defined as the number of β ∈ Ak
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for which σk,β is equivalent to σk,α. If σk,β is equivalent to σk,α, there exists a
unitary intertwining operator Uk,α,β : Wk,β → Wk,α between σk,β and σk,α, and
Uk,α,β is unique up to scalar multiples by the Schur lemma. Moreover, by the
Schur orthogonality relation, we have
∫

Hk

(wα|σ(h)w′
α) (σ(h)w′

β |wβ)dHk(h) = (dim Wk,α)−1(wα|Uk,α,βwβ) (Uk,α,βw′
β |w′

α).

Now we assume:

(A2) The group Hk is compact for all k = 1, . . . ,K.
(A3) [σ|Hk

: σk,α] ≤ dim Wk,α for all k = 1, . . . , K and α ∈ Ak.

Because of (A3), we can take a unit vector ek,α ∈ Wk,α for each k = 1, . . . , K
and α ∈ Ak in such a way that if σk,α and σk,β are equivalent with α �= β, then
(ek,α|Uk,α,βek,β) = 0. As in (8), we construct φk,α ∈ Lk,α from the vector ek,α.
Put φ̃ :=

∑K
k=1

∑
α∈Ak

φk,α.

Theorem 3. The transform Wφ̃ : L2(Rn, Cm) � f �→ (f |π(·)φ̃)L2 ∈ L2(G) is
an isometry. In other words, one has

f =
∫

G

(f |π(g)φ̃)L2 π(g)φ̃ dG(g) (f ∈ L2(Rn, Cm)),

where the integral of the right-hand side is defined in the weak sense.

Proof. Along (4), we write f =
∑K

k=1

∑
α∈Ak

fk,α with fk,α ∈ Lk,α. Then

∫

G

|(f |π(g)φ̃)L2 |2 dG(g) =
∫

G

∣
∣
∣

K∑

k=1

∑

α∈Ak

(fk,α|π(g)φk,α)L2

∣
∣
∣
2

dG(g)

=
∑

(k,α)

∫

G

|(fk,α|π(g)φk,α)L2 |2 dG(g)

+
∑

(k,α) �=(l,β)

∫

G

(fk,α|π(g)φk,α)L2(fl,β |π(g)φl,β)L2 dG(g).

By (10), we have
∫

G
|(fk,α|π(g)φk,α)L2 |2 dG(g) = ‖fk,α‖2. On the other hand, if

(k, α) �= (l, β), we have
∫

G

(fk,α|π(g)φk,α)L2(fl,β |π(g)φl,β)L2 dμG(g) = 0.

In fact, similarly to (6) we have for all h ∈ H

∫

Rn

(fk,α|π(v, h)φk,α)L2(fl,β |π(v, h)φl,β)L2 dv

= (2π)n|det h|
∫

Rn

(Ffk,α(ξ)|σ(h)Fφk,α(h�ξ))(Ffl,β(ξ)|σ(h)Fφl,β(h�ξ)) dξ.
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If k �= l, this quantity vanishes because the integrand in the right-hand side
equals 0 by Ok ∩Ol = ∅. If k = l and α �= β, by the same argument as the proof
of Theorem 2, we have for all ξ ∈ Ok

∫

H

(Ffk,α(ξ)|σ(h)Fφk,α(h�ξ))(Ffk,β(ξ)|σ(h)Fφk,β(h�ξ)) dH(h) = 0

whether σk,α 	 σk,β or not, by the Schur orthogonality relation. Thus we get
∫

G

|(f |π(g)φ̃)L2 |2 dG(g) =
∑

(k,α)

‖fk,α‖2 = ‖f‖2,

which completes the proof. ��

3 The 3-Dimensional Similitude Group Case

We consider the case where H is the group { cA ; c > 0, A ∈ SO(n) } 	 R>0 ×
SO(n) on R

n. Let σ be an irreducible unitary representation of SO(n). We
extend σ to a representation of H by σ(cA) := σ(A). The contragredient action
ρ of H on R

n has one open orbit O := R
n\{0}, and the isotropy subgroup H1

at any ξ[1] ∈ O is isomorphic to SO(n − 1). Moreover, since SO(n − 1) is a
multiplicity free subgroup of SO(n) by [2], we have [σ|H1 : σ1,α] = 1 for all
α ∈ A1. Thus the assumptions (A1), (A2) and (A3) are satisfied, and we can
find an admissible vector φ̃ in Theorem 3. A natural unitary representation of
G on the space of square-integrable (r, s)-tensor fields on R

n corresponds to the
case where σ is the tensor product σ0 ⊗ · · · ⊗ σ0 (r + s times) of the natural
representation σ0 of SO(n). Then the assumption (A3) is not satisfied in general.
In this case, we decompose the value of f ∈ �L2(Rn, (Cn)⊗(r+s)) into the sum of
irreducible summands of (σ, (Cn)⊗(r+s)) as a pretreatment, and we can consider
a continuous wavelet transform for each component.

Now let us present a concrete example of φ̃ for the case where n = 3 and σ is
the natural representation of SO(3). For 1 ≤ i < j ≤ 3, put Xij := −Eij +Eji ∈
Mat(3, R). The Lie algebra of SO(3) is spanned by X12,X23, and X13. Put
ξ[1] := (0, 0, 1)�. Then H1 = exp RX12 	 SO(2). Define e1,±1 := 1√

2
(1,∓i, 0)�

and e1,0 := (0, 0, 1)�, so that we have σ(exp tX12)e1,α = eiαte1,α for α = 0,±1
and t ∈ R, which means that we have the decomposition (2) with A1 = {0,±1}
and W1,α := Ce1,α. Note that dimW1,α = 1 in this case.

Let us consider the spherical coordinate ξ = (r sin θ cos ϕ, r sin θ sin ϕ, r cos θ)
with r ≥ 0, θ ∈ [0, π], ϕ ∈ [0, 2π). If ξ ∈ R

3 \ Rξ[1], then θ and ϕ are uniquely
determined. In this case, we put h1(ξ) := r−1 exp(ϕX12) exp(−θX13) ∈ H so
that ρ(h1(ξ))ξ[1] = ξ. Then eξ,α := σ(h1(ξ))e1,α for α ∈ A1 is computed as

eξ,0 =
1

‖ξ‖

⎛

⎝
ξ1
ξ2
ξ3

⎞

⎠ , eξ,±1 =
1

‖ξ‖
√

2(ξ21 + ξ22)

⎛

⎝
ξ1ξ3 ± iξ2‖ξ‖
ξ2ξ3 ∓ iξ1‖ξ‖
−(ξ21 + ξ22)

⎞

⎠ .
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As in (3), the irreducible summand L1,α is the space of f ∈ L2(R3, C3) such that
Ff(ξ) ∈ Ceξ,α for almost all ξ ∈ R

3 \ Rξ[1]. We see easily that a vector field
belonging to L1,0 is curl-free, while one belonging to L1,1 ⊕ L1,−1 is divergence-
free. Putting ψ0(ξ) := C0e

−‖ξ‖2/2‖ξ‖3, ψ±1(ξ) := ±iC1e
−‖ξ‖2/2‖ξ‖2

√
ξ21 + ξ22

with C0 := (4π)−1 and C1 := (32π2/3)−1/2, we define φ1,α ∈ L1,α for α ∈ A1 by

φ1,α(x) := (2π)−3

∫

R3\Rξ[1]
e−i(x|ξ)ψα(ξ)eξ,α dξ (x ∈ R

3).

We write dSO(3) for the normalized Haar measure on SO(3), and define
dH(h) := dc

c dSO(3)(A) for h = cA ∈ H with c > 0 and A ∈ SO(3). Then
we have

∫
H

ϕ(h�ξ[1]) dH(h) = 4π
∫

R3 ϕ(ξ) dξ
‖ξ‖3 for a non-negative measurable

function ϕ on R
3. Thus the left-hand side of (9) equals 4π

∫
R3 |ψα(ξ)|2 dξ

‖ξ‖3 .

If α = 0, this becomes 4πC2
0

∫
R3 e−‖ξ‖2‖ξ‖3 dξ = 1, and if α = ±1, it is

4πC2
1

∫
R3 e−‖ξ‖2‖ξ‖(ξ21 + ξ22) dξ = 1. Namely (9) holds for α ∈ A1. We compute

φ1,0(x) = (2π)−3C0

∫
R3

e−i(ξ|x)e−‖ξ‖2/2‖ξ‖2
⎛
⎝ξ1

ξ2
ξ3

⎞
⎠ dξ = C(‖x‖2 − 5)e−‖x‖2/2

⎛
⎝x1

x2

x3

⎞
⎠

with C := 2−7/2π−5/2. On the other hand, although we don’t have explicit
expression of φ1,±1, we see that φ1,�(x) := φ1,1(x) + φ1,−1(x) equals

(2π)−3 C1√
2

∫
R3

e−i(ξ|x)e−‖ξ‖2/2‖ξ‖2
⎛
⎝−2ξ2

2ξ1
0

⎞
⎠ dξ = C(‖x‖2 − 5)e−‖x‖2/2

⎛
⎝−√

3x2√
3x1

0

⎞
⎠ .

Therefore we obtain a concrete admissible vector field φ̃ := φ1,0 + φ1,� given by

φ̃(x) = 2−7/2π−5/2(‖x‖2 − 5)e−‖x‖2

⎛

⎝
x1 − √

3x2

x2 +
√

3x1

x3

⎞

⎠ (x ∈ R
3). (11)

If a vector field f ∈ L2(R3, C3) is decomposed as
∑

α∈A1
f1,α, then f1,1 + f1,−1

is the divergence-free part of f , which equals
∫

G
(f |π(g)φ1,�)L2π(g)φ1,� dG(g). A

similar formula holds for the curl-free part f1,0 and φ1,0.
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Entropy Under Disintegrations

Juan Pablo Vigneaux1,2(B)
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Abstract. We consider the differential entropy of probability measures
absolutely continuous with respect to a given σ-finite “reference” mea-
sure on an arbitrary measure space. We state the asymptotic equiparti-
tion property in this general case; the result is part of the folklore but
our presentation is to some extent novel. Then we study a general frame-
work under which such entropies satisfy a chain rule: disintegrations of
measures. We give an asymptotic interpretation for conditional entropies
in this case. Finally, we apply our result to Haar measures in canonical
relation.

Keywords: Generalized entropy · Differential entropy · AEP · Chain
rule · Disintegration · Topological group · Haar measure ·
Concentration of measure

1 Introduction

It is part of the “folklore” of information theory that given any measurable
space (E,B) with reference measure μ, and a probability measure ρ on E that is
absolutely continuous with respect to μ (i.e. ρ � μ), one can define a differential
entropy Sμ(ρ) = − ∫

E
log( dρ

dμ ) dρ that gives the exponential growth rate of the
μ⊗n-volume of a typical set of realizations of ρ⊗n. Things are rarely treated at
this level of generality in the literature, so the first purpose of this article is to
state the asymptotic equipartition property (AEP) for Sμ(ρ). This constitutes
a unified treatment of the discrete and euclidean cases, which shows (again)
that the differential entropy introduced by Shannon is not an unjustified ad hoc
device as some still claim.

Then we concentrate on a question that has been largely neglected: what is
the most general framework in which one can make sense of the chain rule? This
is at least possible for any disintegration of a measure.

Definition 1 (Disintegration). Let T : (E,B) → (ET ,BT ) be a measurable
map, ν a σ-finite measure on (E,B), and ξ a σ-finite measure on (ET ,BT ).
The measure ν has a disintegration {νt}t∈ET

with respect to T and ξ, or a
(T, ξ)-disintegration, if
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F. Nielsen and F. Barbaresco (Eds.): GSI 2021, LNCS 12829, pp. 340–349, 2021.
https://doi.org/10.1007/978-3-030-80209-7_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80209-7_38&domain=pdf
http://orcid.org/0000-0003-4696-4537
https://doi.org/10.1007/978-3-030-80209-7_38


Entropy Under Disintegrations 341

1. νt is a σ-finite measure on B concentrated on {T = t}, which means that
νt(T �= t) = 0 for ξ-almost every t;

2. for each measurable nonnegative function f : E → R,
(a) t �→ ∫

E
f dνt is measurable,

(b)
∫

E
f dν =

∫
ET

(∫
E

f(x) dνt(x)
)

dξ(t).

We shall see that if the reference measure μ has a (T, ξ)-disintegration
{μt}t∈ET

, then any probability ρ absolutely continuous with respect to it has
a (T, T∗ρ)-disintegration; each ρt is absolutely continuous with respect to μt,
and its density can be obtained normalizing the restriction of dρ

dμ to {T = t}.
Moreover, the following chain rule holds:

Sμ(ρ) = Sξ(T∗ρ) +
∫

ET

Sμt
(ρt) dT∗ρ(t). (1)

We study the meaning of
∫

ET
Sμt

(ρt) dT∗ρ(t) in terms of asymptotic volumes.
Finally, we show that our generalized chain rule can be applied to Haar measures
in canonical relation.

2 Generalized Differential Entropy

2.1 Definition and AEP

Let (EX ,B) be a measurable space, supposed to be the range of some random
variable X, and let μ be a σ-finite measure μ on it. In applications, several
examples appear:

1. EX a countable set, B the corresponding atomic σ-algebra, and μ the count-
ing measure;

2. EX euclidean space, B its Borel σ-algebra, and μ the Lebesgue measure;
3. More generally: EX a locally compact topological group, B its Borel σ-

algebra, and μ some Haar measure;
4. (EX ,B) arbitrary and μ a probability measure on it, that might be a prior

in a Bayesian setting or an initial state in a physical/PDE setting.

The reference measure μ gives the relevant notion of volume.
Let ρ is a probability measure on (EX ,B) absolutely continuous with respect

to μ, and f a representative of the Radon-Nikodym derivative dρ
dμ ∈ L1(EX , μX).

The generalized differential entropy of ρ with respect to (w.r.t.) μ is defined as

Sμ(ρ) := Eρ

(

− ln
dρ

dμ

)

= −
∫

EX

f(x) log f(x) dμ(x). (2)

This was introduced by Csiszár in [5], see also Eq. (8) in [7]. Remark that the
set where f = 0, hence log(f) = −∞, is ρ-negligible.
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Let {Xi : (Ω,F,P) → (EX ,B, μ)}i∈N be a collection of i.i.d random variables
with law ρ. The density of the joint variable (X1, ...,Xn) w.r.t. μ⊗n is given by
fX1,...,Xn

(x1, ..., xn) =
∏n

i=1 f(xi). If the Lebesgue integral in (2) is finite, then

− 1
n

log fX1,...,Xn
(X1, ...,Xn) → Sμ(ρ) (3)

P-almost surely (resp. in probability) as a consequence of the strong (resp. weak)
law of large numbers. The convergence in probability is enough to establish the
following result.

Proposition 1 (Asymptotic Equipartition Property). Let (EX ,B, μ) be
a σ-finite measure space, and ρ a probability measure on (EX ,B) such that ρ � μ
and Sμ(ρ) is finite. For every δ > 0, set

A
(n)
δ (ρ; μ) :=

{
(x1, ..., xn) ∈ En

X

∣∣ ∣∣∣∣− 1

n
log fX1,...,Xn(X1, ..., Xn) − Sμ(ρ)

∣∣∣∣ ≤ δ

}
.

Then,

1. for every ε > 0, there exists n0 ∈ N such that, for all n ≥ n0,

P

(
A

(n)
δ (ρ;μ)

)
> 1 − ε;

2. for every n ∈ N,

μ⊗n(A(n)
δ (ρ;μ)) ≤ exp{n(Sμ(ρ) + δ)};

3. for every ε > 0, there exists n0 ∈ N such that, for all n ≥ n0,

μ⊗n(A(n)
δ (ρ;μ)) ≥ (1 − ε) exp{n(Sμ(ρ) − δ)}.

We proved these claims in [11, Ch. 12]; our proofs are very similar to the
standard ones for (euclidean) differential entropy, see [4, Ch. 8].

Below, we write A
(n)
δ if ρ and μ are clear from context.

When EX is a countable set and μ the counting measure, every probability
law ρ on EX is absolutely continuous with respect to μ; if p : EX → R is its
density, Sμ(ρ) corresponds to the familiar expression −∑

x∈EX
p(x) log p(x).

If EX = R
n, μ is the corresponding Lebesgue measure, and ρ a probability

law such that ρ � μ, then the derivative dρ/dμ ∈ L1(Rn) corresponds to the ele-
mentary notion of density, and the quantity Sμ(ρ) is the differential entropy that
was also introduced by Shannon in [10]. He remarked that the covariance of the
differential entropy under diffeomorphisms is consistent with the measurement
of randomness “relative to an assumed standard.” For example, consider a linear
automorphism of Rn, ϕ(x1, ..., xn) = (y1, ..., yn), represented by a matrix A. Set
μ = dx1 · · · dxn and ν = dy1 · · · dyn. It can be easily deduced from the change-
of-variables formula that ν(ϕ(V )) = |det A|μ(V ). Similarly, ϕ∗ρ has density
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f(ϕ−1(y))|det A|−1 w.r.t. ν, and this implies that Sν(ϕ∗ρ) = Sμ(ρ)+log |det A|,
cf. [4, Eq. 8.71]. Hence

∣
∣
∣
∣
∣
− 1

n
log

n∏

i=1

dϕ∗ρ
dν

(yi) − Sν(ϕ∗ρ)

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
− 1

n
log

n∏

i=1

dρ

dμ
(ϕ−1(yi)) − Sμ(ρ)

∣
∣
∣
∣
∣
, (4)

from which we deduce that A
(n)
δ (ϕ∗ρ, ν) = ϕ×n(A(n)

δ (ρ;μ)) and consequently

ν⊗n(A(n)
δ (ϕ∗ρ; ν)) = |det A|nμ⊗n(A(n)

δ (ρ;μ)), (5)

which is consistent with the corresponding estimates given by Proposition 1.
In the discrete case one could also work with any multiple of the counting

measure, ν = αμ, for α > 0. In this case, the chain rule for Radon-Nikodym
derivatives (see [6, Sec. 19.40]) gives

dρ

dμ
=

dρ

dν

dν

dμ
= α

dρ

dν
, (6)

and therefore Sμ(ρ) = Sν(ρ) − log α. Hence the discrete entropy depends on the
choice of reference measure, contrary to what is usually stated. This function is
invariant under a bijection of finite sets, but taking on both sides the counting
measure as reference measure. The proper analogue of this in the euclidean case
is a measure-preserving transformation (e.g. |det A| = 1 above), under which
the differential entropy is invariant.

For any EX , if μ is a probability law, the expression Sμ(ρ) is the opposite
of the Kullback-Leibler divergence DKL(ρ||μ) := −Sμ(ρ). The positivity of the
divergence follows from a customary application of Jensen’s inequality or from
the asymptotic argument given in the next subsection.

The asymptotic relationship between volume and entropy given by the AEP
can be summarized as follows:

Corollary 1.

lim
δ→0

lim
n→∞

1
n

log μ⊗n(A(n)
δ (ρ;μ)) = Sμ(ρ).

2.2 Certainty, Positivity and Divergence

Proposition 1 gives a meaning to the divergence and the positivity/negativity of
Sμ(ρ).

1. Discrete case: let EX be a countable set and μ be the counting measure.
Irrespective of ρ, the cardinality of μ⊗n(A(n)

δ (ρ;μ)) is at least 1, hence the
limit in Corollary 1 is always positive, which establishes Sμ(ρ) ≥ 0. The case
Sμ(ρ) = 0 corresponds to certainty: if ρ = δx0 , for certain x0 ∈ EX , then
A

(n)
δ = {(x0, ..., x0)}.
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2. Euclidean case: EX Euclidean space, μ Lebesgue measure. The differential
entropy is negative if the volume of the typical set is (asymptotically) smaller
than 1. Moreover, the divergence of the differential entropy to −∞ corre-
spond to asymptotic concentration on a μ-negligible set. For instance, if ρ
has μ(B(x0, ε))−1χB(x0,ε), then Sλd

(ρ) = log(|B(x0, ε)|) = log(cdε
d), where

cd is a constant characteristic of each dimension d. By part (2) of Proposi-
tion 1, |A(n)

δ | ≤ exp(nd log ε+Cn), which means that, for fixed n, the volume
goes to zero as ε → 0, as intuition would suggest. Therefore, the divergent
entropy is necessary to obtain the good volume estimates.

3. Whereas the positivity of the (discrete) entropy arises from a lower bound
to the volume of typical sets, the positivity of the Kullback-Leibler is of a
different nature: it comes from an upper bound. In fact, when μ and ρ are
probability measures such that ρ � μ, the inequality μ⊗n(A(n)

δ (ρ;μ)) ≤ 1
holds for any δ, which translates into Sμ(ρ) ≤ 0 and therefore DKL(ρ||μ) ≥ 0.
In general, there is no upper bound for the divergence.

Remark that entropy maximization problems are well defined when the ref-
erence measure is a finite measure.

3 Chain Rule

3.1 Disintegration of Measures

We summarize in this section some fundamental results on disintegrations as
presented in [2]. Throughout it, (E,B) and (ET ,BT ) are measurable spaces
equipped with σ-finite measures ν and ξ, respectively, and T : (E,B) →
(ET ,BT ) is a measurable map.

Definition 1 is partly motivated by the following observation: when ET is
finite and BT is its algebra of subsets 2ET , we can associate to any probability
P on (E,B) a (T, T∗P )-disintegration given by the conditional measures Pt :
B → R, B �→ P (B ∩ {T = t})/P (T = t), indexed by t ∈ ET . In particular,

P (B) =
∑

t∈ET

P (T = t)Pt(B). (7)

Remark that Pt is only well defined on the maximal set of t ∈ ET such that
T∗P (t) > 0, but only these t play a role in the disintegration (7).

General disintegrations give regular versions of conditional expectations.
Let ν be a probability measure, ξ = T∗ν, and {νt} the corresponding (T, ξ)-
disintegration. Then the function x ∈ E �→ ∫

E
χB(x) dνT (x)—where χB denotes

the characteristic function—is σT measurable and a regular version of the con-
ditional probability νσ(T )(B) as defined by Kolmogorov.

Disintegrations exist under very general hypotheses. For instance, if ν is
Radon, T∗ν � ξ, and BT is countably generated and contains all the singletons
{t}, then ν has a (T, ξ)-disintegration. The resulting measures νt measures are
uniquely determined up to an almost sure equivalence. See [2, Thm. 1].

As we explained in the introduction, a disintegration of a reference measure
induces disintegrations of all measures absolutely continuous with respect to it.
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Proposition 2. Let ν have a (T, ξ)-disintegration {νt} and let ρ be absolutely
continuous with respect to ν with finite density r(x), with each ν, ξ and ρ σ-finite.

1. The measure ρ has a (T, ξ)-disintegration {ρ̃t} where each ρ̃t is dominated by
the corresponding νt, with density r(x).

2. The image measure T∗ρ is absolutely continuous with respect to ξ, with density∫
E

r dνt.
3. The measures {ρ̃t} are finite for ξ-almost all t if and only if T∗ρ is σ-finite.
4. The measures {ρ̃t} are probabilities for ξ-almost all t if and only if ξ = T∗ρ.
5. If T∗ρ is σ-finite then 0 < νtr < ∞ T∗ν-almost surely, and the measures {ρt}

given by ∫

E

f dρt =

∫
E

fr dνt∫
E

r dνt

are probabilities that give a (T, T∗ρ)-disintegration of ρ.

Example 1 (Product spaces). We suppose that (E,B, ν) is the product of two
measured spaces spaces (ET ,BT , ξ) and (ES ,BS , ν), with ξ and ν both σ-finite.
Let νt be the image of ν under the inclusion s �→ (t, s). Then Fubini’s theorem
implies that νt is a (T, ξ)-disintegration of ν. (Remark that ξ �= T∗ν. In general,
the measure T∗ν is not even σ-finite.) If r(t, s) is the density of a probability ρ
on (E,B), then ρt � νt with density r(t, s)—the value of t being fixed—and ρ̃t

is a probability supported on {T = t} with density r(t, s)/
∫

ES
r(t, s) dν(s).

3.2 Chain Rule Under Disintegrations

Any disintegration gives a chain rule for entropy.

Proposition 3 (Chain rule for general disintegrations). Let T :
(EX ,BX) → (EY ,BY ) be a measurable map between arbitrary measurable
spaces, μ (respectively ν) a σ-finite measure on (EX ,BX) (resp. (EY ,BY )),
and {μy} a (T, ν)-disintegration of μ. Then any probability measure ρ absolutely
continuous w.r.t. μ, with density r, has a (T, ν)-disintegration {ρ̃y}y∈Y such that
for each y, ρ̃y = r ·μy. Additionally, ρ has a (T, T∗ρ)-disintegration {ρy}y∈Y such
that each ρy is a probability measure with density r/

∫
EX

r dμy w.r.t. μy, and the
following chain rule holds:

Sμ(ρ) = Sν(T∗ρ) +
∫

EY

Sμy
(ρy) dT∗ρ(y). (8)

Proof. For convenience, we use here linear-functional notation:
∫

X
f(x) dμ(x) is

denoted μ(f) or μx(f(x)) if we want to emphasize the variable integrated.
Almost everything is a restatement of Proposition 2. Remark that y �→ μy(r)

is the density of T∗ρ with respect to ν.



346 J. P. Vigneaux

Equation (8) is established as follows:

Sμ(ρ)
(def)
= ρ

(

− log
dρ

dμ

)

= T∗ρy

(

ρy

(

− log
dρ

dμ

))

(9)

= T∗ρy

(

ρy

(

− log
dρy

dμy
− log μy(r)

))

(10)

= T∗ρy

(

ρy

(

− log
dρy

dμy

))

+ T∗ρy

(

− log
dT∗ρ
dν

)

(11)

= T∗ρy
(
Sμy

(ρy)
)

+ Sν(T∗ρ), (12)

where (9) is the fundamental property of the T -disintegration {ρy}y and (10) is
justified by the equalities

dρ

dμ
=

dρ̃y

dμy
= my(r)

dρy

dμy
.

Example 2. From the computations of Example 1, it is easy to see that if EX =
R

n × R
m, μ is the Lebesgue measure, and T is the projection on the R

n factor,
then (8) corresponds to the familiar chain rule for Shannon’s differential entropy.

Example 3 (Chain rule in polar coordinates). Let EX = R
2\{0}, μ be the

Lebesgue measure dxdy on R
2, and ρ = f dxdy a probability measure. Every

point v ∈ EX can be parametrized by cartesian coordinates (x, y) or polar coor-
dinates (r, θ), i.e. v = v(x, y) = v(r, θ). The parameter r takes values from the
set ER = ]0,∞[, and θ from EΘ = [0, 2π[; the functions R : EX → ER, v �→ r(v)
and Θ : EX → EΘ, v �→ θ(v) can be seen as random variables with laws R∗ρ and
Θ∗ρ, respectively. We equip ER (resp. EΘ) with the Lebesgue measure μR = dr
(resp. μH = dθ).

The measure μ has a (R,μR)-disintegration {r dθ}r∈ER
; here r dθ is the uni-

form measure on R−1(r) of total mass 2πr. This is a consequence of the change-
of-variables formula:

∫

R2
ϕ(x, y) dxdy =

∫

[0,∞[

(∫ 2π

0

ϕ(r, θ)r dθ

)

dr, (13)

which is precisely the disintegration property. Hence, according to Proposi-
tion 2, ρ disintegrates into probability measures {ρr}r∈ER

, with each ρr con-
centrated on {R = r}, absolutely continuous w.r.t. μr = r dθ and with density
f/

∫ 2π

0
f(r, θ)r dθ. The exact chain rule (8) holds in this case.

This should be compared with Lemma 6.16 in [8]. They consider the random
vector (R,Θ) as an R

2 valued random variable, and the reference measure to
be ν = dr dθ. The change-of-variables formula implies that (R,Θ) has density
rf(r, θ) with respect to ν, so Sν(ρ) = Sμ(ρ) − Eρ(log R). Then they apply the
standard chain rule to Sν(ρ), i.e. as in Examples 1 and 2, to obtain a deformed
chain rule for Sμ(ρ):

Sμ(ρ) = SμR
(R∗ρ)+

∫ ∞

0

(

−
∫ 2π

0

log

(
f

∫ 2π

0
f dθ

)
f dθ

∫ 2π

0
f dθ

)

+Eρ(log R). (14)
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Our term
∫

ER
Sμr

(ρr) dR∗ρ(r) comprises the last two terms in the previous equa-
tion.

Remark 1. Formula (13) is a particular case of the coarea formula [1, Thm. 2.93],
which gives a disintegration of the Hausdorff measure HN restricted to a
countably HN -rectifiable subset E of R

M with respect to a Lipschitz map
f : RM → R

k (with k ≤ N) and the Lebesgue measure on R
k. So the argument

of the previous example also applies to the extra term −E(x,y)[log JE
py

(x,y)] in
the chain rule of [7, Thm. 41], which could be avoided by an adequate choice of
reference measures.

Combining Corollary 1 and the preceding proposition, we get a precise inter-
pretation of the conditional term in terms of asymptotic growth of the volume
of slices of the typical set.

Proposition 4. Keeping the setting of the previous proposition,

lim
δ→0

lim
n→∞

1
n

log

(∫
EY

μ⊗n
y (A(n)

δ (ρ;μ)) dν⊗n(y)

ν⊗n(A(n)
δ (T∗ρ; ν))

)

=
∫

EY

Sμy
(ρy) dT∗ρ(y).

Proof. It is easy to prove that if {μy}y is a (T, ν)-disintegration of μ, then {μ⊗n
y }y

is a (T×n, ν⊗n)-disintegration of μ⊗n. The disintegration property reads

μ⊗n(A) =
∫

EY

μ⊗n
y (A) dν⊗n(y), (15)

for any measurable set A. Hence

log μ⊗n(A(n)
δ (ρ;μ)) = log ν⊗n(A(n)

δ (T∗ρ; ν)) + log

∫
EY

μ⊗n
y (A(n)

δ (ρ;μ)) dν⊗n(y)

ν⊗n(A(n)
δ (T∗ρ; ν))

.

(16)
The results follows from the application of limδ→0 limn

1
n to this equality and

comparison of the result with the chain rule.

In connection to this result, remark that (T∗ρ)⊗n concentrates on A
(n)
δ (T∗ρ; ν)

and has approximately density 1/ν⊗n(A(n)
δ (T∗ρ; ν)), so

∫

EY

μ⊗n
y (A(n)

δ (ρ;μ))
1

ν⊗n(A(n)
δ (T∗ρ; ν))

dν⊗n(y)

is close to an average of μ⊗n
y (A(n)

δ (ρ;μ) ∩ T−1(y)), the “typical part” of each
fiber T−1(y), according to the “true” law (T∗ρ)⊗n.

3.3 Locally Compact Topological Groups

Given a locally compact topological group G, there is a unique left-invariant
positive measure (left Haar measure) up to a multiplicative constant [3, Thms.
9.2.2 & 9.2.6]. A particular choice of left Haar measure will be denoted by λ with
superscript G e.g. λG. The disintegration of Haar measures is given by Weil’s
formula.
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Proposition 5 (Weil’s formula). Let G be a locally compact group and H a
closed normal subgroup of G. Given Haar measures on two groups among G, H
and G/H, there is a Haar measure on the third one such that, for any integrable
function f : G → R,

∫

G

f(x)dλG(x) =
∫

G/H

(∫

H

f(xy) dλH(y)
)

dλG/H(xH). (17)

The three measures are said to be in canonical relation, which is written λG =
λG/HλH . For a proof of Proposition 5, see pp. 87–88 and Theorem 3.4.6 of [9].

For any element [g] of G/H, representing a left coset gH, let us denote by
λH
[g] the image of λH under the inclusion ιg : H → G, h �→ gH. This is well

defined i.e. does not depend on the chosen representative g: the image of ιg
depends only on the coset gH, and if g1, g2 are two elements of G such that
g1H = g2H, and A is subset of G, the translation h �→ g−1

2 g1h establishes a
bijection ι−1

g1
(A) ∼→ ι−1

g2
(A); the left invariance of the Haar measure implies that

λH(ι−1
g1

(A)) = λH(ι−1
g2

(A)) i.e. (ιg1)∗λH = (ιg2)∗λH as claimed. Proposition 5
shows then that {λH

[g]}[g]∈G/H is a (T, λG/H)-disintegration of λG. In view of
this and Proposition 3, the following result follows.

Proposition 6 (Chain rule, Haar case). Let G be a locally compact group,
H a closed normal subgroup of G, and λG, λH , and λG/H Haar measures in
canonical relation. Let ρ be a probability measure on G. Denote by T : G → G/H
the canonical projection. Then, there is T -disintegration {ρ[g]}[g]∈G/H of ρ such
that each ρ[g] is a probability measure, and

SλG(ρ) = SλG/H (π∗ρ) +
∫

G/H

SλH
[g]

(ρ[g]) dπ∗ρ([g]). (18)
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Abstract. As soon as 1993, A. Fujiwara and Y. Nakamura have developed
close links between Information Geometry and integrable system by studying
dynamical systems on statistical models and completely integrable gradient
systems on the manifolds of Gaussian and multinomial distributions, Recently,
Jean-Pierre Françoise has revisited this model and extended it to the Peakon
systems. In parallel, in the framework of integrable dynamical systems and
Moser isospectral deformation method, originated in the work of P. Lax, A.M.
Perelomov has applied models for space of Positive Definite Hermitian matrices
of order 2, considering this space as an homogeneous space. We conclude with
links of Lax pairs with Souriau equation to compute coefficients of characteristic
polynomial of a matrix. Main objective of this paper is to compose a synthesis of
these researches on integrability and Lax pairs and their links with Information
Geometry, to stimulate new developments at the interface of these disciplines.

Keywords: Information geometry � Complete integrable systems � Isospectral
deformation � Lax pairs

1 Liouville Complete Integrability and Information
Geometry

Integrability refers to the existence of invariant, regular foliations, related to the degree
of integrability, depending on the dimension of the leaves of the invariant foliation.

In the case of Hamiltonian systems, this integrability is called “complete integra-
bility” in the sense of Liouville (Liouville-Mineur Theorem) [1–9].

In case of Liouville integrability, a regular foliation of the phase space by invariant
manifolds such that the Hamiltonian vector fields associated to the invariants of the
foliation span the tangent distribution. In this case, a maximal set of Poisson com-
muting invariants exist (functions on the phase space whose Poisson brackets with the
Hamiltonian of the system, and with each other, vanish).

If the phase space is symplectic, the leaves of the foliation are totally isotropic with
respect to the symplectic form and such a maximal isotropic foliation is called
Lagrangian.
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In 1993, in the framework of Liouville Completely Integrable Systems on Statis-
tical Manifolds, Y. Nakamura developed gradient systems on manifolds of various
probability distributions. He proved the following results [10–17]:

• the gradient systems on the even-dimensional manifolds of Gaussian and multi-
nomial distributions are completely integrable Hamiltonian systems.

• the gradient systems can always be linearized by using Information Geometry dual
coordinate system of the original coordinates.

• the gradient flows on the statistical manifolds converge to equilibrium points
exponentially.

• the gradient systems are completely integrable Hamiltonian systems if the mani-
folds have even dimensions. There is a 2 m-dimensional Hamiltonian System which
is integrable so that the Dynamics restricted to the common level sets of first
integrals is a gradient. This type of dynamics (sometimes called Brockett flows) has
been studied in itself [47].

• the gradient system associated with the Gaussian distribution can be related to an
Orstein-Ulhenbeck process

We consider the statistical Manifolds with Fisher Metric

pðx; hÞ with h ¼ h1; :::; hnð ÞT and lðx; hÞ ¼ log p x; hð Þ

G ¼ gi;j
� �

with gi;j ¼ E
@lðx; hÞ
@hi

@lðx; hÞ
@hj

� �
¼ @2WðhÞ

@hi@hj

ð1Þ

Y. Nakamura has considered the following gradient flow on Statistical Manifolds

dh
dt

¼ �G�1 @W
@h

with
@W
@h

¼ @W
@h1

; :::;
@W
@hn

� �T

ð2Þ

First, Y. Nakamura proved the first theorem:

• The gradient system (2) is always linearizable. The induced flow on an open subset
of the Riemannian Statistical Manifold such that there exists a potential function
satisfying (2) converges to equilibrium points exponentially.
Second Y. Nakamura Theorem states:

• If n is even (n = 2 m), then the gradient system (2) is a completely integrable
Hamiltonian system:

dg
dt ¼ �g ) dHj

dt ¼ dPj

dt Qj þPj
dQj

dt

dHj

dt ¼ �g�2
j

dgj
dt

� 	
gmþ j þ g�1

j
dgmþ j

dt ¼ g�1
j gmþ j � g�1

j gmþ j ¼ 0

) dHj

dt ¼ 0

ð3Þ
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Define the Hamiltonian H ¼Pm
j¼1

Hj, then the corresponding equations of motion,

dNk

dt
¼ Nk;Hf g with

Nk ¼ Pk , k ¼ 1; :::;m

Nk ¼ Qk�m , k ¼ mþ 1; :::; n

(
ð4Þ

coincides with dg
dt ¼ �g and

Hj;H

 � ¼ 0

Hi;Hj

 � ¼ 0

(
.

Nakamura model is illustrated for monovariate Gaussian law p x; hð Þ ¼ 1ffiffiffiffi
2p

p
r
e�:

x�mð Þ2
2r2 :

h ¼ h1; h2ð Þ ¼ m
r2

;
1
2r2

� �
and E x½ � ¼ 1

2
h1h

�1
2 , E x2

� � ¼ 1
4
h21h

�2
2 þ 1

2
h�1
2 ð5Þ

G ¼ 1
2

h�1
2 h1h

�2
2

h1h
�2
2 h�2

2 þ h21h
�3
2

� �
¼ @2W

@hi@hj

� �
, WðhÞ ¼ h21

4h2
� log

ffiffiffiffiffi
h2

p� 	
þ log

ffiffiffi
p

p

ð6Þ

dh
dt

¼ �G�1 @W
@h

)
dh1
dt
dh2
dt

 !
¼ � 1

2
h31h

�1
2

h21 � 2h2

 !
)

h1ðtÞ ¼ g1ð0Þ
g2ð0Þ � g1ð0Þ2e�t

h2ðtÞ ¼ 1

2 g2ð0Þe�t � g1ð0Þ2e�2t
� 	

8>>>><
>>>>:

ð7Þ
dH
dt

¼ 0 where H ¼ PQ ¼ h�1
1 þ 1

2
h1h

�1
2 ð8Þ

with P ¼ 2h2h
�1
1 ¼ E x½ ��1,Q ¼ 1

4 h
2
1h

�2
2 þ 1

2 h
�1
2 ¼ E x2½ �

dQ
dt

¼ � @H
@P

,
dP
dt

¼ @H
@Q

ð9Þ

Nakamura also made the link with the Lax pairs:

dL
dt

¼ L;D½ �; L½ � ð10Þ

L ¼ 1
2h1h2

2h2
ffiffiffiffiffiffiffi
2h2

p
h1ffiffiffiffiffiffiffi

2h2
p

h1 h21

� �
, D ¼ 1

2
0 0
0 h1

� �
ð11Þ
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Tr Lð Þ ¼ h�1
1 þ 1

2 h1h
�1
2 ¼ � @WðhÞ

@h2
@WðhÞ
@h1

� 	�1
¼ g2g

�1
1

dTr Lð Þ
dt ¼ Tr L;D½ �; L½ � ¼ 0

ð12Þ

Recently, Jean-Pierre Françoise has revisited this model and extended it to the Peakon
systems [18].

We make also reference to works of W.W. Symes [25], A. Thimm [30–32] and
others references on integrable systems [33, 35–37, 42, 43, 46, 48]

2 The Isospectral Deformation Method for Hermitian
Positive Definite Matrices

Integrable dynamical systems can be studied with the efficient isospectral deformation
method, originated in the work of P. Lax. These tools have been developed by Rus-
sian A.M. Perelomov [26–29, 44, 45] and applied for space of Positive Definite
Hermitian matrices of order 2, considering this space as an homogeneous space with
the group G ¼ SLð2;CÞ of complex 2 � 2 matrices that acts gxgþ ; g 2 G; x 2
x 2 GLð2Þ=xþ ¼ x; x[ 0f g transitively on it. For this space, the G-invariant metric

and geodesics are given by:
ds2 ¼ Trace x�1dxx�1dxþð Þ with geodesics equation

d
dt

x�1 dx
dt

þ dx
dt

x�1
� �

ð13Þ

One solution of this geodesics equation is:

xðtÞ ¼ be2atbþ ; b 2 SL 2;Cð Þ; aþ ¼ a; Trace að Þ ¼ 0 ð14Þ

But Perelomov has observed that Hermitian Positive Definite Matrices could be
expressed with respect to a unitary matrix uðtÞ:

xðtÞ ¼ uðtÞe2aQðtÞu�1ðtÞ ð15Þ

Given by the following relations:

x�1 dx
dt

þ dx
dt

x�1 ¼ 2auðtÞLðtÞu�1ðtÞ

with
LðtÞ ¼ Pþ i

4a
e�2aQðtÞMe2aQðtÞ � e2aQðtÞMe�2aQðtÞ
� 	

MðtÞ ¼ �u�1ðtÞ duðtÞ
dt

8>><
>>:

ð16Þ

By differentiating the previous equation with respect to time t, a Lax equation can
be deduced from an Hamiltonian H ¼ 1

2 m2 þ k2:sh�2ðnÞð Þ:

Koszul Information Geometry, Liouville-Mineur Integrable Systems 353



dL
dt

¼ M; L½ � with
L ¼ m k:cth nð Þ

k:cth nð Þ �m

� �

M ¼ k
2:sh2ðnÞ

0 1

�1 0

� �
8>>><
>>>:

ð17Þ

Similar construction have been studied by J. Moser in 1975 [34] for a system of n
particles with pair interaction and a potential given by vðnÞ ¼ k2:sh�2n [19–24].

Another system of coordinate could be also considered with an upper triangular
matrix wðtÞ with unit diagonal:

xðtÞ ¼ wðtÞe2QðtÞwþ ðtÞ with Q ¼ n 0
0 �n

� �
ð18Þ

We can then compute:

dx
dt

x�1 ¼ 2wðtÞLw�1ðtÞ with
L ¼ Pþ M

2
þ 1

2
e2QM þ e�2Q

M ¼ w�1ðtÞ dz
dt

8><
>: ð19Þ

By differentiation (19) with respect to time t and using the property that xðtÞ is a
geodesic, a new Lax equation appear:

dL
dt

¼ M; L½ � with
L ¼ m e2n

1 �m

� �

M ¼ 2
0 e2n

0 0

� �
8>>><
>>>:

ð20Þ

This Lax equation is associated to the equations of motion induced by the following
Hamiltonian

H ¼ 1
2

m2 þ e2n
 � ð21Þ

3 First Integrals Associated to Lax Pairs, Characteristic
Polynomial and Souriau Algorithm

In previous chapters, we have considered Lax Pairs equation dL
dt ¼ M;L½ �. This equation

is a powerful method to build first integrals of a Hamiltonian system in the framework of
integrable systems. Two matrices L ¼ LijðxÞ

 �
and M ¼ MijðxÞ

 �
are Lax pairs for a

dynamical system dx
dt ¼ f ðxÞ if for every solutions, the matrices the equation dL

dt ¼
M; L½ � ¼ LM �ML and the eigenvalues k1ðxÞ; � � � ; kmðxÞ of LðxÞ are integrals of motion
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for the dynamical system. Coefficients of the characteristic polynomial of the matrix
LðxÞ, det L� kIð Þ ¼ �1ð Þm km � a1ðxÞkm�1 þ a2ðxÞkm�2 þ � � � þ �1ð ÞmamðxÞ

 �
, are

polynomials in tr Lið Þ; i ¼ 1; :::;m:

a1 ¼ tr Lð Þ; a2 ¼ 1
2

tr Lð Þð Þ2�tr L2
 �h i

; a3 ¼ � � � ð22Þ

We can observe that tr Lið Þ; i ¼ 1; :::;m are first integrals of the dynamical system, due
to the consequence of:

d
dt
tr Lð Þ ¼ tr

dL
dt

� �
¼ tr ML� LMð Þ ¼ tr MLð Þ � tr LMð Þ ¼ 0 ð23Þ

d
dt
tr Li
 � ¼ itr Li�1 dL

dt

� �
¼ itr Li�1 L;M½ � � ¼ i tr Li�1ML� LiM

 � � ¼ 0 ð24Þ

As the coefficients of the characteristic polynomials LðxÞ are constants of motion, it
induces that its eigenvalues k1ðxÞ; � � � ; kmðxÞ are also constants of motion.

At this step, we make the link with a work of Souriau to compute characteristic
polynomial of a matrix, initially discovered by Urbain Jean Joseph Le Verrier in 1840,
and extended in 1948 by Jean-Marie Souriau [38–41]. By using the following relation:

vol adjðAÞAv1ð Þ v2ð Þ::: vnð Þ ¼ vol Av1ð Þ Av2ð Þ:: Avnð Þ ¼ det Að Þvol v1ð Þ v2ð Þ::: vnð Þ ð25Þ

If A is invertible, we recover classical equations:

adj Að ÞA ¼ det Að ÞI and A�1 ¼ det Að Þ½ ��1adj Að Þ ð26Þ

Using these formulas, we can try to invert kI � A½ � assuming that det kI � Að Þ 6¼ 0. If
we use previous determinant definition, we have:

det kI � Að Þvol v1ð Þ v2ð Þ::: vnð Þ ¼ vol kv1 � Av1ð Þ kv2 � Av2ð Þ::: kvn � Avnð Þ
= knvol v1ð Þ v2ð Þ::: vnð Þþ :::

ð27Þ

where det kI � Að Þ is the characteristic polynomial of A, a polynomial in k of degree n,
with:

adj kI � Að Þ kI � A½ � ¼ det kI � Að ÞI , A:Q kð Þ ¼ kQ kð Þ � P kð ÞI ð28Þ

(if k is an eigenvalue of A, the nonzero columns of Q kð Þ are corresponding eigen-
vectors). We can then observe that adj kI � Að Þ is a polynomial of degree n−1. We can
then define both P kð Þ and Q kð Þ by polynomials:
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P kð Þ ¼ det kI � Að Þ ¼
Xn
i¼0

kik
n�i and Q kð Þ ¼ adj kI � Að Þ ¼

Xn�1

i¼0

kn�i�1Bi ð29Þ

With k0 ¼ 1; kn ¼ �1ð Þndet Að Þ; B0 ¼ I; and Bn�1 ¼ �1ð Þn�1adj Að Þ ð30Þ

By developing equation adj kI � Að Þ kI � A½ � ¼ det kI � Að ÞI, we can write:

Xn
i¼0

kik
n�iI ¼

Xn�1

i¼0

kn�i�1Bi kI � A½ � ¼ kBn�1 þ
Xn�1

i¼1

kn�i Bi � Bi�1A½ � � Bn�1A ð31Þ

By identification term by term, we find the expression of matrices Bi:

B0 ¼ I

Bi ¼ Bi�1Aþ kiI , i ¼ 1; :::; n� 1

Bn�1Aþ knI ¼ 0

8>><
>>: ð32Þ

We can observe that A�1 ¼ � Bn�1
kn

and also the Cayley-Hamilton theorem:

k0An þ k1An�1 þ :::þ kn�1Aþ knI ¼ 0 ð33Þ

To go further, we have to use this classical result from analysis on differentiation given
by d det Gð Þ½ � ¼ tr adj Gð ÞdGð Þ. If we set G ¼ ðkI � AÞ and d ¼ d

dk, we then obtain
tr adj kI � Að Þð Þ ¼ d

dk det kI � Að Þ providing:

Xn�1

i¼0

kn�i�1tr Bið Þ ¼ d
dk

Xn
i¼0

kik
n�i

 !
¼
Xn�1

i¼0

ðn� iÞkikn�i�1 ð34Þ

We can then deduce that tr Bið Þ ¼ n� ið Þki , i ¼ 0; :::; n� 1.

As Bi ¼ Bi�1Aþ kiI; tr Bið Þ ¼ tr Bi�1Að Þþ n:ki and then ki ¼ � tr Bi�1Að Þ
i

ð35Þ

We finally obtain the Souriau Algorithm:

k0 ¼ 1 andB0 ¼ I

Ai ¼ Bi�1A, ki ¼ � 1
i
tr Aið Þ, i ¼ 1; :::; n� 1

Bi ¼ Ai þ kiI or Bi ¼ Bi�1A� 1
i
tr Bi�1Að ÞI

8>><
>>:
An ¼ Bn�1A and kn ¼ � 1

n tr Anð Þ

ð36Þ
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This Souriau algorithm for characteristic polynomial computation of a matrix is a new
way to address complete integral systems by mean of Lax pairs and to build first
integrals of a Hamiltonian system and especially in the case of Symplectic Geometry.
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Abstract. In order to study dynamics of flapping wing moving in ambi-
ent fluid, the geometric modeling approach of fully coupled fluid-solid
system is adopted, incorporating boundary integral method and time
integrator in Lie group setting. If the fluid is assumed to be inviscid
and incompressible, the configuration space of the fluid-solid system is
reduced by eliminating fluid variables via symplectic reduction. Conse-
quently, the equations of motion for the flapping wing are formulated
without explicitly incorporating fluid variables, while effect of the fluid
flow to the flapping wing overall dynamics is accounted for by the added
mass effect only (computed by the boundary integral functions of the
fluid density and the flow velocity potential). In order to describe addi-
tional viscous effects and include fluid vorticity and circulation in the
system dynamics, vortex shedding mechanism is incorporated by enforc-
ing Kutta conditions on the flapping wing sharp edges. In summary, pre-
sented approach exhibits significant computational advantages in com-
parison to the standard numerical procedures that - most commonly -
comprise inefficient discretization of the whole fluid domain. Most impor-
tantly, due to its ‘mid-fidelity’ computational efficiency, presented app-
roach allows to be embedded in the ‘automated’ optimization procedure
for the multi-criterial flapping wing flight design.

Keywords: Fluid-structure interaction · Flapping wing · Geometric
mechanics modeling

1 Introduction

Although designing of flapping wing vehicles (FWV) has reached certain level of
maturity, current design of FWV is still very much dependent on the experimen-
tal activities, not relying extensively on the computational models. Certainly, one
of the reasons for this is challenging modeling of the FWV flight physics (that
includes highly unsteady aerodynamics, wing-fluid interactions, high flapping
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frequency effects etc.), but also numerical inefficiency of the standard compu-
tational procedures, mostly based on the continuum discretization of the ambi-
ent fluid as well as on the loosely coupled co-simulation routines between solid
and fluid part of the system. Indeed, numerical inefficiency and time-consuming
characteristics of such ‘high-fidelity’ numerical methods restrict their utilization
mostly to case-by-case simulation campaigns, preventing their usage within the
effective optimization procedures that would allow for multicriterial design opti-
mization of FWV.

To this end, specially tailored reduced-order numerical models of the flap-
ping wing dynamics, that allow for numerically efficient simulation of the coupled
fluid-structure-interaction (FSI) phenomena pertinent for the FWV dynamics,
will be presented in this paper. The method is based on geometric modeling
approach of the fully coupled multibody-dynamics-fluid system (MBS-fluid sys-
tem), incorporating boundary integral method and time integrator in Lie group
setting.

By firstly assuming inviscid and incompressible fluid, the configuration space
of the MBS-fluid system is reduced by eliminating fluid variables via symplectic
reduction without compromising any accuracy. The reduction exploits ‘parti-
cle relabeling’ symmetry, associated with the conservation of circulation: fluid
kinetic energy, fluid Lagrangian and associated momentum map are invariant
with respect to this symmetry [1]. Additionally, in order to allow for model-
ing of flapping wing vorticity effects, the point vortex shedding and evolution
mechanism is incorporated in the fluid-structure dynamical model. The vortices
are assumed to be irrotational, and are being modeled by unsteady potential
flow method enforcing Kutta condition at sharp edges. By using the proposed
framework it is possible to include an arbitrary combination of smooth and
sharp-edged bodies in a coupled MBS-fluid system, as long as the major viscos-
ity effects of the fluid on the body can be described by shedding and evolution
of the irrotational point vortices. However, in this paper we will focus on the
coupled dynamics of a single flapping wing, moving in the ambient fluid at the
prescribed trajectory.

2 Reduced Fluid-Solid Interaction Model

We consider rigid flapping wing submerged in ideal fluid, which is at rest at the
infinity. In other words, at any time t, the system consisting of the rigid body
and the fluid occupies an open connected region M of the Euclidean space,
which we identify with R

3. More specifically, the rigid body occupies region B
and the fluid occupies a connected region F ⊂ M such that M can be written
as a disjoint union of open sets as M = B ∪ F . Configuration space Q of such a
system is the set of all appropriately smooth maps from M to M, where fluid
part Qf ∈ Diffvol (F) represents position field of the fluid particles. Diffvol (F)
is the set of volume preserving diffeomorphisms, possessing properties of the
Lie group. Body part QB, represents motion of the rigid body B ⊂ M with
boundary ∂B, meaning that the configuration space of a rigid body is modeled
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as Lie group G = R
3 × SO(3) with the elements of the form p = (x,R). G is a

Lie group of dimension n = 6. The left multiplication in the group is given as
Lp : G → G, p → p · p, where origin of the group G is given as e = (0, I). With
G so defined, its Lie algebra is given as g = R

3 × so(3) with the elements of
the form v = (v, ω̃), v being velocity of body mass center and ω̃ body angular
velocity in skew symmetric matrix form [10].

Moreover, the state space of the body is then S = G × g, i.e. S = R
3 ×

SO(3) × R
3 × so(3) ∼= TG with the elements x = (x,R,v, ω̃) [10]. S is the left-

trivialization of the tangent bundle TG. This is a Lie group itself that possesses
the Lie algebra S = R

3 × so(3) × R
3 × R

3 with the element z = (v, ω̃, v̇, ω̇).
If kinematical constraints are imposed on the system - meaning that flapping

wing is not unconstrained any more, but rheonomically driven along the specified
trajectory - it can be shown that wing coupled dynamics in fluid flow can be
expressed as differential-algebraic system of equations (DAE) formulated as [10][

M CT

C 0

] [
ż
λ

]
=

[
Q
ξ

]
, (1)

where M represents inertia matrix and Q is the force vector. Inertia matrix
M contains standard inertial properties of the rigid wing [10], supplemented by
added mass that the body perceives due to interaction with the fluid [8]. Due
to the coupling, added mass effect needs to be calculated via boundary element
method (BEM), taking into account changes in the body velocity and potential
flow velocity field, after symplectic reduction on Q is performed [9].

The force vector Q can be written as

Q = QKirchext + Qvort, (2)

where QKirchext represents (possible) general external forces and torques acting
on the wing according to the extended Kirchhoff equations [5], while Qvort rep-
resents additional forces and torques imposed on the system due to the flow
circulatory part, which are consistent with the system vortex shedding mecha-
nism. Modeling of the vortex shedding can be performed - for the example of the
flapping wing - by the unsteady vortex lattice method, which utilizes shedding of
an irrotational point vortex in each time step, such that the Kutta conditions are
satisfied at sharp edges (here, shedding only on the wing trailing edge is consid-
ered; for two edges vortex shedding, see [9]). Note that added mass momentum
rate of change should also be computed and introduced in (1) through the force
vector QKirchext , as well as standard Kirchhoff equations right hand side expres-
sions (external product of angular momentum and linear/angular velocity of the
body).

Other parts of the equation stem from the kinematical generalized position
constraint equation

Φ (q, t) = 0, (3)

which is differentiated twice to obtain a constraint equation at the acceleration
level

C (q) ż = ξ (q,z) ,
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where C represents constraint Jacobian, while λ is associated Lagrange multi-
plier vector, see [10]. The flapping wing trajectory can be represented by three
flapping angles, as illustrated in Fig. 1 and Fig. 2, where θ represents deviation
angle, η represents pitching angle, while φ represents stroking angle. It should
be noted that there is one to one correspodence between three flapping angles
θ, η, φ and wing orientation matrix R ∈ SO(3) in the flapping motion studied
here.

Fig. 1. Illustration of the flapping wing motion, described by three flapping angles.

Mathematical model of the coupled wing-fluid dynamics formulated as (1) is
basically governed by the rigid wing variables only i.e. fluid terms vanish from
the model, except for the vector Qvort.

Indeed, if vorticity effects are excluded from the analysis, it can be shown
that symplectic reduction at zero vorticity yields

J−1
F (0) /Diffvol (F) = T ∗ (Q/Diffvol (F)

)
= T ∗G, (4)

indicating that the whole dynamics of the system evolves in T ∗G (fluid variables
are reduced out) and fluid influence on the wing dynamics is governed by added
mass effect only [3]. In (4), JF is momentum map associated with the action
of Diffvol (F) on Q representing vorticity advection [11] that is conserved since
Lagrangian of the fluid [2] is invariant on Diffvol (F) (‘particle relabeling’ sym-
metry). However, if vorticity effects are to be introduced, it can be shown that
symplectic reduction, similar to the one introduced in (4), can also be performed
when vorticity level is not set to zero, but possesses certain value that equals to
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Fig. 2. Three dimensional illustration of the flapping wing motion, described by three
flapping angles.

the system circulation that is in consistence with the introduced vortex shedding
mechanism [6,12] (producing additional term Qvort in the motion equations (1)).

Similarly as it is shown in [10], Lie group integrator that operates in S can
be utilized to obtain system velocities z, while constraint violation stabilization
algorithm for constraint equation (3) needs to be simultaneously performed as
well as BEM procedure [9] for the added mass determination. After obtaining
system velocities, a reconstruction of the system translation is a trivial task,
while rotational part requires a non-linear (Lie group) update.

To this end, Munthe-Kaas based Lie group method [7,10] is utilized, where
kinematic reconstruction is performed by seeking an incremental rotation vector
θ in each time step by integrating ODE equation in Lie algebra

θ̇ = dexp−1
−θ (ω) , θ (0) = 0.

The wing rotation matrix in time step n + 1 is then reconstructed as

Rn+1 = Rn exp (θn+1) ,

where exp represents exponential mapping on SO (3) and dexp−1
−θ represents

inverse differential exponential operator (more details can be found in [10]).
As already mentioned, the added inertia occurring due to the interaction

of rigid wing with the fluid can be computed via BEM. The assumptions of
irrotational and incompressible flow lead to

u = ∇ψ , Δψ = 0, (5)

where u represents fluid velocity and ψ represents velocity potential.
On the other hand, kinetic energy of the surrounding fluid is equal to

TF =
1
2

∫
F

ρF |u|2 dV, (6)
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where ρF represents fluid density. After applying Green’s theorem and fluid
assumptions (5), the kinetic energy expression can be rewritten as

TF =
1
2
ρF

∫
F

∇ψ · ∇ψ dV =
1
2
ρF

∫
B

ψ∇ψ · nds, (7)

where n represents the unit normal pointing to the inside of the body. This leads
to integration over the surface of body, instead of the conventional integration
over the fluid domain. The values of ∇ψ · n at the body surface are defined
by the impenetrability boundary conditions, requiring that the fluid and body
velocities in normal direction at the body surface have to be equal, leading to
the following Neumann boundary conditions

∇ψ · n = v · n. (8)

The values of velocity potential ψ at the surface of the body can then be
computed by any boundary element method.

3 Viscosity Effects

Modeling of viscosity effects via irrotational point vortices (generating thus cir-
culatory flow part of the external force vector Qvort, as introduced in (2)) is
achieved by applying Kutta condition at the sharp trailing edge of thin airfoil,
enforcing physical meaningfulness of the velocities in the vicinity of the sharp
edge.

The circulatory flow field around moving body in an incompressible and
irrotational fluid flow can be obtained by using unsteady potential flow meth-
ods. Since these methods are based on the continuity equation, which does not
directly include unsteady terms, time dependency can be introduced through
changing boundary conditions: zero normal fluid velocity on the surface of the
body and Kelvin condition (which is direct consequence of the vorticity advec-
tion condition, i.e. Diffvol (F) invariance of the momentum map JF introduced
in (4)).

The wake behind the sharp edge of the body can be modeled by vortex
distribution, but vortex shedding occurs only if circulation of the body varies in
time. By applying Kutta condition for specifying shedding position of each wake
vortex, a solution in the form of the velocity field can be obtained, which can
be used to calculate pressure field around body by using the modified unsteady
Bernoulli equation

pinf − p

ρ
=

1
2

[(
∂Ψ

∂x

)2

+
(

∂Ψ

∂y

)2

+
(

∂Ψ

∂z

)2
]

− v · ∇Ψ +
∂Ψ

∂t
, (9)

where Ψ represents a fluid velocity potential, while v represents the body velocity.
The numerical solution used in this paper is based on 2D Unsteady Lumped-

Vortex Element Method described in [4]. In the chosen numerical example, geom-
etry of the thin airfoil is discretized with a set of vortex singularities placed along
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the airfoil chord. Vortices are also shed from the trailing edge (sharp edge) of
the airfoil when the circulation changes with time, which allows the wake to be
modeled by the same vortex model.

Each discretized airfoil subpanel has a vortex point placed at its quarter
chord and collocation point at its three-quarter chord, where the zero normal flow
boundary condition must be fulfilled. In order to find the solution of the problem,
in addition to the prescribed boundary conditions, the kinematic conditions need
to be known. In the tested numerical example, the kinematics is reconstructed
from the prescribed movement of the thin airfoil. At each time-step new lumped-
vortex element is shed from the trailing edge satisfying Kutta condition by being
placed along the chord behind the trailing edge at the 0.3 of the distance covered
by the trailing edge during previous time-step.

By solving a system consisting of vorticity influence coefficients and induced
normal velocity components, intensity of each panel vortex and last shed vortex
can be obtained. At the end of each time-step force free vortex wake rollup,
induced by the current flow field, needs to be updated. A snapshot of wake
vortices moving in fluid is shown in Fig. 3.

Fig. 3. Snapshot of wake vortices shed from the sharp trailing edge.

It is important to note that vorticity effects modeled as described in this
chapter are used only for formulating circulatory flow part of the vector Q in
(1), while the added mass effect introduced in M stays unchanged.

4 Concluding Remarks

The approach presented above enables modeling of the coupled wing-fluid sys-
tem by discretizing wing boundary, instead of a conventional discretization of
the whole fluid domain. When vorticity effects are not considered in the analysis
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(i.e. the wing moves in potential flow without circulation and no vorticies are
being modeled), the formulation results in a coupled wing-fluid system without
explicit fluid variables. In the case of flapping wing with circulation, which is
usually characterized by having both leading and trailing sharp edge, the fluid
variables are needed to describe vorticity effects (in the numerical example pre-
sented in this paper, however, only vortices shed from the trailing edge were
presented). However, these variables include only the position and strength of
each irrotational point vortex, excluding discretisation necessity of the whole
fluid domain. This leads to the significantly improved computational efficiency
when compared to conventional models and therefore this approach is well suited
for design optimization and optimal control problems, involving flapping wing
in the fluid flow.
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Abstract. The sheaf of solutions J∇ of the Hessian equation on a gauge
structure (M,∇) is a key ingredient for understanding important prop-
erties from the cohomological point of view. In this work, a canonical
representation of the group associated by Lie third’s theorem to the Lie
algebra formed by the sections of J∇ is introduced. On the foliation it
defines, a characterization of compact hyperbolic leaves is then obtained.

1 Introduction

Hyperbolicity is quite an important notion in geometry and can be tackled using
different approaches. In its original work [6], Koszul introduces the development
map Q to define hyperbolic manifold as those for which the image by Q of their
universal coverings is an open convex domain without straight line. In [7], a
cohomological characterization is given, stating that a necessary condition for
a gauge structure (M,∇) to be hyperbolic is the existence of a closed 1-form
admitting a positive definite covariant derivative. Finally, if (M, g,∇) is a gauge
structure on an Hessian manifold, then (M,∇) is hyperbolic iff [g] = 0 in Koszul-
Vinberg cohomology [1]. The aim of this paper is to study hyperbolicity of the
leaves of canonical foliations in statistical manifolds using representations in
the affine group of a finite dimensional vector space. The paper is organized as
follows: in Sect. 2, the Hessian equation on a gauge structure is introduced along
with some basic facts. In Sect. 3, the canonical group representation is defined,
from which a vanishing condition in cohomology is given in Theorem 32. Finally,
the case of statistical manifolds is treated in Sect. 4 and a characterization of
hyperbolic compact leaves is given.

2 Hessian Equation on Gauge Structures

Most of the material presented here can be found in greater detail in [1]. Only the
required notions will be introduce in this section. In the sequel, χ(M) stands for
c© Springer Nature Switzerland AG 2021
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the real Lie algebra of smooth vector fields on M . The convention of summation
on repeated indices will be used thorough the document.

Definition 21. A gauge structure is a couple (M,∇) where M is a smooth
manifold and ∇ a Koszul connection on TM .

For a given gauge structure, the Koszul-Vinberg complex is defined as follows:

Definition 22. Let Cq(∇), q ≥ 0 be the vector spaces:{
C0(∇) = {f ∈ C∞(M), ∇2f = 0}
Cq(∇) = HomR(⊗qχ(M), C∞(M))

and let δ : Cq(M) → Cq+1(M) be the coboundary operator:⎧⎪⎨
⎪⎩

δf = df ∀f ∈ C0(∇)
δf(X1 ⊗ ... ⊗ Xq+1) =Σq

1(−1)i[d(f(.. ⊗ X̂i ⊗ .. ⊗ Xq+1))(Xi)

− Σj �=if(.. ⊗ X̂i ⊗ .. ⊗ ∇Xi
Xj ⊗ ..]

The complex (C(∇), δ) is the Koszul-Vinberg complex of (M,∇), with cohomol-
ogy groups denoted by Hq

KV (∇).

Definition 23. An element g in H2
KV is called a Hessian (resp. Hessian non

degenerate, Hessian positive definite) class if it contains a symmetric (resp sym-
metric non degenerate, symmetric positive definite) cocycle.

A pair (M,∇) is locally flat if its curvature tensor vanishes. The next proposition
relates cohomology to a metric property. used thorough the document.

Proposition 21 ([8]). A locally flat manifold (M, g,∇) is Hessian in the sense
of [9] if δg vanishes identically.

The next theorem relates hyperbolicity to KV cohomology. used thorough the
document.

Theorem 24. Let (M, g,∇) be a compact Hessian manifold then the following
assertions are equivalent:

– [g] = 0 ∈ H2
KV (∇).

– (M,∇) is hyperbolic.

Definition 25. The Hessian operator ∇2 : χ(M) → T 1
2 (M) is, for a fixed Z ∈

χ(M), the covariant derivative of the T 1
1 (M)-tensor ∇Z. For any triple (X,Y,Z)

of vector fields, its expression is given by:

∇2
X,Y Z = ∇X(∇Y Z) − ∇∇XY Z.
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Proposition 22. The product (X,Y ) ∈ χ(M) �→ ∇XY has associator ∇2.

Proof. This a direct consequence of Definition 25, since:

∇2
X,Y Z = X.(Y.Z) − (X.Y ).Z

Let (x1, .., xm) be a system of local coordinate functions of M and let X ∈ X (M).
We set

∂i =
∂

∂xi
,

X =
∑

Xk∂k

∇∂i∂j = ΣkΓk
i.j

The principal of symbol of the Hessian differential operator can be expressed
as

(∇2X)(∂i, ∂j) = ΣkΩk
i,j∂k (2.1)

where

Ωl
ij =

∂2X l

∂xi∂xj
+ Γl

ik

∂Xk

∂xj
+ Γl

jk

∂Xk

∂xi
− Γk

ij

∂X l

∂xk

+
∂Γl

jk

∂xi
+ Γm

jkΓk
im − Γm

ij Γl
mk

(2.2)

Definition 26 ([2]). Let (M,∇) be a gauge structure. The sheaf of solutions of
its Hessian equation, denoted by J∇(M), is the sheaf of associative algebras:

U �→ {X ∈ χ(U), ∇2X = 0}

with product defined in Proposition 22.

The space of sections of J∇(M) will be denoted by J∇.

Proposition 23. The pair (J∇,∇) is an associative algebra with commutator
Lie algebra (J∇, [−,−]∇) where the bracket [X,Y ]∇ is:

[X,Y ]∇ = ∇XY − ∇Y X.

When ∇ has vanishing torsion, (M,∇) is said to be symmetric and the Lie
algebra (J∇, [−,−]∇) is obviously Lie subalgebra of the Lie algebra of vector
fields

(X (M), [−,−]);
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Proposition 24 ([2]). If (M,∇) is symmetric then the Lie subalgebra J∇ ⊂
X (M) is finite-dimensional over the field of real numbers.

The next proposition shows that J∇ may be trivial.

Proposition 25. Let (M, g) be a Riemannian manifold and let Ric be its Ricci
curvature tensor. Then J∇ ⊂ Ker(Ric)

Proof. Let (X,Y ) be a couple of vector fields and let ξ ∈ J∇. It comes:

R∇(Y,X)ξ = (∇2ξ)(X,Y ) − (∇2ξ)(Y,X). (2.3)

Taking the trace we deduce that:

Ric(X, ξ) = 0 (2.4)

Recalling that a Riemannian manifold (M, g) is called Einstein if:

Ric = λg

for some constant λ, the next proposition is a consequence of the previous result.

Corollary 21. If ∇LC is the Levi-Civita connection of an Einstein Riemannian
manifold, then J∇LC = {0}.

As an easy consequence of Lie’s third theorem, it comes:

Theorem 27. Up to a Lie group isomorphism, it exists a unique simply con-
nected Lie group G∇ whose Lie algebra is isomorphic to the Lie algebra J∇.

3 A Canonical Representation of G∇

Definition 31. W be a finite dimensional real vector space. Its group of affine
isomorphisms, denoted by Aff(W ), is defined as the semi-direct product:

Aff(W ) = GL(W ) � W

where W is by abuse of notation the group of translations of W .

There is a natural affine representation of the Lie algebra J∇ in itself as a vector
space:

J∇ 
 X → ρ(X) = (∇X ,X) ∈ gl(J∇) × J∇ = aff(J∇).

with affine action given by:

ρ(X).Y = ∇XY + X, ∀Y ∈ J∇.
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By virtue of the universal property of simply connected finite dimensional Lie
groups, there exist a unique continuous affine representation

γ ∈ G∇ → (f∇(γ), q∇(γ)) ∈ Aff(J∇).

Proposition 31. With the above notations, f∇ is a linear representation of G∇
in J∇ and q∇ is a J∇ valued 1-cocycle of f .

Proof. The couple (f, q) is a continuous homomorphism of the Lie group G∇ on
the Lie group Aff(J∇), thus, for any γ1, γ2 ∈ G∇:

(f(γ1).f(γ2), f(γ1)q(γ2) + q(γ1)) = (f(γ1.γ2), q(γ1.γ2)) .

The cohomology of the Lie group G∇ value in his Lie algebra J∇ is defined by
the complex [3–5]:

... → Cq(G∇, J∇) → Cq+1(G∇, J∇) → Cq+2(G∇, J∇) →
with differential operator D:

Dθ(γ1, ......, γq+1) = f∇(γ1).θ(γ2, ......., γq+1)

+
∑
i�q

(−1)iθ(.., γiγi+1, ...) + (−1)qθ(γ1, ...., γq)

The condition:
q∇(γ1.γ2) = f∇(γ1)q∇(γ2) + q∇(γ1)

∀γ1, γ2 ∈ G∇
is equivalent to q∇ ∈ Z1(G∇, J∇). The next definition thus makes sens: The
cohomology class [q∇] ∈ H1(G∇, J∇) is called the radiant class of the affine
representation (f, q). We are now in position to state one of the main results of
the article:

Theorem 32. The following statements are equivalent:

1. The affine action

G∇ � J∇ 
 (γ,X) → f∇(γ).X + q∇(γ) ∈ J∇

has a fixed point;

2. The cohomology class [q∇] vanishes;

3. The affine representation

G∇ 
 γ → (f∇(γ), q∇(γ) ∈ Aff(J∇)

is conjugated to the linear representation

G∇ 
 γ → f∇(γ) ∈ GL(J∇).
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Proof. Let us first show that (1) implies (2). Let −Y0 be a fixed point of the
affine action (f∇, q∇), then

f∇(γ)(−Y0) + q∇(γ) = −Y0, ∀γ ∈ G∇.

Therefore one has:

q∇(γ) = f∇(γ)(Y0) − Y0, ∀γ ∈ G∇.

So the cocycle q is exact. To prove that (2) implies (3), consider the affine
isomorphism (e, Y0). It is nothing but the translation by Y0

X → X + Y0;

We calculate
(e, Y0)(̇f∇(γ), q∇(γ))(̇e, Y0)−1 = (f∇(γ), 0∇)

where O∇ stands for the zero element of the vector space J∇. Finally, (3) implies
(1). This assertion means that there exists an affine isomorphism

J∇ 
 Y → L(Y ) + X0 ∈ J∇

such that

(L,X0)(̇f∇(γ), q∇(γ))(̇L,X0)−1 = (f∇(γ), 0∇), ∀γ ∈ G∇

The calculation of the left member yields the following identities:

(a) : Lḟ∇(γ)L̇ = f∇(γ) (3.1)

(b) : L(q∇(γ)) + X0 − [L(̇f∇(γ)L̇−1](X0) = 0∇. (3.2)

The identity (b) yields

q∇(γ) = f∇(γ)(L−1(X0)) − L−1(X0), ∀γ ∈ G∇.

Taking into account identity (a), we obtain:

q∇(γ) = f∇(γ)(X0) − X0, ∀γ ∈ G∇.

So the vector −X0 is a fixed point of the affine representation (f∇, q∇).

Definition 33. The affine representation (f∇, q∇) is called the canonical affine
representation of the gauge structure (M,∇).

Remark 1. When the infinitesimal action J∇ is integrable, the proposition above
is a key tool to relate the canonical affine representation of (M,∇) and the
hyperbolicity problem for the orbits of G∇.
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4 Application to Statistical Manifolds

Let (M, g,∇,∇∗) be a statistical manifold and ∇LC be its Levi-Civita connec-
tion. From now, we assume that either both (M,∇), (M,∇�) and (M,∇LC) are
geodesically complete or M is compact. Therefore J∇, J∇� and J∇LC are the
infinitesimal counterpart of the following locally effective differentiable dynami-
cal systems:

G∇ × M → M (4.1)
G∇� × M → M (4.2)
G∇LC × M → M (4.3)

Notation 41. F∇ is the foliation whose leaves are orbits of the Lie group G∇
and g∇ the restriction of g to F∇.

Theorem 42. Let (M, g,∇,∇�) be a compact statistical manifold. Then the
foliation F∇ (resp. F∇∗) is a Hessian foliation in (M, g,∇) (resp. (M, g,∇∗)).

Theorem 43. In a statistical manifold (M, g,∇,∇�) the following assertions
are equivalent:

1. [g∇] = 0 ∈ H2
KV (F∇).

2. [q∇� ] = 0 ∈ H1(G∇� , J∇�).

3. (f∇� , q∇�) has a fixed point.

4. (f∇� , q∇�) is affinely conjugated to its linear component f∇� .

Proof. According to Theorem 32, assertions (2), (3) and (4) are equivalent.
Therefore, it is sufficient to prove that assertions (1) and (2) are equivalent.

Let us demonstrate first that (1) implies (2).

Since the class [g∇] vanishes, it exist a de Rham closed differential 1-form θ such
that:

g∇(X,Y ) = −Xθ(Y ) + θ(∇XY ), ∀(X,Y ).

By the defining property of statistical manifolds, it comes:

Xg∇(Y,Z) = g∇(∇�
XY,Z) + g∇(Y,∇XZ), ∀(X,Y,Z).

Let H be the unique vector field satisfying:

θ(X) = g∇(H,X), ∀X.

Using once again the defining property of statistical manifolds, we get:

Xg∇(H,Y ) − g∇(∇�
XH,Y ) − g∇(H,∇XY ) = 0.
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Since left hand member is C∞(M)-multilinear we can assume that H ∈ J∇ and
we get the following identity

g∇(∇�
XH,Y ) = Xg∇(H,Y ) − g∇(H,∇XY ) = g∇(X,Y ), ∀(X,Y ) ⊂ X (M).

Thus one has:
∇�

X(−H) − X = 0∇, ∀X ∈ X (M).

So the −H is a fixed point of (f∇� , q∇�).

Let us demonstrate now that (2) implies (1).

Let us assume that (f∇� , q∇�) has a fixed point Y0 ∈ J∇� . Then:

f∇�(γ)(Y0) + q∇�(γ) = Y0, ∀γ ∈ G∇� .

To every X ∈ J∇� , we assign the one parameter subgroup

{Exp(tX), t ∈ R} ⊂ G∇� .

We have:
f∇�(Exp(tX))(Y0) + q∇�(Exp(tX)) = Y0, ∀t ∈ R.

Calculating the derivative at t = 0, one obtains:

∇�
XY0 + X = 0.

Finally:
Xg∇(Y0, Y ) = g∇(∇�

XY0, Y ) + g∇(Y0,∇XY )

Using ∇�
XY0 = −X,∀X, one obtains the following identity:

Xg∇(Y0, Y ) = −g∇(X,Y ) + g∇(Y0,∇XY ).

By putting θ(Y ) = −g∇(Y0, Y ), it comes:

g∇(X,Y ) = Xθ(Y ) − θ(∇XY ), ∀(X,Y )

Then one has [g∇] = 0 ∈ H2
KV (∇), concluding the proof.

Corollary 41. Let (M, g,∇,∇�) such that both J∇ and J∇� be integrable. We
assume that leaves of both F∇ and F∇� satisfy one among the assertions of
Theorem 43. Then every compact leaf of F∇ (resp. F∇�) is hyperbolic.

5 Conclusion and Future Works

The characterization of hyperbolicity given in Theorem 43 has an important
application in elucidating the structure of some statistical manifolds as statistical
models. In a future work, an explicit construction of an exponential family on
leaves of a statistical manifold will be given along with an application to the
classification of compact exponential models in dimension 4.
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Abstract. The global analysis deals with the algebraic topology (e.g.
the formalism of Spencer) and the Sternberg geometry (e.g. the formal-
ism of Guillemin-Sternberg) of differential equations and their formal
solutions. An immediate constant is the impacts of the global analysis
on the quantitative global differential geometry. In this area the ques-
tion of the existence of certain geometric structures is still open for lack
of creteria of the integrability of the equations which define them. The
purpose of this talk is to survey recent advances on some of these open
questions. These advances basically concern the geometry of Koszul and
the symplectic geometry. The methods of the information geometry have
inspired the introduction of new numerical invariants and new homologi-
cal invariants. These new invariants have informed innovative approaches
to those old open problems.

1 Notation and Basic Notions

Throughout this talk the following notation is used.
Z is the ring of integers.
R is the field of real numbers.
C is the field of complex numbers.
Topological spaces are assumed to be connected, Hausdorff and paracompact.
A pair (x,X) is formed of a differentiable manifold X and x ∈ X.

1.1 Differential Structure, Versus Parameterization

Definition 11. Given a pair (x,X) and a non negative integer n, an n-
dimensional parameterization at x is a local homeomorphism of (O,Rn) in
(x,X)♣.
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1.2 C∞ Relation

Definition 12. Two n-dimensional parameterizations at x, namely φ and φ�

are C∞-related if φ−1 ◦ φ� is a local C∞ diffeomorphism of (O,Rn)♣

Definition 13. An n-dimensional parameterization of X is a datum

P(X) = ∪x∈XPx(X)

where Px(M) is a family of n-dimensional parameterizations at x which are
pairwise C∞ related ♣.

Given a n-dimensional parameterization P(X) and x ∈ X, an n-dimensional
parameterization at x φ is C∞ related with P(X) if

P(X) ∪ {φ}

is an C∞ parameterization of X.

This yields the notion of maximal C∞ n-dimensional parameterization of X.
More precisely, a C∞ n-dimensional parameterization of X, P(X) is called max-
imal (or complete) if for all x ∈ X every n-dimensional parameterization at x
which is C∞ related with P(X) belongs to P(X).

Definition 14. A set E is called a torsor for a group G if G acts simply tran-
sitively on E♣.

Definition 15. A maximal n-dimensional C∞ parameterization

P(X) = ∪xPx(X)

is geometrically closed if it satisfies the following requirements:

(1) Px(X) is a torsor of a subgroup G(x) of local C∞ diffeomorphisms of (0,Rn).
(2) G(x) = G(x�) ∀(x, x�) ⊂ X.

Definition 16. Put G = G(x), the couple (X,P(M)) is called a C∞ G-structure
in X♣.

Henceforth differentiable always means of class C∞.

1.3 Geometric Structure, Versus Topology of Fibrations

The Notion of k-jet, Functional Version. The set of all differentiable map-
pings of Rn in itself is denoted by C∞(Rn,Rn).
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Given (f, F ) ∈ C∞(Rn) × C∞(Rn,Rn) the mapping f.F is defined as

f.F (y) = f(f(y))F (y)).

Thus the vector space C∞(Rn,Rn) is a left algebra of C∞(Rn) whose addition
is defined as

(F + F∗)(y) = F (y) + F ∗ (y);

and the product is defined as

(F ◦ F∗)(y) = F (F ∗ (y)).

Let I0(Rn) ⊂ C∞(Rn) be the ideal formed of functions which vanish at 0 ∈ R
n.

For every non negative integer k, one consider the quotient vector space

(NJ) : Jk
0 (Rn) =

C∞(Rn,Rn)
Ik+1
0 (Rn).C∞(Rn,Rn)

.

This quotient vector space is called the space of k-jets of differentiable mappings
of Rn in itself. The canonical projection of C∞(Rn,Rn) on Jk

0 (Rn) is denoted
by jk

0 .

Given a subgroup G ⊂ Diff(O,Rn) and a differentiable geometrically complete
G-structure (X,P(X)), one defines

J1
0Px(X) = {dφ(0) : Rn → TxX, ∀φ ∈ Px(X)} ,

J1
0P(X) = ∪x∈XJ1

0Px(X)

and
G = {dγ(0), ∀γ ∈ G} .

Of course one has
G = j10(G).

It is clear that J1
0Px(X) is a torsor for the linear group G.

The Notion of Jet, Calculus Version. By the abuse of notation the k-th
Taylor expansion at 0 of φ ∈ Px(X) is denoted by jk

0φ. Thus we set

Jk
0 Px(X) =

{
jk
0φ : Rn → TxX, φ ∈ Px(X)

}
;

Gk =
{
jk
0γ, γ ∈ G}

.

As said above jk
0φ stands for the Taylor expansion of φ up to order k; it is a

polynomial isomorphism of Rn in TxX.

At the level k, for all x ∈ X Jk
0 P(x) is a torsor for the group Gk.

Put
JkP(X) = ∪x∈X

{
Jk
0 Px(X)

}
.
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Definition 17. Elements of JkP(X) are called k − th order frames of X.

It is easy to check that JkP(X) is a principal Gk-bundle over X.

1.4 Geometric Structure Versus Global Analysis: Equations of
(X,P(X))

It is easy to see that elements of P(X) are solutions of the following differential
equation

E : j10(φ−1 ◦ φ�) ∈ G.

Roughly speaking E is the equation of the G-structure (X,P(X)).

A Few Examples. (1) If G is the orthogonal group O(n) then the structure
(X,P(X)) is a flat Riemannian structure in X.
(2) If G is the linear symplectic group then (X,P(X)) is a symplectic structure
in X.
(3) If G is the real representation in GL(2m,R) of the complex linear group
GL(m,C) then (X,P(X)) is a complex analytic structure in X. According to
Jean-Pierre Serre that is the same as a structure of complex algebraic variety,
see GAGA.

Regarding the notions just mentioned, the aim is to introduce non specialists to
two of the classical approaches to the quantitative global differential geometry,
viz the theory of Geometric structures.

Let us focus on the viewpoint of the global analysis which is regarded as
the study of Geometry and Topology of Differential Equations and of
their Formal Solutions.

1.5 Structured Foliations

Definition 18. A structured foliation is a foliation whose leaves carry (uni-
formly) a prescribed mathematical structure S, i.e. S-foliation ♣.

Examples. (1) The Euclidean space R
3 is regarded as the Cartesian as

R
3 = ∪y∈R {y} × C.

Thus it carries a foliation whose leaves are Kaehlerian manifolds.
(2) Let ω be a nongenerate differential 2-form in a manifold M. Then the
couple

(TM,ω) = ∪x∈M (TxM,ω(x)).
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Thus TM carries a foliation whose leaves are symplectic vector spaces.
Generically a differentiable manifolds is (rich in) foliations. The reasons is the
richness in statistical structures. For instance, in a differential manifold M every
couple (E, g) formed of a Riemannian metric tensor g whose Levi Civita con-
nection is ∇LC , and a vector field E defines the statistical structure (M, g,∇E)
where the connection ∇E is defined as

∇E
XY = ∇LC

X Y + g(X,E)g(Y,E)E.

The question of whether a manifold M admits a S foliation is denoted by
EXF (S > M), see [Nguiffo Boyom (1)], and [Nguiffo Boyom (2)]. The prob-
lem EX(S > M) is among the difficult problems in the differential topology, see
Ghys.

1.6 Open Problems

A fundamental qualitative-quantitative question in the global analy-
sis is the question of whether a given manifold M admits a prescribed
Geometric structure S. This problem is denoted by EX(S>M).
From the viewpoint of the applied information geometry, the question is whether
a given complex system (or given Big Data) admits a prescribed geometry struc-
ture or a prescribed topological structure.

(1) A fundamental problem in the structured differential topology is
the question of whether a manifold M admits a structured S-foliation.

(2) WARNING. The existence of structured foliations is highly relevant in the
Applied Information Geometry. In an abstract situation, (viz in discrete topol-
ogy,) Pool Samples are nothing but Leaves of Coarse Foliations.
Therefore from the machine learning viewpoint the question is whether given
poll samples can be regarded a Discretization of a Prescribed structured folia-
tion.

2 Relevant Geometric Structures Which Impact the
Information Geometry

In the precedent section two fundamental problems are raised.
The first problem is a question in the quantitative global analysis; the ques-

tion of existence.
The second problem is a question in the qualitative differential topology.
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Up to nowadays these problems are still open if S is one of the structures
which are listed below.

Locally flat structure in a manifold M
[Benzecri, Goldman, Koszul, Vinberg, Auslander, Sullivan-Thurston, Milnor,
Margulis and others].

Smplectic structure in a manifold M
[Weinstein, Libermann-Marle, Lichnerowicz, Gompf, Hajduk, Banyaga and oth-
ers].

Almost complex structure in a manifold M
[Bryant, Gromov and others].

Hessian structure in a Riemannian manifold (M, g)
[Koszul, Vinberg, Matsushima, Guts, Amari-Armonstrong and others ].

Hessian structure in a locally flat manifold (M,∇)
[Kaup, Vey, Vinberg, Shima and others].

Left invariant locally flat structure in a finite dimensional Lie G
[Goldman, Milnor, Matsushima, Katsumi, Fired-Goldman-Hirsh and others ].

Left invariant symplectic structure in a finite dimensional Lie group
G
[Lichnerowicz, Arnold, Marsden-Weinstein and others ].

Left invariant Hessian structure in a finite dimensional Lie group G
[Matsushima, Katsumi and others ].

Two-sided invariant Riemannian structure in a finite dimensional Lie
Group G
[Ghanam-Hondeleh-Thompson and others ].

Structured foliations in a finite dimensional manifolds
[Molino, Reihnardt, Ghys and others].
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3 The Aim of the Talk

The present talk is devoted to survey recent advances on these issues.

3.1 Long-Awaited Characteristic Obstructions

Concerning the conceptual tools which are mentioned in the list above, it is
useful to underline that their use guarantees the relevance of choice of models
and ad hoc algorithms.

Definition 31. A characteristic obstruction is an invariant which gives a nec-
essary and sufficient condition.

Regarding the open problems listed in the latter subsection above, two families
of long time expected geometric invariants are introduced.

(1) The first family is formed of new numerical geometric invariants.

(2) The second family is formed of new homological invariants.

Regarding the notion of structured foliation the new numerical invariants are
interpreted as codimensions of optimal structured foliations.

By the way these new invariants yield the complete solutions of the fundamental
question raised in the structured differential topology:

How to Construct all Riemannian foliations, (Etienne Ghys).

The new homological invariants and new numerical invariants have the mathe-
matical meaning of being characteristic obstructions to solve these quantitative
open problems

Ideas of Constructions of New Invariants. To introduce new powerful
invariants our arsenal is the category of triples (M, g,∇) formed of a (pseudo)
Riemannian structure (M, g) and a gauge structure (M,∇). Below is the sketch
of our strategy.

With a triple (M, g,∇) is associated the following data:
(D1) the Koszul connection ∇� defined by

g(∇�
XY,Z) = Xg(Y,Z) − g(Y,∇XZ);
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(D2) the T 2
1 (M)-valued first order differential operator defined in T �M ⊗ TM

as it follows,
D∇,gφ = ∇� ⊗ φ − φ ⊗ ∇.

More explicitly given two vector fields X and Y one has

D∇,gφ(X,Y ) = ∇�
Xφ(Y ) − φ(∇XY ).

The sheaf of ∇-invariant differential 2-forms is denoted by Ω∇
2 (M); the sheaf

of ∇-invariant symmetric 2-forms is denoted by S∇
2 (M). What we call gauge

equation is the differential equation

D∇,gφ = 0.

The sheaf of solutions of the gauge equation is denoted by J∇,g(M). The con-
structions of new numerical invariants and new homological invariants involve
the following (splitting) short exact sequences of sheaves,

0 → Ω∇
2 (M) → J∇,g(M) → S∇

2 (M) → 0.

Every section of J∇,g(M) gives rise to two other sections of J∇,g(M), Φ and
Φ�. At one side interests are carried by the following family of numerical invari-
ants

sB(∇, g) = rank(Ker(Φ)),

s�B(∇, g) = rank(Ker(Φ�)).

At another side A�(∇, g) is the Lie subalgebra of vector fields which is spanned
by the sections of the distribution Ker(Φ�).
Then other interests are carried by the family of canonical Koszul classes

[k∞(∇, g)] ∈ H1
CE(A�(∇, g), T 2

1 (M))

which represented by any Chevalley-Eilenberg cocycle defined as

A�(∇, g) � ξ → LξD ∈ T 2
1 (M)

where D is an arbitrary Koszul connection in TM and LξD is the Lie derivative
of D is the direction ξ.

Details of these constructions will appear elsewhere, [Nguiffo Boyom
(2)].
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Abstract. We present some inequalities for curvatures and some appli-
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1 Introduction

The paper deals with statistical structures treated from a purely geometri-
cal viewpoint. By a statistical manifold we mean a differentiable manifold M
equipped with a positive-definite metric tensor g and a torsion-free connection
∇ for which (∇Xg)(Y,Z) is symmetric for X and Y . For such a structure many
geometrical objects can be studied. Of course, the geometry of the metric tensor
field g must be in use. But the objects relating the metric g and the connection
∇ are the most important. First of all we have the cubic form A = −1/2∇g
and the Czebyshev form τ defined as τ(X) = tr gA(X, ·, ·). In this paper we
put the emphasis on the two objects. Even if the statistical connection is very
special, for instance flat – as in the case of Hessian structures, the cubic form
and the Czebyshev form may have various properties which influence even the
geometry of the metric g. One can study such properties and quantities like:
‖τ‖, ∇̂τ = 0, ∇̂2τ = 0, τ is harmonic, ‖A‖, ∇̂A = 0, ‖∇̂A‖, ‖∇̂2 A‖, where ∇̂ is
the Levi-Civita connection for g.

We shall first briefly collect known facts concerning curvature tensors appear-
ing in statistical geometry and needed in this paper. Then we present some new
inequalities and their interpretation in the context of the geometry of curvatures.

We shall consider the following Simons’ formula

1
2
Δ(‖s‖2) = g(Δs, s) + ‖∇̂s‖2. (1)

This formula can be applied, for instance, to the cubic form or to the Czeby-
shev form of a statistical structure. This gives, in particular, some theorems
concerning curvatures for various types of conjugate symmetric statistical struc-
tures. Using Yau’s maximum principle and inequalities derived from the Simons
c© Springer Nature Switzerland AG 2021
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formula one can prove global theorems for trace-free statistical structures of
constant curvature and with complete metric.

The notion of a statistical structure of constant curvature was introduced
by Kurose in [2]. Such structures can be locally realized on equiaffine spheres,
so one can say that they belong to affine geometry of hypersurfaces (even for
global results one can usually go to the universal cover). But it is worth to
understand their properties in the framework of abstract statistical manifolds.
Firstly, because the specific apparatus of the geometry of hypersurfaces is often
too much for the considerations, secondly, the affine geometry of hypersurfaces
is very well developed for Blaschke (i.e. trace-free) affine hypersurfaces and not
so much for equiaffine hypersurfaces, including equiaffine spheres, and, finally,
the equiaffine hypersurfaces form a very thin subset in the category of statistical
manifold and treating specific statistical structures from the viewpoint of general
statistical structures gives a better point of reference for possible generalizations
within the category of all statistical manifolds.

The paper does not contain proofs of the presented results. All details con-
cerning this paper can be found in [10].

2 Preliminaries

A statistical structure on a differentiable manifold M is a pair (g,∇), where g
is a positive-definite metric tensor and ∇ is a torsion-free connection on M such
that the cubic form ∇g(X,Y,Z) = (∇Xg)(Y,Z) is symmetric. The difference
tensor defined by

K(X,Y ) = KXY = ∇XY − ∇̂XY (2)

is symmetric and symmetric relative to g. It is clear that a statistical structure
can be also defined as a pair (g,K), where K is a symmetric and symmetric
relative to g (1, 2)-tensor field. Namely, the connection ∇ is defined by (2).
Alternatively, instead of K one can use the symmetric cubic form A(X,Y,Z) =
g(K(X,Y )Z). The relation between the cubic forms ∇g and A is the following
∇g = −2A.

A statistical structure is called trace-free if tr gK = 0. Having a metric tensor
g and a connection ∇ on a manifold M one defines a conjugate connection ∇ by
the formula

g(∇XY,Z) + g(Y,∇XZ) = Xg(Y,Z). (3)

A pair (g,∇) is a statistical structure if and only if (g,∇) is. The pairs are
also simultaneously trace-free because if K is the difference tensor for (g,∇),
then −K is the difference tensor for ∇. A statistical structure is called trivial,
if ∇ = ∇̂, that is, K = 0.

The curvature tensors for ∇, ∇, ∇̂ will be denoted by R, R and R̂ respec-
tively. The corresponding Ricci tensors will be denoted by Ric , Ric and ̂Ric . In
general, the curvature tensor R does not satisfy the equality g(R(X,Y )Z,W ) =
−g(R(X,Y )W,Z). It it does, we say that a statistical structure is conjugate
symmetric. For a statistical structure we always have

g(R(X,Y )Z,W ) = −g(R(X,Y )W,Z). (4)
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It is known that the following conditions are equivalent:

1) R = R,
2) ∇̂K is symmetric (equiv. ∇̂A is symmetric),
3) g(R(X,Y )Z,W ) is skew-symmetric relative to Z,W .

Each of the above three conditions characterizes a conjugate symmetric sta-
tistical structure. The following formula holds

R + R = 2R̂ + 2[K,K], (5)

where [K,K] is a (1, 3)-tensor field defined as [K,K](X,Y )Z = [KX ,KY ]Z. In
particular, if R = R, then

R = R̂ + [K,K]. (6)

The (1, 3)-tensor field [K,K] is a curvature tensor, that is, it satisfies the
first Bianchi identity and has the same symmetries as the Riemannian curvature
tensor. In [7] the following equality was proved

tr {X → [K,K](X,Y )Z} = τ(K(Y,Z)) − g(KY ,KZ), (7)

where τ is the Czebyshev 1-form defined as τ(X) = tr KX = g(E,X).
The 1-form τ is closed (i.e. ∇̂τ is symmetric) if and only if the Ricci tensor Ric

is symmetric. For a conjugate symmetric statistical structure the Ricci tensor is
symmetric. More generally, if for a statistical structure Ric = Ric , then dτ = 0.
We have

Ric + Ric = 2̂Ric + 2τ ◦ K − 2g(K·,K·). (8)

Therefore, if (g,∇) is trace-free, then

2̂Ric ≥ Ric + Ric . (9)

For any statistical structure we have the Riemannian scalar curvature ρ̂ for g
and the scalar curvature ρ for ∇: ρ = tr gRic . The following important relation
holds

ρ̂ = ρ + ‖K‖2 − ‖E‖2. (10)

Recall now some sectional curvatures of statistical structures. Of course, we
have the usual Riemannian sectional curvature for the metric tensor g. We shall
denote it by k̂(π) for a vector plane π in a tangent space. In [7] another sectional
curvature was introduced. It was called the sectional ∇-curvature. Namely, the
tensor field R + R has all algebraic properties needed to produce the sectional
curvature. The sectional ∇-curvature is defined as follows

k(π) =
1
2
g((R + R)(e1, e2)e2, e1), (11)

where e1, e2 is an orthonormal basis of π. But, in general, this sectional curva-
ture does not have the same properties as the Riemannian sectional curvature.
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For instance, Schur’s lemma does not hold, in general. But it holds for conjugate
symmetric statistical structures. Another good curvature tensor, which we have
in statistical geometry is [K,K]. It also allows to produce a sectional curvature,
see [8].

A statistical structure is called Hessian if ∇ is flat, that is, if R = 0. Since
Ric = 0 for a Hessian structure and ∇ is torsion-free, we have that the Koszul
form ∇τ is symmetric. A Hessian structure is called Einstein-Hessian if ∇τ = λg,
see [11]. For a Hessian structure we have

β = ∇̂τ − τ ◦ K, tr gβ = δτ − ‖τ‖2, (12)

where δ denotes the codifferential relative to g, i.e. δ = tr g∇̂τ . By (8) we also
have

̂Ric = g(K·,K·) − τ ◦ K (13)

A statistical structure is said to have constant curvature k if

R(X,Y )Z = k{g(Y,Z)X − g(X,Z)Y } (14)

for some constant number k, see [2]. From a local viewpoint statistical mani-
folds of constant curvature are nothing but equiaffine spheres in the affine space
Rn+1. Statistical structures of constant curvature are clearly conjugate symmet-
ric and have constant sectional ∇-curvature. Conversely, if a statistical structure
is conjugate symmetric and has constant sectional ∇-curvature, then it has con-
stant curvature in the sense of (14). Let R0(X,Y )Z = g(Y,Z)X − g(X,Z)Y . If
a statistical structure has constant curvature k, then R = kR0. If a statistical
structure on a 2-dimensional manifold is conjugate symmetric, then R = kR0

and k may be a function.

3 Algebraic and Curvature Inequalities

In this section two algebraic inequalities for statistical structures are presented.
Some applications are mentioned. All details can be found in [10].

Theorem 1. For every statistical structure we have

(τ ◦ K)(U,U) − g(KU ,KU ) ≤ 1
4
‖τ‖2g(U,U) (15)

for every vector U . If U �= 0, the equality holds if and only if τ = 0 and KU = 0.

As a consequence of the above inequality and (8) we get the following gen-
eralization of (9)

Theorem 2. For any statistical structure we have

2̂Ric ≥ Ric + Ric − 1
2
‖τ‖2g. (16)
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For a statistical structure with constant curvature k we have

̂Ric ≥
(

k(n − 1) − 1
4
‖τ‖2

)

g. (17)

For a Hessian structure the following inequality holds

̂Ric ≥ −1
4
‖τ‖2g. (18)

Theorem 3. For any statistical structure we have

n + 2
3

‖A‖2 − ‖E‖2 ≥ 0. (19)

Using this theorem, (10) and other formulas from Sect. 2 we get

Theorem 4. For any statistical structure we have

ρ̂ − ρ = ‖A‖2 − ‖E‖2 ≥ −n − 1
3

‖A‖2, (20)

ρ̂ − ρ = ‖A‖2 − ‖E‖2 ≥ −n − 1
n + 2

‖E‖2. (21)

For a statistical structure with constant sectional curvature k we have

ρ̂ ≥ n − 1
n + 2

(

kn(n + 2) − ‖E‖2) , (22)

ρ̂ ≥ n − 1
3

(

3kn − ‖A‖2) . (23)

In particular, for a Hessian structure we have

ρ̂ ≥ −n − 1
n + 2

‖E‖2, (24)

ρ̂ ≥ −n − 1
3

‖A‖2. (25)

4 Simons’ Formula

For any tensor field s of type (0, r) on a manifold M the following Simons’
formula holds

1
2
Δ(‖s‖2) = g(Δs, s) + ‖∇̂s‖2, (26)

where the Laplacian on the left hand side is the Hodge one and the Laplacian
on the right hand side is defined as follows

(Δs)(X1, ...,Xr) =
n

∑

i=1

(∇̂2s)(ei, ei,X1, ...,Xr), (27)
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where e1, ..., en is an orthonormal basis of a tangent space TxM for x ∈ M .
If τ is a 1-form on M , then by the Ricci identity we have

(∇̂2τ)(X,Y,Z) − (∇̂2τ)(Y,X,Z) = −τ(R̂(X,Y )Z). (28)

Hence we have

Proposition 1. If ∇̂2τ is a symmetric cubic form, then im R̂ ⊂ ker τ . In par-
ticular ̂Ric (X,E) = 0 for every X. If ̂Ric is non-degenerate, then τ = 0.

By (28) we obtain
∑

i

(∇̂2τ)(ei, ei,X) = (dδτ + δdτ)(X) + ̂Ric (X,E), (29)

Simons’ formula (26) now yields the following classical Bochner’s formula

1
2
Δ(‖τ‖2) = g((dδ + δd)τ, τ) + ̂Ric (E,E) + ‖∇̂τ‖2. (30)

Using the above facts one can prove

Theorem 5. Let τ be a 1-form such that ∇̂2τ = 0. Then τ is harmonic and
̂Ric (X,E) = 0 for every X.
If, additionally, M is compact, or ‖τ‖ is constant, then ∇̂τ = 0. If ̂Ric is non-
degenerate at a point of M , then τ = 0.

Applying this theorem to the Czebyshev form we get

Corollary 1. Let (g,∇) be a statistical structure on a manifold M and τ its
Czebyshev form. Assume that ∇̂2τ = 0, ‖τ‖ is constant or M is compact and,
moreover, the Ricci tensor of the metric g is non-degenerate at a point of M .
Then the structure is trace-free.

We now interpret the Simons formula for the statistical cubic form A. By
computing the right hand side of (26) in various ways we obtain, see [10],

Theorem 6. For any conjugate symmetric statistical structure we have

1
2
Δ(‖A‖2) = ‖∇̂A‖2 + g(∇̂2τ,A) − g([K,K], R̂) + g(̂Ric , g(K·,K·)), (31)

1
2
Δ(‖A‖2) = ‖∇̂A‖2 + g(∇̂2τ,A) + g(R̂ − R, R̂) + g(̂Ric , g(K·,K·)), (32)

1
2Δ(‖A‖2) = ‖∇̂A‖2 + g(∇̂2τ,A)

+ R̂2 + ̂Ric
2 − g(R, R̂) − g(Ric , ̂Ric )

+ g(̂Ric , τ ◦ K).
(33)

If we assume that the curvature tensors have special properties, some terms
in the above formulas can be simplified. As a result, one gets
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Theorem 7. Let (g,∇) be a statistical structure of constant curvature k and
k ≤ 0. If ∇̂τ = 0, ̂Ric ≥ 0 and ρ̂ is constant, then R̂ = 0 and ∇̂A = 0.

Theorem 8. Let (g,∇) be a conjugate symmetric statistical structure on a com-
pact manifold M . If the sectional ∇-curvature is constant non-positive, ̂Ric ≥ 0
and ∇̂2τ = 0, then R̂ = 0 and ∇̂A = 0.

Proposition 2. Let (M, g,∇) be a conjugate symmetric statistical manifold
such that ∇̂2τ = 0, R̂ = 0 and ‖A‖ is constant (or M is compact). Then ∇̂A = 0.

Proposition 3. For a Hessian structure (g,A) if ∇̂A = 0 and ̂Ric ≥ 0, then
R̂ = 0.

We shall now consider the function u = ‖A‖2. The following inequalities were
proved by Blaschke, Calabi and An-Min Li for Blaschke affine hypersurfaces. We
formulate them in the language of statistical structures.

Theorem 9. Let (g,∇) be a trace-free statistical structure on an n-dimensional
manifold M and R = kR0. We have

(n + 1)ku +
n + 1

n(n − 1)
u2 + ‖∇̂A‖2 ≤ 1

2
Δu ≤ (n + 1)ku +

3
2
u2 + ‖∇̂A‖2. (34)

If n = 2, the equalities hold.

As an immediate consequence of this theorem we have

Corollary 2. Let (g,∇) be a trace-free statistical structure on an n-dimensional
manifold M and R = kR0. Assume that ∇̂A = 0 on M .
If k ≥ 0, then A = 0 on M .
If k < 0, then either A = 0 on M or

2
3
(n + 1)(−k) ≤ u ≤ n(n − 1)(−k). (35)

If n = 2 and supk = 0, then A = 0.

For treating the case, where g is complete one can use the following maximum
principle

Lemma 1 [12]. Let (M, g) be a complete Riemannian manifold, whose Ricci
tensor is bounded from below and let f be a C2-function bounded from above on
M . For every ε > 0 there exists a point x ∈ M at which

i) f(x) > supf − ε
ii) Δf(x) < ε.

The following theorem and its generalizations can be found in [1,5,9].
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Theorem 10. Let (g,∇) be a trace-free statistical structure with R = kR0 and
complete g on a manifold M . If k ≥ 0, then the structure is trivial. If k is
constant and negative, then the Ricci tensor of g is non-positive and consequently

u ≤ n(n − 1)(−k). (36)

More delicate estimations can be established. Namely, the term ‖∇̂A‖2 in (34) is
usually seen as just nonnegative. However, we can also take into considerations
inf ‖∇̂A‖2 or sup‖∇̂A‖2. Using (34) and the maximum principle one can prove,
for example, see [10],

Theorem 11. Let (g,∇) be a trace-free statistical structure on an n-
dimensional manifold M and R = kR0, where k is a negative constant. If g
is complete and

sup ‖∇̂A‖2 <
k2(n + 1)2

6
, (37)

then

inf u ≥ (n + 1)(−k) +
√

(n + 1)2k2 − 6N2

3
, (38)

or

inf u ≤ (n + 1)(−k) − √

(n + 1)2k2 − 6N2

3
, (39)

where u = ‖A‖2 and N2 = sup‖∇̂A‖2.
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Abstract. In this paper, a condition for harmonicity of conformally-
projectively equivalent statistical manifolds is given. Then, the conformal
statistical submersion is introduced which is a generalization of the sta-
tistical submersion and prove that harmonicity and conformality cannot
coexist.
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1 Introduction

The motivation to study harmonic maps comes from the applications of Rie-
mannian submersion in theoretical physics [7]. Harmonic maps formulation of
field theories lead to a geometrical description in the unified field theory pro-
gram. Presently, we see an increasing interest in harmonic maps between sta-
tistical manifolds [8,9]. In [9], Keiko Uohashi studied harmonic maps related to
α-connections on statistical manifolds. He obtained a condition for the harmonic-
ity on α-conformally equivalent statistical manifolds. In this paper, we study the
harmonicity of conformally-projectively equivalent statistical manifolds. Also,
we introduce the conformal statistical submersion which is a generalization of
the statistical submersion and studies the harmonicity of a conformal statistical
submersion.

In Sect. 2, we recall the necessary basic concepts. Section 3, deals with the
harmonicity of conformally-projectively equivalent statistical manifolds. A nec-
essary and sufficient condition is obtained for the harmonicity of the identity map
between conformally-projectively equivalent statistical manifolds. In Sect. 4, we
introduce the conformal statistical submersion and prove that harmonicity and
conformality cannot coexist. Throughout this paper, all the objects are assumed
to be smooth.
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2 Preliminaries

In this section, we recall the necessary basic concepts [1,2,5,6,9].
A pseudo-Riemannian manifold (M, g) with a torsion-free affine connection

∇ is called a statistical manifold if ∇g is symmetric. For a statistical manifold
(M,∇, g) the dual connection ∇

∗ is defined by

Xg(Y, Z) = g(∇XY, Z) + g(Y,∇∗

XZ) (1)

for X,Y and Z in X(M), where X(M) denotes the set of all vector fields on M.
If (∇, g) is a statistical structure on M, so is (∇

∗, g). Then (M,∇∗, g) becomes a
statistical manifold called the dual statistical manifold of (M,∇, g).

Definition 1. Two statistical manifolds (M,∇, g) and (M, ∇̃, g̃) are said to be
α-conformally equivalent if there exists a real valued function φ on M such that

g̃(X,Y ) = eφg(X,Y ) (2)

g(∇̃XY, Z) = g(∇XY, Z) −
1 + α

2
dφ(Z)g(X,Y )

+
1 − α

2
{dφ(X)g(Y, Z) + dφ(Y )g(X, Z)}, (3)

where X,Y and Z in X(M) and α is a real number.

Note 1. Two statistical manifolds (M,∇, g) and (M, ∇̃, g̃) are α-conformally equiv-
alent if and only if the dual statistical manifolds (M,∇∗, g) and (M, ∇̃∗, g̃) are
(−α)-conformally equivalent.

Definition 2. Two statistical manifolds (M,∇, g) and (M, ∇̃, g̃) are said to be
conformally-projectively equivalent if there exist two real valued functions φ and
ψ on M such that

g̃(X,Y ) = eφ+ψg(X,Y ) (4)
∇̃XY = ∇XY − g(X,Y )gradgψ + d(φ)(X)Y + d(φ)(Y )X, (5)

where X,Y and Z in X(M).

Let (M,∇, g) and (B,∇
′

, g
′

) be two statistical manifolds of dimensions n and
m, respectively. Let {x1, x2, ....xn} be a local co-ordinate system on M. We set
gi j = g( ∂

∂xi
, ∂
∂x j ) and [gi j] = [gi j]

−1.

Definition 3. A smooth map π : (M,∇, g) −→ (B,∇
′

, g
′

) is said to be a harmonic
map relative to (g,∇,∇

′

) if the tension field τ
(g,∇,∇

′

)

(π) of π vanishes at each point
p ∈ M, where τ

(g,∇,∇
′

)

(π) is defined as

τ
(g,∇,∇

′

)

(π) =

n∑

i, j=1

gi j
{
∇ ∂

∂xi

(
π
∗

(

∂

∂x j
)

)
− π

∗

(
∇ ∂

∂xi

∂

∂x j

)}
, (6)

where ∇ is the pullback of the connection ∇

′

of B to the induced vector bundle
π−1(TB) ⊂ T(M) and ∇ ∂

∂xi

(
π
∗

(

∂
∂x j )

)
= ∇

′

π
∗

(

∂

∂xi
)

π
∗

(

∂
∂x j ).
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Let (M,∇, g) and (M, ∇̃, g̃) be statistical manifolds. Then the identity map
id : (M,∇, g) −→ (M, ∇̃, g̃) is a harmonic map relative to (g,∇, ∇̃) if

τ
(g,∇, ∇̃)(id) =

n∑

i, j=1

gi j(∇̃ ∂

∂xi

∂

∂x j
− ∇ ∂

∂xi

∂

∂x j
) (7)

vanishes identically on M.
Let M and B be Riemannian manifolds with dimensions n and m respec-

tively with n > m. An onto map π : M −→ B is called a submersion if
π
∗p : TpM −→ Tπ(p)B is onto for all p ∈ M. For a submersion π : M −→ B,
π−1(b) is a submanifold of M of dimension (n − m) for each b ∈ B. These sub-
manifolds π−1(b) are called the fibers. Set V(M)p = Ker(π

∗p) for each p ∈ M.

Definition 4. A submersion π : M −→ B is called a submersion with horizontal
distribution if there is a smooth distribution p −→ H(M)p such that

TpM = V(M)p

⊕
H(M)p . (8)

We call V(M)p (H(M)p) the vertical (horizontal) subspace of TpM. H and
V denote the projections of the tangent space of M onto the horizontal and
vertical subspaces, respectively.

Note 2. Let π : M −→ B be a submersion with the horizontal distribution H(M).
Then π

∗

|

H(M)p
: H(M)p −→ Tπ(p)B is an isomorphism for each p ∈ M.

Definition 5. A vector field Y on M is said to be projectable if there exists a
vector field Y

∗

on B such that π
∗

(Yp) = Y
∗π(p) for each p ∈ M, that is Y and Y

∗

are π-related. A vector field X on M is said to be basic if it is projectable and
horizontal. Every vector field X on B has a unique smooth horizontal lift, denoted
by X̃, to M.

Definition 6. Let ∇ and ∇

∗ be affine connections on M and B, respectively. π :
(M,∇) −→ (B,∇∗

) is said to be an affine submersion with horizontal distribution if
π : M −→ B is a submersion with horizontal distribution and satisfies H(∇X̃Ỹ ) =
(∇

∗

XY )
˜, for X,Y in X(B).

Note 3. Abe and Hasegawa [1] introduced an affine submersion with horizon-
tal distribution and they considered general affine connection instead of Levi-
Civita connection on Riemannian manifolds. On the other hand, Fuglede [3] and
Ishihara [4] in their independent work introduced horizontally conformal sub-
mersion as a generalization of Riemannian submersion. Their study focuses on
the conformality relation between the metrics on Riemannian manifolds and the
Levi-Civita connections. In this paper, we study conformal submersion between
Riemannian manifolds M and B and the conformality relation between any two
affine connections ∇ and ∇

′

(not necessarily Levi-Civita connections) on M and
B, respectively.
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3 Harmonic Maps of Conformally-Projectively Equivalent
Statistical Manifolds

In this section, we describe harmonic maps with respect to the conformally-
projectively equivalence of statistical manifolds. In [9], Keiko Uohashi studied
harmonic maps for α-conformal equivalence. He proved that, if α = −

(n−2)
(n+2) or φ

is a constant function on M, then the identity map id : (M,∇, g) −→ (M, ∇̃, g̃)
is a harmonic map relative to (g,∇, ∇̃) for α-conformally equivalent statistical
manifolds (M,∇, g) and (M, ∇̃, g̃) of dimension n ≥ 2.

Now, we have the following theorem.

Theorem 1. Let (M,∇, g) and (M, ∇̃, g̃) be conformally-projectively equivalent
statistical manifolds of dimension n. Then, the identity map id : (M,∇, g) −→
(M, ∇̃, g̃) is a harmonic map if and only if φ = n

2ψ + c, where c is some constant.

Proof. By Eqs. (5) and (7), for k = 1, 2, .. n

τ
(g,∇, ∇̃)(id) =

n∑

i, j=1

gi j
(
∇̃ ∂

∂xi

∂

∂x j
− ∇ ∂

∂xi

∂

∂x j

)

=

n∑

i, j=1

gi j
(
−g(

∂

∂xi
,
∂

∂xj
)gradgψ + dφ

(
∂

∂x j

)
∂

∂xi
+ dφ

(
∂

∂xi

)
∂

∂xj

)

=

n∑

i, j=1

gi j
(
(−gi j )gradgψ +

∂φ

∂xj

∂

∂xi
+
∂φ

∂xi

∂

∂xj

)
.

Now, we have

g

(
τ
(g,∇, ∇̃)(id),

∂

∂xk

)
= −ng

(
gradgψ,

∂

∂xk

)
+

k∑

i=1

∂φ

∂xi
δik +

k∑

j=1

∂φ

∂xj
δjk

= −n
∂ψ

∂xk
+

k∑

i=1

∂φ

∂xi
δik +

k∑

j=1

∂φ

∂xj
δjk

= −n
∂ψ

∂xk
+ 2
∂φ

∂xk
. (9)

Now from (9), id is harmonic if and only if ∂φ
∂xk

= n
2

∂ψ
∂xk

for all k ∈ {1, 2, ...n}.
Hence, id is harmonic if and only if φ = n

2ψ + c, where c is some constant.

4 Conformal Statistical Submersion and Harmonic Map

In this section, we generalize the concept of an affine submersion with horizon-
tal distribution to the conformal submersion with horizontal distribution and
prove a necessary condition for the existence of such maps. Also, we introduce
the conformal statistical submersion, which is a generalization of the statistical
submersion and prove that harmonicity and conformality cannot coexist.
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Definition 7. Let (M, gM ) and (B, gB) be Riemannian manifolds. A submersion
π : (M, gM ) −→ (B, gB) is called a conformal submersion if there exists a φ ∈

C∞

(M) such that
gM (X,Y ) = e2φgB(π∗X, π∗Y ), (10)

for all horizontal vector fields X,Y on M.

For π : (M,∇) −→ (B,∇∗

) an affine submersion with horizontal distribution,
H(∇X̃Ỹ ) = (∇

∗

XY )
˜, for X,Y ∈ X(B). In the case of a conformal submersion, we

prove the following theorem which is the motivation for us to generalize the
concept of an affine submersion with horizontal distribution.

Theorem 2. Let π : (M, gM ) −→ (B, gB) be a conformal submersion. If ∇ on M
and ∇

∗ on B are the Levi-Civita connections then

H(∇X̃Ỹ ) =
˜

(∇

∗

XY ) + X̃(φ)Ỹ + Ỹ (φ)X̃ −H(gradπφ)gm(X̃, Ỹ ),

where X,Y ∈ X(B) and X̃, Ỹ denote its unique horizontal lifts on M and gradπφ
denotes the gradient of φ with respect to gM .

Proof. We have the Koszul formula for the Levi-Civita connection,

2gM (∇X̃Ỹ, Z̃) = X̃gM (Ỹ, Z̃) + ỸgM (Z̃, X̃)

− Z̃gM (X̃, Ỹ ) − gM (X̃, [Ỹ, Z̃])

+ gM (Ỹ, [Z̃, X̃]) + gM (Z̃, [X̃, Ỹ ]). (11)

Now, consider

X̃gM (Ỹ, Z̃) = X̃(e2φgB(Y, Z))

= X̃(e2φ)gB(Y, Z) + e2φ X̃(gB(Y, Z))

= 2e2φ X̃(φ)gB(Y, Z) + e2φXgB(Y, Z).

Similarly,

ỸgM (X̃, Z̃) = 2e2φỸ (φ)gB(X, Z) + e2φYgB(X, Z)

Z̃gM (X̃, Ỹ ) = 2e2φ Z̃(φ)gB(X,Y ) + e2φZgB(X,Y ).

Also, we have

gM (X̃, [Ỹ, Z̃]) = e2φgB(X, [Y, Z])

gM (Ỹ, [Z̃, X̃]) = e2φgB(Y, [Z, X])

gM (Z̃, [X̃, Ỹ ]) = e2φgB(Z, [X,Y ]).

Then, from Eq. (11) and the above equations, we get

2gM (∇X̃Ỹ, Z̃) = 2X̃(φ)e2φgB(Y, Z) + 2Ỹ (φ)e2φgB(X, Z)
− 2Z̃(φ)e2φgB(X,Y ) + 2e2φgB(∇∗

XY, Z).
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Since, Z̃(φ) = e2φgB(π∗(gradπφ), Z) we get

π
∗

(∇X̃Ỹ ) = ∇

∗

XY + X̃(φ)Y + Ỹ (φ)X − e2φπ
∗

(gradπφ)gB(X,Y ).

Hence,

H(∇X̃Ỹ ) =
˜

(∇

∗

XY ) + X̃(φ)Ỹ + Ỹ (φ)X̃ −H(gradπφ)gm(X̃, Ỹ ).

Now, we generalize the concept of an affine submersion with horizontal
distribution.

Definition 8. Let π : (M, gM ) −→ (B, gB) be a conformal submersion and let
∇ and ∇

∗ be affine connections on M and B, respectively. Then, π : (M,∇) −→
(B,∇∗

) is said to be a conformal submersion with the horizontal distribution
H(M) = V(M)

⊥ if

H(∇X̃Ỹ ) =
˜

(∇

∗

XY ) + X̃(φ)Ỹ + Ỹ (φ)X̃ −H(gradπφ)gm(X̃, Ỹ ),

for some φ ∈ C∞

(M) and for X,Y ∈ X(B).

Note 4. If φ is a constant, it turns out to be an affine submersion with horizontal
distribution.

Now, a necessary condition is obtained for the existence of a conformal submer-
sion with horizontal distribution.

Theorem 3. Let π : (M, gM ) −→ (B, gB) be a conformal submersion and ∇ be
an affine connection on M. Assume that π : M −→ B is a submersion with
horizontal distribution. If H(∇X̃Ỹ ) is projectable for vector fields X and Y on B,
then there exists a unique connection ∇

∗ on B such that π : (M,∇) −→ (B,∇∗

) is
a conformal submersion with horizontal distribution.

Proof. Setting ∇

∗

XY = π
∗

(∇X̃Ỹ )− X̃(φ)Y −Ỹ (φ)X+e2φπ
∗

(gradπφ)gB(X,Y ), we show
that ∇

∗ is an affine connection on B. Since ˜
( f X) = ( f ◦ π)X̃,

∇

∗

X ( fY ) = π∗(∇X̃ ( f ◦ π)Ỹ ) − X̃(φ) fY −

˜
( fY )(φ)X

+ e2φπ
∗

(gradπφ)gB(X, fY ). (12)

Now, consider

π
∗

(∇X̃ ( f ◦ π)Ỹ ) = π∗((X̃( f ◦ π))Ỹ + ( f ◦ π)∇X̃Ỹ )

= X( f )Y + f∇∗

XY + X̃(φ) fY + f Ỹ (φ)X

− e2φπ
∗

(gradπφ) f gB(X,Y ). (13)

From (12) and (13), we get

∇

∗

X ( fY ) = X( f )Y + f∇∗

XY .

The other conditions for affine connection can be proved similarly. The
uniqueness is clear from the definition.
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4.1 Harmonicity of Conformal Statistical Submersion

Definition 9. Let (M,∇, g) and (B,∇
′

, g̃) be two statistical manifolds. Then, a
semi-Riemannian submersion π : M → B is said to be statistical submersion if

π
∗

(∇XY )p = (∇

′

X
′
Y

′

)π(p),

for basic vector fields X,Y on M which are π-related to X
′

and Y
′

on B and
p ∈ M.

Note 5. Note that every statistical submersion is an affine submersion with hor-
izontal distribution and also every statistical submersion is a harmonic map.

Now, we define the conformal statistical submersion which is a generalization of
the statistical submersion.

Definition 10. Let (M,∇, gm) and (B,∇
′

, gb) be two statistical manifolds of
dimensions n and m respectively (n ≥ m). A submersion π : (M,∇, gm) −→

(B,∇
′

, gb) is called a conformal statistical submersion if there exists a smooth
function φ on M such that

gm(X,Y ) = e2φgb(π∗X, π∗Y ) (14)
π
∗

(∇XY ) = ∇

′

π
∗

Xπ∗Y + X(φ)π
∗

X + Y (φ)π
∗

X − π
∗

(gradπφ)gm(X,Y ), (15)

for basic vector fields X and Y on M.

Note 6. If φ is a constant, then π is a statistical submersion. Also, note that
conformal statistical submersions are conformal submersions with horizontal dis-
tribution.

Next, we prove that harmonicity and conformality cannot coexist.

Theorem 4. Let π : (M,∇, gm) −→ (B,∇
′

, gb) be a conformal statistical submer-
sion. Then, π is a harmonic map if and only if φ is constant.

Proof. Assume that φ is a constant, then by Eqs. (15) and (6) we get π is a
harmonic map. Conversely, assume π is harmonic. Now, consider the equations

τ(π) =

n∑

i, j=1

g
i j
m

{
∇̃ ∂

∂xi

(
π
∗

(

∂

∂x j
)

)
− π

∗

(
∇ ∂

∂xi

∂

∂x j

)}

= nπ
∗

(gradπφ) − 2
n∑

i, j=1

∂φ

∂xi
g
i j
mπ∗(

∂

∂xj
). (16)

and

gb(τ(π), π∗
∂

∂xk
) = ne−2φgm(gradπφ,

∂

∂xk
) − 2e−2φ

m∑

i, j=1

∂φ

∂xi
g
i j
mgmjk

= ne−2φgm(gradπφ,
∂

∂xk
) − 2e−2φ

(
n∑

i=1

∂φ

∂xi

)

= ne−2φ
∂φ

∂xk
− 2e−2φ

(
n∑

i=1

∂φ

∂xi

)
. (17)
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Since π is harmonic, from (17) we get

n
∂φ

∂xk
= 2

n∑

i=1

∂φ

∂xi
, (18)

for each k ∈ {1, 2, ..n}. That is, we have the system of equations

⎡⎢⎢⎢⎢⎢⎢⎣

2 − n 2 2 . . . 2
2 2 − n 2 . . . 2
. . . . . . . . . . . . . . .
2 2 2 . . . 2 − n

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂φ
∂x1
∂φ
∂x2
. . .
∂φ
∂xn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

0
0
. . .
0

⎤⎥⎥⎥⎥⎥⎥⎦

.

Since for each fixed n the above nxn matrix is invertible, we get ∂φ
∂xk

= 0 for all
k. Hence, φ is constant. Thus, π is a statistical submersion.
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Abstract. We provide algorithms for computing the Karcher mean of
positive definite semi-infinite quasi-Toeplitz matrices. After showing that
the power mean of quasi-Toeplitz matrices is a quasi-Toeplitz matrix,
we obtain a first algorithm based on the fact that the Karcher mean
is the limit of a family of power means. A second algorithm, that is
shown to be more effective, is based on a generalization to the infinite-
dimensional case of a reliable algorithm for computing the Karcher mean
in the finite-dimensional case. Numerical tests show that the Karcher
mean of infinite-dimensional quasi-Toeplitz matrices can be effectively
approximated with a finite number of parameters.

Keywords: Karcher mean · Power mean · Geometric mean ·
Quasi-Toeplitz matrices · Toeplitz algebra

1 Introduction

Let i be the complex unit, z = eiϑ and a(ϑ) =
∑

i∈Z
aiz

i be a complex valued
function defined for 0 ≤ ϑ ≤ 2π. A semi-infinite Toeplitz matrix T (a) associated
with the function a is defined by (T (a))i,j = aj−i, where a is said to be the
symbol of T (a). Toeplitz matrices have been widely analyzed in the literature
due to their elegant theoretical properties and the important role played in the
applications (see, for instance, [2,13–16]).

Let B(�2) be the C∗-algebra of linear bounded operators in �2 = {(vi)i :∑∞
i=1 |vi|2 < ∞}. A Toeplitz matrix T (a) can be associated with a bounded

operator in B(�2) if and only if a is essentially bounded, but the set of Toeplitz
matrices is not closed by multiplication. Here, we are interested in the set QT =
{T (a) + K, a ∈ C2π, K ∈ K}, where C2π are the continuous functions f :
[0, 2π] → C such that f(0) = f(2π) and K is the set of compact operators in
�2. The set QT is the smallest C∗-subalgebra of B(�2) containing all Toeplitz
operators T (a) with a ∈ C2π [15]. In what follows, we call quasi-Toeplitz matrix

The work of the first and second authors is partly supported by the INdAM through
a GNCS project.
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any operator in QT , since it can be represented by a semi-infinite matrix and
when we write A = T (a)+K ∈ QT , we will assume implicitly that a ∈ C2π and
K ∈ K. An operator A is said to be positive definite if there exists γ > 0 such
that x∗Ax ≥ γ

∑∞
i=1 |xi|2 for x ∈ �2, where x∗ is the conjugate transpose of x.

Quasi-Toeplitz matrices, have received considerable attention due to their
applications in the analysis of stochastic process and in the numerical solutions
of certain PDE problems and have been investigated in [6–9,11,12] in terms of
their theoretical and computational properties.

Geometric means of positive definite quasi-Toeplitz matrices have been inves-
tigated recently in [5], where it has been shown that the techniques developed
for the infinite-dimensional case are effective for large-scale finite size Toeplitz
matrices as well. This enlarges the range of applications including all cases where
large-scale Toeplitz matrices should be averaged, such as a radar detection model
discussed in [22,27] (see also [18], and the references therein, for applications
where means of large-scale matrices are required).

One of the results of [5] is that the quasi-Toeplitz structure is preserved by
the classical geometric means of operators, such as the ALM, the NBMP, and the
Karcher mean1: if G is the ALM, NBMP, or the Karcher mean of positive definite
matrices Ai = T (ai) + Ki ∈ QT for i = 1, . . . , p, then G = T (g) + KG ∈ QT .
Moreover, it turns out that g(z) = (a1(z) . . . ap(z))

1
p .

The geometric mean of two positive definite matrices A and B is established
as A#1/2B, where A#tB := A1/2(A−1/2BA−1/2)tA1/2, for t ∈ [0, 1]. For more
than two matrices, there are several different definitions. For positive matrices
A,B and C of the same finite size, the ALM mean, proposed by Ando, Li and
Mathias [1], is the common limit of the sequences

Ak+1 = Bk# 1
2
Ck, Bk+1 = Ck# 1

2
Ak, Ck+1 = Ak# 1

2
Bk, (1)

with A0 = A,B0 = B,C0 = C. The NBMP mean introduced independently by
Bini, Meini, Poloni [10] and Nakamura [26], is the common limit of the sequences

Ak+1 = Ak# 2
3
(Bk# 1

2
Ck), Bk+1 = Bk# 2

3
(Ck# 1

2
Ak), Ck+1 = Ck# 2

3
(Ak# 1

2
Bk),
(2)

with A0 = A, B0 = B, C0 = C. The sequences (1) and (2) are well-defined and
converge in norm also when A,B,C ∈ B(�2), and can be extended to more than
three matrices and operators and, specifically, to quasi-Toeplitz matrices. We
refer the reader to [5] for the details.

Here we focus, in particular, on the Karcher mean Λ := Λ(A1, . . . , Ap), of
the positive definite operators A1, . . . , Ap, that is the unique positive definite
solution of the operator equation

p∑

i=1

log
(
X−1/2AiX

−1/2
)

= 0. (3)

1 Recently, the term “Karcher mean” for matrices is falling out of use, in favor of
“Riemannian center of mass” or “matrix geometric mean”. We kept the former here,
because we deal with operators, with no underlying Riemannian structure.
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Notice that the operator X−1/2AiX
−1/2 is positive definite and the logarithm

and square root can be defined using continuous functional calculus. The theo-
retical background on the Karcher mean can be found in [24] and [23].

This paper may act as a complementary to [5]. Indeed, we start by showing
that not only the Karcher mean, but also more general two variable means and
the power mean of positive definite quasi-Toeplitz matrices belong to QT . The
power mean Ps := Ps(A1, . . . , Ap), with s ∈ (0, 1], is the unique solution of the
equation [24]

p∑

i=1

1
p
(X#sAi) = X. (4)

Showing that Ps with s ∈ (0, 1] belongs to QT , besides being interesting per
se, allows us to get a constructive proof that the Karcher mean Λ(A1, . . . , Ap)
belongs to QT , based on the convergence of Ps to the Karcher mean in norm as
s → 0 [25]. This may be the basis of an algorithm for approximating the Karcher
mean of quasi-Toeplitz matrices, by computing a power mean with a small s.

However, the convergence of Ps to Λ is very slow as s → 0, and while the
iteration Xk+1 =

∑p
i=1

1
p (Xk#sAi) is globally convergent to the power mean,

with at least linear rate 1− s, the rate is near to 1 as s → 0. These facts make it
difficult in practice to approximate the Karcher mean of quasi-Toeplitz matrices
using power means.

A remedy that we propose is to use an algorithm that works well in the finite-
dimensional case, that is the Richardson-like iteration of [4]. In our numerical
tests the Richardson-like iteration is able to approximate the Karcher mean with
a reasonable accuracy and CPU time.

2 Means of Two Quasi-Toeplitz Matrices

Using continuous function calculus, a scalar function f : I → R yields an oper-
ator function f(M), when M ∈ B(�2) is self-adjoint and has spectrum in I.

In this way one can give a meaning to At, for t ∈ R, when A is positive definite,
and to the weighted geometric mean A#tB of two positive definite operators A
and B. In [5] we have proved that if A,B ∈ QT and positive, then A#tB ∈ QT .
We will prove that several means or objects with this form are indeed in QT . The
following result is an immediate consequence of [5, Theorem 7].

Theorem 1. Let A,B ∈ QT , A positive definite and B self-adjoint, f : U ⊂
R → R. If U = R then f(A;B) := A1/2f(A−1/2BA−1/2)A1/2 ∈ QT . If B is
positive definite and U = R

+
0 , then f(A;B) ∈ QT , moreover, if f(R+

0 ) ⊂ R
+
0 then

f(A;B) is positive definite. In both cases, f(A;B) = T (g)+K, with g = af(b/a),
where a and b are symbols associated with A and B, respectively.

In this way we have A#tB = f(A;B) for f(x) = xt, and we can
define exp(A;B) := A1/2 exp(A−1/2BA−1/2)A1/2 ∈ QT , that is positive
definite if A is positive definite and B is self-adjoint; log(A;B) := A1/2

log(A−1/2BA−1/2)A1/2 ∈ QT , that is self-adjoint for A,B positive definite.
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Theorem 1 allows one to define a mean in the sense of Kubo and Ando [21]
of quasi-Toeplitz matrices as f(A;B), where f : R

+ → R
+ is a normalized

operator monotone function, that is f(1) = 1 and f(M1) − f(M2) is positive
definite when M1−M2 is positive definite. The symbol associated with the mean
is g := af(b/a). This class of means includes the most common two-variable
operator means.

3 Power Mean

For s ∈ (0, 1], the power mean Ps := Ps(A1, . . . , Ap) of the positive definite
operators A1, . . . , Ap ∈ B(�2), is the unique positive definite solution to (4). The
uniqueness has been proved in [24], where the authors show that the iteration

Xk+1 =
p∑

i=1

1
p
(Xk#sAi), X0 positive definite, (5)

converges in the Thompson metric on the cone of positive operators of B(�2) to
a limit X and the limit is the unique solution to (4). Note that for matrices there
is an alternative definition of power mean [17] but it does not readily extend to
operators, thus it will not be discussed here.

The equivalence between convergence in the Thompson metric and norm
convergence in B(�2), and the fact that QT is a C∗-algebra, gives us the proof
that the power mean belongs to QT , but first we need a technical result (see [5,
Lemma 9]). For a ∈ C2π we denote ‖a‖∞ = maxx∈[0,2π] |a(x)|.

Lemma 1. Let {Ak}k be a sequence of quasi-Toeplitz matrices such that Ak =
T (ak) + Kk ∈ QT for k ∈ Z

+. Let A ∈ B(�2) be such that limk ‖A − Ak‖ = 0.
Then A = T (a)+K ∈ QT , moreover, limk ‖a−ak‖∞ = 0 and limk ‖K−Kk‖ = 0.

We are ready to prove that the power mean of more than two quasi-Toeplitz
matrices is in QT . For two matrices the result follows from Sect. 2, since the
power mean is f(A;B), with f(x) = (1+xs

2 )1/s.

Theorem 2. Let Ai = T (ai) + Ei ∈ QT , for i = 1, . . . , p, p ≥ 3, be positive
definite. Then the matrices {Xk} generated by (5) with X0 = 1

p

∑p
i=1 Ai, and

the power mean Ps, for s ∈ (0, 1], satisfy the following properties

1. Xk = T (xk) + Kk ∈ QT , for any k ≥ 1;

2. Ps = T (x(s)) + K(s) ∈ QT , where x(s) =
(∑p

i=1 as
i

p

)1/s

;
3. the symbols xk associated with the Toeplitz part of Xk satisfy the equation

xk+1 = (x(s))sx1−s
k , x0 = 1

p

∑p
i=1 ai;

4. limk ‖xk − x(s)‖∞ = 0, limk ‖Kk − K(s)‖ = 0.

Proof. Concerning part 1, since X0 = 1
p

∑p
i=1 Ai ∈ QT , we have that X1 ∈ QT

because of [5, Corollary 8] and the fact that QT is an algebra. An induction
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argument shows that Xk = T (xk)+Kk ∈ QT for k ≥ 1. Using the same corollary
and the arithmetic of quasi-Toeplitz matrices, one proves that for the symbol xk

we have xk+1 = 1
p

∑p
i=1 as

i x
1−s
k , with x0 = 1

p

∑p
i=1 ai, that is part 3. Since Xk

converges to Ps in the Thompson metric [24] then it converges in norm that is
limk ‖Xk−Ps‖ = 0, according to Lemma 1, we have that Ps = T (ϕ)+K(s) ∈ QT ,
moreover, limk ‖xk − ϕ‖∞ = 0 and limk ‖Kk − K(s)‖ = 0. It remains to prove
that ϕ = x(s), but it is easily seen that the sequence {xk}k pointwise converges
to x(s) and thus ϕ = x(s).

For computational purposes, it might be convenient to get a bound for the
convergence rate of {xk} to x(s). Setting yk := xk/x(s), we obtain yk+1 = y1−s

k ,

that gives yk = y
(1−s)k

0 . Since y0 ≥ 1 by the classical inequalities, we have that
yk is monotonically decreasing to 1 and, by the mean value theorem, there exists
ξk ∈ (0, (1−s)k) such that yk −1 = yξk

0 log(y0)(1−s)k ≤ y0 log(y0)(1−s)k, thus

‖xk − x(s)‖∞ ≤ ‖x(s)‖∞‖y0 log(y0)‖∞(1 − s)k. (6)

This proves that the convergence is at least linear with rate (1 − s).
The approximation through power means yields a constructive proof that

the Karcher mean of quasi-Toeplitz matrices belongs to QT (a non-constructive
proof can be found in [5]). It has been proved in [25, Theorem 7.7] that, in
norm, lims→0+ Ps(A1, . . . , Ap) = Λ(A1, . . . , Ap). If A1, . . . , Ap ∈ QT , then, since
P1/n = T (x(1/n)) + Kn ∈ QT for any positive integer n, according to Lemma 1,
the limit of P1/n belongs to QT , that is Λ(A1, . . . , Ap) = T (g) + Kg ∈ QT .
Lemma 1 guarantees that limk ‖x(1/n) − g‖∞ = 0, and since the scalar power
mean converges pointwise to the geometric mean, we have that g = (a1 · · · ap)1/p.

In order to use these results to approximate the Karcher mean, it is useful
to get a bound for the uniform convergence of the sequence {x(1/n)}n to g.

For any s ∈ (0, 1] we find that (x(s))s = 1
p

∑p
i=1 es log ai ≤ 1

p

∑p
i=1(1 +

s log ai + s2

2 log2 aia
s
i ) = 1+s log g+s2σ(s), where σ(s) := 1

2

∑p
i=1 as

i log2 ai, and
thus log x(s) − log g = 1

s log(x(s))s − log g ≤ sσ(s). Finally, since x(s) ≥ g > 0,
we have x(s)

g − 1 = exp(log x(s) − log g) − 1 ≤ (log x(s) − log g)x(s)

g ≤ sσ(s)x(s)

g ,

from which, since σ(s) and x(s) are non decreasing with respect to s, we have

‖x(s) − g‖∞ ≤ s‖σ(1)‖∞‖x(1)‖∞. (7)

The latter bound suggests a sublinear rate of convergence, for s = 1/n.

4 Computing the Karcher Mean in QT
Let A1, . . . , Ap ∈ QT be positive definite, with Ai = T (ai) + Ei, ai ∈ C2π,
for i = 1, . . . , p. The convergence of the power mean P1/n := P1/n(A1, . . . , Ap)
to the Karcher mean Λ := Λ(A1, . . . , Ap) in the QT algebra, allows one to
approximate Λ with P1/n for a sufficiently large n. In turn, the power mean
P1/n can be computed using iteration (5), for an initial value X0.
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The computation can be made practical using the Matlab CQT-Toolbox [11],
that implements the main operations between quasi-Toeplitz matrices and can
be easily extended to other operations such as the sharp operator in (5).

Unfortunately the convergence of P1/n to Λ and the convergence of the iter-
ation (5) can be very slow. Indeed, considering just the convergence of the sym-
bols, the bound (7) shows that we need to choose a large value of n to get a
good approximation of Λ. On the other hand, the bound (6) suggests linear
convergence, with rate (1 − 1/n), of the iteration for computing P1/n.

As a remedy, we propose to approximate the Karcher mean by using the
Richardson-like iteration

Xk+1 = Xk + ϑkX
1/2
k

( p∑

i=1

log(X−1/2
k AiX

−1/2
k )

)
X

1/2
k , (8)

where {ϑk}k is a given sequence. The method has been proposed in [4] for the
finite-dimensional case, but using the arithmetic of quasi-Toeplitz matrices and
continuous functional calculus on quasi-Toeplitz matrices (see [5, Theorem 7]),
the same iteration can be applied to positive definite quasi-Toeplitz matrices.

Two important issues in the use of iteration (8) are the choice of the starting
point X0 and the choice of ϑk. The latter task has been worked out in [4] by
an asymptotic analysis. Concerning the choice of X0, a value closer to the limit
is recommended to provide a faster convergence. A possible choice is the Cheap
mean [3] that, for positive definite matrices, is the common limit of the sequences

X
(�)
k+1 = (X(�)

k )1/2
( p∑

i=1

log
(
(X(�)

k )−1/2X
(i)
k (X(�)

k )−1/2
))

(X(�)
k )1/2, � = 1, . . . , p,

for X
(�)
0 = A� ∈ QT . The iteration yields a sequence in QT .

We have implemented the Richardson-like iteration with the Cheap mean as
initial value and the optimal choice of ϑk from [4] in Test 1. The implementations,
performed in Matlab v.9.5, have been run on an Intel i3 CPU with 4 Gb memory.

To measure errors, we have used the norm ‖A‖∞ = supi

∑
j |aij |, that is well

defined for A = T (a) + K ∈ QT with absolutely convergent Fourier series.

Test 1. We compute the Karcher mean of the six tridiagonal Toeplitz matrices
Ai = T (ai), for i = 1, . . . , 6, where ai is a trigonometric polynomial of the type
f0 + 2f1 cos(t) + 2f2 cos(2t), with the following choices for f0, f1, f2:

{3, 1, 0}, {10, 4, 4}, {4, 2, 1}, {2.5, 1, 0}, {9.5, 4, 4}, {3.5, 2, 1}.

The computation is made by using the Richardson-like iteration, where X0 is
the Cheap mean. The computation of the Cheap mean required only three steps
to arrive at numerical convergence while the Richardson-like iteration required
22 steps for an overall time of 131 seconds of CPU time. The Karcher mean
Λ = T (g)+EΛ is such that the symbol g(ϑ) =

∑
i∈Z

giz
i, has coefficients |gi| < ε

for i > 150, where ε = 10−15. While the compact correction EΛ has entries ei,j

such that |ei,j | < ε for i > 151 or j > 151.
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Fig. 1. Log-plot of the symbol g (left) and of the correction EΛ (right) of the Karcher
mean Λ = T (g) + EΛ of the dataset of Test 1.

Figure 1 displays a log plot of the modulus of the symbol and of the correction.

Test 2. We compute the power mean Ps of the dataset of Test 1, for s = 1/2�, for
different values of �, using iteration (5) and compare Ps with the Karcher mean.

Figure 2 shows the convergence of the value of ‖Xk+1−Xk‖∞ in iteration (5),
starting with the arithmetic mean. Theoretically, this quantity tends to 0, and
the obtained bound (6) is linear with parameter 1−s. Indeed, in our experiment
the convergence follows quite exactly the predicted rate.

Moreover, we measure the norm ‖Ps − Λ‖∞/‖Λ‖∞, where Λ is the one com-
puted in Test 1. We observe in Fig. 2 that also the bound (7) is respected, and
the errors decreases as s.
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Fig. 2. Left: convergence of the sequence {Xk}k from (5) with the arithmetic mean
as initial value, in terms of ‖Xk+1 − Xk‖∞. Right: error in the approximation of the
Karcher mean with the Power mean P1/n, in logarithmic scale, measured as ‖P1/n −
Λ‖∞/‖Λ‖∞.
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5 Conclusions

In previous work [5] we have proved that most common geometric means, such
as the ALM, the NBMP and the Karcher mean can be extended to semi-infinite
quasi-Toeplitz matrices, and that the ALM and the NBMP can be efficiently
approximated by a finite number of parameters. The same techniques were shown
to be useful also when dealing with large-scale finite size Toeplitz matrices. Here
we have shown that any two variable mean of operators and also the power mean
by Lim and Palfia if applied to quasi-Toeplitz arguments, provide quasi-Toeplitz
means.

We have considered also the numerical approximation of the Karcher mean
of positive definite quasi-Toeplitz matrices, considering two approaches: one is
based on approximating the mean as the limit of power means and the other is
based on extending to operators the Richardson-like iteration, a reliable algo-
rithm for finite-dimensional matrices.

Some numerical results show that the power mean with parameter s of quasi-
Toeplitz matrices can be effectively computed by an iteration but it is not rec-
ommended as an approximation of the Karcher mean, since in order to get a
good approximation, a small s should be chosen and this leads to a large com-
putational cost of the iteration, for a given tolerance.

On the other hand, in our numerical tests, the Richardson-like algorithm
shows a linear convergence, as in the finite dimensional case. While in the finite
dimensional case the algorithm has been understood as an approximate Rie-
mannian gradient descent with respect to a Riemannian structure in the cone
of positive definite matrices, in the infinite dimensional case this interpretation
fails because of the lack of Riemannian structure, but the algorithm has a sim-
ilar behavior. This fact, besides being interesting per se, opens in principle the
possibility to use faster Riemannian optimization algorithms [19,20], and thus
deserves a better understanding and is the topic of a future investigation.
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in Coadjoint Representation and Geometric
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Abstract. In 1969, Jean-Marie Souriau introduced a “Lie Groups Thermody-
namics” in the framework of Symplectic model of Statistical Mechanics. Based
on this model, we will introduce a geometric characterization of Entropy as a
generalized Casimir invariant function in coadjoint representation, where
Souriau cocycle is a measure of the lack of equivariance of the moment map-
ping. The dual space of the Lie algebra foliates into coadjoint orbits that are also
the level sets on the entropy that could be interpreted in the framework of
Thermodynamics by the fact that motion remaining on these surfaces is non-
dissipative, whereas motion transversal to these surfaces is dissipative. We will
also explain the 2nd Principle in thermodynamics by definite positiveness of
Souriau tensor extending the Koszul-Fisher metric from Information Geometry,
and introduce a new geometric Fourier heat equation with Souriau-Koszul-
Fisher tensor. In conclusion, Entropy as Casimir function is characterized by
Koszul Poisson Cohomology.

Keywords: Symplectic geometry � Casimir function � Entropy � Lie groups
thermodynamics � Koszul-Fisher metric � Heat equation � Poisson cohomology

1 Introduction

“Ayant eu l’occasion de m’occuper du mouvement de rotation d’un corps solide creux, dont la
cavité est remplie de liquide, j’ai été conduit à mettre les équations générales de la Mécanique
sous une forme que je crois nouvelle et qu’il peut être intéressant de faire connaître” – Henri
Poincaré [23]

We will observe that Souriau Entropy S Qð Þ defined on affine coadjoint orbit of the
group (where Q is a “geometric” heat, element of the dual space of the Lie algebra of

the group) has a property of invariance S Ad#g ðQÞ
� �

¼ S Qð Þ with respect to Souriau

affine definition of coadjoint action Ad#g ðQÞ ¼ Ad�gðQÞþ h gð Þ where h gð Þ is called the
Souriau cocyle, and is associated to the default of equivariance of the moment map [2,
18, 20, 21]. In the framework of Souriau Lie groups Thermodynamics [2–8], we will
then characterize the Entropy as a generalized Casimir invariant function [1] in
coadjoint representation. When M is a Poisson manifold, a function on M is a Casimir
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function if and only if this function is constant on each symplectic leaf (the non-empty
open subsets of the symplectic leaves are the smallest embedded manifolds of M which
are Poisson submanifolds). Classically, the Entropy is defined axiomatically as Shan-
non or von Neumann Entropies without any geometric structures constraints. In this
paper, the Entropy will be characterized as solution of the Casimir equation given for
affine equivariance by

ad�@S
@Q
Q

� �
j
þH

@S
@Q

� �
j
¼ Ck

ijad
�
@S
@Qð ÞiQk þHj ¼ 0

where HðXÞ ¼ Teh XðeÞð Þwith ~H X; Yð Þ ¼ HðXÞ; Yh i ¼ J X;Y½ � � JX ; JYf g in non-null
cohomology case (non-equivariance of coadjoint operator on the moment map), with
h gð Þ the Souriau Symplectic cocycle. The KKS (Kostant-Kirillov Souriau) 2-form that
associates a structure of homogeneous symplectic manifold to coadjoint orbits, will be
linked with extension of Koszul-Fisher metric. The information manifold foliates into
level sets of the entropy that could be interpreted in the framework of Thermodynamics
by the fact that motion remaining on these surfaces is non-dissipative, whereas motion

transversal to these surfaces is dissipative, where the dynamics is given by dQ
dt ¼

Q;Hf g ~H¼ ad�@H
@Q
QþH @H

@Q

� �
with the existence of a stable equilibrium when H ¼ S )

dQ
dt ¼ Q; Sf g ~H¼ ad�@S

@Q
QþH @S

@Q

� �
¼ 0 (algorithm described in [30, 31] preserves coad-

joint orbits and Casimirs of the Lie–Poisson equation by construction).

We will also observe that dS ¼ ~Hb
@H
@Q ; b

� �
dt where

~Hb
@H
@Q ; b

� �
¼ ~H @H

@Q ; b
� �

þ Q; @H
@Q ; b
h iD E

, showing that 2nd principle is linked to

positive definiteness of Souriau tensor related to Fisher Information or Koszul 2-form

extension. We can extend Affine Lie-Poisson equation dQ
dt ¼ ad�@H

@Q
QþH @H

@Q

� �
to a

new Stratonovich differential equation for the stochastic process given by the following
relation by mean of Souriau’s symplectic cocycle:

dQþ ad�@H
@Q
QþH

@H
@Q

� �� �
dtþ

XN
i¼1

ad�@Hi
@Q

QþH
@Hi

@Q

� �� �
� dWi tð Þ ¼ 0:

More details on Souriau Lie Groups Thermodynamics are available in author paper
[9–13] or Charles-Michel Marle papers [14–16].

2 Lie Groups Thermodynamics and Souriau-Fisher Metric

Amari has proved that the Riemannian metric in an exponential family is the Fisher
information matrix defined by:
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gij ¼ � @2U
@hi@hj

� �
ij

with U hð Þ ¼ � log
Z
R

e� h;yh idy ð1Þ

and the dual potential, the Shannon entropy, is given by the Legendre transform:

S gð Þ ¼ h; gh i � U hð Þ with gi ¼
@U hð Þ
@hi

and hi ¼ @S gð Þ
@gi

ð2Þ

We can observe that U hð Þ ¼ � log
R
R
e� h;yh idy ¼ � logw hð Þ ¼ � logw hð Þ is linked

with the cumulant generating function. In the Souriau model, the structure of infor-
mation geometry is preserved and extended on the Symplectic manifolds associated to
coadjoint orbits:

ð3Þ

ð4Þ

In the Souriau Lie groups thermodynamics model, b is a “geometric” (Planck)
temperature, element of Lie algebra of the group, and Q is a “geometric” heat, element
of the dual space of the Lie algebra of the group. Souriau has proposed a Riemannian
metric that we have identified as a generalization of the Fisher metric:

I bð Þ ¼ gb
� 	

with gb b; Z1½ �; b; Z2½ �ð Þ ¼ ~Hb Z1; b; Z2½ �ð Þ ð5Þ

with ~Hb Z1; Z2ð Þ ¼ ~H Z1; Z2ð Þþ Q; adz1 Z2ð Þh i where adz1 Z2ð Þ ¼ Z1; Z2½ � ð6Þ

Souriau Foundamental Theorem is that « Every symplectic manifold on which a
Lie group acts transitively by a Hamiltonian action is a covering space of a coadjoint
orbit». We can observe that for Souriau model, Fisher metric is an extension of this 2-
form in non-equivariant case gb b; Z1½ �; b; Z2½ �ð Þ ¼ ~H Z1; b; Z2½ �ð Þþ Q; Z1; b; Z2½ �½ �h i.

The Souriau additional term ~H Z1; b; Z2½ �ð Þ is generated by non-equivariance
through Symplectic cocycle. The tensor ~H used to define this extended Fisher metric is
defined by the moment map J xð Þ, application from M (homogeneous symplectic
manifold) to the dual space of the Lie algebra , given by:

~H X;Yð Þ ¼ J X;Y½ � � JX ; JYf g ð7Þ
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ð8Þ

This tensor ~H is also defined in tangent space of the cocycle (this cocycle
appears due to the non-equivariance of the coadjoint operator , action of the group on
the dual space of the lie algebra; the action of the group on the dual space of the Lie
algebra is modified with a cocycle so that the momentum map becomes equivariant
relative to this new affine action):

Q Adg bð Þ
 � ¼ Ad�g Qð Þþ h gð Þ ð9Þ

I use notation Ad�g ¼ ðAdg�1Þ� with: ,

as used by Koszul and Souriau. is called nonequivariance one-cocycle, and it
is a measure of the lack of equivariance of the moment map.

ð10Þ

It can be then deduced that the tensor could be also written by (with cocyle
relation):

ð11Þ

ð12Þ

This study of the moment map J equivariance, and the existence of an affine action
of G on , whose linear part is the coadjoint action, for which the moment J is
equivariant, is at the cornerstone of Souriau theory of geometric mechanics and Lie
groups thermodynamics. When an element of the group g acts on the element of
the Lie algebra, given by adjoint operator Adg. With respect to the action of the group
Adg bð Þ, the entropy S Qð Þ and the Fisher metric I bð Þ are invariant:

ð13Þ

Souriau completed his “geometric heat theory” by introducing a 2-form in the Lie
algebra, that is a Riemannian metric tensor in the values of adjoint orbit of b, b; Z½ �
with Z an element of the Lie algebra. This metric is given for b;Qð Þ:

gb ¼ b; Z1½ �; b; Z2½ �ð Þ ¼ H Z1ð Þ; b; Z2½ �h iþ Q; Z1; b; Z2½ �½ �h i ð14Þ

whereH is a cocycle of the Lie algebra, defined byH ¼ Teh with h a cocycle of the
Lie group defined by h Mð Þ ¼ Q AdM bð Þð Þ � Ad�MQ. We observe that Souriau Rie-
mannian metric, introduced with symplectic cocycle, is a generalization of the Fisher
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metric, that we call the Souriau-Fisher metric, that preserves the property to be defined

as a Hessian of the partition function logarithm gb ¼ � @2U
@b2

¼ @2 logwX

@b2
as in classical

information geometry. We will establish the equality of two terms, between Souriau
definition based on Lie group cocycle H and parameterized by “geometric heat”
Q (element of the dual space of the Lie algebra) and “geometric temperature” b
(element of Lie algebra) and hessian of characteristic function U bð Þ ¼ � logwX bð Þ
with respect to the variable b:

gb b; Z1½ �; b; Z2½ �ð Þ ¼ H Z1ð Þ; b; Z2½ �h iþ Q; Z1 b; Z2½ �½ �h i ¼ @2 logwX

@b2
ð15Þ

If one assumes that U gnð Þ ¼ Ad�gU nð Þþ h gð Þ; g 2 G; n 2 M which means that the
energy satisfies the same equivariance condition as the moment map

, then one has for g 2 G and b 2 X:

wX Adgb

 � ¼ R

M
e� U nð Þ;Adgbh idk nð Þ ¼ R

M
e
� Ad�

g�1U nð Þ;b
D E

dk nð Þ

wX Adgb

 � ¼ R

M
e� U g�1nð Þ�h g�1ð Þ;bh idk nð Þ ¼ e h g�1ð Þ;bh i R

M
e� U g�1nð Þ;bh idk nð Þ

wX Adgb

 � ¼ e h g�1ð Þ;bh iwX bð Þ

U Adgb

 � ¼ � logwX Adgb


 � ¼ U bð Þ � h g�1ð Þ; b� 
ð16Þ

To consider the invariance of Entropy, we have to use the property that

Q Adgb

 � ¼ Ad�gQ bð Þþ h gð Þ ¼ g:Q bð Þ; b 2 X; g 2 G ð17Þ

We can prove the invariance under the action of the group:

s Q Adgb

 �
 � ¼ Q Adgb


 �
;Adgb

� � U Adgb

 �

s Q Adgb

 �
 � ¼ Ad�gQ bð Þþ h gð Þ;Adgb

D E
� U bð Þþ h g�1ð Þ; b� 

s Q Adgb

 �
 � ¼ Ad�gQ bð Þ;Adgb

D E
� U bð Þþ Ad�g�1h gð Þþ h g�1ð Þ; b

D E
s Q Adgb


 �
 � ¼ s Q bð Þð Þ using Ad�g�1h gð Þþ h g�1ð Þ ¼ h g�1gð Þ ¼ 0

ð18Þ

For b 2 X, let gb be the Hessian form on with the potential U bð Þ ¼
� logwX bð Þ For , we define:

gb X; Yð Þ ¼ @2U

@b2
X; Yð Þ ¼ @2

@s@t

� �
s¼t¼0

logwX bþ sX þ tYð Þ ð19Þ

The positive definitiveness is given by Cauchy-Schwarz inequality:
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gb X;Yð Þ ¼ 1
wXðbÞ2

R
M
e� UðnÞ;bh idkðnÞ � R

M
UðnÞ;Xh i2e� UðnÞ;bh idkðnÞ

� R
M

UðnÞ;Xh ie� UðnÞ;bh idkðnÞ
� �2

8>><
>>:

9>>=
>>;

¼ 1
wXðbÞ2

R
M

e� UðnÞ;bh i=2
 �2
dkðnÞ � R

M
UðnÞ;Xh ie� UðnÞ;bh i=2
 �2

dkðnÞ

� R
M
e� UðnÞ;bh i=2 � UðnÞ;Xh ie� UðnÞ;bh i=2dkðnÞ

� �2

8>><
>>:

9>>=
>>;� 0

ð20Þ

We observe that gbðX;XÞ ¼ 0 if and only if U nð Þ;Xh i is independent of n 2 M,
which means that the set fUðnÞ; n 2 Mg is contained in an affine hyperplane in

perpendicular to the vector . We have seen that gb ¼ @2U
@b2

, that is a generalization

of classical Fisher metric from Information geometry, and will give the relation the
Riemannian metric introduced by Souriau.

ð21Þ

we have for any

Q Adgb

 �

; Y
�  ¼ QðbÞ;Adg�1Y

� þ hðgÞ; Yh i ð22Þ

Let us differentiate the above expression with respect to g. Namely, we substitute
g ¼ expðtZ1Þ; t 2 R and differentiate at t = 0. Then the left-hand side of (22) becomes

d
dt

� �
t¼0

Q bþ t½Z1; b� þ oðt2Þ
 �
; Y

�  ¼ @Q
@b

½Z1; b�ð Þ; Y
� �

ð23Þ

and the right-hand side of (22) is calculated as:

d
dt


 �
t¼0 QðbÞ; Y � t½Z1; Y � þ oðt2Þ� þ h Iþ tZ1 þ oðt2Þð Þ; Y� 

¼ � QðbÞ; ½Z1; Y �h iþ dhðZ1Þ; Yh i ð24Þ

Therefore,

dQ
db

½Z1; b�ð Þ; Y
� �

¼ dhðZ1Þ; Yh i � QðbÞ; ½Z1; Y �h i ð25Þ

Substituting Y ¼ � b; Z2½ �to the above expression:

gb ½b; Z1�; ½b; Z2�ð Þ ¼ � dQ
db

½Z1; b�ð Þ; ½b; Z2�
� �

gb ½b; Z1�; ½b; Z2�ð Þ ¼ dhðZ1Þ; ½b; Z2�h iþ QðbÞ; Z1; ½b; Z2�½ �h i
ð26Þ
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We define then symplectic 2-cocycle and the tensor:

HðZ1Þ ¼ dhðZ1ÞeHðZ1; Z2Þ ¼ HðZ1Þ; Z2h i ¼ J½Z1;Z2� � fJZ1 ; JZ2g
ð27Þ

Considering eHbðZ1;Z2Þ ¼ Qðb1Þ; ½Z1; Z2�h iþ eHðZ1; Z2Þ, that is an extension of
KKS (Kirillov-Kostant-Souriau) 2 form in the case of non-null cohomology. Intro-
duced by Souriau, we can define this extension Fisher metric with 2-form of Souriau:

gb ½b; Z1�; ½b; Z2�ð Þ ¼ eHb Z1; ½b; Z2�ð Þ ð28Þ

As the entropy is defined by the Legendre transform of the characteristic function, a
dual metric of the Fisher metric is also given by the hessian of “geometric entropy”

SðQÞ with respect to the dual variable given by Q: @2SðQÞ
@Q2 . The Fisher metric has been

considered by Souriau as a generalization of “heat capacity”. Souriau called it K the

“geometric capacity”:IðbÞ ¼ � @2UðbÞ
@b2

¼ � @Q
@b.

3 Entropy Characterization as Generalized Casimir
Invariant Function in Coadjoint Representation

In his 1974 paper, Jean-Marie Souriau has written Q; ½b; Z�h iþ eHðb; ZÞ ¼ 0. To prove
this equation, we have to consider the parametrized curve

. The parameterized curve Adexp tZð Þb passes, for
t ¼ 0, through the point b, since Adexp 0ð Þ is the identical map of the Lie Algebra . This
curve is in the adjoint orbit of b. So by taking its derivative with respect to t, then for
t ¼ 0, we obtain a tangent vector in b at the adjoint orbit of this point. When Z takes all
possible values in , the vectors thus obtained generate all the vector space tangent in b
to the orbit of this point:

dU Adexp tZð Þb

 �

dt

����
t¼0

=
dU
db

;
d Adexp tZð Þb

 �

dt

����
t¼0

� �� �
= Q; adZbh i = Q; Z; b½ �h i ð29Þ

As we have seen before U Adgb

 � ¼ U bð Þ � h g�1ð Þ; b� 

. If we set g ¼ exp tZð Þ, we
obtain U Adexp tZð Þb


 � ¼ U bð Þ � h exp �tZð Þð Þ; bh i and by derivation with respect to t at
t ¼ 0, we finally recover the equation given by Souriau:

dU Adexp tZð Þb

 �

dt

����
t¼0

= Q; Z; b½ �h i ¼ � dhð�ZÞ; bh i with ~H X;Yð Þ ¼ � dhðXÞ; Yh i

ð30Þ

Souriau has stopped by this last equation, the characterization of Group action on

Q ¼ dU
db. Souriau has observed that S Q AdgðbÞ


 �� 	 ¼ S Ad�gðQÞþ hðgÞ
h i

¼ SðQÞ. We
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propose to characterize more explicitly this invariance, by characterizing Entropy as
an invariant Casimir function in coadjoint representation. From last Souriau

equation, if we use the identities b ¼ @S
@Q, adbZ ¼ ½b; Z� and eHðb; ZÞ ¼ HðbÞ;Zh i, then

we can deduce that ad�@S
@Q
QþH @S

@Q

� �
; Z

� �
¼ 0; 8Z. So, Entropy SðQÞ should verify

ad�@S
@Q
QþH @S

@Q

� �
¼ 0, characterizes an invariant Casimir function in case of non-null

cohomology, that we propose to write with Poisson brackets, where:

ð31Þ

We have observed that Souriau Entropy is a Casimir function in case with non-null
cohomology when an additional cocycle should be taken into account. Indeed,
infinitesimal variation is characterized by the following differentiation:

d
dt
S Q AdexpðtxÞb


 �
 �����
t¼0

¼ d
dt
S Ad�expðtxÞQþ hðexpðtxÞÞ
� �����

t¼0

¼ � ad�@S
@Q
QþH

@S
@Q

� �
; x

� �
:

We recover extended Casimir equation in case of non-null cohomology verified by

Entropy, ad�@S
@Q
QþH @S

@Q

� �
¼ 0, and then the generalized Casimir condition

fS;HgeHðQÞ ¼ 0. Hamiltonian motion on these affine coadjoint orbits is given by the

solutions of the Lie-Poisson equations with cocycle.
The identification of Entropy as an Invariant Casimir Function in Coadjoint rep-

resentation is also important in Information Theory, because classically Entropy is
introduced axiomatically. With this new approach, we can build Entropy by con-
structing the Casimir Function associated to the Lie group and also in case of non-null
cohomology.

This new equation is important because it introduces new structure of differential
equation in case of non-null cohomology. For an arbitrary Hamiltonian

dQ
dt ¼ ad�@H

@Q
QþH @H

@Q

� �
because it allows extending stochastic perturbation

of the Lie-Poisson equation with cocycle within the setting of stochastic Hamiltonian
dynamics, which preserves the affine coadjoint orbits [22]. This previous Lie-Poisson
equation is equivalent to the modified Lie-Poisson variational principle:

424 F. Barbaresco



From this Lie-Poisson equation, we can introduce a Geometric Heat Fourier
Equation:

@Q
@t

¼ @Q
@b

:
@b
@t

¼ ad�@H
@Q
QþH

@H
@Q

� �
= Q;Hf g ~H ð32Þ

where @Q
@b geometric heat capacity is given by gb X; Yð Þ ¼ � @Q

@b ðXÞ; Y
D E

for

with gb X; Yð Þ ¼ ~Hb X; Yð Þ ¼ Q bð Þ; X; Y½ �h iþ ~H X; Yð Þ related to Souriau-
Fisher tensor Heat Eq. (32) is the PDE for (calorific) Energy density where the nat-
ure of material is characterized by the geometric heat capacity. In the Euclidean case
with homogeneous material, we recover classical equation [24]:

@qE
@t

¼ div
k
C
rqE

� �
with

@qE
@t

¼ C
@T
@t

:

The link with 2nd principle of Thermodynamics will be deduced from positivity
of Souriau-Fisher metric:

Archetypal Model of Entropy by Poisson Cohomology 425



S Qð Þ ¼ Q; bh i � U bð Þ with dQ
dt ¼ ad�@H

@Q
QþH @H

@Q

� �
dS
dt ¼ Q; dbdt

D E
þ ad�@H

@Q
QþH @H

@Q

� �
; b

� �
� dU

dt ¼ Q; dbdt

D E
þ ad�@H

@Q
Q; b

� �
þ H @H

@Q

� �
; b

D E
� dU

dt

dS
dt ¼ Q; dbdt

D E
þ Q; @H

@Q ; b
h iD E

þ ~H @H
@Q ; b

� �
� dU

dt ¼ Q; dbdt

D E
þ ~Hb

@H
@Q ; b

� �
� @U

@b ;
db
dt

D E
dS
dt ¼ Q; dbdt

D E
þ ~Hb

@H
@Q ; b

� �
� @U

@b ;
db
dt

D E
with @U

@b ¼ Q

dS
dt ¼ ~Hb

@H
@Q ; b

� �
� 0; 8H (link to positivity of Fisher metric)

if H ¼ S )
@S
@Q¼b

dS
dt ¼ ~Hb b; bð Þ ¼ 0 because b 2 Ker ~Hb

ð33Þ

Entropy production is then linked with Souriau-Fisher structure, dS ¼
eHb

@H
@Q ; b

� �
dt with eHb

@H
@Q ; b

� �
¼ eH @H

@Q ; b
� �

þ Q; @H
@Q ; b
h iD E

Souriau-Fisher tensor.

The 2 equations characterizing Entropy as invariant Casimir function are related by:

fS;HgeHðQÞ ¼ Q; @S
@Q ;

@H
@Q

h iD E
þ H @S

@Q

� �
; @H@Q

D E
¼ 0

fS;HgeHðQÞ ¼ Q; ad@S
@Q

@H
@Q

D E
þ H @S

@Q

� �
; @H@Q

D E
¼ 0

fS;HgeHðQÞ ¼ ad�@S
@Q
Q; @H@Q

� �
þ H @S

@Q

� �
; @H@Q

D E
¼ 0

8H; fS;HgeHðQÞ ¼ ad�@S
@Q
QþH @S

@Q

� �
þ ; @H@Q

� �
¼ 0 ) ad�@S

@Q
QþH @S

@Q

� �
¼ 0

ð34Þ

This equation was observed by Souriau in his paper of 1974, where he has written

that geometric temperature b is a kernel of eHb, that is written:

b 2 Ker eHb ) Q; ½b; Z�h iþ eH b; Zð Þ ¼ 0 ð35Þ

That we can develop to recover the Casimir equation:

) Q; adbZ
� þ eH b; Zð Þ ¼ 0 ) ad�bQ; Z

D E
þ eH b; Zð Þ ¼ 0

b ¼ @S
@Q ) ad�@S

@Q
Q; Z

� �
þ eH @S

@Q ; Z
� �

¼ ad�@S
@Q
QþH @S

@Q ; Z

� �
¼ 0 8Z

) ad�@S
@Q
QþH @S

@Q

� �
¼ 0

ð36Þ
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4 Koszul Poisson Cohomology and Entropy Characterization

Poisson Cohomology was introduced by A. Lichnerowicz [26] and J.L. Koszul [27].
Koszul made reference to seminal E. Cartan paper [28, 31] “Elie Cartan does not
explicitly mention K g'ð Þ [the complex of alternate forms on a Lie algebra], because he
treats groups as symmetrical spaces and is therefore interested in differential forms
which are invariant to both by the translations to the left and the translations to the
right, which corresponds to the elements of K g'ð Þ invariant by the prolongation of the
coadjoint representation. Nevertheless, it can be said that by 1929 an essential piece of
the cohomological theory of Lie algebras was in place”. A. Lichnerowics defined
Poisson structure by considering generalization of Symplectic structures which involve
contravariant tensor fields rather than differential forms and by observing that the
Schouten-Nijenhuis bracket allows to write an intrinsic, coordinate free form, Poisson
structure. Let’s consider adPQ ¼ P;Q½ �, where adP is a graded linear endomorphism of
degree p − 1 of A(M). From graded Jacobi identity we can write [29]:

adP Q;R½ � ¼ adPQ;R½ � þ ð�1Þðp�1Þðq�1Þ Q; adpR
� 	

ad½P;Q� ¼ adP � adQ � ð�1Þðp�1Þðq�1ÞadQ � adP
ð37Þ

First equation of (37) means that the graded endormorphims adPQ ¼ P;Q½ �, of
degree p − 1, is a derivation of the graded Lie algebra A(M) with the Schouten-
Nijenhuis bracket as composition law. The second equation of (37) means that the
endomorphism ad P;Q½ � is the graded commutator of endomorphisms adP and adQ.
Y. Vorob’ev and M.V. Karasev [30] have suggested cohomology classification in terms
of closed forms and de Rham Cohomology of coadjoint orbits X (called Euler orbits by
authors), symplectic leaves of a Poisson manifold N. Let Zk Xð Þ and Hk Xð Þ be the space
of closed k-forms on X and their de Rham cohomology classes. Considering the base of
the fibration of N by these orbits as N=X, they have introduced the smooth mapping
Zk X½ � ¼ C1 N=X ! Zk Xð Þ
 �

and Hk X½ � ¼ C1 N=X ! Hk Xð Þ
 �
. The elements of

Zk X½ � are closed forms on X, depending on coordinates on N=X. Then H0 X½ � ¼
Casim Nð Þ is the set of Casimir functions on N, of functions which are constant on
all Euler orbits. In the framework of Lie Groups Thermodynamics, Entropy is
then characterized by zero-dimensional de Rham Cohomology. For arbitrary
v 2 V Nð Þ, with the set V Nð Þ of all vector field on N, the tensor Dv defines a closed 2-
form a Dvð Þ ¼ Z2 X½ �, and if v 2 V Nð Þ annihilates H0 X½ � ¼ Casim Nð Þ, then this form is
exact. The center of Poisson algebra [25] induced from the symplectic structure is the
zero-dimensional de Rham cohomology group, the Casimir functions.
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Abstract. We present a simulation scheme for simulating Brownian
bridges on complete and connected Lie groups. We show how this simula-
tion scheme leads to absolute continuity of the Brownian bridge measure
with respect to the guided process measure. This result generalizes the
Euclidean result of Delyon and Hu to Lie groups. We present numerical
results of the guided process in the Lie group SO(3). In particular, we
apply importance sampling to estimate the metric on SO(3) using an
iterative maximum likelihood method.

Keywords: Brownian motion · Brownian bridge simulation ·
Importance sampling · Lie groups · Metric estimation

1 Introduction

Bridge simulation techniques are known to play a fundamental role in statistical
inference for diffusion processes. Diffusion bridges in manifolds have mainly been
used to provide gradient and hessian estimates. To the best of our knowledge,
this paper is the first to describe a simulation technique for diffusion bridges in
the context of Lie groups.

The paper is organized as follows. In Sect. 2, we describe some background
theory of Lie groups, Brownian motions, and Brownian bridges in Riemannian
manifolds. Section 3 presents the theory and results. Section 4 shows in practice
the simulation scheme in the Lie group SO(3). Using importance sampling, we
obtain an estimate of the underlying unknown metric.

2 Notation and Background

Lie Groups. Throughout, we let G denote a connected Lie Group of dimension
d, i.e., a smooth manifold with a group structure such that the group operations
G×G � (x, y)

μ�→ xy ∈ G and G � x
ι�→ x−1 ∈ G are smooth maps. If x ∈ G, the
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left-multiplication map, Lxy, defined by y �→ μ(x, y), is a diffeomorphism from
G to itself. Similarly, the right-multiplication map Rxy defines a diffeomorphism
from G to itself by y �→ μ(y, x). We assume throughout that G acts on itself
by left-multiplication. Let dLx : TG → TG denote the pushforward map given
by (dLx)y : TyG → TxyG. A vector field V on G is said to be left-invariant if
(dLx)yV (y) = V (xy). The space of left-invariant vector fields is linearly isomor-
phic to TeG, the tangent space at the identity element e ∈ G. By equipping the
tangent space TeG with the Lie bracket we can identify the Lie algebra G with
TeG. The group structure of G makes it possible to define an action of G on its
Lie algebra G. The conjugation map Cx := Lx◦R−1

x : y �→ xyx−1, for x ∈ G, fixes
the identity e. Its pushforward map at e, (dCx)e, is then a linear automorphism
of G. Define Ad(x) := (dCx)e, then Ad: x �→ Ad(x) is the adjoint representation
of G in G. The map G × G � (x, v) �→ Ad(x)v ∈ G is the adjoint action of
G on G. We denote by 〈·, ·〉 a Riemannian metric on G. The metric is said to
be left-invariant if 〈u, v〉y = 〈(dLx)yu, (dLx)yv〉Lx(y)

, for every u, v ∈ TyG, i.e.,
the left-multiplication maps are isometries, for every x ∈ G. In particular, we
say that the metric is Ad(G)-invariant if 〈u, v〉e = 〈Ad(x)u, Ad(x)v〉e, for every
u, v ∈ G. Note that an Ad(G)-invariant inner on G induces a bi-invariant (left-
and right-invariant) metric on G.

Brownian Motion. Endowing a smooth manifold M with a Riemannian met-
ric, g, allows us to define the Laplace-Beltrami operator, ΔMf = div grad f .
This operator is the generalization of the Euclidean Laplacian operator to man-
ifolds. In terms of local coordinates (x1, . . . , xd) the expression for the Laplace-
Beltrami operator becomes ΔMf = det(g)−1/2

(
∂

∂xj
gji det(g)1/2 ∂

∂xi

)
f , where

det(g) denotes the determinant of the Riemannian metric g and gij are the coef-
ficients of the inverse of g. An application of the product rule implies that ΔM

can be rewritten as ΔMf = aij ∂
∂xi

∂
∂xj

f + bj ∂
∂xj

f, where aij = gij , bk = −gijΓ k
ij ,

and Γ denote the Christoffel symbols related to the Riemannian metric. This
diffusion operator defines a Brownian motion on the M , valid up to its first exit
time of the local coordinate chart.

In the case of the Lie group G, the identification of the space of left-invariant
vector fields with the Lie algebra G allows for a global description of ΔG.
Indeed, let {v1, . . . vd} be an orthonormal basis of TeG. Then Vi(x) = (dLx)evi

defines left-invariant vector fields on G and the Laplace-Beltrami operator can
be written as (cf. [6, Proposition 2.5]) ΔGf(x) =

∑d
i=1 V 2

i f(x) − V0f(x),
where V0 =

∑d
i,j=1 Cj

ijVj and Ck
ij denote the structure coefficients given by

[Vi, Vj ] = Ck
ijVk. The corresponding stochastic differential equation (SDE) for

the Brownian motion on G, in terms of left-invariant vector fields, then becomes

dXt = −1
2
V0(Xt)dt + Vi(Xt) ◦ dBi

t, X0 = e, (1)

where ◦ denotes integration in the Stratonovich sense. By [6, Proposition 2.6],
if the inner product is Ad(G) invariant, then V0 = 0. The solution of (1) is
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conservative or non-explosive and is called the left-Brownian motion on G (see [8]
and references therein).

Riemannian Brownian Bridges. In this section, we briefly review some clas-
sical facts on Brownian bridges on Riemannian manifolds. As Lie groups them-
selves are manifolds, the theory carries over mutatis mutandis. However, Lie
groups’ group structure allows the notion of left-invariant vector fields. The iden-
tification of the Lie algebra with the vector space of left-invariant vector fields
makes Lie groups parallelizable. Thus, the frame bundle construction for devel-
oping stochastic processes on manifolds becomes superfluous since left-invariant
vector fields ensure stochastic parallel displacement.

Let Pt
x be the measure of a Riemannian Brownian motion, Xt, at some time

t started at point x. Suppose p denotes the transition density of the Riemannian
Brownian motion. In that case, dPt

x = p(t, x, y)d Vol(y) describes the measure
of the Riemannian Brownian motion, where d Vol(y) is the Riemannian volume
measure. Conditioning the Riemannian Brownian motion to hit some point v
at time T > 0 results in a Riemannian Brownian bridge. Here, P

T
x,v denotes

the corresponding probability measure. The two measures are equivalent over
the time interval [0, T ), however mutually singular at time t = T . The initial
enlargement of the filtration remedies the singularity. The corresponding Radon-
Nikodym derivative is given by

dPT
x,v

dPT
x

∣∣
Fs

=
p(T − s,Xs, v)

p(T, x, v)
for 0 ≤ s < T,

which is a martingale for s < T . The Radon-Nikodym derivative defines the
density for the change of measure and provides the basis for the description
of Brownian bridges. In particular, it provides the conditional expectation
defined by

E[F (Xt)|XT = v] =
E[p(T − t,Xt, v)F (Xt)]

p(T, x, v)
,

for any bounded and Fs-measurable random variable F (Xs). As described in [3],
the Brownian bridge yields an SDE in the frame bundle, FM, given by

dUt = Hi(Ut) ◦ (
dBi

t + Hi log p̃(T − t, Ut, v)dt
)
, U0 = u0, (2)

in terms of the horizontal vector fields (Hi), which is the lifted M -valued Brow-
nian bridge, Xt := π(Ut), where π : FM → M .

3 Simulation of Bridges on Lie Groups

In this section, we consider the task of simulating (1) conditioned to hit v ∈ G,
at time T > 0. The potentially intractable transition density for the solution of
(1) inhibits simulation directly from (2). Instead, we propose to add a guiding
term mimicking that of Delyon and Hu [2], i.e., the guiding term becomes the
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gradient of the distance to v divided by the time to arrival. The SDE for the
guided diffusion becomes

dYt = −1
2
V0(Yt)dt + Vi(Yt) ◦

(
dBi

t −
(∇yd(Yt, v)2

)i

2(T − t)
dt

)
, Y0 = e, (3)

where d denotes the Riemannian distance function. Note that we can always, for
convenience, take the initial value to be the identity e.

Radial Process. We denote by rv(·) := d(·, v) the radial process. Due to the
radial process’s singularities on Cut(v) ∪ {v}, the usual Itô’s formula only applies
on subsets away from the cut-locus. The extension beyond the cut-locus of a
Brownian motion’s radial process was due to Kendall [4]. Barden and Le [1,5]
generalized the result to M -semimartingales. The radial process of the Brownian
motion (1) is given by

r(Xt) = r(X0)2 +
∫ t

0

〈∇r(Xs), V (Xs)dBs〉 +
1
2

∫ t

0

ΔGr(Xs)ds − Ls(X), (4)

where L is the geometric local time of the cut-locus Cut(v), which is non-
decreasing continuous random functional increasing only when X is in Cut(v)
(see [1,4,5]). Let Wt :=

∫ t

0

〈
∂
∂r , Vi(Xs)

〉
dBi

s, which is the local-martingale part
in the above equation. The quadratic variation of Wt satisfies d[W,W ]t = dt,
by the orthonormality of {V1, . . . , Vd}, thus Wt is a Brownian motion by Levy’s
characterization theorem. From the stochastic integration by parts formula and
(4) the squared radial process of X satisfies

r(Xt)2 = r(X0)2+2
∫ t

0

r(Xs)dWs +
∫ t

0

r(Xs)ΔGr(Xs)ds−2
∫ t

0

r(Xs)dLs, (5)

where dLs is the random measure associated to Ls(X).
Similarly, we obtain an expression for the squared radial process of Y . Using

the shorthand notation rt := rv(Yt) the radial process then becomes

r2t = r20 + 2
∫ t

0

rsdWs +
∫ t

0

1
2
ΔGr2sds −

∫ t

0

r2s
T − s

ds − 2
∫ t

0

rsdLs. (6)

Imposing a growth condition on the radial process yields an L2-bound on the
radial process of the guided diffusion, [10]. So assume there exist constants ν ≥ 1
and λ ∈ R such that 1

2ΔGr2v ≤ ν + λr2v on D\Cut(v), for every regular domain
D ⊆ G. Then (6) satisfies

E[1t<τD
rv(Yt)2] ≤

(
r2v(e) + νt

(
t

T − t

))(
T − t

t

)2

eλt, (7)

where τD is the first exit time of Y from the domain D.
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Girsanov Change of Measure. Let B be the Brownian motion in R
d defined

on the filtered probability space (Ω,F , (Fs),P) and X the solution of (1). The
process ∇rv(Xt)

2

2(T−t) is an adapted process. As X is non-explosive, we see that

∫ t

0

∥∥∥∥
∇r(Xs)2

2(T − s)

∥∥∥∥
2

ds =
∫ t

0

r(Xs)2

(T − s)2
ds ≤ C, (8)

for every 0 ≤ t < T , almost surely, and for some fixed constant C > 0. Define a
new measure Q by

Zt :=
dQ

dP

∣∣∣∣
Ft

(X) = exp
{

−
∫ t

0

〈∇r(Xs)2

2(T − s)
, V (Xt)dBs

〉
− 1

2

∫ t

0

r(Xs)2

(T − s)2
ds

}
.

(9)
From (8), the process Zt is a martingale, for t ∈ [0, T ), and Qt defines a probabil-
ity measure on each Ft absolutely continuous with respect to P. By Girsanov’s
theorem (see e.g. [3, Theorem 8.1.2]) we get a new process bs which is a Brow-
nian motion under the probability measure Q. Moreover, under the probability
Q, Eq. (1) becomes

dYt = −1
2
V0(Yt)dt + Vi(Yt) ◦

(
dbi

t − r(Yt)
T − t

(
∂

∂r

)i

dt

)
, (10)

where
(

∂
∂r

)i
is the i’th component of the unit radial vector field in the direction

of v. The squared radial vector field is smooth away from Cut(v) and thus we
set it to zero on Cut(v). Away from Cut(v), the squared radial vector field is
2 Logv, which is the inverse exponential at v. The added drift term acts as a
guiding term, which pulls the process towards v at time T > 0.

From (9), we see that E[f(Yt)] = E[f(Xt)Zt]. Using (5) and the iden-
tity ΔGrv = d−1

rv
+ ∂

∂rv
log Θv (see [9]), we equivalently write E[f(Yt)ϕt] =

E[f(Xt)ψt], with

ψt := exp
{−r(Xt)2

2(T − t)

}
ϕt := exp

{∫ t

0

rv(Ys)2

T − s
(dAs + dLs)

}
, (11)

where dAs = ∂
∂rv

log Θv is a random measure supported on G\Cut(v) and Θv is
the Jacobian determinant of Expv.

Delyon and Hu in Lie Groups. This section generalizes the result of Delyon
and Hu [2, Theorem 5] to the Lie group setting. The result can be modified to
incorporate a generalization of [2, Theorem 6].

Theorem 1. Let X be the solution of (1). The SDE (3) yields a strong solution
on [0, T ) and satisfies limt↑T Yt = v almost surely. Moreover, the conditional
expectation of X given XT = v is

E[f(X)|XT = v] = CE [f(Y )ϕT ] , (12)

for every Ft-measurable non-negative function f on G, t < T , where ϕt is given
in (11).
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Proof. The result is a consequence of the change of measure together with
Lemma 1, Lemma 2, and Lemma 3.

Lemma 1. The solution of SDE (3) satisfies limt→T Yt = v almost surely.

Proof. Let {Dn}∞
n=1 be an exhaustion of G, that is, the sequence consists of

open, relatively compact subsets of M such that D̄n ⊆ Dn+1 and G =
⋃∞

n=1 Dn.
Furthermore, let τDn

denote the first exit time of Y from Dn, then from (7) we
have that the sequence

(
E[1{t<τDn }r2v(Yt)]

)∞
n=1

is non-decreasing and bounded,
hence from the monotone convergence theorem, it has a limit which is bounded
by the right-hand side of (7). Applying Jensen’s inequality to the left-hand side
of (7)

E[rv(Yt)] ≤
(

r2v(e) + νt

(
t

T − t

)) 1
2

(
T − t

t

)
e

λt
2 .

Since obviously E[rv(YT )] = rv(YT )Q(rv(YT ) �= 0), by Fatou’s lemma
E[rv(YT )] ≤ lim inft→T E[r(Yt)] = 0, we conclude that r(Yt) → 0, Q-almost
surely.

Lemma 2. Let 0 < t1 < t2 < · · · < tN < T and h be a continuous bounded
function on GN . With ψt as in (11), then

lim
t→T

E [h (Xt1 ,Xt2 , . . . , XtN
) ψt]

E[ψt]
= E [h (Xt1 ,Xt2 , . . . , XtN

) |XT = v] . (13)

Proof. The proof is similar to that of [2, Lemma 7]. Let (U, φ) be a normal chart
centered at v ∈ G. First, since the cut locus of any complete connected manifold
has (volume) measure zero, we can integrate indifferently in any normal chart.
For any t ∈ (tN , T ) we have

E[h(xt1 , ..., xtN
)ψt] =

∫

G

Φh(t, z)e− rv(z)2

2(T −t) d Vol(z) (14)

where d Vol(z) =
√

det(A(z))dz denotes the volume measure on G, dz the
Lebesgue measure, and A the metric tensor. Moreover,

Φh(t, z) =
∫

GN

h(z1, ..., zN )p(t1, u, z1) · · · p(t − tN , zN , z)d Vol(z1) · · · d Vol(zN ),

and of course Φ1(t, z) = p(t, e, z). Using the normal chart and applying the
change of variable x = (T − t)1/2y we get

(T − t)− d
2E[h(xt1 , ..., xtN

)ψt]
t→T→ Φh(T, v) det(A(v))

d
2

∫

φ(G)

e− rv(φ−1(y))2

2 dy.

The conclusion follows from Bayes’ formula.

Lemma 3. With ϕt as defined above then ϕt
L1→ ϕT .

Proof. Note that for each t ∈ [0, T ) we have E
Q[ϕt] < ∞ as well as ϕt → ϕT

almost surely by Lemma 1. The result then follows from the uniform integrability
of {ϕt : t ∈ [0, T )}, which can be found in Appendix C.2 in [9].
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4 Importance Sampling and Metric Estimation on SO(3)

This section takes G to be the special orthogonal group of rotation matrices,
SO(3), a compact connected matrix Lie group. In the context of matrix Lie
groups, computing left-invariant vector fields is straightforward.

(a) (b) (c)

Fig. 1. Three sample paths (a)–(c) of the guided diffusion process on SO(3) visualized
by its action on the basis vectors {e1, e2, e3} (red, green, blue) of R3. The sample paths
are conditioned to hit the rotation represented by the black vectors. (Color figure
online)

Numerical Simulations. The Euler-Heun scheme leads to approximation of
the Stratonovich integral. With a time discretization t1, . . . , tk, tk − tk−1 = Δt
and corresponding noise ΔBti

∼ N(0,Δt), the numerical approximation of the
Brownian motion (1) takes the form

xtk+1 = xtk
− 1

2

∑
j,i

Cj
ij Vi(xtk

)Δt +
vtk+1 + Vi(vtk+1 + xtk+1)ΔBi

tk

2
(15)

where vtk+1 = Vi(xtk
)ΔBi

tk
is only used as an intermediate value in integration.

Adding the logarithmic term in (10) to (15) we obtain a numerical approximation
of a guided diffusion (3). Figure 1 shows three different sample paths from the
guided diffusion conditioned to hit the rotation represented by the black vectors.

Metric Estimation on SO(3). In the d-dimensional Euclidean case, impor-
tance sampling yields the estimate [7]

p(T, u, v) =
(

det (A(T, v))
2πT

)d
2

e− ‖u−v‖2
A

2T E[ϕT ],

where ‖x‖A = xT A(0, u)x. Thus, from the output of the importance sampling
we get an estimate of the transition density. Similar to the Euclidean case, we
obtain an expression for the heat kernel p(T, e, v) as p(T, e, v) = q(T, e)E [ϕT ],
where
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q(T, e) =

(
det A(v)

2πT

) 3
2

exp

(
−d(e, v)2

2T

)
=

(
det A(v)

2πT

) 3
2

exp

(
−‖Logv(e)‖2

A

2T

)
,

(16)
where the equality holds almost everywhere and A ∈ Sym+(G) denotes the metric
A(e). The Logv map in (16) is the Riemannian inverse exponential map.

Figure 2 illustrate how importance sampling on SO(3) leads to metric esti-
mation of the underlying true metric, from which the Brownian motion was
generated. We sampled 128 points as endpoints of a Brownian motion from the
metric diag(0.2, 0.2, 0.8). We used 20 time steps and sampled 4 bridges per obser-
vation. An iterative maximum likelihood method using gradient descent with a
learning rate of 0.2, and initial guess of the metric being diag(1, 1, 1) yielded
a convergence to the true metric. Note that in iteration the logarithmic map
changes.

(a) Estimation of the unknown underly-
ing metric using bridge sampling. Here
the true metric is the diagonal matrix
diag(0.2, 0.2, 0.8).

(b) The iterative log-likelihood.

Fig. 2. The importance sampling technique applies to metric estimation on the Lie
group SO(3). Sampling a Brownian motion from an unknown underlying metric we
obtain a convergence to the true underlying metric using an iterative maximum-
likelihood method. Here we sampled 4 bridge processes per observation, starting from
the metric diag(1, 1, 1), providing a relatively smooth iterative likelihood in 2b.
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Abstract. The modal analysis is revisited through the symplectic for-
malism, what leads to two intertwined eigenproblems. Studying the prop-
erties of the solutions, we prove that they form a canonical basis. The
method is general and works even if the Hamiltonian is not the sum of the
potential and kinetic energies. On this ground, we want to address the
following problem: data being given in the form of one or more structural
evolutions, we want to construct an approximation of the Hamiltonian
from a covariant snapshot matrix and to perform a symplectic decompo-
sition. We prove the convergence properties of the method when the time
discretization is refined. If the data cloud is not enough rich, we extract
the principal component of the Hamiltonian corresponding to the lead-
ing modes, allowing to perform a model order reduction for very high
dimension models. The method is illustrated by a numerical example.

Keywords: Symplectic mechanics · Modal analysis · Model order
reduction · Principal component analysis

1 Introduction

In structural mechanics, the modal analysis coupled with the finite element
method is widely used by engineers to determine the eigenmodes and eigen-
frequencies of linear dynamical systems [2].

Very large numerical models are ubiquitous in structural dynamics. Working
in high dimension spaces is time-consuming, often intractable and requires stor-
ing big pieces of data, hence the need to simplify the models to make them easier
and faster to interpret by users. The Proper Orthogonal Decomposition (POD)
is one of the most successfully used model reduction technique for nonlinear sys-
tems [1]. Nevertheless, it is based on the metric structure of the configuration
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space, while for dynamical systems the phase space is naturally equipped with
a symplectic structure [3,5].

The aim of the present work is, for large scale conservative systems, to develop
a new method of Proper Symplectic Decomposition (PSD) able to extract the
leading eigenmodes of the modal analysis and the principal component of the
Hamiltonian of the system from a data cloud comprised of one or many evolutions
of the system subjected to external excitations.

In modern literature, a PSD-based model reduction technique has been pro-
posed by Peng and. Mohseni in [4] where the symplectic projection is determined
from a snapshot matrix solving a nonlinear optimization problem for linear sys-
tems. Our strategy is to develop an alternative PSD method leading to a linear
eigenproblem for linear structures, the nonlinear problem being set aside for the
modeling of dissipative systems.

2 The Modal Analysis as an Equivalence Problem

The phase space V = R
2N being endowed with the symplectic form:

ω(x,x′) = xTJ x′ = qTp′ − pTq′

where q are the degrees of freedom, p are the moments, xT = (qT ,pT ) and J is
a skew-symmetric matrix. The motion of the system is governed by the canonical
equations

ẋ = ∇ωh = J∇h

where ∇ωh is the symplectic gradient of the Hamiltonian h (or Hamiltonian
vector field). The symplectic matrices S that leave invariant ω (i.e. STJ S = J)
form the symplectic group Sp(2N,R). The dual space V ∗ is equipped with
a Poisson bracket {·, ·} such that {f, g} = ω(∇ωg,∇ωf). The modal analysis
can be rewritten saying there is a symplectic matrix S mapping h(x) and its
Hessian matrix H ∈ V ∗ ⊗ V ∗ onto the Hamiltonian h′(x′) of a reduced system
of independent harmonic oscillators and its diagonal Hessian matrix H ′. The
equivalence problem consists in finding a symplectic matrix S such that:

h′ = h ◦ S, then STHS = H ′

3 Intertwined Eigenproblems and Spectral Decomposition

As the symplectic form is nondegenerate, there is a natural isomorphism V →
V ∗ : x �→ x∗ = J x that gives rise, in indicial notations, to the operations of
lowering and raising the indices:

x∗
α = Jαβxβ , xβ = (J−1)βαx∗

α

These operations can be extended to any type of tensors. For instance, as the
Hamiltonian is a quadratic form on the symplectic vector space V , the Hessian
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matrix H, of components Hαβ , represents a 2-covariant tensor on V , element of
V ∗ ⊗ V ∗. By raising the first index:

(Hω)α
β = (J−1)αμHμβ

we obtain the components of the matrix Hω representing a linear map from V
into V , then a mixed 1-covariant 1-contravariant tensor, element of V ⊗ V ∗.

Hω = J−1H = −J H

called an Hamiltonian matrix. Decomposing the symplectic matrix into columns
(S = [u1, · · · ,uN ,v1, · · · ,vN ]) leads to two intertwined eigenproblems:

Hωui = kivi, Hωvi = −giui (1)

that can be transformed into a classical eigenproblem:

H2
ωui = λiui (2)

where λi = −kigi. The properties of the eigenmodes are given by the following
result:

Theorem 1. If the Hessian matrix H is positive definite:

– the eigenvalues λ of H2
ω are negative.

– the twin eigenvectors ui and vi of the eigenproblem (1) are not orthogonal:
ω(ui,vi) �= 0.

Scaling the eigenvectors by
ω(ui,vi) = 1 (3)

they form a canonical basis of V .

Remark 1: in practice, if the structure has suffisant supports to avert rigid
displacements, the Hessian matrix is positive definite.

Remark 2: for the particular case of the standard modal analysis where the
Hamiltonian is decoupled:

h(x) =
1
2
pTM−1p +

1
2
qTKq, uT

i =
[
aT

i ,0T
]
, vT

i =
[
0T , (Mai)T

]
(4)

we recover the eigenproblem Kai = ω2
i M ai with λi = −ω2

i and the normal-
ization condition ω(ui,vi) = aT

i M ai = 1.

Remark 3: Our method is more general and allows to treat also cases where
there are terms coupling q and p, for instance in problems with Coriolis’ force
or electromagnetic fields.
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Another result of interest is:

Theorem 2. If (u1, · · · ,uN ,v1, · · · ,vN ) is a canonical basis, u∗
i = −J ui and

v∗
i = J vi , then (v∗

1 , · · · ,v∗
N ,u∗

1, · · · ,u∗
N ) is its dual basis.

Indeed, it leads to the spectral decomposition of the identity of R2N , next of
the Hamiltonian matrix Hω and of the Hessian matrix H:

I2N = vj ⊗ u∗
j + uj ⊗ v∗

j , Hω = gjvj ⊗ u∗
j − kjuj ⊗ v∗

j

H = gju
∗
j ⊗ u∗

j + kjv
∗
j ⊗ v∗

j (5)

4 Proper Symplectic Decomposition (PSD)

We hope to address the following problem: data being given in the form of a
structural evolution [0, T ] → V : t �→ x(t) (or a concatenation of structural
evolutions), we want to construct an approximation of the Hamiltonian of the
system. The functional space of the components of these evolutions is endowed
with the metrics:

(f1 | f2) =
1
T

∫ T

0

f1(t) f2(t) dt (6)

Our method consists in decomposing the interval [0, T ] into m subintervals Ik of
timestep Δtk and reference point tk ∈ Ik. Starting from a structural evolution
[0, T ] → V : t �→ x(t) as data, we construct, through the isomorphism J from V
into its dual V ∗, the covariant snapshot matrix:

X∗ = [Jx(t1), · · · ,Jx(tm)] (7)

representing a map of codomain the dual space V ∗ and of domain the Euclidean
approximation space W of dimension m, equipped with the scalar product
between snapshot vectors fj = [fj(t1), · · · , fj(tm)]T :

(f1,f2) =
1
T

m∑

k=1

f1(tk) f2(tk)Δtk

a discretized version of (6). The corresponding Gram’s matrix of the metrics
being:

Gt =
1
T

diag(Δt1, · · · ,Δtm)

Inspiring from the Singular Value Decomposition (SVD), we introduce the sym-
metric matrix:

H = 2X∗ Gt (X∗)T (8)

which represents a 2-covariant tensor on V and is positive semi-definite because
the metrics of W is positive:

xT X∗Gt (X∗)Tx = ((X∗)Tx, (X∗)Tx) ≥ 0
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Next an approximation of the eigenmodes ui and vi of the system can be
obtained by solving the eigenproblem (2).

Remark: in the SVD, the domain and codomain of the snapshot matrix are
Euclidean spaces, the codomain is not necessarily of even dimension and Gram’s
matrix is the identity. The factor 2 in (8) is required because of the factor 1/2 in
the second order term of the Taylor expansion of the Hamiltonian around x = 0.

5 Convergence Properties of the Method

We would like to show that H given by (8) converges to a matrix which allows
to find the exact eigenvectors and eigenvalues when the time interval of the data
increases and the time discretization is refined. To set these ideas down on a
simple problem of standard modal analysis, we consider the free vibrations of a
discrete system with non null initial velocity. According to the modal decompo-
sition, we have:

q(t) =
N∑

i=1

q̇′
i(0)
ωi

sin(ωit)ai =
N∑

i=1

αi fi(t)ai,

p(t) = M q̇(t) =
N∑

i=1

αi ḟi(t)M ai

with fi(t) = sin(ωit) and ḟi(t) = ωi cos(ωit). The time evolution of the structure
in terms of covariant vector is:

x∗(t) = J x(t) =
[

p(t)
−q(t)

]
=

N∑

i=1

αi

[
ḟi(t)v∗

i − fi(t)u∗
i

]

where (u∗
i )

T =
[
0T ,aT

i

]
, (v∗

i )T =
[
(Mai)T ,0T

]
are the elements of the dual

basis. Owing to (7) and (8) and refining the time discretization, one has:

lim
m→∞H = lim

m→∞
2
T

m∑

k=1

Δtkx
∗(tk) ⊗ x∗(tk) =

2
T

∫ T

0

x∗(t) ⊗ x∗(t) dt

= 2
N∑

i,j=1

αi αj

[
(ḟi | ḟj)v∗

i ⊗ v∗
j − (ḟi | fj)v∗

i ⊗ u∗
j

−(fi | ḟj)u∗
i ⊗ v∗

j + (fi | fj)u∗
i ⊗ u∗

j

]

where:

(fi | fi) =
1
2

[
1 − sin(2ωiT )

2ωiT

]
, (ḟi | ḟi) =

ω2
i

2

[
1 +

sin(2ωiT )
2ωiT

]

When T approaches +∞, one has:

lim
T→∞

(fi | fi) =
1
2
, lim

T→∞
(ḟi | ḟi) =

ω2
i

2
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The other scalar product above approaching zero, then it remains:

lim
T→∞

lim
m→∞H = 2

N∑

i=1

α2
i [(fi | fi)u∗

i ⊗ u∗
i + (ḟi | ḟi)v∗

i ⊗ v∗
i ]

lim
T→∞

lim
m→∞H =

N∑

i=1

α2
i [u∗

i ⊗ u∗
i + ω2

i v
∗
i ⊗ v∗

i ]

Comparing to the spectral decomposition (5) we obtain by identification:

gi = α2
i , ki = α2

i ω
2
i , λi = −kigi = −α4

i ω
2
i (9)

Solving the eigenproblem (2), we would find the exact orthogonal modes.
With sufficiently large values of T and m, good approximations of these modes
are expected.

6 Numerical Application

To illustrate the method, let us consider an elastic bar in traction-compression
of length L, cross-section area S, made of a material of elasticity modulus E and
mass μ per length unit. The truss is clamped at the extremity x = 0 and free
at the extremity x = L. We approximate the displacement field by a polynomial
function of degree two. Taking into account the support condition, it reads:

u(x) =
x

L
q1 +

( x

L

)2

q2

where q1 and q2 are the components of the vector q. The stiffness and mass
matrix are:

K =
E S

L

[
1 1
1 4

3

]
, M = μL

[
1
3

1
4

1
4

1
5

]

For sake of easiness, the units are choosen in such way that E S/L = μL = 1.
Solving the eigenvalue problem (2), we obtain two negative eigenvalues with
multiplicity 2:

λ1 = −32.18070, λ2 = −2.48596 (10)

In terms of of circular frequency ωi =
√−λi and period Ti, we have ω1 =

5.672, ω2 = 1.556, T1 = 1.107, T2 = 3.985. The corresponding twin eigenvectors
are for λ1:

u1 =

⎡

⎢
⎢
⎣

−6.4220
8.8665

0.0
0.0

⎤

⎥
⎥
⎦ , v1 =

⎡

⎢
⎢
⎣

0.0
0.0

0.075962
0.16780

⎤

⎥
⎥
⎦ (11)

and for λ2:

u2 =

⎡

⎢
⎢
⎣

−19.586
8.8665

0.0
0.0

⎤

⎥
⎥
⎦ , v2 =

⎡

⎢
⎢
⎣

0.0
0.0

−0.57233
−0.41453

⎤

⎥
⎥
⎦ (12)
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Table 1. Sample α1 = α2 = 1, eigenvalues of H2
ω

T m Value of λ′
1 Value of λ′

2 Error on λ′
1 Error on λ′

2

10 10 −31.83290 −2.21129 1.08 10−2 0.11

10 40 −32.23037 −2.46422 1.54 10−3 8.74 10−3

20 100 −32.18026 −2.48581 1.35 10−5 5.90 10−5

+∞ +∞ −32.18070 −2.48596 – –

They are of the form (4) for a standard Hamiltonian. They form a canonical
basis of V .

That being said, we examine three data samples:

– Sample 1: equilibrated combination of the two modes (α1 = α2 = 1)
as data:

q(t) =
[−6.4220

8.8665

]
sin(5.672 t) +

[−19.586
8.8665

]
sin(1.556 t)

We divide the time interval form 0 to T into m subintervals of same timestep.
The snapshots are provided at the middle point of each subinterval. Com-
puting the matrices (7) and (8), next solving the eigenvalue problem (2), we
obtain two eigenvalues λi of multiplicity 2. Their numerical values are given
in Table 1 for some values of T and m. The last row gives the reference values
(10). The two latter columns provide the relative error | λ′

i − λi | / | λi | with
respect to these reference values λi. We observe the convergence when increas-
ing T and m. The corresponding eigenvectors are given within a factor. After
normalization according to the condition (3), we obtain the approximations
u′

i,v
′
i of the twin vectors. The relative errors:

‖ u′
i − ui ‖ / ‖ ui ‖, ‖ v′

i − vi ‖ / ‖ vi ‖

with respect to the expected values (11) and (12) are given in Table 2 for
T = 20 and m = 100. The corresponding approximation of the Hessian
matrix of the Hamiltonian is:

H ′ =

⎡

⎢
⎢
⎣

0.99872 0.99634 −3.7182 10−3 4.6590 10−3

0.99634 1.3301 3.6907 10−3 −4.7010 10−3

−3.7182 10−3 3.6907 10−3 47.809 −59.767
4.659 10−3 −4.7010 10−3 −59.767 79.699

⎤

⎥
⎥
⎦ (13)

Table 2. Sample α1 = α2 = 1, error on the eigenvectors of H2
ω

Eigenvectors u1 v1 u2 v2

Relative error 3.18% 0.64% 0.88% 0.02%
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By comparison with the exact matrix, the maximum error on the entries is
0.397%. In a nutshell, when the data is the sum of the eigenmodes, we are
able to deduce from the snapshot matrix a very accurate expression of the
Hamiltonian.

– Sample 2: non equilibrated combination of the two modes (α1 = 1/2,
α2 = 1) as data:

q(t) = 0.5
[−6.4220

8.8665

]
sin(5.672 t) +

[−19.586
8.8665

]
sin(1.556 t)

In Table 3, we compare the numerical values of the eigenvalues λ′
i to the

reference values λi given by (9). The twin eigenvectors corresponding to λ′
1

(resp. λ′
2) are very close to the reference values (11), (12).

Table 3. Sample α1 = 1/2, α2 = 1, eigenvalues of H2
ω

T m Value of λ′
1 Value of λ′

2 Error on λ′
1 Error on λ′

2

20 100 −2.01087 −2.48629 2.07 10−4 1.34 10−4

+∞ +∞ −2.01129 −2.48596 – –

– Sample 3: only the second eigenmode (α1 = 0, α2 = 1) as data:

q(t) =
[−19.586

8.8665

]
sin(1.556 t)

With T = 20 and m = 100, we obtain two eigenvalues of multiplicity 2:

λ′
1 = −5.5511 · 10−17, λ′

2 = −2.48592

In terms of absolute values, the latter eigenvalue overwhelms the former one,
that is expected because the data are provided only by the second eigenmode.

7 Conclusions and Perspectives

The main interest of the method is, for large scale systems, to extract from exper-
imental data or numerical simulations the principal component of the Hamilto-
nian, operation that can be done offline from a big data cloud. Next, the reduced
system can be used online to predict the response to given excitations by solving
a canonical equation system of small size. Besides, whenever the data cloud is
enriched, the Hamiltonian can be updated, according to the machine learning
process.

The application realm of the proposed method is not limited to the structural
mechanics but can be extended to the homogenization of materials to find the
effective properties by considering a reference elementary volume [6]. In the
future, we hope to extend the approach also to dissipative dynamical systems,
first in the linear case of damping, next to the nonlinear case of elastoplasticity
and viscoelastoplasticity.
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Abstract. We discuss non-relativistic limits of general relativity. In par-
ticular, we define a special fine-tuned non-relativistic limit, inspired by
string theory, where the Einstein-Hilbert action has been supplemented
by the kinetic term of a one-form gauge field. Taking the limit, a cru-
cial cancellation takes place, in an expansion of the action in terms of
powers of the velocity of light, between a leading divergence coming
from the spin-connection squared term and another infinity that origi-
nates from the kinetic term of the one-form gauge field such that the
finite invariant non-relativistic gravity action is given by the next sub-
leading term. This non-relativistic action allows an underlying torsional
Newton-Cartan geometry as opposed to the zero torsion Newton-Cartan
geometry that follows from a more standard limit of General Relativ-
ity but it lacks the Poisson equation for the Newton potential. We will
mention extensions of the model to include this Poisson equation.

Keywords: Newton-Cartan geometry · Torsion

1 Introduction

Eight years after the invention of General Relativity by Albert Einstein giving
a frame-independent formulation of relativistic gravity [1] it was Élie Cartan
who applied the same geometric formulation used by Einstein to give a frame-
independent reformulation of Newtonian gravity called Newton-Cartan (NC)
gravity [2]. The geometry underlying NC gravity that plays the same role as
the Riemannian geometry in General Relativity is called NC geometry. The
distinguishing feature of NC geometry is that it allows an absolute time direction,
upon which all observers agree.

To obtain NC gravity as a non-relativistic (NR) limit of General Relativ-
ity, one usually introduces, beyond the relativistic Vierbein field, an additional
one-form gauge field Mμ which, before taking the limit, plays the role of the
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U(1) gauge field corresponding to particle-antiparticle conservation. In the usual
approach, see, e.g., [4], one does not associate a physical degree to Mμ and, cor-
respondingly, assumes that Mμ is closed, i.e. ∂[μMν] = 0. Since this constraint
cannot be derived from an action one can only take this limit at the level of
the equations of motion. Using a second-order formulation of general relativity,
the NR limit is then defined by redefining the Vierbein components plus the
additional U(1) gauge field Mμ as follows:

Eμ
0 = c τμ +

1
c

mμ; Eμ
A′

= eμ
A′

; Mμ = c τμ (1)

and taking the limit that c goes to infinity. After taking this limit, one can
identify τμ and eμ

A′
with the NC Vierbein fields. The NR gauge field mμ plays

the role of the NR central charge gauge field corresponding to particle conser-
vation thereby extending the underlying Galilei algebra to a centrally extended
Bargmann algebra.

Substituting the last expression of (1) into the condition ∂[μMν] = 0 and
taking the limit that c goes to infinity, one obtains the zero torsion constraint
∂[μτν] = 0. This is a geometric constraint that defines the standard NC geometry
with zero torsion. It has the effect that the time difference ΔT measured by an
observer following a path between two time slices t = t1 and t = t2

ΔT =
∫

C

τμdxμ (2)

is independent of the path C between t = t1 and t = t2 taken by the observer,
i.e. all observers agree about the time difference ΔT . This is the defining property
of a Newtonian spacetime with a one-dimensional foliation. Taking the NR limit
of the Einstein equations using the zero torsion constraint leads to the usual NC
gravity equations of motion whose number is the same as the Einstein equations
of motion. These equations involve the Poisson equation of the Newton potential
which is identified with the time component τμmμ of the central charge gauge
field mμ.

The procedure described above is the standard way to derive the NC gravity
equations of motion. A characteristic feature of this limit is that it is only defined
at the level of the equations of motion and that one automatically ends up with
the zero torsion constraint. It is the purpose of this work to show that, in a sense
to be discussed below, a limit at the level of the action can be defined without
imposing any torsion constraint provided that one adds a separate kinetic term
for the one-form gauge field Mμ to the Einstein-Hilbert action. This limit is
inspired by the recent result [5] in string theory1 that a NR limit of the so-called
NS-NS gravity action

SNSNS =
1

2κ2

∫
d10xE e−2Φ

(
R + 4 ∂μΦ∂μΦ − 1

12
HμνρHμνρ

)
(3)

1 String theory aims to unify gravity with quantum mechanics. At low energies, it
gives rise to Einstein’s gravity coupled to certain matter fields as given in Eq. (3).
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allows for a NR limit at the level of the action without imposing any geometric
constraints. Here, κ2 = 8πGN is the gravitational coupling constant, E is the
determinant of the Vierbein field, Φ is the dilaton field and R is the Ricci scalar.
Furthermore, Hμνρ is the curvature of the Kalb-Ramond (KR) 2-form gauge
field. The existence of this NR limit is based upon a crucial cancellation of
divergences originating form the Einstein-Hilbert term and the Kalb-Ramond
field.

Before proceeding, it is instructive to first discus the NR limit at the level of
an action describing a particle moving in a background of relativistic Vierbein
fields together with the one-form gauge field Mμ.

2 The Non-relativistic Particle Action

One way to obtain a NR action for a particle in a NC background is by taking the
NR limit of a relativistic particle moving in a Lorentzian background together
with the U(1) gauge field Mμ. The gauge field Mμ couples to the particle via a
Wess-Zumino (WZ) term.2 The so-called Nambu-Goto (NG) formulation of the
action is given by

SNG = −M

∫
dσ

√
−(ẊμEμ

Â)(ẊνEν
B̂)ηÂB̂ + Q

∫
dσẊμMμ. (4)

Here σ parameterizes the worldline of the particle and Ẋμ = dXµ

dσ where Xμ(σ)
are the embedding coordinates. This action describes a particle of mass M and
charge Q. The important thing is that the limit defined by (1) only works if
one fine-tunes the M and Q parameters by redefining M = Q = cm. Upon
expanding the action in powers of c, this fine-tuning implies a cancellation of a
leading divergence with contributions coming from the time component of the
Vierbein and the one form gauge field Mμ. The NR action is then given by the
next subleading term in the expansion of the action of order c0 which is given
by

SNR =
m

2

∫
dσ

ẊμẊν

τρẊρ
hμν . (5)

3 A Non-relativistic Target Space Action

In the previous two sections we considered

1. the standard NR limit of the Einstein equations leading to the NC gravity
equations of motion and

2. the NR limit of the NG particle action leading to the NR particle action given
in Eq. (5).

2 A Wess-Zumino term is characterized by the fact that it is invariant under a gauge
transformation only up to a total derivative.
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In the first case we obtained the NC gravity equations of motion for zero torsion
only. This was due to the fact that we assumed that the relativistic gauge field Mμ

related to particle-antiparticle conservation was closed. This condition cannot be
derived by the variation of an action and that is why we took the limit at the
level of the equations of motion. In the second case we did not need to impose any
geometric constraint. Here, the limit was made possible by a crucial cancellation
of the leading divergences coming from the kinetic and WZ terms.

The above suggests that, in order to define a NR limit of the Einstein-Hilbert
term, we need to give up the condition that Mμ is closed. Since this field played
an important role in taking the NR limit of the particle action, where it occurred
via a WZ term pairing up with the Vierbein field in the kinetic term, it is natural
to similarly combine the Einstein-Hilbert action, which contains derivatives of
the Vierbein squared terms, with a kinetic term for Mμ containing derivatives
of Mμ squared terms. This leads us to consider the following combination of the
Einstein-Hilbert action and a kinetic term for Mμ:

S =
1

2κ2

∫
d4xE

(
R − 1

4
FμνFμν

)
, (6)

where Fμν = ∂μMν −∂νMμ. We now expand this action in powers of c using the
following slightly different version of the rescalings (1):

Eμ
0 = c τμ; Eμ

A′
= eμ

A′
; Mμ = c τμ − 1

c
mμ. (7)

Moreover, we define an effective Newton constant κ2
NR ≡ c−1κ2. The rescalings

(1) and (7) are equivalent because in both cases the solution of the NR central
charge gauge field mμ in terms of the relativistic fields is given by

mμ = c
(
Eμ

0 − Mμ

)
. (8)

The reason that we wish to use the expressions (7) is that the mμ field now
occurs in the expansion of the kinetic term of the Mμ field which is easier to
expand than the spin-connection squared terms in the Einstein-Hilbert term due
to the presence of inverse Vierbein fields there. Of course, both expressions lead
to the same answer, the reason is just to make the calculation easier.

One may verify that the Einstein-Hilbert term gives rise to the following
leading quadratic divergence

c2

2κ2
NR

∫
d4x e τA′B′τA′B′

, τA′B′ ≡ eA′ μeB′ ντμν , (9)

where τμν ≡ ∂[μτν], e = det(τμ, eμ
A′

), and eA′ μ is the projective inverse of the
spatial Vierbein eμ

A′
. The remarkable thing now is that the kinetic term for Mμ

gives rise to the same quadratic divergence but with an opposite sign. Therefore,
the two contributions to the leading divergence of the action precisely cancel.

Expanding the action we therefore find

S = c2 S(2) + c0 S(0) + c−2S(−2), (10)
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where S(0) �= 0 and S(−2) �= 0 but S(2) = 0 due to the cancellation of quadratic
divergences just mentioned. We thus find that the NR limit of the action (6) is
given by the terms of degree zero in c, i.e. S(0). After a straightforward calculation
we find

SNR =
1

2κ2
NR

∫
d4x e

(
R(J) + 4∇A′τ0

A′ − 6 τA′0τ
A′0

)
, (11)

where τA′0 = eA′μτντμν and the derivative ∇A′ is covariant with respect to
spatial rotations and Galilean boosts. The Ricci scalar R(J) corresponding to
the curvature tensor for spatial rotations:3

R(J) = −eA′ μeB′ νRμν
A′B′

(J) with (12)
RA′B′ A′B′

(J) = 2 eA′ μeB′ ν
(
∂[μων]

A′B′
+ ω[μ

A′
C′ων]

B′C′)
+ 4ωA′B′τA′B′ (13)

with ωA′B′ = eA′ μωμB′ and the dependent spatial rotation spin-connection field
ωμ

A′B′
and Galilean boost connection field ωμ

A′
given by

ωμ
A′B′

= −2 eμ
[A′B′] + eμC′eA′B′C′ − 1

2
τμfA′B′

, (14)

ωμ
A′

= τνeμν
A′ − eμB′τνeν

A′B′
+

1
2
fμ

A′
+

1
2
τμτνfν

A′
with (15)

eμν
A′

=
1
2
(
∂μeν

A′ − ∂νeμ
A′)

, fμν = ∂μmν − ∂νmμ. (16)

Summarizing, by making use of a crucial cancellation of divergences, we are
able to construct a non-relativistic Galilei-invariant action as a limit of General
Relativity without imposing any geometric constraint.

4 Equations of Motion

The NR action (11) leads to equations of motion for τμ, eμ
A′

and mμ which we
denote by 〈τ〉μ, 〈e〉μ

A′ and 〈m〉μ, respectively. They are defined by varying SNR

as follows:

δSNR =
1

2κ2
NR

∫
d4x e

(
〈τ〉μδτμ + 〈e〉A′ μδeμ

A′
+ 〈m〉μδmμ

)
. (17)

In total, the equations of motion 〈τ〉μ, 〈e〉A′ μ and 〈m〉μ consist of 4+12+4 = 20
components. Not all of these components are independent however. Indeed, the
invariance of the action (11) under spatial rotations and Galilean boosts implies
6 Noether identities. We are therefore left with 14 independent equations.

It is instructive to see how these 14 equations of motion are related to the
14 relativistic equations of motion that follow from the relativistic action (6).
Upon varying the relativistic action (6) we denote the resulting equations by

δ S =
1

2κ2

∫
d4xE([G]μνδ Gμν + [M ]μδ Mμ). (18)

3 The letter J refers to the spatial rotation generators JA′B′ in the Bargmann algebra.
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They are given by

[G]μν ≡ Rμν − 1
2

FμρFν
ρ − 1

2
Gμν

(R − 1
4

FρσF ρσ
)

= 0, (19)

[M ]μ ≡ ∇νF νμ = 0. (20)

In order to make contact with the non-relativistic structure, one can fur-
thermore organize the relativistic equations as representations of local SO(3) ⊂
SO(1, 3) rotations

[G]00, [G]0A′ , [G]A′B′ , [M ]0, [M ]A′ , (21)

by contracting with (E0
μ, EA′ μ). Given the rescalings (7) one can write the

equations of motion (19) and (20) as a power series in c where the terms at
every order are expressions in terms of (τμ, eμ

A′
, mμ). From general arguments

it is clear that the set of leading order terms in these expressions form a closed
set under Galilei transformations. We will use the following notation

[X] = cn〈X〉 + O(cn−2), (22)

where n is the highest order in the expansion of a generic equation of motion
[X]. The leading orders 〈X〉 provide a self-consistent set of equations for NC
geometry. However, there is a redundancy in this prescription since the leading
orders of the singlets and vector SO(1, 3) representations in (21) are identical,
i.e.,

〈G〉00 =
1
2

〈M〉0 and 〈G〉0A′ =
1
2

〈M〉A′ . (23)

In other words, the above prescription fails to give the same number of inde-
pendent equations as in the relativistic parent theory. Even though this shorter
set of equations is consistent with Galilean symmetries, it does not extract the
full information about the non-relativistic theory. This shortcoming can be cir-
cumvented by reformulating the relativistic theory (21) in terms of the following
linear combinations

[S±] ≡ [G]00 ± 1
2

[M ]0, [V±]A′ ≡ [G]0A′ ± 1
2

[M ]A′ , [G]A′B′ , (24)

where [S±] and [V±]A′ have different leading orders. We make here use of the fact
that the leading and sub-leading order terms in [G]00, [M ]0 and [G]A′0, [M ]A′ are
not both the same. Clearly, the set of equations given in (24) is equivalent to
the original one (21) relativistically. When it comes to restricting to the leading
order, however, the resulting set of equations is different. More specifically, 〈S+〉
and 〈S−〉 occur at different leading orders (n = 2 and n = 0, respectively).
Similarly for 〈V±〉A′ (occurring at n = ±1). This, in turn, means that the set of
14 equations

〈S±〉 = 0, 〈V±〉A′ = 0, 〈G〉A′B′ = 0, (25)
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is equal in number to the relativistic ones (19), (20) while still being closed under
Galilei boosts. The set (25) is furthermore related to the equations of motion
following from the non-relativistic action (11) (as defined in Eq. (17)) by

〈τ〉μ = 2 〈S−〉 τμ − 2 〈V−〉A′ eA′μ, (26)

〈e〉A′ μ = 〈V+〉A′ τμ − 2 〈G〉A′B′ eB′μ, (27)

〈m〉μ = 〈S+〉 τμ − 〈V+〉A′eA′μ. (28)

These equations of motion form a reducible but indecomposable representation
of the Galilei algebra. Under Galilean boosts they transform to each other, as
indicated by the arrows, as follows:

5 Discussion

We have presented a new NR limit of General Relativity that avoids the need to
impose any geometric constraint. This was achieved by adding to the Einstein-
Hilbert term a kinetic term for the one-form gauge field Mμ as discussed in the
main text. This additional term led, when taking the NR limit, to a cancellation
of leading divergences such that the NR gravity action was given by the next
sub-leading term in the expansion. The resulting action is given in Eq. (11). This
invariant is based upon a generalized NC geometry with non-zero torsion that
could have interesting phenomenological applications for strong gravity effects.4

The limit we discussed in this work was inspired by a similar NR limit in
string theory where the limit was taken of the NS-NS gravity action given in
Eq. (3) with the role of Mμ being played by the KR 2-form gauge field [5].
Although a similar cancellation of divergences takes place in both models, there
is an important difference. It turns out that both in the particle and the string
case, the NR action one obtains does not give rise to the Poisson equation for the
Newton potential. In the string case, this is due to the fact that the NR action
exhibits an emerging local dilatation symmetry. However, one can show that the
Poisson equation can be obtained as a NR limit of the NS-NS gravity equations
of motion. In fact, the Poisson equation forms, together with the equations of
motion that follow from the NR NS-NS gravity action a reducible indecompos-
able representation of the Galilei symmetries. It means that the Poisson equation
transforms under Galilei boost transformations to the equations of motion cor-
responding the NR NS-NS gravity action similar to how 〈V−〉A′ transforms to
the other equations in (29).

4 For a related discussion where this was emphasized, see [6].
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The situation for the particle case is different. Identifying the Newton poten-
tial with the time component of mμ, it is easy to see that the action (11) does
not give rise to the Poisson equation for the Newton potential, i.e., the linearized
equations of motion do not contain a term of the form ∂A′

∂A′m0. However, in
this case, there is no emerging dilatation symmetry and, therefore, the Pois-
son equation neither follows by taking the NR limit of the equations of motion.
Therefore, as it stands, the action (11) does not give a full description of NC
gravity.

It is suggestive that, in order to obtain a local emerging dilatation symmetry,
we should introduce the analog of the dilaton and Kalb-Ramond 2-form field. In
four spacetime dimensions this KR 2-form field is dual to an axionic scalar. This
suggests that a proper description of torsional NC gravity can be obtained by
adding to the Einstein-Hilbert term the vector field Mμ together with a complex
axion-dilaton scalar. At the time of writing these proceedings, such an extended
particle model is under investigation.
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Abstract. We give an informative review of the notions of Rényi’s α-
entropy and α-divergence, Arimoto’s conditional α-entropy, and Sibson’s
α-information, with emphasis on the various relations between them. All
these generalize Shannon’s classical information measures corresponding
to α = 1. We present results on data processing inequalities and provide
some new generalizations of the classical Fano’s inequality for any α > 0.

This enables one to α-information as a information theoretic metric
of leakage in secrecy systems. Such metric can bound the gain of an
adversary in guessing some secret (any potentially random function of
some sensitive dataset) from disclosed measurements, compared with the
adversary’s prior belief (without access to measurements).

Keywords: Rényi entropy and divergence · Arimoto conditional
entropy · Sibson’s information · Data processing inequalities · Fano’s
inequality · Information leakage · Side-Channel analysis

1 Introduction

Shannon’s information theory is based on the classical notions of entropy H(X),
relative entropy D(P‖Q) a.k.a. divergence, conditional entropy H(X|Y ) and
mutual information I(X;Y ). The fundamental property that makes the the-
ory so powerful is that all these informational quantities satisfy data processing
inequalities1.

An increasingly popular generalization of entropy is Rényi entropy of order
α, or α-entropy Hα(X). Many compatible generalizations of relative and condi-
tional entropies and information have been proposed, yet the only suitable quan-
tities that do satisfy the correct data processing inequalities are Arimoto’s con-
ditional entropy Hα(X|Y ) and Sibson’s α-information Iα(X;Y ). In this paper,
we first review the corresponding α-information theory that beautifully gen-
eralizes Shannon’s classical information theory (which is recovered as the lim-
iting case α → 1). For α �= 1, however, α-information is no longer mutual :
Iα(X;Y ) �= Iα(Y ;X) in general.
1 See [11] for a review of several data processing results.
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The classical Fano inequality H(X|Y ) ≤ h(Pe) +Pe log(M − 1) relating con-
ditional entropy and probability of error Pe for a M -ary variable X can then be
appropriately generalized using the data processing inequality for α-divergence.
We present an appealing application to side-channel analysis.

2 A Primer on α-Information Theory

2.1 Notations

Probability Distributions. In this paper, probability distributions such as
P,Q are such that P � μ and Q � μ where μ is a given reference (σ-finite) mea-
sure. The corresponding lower-case letters denote the Radon-Nykodym deriva-
tives p = dP

dμ , q = dQ
dμ . The probability distribution P of random variable X is

sometimes noted PX . The reference measure is then noted μX and the Radon-
Nykodym derivative is pX = dPX

dμX
.

Discrete and Continuous Random Variables. If X is a discrete random
variable (taking values in a discrete set X ), then μX can be taken as the counting
measure on X ; any integral over μX then reduces to a discrete sum over x ∈ X ,
and we have pX(x) = P(X =x). When X is a continuous random variable taking
values in R

n, μX is the Lebesgue measure on R
n and pX(x) is the corresponding

probability density function. The notation Ex denotes expectation with respect
to μX : Exf(x) = E f(X) =

∫
X f(x)pX(x)dμX(x).

Uniform Distributions. As an example, we write X ∼ U(M) if X is uniformly
distributed over a set X of finite measure M =

∫
X dμ. The corresponding density

is pX(x) = 1X (x)
M . In the discrete case, this means that X takes M equiprobable

values in the set X of cardinality M .

Escort Distributions. For any distribution p = dP
dμ , its escort distribution Pα of

exponent α is given by the normalized α-power:

pα(x) =
pα(x)

∫
X pα(x)dμ(x)

. (1)

Joint Distributions. A joint distribution PX,Y of two random variables X,Y
is such that PX,Y � μX ⊗ μY where μX is the reference measure for X and
μY is the reference measure for Y . In this paper, all functions of (x, y) inte-
grated over μX ⊗ μY will always be measurable and nonnegative so that all the
integrals considered in this paper exist (with values in [0,+∞]) and Fubini’s
theorem always applies. The conditional distributions PY |X and PX|Y are such
that pX,Y (x, y) = pX(x)pY |X(y|x) = pY (y)pX|Y (x|y) (μX ⊗ μY )-a.e.. We write
PX,Y = PXPY |X = PX|Y PY . In particular, PX ⊗ PY is simply noted PXPY .
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Random Transformations A random transformation PY |X applies to any
input distribution PX and provides an output distribution PY , which satisfies
pY (y) =

∫
pY |X(y|x)pX(x)dμX(x). We write PX → PY |X → PY . The same

random transformation can be applied to another distribution QX . We then
write QX → PY |X → QY where the corresponding output distribution QY is

such that qY (y) =
∫

pY |X(y|x)qX(x)dμX(x).

Deterministic Transformations. Any deterministic function Y = f(X) taking
discrete values can be seen as a particular case of a random transformation
PY |X where pY |X(y|x) = δf(x)(y).

2.2 Definitions

Throughout this paper we consider a Rényi order α ∈ (0, 1) ∪ (1,+∞). In the
following definitions, the corresponding quantities for α = 0, 1 and +∞ will be
obtained by taking limits.

Definition 1 (Rényi Entropy [10]). The α-entropy of X ∼ p is

Hα(X) =
1

1 − α
log

∫

X
pα(x) dμ(x). (2)

It can also be noted Hα(P ) or Hα(p). When X is binary with distribution (p, 1−
p), the α-entropy reduces to

hα(p) =
1

1 − α
log

(
pα + (1 − p)α

)
. (3)

Definition 2 (Rényi Divergence [5,10]). The α-divergence or relative α-
entropy of P and Q is

Dα(P‖Q) =
1

α − 1
log

∫

X
pα(x)q1−α(x) dμ(x). (4)

For binary distributions (p, 1 − p) and (q, 1 − q), it reduces to

dα(p‖q) =
1

α − 1
log

(
pαq1−α + (1 − p)α(1 − q)1−α

)
. (5)

Definition 3 (Arimoto-Rényi Entropy [1,7]). The conditional α-entropy of
X given Y is

Hα(X|Y ) =
α

1 − α
log

∫

Y
pY (y)

(∫

X
p

α

X|Y (x|y) dμX(x)
)1/α

dμY (y). (6)

Definition 4 (Sibson’s mutual information [4,14,15]). The α-mutual infor-
mation (or simply α-information) of X and Y is

Iα(X;Y ) =
α

α − 1
log

∫

Y

(∫

X
pX(x)pα

Y |X(y|x) dμX(x)
)1/α

dμY (y) (7)
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=
α

α − 1
log

∫

Y
pY (y)

(∫

X
p

α

X|Y (x|y)p1−α
X (x) dμX(x)

)1/α

dμY (y). (8)

Notice that Iα(X;Y ) �= Iα(Y ;X) in general.
By continuous extension of the above quantities, we recover the classical

entropy H1(X) = H(X), divergence D1(P‖Q) = D(P‖Q), conditional entropy
H1(X|Y ) = H(X|Y ), and mutual information I1(X;Y ) = I(X;Y ).

2.3 Basic Properties

Several known properties of α-divergence, α-entropies, and α-information are
needed in the sequel. For completeness we list them as lemmas along with proof
sketches.

Lemma 1 (α-information inequality [5, Thm. 8]2).

Dα(P‖Q) ≥ 0 (9)

with equality if and only if P = Q.

Proof. Apply Hölder’s inequality
∫

pαq1−α ≤ (
∫

p)α(
∫

q)1−α for α < 1, or the
reverse Hölder inequality for α > 1. Equality holds when p = q μ-a.e., that is,
P = Q. An alternative proof uses Jensen’s inequality applied to x → xα, which
is concave for α < 1 and convex for α > 1.

Lemma 2 (link between α-divergence and α-entropy [5, Eq. (2)]). Letting
U = U(M) be the uniform distribution,

Dα(P‖U) = log M − Hα(P ) (10)

Proof. Set Q = U and q = 1/M in (4).

Lemma 2 holds for discrete or continuous distributions. In particular from
(9), (10) implies that if M =

∫
X dμ < ∞ then

Hα(X) ≤ log M (11)

with equality if and only if X ∼ U(M).
The following is the natural generalization for α �= 1 of the well-known Gibbs

inequality H(X) ≤ −E log q(X).

Lemma 3 (α-Gibbs inequality [12, Thm 1]). Let X ∼ p. For any probability
distribution φ(x),

Hα(X) ≤ α

1 − α
logE

[
φ

α−1
α (X)

]
(12)

2 We name this “information inequality” after Cover and Thomas which used this
terminology for the usual divergence D1(P‖Q) = D(P‖Q) [3, Theorem 2.6.3].
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with equality if and only if φ = pα, the escort distribution (1) of p. For any
family of conditional densities φ(x|y),

Hα(X|Y ) ≤ α

1 − α
logE

[
φ

α−1
α (X|Y )

]
(13)

with equality if and only if φ(x|Y ) = pα(x|Y ) μY -a.e. where pα(x|y) is the escort
distribution of p(x|y) = pX|Y (x|y).

For uniform q(x) ∼ U(M) in (12) we recover (11).

Proof. Let q = φ1/α so that φ = qα. An easy calculation gives
α

1−α logE
[
φ

α−1
α (X)

]
= D1/α(Pα‖Qα) + Hα(X). The first assertion then follows

from Lemma 1.
Now for fixed y ∈ Y, one has Hα(X|Y =y) ≤ α

1−α logE
[
φ

α−1
α (X|Y =y)

]
with

equality if and only if φ(x|y) = pα(x|y). In both cases α < 1 and α > 1, it follows
that Hα(X|Y ) = α

1−α logEy exp 1−α
α Hα(X|Y = y) ≤ α

1−α logE
[
φ

α−1
α (X|Y )

]
.

Lemma 4 (conditioning reduces α-entropy [1,7]).

Hα(X|Y ) ≤ Hα(X) (14)

with equality if and only if X and Y are independent.

Proof. Set φ(x|y) = pα(x) in (13), with equality iff pα(x|Y ) = pα(x) a.e., i.e., X
and Y are independent. (An alternate proof [7] uses Minkowski’s inequality.)

Lemma 5 (α-information and conditional α-entropy [13, Eq. (47)]). If
X ∼ U(M),

Iα(X;Y ) = log M − Hα(X|Y ). (15)

Proof. Set pX(x) = 1/M in (8).

It is not true in general that Iα(X;Y ) = Hα(X) − Hα(X|Y ) for nonuni-
form X [15].

Lemma 6 (α-information and α-divergence). Sibson’s identity [14,
Thm. 2.2], [4, Eq. (20)], [15, Thm. 1]:

Dα(PX,Y ‖PXQY ) = Iα(X;Y ) + Dα(Q∗
Y ‖QY ) (16)

for any distribution QY , where Q∗
Y is given by

q∗
Y (y) =

(∫
X pX(x)pα

Y |X(y|x) dμ(x)
)1/α

∫
Y
(∫

X pX(x)pα

Y |X(y|x) dμ(x)
)1/αdμY (y)

(17)

In particular from (9),

Iα(X;Y ) = min
QY

Dα(PX,Y ‖PXQY ) = Dα(PX,Y ‖PXQ∗
Y ) (18)

hence Iα(X;Y ) ≥ 0 with equality if and only if X and Y are independent.
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Proof. Dα(PX,Y ‖PXQY ) = 1
α−1 log

∫
pX(x)

(∫
p

α

Y |X(y|x)q1−α

Y
(y)dμY (y)

)
dμX

(x) = 1
α−1 log

∫
q1−α
Y (y)

(∫
pX(x)pα

Y |X(y|x)dμX(x)
)
dμY (y) where we applied

Fubini’s theorem in the second equality. Substituting the expression inside
parentheses using (17) gives (16). Using Lemma 1 it follows as expected that
Iα(X;Y ) ≥ 0 with equality if and only if X and Y are independent (in which
case Q∗

Y = PY ).

Lemma 7 (Convexity of α-divergence [4, Appendix], [5, Thm. 12]). Q →
Dα(P‖Q) is convex: For any λ ∈ (0, 1),

Dα(P‖λQ1 + (1 − λ)Q2) ≤ λDα(P‖Q1) + (1 − λ)Dα(P‖Q2). (19)

Notice that Dα(P‖Q) is not convex in P in general (when α > 1) [4,5].

2.4 Data Processing Inequalities

Lemma 8 (Data processing reduces α-divergence [9], [5, Thm. 1]). For
random transformations PX → PY |X → PY and QX → PY |X → QY , we have
the data processing inequality:

Dα(PX‖QX) ≥ Dα(PY ‖QY ) (20)

with equality if and only if PX|Y = QX|Y , where PX|Y PY = PY |XPX and
QX|Y QY = PY |XQX .

In particular, for any μX-measurable set A ⊂ X ,

Dα(PX‖QX) ≥ dα(pA‖qA) (21)

where pA = P(X ∈ A), qA = Q(X ∈ A), and dα is the binary α-divergence (5).
Equality in (21) holds if and only if PX|X∈A = QX|X∈A and PX|X �∈A = QX|X �∈A.

Proof. Write Dα(PX‖QX) = Dα(PXPY |X‖QXPY |X) = Dα(PY PX|Y ‖QY QX|Y )

= 1
α−1 log

∫
pα

Y q1−α
Y

(∫
p

α

X|Y q
1−α

X|Y dμX

)
dμY ≥ Dα(PY ‖QY ) where we used (9) in

the form
∫

pαq1−α ≤ (
∫

p)α(
∫

q)1−α for α < 1 and the opposite inequality for
α > 1, applied to p = pX|Y and q = qX|Y . The equality condition in (9) implies
PX|Y = QX|Y , which in turns implies equality in (20). Applying the statement to
the deterministic transformation Y = 1X∈A gives (21).

Lemma 9 (Data processing reduces α-information [9, Thm. 5 (2)]). For
any Markov chain3 W − X − Y − Z,

Iα(X;Y ) ≥ Iα(W ;Z) (22)

3 We do not specify a direction since reversal preserves the Markov chain property:
X1 − X2 − · · · − Xn is Markov if and only if Xn − Xn−1 − · · · − X1 is Markov.
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Proof. Let PX,Y → PX,Z|X,Y → PX,Z → PW,Z|X,Z → PW,Z . By the Markov
condition, PX,Z|X,Y = PX|XPZ|X,Y = PX|XPZ|Y where PX|X is the identity
operator; similarly PW,Z|X,Z = PW |X,ZPZ|Z = PW |XPZ|Z . Thus if QY →
PZ|Y → QZ , we find PXQY → PX,Z|X,Y → PXQZ → PW,Z|X,Z → PW QZ .

By the data processing inequality for α-divergence (20), Dα(PX,Y ‖PXQY ) ≥
Dα(PW,Z‖PW QZ) ≥ Iα(W ;Z). Minimizing over QY gives (22).

Lemma 10 (Data processing increases conditional α-entropy [7,
Cor. 1]). For any Markov chain X − Y − Z,

Hα(X|Y ) ≤ Hα(X|Z) (23)

with equality if and only if X − Z − Y forms a Markov chain.

When X ∼ U(M), inequality (23) also follows from (15) and the data processing
inequality for α-information (22) where W = X.

Proof. Since X−Y −Z forms a Markov chain, Hα(X|Y ) = Hα(X|Y,Z). Now set
φ(x|y, z) = pα(x|z) in (13) to obtain Hα(X|Y,Z) ≤ Hα(X|Z), with equality iff
pα(x|Y,Z) = pα(x|Z) a.e., i.e., X − Z − Y is Markov. (Alternate proof: see [7].)

Lemma 11 (Data processing inequalities for binary α-divergence).
Suppose 0 ≤ p ≤ q ≤ r ≤ 1 (or that 1 ≥ p ≥ q ≥ r ≥ 0). Then

dα(p‖r) ≥ dα(p‖q) and dα(p‖r) ≥ dα(q‖r). (24)

Proof. Consider an arbitrary binary channel with with parameters δ, ε ∈ [0, 1]
and transition matrix PY |X =

(
1−δ δ

ε 1−ε

)
. By Lemma 8 applied to PX = (1−p, p)

and QX = (1−q, q), one obtains dα(p‖q) ≥ dα(δ(1−p)+(1−ε)p ‖ δ(1−q)+(1−ε)q)
for any p, q ∈ [0, 1]. Specializing to values of δ, ε such that εp = δ(1 − p) or
εq = δ(1 − q) gives (24).

3 Fano’s Inequality Applied to a Side-Channel Attack

We now apply α-information theory to any Markov chain X–Y –X̂, modeling
a side-channel attack using leaked information in a secrecy system. Here X is
a sensitive data that depends on some secret (cryptographic key or password),
input to a side channel PX → PY |X → PY through which information leaks, and

Y is disclosed to the attacker (e.g., using some sniffer or probe measurements),
and the attack provides X̂ as a function of Y estimating X using the maximum
a posteriori probability (MAP) rule so as to maximize the probability of success
Ps = Ps(X|Y ) = P(X̂ = X |Y ), or equivalently, minimize the probability of
error Pe = Pe(X|Y ) = P(X̂ �= X |Y ).

The classical Fano inequality [6] then writes H(X|Y ) ≤ h(Pe)+Pe log(M −1)
when X ∼ U(M). It was generalized by Han and Verdú [8] as a lower bound
on the mutual information I(X;Y ) ≥ d(Ps(X|Y )‖Ps(X)) = d(Pe(X|Y )‖Pe(X))



466 O. Rioul

where d(p‖q) denotes discrete divergence, and where Ps(X) = 1 − Pe(X) cor-
responds to the case where X (possibly nonuniform) is guessed without even
knowing Y . Using the MAP rule it can be easily seen that

{
Ps(X|Y ) = E

[
max
x∈X

pX(x|Y )
]

= exp
(−H∞(X|Y )

)

Ps(X) = supx∈X pX(x) = exp
(−H∞(X)

)
.

(25)

We now generalize the (generalized) Fano inequality to any value of α > 0.

Theorem 1 (Generalized Fano’s Inequality for α-Information).

Iα(X;Y ) ≥ dα(Ps(X|Y )‖Ps(X)) = dα(Pe(X|Y )‖Pe(X)) (26)

Proof. By the data processing inequality for α-information (Lemma 9),
Iα(X;Y ) ≥ Iα(X; X̂). Then by (18), Iα(X; X̂) = Dα(PX,X̂‖PXQ∗

X̂
) ≥

dα(Ps(X|Y )‖P′
s) where we have used the data processing inequality for α-

divergence (Lemma 8, inequality (21)) to the event A = {X̂ = X}. Here P(X̂ =
X) = Ps(X|Y ) by definition and P

′
s =

∑
x pX(x)q∗

X̂
(x) ≤ maxx pX(x) = Ps(X).

Now by the binary data processing inequality (Lemma 11), dα(Ps(X|Y )‖P′
s) ≥

dα(Ps(X|Y )‖Ps(X)).

Our main Theorem 1 states that α-information Iα(X;Y ) bounds the gain
dα(Ps(X|Y )‖Ps(X)) of any adversary in guessing secret X from disclosed mea-
surements Y with success Ps(X|Y ), compared with the adversary’s prior belief
without access to measurements, with lower success Ps(X). It additionally pro-
vides an implicit upper bound on Ps(X|Y ) (or lower bound on Pe(X|Y )) as a
function of α-information—which can be loosened to obtain explicit bounds on
success or error by further lower bounding the binary α-divergence.

Also, bounding α-information (by some “α-capacity” of the side channel)
one can obtain bounds on the success of any possible attack for a given secrecy
system based on some leakage model, in a similar fashion as what was made in
the classical case α = 1 in [2]. This is particularly interesting for the designer
who needs to evaluate the robustness of a given implementation to any type of
side-channel analysis, regardless of the type of attacker.
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Abstract. In this short note we review the dynamical Schrödinger prob-
lem on the non-commutative Fisher-Rao space of positive semi-definite
matrix-valued measures. The presentation is meant to be self-contained,
and we discuss in particular connections with Gaussian optimal trans-
port, entropy, and quantum Fisher information.
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transport · Fisher information · Entropy

The abstract Schrödinger problem on a generic Riemannian manifold (M, g)
can be formulated as the dynamical minimization problem

min
q

{ ∫ 1

0

|q̇t|2dt + ε2
∫ 1

0

|∇V (qt)|2dt s.t. q|t=0,1 = q0, q1

}
. (1)

The unknown curves q = (qt)t∈[0,1] take values in M and interpolate between the
prescribed endpoints q0, q1 ∈ M , the potential V : M → R is given, and ε > 0
is a regularization parameter. Clearly when ε → 0 this ε-problem is expected to
converge in some sense to the geodesic problem on M .

The original Schrödinger problem [17], or rather, its dynamical equivalent
(sometimes referred to as the Yasue problem [5,9]), can be rewritten as a par-
ticular instanciation of (1) when (M, g) is the Wasserstein space of probability
measures, the potential V is given by the Boltzmann entropy H(ρ) =

∫
ρ log ρ,

and its Wasserstein gradient I(ρ) = ‖∇WH(ρ)‖2 =
∫ |∇ log ρ|2ρ is the Fisher

information functional. This was only recently recognized as an entropic regu-
larization of the Monge-Kantorovich problem [10] and led to spectacular devel-
opments in computational optimal transport [16]. Recently, attempts have been
made to develop an optimal transport theory for quantum objects, namely (sym-
metric positive-definite) matrix-valued measures, see [6] and references therein.
In [13] we studied (1) precisely in the corresponding noncommutative Fisher-
Rao space of matrix-measures. In this note we aim at providing a comprehensive
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introduction to this specific setting, in particular we wish to emphasize the con-
struction based on Gaussian optimal transport that will lead to some specific
entropy and quantum Fisher information functionals later on.

Section 1 briefly reviews classical optimal transport and the original
Schrödinger problem. In Sect. 2 we discuss Gaussian optimal transport and the
corresponding Bures-Wasserstein geometry. This then suggests the natural con-
struction of the Fisher-Rao space detailed in Sect. 3. We introduce in Sect. 4
the resulting entropy and Fisher information functionals dictated by the previ-
ous construction. We also compute explicitly the induced heat flow, and finally
discuss the Fisher-Rao-Schrödinger problem.

1 Optimal Transport and the Schrödinger Problem

In its fluid-mechanical Benamou-Brenier formulation [3], the quadratic Wasser-
stein distance between probability measures ρ0, ρ1 ∈ P(Ω) over a smooth domain
Ω ⊂ R

d reads

W2(ρ0, ρ1) = min
ρ,v

{∫ 1

0

∫
Ω

|vt(x)|2ρt(x)dxdt

s.t. ∂tρt + div(ρtvt) = 0 in (0, 1) × Ω and ρ|t=0,1 = ρ0,1

}
(2)

(supplemented with homogeneous no-flux boundary conditions on ∂Ω if needed
in order to ensure mass conservation). This can be seen as an optimal control
problem, where the control v = vt(x) is used to drive the system from ρ0 to
ρ1 while minimizing the overall kinetic energy. We refer to [19] for a gentle yet
comprehensive introduction to optimal transport.

As originally formulated by E. Schrödinger himself in [17], the Schrödinger
problem roughly consists in determining the most likely evolution of a system
for t ∈ [0, 1] in an ambient noisy environment at temperature ε > 0, given the
observation of its statistical distribution at times t = 0 and t = 1. Here we shall
rather focus on the equivalent dynamical problem

min
ρ,v

{ ∫ 1

0

∫
Ω

|vt(x)|2ρt(x)dxdt + ε2
∫ 1

0

∫
Ω

|∇ log ρt(x)|2ρt(x)dxdt

s.t. ∂tρt + div(ρtvt) = 0 in (0, 1) × Ω and ρ|t=0,1 = ρ0,1

}
(3)

(again supplemented with Neumann boundary conditions on ∂Ω if needed). This
is sometimes called the Yasue problem, cf. [5,9]. It is known [2,10,11] that the
noisy problem Gamma-converges towards deterministic optimal transport in the
small-temperature limit ε → 0, and this actually holds in a much more gen-
eral metric setting than just optimal transport [14]. We also refer to [1,20] for
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connections with Euclidean quantum mechanics, and to the survey [5] for an
optimal-control perspective.

Following F.Otto [15], an important feature of optimal transport is that one
can view P(Ω) as a (formal) Riemannian manifold, whose Riemannian distance
coincides with the Wasserstein distance (2). This relies upon the identification of
infinitesimal variations ξ with (gradients of) Kantorovich potentials φ : Ω → R

by uniquely selecting the velocity field v = ∇φ with minimal kinetic energy∫
Ω

ρ|v|2, given −div(ρv) = ξ. Practically speaking, this means that tangent
vectors ξ ∈ TρP at a point ρ are identified with scalar potentials φξ via the
Onsager operator Δρ = div(ρ∇·) and the elliptic equation

− div(ρ∇φξ) = ξ, (4)

see [19] for details. Accordingly, the linear heat flow ∂tρ = Δρ can be identified [8]
as the Wasserstein gradient flow dρ

dt = − gradW H(ρ) of the Boltzmann entropy

H(ρ) =
∫

Ω

ρ(x) log(ρ(x))dx.

Here gradW denotes the gradient computed with respect to Otto’s Riemannian
structure. Moreover, the Fisher information functional

F (ρ) =
∫

Ω

|∇ log ρ(x)|2ρ(x) dx = ‖ gradW H(ρ)‖2 (5)

appearing in (3) coincides with the squared gradient of the entropy, or equiva-
lently with the dissipation rate −dH

dt = F of H along its own gradient flow. This
identification (5) shows that (3) can indeed be written as a particular case of
(1) with respect to the Wasserstein geometry.

2 The Bures-Wasserstein Distance and Gaussian Optimal
Transport

When ρ0 = N (m0, A0), ρ1 = N (m1, A1) are Gaussian measures with means
mi ∈ R

d and covariance matrices Ai ∈ S++
d (R) (the space of symmetric positive

definite matrices), the optimal transport problem (2) is explicitly solvable [18]
and the Wasserstein distance can be computed as

W2(ρ0, ρ1) = |m1 − m0|2 +B2(A0, A1). (6)

Here B is the Bures distance

B2(A0, A1) = min
RRt=Id

|A 1
2
1 − RA

1
2
0 |2 = trA0 + trA1 − 2 tr

((
A

1
2
0 A1A

1
2
0

) 1
2
)

, (7)

and |M |2 = tr(MM t) is the Euclidean norm of a matrix M ∈ R
d×d correspond-

ing to the Frobenius scalar product 〈M,N〉 = tr(MN t). The Bures distance,
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sometimes also called the Helstrom metric, can be considered as a quantum
generalization of the usual Fisher information metric [4]. Since the Euclidean
geometry of the translational part |m1 − m0|2 in (6) is trivially flat, we restrict
for simplicity to centered Gaussians mi = 0. We denote accordingly

S0 =

{
ρ ∈ P(Rd) : ρ = N (0, A) for some A ∈ S++

d (R)

}

the statistical manifold of centered Gaussians and simply write ρ = N (0, A) =
N (A). Note that, for positive-definite matrices A ∈ S++

d (R), the space of
infinitesimal perturbations (the tangent plane TAS++

d (R)) is the whole space
of symmetric matrices U ∈ Sd(R). Semi -definite matrices are somehow degener-
ate (extremal) points of S++

d (R), but it is worth stressing that (7) makes sense
even for semi -definite A0, A1 ∈ S+

d (R).
Going back to optimal transport, it is well-known [12,18] that the statistical

manifold S0 is a totally geodesic submanifold in the Wasserstein space. In other
words, if ρ0 = N (A0) and ρ1 = N (A1) are Gaussians, then minimizers of the
dynamical problem (2) remain Gaussian, i-e ρt = N (0, At) for some suitable
At ∈ S++

d . Thus one expects that S0, or rather S++
d (R), can be equipped with

a well-chosen, finite-dimensional Riemannian metric such that the induced Rie-
mannian distance coincides with the Wasserstein distance between corresponding
Gaussians. This is indeed the case [18], and the Riemannian metric is explicitly
given at a point ρ = N (A) by

gA(U, V ) = tr(UAV ) = 〈AU, V 〉 = 〈AV,U〉, U, V ∈ TAS++
d (R) ∼= Sd(R).

Note that, if gEucl(ξ, ζ) = 〈ξ, ζ〉 = tr(ξζt) is the Euclidean scalar product, the
corresponding Riesz isomorphism U 
→ ξU (at a point A ∈ S++

d ) identifying
gEucl(ξU , ξV ) = gA(U, V ) is given by ξU = (AU)sym = AU+UA

2 . (This is the
exact equivalent of the elliptic correspondence (4) for optimal transport.) As a
consequence the Bures-Wasserstein distance can be computed [13,18] as

4B2(A0, A1) = min
A,U

{ ∫ 1

0

〈AtUt, Ut〉dt s.t.
dAt

dt
= (AtUt)

sym

}
, A0, A1 ∈ S++

d

(8)
Up to the scaling factor 4 this an exact counterpart of (2), where dAt

dt =
(AtUt)sym plays the role of the continuity equation ∂tρt + div(ρtvt) = 0 and
〈AtUt, Ut〉 substitutes for the kinetic energy density

∫
Ω

ρt|vt|2.

3 The Non-commutative Fisher-Rao Space

Given two probability densities ρ0, ρ1 ∈ P(D) on a domain D ⊂ R
N (not to be

confused with the previous Ω = R
d for Gaussian optimal transport, codomain

over which our matrices A ∈ S++
d were built), the scalar Fisher-Rao distance is



472 L. Monsaingeon and D. Vorotnikov

classically defined as the Riemannian distance induced by the Fisher information
metric

FR2(ρ0, ρ1) = min
ρ

{ ∫ 1

0

∫
D

∣∣∣∣∂ log ρt(x)

∂t

∣∣∣∣
2

ρt(x) dxdt, s.t. ρt ∈ P(D)

}

= min
ρ,u

{ ∫ 1

0

∫
D

|ut(x)|2 ρt(x) dxdt s.t. ∂tρt = ρtut and ρt ∈ P(D)

}
. (9)

Note that the unit-mass condition ρt ∈ P(D) is enforced here as a hard con-
straint. (Without this constraint, (9) actually defines the Hellinger distance H
between arbitrary nonnegative measures [13].)

The strong structural similarity between (8) (9) suggest a natural extension
of the latter scalar setting to matrix-valued measures. More precisely, the Fisher-
Rao space is the space of (d-dimensional) positive semi -definite valued measures
over D with unit mass

P(D) =

{
A ∈ M(D;S+

d (R)) s.t.
∫

D
trA(x) dx = 1

}
.

This can be thought of as the space of noncommutative probability measures
(see [13] for a short discussion on the connections with free probability theory
and C∗-algebras). The matricial Fisher-Rao distance is then defined as

FR2(A0, A1) = min
A,U

{ ∫ 1

0

∫
D

〈At(x)Ut(x), Ut(x)〉 dxdt

s.t. ∂tAt = (AtUt)
sym in (0, 1) × D and At ∈ P(D)

}
, (10)

which is indeed a higher-dimensional extension of (9) and should be com-
pared again with (2). This clearly suggests viewing P(D) as a (formal, infinite-
dimensional) Riemannian manifold with tangent space and norm

TAP =

{
ξU = (AU)sym : U ∈ L2

(
A(x)dx; S+

d

)
and

∫
D

〈A(x), U(x)〉dx = 0

}

‖ξU‖2A = ‖U‖2L2
A
=

∫
D

〈A(x)U(x), U(x)〉dx. (11)

Note once again that we imposed the unit-mass condition At ∈ P as a hard
constraint in (10), which results in the zero-average condition

∫ 〈A,U〉 = 0 for
tangent vectors U . Removing the mass constraint leads to (an extension of)
the Hellinger distance H between arbitrary PSD matrix-valued measures. (The
Hellinger space (H+,H) is a metric cone over the “unit-sphere” (P,FR) but we
shall not discuss this rich geometry any further, see again [13].)
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The corresponding Riemannian gradients of internal-energy functionals
F(A) =

∫
D F (A(x)) dx can be explicited [13] as

gradFR F(A) = (A(x)F ′(A(x)))sym − tr
(∫

D
A(y)F ′(A(y))dy

)
A(x). (12)

Here F ′(A) stands for the usual first variation of the matricial function F (A),
computed with respect to the standard Euclidean (Frobenius) scalar product.

4 Extended Entropy, the Heat Flow, and the Schrödinger
Problem

From now on we always endow P with the Riemannian metric given by (11).
Once this metric is fixed, the geometric Schrödinger problem (1) will be fully
determined as soon as we choose a driving potential V on P. One should ask
now:

What is a good choice of “the” canonical entropy on the Fisher-Rao space?

A first natural guess would be based on the classical (negative) von Neumann
entropy S(A) = tr(A logA) from quantum statistical mechanics. However, the
functional S(A) =

∫
D S(A(x)) dx lacks geodesic convexity with respect to our

ambient Fisher-Rao metric [13], and this makes it unfit for studying a suitable
Schrödinger problem (see [14] for the connection between the validity of the
Gamma-convergence in the limit ε → 0 in (1) and the necessity of geodesic
convexity of V in a fairly general metric context).

It turns out that there is a second natural choice, dictated by our previ-
ous construction based on Gaussian optimal transport and the canonical Boltz-
mann entropy H(ρ) =

∫
ρ log ρ on P(Rd). Indeed, consider A ∈ S++

d and write
ρA = N (A) for the corresponding Gaussian. Assuming for simplicity that D has
measure |D| = 1

d so that tr
∫

D Id dx = 1, we choose as a reference measure the
generalized uniform Lebesgue measure Id ∈ P (more general reference measures
can also be covered, see [13]). An explicit computation then gives the Boltzmann
entropy of ρA relatively to ρI = N (Id) as

E(A) = H(ρA|ρI) =
∫
Rd

ρA(y)
ρI(y)

log
(

ρA(y)
ρI(y)

)
ρI(y) dy =

1
2
tr[A − logA − Id].

(13)
Note carefully that E(A) = +∞ as soon as A is only positive semi -definite (due
to − tr logA = −∑

log λi = +∞ if any of the eigenvalues λi = 0), and that
by convexity E(A) ≥ E(Id) = 0 is minimal only when A = Id. Our canonical
definition of the entropy on the Fisher-Rao space is then simply

E(A) =
∫

D
E(A(x)) dx = −1

2
tr

∫
D
logA(x) dx, for A = A(x) ∈ P. (14)
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(The terms
∫
trA = 1 =

∫
tr Id cancel out in (13) due to our mass normaliza-

tion.) Since the (Euclidean) first variation of (13) is E′(A) = 1
2 (Id−A−1), (12)

shows that the Fisher-Rao gradient flow dAt

dt = − gradFR E(At) reads

∂tAt = −
(

At
1
2
[Id−A−1

t ]
)sym

+ tr
(∫

D
At

1
2
[Id−A−1

t ]dy

)
At

=
1
2
(Id−At)sym +

1
2
tr

(∫
D
(At − Id)dy

)
At =

1
2
(Id−At). (15)

This generalized “heat flow” is consistent with the observation that, whenever
ρ0 = N (A0) is Gaussian, the solution ρt = N (At) of the Fokker-Planck equation
(the Wasserstein gradient flow of the relative entropy ρ 
→ H(ρ|ρI))

∂tρ = Δρ − div(ρ∇ log ρI) (16)

remains Gaussian with precisely dAt

dt = 1
2 (Id−At). Our extended Fisher infor-

mation functional can then be defined as the dissipation rate of the entropy E
along the “heat flow” dAt

dt = − gradFR E(At) given by (15), namely

F(At) = − d

dt
E(At) =

1
2

d

dt
tr

∫
D
logAt(x) dx =

1
2
tr

∫
D

A−1
t (x)∂tAt(x) dx

=
1
2
tr

∫
D

A−1
t (x)

1
2
[Id−At(x)] dx =

1
4

(
tr

∫
D

A−1
t (x) dx − 1

)
. (17)

Equivalently and consistently, F(A) = ‖ gradFR E(A)‖2. Note that F(At) >
F (Id) = 0 and E(At) > E(Id) = 0 unless At(x) ≡ Id, which is of course consistent
with the expected long-time behavior At → Id for (15) as t → ∞ (or equivalently
ρt → ρI = N (Id) for Gaussian solutions of the Fokker-Planck equation (16)).

With these explicit representations (11)(17) of the quantum (i-e matricial)
Fisher-Rao metric and Fisher information, we can now make sense of the geo-
metric Schrödinger problem (1) in the noncommutative Fisher-Rao space as

min
A

{∫ 1

0

∫
D

〈At(x)Ut(x), Ut(x)〉dxdt +
ε2

4

∫ 1

0

(
tr

∫
D

A−1
t (x) dx − 1

)

s.t. ∂tAt = (AtUt)sym and At ∈ P for all t ∈ [0, 1]

}
, (18)

with fixed endpoints A0, At ∈ P(D). Let us mention at this stage that a different
entropic regularization of Gaussian optimal transport was investigated in [7] in
a static framework and for a much simpler setting, namely when D = {x} is a
single point

As could be expected from the above geometric machinery, we have now

Theorem ([13]). In the limit ε → 0 and for fixed endpoints A0, A1 ∈ P, the
ε-functional in (18) Gamma-converges towards the kinetic functional in (10) for
the uniform convergence on C([0, 1];P).
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We omit the details for the sake of brevity, but let us point out that our proof
leverages fully explicit properties of the geometric heat flow (15). A particular
byproduct of our analysis is the 1

2 -geodesic convexity of the entropy (14) in the
Fisher-Rao geometry, which was already established in [12] by formal Rieman-
nian computations. The key argument builds up on a Lagrangian construction
originally due to A. Baradat in [2]. Finally, we recently extended the result to
arbitrary metric spaces and general entropy functionals [14] (provided a suit-
able heat flow is available), and we showed moreover that geodesic convexity is
actually necessary (and almost sufficient) for the Γ -convergence.

References

1. Albeverio, S., Yasue, K., Zambrini, J.C.: Euclidean quantum mechanics: analytical
approach. Annales de l’IHP Physique théorique 50(3), 259–308 (1989)

2. Aymeric, B., Léonard, M.: Small noise limit and convexity for generalized incom-
pressible flows, Schrödinger problems, and optimal transport. Arch. Ration. Mech.
Anal. 235(2), 1357–1403 (2019). https://doi.org/10.1007/s00205-019-01446-w

3. Benamou, J.D., Brenier, Y.: A computational fluid mechanics solution to the
Monge-Kantorovich mass transfer problem. Num. Math. 84(3), 375–393 (2000)

4. Bures, D.: An extension of Kakutani’s theorem on infinite product measures to the
tensor product of semifinite ω∗-algebras. Trans. AMS 135, 199–212 (1969)

5. Chen, Y., Georgiou, T.T., Pavon, M.: Stochastic control liaisons: Richard Sinkhorn
meets Gaspard Monge on a Schroedinger bridge. arXiv preprint arXiv:2005.10963
(2020)

6. Chen, Y., Gangbo, W., Georgiou, T., Tannenbaum, A.: On the matrix Monge-
Kantorovich problem. Eur. J. Appl. Math. 31(4), 574–600 (2020)

7. Janati, H., Muzellec, B., Peyré, G., Cuturi, M.: Entropic optimal transport
between (unbalanced) Gaussian measures has a closed form. arXiv preprint
arXiv:2006.02572 (2020)

8. Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the Fokker-
Planck equation. SIAM J. Math. Anal. 29(1), 1–17 (1998)

9. Léger, F.: A geometric perspective on regularized optimal transport. J. Dyn. Diff.
Equ. 31(4), 1777–1791 (2018). https://doi.org/10.1007/s10884-018-9684-9

10. Léonard, C.: A survey of the Schrödinger problem and some of its connections with
optimal transport. Discrete Contin. Dyn. Syst. A 34, 1533–1574 (2014)

11. Mikami, T.: Monge’s problem with a quadratic cost by the zero-noise limit of
h-path processes. Probabl. Theor. Relat. Fields 129(2), 245–260 (2004)

12. Modin, K.: Geometry of matrix decompositions seen through optimal transport
and information geometry. J. Geom. Mech. 9(3), 335–390 (2017)

13. Monsaingeon, L., Vorotnikov. D.: The Schrödinger problem on the non-
commutative Fisher-Rao space. Calculus Variat. Part. Diff. Equ. 60(1) (2021).
art. no. 14

14. Monsaingeon, L., Vorotnikov, D., Tamanini, L.: The dynamical Schrödinger prob-
lem in abstract metric spaces. Preprint arXiv:2012.12005 (2020)

15. Otto, F.: The geometry of dissipative evolution equations: the porous medium
equation. Commun. Part. Diff. Equ. 23(1–2), 101–174 (2001)

16. Peyré, G., Cuturi. M.: Computational optimal transport: with applications to data
science. Found. Trends® in Mach. Learn. 11(5–6), 355–607 (2019)

https://doi.org/10.1007/s00205-019-01446-w
http://arxiv.org/abs/2005.10963
http://arxiv.org/abs/2006.02572
https://doi.org/10.1007/s10884-018-9684-9
http://arxiv.org/abs/2012.12005


476 L. Monsaingeon and D. Vorotnikov

17. Schrödinger. E.: Über die umkehrung der naturgesetze. Sitzungsberichte Preuss.
Akad. Wiss. Berlin. Phys. Math. Klasse, 144, 144–153 (1931)

18. Takatsu, A.: Wasserstein geometry of Gaussian measures. Osaka J. Math. 48(4),
1005–1026 (2011)

19. Villani, C.: Topics in optimal transportation. AMS Graduate Studies in Mathe-
matics, vol. 58. American Mathematical Society, Providence (2003)

20. Zambrini, J.C.: Variational processes and stochastic versions of mechanics. J. Math.
Phys. 27(9), 2307–2330 (1986)



Projections with Logarithmic Divergences

Zhixu Tao and Ting-Kam Leonard Wong(B)

University of Toronto, Toronto, Canada
zhixu.tao@mail.utoronto.ca, tkl.wong@utoronto.ca

Abstract. In information geometry, generalized exponential families
and statistical manifolds with curvature are under active investigation in
recent years. In this paper we consider the statistical manifold induced by
a logarithmic L(α)-divergence which generalizes the Bregman divergence.
It is known that such a manifold is dually projectively flat with constant
negative sectional curvature, and is closely related to the F (α)-family,
a generalized exponential family introduced by the second author [16].
Our main result constructs a dual foliation of the statistical manifold, i.e.,
an orthogonal decomposition consisting of primal and dual autoparallel
submanifolds. This decomposition, which can be naturally interpreted
in terms of primal and dual projections with respect to the logarithmic
divergence, extends the dual foliation of a dually flat manifold studied
by Amari [1]. As an application, we formulate a new L(α)-PCA problem
which generalizes the exponential family PCA [5].

Keywords: Logarithmic divergence · Generalized exponential family ·
Dual foliation · Projection · Principal component analysis

1 Introduction

A cornerstone of information geometry [2,4] is the dually flat geometry induced
by a Bregman divergence [10]. This geometry underlies the exponential and
mixture families and explains their efficacy in statistical applications. A natu-
ral direction is to study extensions of the dually flat geometry and exponen-
tial/mixture families as well as their applications. Motivated by optimal trans-
port, in a series of papers [12,13,16,17] Pal and the second author developed
the L(α)-divergence which is a logarithmic extension of the Bregman divergence.
Let α > 0 be a constant. Given a convex domain Θ ⊂ R

d and a differentiable
α-exponentially concave function ϕ : Θ → R (i.e., Φ = eαϕ is concave), we define
the L(α)-divergence L(α)

ϕ : Θ × Θ → [0,∞) by

L(α)
ϕ [θ : θ′] =

1
α

log(1 + αDϕ(θ′) · (θ − θ′)) − (ϕ(θ) − ϕ(θ′)), (1)
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where Dϕ is the Euclidean gradient and · is the Euclidean dot product. We
recover the Bregman divergence (of a concave function) by letting α → 0+.
Throughout this paper we work under the regularity conditions stated in [16,
Condition 7]; in particular, ϕ is smooth and the Hessian D2Φ is strictly nega-
tive definite (so Φ is strictly concave). By the general theory of Eguchi [7], the
divergence L(α)

ϕ induces a dualistic structure (g,∇,∇∗) consisting of a Rieman-
nian metric g and a pair (∇,∇∗) of torsion-free affine connections that are dual
with respect to g. It was shown in [13,16] that the induced geometry is dually
projectively flat with constant negative sectional curvature −α (see Sect. 2 for
a brief review). Moreover, the L(α)-divergence is a canonical divergence (in the
sense of [3]) for such a geometry. Thus, this geometry can be regarded as the
constant-curvature analogue of the dually flat manifold. The geometric meaning
of the curvature −α was investigated further in [18,19]. Also see [13,14,19] for
connections with the theory of optimal transport. In [16] we also introduced the
F (α)-family, a parameterized density of the form

p(x; θ) = (1 + αθ · F (x))−1/αeϕ(θ), (2)

and showed that it is naturally compatible with the L(α)-divergence. To wit, the
potential function ϕ in (2) can be shown to be α-exponentially concave, and its
L(α)-divergence is the Rényi divergence of order 1+α. Note that letting α → 0+

in (2) recovers the usual exponential family. In a forthcoming paper we will study
in detail the relationship between the F (α)-family and the q-exponential family
[11], where q = 1 + α.

To prepare for statistical applications of the logarithmic divergence and the
F (α)-family, in this paper we study primal and dual projections with respect to
the L(α)-divergence. These are divergence minimization problems of the form

inf
Q∈A

L(α)
ϕ [P : Q] and inf

Q∈A
L(α)

ϕ [Q : P ], (3)

where P is a given point and A is a submanifold of the underlying manifold.
The optimal solutions in (3) are respectively the primal and dual projections of
P onto A. Our main result, presented in Sect. 3, provides an orthogonal foliation
of the manifold in terms of ∇ and ∇∗-autoparallel submanifolds. This extends
the orthogonal foliation of a dually flat manifold constructed by Amari [1], and
shows that projections with respect to an L(α)-divergence are well-behaved. As
an application, we formulate in Sect. 4 a nonlinear dimension reduction prob-
lem that we call the L(α)-PCA. In a nutshell, the L(α)-PCA problem extends
the exponential family PCA [5] to the F (α)-family (2). In future research we
will study further properties of the L(α)-PCA problem, including optimization
algorithms and statistical applications.

2 Preliminaries

Consider an L(α)-divergence L(α)
ϕ as in (1). We regard the convex set Θ as the

domain of the (global) primal coordinate system θ. We denote the underlying
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manifold by S. For P ∈ S, we let θP ∈ Θ be its primal coordinates. We define
the dual coordinate system by

ηP = T(θP ) :=
Dϕ(θP )

1 − αDϕ(θP ) · θP
. (4)

We call the mapping θ �→ η = T(θ) the α-Legendre transformation and let Ω be
the range of η. This transformation corresponds to the α-conjugate defined by

ψ(y) = inf
θ∈Θ

(
1
α

log(1 + αθ · y) − ϕ(θ)
)

.

It can be shown that ψ is also α-exponentially concave. The inverse of T is the
α-Legendre transform of ψ, and we have the self-dual expression

D[P : Q] := L(α)
ϕ [θP : θQ] = L(α)

ψ [ηQ : ηP ]. (5)

We refer the reader to [16, Section 3] for more details about this generalized
duality. Note that (5) defines a divergence D on S.

Let (g,∇,∇∗) be the duallistic structure, in the sense of [7], induced by the
divergence D on S. The following lemma expresses the Riemannian metric g in
terms of the coordinate frames ( ∂

∂θi
) and ( ∂

∂ηj
) (also see [16, Remark 6]).

Lemma 1. [16, Proposition 8] Let 〈·, ·〉 be the Riemannian inner product. Then
〈

∂

∂θi
,

∂

∂ηj

〉
=

−1
Π

δij +
α

Π2
θjηi, Π = 1 + αθ · η. (6)

We call ∇ the primal connection and ∇∗ the dual connection. A primal
geodesic is a curve γ such that ∇γ̇ γ̇ = 0, and a dual geodesic is defined anal-
ogously. As shown in [16, Section 6], the geometry is dually projectively flat in
the following sense: If γ : [0, 1] → S is a primal geodesic, then under the primal
coordinate system, θγ(t) is a straight line up to a time reparameterization. Sim-
ilarly, a dual geodesic is a time-changed straight line under the dual coordinate
system. We also have the following generalized Pythagorean theorem.

Theorem 1 (Generalized Pythagorean theorem). [16, Theorem 16] For
P,Q,R ∈ S, the generalized Pythagorean relation

D[Q : P ] + D[R : Q] = D[R : P ]

holds if and only if the primal geodesic from Q to R meets g-orthogonally to the
dual geodesic from Q to P .

3 Dual Foliation and Projection

In this section we construct an orthogonal decomposition of S. We begin with
some notations. Let A ⊂ S be a submanifold of S. Thanks to the dual projective
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flatness, we say that A is ∇-autoparallel (resp. ∇∗-autoparallel) if it is a convex
set in the θ coordinates (resp. η coordinates). Consider a maximal ∇-autoparallel
submanifold Ek with dimension k ≤ d = dimS. Given P0 ∈ Ek, we may write

Ek = {P ∈ S : θP − θP0 ∈ A0}, (7)

where A0 ⊂ R
d is a vector subspace with dimension k. Dually, we may consider

maximal ∇∗-autoparallel submanifolds Mk with dimension d − k (so k is the
codimension).

We are now ready to state our first result. Here we focus on projections onto
a ∇-autoparallel submanifold. The other case is similar and is left to the reader.

Theorem 2. Fix 1 ≤ k < d. Consider a ∇-autoparallel submanifold Ek and
P0 ∈ S. Then there exists a unique Mk such that Ek ∩ Mk = {P0} and the
two submanifolds meet orthogonally, i.e., if u ∈ TP0Ek and v ∈ TP0Mk, then
〈u, v〉 = 0. We call Mk = Mk(P0) the dual complement of Ek at P0.

Proof. Let Ek be given by (7). We wish to find a submanifold Mk of the form

Mk = {P ∈ S : ηP − ηP0 ∈ B0}, (8)

where B0 ⊂ R
d is a vector subspace of dimension d−k, such that Ek∩Mk = {P0}

and the two submanifolds meet orthogonally.
Consider the tangent spaces of Ek and Mk at P0. Since Ek is given by an

affine constraint in the θ coordinates, we have

TP0Ek =

{
u =

∑
i

ai
∂

∂θi
∈ TP0S : (a1, . . . , ad) ∈ A0

}
.

Similarly, we have

TpMk =

⎧⎨
⎩v =

∑
j

bj
∂

∂ηj
∈ TP0S : (b1, . . . , bd) ∈ B0

⎫⎬
⎭ .

Given the subspace A0, our first task is to choose a vector subspace B0 such
that TP0S = TP0Ek ⊕ TP0Mk and TP0Ek ⊥ TP0Mk.

Let u =
∑

i ai
∂

∂θi
, v =

∑
j bj

∂
∂ηj

∈ TP0S. Regard a = (a1, . . . , ad)� and
b = (b1, . . . , bd)� as column vectors. Writing (6) in matrix form, we have

〈u, v〉 =
∑
i,j

aibj

〈
∂

∂θi
,

∂

∂ηj

〉
= a�Gb, (9)

where the matrix G = G(P0) is invertible and is given by

G(P0) =
−1
Π

I +
α

Π2
θP0η

�
P0

. (10)
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With this notation, we see that by letting B0 be the subspace

B0 = {b ∈ R
d : a�Gb = 0 ∀a ∈ A0}, (11)

and defining Mk by (8), we have TP0S = TP0Ek ⊕ TP0Mk and TP0Ek ⊥ TP0Mk.
Regarding (a, b) �→ a�Gb as a nondegenerate bilinear form, we may regard B0 =
A⊥

0 as the (right) orthogonal complement of A0 with respect to G.
It remains to check that Ek ∩ Mk = {P0}. Suppose on the contrary that

Ek ∩ Mk contains a point P which is different from P0. From the definition of
Ek and Mk, we have

θP − θP0 ∈ A0 \ {0}, ηP − ηP0 ∈ B0 \ {0}.

Let γ be the primal geodesic from P0 to P which is a straight line from θP0 to θP

after a time change. Writing γ̇(0) =
∑

i ai
∂

∂θi
∈ TP0Ek, we have a = λ(θP − θP0)

for some λ > 0. Dually, if γ∗ is the dual geodesic from P0 to P and γ̇∗(0) =∑
j bj

∂
∂ηj

∈ TP0Mk, then b = λ′(ηP − ηP0) for some λ′ > 0. It follows that

〈γ̇(0), γ̇∗(0)〉 = λλ′(θP − θP0)
�G(ηP − ηP0) = 0.

Thus the two geodesics meet orthogonally at P0. By the generalized Pythagorean
theorem, we have

D[P0 : P ] + D[P : P0] = D[P0 : P0] = 0,

which is a contradiction since P �= P0 implies D[P0 : P ],D[P : P0] > 0. ��
Remark 1 (Comparison with the dually flat case). Theorem 2 is different from
the corresponding result in [1, Section 3B]. In [1], given a dually flat manifold,
Amari considered a k-cut coordinate system and showed that the e-flat Ek(ck+)
is orthogonal to the m-flat Mk(dk−) for any values of ck and dk. Since the
Riemannian metric (6) is different, the construction using k-cut coordinates no
longer works in our setting.

As in the dually flat case, the orthogonal complement can be interpreted in
terms of primal and dual projections.

Definition 1 (Primal and dual projections). Let A ⊂ S and P ∈ S. Con-
sider the problem

D[A : P ] := inf
Q∈A

D[Q : P ]. (12)

An optimal solution to (12) is called a dual projection of P onto A and is
denoted by proj∗A(P ). Similarly, the primal projection of P onto A is defined
by arg minQ∈AD[P : Q] and is denoted by projA(P ).

The following theorem gives a geometric interpretation of the dual comple-
ment Mk.
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Theorem 3. Consider a submanifold Ek and let P0 ∈ Ek. Let Mk = Mk(P0)
be the dual complement of Ek at P0 given by Theorem 2. Then, for any P ∈ Mk

we have P0 = proj∗Ek
(P ). In fact, we have

Mk(P0) = (proj∗Ek
)−1(P0) = {P ∈ S : proj∗Ek

(P ) = P0}. (13)

Consequently, for P0, P1 ∈ Ek with P0 �= P1, we have Mk(P0) ∩ Mk(P1) = ∅.
Proof. Let P ∈ Mk. By definition of Mk, the dual geodesic γ∗ from P to P0 is
orthogonal to Ek. Since Ek is ∇-autoparallel, for any Q ∈ Ek, Q �= P , the primal
geodesic γ from Q to P0 lies in Ek, and its orthogonal to γ∗. By the generalized
Pythagorean theorem, we have

D[Q : P ] = D[P0 : P ] + D[Q : P0] > D[P0 : P ].

It follows that P0 = proj∗Ek
(P ). This argument also shows that the dual projec-

tion onto Ek, if exists, is unique.
Conversely, suppose P ∈ S\Mk. Then, by definition of Mk, the dual geodesic

from P to P0 is not orthogonal to Ek. This violates the first order condition of
the optimization problem (12). Hence P0 is not the dual projection of P onto Ek

and we have Mk = (proj∗Ek
)−1(P0). ��

We have shown that the dual complements are disjoint and correspond to
preimages of the dual projections. We complete the circle of ideas by stating the
dual foliation. See Fig. 2 for a graphical illustration in the context of principal
component analysis with respect to an L(α)-divergence.

Corollary 1 (Dual foliation). Let Ek be given. Suppose that for each P ∈ S
the infimum in (12) is attained. Then

S =
⋃

P0∈Ek

Mk(P0), (14)

where the union is disjoint. We call (14) a dual foliation of S.

Remark 2. In [9] the dual foliation derived from a Bregman divergence was used
to study a U-boost algorithm. It is interesting to see if the logarithmic divergence
– which satisfies a generalized Pythagorean theorem and induces a dual foliation
– leads to a class of new algorithms.

4 PCA with Logarithmic Divergences

Motivated by the success of Bregman divergence, it is natural to consider statis-
tical applications of the L(α)-divergence. In this section we consider dimension
reduction problem with the logarithmic divergences. Principal component anal-
ysis (PCA) is a fundamental technique in dimension reduction [8]. The most
basic and well-known version of PCA operates by projecting orthogonally the
data onto a lower dimensional affine subspace in order to minimize the sum of



Projections with Logarithmic Divergences 483

A
∇-autoparallel

T

parameter space Θ data space Ω

E = T(A)

y

dual
geodesic

L
(α)
ψ

[y : η̂]

η̂ = T(θ̂)

Fig. 1. Geometry of L(α)-PCA. Here η̂ is the dual projection of y onto E .

squared errors. Equivalently, this can be phrased as a maximum likelihood esti-
mation problem where each data point is normally distributed and the mean
vectors are constrained to lie on a lower dimensional affine subspace. Using
the duality between exponential family and Bregman divergence (which can be
regarded as a generalization of the quadratic loss), Collins et al. [5] formulated
a nonlinear extension of PCA to exponential family. Here, we propose to replace
the Bregman divergence by an L(α)-divergence, and the exponential family by
the F (α)-family (2). We call the resulting problem L(α)-PCA.

We assume that an α-exponentially concave function ψ is given on the dual
domain Ω which we also call the data space (state space of data). We define the
primal parameter by θ = T−1(η) = Dψ(η)

1−αDψ(η)·η which takes values in the primal
domain Θ (parameter space). For k ≤ d = dimΘ fixed, let Ak(Θ) be the set of
all A ∩ Θ where A ⊂ R

d is a k-dimensional affine subspace.

Definition 2. (L(α)-PCA). Let data points y(1), . . . , y(N) ∈ Ω be given, and
let k ≤ d. The L(α)-PCA problem is

min
A∈Ak(Θ)

min
θ(i)∈A

N∑
i=1

L(α)
ψ [y(i) : η(i)], η(i) = T(θ(i)). (15)

The geometry of L(α)-PCA is illustrated in Fig. 1. A k-dimensional affine
subspace A ⊂ Θ is given in the parameter space Θ and provides dimension
reduction of the data. The α-Legendre transform T can be regarded as a “link
function” that connects the parameter and data spaces. Through the mapping
T we obtain a submanifold E = T(A) which is typically curved in the data
space but is ∇-autoparallel under the induced geometry. From (5), the inner
minimization in (15) is solved by letting η(i) = T(θ(i)) be the dual projection
of y(i) onto E . Consequently, the straight line (dual geodesic) between y(i) and
η(i) in the data space is g-orthogonal to E . Finally, we vary A over Ak(Θ) to
minimize the total divergence.
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Fig. 2. Two sample outputs of L(α)-PCA and Aitchison-PCA in the context of Example
1. Black circles: Data points. Blue (thick) curve: Optimal ∇-autoparallel submanifold
E = T(A) shown in the state space Δn. Grey: Dual geodesics from data points to
projected points on E . The dual geodesics, which are straight lines in Δn, are orthogonal
to E by construction and form part of the dual foliation constructed in Corollary 1.
Red (thin) curve: First principal component from Aitchison-PCA. (Color figure online)

Remark 3 (Probabilistic interpretation). Consider an F (α)-family (2). Under
suitable conditions, the density can be expressed in the form

p(x; θ) = e−L
(α)
ψ [F (x):η]−ψ(y), (16)

where ψ is the α-conjugate of ϕ. Taking logarithm, we see that L(α)-PCA can be
interpreted probabilistically in terms of maximum likelihood estimation, where
each θ(i) is constrained to lie in an affine subspace of Θ. In this sense the L(α)-
PCA extends the exponential PCA to the F (α)-family.

To illustrate the methodology we give a concrete example.

Example 1 (Dirichlet perturbation). Let Δn = {p ∈ (0, 1)n :
∑

i pi = 1} be the
open unit simplex in R

n. Consider the divergence

c(p, q) = log

(
1
n

n∑
i=1

qi

pi

)
− 1

n

n∑
i=1

log
qi

pi
, (17)

which is the cost function of the Dirichlet transport problem [14] and corresponds
to the negative log-likelihood of the Dirichlet perturbation model Q = p ⊕ D,
where p ∈ Δn, D is a Dirichlet random vector and ⊕ is the Aitchison perturba-
tion (see [14, Section 3]). It is a multiplicative analogue of the additive Gaussian
model Y = x + ε. To use the framework of (15), write ηi = pi

pn
and yi = qi

qn

for i = 1, . . . , d := n − 1, so that the (transformed) data space is Ω = (0 ,∞)d ,
the positive quadrant. Then (17) can be expressed as an L(1)-divergence by
c(p, q) = L(1)

ψ [y : η], where ψ(y) = 1
n

∑n
i=1 log yi. The 1-Legendre transform is

given by θi = 1
ηi

= pn

pi
, so the (transformed) parameter space is Θ = (0,∞)d.

In Fig. 2 we perform L(α)-PCA for two sets of simulated data, where d = 2
(or n = 3) and k = 1. Note that the traces of dual geodesics are straight lines
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in the (data) simplex Δn [13]. In Fig. 2 we also show the outputs of the pop-
ular Aitchison-PCA based on the ilr-transformation [6,15]. It is clear that the
geometry of Dirichlet-PCA, which is non-Euclidean, can be quite different.

In future research, we plan to develop the L(α)-PCA carefully, including a
rigorous treatment of (16), optimization algorithms and statistical applications.
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Abstract. The purpose of this paper is first to derive the expressions
of the Chernoff, Bhattacharyya, Rényi and Sharma-Mittal divergences
when comparing two probability density functions of vectors storing k
consecutive samples of Gaussian ARMA processes. This can be useful
for process comparison or statistical change detection issue. Then, we
analyze the behaviors of the divergences when k increases and tends to
infinity by using some results related to ARMA processes such as the
Yule-Walker equations. Comments and illustrations are given.

Keywords: Divergence rate · Sharma-Mittal divergence · Chernoff
divergence · Bhattacharyya divergence · Rényi divergence · ARMA
processes

1 Introduction

The properties of the entropies and the related divergences can be of interest
in different fields, from information theory to change detection, passing by the
comparison between model parameters and their estimates. Thus the entropy
rate, defined as the entropy per unit time, has been studied for instance in [7].
The divergence rates for stationary Gaussian processes have been addressed in
[1,4], where the authors respectively provide the expression of the Kullback-
Leibler (KL) divergence rate as well as the Rényi divergence rate for zero-mean
Gaussian processes by using the theory of Toeplitz matrices and the properties of
the asymptotic distribution of the eigenvalues of Toeplitz forms. The expressions
they gave were integrals of functions depending on the power spectral densities
of the processes to be compared. More recently, combining the definitions of the
divergences in the Gaussian case and the statistical properties of the processes
to be compared, we derived [2,5,6,8] the expressions of the divergence rates
of the Jeffreys divergence between the probability density functions (pdfs) of
vectors storing consecutive samples of Gaussian autoregressive moving average
(ARMA) or AR fractionally integrated MA (ARFIMA) processes -noisy or not-.
In every case, the divergence rates depend on the process parameters and can
be interpreted in terms of powers of the processes that have been filtered.
c© Springer Nature Switzerland AG 2021
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In this paper, we propose to analyze how the Chernoff, Bhattacharyya, Rényi
and Sharma-Mittal divergences between the pdfs of vectors storing k consecu-
tive samples of Gaussian ARMA processes evolve when k increases. We derive
different properties that can be useful to compare ARMA processes for instance.

The rest of the paper is organized as follows: after recalling the definition of
the divergences in the Gaussian case and the properties of Gaussian ARMA pro-
cesses, we analyze how the increments of the divergences evolve when k increases.
Some illustrations as well as comments are then given.

2 Chernoff, Bhattacharyya, Rényi and Sharma-Mittal
Divergences. Application to the Gaussian Case

2.1 Definitions

Let us introduce the pdfs related to two real Gaussian random vectors defined
from k consecutive samples, i.e. Xk,i = [xt,i xt−1,i · · · xt−k+1,i]T for i = 1, 2:

pi(Xk,i) =
1

(
√

2π)k|Qk,i|1/2
exp

( − 1
2
[Xk,i − μk,i]T Q−1

k,i [Xk,i − μk,i]
)

(1)

with μk,i = E[Xk,i] the mean, |Qk,i| the determinant of the covariance matrix
Qk,i = E[(Xk,i − μk,i)(Xk,i − μk,i)T ] and E[·] the expectation.

The Chernoff coefficient of order α is then defined as follows:

Cα

(
p1(Xk), p2(Xk)

)
=

∫

Xk

pα
1 (Xk)p1−α

2 (Xk)dXk (2)

To study the dissimilarities between two real Gaussian random processes,
denoted as xt,1 and xt,2, various divergences can be considered as an alternative
to the KL divergence. More particularly, various divergences can be deduced and
defined as a function f of the Chernoff coefficient. Thus, when f(t) = − ln(t),
the Chernoff divergence between p1(Xk) and p2(Xk) is given by:

CD
(1,2)
k (α) = − ln

(
Cα(p1(Xk), p2(Xk))

)
(3)

When α = 1
2 , this leads to the Bhattacharyya distance, which is symmetric:

BD
(1,2)
k = CD

(1,2)
k (

1
2
) = − ln

(
C 1

2
(p1(Xk), p2(Xk))

)
(4)

= − ln
( ∫

Xk

√
p1(Xk)p2(Xk)dXk

)
= BD

(2,1)
k

When f(t) = − 1
1−α ln(t), the Rényi divergence of order α is deduced:

RD
(1,2)
k (α) = − 1

1 − α
ln

∫

Xk

pα
1 (Xk) p1−α

2 (Xk) dXk =
1

1 − α
CD

(1,2)
k (α) (5)
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Note that when α tends to 1, using L’Hospital rules, one can show that the Rényi
divergence tends to the KL divergence. Finally, the Sharma-Mittal divergence of
parameters β and α between p1(Xk) and p2(Xk) is given by:

SM
(1,2)
k (β, α) =

1
β − 1

(
C

1−β
1−α
α (p1(Xk), p2(Xk)) − 1

)
(6)

Using (5) and (6), one can see that:

SM
(1,2)
k (β, α) =

1
β − 1

(
exp

[
(β − 1)RD

(1,2)
k

]
− 1

)
(7)

When β tends to 1, SM
(1,2)
k (β, α) tends to RD

(1,2)
k (α). So, when β tends to 1 and

α tends to 1, SM
(1,2)
k (β, α) tends to the KL divergence. It should be noted that

symmetric versions of these divergences can be also deduced either by taking
the minimum value, the sum or the mean of the divergence computed between
p1(Xk) and p2(Xk) and the one between p2(Xk) and p1(Xk).

2.2 Expressions of the Divergences in the Gaussian Case

Given1 Qk,α = αQk,2 + (1 − α)Qk,1 and Δμk = μk,2 − μk,1 we can show, by
substituting the pdfs by their expressions in the definition (3) and after some
mathematical developments, that the Chernoff divergence is the following:

CD
(1,2)
k (α) =

1
2
ln

( |Qk,α|
|Qk,1|1−α|Qk,2|α

)
+

α(1 − α)
2

ΔμT
k Q−1

k,αΔμk (8)

Therefore, the Bhattacharyya distance can be deduced as follows:

BD
(1,2)
k = CD

(1,2)
k (

1
2
) =

1
2
ln

( |Qk, 12
|

|Qk,1| 1
2 |Qk,2| 1

2

)
+

1
8
ΔμT

k Q−1
k, 12

Δμk (9)

Concerning the expression of the Rényi divergence, given (5), this leads to:

RD
(1,2)
k (α) =

1
2(1 − α)

ln
( |Qk,α|

|Qk,1|1−α|Qk,2|α
)

+
α

2
ΔμT

k Q−1
k,αΔμk (10)

Given (7), this means that the expression of the SM divergence becomes:

SM
(1,2)
k (β, α) =

1
β − 1

× (11)

(
exp

[
(β − 1)

( 1
2(1 − α)

ln
( |Qk,α|

|Qk,1|1−α|Qk,2|α
)

+
α

2
ΔμT

k Q−1
k,αΔμk

)]
− 1

)

In the following, let us analyze how the divergences evolve when k increases
when dealing two wide-sense stationary (w.s.s.) Gaussian ARMA processes. To
this end, we need to recall some properties of ARMA processes.
1 The definition of Qk,α amounts to saying that a third process is introduced and

corresponds to a linear combination of the two processes to be compared.
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3 About w.s.s. Gaussian ARMA Processes

The tth sample xt,i of the ith ARMA process of order (pi, qi) is defined by:

xt,i = −
pi∑

j=1

aj,ixt−j,i +
qi∑

j=0

bj,iut−j,i with i = 1, 2 (12)

where {aj,i}j=1,...,pi
and {bj,i}j=0,...,qi

are the ARMA parameters with b0,i = 1
and the driving process ut,i is a zero-mean w.s.s. Gaussian white sequence with
variance σ2

u,i. In the following, a non zero-mean w.s.s. ARMA process is obtained
by adding μx,i to xt,i, once generated.

The process xt,i is interpreted as the output of an infinite-impulse-response
stable linear filter whose input is ut,i. Using the z transform, the transfer func-

tion Hi(z) =
∏qi

l=1 (1−zl,iz
−1)

∏pi
l=1 (1−pl,iz−1)

is defined by its zeros {zl,i}l=1,...,qi
and poles

{pl,i}l=1,...,pi
.

When the moduli of the zeros are smaller than 1, one speaks of minimum-
phase ARMA processes. For every non-minimum phase ARMA process,
the equivalent minimum-phase process is obtained by replacing the zeros
{zl,i}l=1,...,mi≤qi

whose modulus is larger than 1 by 1/z∗
l,i for l = 1, . . . , mi

to get the transfer function Hmin,i(z). Then, by introducing Kl,i = |zl,i|2, one
substitutes the variance σ2

u,i of the initial ARMA process with the product:

σ2
u,min,i = σ2

u,i

qi∏

l=1

Kl,i (13)

All the above ARMA processes lead to the same power spectral density (PSD)
equal to Sx,i(θ) = σ2

u,i |Hi(ejθ)|2 with θ the normalized angular frequency and
consequently to the same correlation and covariance functions.

As this paper aims at comparing the pdfs of ARMA processes characterized
by their means and their covariance matrices, one can always consider the ARMA
processes associated to the minimum-phase filter Hi(z) [9].

Comparing the minimum-phase ARMA processes is of interest because they
can be represented by an infinite-order AR process. The latter can be approxi-
mated by a AR model of finite-order τ > max (pi, qi):

xt,i ≈ −
τ∑

j=1

αj,τ,ixt−j,i + ut,τ,i (14)

where ut,τ,i is the driving process of the ith process associated with the order τ
and {αj,τ,i}j=1,...,τ are the AR parameters. They can be stored in the column
vector Θτ,i that can be estimated using the Yule-Walker equations, given by:

{
Qτ,iΘτ,i = −rτ,i

σ2
u,τ,i = r0,i − rT

τ,iΘτ,i
(15)
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with rτ,i is the column vector storing the values of the covariance function rk,i =
E[(xt,i − E(xt,i)) (xt−k,i − E(xt−k,i))] for lags equal to k = 1, ..., τ + 1.

The Toeplitz covariance matrix Qk,i of Xk,i, whose elements are defined by
the covariance function, is non singular even if the PSD of the process is equal
to zero at some frequencies. It is hence invertible. Only the infinite-size Toeplitz
covariance matrix is not invertible when the corresponding transfer function of
the ARMA process has unit roots.

There are various ways to compute the inverse of the covariance matrix of
the AR process. In this paper, we suggest a LDL factorization of Qk,i. To this
end, each element of the column vector Xk,i can be expressed from Uk,i =
[ut,k−1,i ut−1,k−2,i . . . ut−k+1,0,i]T by using (14). One has:

L−1
k,iXk,i = Uk,i (16)

where:

L−1
k,i =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 α1,k−1,i α2,k−1,i . . . αk−1,k−1,i

0 1 α1,k−2,i . . . αk−2,k−2,i

... 0 1
. . .

...
...

...
. . . . . . α1,1

0 0 . . . 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(17)

Thus, if diag(x) is the diagonal matrix whose main diagonal is x, post multiplying
each part of the equality in (16) by their transpose conjugate and taking the
expectation leads to:

L−1
k,iQk,i(LH

k,i)
−1 = Dk,i = diag(σ2

u,k−1,i . . . σ2
u,0,i) (18)

The above equality has two consequences. On the one hand, the inverse of the
covariance matrix is given by:

Q−1
k,i = (LH

k,i)
−1D−1

k,iL
−1
k,i (19)

On the other hand, taking the determinant of (18), one has:

|L−1
k,i ||Qk,i||(LH

k,i)
−1| = |Dk,i| =

k−1∏

n=0

σ2
u,n,i (20)

As |L−1
k,i | and |(LH

k,i)
−1| are equal to 1, one obtains |Qk,i|

|Qk−1,i| = σ2
u,k−1,i. Therefore,

one has for the ith minimum-phase ARMA process:

lim
k→+∞

|Qk,i|
|Qk−1,i| = σ2

u,min,i (21)

Finally, the linear combination xt,α of stationary independent ARMA processes
xt,1 and xt,2, respectively of orders (p1, q1) and (p2, q2), is an ARMA(p, q) process
with p ≤ p1 + p2, q ≤ max(p1 + q2, p2 + q1).

In the next section, let us study how the divergences evolve when k increases
and tends to infinity, when comparing Gaussian w.s.s. ARMA processes.



492 E. Grivel

4 Analysis of the Increments of the Divergences

Let us first express ΔCD
(1,2)
k = CD

(1,2)
k+1 − CD

(1,2)
k , ΔBD

(1,2)
k and ΔRD

(1,2)
k

which are similarly defined. Given (8), one has:

ΔCD
(1,2)
k =

α(1 − α)
2

(
ΔμT

k+1Q
−1
k+1,αΔμk+1 − ΔμT

k Q−1
k,αΔμk

)
(22)

+
1
2
ln

( |Qk,2|α
|Qk+1,2|α

|Qk+1,α|
|Qk,α|

|Qk,1|1−α

|Qk+1,1|1−α

)

On the one hand, taking into account (21), one has:

lim
k→+∞

( |Qk,2|α
|Qk+1,2|α

|Qk+1,α|
|Qk,α|

|Qk,1|1−α

|Qk+1,1|1−α

)
=

σ2
u,min,α

(σ2
u,min,2)α(σ2

u,min,1)1−α
(23)

On the other hand, given Ak+1 = ΔμT
k+1Q

−1
k+1,αΔμk+1 and Δμx the difference

between the process means, one can show by using the LDL decomposition:

Ak+1 =
k∑

τ=0

|∑τ
i=0 αi,τ,α|2
σ2

u,τ,1

Δμ2
x = Ak +

|∑k
i=0 αi,k,α|2
σ2

u,k,1

Δμ2
x (24)

Let us take the limit of the difference ΔAk = Ak+1−Ak when k tends to infinity.
As lim

k→+∞
| ∑k

i=0 αi,k,i|2
σ2

u,k,1
Δμ2

x corresponds to the power PΔμx,i of a constant signal

equal to Δμx that has been filtered by the inverse filter associated with the ith

minimum-phase ARMA process, one obtains:

lim
k→+∞

ΔAk = PΔμx,α (25)

Therefore, the asymptotic increment for the Chernoff divergence is given by:

ΔCD(1,2) = lim
k→+∞

ΔCD
(1,2)
k =

α(1 − α)

2
P Δμx,α +

1

2
ln

( σ2
u,α,min

(σ2
u,2,min)α(σ2

u,1,min)1−α

)

(26)

Consequently, one has:

ΔBD(1,2) = lim
k→+∞

ΔBD
(1,2)
k =

1
8
PΔμx, 12 +

1
2
ln

( σ2
u, 12 ,min

σu,2,minσu,1,min

)
(27)

and

ΔRD(1,2) = lim
k→+∞

ΔRD
(1,2)
k =

α

2
P Δμx,α − 1

2(α − 1)
ln

( σ2
u,α,min

(σ2
u,2,min)α(σ2

u,1,min)1−α

)

(28)
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ΔCD
(1,2)
k , ΔBD

(1,2)
k and ΔRD

(1,2)
k depend on the ARMA parameters because

σ2
u,α,min depend on the transfer functions and the variances of the driving pro-

cesses of the two processes to be compared. The above quantities correspond to
the divergence rates. Thus, RD

(1,2)
k ≈ kΔRD(1,2) + γ when k tends to infinity,

with γ a constant. So, lim
k→+∞

RD
(1,2)
k = +∞ and lim

k→+∞
ΔRD

(1,2)
k

RD
(1,2)
k

= 0. Note that

a detailed analysis of the RD divergence rate has been recently presented in [3].
Let us now express ΔSM

(1,2)
k = SM

(1,2)
k+1 − SM

(1,2)
k . After simplifications,

one has:

ΔSM
(1,2)
k =

exp
[
(β − 1)RD

(1,2)
k

]

(β − 1)

(
exp

[
(β − 1)ΔRD

(1,2)
k

]
− 1

)
(29)

Therefore, the normalized increment is equal to:

ΔSM
(1,2)
k

SM
(1,2)
k

=
exp

[
(β − 1)ΔRD

(1,2)
k

]
− 1

1 − exp
[

− (β − 1)RD
(1,2)
k

] (30)

As said in Sect. 2, lim
β→1

ΔSM
(1,2)
k = RD

(1,2)
k+1 − RD

(1,2)
k = ΔRD

(1,2)
k and

lim
β→1

ΔSM
(1,2)
k

SM
(1,2)
k

= ΔRD
(1,2)
k

RN
(1,2)
k

. In addition, remembering (28), one has:

lim
k→+∞

ΔSM
(1,2)
k

SM
(1,2)
k

=
exp

[
(β − 1)ΔRD(1,2)

]
− 1

1 − lim
k→+∞

exp
[

− (β − 1)RD
(1,2)
k

] (31)

As RD
(1,2)
k ≥ 0 necessarily increases when k increases, lim

k→+∞
exp

[
(1−β)RD

(1,2)
k

]

depends on the values of β. This leads to three cases:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

lim
k→+∞

ΔSM
(1,2)
k

SM
(1,2)
k

= 0 if 0 < β < 1

lim
k→+∞

ΔSM
(1,2)
k

SM
(1,2)
k

= lim
k→+∞

ΔRD
(1,2)
k

RD
(1,2)
k

= 0 when β tends to 1

lim
k→+∞

ΔSM
(1,2)
k

SM
(1,2)
k

= exp
[
(β − 1)ΔRD(1,2)

]
− 1 if β > 1

(32)

Two remarks can be made: lim
β→1

exp
[
(β − 1)ΔRD(1,2)] − 1 = 0. Moreover, for a

given value of α, as exp
[
(β − 1)ΔRD(1,2)

]
is an increasing function of β when

β > 1, lim
k→+∞

ΔSM
(1,2)
k

SM
(1,2)
k

is also an increasing function of β for β > 1.
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5 Illustrations

Let us give one example and study some divergences analyzed in this paper
(for the lack of space). The first process is defined by its zeros equal to 0.8ej π

4 ,
0.9ej 3π

4 and their conjugates and its poles equal to 0.9ej π
6 , 0.7ej π

5 , 0.9e
jπ
4 and

their conjugates. In addition, σ2
u,1 = 1 and μ1 = 5. The second process is defined

by its zeros equal to 0.8ej 2π
3 , 0.6ej 3π

7 and their conjugates and its poles equal
to 0.95ej 5π

6 , 0.7ej 3π
5 , 0.9ej π

4 and their conjugates. In addition, σ2
u,2 = 4 and

μ2 = 1. Based on the data generated, the means and the covariance functions are

Fig. 1. Chernoff divergence evolution and divergence rate for the given example

Fig. 2. Sharma-Mittal divergence and normalized difference of the increment with α =
0.9 and β = 1.5
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then estimated. The divergences for different values of k and the increments are
computed. Results in Fig. 1 and 2 confirm our analysis and the convergence of the
increment or the normalized increment to the proposed asymptotic expressions
(26) and (32).

6 Conclusions and Perspectives

We have shown that expressions of various divergences between Gaussian ARMA
processes can be obtained with the Yule-Walker equations. When dealing with
Sharma-Mittal divergence, it is of interest to use the normalized increment either
to compare the ARMA processes or to detect a statistical change in one of them
over time while the divergence rates can be considered for the other divergences.
We plan to analyze the case of long-memory processes.
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Abstract. In this study, we analyze statistical inference based on the
Wasserstein geometry in the case that the base space is one-dimensional.
By using the location-scale model, we derive the W -estimator that explic-
itly minimizes the transportation cost from the empirical distribution to
a statistical model and study its asymptotic behaviors. We show that the
W -estimator is consistent and explicitly give its asymptotic distribution
by using the functional delta method. The W -estimator is Fisher efficient
in the Gaussian case.

Keywords: Information geometry · Location-scale model · Optimal
transport · Wasserstein distance

1 Introduction

Wasserstein geometry and information geometry are two important structures
to be introduced in a manifold of probability distributions. Wasserstein geome-
try is defined by using the transportation cost between two distributions, so it
reflects the metric of the base manifold on which the distributions are defined.
Information geometry is defined to be invariant under reversible transformations
of the base space. Both have their own merits for applications. In particular, sta-
tistical inference is based upon information geometry, where the Fisher metric
plays a fundamental role, whereas Wasserstein geometry is useful in computer
vision and AI applications.

Both geometries have their own histories (see e.g., Villani 2003, 2009; Amari
2016). Information geometry has been successful in elucidating statistical infer-
ence, where the Fisher information metric plays a fundamental role. It has suc-
cessfully been applied to, not only statistics, but also machine learning, signal
processing, systems theory, physics, and many other fields (Amari 2016). Wasser-
stein geometry has been a useful tool in geometry, where the Ricci flow has played
an important role (Villani 2009; Li et al. 2020). Recently, it has found a widened
scope of applications in computer vision, deep learning, etc. (e.g., Fronger et
al. 2015; Arjovsky et al. 2017; Montavon et al. 2015; Peyré and Cuturi 2019).
There have been attempts to connect the two geometries (see Amari et al. (2018,
2019) and Wang and Li (2020) for examples), and Li et al. (2019) has proposed
a unified theory connecting them.
c© Springer Nature Switzerland AG 2021
F. Nielsen and F. Barbaresco (Eds.): GSI 2021, LNCS 12829, pp. 499–506, 2021.
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It is natural to consider statistical inference from the Wasserstein geome-
try point of view (Li et al. 2019) and compare its results with information-
geometrical inference based on the likelihood. The present article studies the
statistical inference based on the Wasserstein geometry from a point of view dif-
ferent from that of Li et al. (2019). Given a number of independent observations
from a probability distribution belonging to a statistical model with a finite
number of parameters, we define the W -estimator that minimizes the trans-
portation cost from the empirical distribution p̂(x) derived from observed data
to the statistical model. This is the approach taken in many studies (see e.g.,
Bernton et al. 2019; Bassetti et al. 2006). In contrast, the information geometry
estimator is the one that minimizes the Kullback–Leibler divergence from the
empirical distribution to the model, and it is the maximum likelihood estima-
tor. Note that Matsuda and Strawderman (2021) investigated predictive density
estimation under the Wasserstein loss.

The present W -estimator is different from the estimator of Li et al. (2019),
which is based on the Wasserstein score function. While their fundamental theory
is a new paradigm connecting information geometry and Wasserstein geometry,
their estimator does not minimize the W -divergence from the empirical one to
the model. It is an interesting problem to compare these two frameworks of
Wasserstein statistics.

This paper is based on Amari and Matsuda (2021).

2 W -Estimator

The optimal transport from p(x) to q(x) for x ∈ R1 is explicitly obtained when
the transportation cost from x to y is (x − y)2. Let P (x) and Q(x) be the
cumulative distribution functions of p and q, respectively, defined by

P (x) =
∫ x

−∞
p(y)dy, Q(x) =

∫ x

−∞
q(y)dy.

Then, it is known (Santambrogio 2015; Peyré and Cuturi 2019) that the optimal
transportation plan is to send mass of p(x) at x to x′ in a way that satisfies
P (x) = Q (x′). See Fig. 1. Thus, the total cost sending p to q is

C(p, q) =
∫ 1

0

∣∣P−1(u) − Q−1(u)
∣∣2 du,

where P−1 and Q−1 are the inverse functions of P and Q, respectively.
We consider a regular statistical model

S = {p(x,θ)} ,

parametrized by a vector parameter θ, where p(x,θ) is a probability density
function of a random variable x ∈ R1 with respect to the Lebesgue measure of
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( )Q x

( )P x

x

1

u

Fig. 1. Optimal transportation plan from p to q

R1. Let D = {x1, · · · , xn} be n independent samples from p(x,θ). We denote
the empirical distribution by

p̂(x) =
1
n

∑
i

δ (x − xi) ,

where δ is the Dirac delta function. We rearrange x1, · · · , xn in the increasing
order,

x(1) ≤ x(2) ≤ · · · ≤ x(n),

which are order statistics.
The optimal transportation plan from p̂(x) to p(x,θ) is explicitly solved when

x is one-dimensional, x ∈ R1. The optimal plan is to transport mass at x to those
points x′ satisfying

P̂ (x−) ≤ P (x′,θ) ≤ P̂ (x),

where P̂ (x) and P (x,θ) are the (right-continuous) cumulative distribution func-
tions of p̂(x) and p(x,θ), respectively:

P̂ (x) =
∫ x

−∞
p̂(y)dy, P (x,θ) =

∫ x

−∞
p(y,θ)dy,

and P̂ (x−) = limy→x−0 P̂ (y). The total cost C of optimally transporting p̂(x)
to p(x,θ) is given by

C(θ) = C(p̂, pθ) =
∫ 1

0

∣∣∣P̂−1(u) − P−1(u,θ)
∣∣∣2 du,

where P̂−1 and P−1 are inverse functions of P̂ and P , respectively. Note that

P̂−1(u) = inf{y | P (y) ≥ u}.
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Let z0(θ), z1(θ), · · · , zn(θ) be the points of the equi-probability partition of
the distribution p(x,θ) such that

∫ zi(θ)

zi−1(θ)

p(x,θ)dx =
1
n

, (1)

where z0(θ) = −∞ and zn(θ) = ∞. In terms of the cumulative distribution,
zi(θ) can be written as

P (zi(θ),θ) =
i

n

and

zi(θ) = P−1

(
i

n
,θ

)
.

See Fig. 2.

x

( )P x

iu
n

( )p x

x
1z0z 2z iz nz

u

Fig. 2. Equi-partition points z0, z1, . . . , zn of p(x)
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The optimal transportation cost C(θ) = C(p̂, pθ) is rewritten as

C(θ) =
∑

i

∫ zi(θ)

zi−1(θ)

(x(i) − y)2p(y,θ)dy =
1
n

∑
i

x2
(i) − 2

∑
i

ki(θ)x(i) + S(θ),

where we have used (1) and put

ki(θ) =
∫ zi(θ)

zi−1(θ)

yp(y,θ)dy,

S(θ) =
∑

i

∫ zi(θ)

zi−1(θ)

y2p(y,θ)dy =
∫ ∞

−∞
y2p(y,θ)dy.

By using the mean and variance of p(x,θ),

μ(θ) =
∫ ∞

−∞
yp(y,θ)dy,

σ2(θ) =
∫ ∞

−∞
y2p(y,θ)dy − μ(θ)2,

we have

S(θ) = μ(θ)2 + σ2(θ).

The W -estimator θ̂ is the minimizer of C(θ). Differentiating C(θ) with
respect to θ and putting it equal to 0, we obtain the estimating equation as
follows.

Theorem 1. The W -estimator θ̂ satisfies

∂

∂θ

∑
i

ki(θ)x(i) =
1
2

∂

∂θ
S(θ).

It is interesting to see that the estimating equation is linear in n observations
x(1), · · · , x(n) for any statistical model. This is quite different from the maximum
likelihood estimator or Bayes estimator.

3 W -Estimator in Location-Scale Model

Now, we focus on location-scale models. Let f(z) be a standard probability
density function, satisfying∫ ∞

−∞
f(z)dz = 1,

∫ ∞

−∞
zf(z)dz = 0,

∫ ∞

−∞
z2f(z)dz = 1,

that is, its mean is 0 and the variance is 1. The location-scale model p(x,θ) is
written as

p(x,θ) =
1
σ

f

(
x − μ

σ

)
,
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where θ = (μ, σ) is a parameter for specifying the distribution.
We define the equi-probability partition points zi for the standard f(z) as

zi = F−1

(
i

n

)
,

where F is the cumulative distribution function

F (z) =
∫ z

−∞
f(x)dx.

Then, the equi-probability partition points yi = yi(θ) of p(x,θ) are given by
yi = σzi + μ.

The cost of the optimal transport from the empirical distribution p̂(x) to
p(x,θ) is then written as

C(μ, σ) =
∑

i

∫ yi

yi−1

(
x(i) − x

)2
p(x, μ, σ)dx

= μ2 + σ2 +
1
n

∑
i

x2
(i) − 2

∑
i

x(i)

∫ zi

zi−1

(σz + μ) f(z)dz. (2)

By differentiating (2), we obtain

1
2

∂

∂μ
C = μ − 1

n

∑
i

x(i),
1
2

∂

∂σ
C = σ −

∑
i

kix(i),

where

ki =
∫ zi

zi−1

zf(z)dz,

which does not depend on μ or σ and depends only on the shape of f . By putting
the derivatives equal to 0, we obtain the following theorem.

Theorem 2. The W -estimator of a location-scale model is given by

μ̂ =
1
n

∑
i

x(i), σ̂ =
∑

i

kix(i).

The W -estimator of the location parameter μ is the arithmetic mean of the
observed data irrespective of the form of f . The W -estimator of the scale param-
eter σ is also a linear function of the observed data x(1), · · · , x(n), but it depends
on f through ki.

4 Asymptotic Distribution of W -Estimator

Here, we derive the asymptotic distribution of the W -estimator in location-scale
models. Our derivation is based on the fact that the W -estimator has the form of
L-statistics (van der Vaart 1998), which is a linear combination of order statistics.
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Theorem 3. The asymptotic distribution of the W -estimator (μ̂, σ̂) is

√
n

(
μ̂ − μ
σ̂ − σ

)
⇒ N

((
0
0

)
,

(
σ2 1

2m3σ
2

1
2m3σ

2 1
4 (m4 − 1)σ2

))
,

where

m4 =
∫ ∞

−∞
z4f(z)dz, m3 =

∫ ∞

−∞
z3f(z)dz,

are the fourth and third moments of f(z), respectively.

Proof. See Amari and Matsuda (2021).

In particular, the W -estimator is Fisher efficient for the Gaussian model, but
it is not efficient for other models.

Corollary 1. For the Gaussian model, the asymptotic distribution of the W -
estimator (μ̂, σ̂) is

√
n

(
μ̂ − μ
σ̂ − σ

)
⇒ N

((
0
0

)
,

(
σ2 0
0 1

2σ2

))
,

which attains the Cramer–Rao bound.

Figure 3 plots the ratio of the mean square error E[(μ̂−μ)2 +(σ̂ −σ)2] of the
W -estimator to that of the MLE for the Gaussian model with respect to n. The
ratio converges to one as n goes to infinity, which shows that the W -estimator
has statistical efficiency.

2 3 4 5 6

1.000

1.002

1.004

1.006

1.008

log10 n
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Fig. 3. Ratio of mean square error of W -estimator to that of MLE for the Gaussian
model.
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Abstract. In this paper we introduce two algorithms for neural archi-
tecture search (NASGD and NASAGD) following the theoretical work
by two of the authors [4] which used the geometric structure of optimal
transport to introduce the conceptual basis for new notions of tradi-
tional and accelerated gradient descent algorithms for the optimization
of a function on a semi-discrete space. Our algorithms, which use the net-
work morphism framework introduced in [1] as a baseline, can analyze
forty times as many architectures as the hill climbing methods [1,10]
while using the same computational resources and time and achieving
comparable levels of accuracy. For example, using NASGD on CIFAR-
10, our method designs and trains networks with an error rate of 4.06 in
only 12 h on a single GPU.

Keywords: Neural networks · Neural architecture search · Gradient
flows · Optimal transport · Second order dynamics · Semi-discrete
optimization

1 Introduction

Motivated by the success of neural networks in applications such as image recog-
nition and language processing, in recent years practitioners and researchers
have devoted great efforts in developing computational methodologies for the
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automatic design of neural architectures in order to use deep learning meth-
ods in further applications. There is an enormous literature on neural architec-
ture search methodologies and some of its applications (see [11] for an overview
on the subject), but roughly speaking, most approaches for neural architecture
search (NAS) found in the literature build on ideas from reinforcement learning
[12], evolutionary algorithms [8,9], and hill-climbing strategies based on network
morphisms [1,10]. All NAS approaches attempt to address a central difficulty:
the high computational burden of training multiple architecture models. Several
developments in the design of algorithms, implementation, and computational
power have resulted in methodologies that are able to produce neural networks
that outperform the best networks designed by humans. Despite all the recent
exciting computational developments in NAS, we believe that it is largely of
interest to propose sound mathematical frameworks for the design of new compu-
tational strategies that can better explore the architecture space and ultimately
achieve higher accuracy rates in learning while reducing computational costs.

In this paper we propose two new algorithms for NAS: neural architecture
search gradient descent (NASGD) and neural architecture search accelerated
gradient descent (NASAGD). These algorithms are based on: 1) the mathe-
matical framework for semi-discrete optimization (deeply rooted in the geomet-
ric structure of optimal transport) that two of the authors have introduced and
motivated in their theoretical work [4], and 2) the neural architecture search
methods originally proposed in [1,10]. We have chosen the network morphism
framework from [1] because it allows us to illustrate the impact that our mathe-
matical ideas can have on existing NAS algorithms without having to introduce
the amount of background that other frameworks like those based on reinforce-
ment learning would require. We emphasize that our high level ideas are not
circumscribed to the network morphism framework.

In the morphism framework from [1] an iterative process for NAS is con-
sidered. In a first step, the parameters/weights of a collection of architectures
are optimized for a fixed time, and in a second step the set of architectures are
updated by applying network morphisms to the best performing networks in
the previous stage; these two steps are repeated until some stopping criterion is
reached. In both NASGD and NASAGD we also use the concept of network mor-
phism, but now the time spent in training a given set of networks is dynamically
chosen by an evolving particle system. In our numerical experiments we observe
that our algorithms change architectures much earlier than the fixed amount of
time proposed in [1], while achieving error rates of 4.06% for the CIFAR-10 data
set trained over 12 h with a single GPU for NASGD, and of 3.96% on the same
training data set trained over 1 day with one GPU for NASAGD.

2 Our Algorithms

In this section we introduce our algorithms NASGD and NASAGD. In order to
motivate them, for pedagogical purposes we first consider an idealized setting
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where we imagine that NAS can be seen as a tensorized semi-discrete optimiza-
tion problem of the form:

min
(x,g)∈Rd×G

V (x, g). (1)

In the above, it will be useful to think of the g coordinate as an architecture and
the x coordinate as the parameters of that architecture. It will also be useful to
think of G = (G,K) as a finite similarity graph of architectures with K a matrix
of positive weights characterizing a small neighborhood of a given architecture
(later on G is defined in terms of network morphisms around a given architecture
–see Sect. 2.3), and V as a loss function (for concreteness cross-entropy loss)
which quantifies how well an architecture with given parameters performs in
classifying a given training data set. Working in this ideal setting, in the next
two subsections we introduce particle systems that aim at solving (1). These
particle systems are inspired by the gradient flow equations derived in [4] that
we now discuss.

2.1 First Order Algorithm

The starting point of our discussion is a modification of equation (2.13) in [4]
now reading:

∂tft(x, g) =
∑

g′∈G

[
log ft(g) + V (x, g) − (log ft(g′) + V (x, g′))

]

· K(g, g′)θx,g,g′(ft(x, g), ft(x, g′)) + divx(ft(x, g)∇xV (x, g)),
(2)

for all t > 0. In the above, ft(x, g) must be interpreted as a probability distri-
bution on R

d ×G and ft(g) as the corresponding marginal distribution on g. ∇x

denotes the gradient in R
d and divx the divergence operator acting on vector

fields on R
d. The first term on the right hand side of (2) is a divergence term on

the graph acting on graph vector fields (i.e. real valued functions defined on the
set of edges of the graph). The term θx,g,g′(ft(x, g), ft(x, g′)) plays the role of
interpolation between the masses located at the points (x, g) and (x, g′), and it
provides a simple way to define induced masses on the edges of the graph. With
induced masses on the set of edges one can in turn define fluxes along the graph
that are in close correspondence with the ones found in the dynamic formulation
of optimal transport in the Euclidean space setting (see [6]).

The relevance of the evolution of distributions (2) is that it can be interpreted
as a continuous time steepest descent equation for the minimization of the energy:

Ẽ(f) :=
∑

g∈G
log f(g)f(g) +

∑

g

∫

Rd

V (x, g)f(x, g) (3)

with respect to the geometric structure on the space of probability measures on
R

d × G that was discussed in section 2.3 in [4]. Naturally, the choice of different
interpolators θ endow the space of measures with a different geometry. In [4]
the emphasis was given to choices of θ that give rise to a Riemannian structure
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on the space of measures, but alternative choices of θ, like the one made in [2],
induce a general Finslerian structure instead. In this paper we work with an
interpolator inducing a Finslerian structure, and in particular define

θx,g,g′(s, s′) := s1U(x,g,g′)>0 + s′1U(x,g,g′)<0, s, s′ > 0, (4)

where U(x, g, g′) := log ft(g) + V (x, g) − (log ft(g′) + V (x, g′)). We notice that
with the entropic term used in (3) we only allow “wandering” in the g coordinate.
This term encourages exploration of the architecture space.

We now consider a collection of moving particles on R
d × G whose evolving

empirical distribution aims at mimicking the evolution described in (2). Initially
the particles have locations (xi, gi) i = 1, . . . , N where we assume that if gi = gj

then xi = xj (see Remark 1 below). For fixed time step τ > 0, particle locations
are updated by repeatedly applying the following steps:

– Step 1: Updating parameters (Training): For each particle i with posi-
tion (xi, gi) we update its parameters by setting:

xτ
i = xi − τ∇xV (xi, gi).

– Step 2: Moving in the architecture space (Mutation): First, for each
of the particles i with position (xi, gi) we decide to change its g coordinate
with probability:

τ
∑

j

(log f(gj) + V (xj , gj)) − (log f(gi) + V (xi, gi))−K(gi, gj),

or 1 if the above number is greater than 1. If we decide to move particle i,
we move it to the position of particle j, i.e. (xj , gj), with probability pj :

pj ∝ [
log f(gj) + V (xj , gj) − (log f(gi) + V (xi, gi))

]−
K(gi, gj).

In the above, f(g) denotes the ratio of particles that are located at g. Addi-
tionally, a− = max{0,−a} denotes the negative part of the quantity a.

Remark 1. Given the assumptions on the initial locations of the particles,
throughout all the iterations of Step 1 and Step 2 it is true that if gi = gj

then xi = xj . This is convenient from a computational perspective because in
this way the number of architectures that need to get trained is equal to the
number of nodes in the graph (which we recall should be interpreted as a small
local graph) and not to the number of particles in our scheme.

Remark 2. By modifying the energy Ẽ(f) replacing the entropic term with an
energy of the form 1

β+1

∑
g(f(g))β+1 for some parameter β > 0, one can motivate

a new particle system where in Step 2 every appearance of log f is replaced with
fβ . The effect of this change is that the resulting particle system moves at a
slower rate than the version of the particle system as described in Step 2.
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2.2 Second Order Algorithm

Our second order algorithm is inspired by the system of equations (2.17) in [4]
which now reads:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tft(x, g) +
∑

g′(ϕt(x, g′) − ϕt(x, g))K(g, g′)θx,g,g′(ft(x, g), ft(x, g))

+divx(ft(x, g)∇xϕt) = 0

∂tϕt + 1
2
|∇xϕt|2 +

∑
g′

(
ϕt(x, g) − ϕt(x, g′)

)2
K(g, g′)∂sθx,g,g′(ft(x, g), ft(x, g′))

= −[γϕt(x, g) + log ft(g) + V (x, g)],

(5)

for t > 0. We use θ as in (4) except that now we set U(x, g, g′) := ϕt(x, g′) −
ϕt(x, g). System (5) describes a second order algorithm for the optimization of
Ẽ – see sections 2.4 and 3.3 in [4] for a detailed discussion. Here, the function
ϕt is a real valued function over R

d × G that can be interpreted as momentum
variable. γ ≥ 0 is a friction parameter.

System (5) motivates the following particle system, where now we think that
the position of a particle is characterized by the tuple (xi, gi, vi) where xi, vi ∈
R

d, gi ∈ G, and in addition we have a potential function ϕ : G → R that also
gets updated. Initially, we assume that if gi = gj then xi = xj and vi = vj . We
also assume that initially ϕ is identically equal to zero.

We summarize the second order gradient flow dynamics as the iterative appli-
cation of three steps:

– Step 1: Updating parameters (Training): For each particle i located at
(xi, gi, vi) we update its parameters xi, vi by setting

xτ
i = xi + τvi, vτ

i = vi − τ(γvi + ∇xV (xi, gi)).

– Step 2: Moving in the architecture space (Mutation): First, for each of
the particles i with position (xi, gi, vi) we decide to move it with probability

τ
∑

j

(ϕ(gi) − ϕ(gj))−K(gi, gj),

or 1 if the above quantity is greater than 1. Then, if we decided to move the
particle i we move it to location of particle j, (xj , gj , vj) with probability pj

pj ∝ (ϕ(gi) − ϕ(gj))−K(gi, gj).

– Step 3: Updating momentum on the g coordinate: We update ϕ accord-
ing to:

ϕτ (gi) = ϕ(gi) − τ

2
|vi|2 − τ

( ∑

j

([
ϕ(gi) − ϕ(gj)

]−)2
K(gi, gj)

)

− τ(γϕ(gi) + log f(gi) + V (xi, gi)),

for every particle i. Here, f(g) represents the ratio of particles located at g.

Remark 3. Notice that given the assumption on the initial locations of the par-
ticles, throughout all the iterations of Step 1 and Step 2 and Step 3 we make
sure that if gi = gj then xi = xj and vi = vj .
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2.3 NASGD and NASAGD

We are now ready to describe our algorithm NASGD:

1. Load an initial architecture g0 with initial parameters x0 and set r = 0.
2. Construct a graph Gr around gr using the notion of network morphism intro-

duced in [1]. More precisely, we produce nneigh new architectures with associ-
ated parameters, each new architecture is constructed by modifying gr using
a single network morphism from [1]. Then define Gr as the set consisting of
the loaded nneigh architectures and the architecture gr. Set the graph weights
K(g, g′) (for example, setting all weights to one).

3. Put N particles on (xr, gr) and put 1 “ghost” particle on each of the remain-
ing architectures in Gr. The architectures for these ghost particles are never
updated (to make sure we always have at least one particle in each of the
architectures in Gr), but certainly their parameters will.
Then, run the dynamics discussed in Sect. 2.1 on the graph Gr (or the modified
dynamics see Remark 2, and Appendix of the ArXiv version of this paper [3])
until the node in Gr \ {gr} with the most particles gmax has twice as many
particles as gr.
Set r = r + 1. Set gr = gmax and xr = xmax, where xmax are the parameters
of architecture gmax at the moment of stopping the particle dynamics.

4. If size of gr exceeds a prespecified threshold (in terms of number of convolu-
tional layers for example) go to 5. If not go back to 2.

5. Train gr until convergence.

The algorithm NASAGD is defined similarly with the natural adjustments
to account for the momentum variables. Details can be found in sections 2 and 4
from the ArXiv version of this paper [3].

3 Experiments

We used NASGD and NASAGD on the CIFAR-10 data set to obtain two archi-
tecture models NASGD1 and NASAGD1 respectively (see Appendix in the
ArXiv version of this paper [3]). In the next table we compare the performance
of NASGD1 and NASAGD1 against our benchmark architectures NASH2 and
NasGraph produced by the methodologies proposed in [1,10].

Numerical experiments

CIFAR 10 Model Resources # params ×106 Error

NASH2 1GPU, 1 day 19.7 5.2

NASGraph 1GPU, 20 h ? 4.96

NASGD1 1GPU, 12 h 25.4 4.06

NASAGD1 1GPU, 1 day 22.9 3.96
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Besides producing better accuracy rates, it is worth highlighting that our
algorithms can explore many more architectures (about 40 times more) than
in [1] with the same computational resources. We took advantage of this faster
exploration and considered positive as well as negative architecture mutations,
i.e., mutations that can increase or decrease the number of filters, layers, skip,
and dimension of convolutional kernels.

Here are some extra details on the implementation of our algorithms. For
further details we refer the reader to the ArXiv version of this work [3]. In a
similar way to [1] and [10], we pre-train an initial network g0 with the struc-
ture Conv-MaxPool-Conv-MaxPool-Conv-Softmax for 20 epochs using cosine
aliasing that interpolates between 0.5 and 10−7; here Conv is interpreted as
Conv+batchnorm+Relu. We use g0 with parameters x0 as the initial data
for our gradient flow dynamics introduced in Sect. 2.1 for the first-order algo-
rithm NASGD and Sect. 5 for the second-order algorithm NASAGD. During
the NASGD and NASAGD algorithms, we use cosine aliasing interpolating the
learning rate from λstart to λfinal with a restart period of epochsneigh. In con-
trast to the NASH approach from [1], since we initialize new architectures, we do
not reset the time step along with the interpolation for the epochsneighs epochs.
Our particle system dynamically determines the number of initialization. We
continue this overall dynamics, resetting the learning rate from λstart to λfinal

every epochsneigh at most nsteps times. We perform several experiments letting
the first and second-order gradient flow dynamics run for different lengths of
time. Finally, we train the found architectures until convergence.

In the table below, we display the rest of the parameters used to find these
models.

Variable NASH2 NASGraph NASGD1 NASAGD1

nsteps 8 10 0.89 2.54

nNM 5 5 dynamic dynamic

nneigh 8 8 8 8

epochneigh 17 16 18 18

λstart 0.05 0.1 0.05 0.05

λfinal 0 0 10−7 10−7

Gradient stopping No Yes No No

Here, nsteps denotes the number of restart cycles for the cosine aliasing; nNM

is the number of morphism operations applied on a given restart cycle; nneigh

is the number of children architectures generated every time the current best
model changes; epochneigh is the number of epochs that go by before the cosine
aliasing is restarted; λfinal and λstart are the parameters required for SGDR.

4 Conclusions and Discussion

In this work we have proposed novel first and second order gradient descent algo-
rithms for neural architecture search: NASGD and NASAGD. The theoretical
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gradient flow structures in the space of probability measures over a semi-discrete
space introduced in [4] serve as the primary motivation for our algorithms. Our
numerical experiments illustrate the positive effect that our mathematical per-
spective has on the performance of NAS algorithms.

The methodologies introduced in this paper are part of a first step in a
broader program where we envision the use of well defined mathematical struc-
tures to motivate new learning algorithms that use neural networks. Although
here we have achieved competitive results, we believe that there are still several
possible directions for improvement that are worth exploring in the future. Some
of these directions include: a further analysis of the choice of hyperparameters
for NASGD and NASAGD, the investigation of the synergy that our dynamic
perspective may have with reinforcement learning approaches (given that more
architectures can be explored with our dynamic approach), the adaptation of
our geometric and analytic insights to other NAS paradigms such as parameter
sharing [7] and differential architecture search [5].
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Abstract. We survey some recent research related to the regularity the-
ory of optimal transport and its associated geometry. We discuss recent
progress and pose some open questions and a conjecture related to the
MTW tensor, which provides a local obstruction to the smoothness of
the Monge transport maps.

In this paper we survey some recent progress on the Monge problem
of optimal transport and its associated geometry. The main goal is to
discuss some connections between the MTW tensor and the curvature of
pseudo-Riemannian and complex manifolds.

1 A Short Background on Optimal Transport

Optimal transport is a classic field of mathematics which studies the most eco-
nomical way to allocate resources. More precisely, the Kantorovich problem of
optimal transport seeks to find a coupling between two measures which mini-
mizes the total cost. In other words, we consider two probability spaces (X,μ)
and (Y, ν) and a lower semi-continuous cost function c and find the coupling γ
which minimizes the integral

min
γ∈Γ (μ,ν)

∫
X×Y

c(x, y)dγ(x, y). (1)

Here, Γ (μ, ν) denotes the set of all couplings between μ and ν and, heuristically,
the transport plan at a point x ∈ X is given by the disintegration of γ.

The Monge problem of optimal transport imposes the additional assumption
that γ is concentrated on the graph of a measurable map T : X → Y . In
other words, each point in X is sent to a unique point in Y . A solution to
the Monge problem need not exist in general. For instance, if μ is atomic but
ν is continuous, then there are no transport maps at all, let alone an optimal
one. However, one great success of the modern theory of optimal transport is
to develop a satisfactory existence theory for the Monge problem. In particular,
Brenier [1], Gangbo-McCann [8], and Knott-Smith [19] established that for fairly
general cost functions and measures, the solution to the Kantorovich problem is
actually a solution to the Monge problem. Furthermore, the transport map T
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is induced by the c-subdifferential of a potential function u, which is defined as
follows

∂cu := {(x, y) ∈ X × Y ; uc(y) − u(x) = c(x, y)} , (2)

where uc(y) is the c-transform of u, defined as uc(y) = infx∈X(u(x) + c(x, y)).
For non-degenerate costs and measures, u will be an Alexandrov solution to a
Monge-Ampère type equation

det(∇2u + A(x,∇u)) = B(x,∇u). (3)

In this formula, A is a matrix-valued function which depends on the cost function
and B is a scalar valued function which depends on the cost function and the
two probability measures. For a more complete reference, see Chapters 10–12 of
Villani’s text [32].

A priori, the function u will be c-convex1 and uniformly Lipschitz, which
implies that its c-subdifferential (and thus the transport map) is defined
Lebesgue almost-everywhere. However, the transport map need not be contin-
uous, even for smooth measures. For example, for the cost function c(x, y) =
‖x − y‖2 (i.e., the squared-distance cost), Caffarelli showed that for the trans-
port between arbitrary smooth measures to be continuous, it is necessary to
assume that the target domain Y is convex [2]. In other words, non-convexity of
Y is a global obstruction to regularity.

From an analytic perspective, the reason for this somewhat pathological
behavior is that Eq. 3 is degenerate elliptic. To explain this, let us specialize
to the squared-distance cost in Euclidean space, in which case the matrix A ≡ 0
and c-convexity of u is convexity in the usual sense. For a convex function u, the
linearized Monge-Ampére operator

Lf =
∑
i,j

((
det D2u

) (
D2u

)−1
)ij ∂2

∂xi∂xj
f

is non-negative definite. However, without an a priori bound on D2u, L can
have arbitrarily small eigenvalues, which prevents the use of “standard elliptic
theory” to prove regularity of u. On the other hand, if one can establish an a
priori C2 estimate on u, then the linearized operator is uniformly elliptic, and
we can use Schauder estimates to show that the transport is smooth.

This phenomena gives rise to a striking dichotomy. For smooth (i.e., C∞)
and non-degenerate measures and cost functions, the optimal transport map is
either discontinuous, or C∞-smooth. In the former case, work of Figalli and De
Phillippis [5] shows that the discontinuity occurs on a set of measure zero and
that the transport is smooth elsewhere. Kim and Kitagawa [15] showed that there
cannot be isolated singularities, at least for costs which satisfy the MTW(0)
condition (Definition 1). However, there are many open questions about the
structure of the singular set. For example, it is not known whether the Hausdorff
dimension of this set is at most n − 1 or, if so, whether the set is necessarily
rectifiable.
1 A function u : X → R is c-convex if there is some function v : Y → R ∪ {±∞} so

that u(x) = supy∈Y (v(y) − c(x, y)).
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2 The Ma-Trudinger-Wang Theory

For a fairly wide class of optimal transport problems, by the 1990s it was well-
understood that the solution to the Kantorovich problem is in fact given by a
transport map. However, as we previously discussed, this map need not be con-
tinuous. One question of considerable interest was to find conditions on the cost
function and the measures so that the transport has better regularity. For the
squared-distance cost in Euclidean space, Caffarelli and others developed such
a theory when the support of the target measure is convex (see, e.g., [2,4,31]).
However, for more general cost functions, the problem of regularity remained
open.

In 2005, a breakthrough paper by Ma, Trudinger, and Wang established
smoothness for the transport under two additional assumptions [22]. The first
was a global condition, that the supports of the initial and target measures are
relatively c-convex. The second was a local condition, that a certain fourth-order
quantity, known as the MTW tensor, is positive. In 2009, Trudinger and Wang
[30] extended their previous work to the case when this tensor is non-negative
(i.e., when S(ξ, η) ≥ 0).

Definition 1 (MTW(κ) condition). A cost function c is said to satisfy the
MTW(κ) condition if for all vector-covector pairs (ξ, η) with η(ξ) = 0, the fol-
lowing inequality holds.

S(ξ, η) :=
∑

i,j,k,l,p,q,r,s

(cij,pc
p,qcq,rs − cij,rs)cr,kcs,lξiξjηkηl ≥ κ‖η‖2‖ξ‖2 (4)

Here, the notation cI,J denotes ∂xI∂yJ c for multi-indices I and J . Furthermore,
ci,j denotes the matrix inverse of the mixed derivative ci,j.

2.1 Insights from Convex Analysis and Pseudo-Riemannian
Geometry

Although the Ma-Trudinger-Wang theory was a significant breakthrough, it also
raised many questions. For instance, the geometric significance of S was not well
understood and it was unclear whether its non-negativity plays an essential role
in optimal transport or if it was merely a technical assumption in Ma-Trudinger-
Wang’s work.

These questions were studied by Loeper [20], who showed that for costs
which are C4, the MTW(0) condition is equivalent to requiring that the c-
subdifferential of an arbitrary c-convex function be connected. This provides
a geometric interpretation of the MTW tensor in terms of convex analysis, and
shows that the failure of MTW condition is a local obstruction to regularity. More
precisely, given a cost which fails to satisfy the MTW(0) condition, it is possi-
ble to find smooth measures μ and ν whose optimal transport is discontinuous2.
2 For non-degenerate cost functions, the c-subdifferential of a smooth potential consists

of a single point, and thus is connected. As such, Loeper’s result shows that, for cost
functions which do not satisfy the MTW condition, the space of smooth optimal
transports is not dense within the space of all optimal transports.
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Furthermore, Loeper developed a geometric maximum principle, known as “dou-
ble above sliding mountains” (DASM) which is equivalent to the MTW(0) condi-
tion for costs which are sufficiently smooth. Very recently, Loeper and Trudinger
found a weakened version of this maximum principle which is also equivalent to
the MTW(0) condition for C4 costs [21]. Heuristically, one can interpret these
conditions as “synthetic curvature bounds,” akin to how Alexandrov spaces gen-
eralize the notion of sectional curvature bounds (see Section 6 of [13] for more
details). In fact, there are multiple ways to formulate the MTW(0) condition
synthetically (see Guillen-Kitagawa [9] for another formulation and Jeong [11]
for its relationship to DASM).

Somewhat unexpectedly, another insight into the MTW tensor came from
pseudo-Riemannian geometry. In particular, Kim and McCann [16] developed a
formulation of optimal transport in which the cost function defines a pseudo-
metric h of signature (n, n) on the space X ×Y . In this geometry, the MTW ten-
sor is the curvature of certain light-like planes. This interpretation gives intrin-
sic differential geometric structure to the regularity problem and immediately
explains many of the properties of S, such as why it transforms tensorially under
change of coordinates. Furthermore, the optimal map T induces a maximal space-
like hypersurface for a conformal pseudo-metric ρh where ρ is a function induced
by the probability measures μ and ν [17]. Recently, Wong and Yang discovered
an interesting link between this geometry and information geometry. In partic-
ular, they found a relationship between the Levi-Civita connection on X × Y
and the dual connections on the space X, when interpreted as a submanifold of
X × Y via the embedding x �→ (x, T (x)) [34].

2.2 The Squared-Distance on a Riemannian Manifold

The squared-distance cost plays a special and important role within optimal
transport, and any discussion of the regularity theory would be incomplete with-
out mentioning it. Unfortunately, there are several factors which make analysis
of optimal transport on Riemannian manifolds very difficult, so we will not be
able to discuss this line of work in depth.

One basic challenge is that there are very few Riemannian manifolds whose
distance function can be computed explicitly. Even for these manifolds, the
MTW tensor can be very complicated, since it involves calculating four deriva-
tives of the distance (see Equation 5.7 of [7] for the MTW tensor of a round
sphere). However, Loeper observed that for the squared distance, the MTW ten-
sor restricted to the diagonal (i.e., x = y) is two-thirds the sectional curvature,
so the MTW(0) condition is a non-local strengthening of non-negative sectional
curvature [20].

Despite this difficulty, there are several Riemannian manifolds which are
known to satisfy the MTW condition. For instance, spheres with the round
metric do, as do complex projective space and quaternionic projective space.
Furthermore, C4-small perturbations of a round sphere satisfy MTW [7] (see also
[33] for more details on the stability theory). The proof of this fact is extremely
technical and relies on the fact that in the MTW tensor there are fifteen terms
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which combine to form a perfect square. One question of considerable interest is
to find a conceptual argument to explain this seemingly miraculous cancellation.

Another central difficulty in studying optimal transport on Riemannian man-
ifolds is the presence of the cut locus (and conjugate points in particular). On a
compact Riemannian manifold, the distance function fails to be smooth along the
cut locus, and the shape of the injectivity domains3 can present a global obstruc-
tion to smoothness of the transport. However, the MTW condition exerts strong
control over geometry of the injectivity domains, which lead Villani to pose the
following conjecture.

Conjecture 1 (Villani’s Conjecture). If (M, g) satisfies the MTW condition, then
all of its injectivity domains are convex.

3 Kähler Geometry

For cost functions which are induced by a convex potential (such as c(x, y) =
Ψ(x − y) or a D(α)

Ψ -divergence [36]), the authors found a separate geometric
formulation in terms of Kähler/information geometry [12]. In particular, given
such a cost function, one can use the convex potential Ψ to define a Kähler
metric whose curvature encodes the MTW tensor.

Theorem 1. For a cost which is induced by a convex potential Ψ : Ω → R,
the MTW tensor S(ξ, η) is proportional4 to the anti-bisectional curvature of an
associated Kähler-Sasaki metric on the tangent bundle TΩ.

S(ξ, η) ∝ R
(
ξpol., (η�)pol., ξpol., (η�)pol.

)
(5)

In this theorem, the superscript pol. denotes the polarized lift, which takes η�

and ξ to polarized (1, 0) vectors in TΩ. For a more precise definition, see page 7 of
[14]. Furthermore, the conjugate connection (of the associated Hessian manifold)
encodes the notion of relative c-convexity (for more details, see Proposition 8 of
[12]).

At present, this result only holds for cost functions which are induced by a
convex potential. However, it seems likely there is a non-Kähler version for costs
on a Lie group.

Question 1. Is there a non-Kähler version of Theorem 1 for costs of the form
c(x, y) = Ψ(xy−1) where x and y are elements of a Lie group? What are some
examples of such costs satisfying MTW(0)? In particular, which left-invariant
metrics on SO(3) have non-negative MTW tensor?

3 For a point x, the injectivity domain I(x) ⊂ TxM is defined as the subset of the
tangent bundle whose exponentials are distance-minimizing.

4 The proportionality constant depends on how the convex potential is used to induce
the cost function.
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Another question is how to interpret the solution of an optimal transport
problem in the complex setting. One can encode displacement interpolation in
terms of sections of the tangent space TX, where (X,μ) is the initial probability
measure in the optimal transport problem. However, it is not clear geometrically
when a section corresponds to an optimal map.

Question 2. When does a section of TX induce an optimal flow (in the sense
of displacement interpolation)? What is the relationship between these sections
and Theorem 1?

As a related problem, the connection between the complex geometry and the
Kim-McCann geometry is not well understood.

Question 3. Is it possible to transform the pseudo-Riemannian geometry into
complex geometry via a transformation akin to the way that the Wick rotation
transforms Minkowski (3, 1) geometry into Euclidean 4-space?

Kähler-Ricci Flow. The main advantage of the complex perspective is that
we can use techniques from complex geometry, such as the Kahler-Ricci flow, to
study optimal transport. The Ricci flow [10] is a geometric flow which deforms
a Riemannian manifold by its Ricci curvature:

∂g

∂t
= −2Ric(g). (6)

When the underlying manifold is Kähler, this flow preserves the complex struc-
ture and the Kählerity of the metric [3], so is known as the Kähler-Ricci flow.
The connection between Kähler-Ricci flow and the MTW tensor was explored
by the first named author and Fangyang Zheng [14].

Theorem 2. Suppose that Ω ⊂ R
n is a convex domain and Ψ : Ω → R is

a strongly convex function so that the associated Kähler manifold (TΩ, ω0) is
complete and has bounded curvature.

1. For n = 2, non-negative orthogonal anti-bisectional curvature is preserved by
Kähler-Ricci flow.

2. For all n, non-positive anti-bisectional curvature is preserved under Kähler-
Ricci flow.

3. When Ω is bounded and TΩ has negative holomorphic sectional curvature
(or when Ω is a compact Hessian manifold whose first affine Chern class is
negative), a stronger version of non-positive anti-bisectional curvature known
as negative cost-curvature is preserved.

The proofs of the first two claims use Shi’s generalization [27] of the tensor
maximum principle developed by Hamilton. The third uses some careful tensor
analysis and recent work of Tong [28] on the convergence of Kähler-Ricci flow.
We refer to the paper for the full argument.



Recent Developments on the MTW Tensor 521

Smoothing Flows in Optimal Transport. Using Theorem 2, we also proved
a Hölder estimate for the transport map when the cost functions is W 2,p (with
p > 2) and satisfies the MTW(0) condition in some weak sense (see Corollary
6 [14] for details). This result suggests that smoothing flows can play a role in
optimal transport, especially in cases with low regularity. Parabolic flows for the
transport potential u had previously been considered [18] but in this context
Kähler-Ricci flow is used to deform the cost function.

For general cost functions, it is not possible to define a Ricci flow naively (for
pseudo-Riemannian metrics, Ricci flow is no longer weakly parabolic). As such,
Theorem 2 is limited to costs which are induced by a convex potential. However,
when the cost function is the squared distance, one natural idea is to evolve the
underlying space using Ricci flow (see, e.g., [23,29]). This raises the following
questions.

Question 4. For the squared distance cost on a Riemannian manifold, does the
Ricci flow preserve non-negativity of the MTW tensor? For more general cost
functions, is it possible to define a smoothing flow?

We suspect that the answer to the first question is positive, at least in dimen-
sions two and three. In higher dimensions, Ricci flow need not preserve positivity
of the sectional curvature, so perhaps the additional assumption of positive cur-
vature operator is needed.

4 Applications of the MTW Tensor to Hessian Geometry

In this final section, we discuss some developments which come from studying the
MTW tensor as a complex curvature. Independent of optimal transport, we can
use anti-bisectional curvature to understand the geometry of Hessian manifolds
and their tangent bundles. In particular, we pose the following conjecture, which
can be roughly considered as a Hessian analogue to the Frankel conjecture.

Conjecture 1. The affine universal cover M̃ of a compact negatively cost-curved
Hessian manifold (M, g,D) factors into the product of domains admitting met-
rics of constant Hessian sectional curvature. In other words, the Hesse-Einstein
metric on M̃ is the product of Hessian space forms.

In order to prove this conjecture, one approach would be to use the Hesse-
Koszul flow [24], which deforms the Hessian potential according to the parabolic
Monge-Ampère equation

∂

∂t
Ψ = log(det(D2Ψ)). (7)

The Hesse-Koszul flow on a Hessian manifold is equivalent to Kähler-Ricci flow
on its tangent bundle, so the distinction between these two flows is largely one
of terminology. Puechmorel and Tô studied this flow and showed that for Hes-
sian manifolds with negative first affine Chern class, the normalized flow con-
verges to a Hesse-Einstein metric (i.e., a Hessian metric whose tangent bundle
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is Kähler-Einstein). When combined with Theorem 2, this greatly restrict the
geometry of compact negatively cost-curved Hessian manifolds, which provides
strong evidence for Conjecture 1. However, the conjecture fails if one consid-
ers non-compact complete Hessian manifolds (see Example 6.2.1 of [14] for a
counter-example). As such, any proof must use compactness in an essential way.

4.1 Complex Surfaces Satisfying MTW(0)

Finally, it would be of interest to better understand complete complex surfaces
which admit metrics whose orthogonal anti-bisectional curvature is non-negative
(i.e., which satisfy the MTW(0) condition). We are aware of three such examples;
C

2 with its flat metric, the Siegel-Jacobi half-plane with its Bergman metric and
the Siegel half-space with an SL(2, R) � R

2-invariant metric [35]. It would be of
interest to find others, since each such surface induces cost functions which have
a “good” regularity theory.
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1. Brenier, Y.: Décomposition polaire et réarrangement monotone des champs de
vecteurs. C.R. Acad. Sci. Paris Sér. I Math. 305, 805–808 (1987)

2. Caffarelli, L.A.: The regularity of mappings with a convex potential. J. Amer.
Math. Soc. 5(1), 99–104 (1992)

3. Cao, H.D.: Deformation of Kahler metrics to Kahler-Einstein metrics on compact
Kahler manifolds. Invent. Math. 81, 359–372 (1986)
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1 University of California, Los Angeles, Los Angeles, CA 90095, USA
2 University of South Carolina, Columbia, SC 29208, USA

wuchen@mailbox.sc.edu
3 Max Planck Institute for Mathematics in Sciences, 04103 Leipzig, Germany

Abstract. We introduce a new method for training generative adver-
sarial networks by applying the Wasserstein-2 metric proximal on the
generators. The approach is based on Wasserstein information geome-
try. It defines a parametrization invariant natural gradient by pulling
back optimal transport structures from probability space to parameter
space. We obtain easy-to-implement iterative regularizers for the param-
eter updates of implicit deep generative models. Our experiments demon-
strate that this method improves the speed and stability of training in
terms of wall-clock time and Fréchet Inception Distance.

Keywords: Generative-Adversarial Networks · Wasserstein metric ·
Natural gradient

1 Introduction

Generative Adversarial Networks (GANs) [6] are a powerful approach to learning
generative models. Here, a discriminator tries to tell apart the data generated by
a real source and the data generated by a generator, whereas the generator tries
to fool the discriminator. This adversarial game is formulated as an optimization
problem over the discriminator and an implicit generative model for the genera-
tor. An implicit generative model is a parametrized family of functions mapping
a noise source to sample space. In trying to fool the discriminator, the generator
should try to recreate the real source.

The problem of recreating a target density can be formulated as the min-
imization of a discrepancy measure. The Kullback–Leibler (KL) divergence is
known to be difficult to work with when the densities have a low dimensional
support set, as is commonly the case in applications with structured data and
high dimensional sample spaces. An alternative is to use the Wasserstein dis-
tance or Earth Mover’s distance, which is based on optimal transport theory.

A. Lin, W. Li and S. Osher were supported by AFOSR MURI FA 9550-18-1-0502,
AFOSR FA 9550-18-0167, ONR N00014-18-2527 and NSF DMS 1554564 (STROBE).
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This has been used recently to define the loss function for learning generative
models [5,11]. In particular, the Wasserstein GAN [3] has attracted much interest
in recent years.

Besides defining the loss function, optimal transport can also be used to intro-
duce structures serving the optimization itself, in terms of the gradient opera-
tor. In full probability space, this method is known as the Wasserstein steepest
descent flow [7,13]. In this paper we derive the Wasserstein steepest descent flow
for deep generative models in GANs. We use the Wasserstein-2 metric function,
which allows us to obtain a Riemannian structure and a corresponding natu-
ral (i.e., Riemannian) gradient. A well known example of a natural gradient
is the Fisher-Rao natural gradient, which is induced by the KL-divergence. In
learning problems, one often finds that the natural gradients offer advantages
compared to the Euclidean gradient [1,2,12]. In GANs, the densities under con-
sideration typically have a small support set, which prevents implementations
of the Fisher-Rao natural gradient. Therefore, we propose to use the gradient
operator induced by the Wasserstein-2 metric on probability models [8–10].

We propose to compute the parameter updates of the generators in GANs
by means of a proximal operator where the proximal penalty is a squared con-
strained Wasserstein-2 distance. In practice, the constrained distance can be
approximated by a neural network. In implicit generative models, the constrained
Wasserstein-2 metric exhibits a simple structure. We generalize the Riemannian
metric and introduce two methods: the relaxed proximal operator for genera-
tors and the semi-backward Euler method. Both approaches lead to practical
numerical implementations of the Wasserstein proximal operator for GANs. The
method can be easily implemented as a drop-in regularizer for the generator
updates. Experiments demonstrate that this method improves the stability of
training and reduces the training time. We remark that this paper is the first
paper to apply Wasserstein gradient operator in GANs.

This paper is organized as follows. In Sect. 2 we introduce the Wasser-
stein natural gradient and proximal optimization methods. In Sect. 3 we review
basics of implicit generative models. In Sect. 4 we derive practical computational
methods.

2 Wasserstein Natural Proximal Optimization

In this section, we present the Wasserstein natural gradient and the correspond-
ing proximal method.

2.1 Motivation and Illustration

The natural gradient method is an approach to parameter optimization in prob-
ability models, which has been promoted especially within information geome-
try [2,4]. This method chooses the steepest descent direction when the size of
the step is measured by means of a metric on probability space.
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If F (θ) is the loss function, the steepest descent direction is the vector dθ
that solves

min
dθ

F (θ + dθ) subject to D(ρθ, ρθ+dθ) = ε, (1)

for a small enough ε. Here D is a divergence function on probability space.
Expanding the divergence to second order and solving leads to an update of the
form

dθ ∝ G(θ)−1∇θF (θ),

where G is the Hessian of D. Usually the Fisher-Rao metric is considered for G,
which corresponds to having D as the KL-divergence.

In this work, we use structures derived from optimal transport. Concretely,
we replace D in Eq. (1) with the Wasserstein-p distance. This is defined as

Wp(ρθ, ρθk)p = inf
∫
Rn×Rn

‖x − y‖pπ(x, y)dxdy, (2)

where the infimum is over all joint probability densities π(x, y) with marginals
ρθ, ρθk . We will focus on p = 2. The Wasserstein-2 distance introduces a metric
tensor in probability space, making it an infinite dimensional Riemannian man-
ifold. We will introduce a finite dimensional metric tensor G on the parameter
space of a generative model.

The Wasserstein metric allows us to define a natural gradient even when
the support of the distributions is low dimensional and the Fisher-Rao natural
gradient is not well defined. We will use the proximal operator, which computes
the parameter update by minimizing the loss function plus a penalty on the step
size. This saves us the need to compute the matrix G and its inverse explicitly.
As we will show, the Wasserstein metric can be translated to practical prox-
imal methods for implicit generative models. We first present a toy example,
with explicit calculations, to illustrate the effectiveness of Wasserstein proximal
operator.

Fig. 1. Illustration of the Wasserstein proximal operator. Here the Wasserstein prox-
imal penalizes parameter steps in proportion to the mass being transported, which
results in updates pointing towards the minimum of the loss function. The Euclidean
proximal penalizes all parameters equally, which results in updates naively orthogonal
to the level sets of the loss function.
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Example 1. Consider a probability model consisting of mixtures of pairs of delta
measures. Let Θ = {θ = (a, b) ∈ R

2 : a < 0 < b}, and define

ρ(θ, x) = αδa(x) + (1 − α)δb(x),

where α ∈ [0, 1] is a given ratio and δa(x) is the delta measure supported at
point a. See Fig. 1. For a loss function F , the proximal update is

θk+1 = arg min
θ∈Θ

F (θ) +
1
2h

D(ρθ, ρθk).

We check the following common choices for the function D to measure the dis-
tance between θ and θk, θ �= θk.

1. Wasserstein-2 distance:

W2(ρθ, ρθk)2 = α(a − ak)2 + (1 − α)(b − bk)2;

2. Euclidean distance:

‖θ − θk‖2 = (a − ak)2 + (b − bk)2;

3. Kullback–Leibler divergence:

DKL(ρθ‖ρθk) =
∫
Rn

ρ(θ, x) log
ρ(θ, x)
ρ(θk, x)

dx = ∞;

4. L2-distance:

L2(ρθ, ρθk) =
∫
Rn

|ρ(θ, x) − ρ(θk, x)|2dx = ∞.

As we see, the KL-divergence and L2-distance take value infinity, which tells the
two parameters apart, but does not quantify the difference in a useful way. The
Wasserstein-2 and Euclidean distances still work in this case. The Euclidean dis-
tance captures the difference in the locations of the delta measures, but not their
relative weights. On the other hand, the Wasserstein-2 takes these into account.
The right panel of Fig. 1 illustrates the loss function F (θ) = W1(ρθ, ρθ∗) for a
random choice of θ∗, alongside with the Euclidean and Wasserstein-2 proximal
parameter updates. The Wasserstein proximal update points more consistently
in the direction of the global minimum.

2.2 Wasserstein Natural Gradient

We next present the Wasserstein natural gradient operator for parametrized
probability models.
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Definition 1 (Wasserstein natural gradient operator). Given a model of
probability densities ρ(θ, x) over x ∈ R

n, with locally injective parametrization
by θ ∈ Θ ⊆ R

d, and a loss function F : Θ → R, the Wasserstein natural gradient
operator is given by

grad F (θ) = G(θ)−1∇θF (θ).

Here G(θ) = (G(θ)ij)1≤i,j≤d ∈ R
d×d is the matrix with entries

G(θ)ij =
∫
Rn

(
∇θi

ρ(θ, x),G(ρθ)∇θj
ρ(θ, x)

)
dx,

where G(ρθ) is the Wasserstein-2 metric tensor in probability space. More pre-
cisely, G(ρ) = (−Δρ)−1 is the inverse of the elliptic operator Δρ := ∇ · (ρ∇).

For completeness, we briefly explain the definition of the Wasserstein natural
gradient. The gradient operator on a Riemannian manifold (Θ, g) is defined as
follows. For any σ ∈ TθΘ, the Riemannian gradient ∇g

θF (θ) ∈ TθΘ satisfies
gθ(σ, gradF (θ)) = (∇θF (θ), σ). In other words, σ�G(θ)gradF (θ) = ∇θF (θ)�σ.
Since θ ∈ R

d and G(θ) is positive definite, gradF (θ) = G(θ)−1∇θF (θ).
Our main focus will be in deriving practical computational methods that

allow us to apply these structures to optimization in GANs. Consider the gra-
dient flow of the loss function:

dθ

dt
= −gradF (θ) = −G(θ)−1∇θF (θ). (3)

There are several discretization schemes for a gradient flow of this type. One of
them is the forward Euler method, known as the steepest descent method:

θk+1 = θk − hG(θk)−1∇θF (θk), (4)

where h > 0 is the learning rate (step size). In practice we usually do not have
a closed formula for the metric tensor G(θ). In (4), we need to solve for the
inverse Laplacian operator, the Jacobian of the probability model, and compute
the inverse of G(θ). When the parameter θ ∈ Θ is high dimensional, these
computations are impractical. Therefore, we will consider a different approach
based on the proximal method.

2.3 Wasserstein Natural Proximal

To practically apply the Wasserstein natural gradient, we present an alternative
way to discretize the gradient flow, known as the proximal method or backward
Euler method. The proximal operator computes updates of the form

θk+1 = arg min
θ

F (θ) +
Dist(θ, θk)2

2h
, (5)

where Dist is an iterative regularization term, given by the Riemannian distance

Dist(θ, θk)2 = inf
{∫ 1

0

θ̇�
t G(θt)θ̇tdt : θ0 = θ, θ1 = θk

}
.
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Here the infimum is taken among all continuously differentiable parameter paths
θt = θ(t) ∈ Θ, t ∈ [0, 1]. The proximal operator is defined implicitly, in terms of
a minimization problem, but in some cases it can be written explicitly. Interest-
ingly, it allows us to consider an iterative regularization term in the parameter
update.

We observe that there are two time variables in the proximal update (5). One
is the time discretization of gradient flow, known as the learning rate h > 0; the
other is the time variable in the definition of the Riemannian distance Dist(θ, θk).
The variation in the time variable of the Riemannian distance can be further
simplified as follows.

Proposition 1 (Semi-backward Euler method). The iteration

θk+1 = arg min
θ

F (θ) +
D̃(θ, θk)2

2h
, (6)

with
D̃(θ, θk)2 =

∫
Rn

(
ρθ − ρθk ,G(ρθ̃)(ρθ − ρθk)

)
dx,

and θ̃ = θ+θk

2 , is a consistent time discretization of the Wassserstein natural
gradient flow (3).

Here the distance term in (5) is replaced by D̃, which is obtained by a mid-
point approximation in time. The mid-point θ̃ can be chosen in many ways
between θ and θk. For simplicity and symmetry, we let θ̃ = θ+θk

2 . In practice,
we also use θ̃ = θk, since in this case G(ρθ̃) can be held fixed when iterating over
θ to obtain (6). Formula (6) is called the semi-backward Euler method (SBE),
because it can also be expressed as

θk+1 = θk − hG(θ̃)−1∇θF (θk+1) + o(h).

The proof is contained in the appendix.
We point out that all methods described above, i.e., the forward Euler

method (4), the backward Euler method (5), and the semi-backward Euler
method (6), are time consistent discretizations of the Wasserstein natural gra-
dient flow (3) with first order accuracy in time. We shall focus on the semi-
backward Euler method and derive practical formulas for the iterative regular-
ization term.

3 Implicit Generative Models

Before proceeding, we briefly recall the setting of Generative Adversarial Net-
works (GANs). GANs consist of two parts: the generator and the discriminator.
The generator is a function gθ : R� → R

n that takes inputs z in latent space R
�

with distribution p(z) (a common choice is a Gaussian) to outputs x = gθ(z) in
sample space R

n with distribution ρ(θ, x). The objective of training is to find



530 A. T. Lin et al.

a value of the parameter θ so that ρ(θ, x) matches a given target distribution,
say ρtarget(x). The discriminator is merely an assistance during optimization of
a GAN in order to obtain the right parameter value for the generator. It is a
function fω : Rn → R, whose role is to discriminate real images (sampled from
the target distribution) from fake images (produced by the generator).

To train a GAN, one works on min-maxing a function such as

inf
θ

sup
ω

Ex∼ρtarget(x) [log fω(x)] + Ez∼p(z) [log(1 − fω(gθ(z))] .

The specific loss function can be chosen in many different ways (including the
Wasserstein-1 loss [3]), but the above is the one that was first considered for
GANs, and is a common choice in applications. Practically, to perform the opti-
mization, we adopt an alternating gradient optimization scheme for the generator
parameter θ and the discriminator parameter ω.

4 Computational Methods

In this section, we present two methods for implementing the Wasserstein natural
proximal for GANs. The first method is based on solving the variational formu-
lation of the proximal penalty over an affine space of functions. This leads to a
low-order version of the Wasserstein metric tensor G(ρθ). The second method is
based on a formula for the Wasserstein metric tensor for 1-dimensional sample
spaces, which we relax to sample spaces of arbitrary dimension.

4.1 Affine Space Variational Approximation

The mid point approximation D̃ from Proposition 1 can be written using dual
coordinates (cotangent space) of probability space in the variational form

D̃(θ, θk)2 = sup
Φ∈C∞(Rn)

{∫
Rn

Φ(x)(ρ(θ, x) − ρ(θk, x)) − 1
2
‖∇Φ(x)‖2ρ(θ̃, x) dx

}
.

In order to obtain an explicit formula, we consider a function approximator of
the form

Φξ(x) :=
∑

j

ξjψj(x) = ξ�Ψ(x),

where Ψ(x) = (ψj(x))K
j=1 are given basis functions on sample space R

n, and
ξ = (ξj)K

j=1 ∈ R
K is the parameter. In other words, we consider

D̃(θ, θk)2 = sup
ξ∈RK

{ ∫
Rn

Φξ(x)(ρ(θ, x) − ρ(θk, x)) − 1
2
‖∇Φξ(x)‖2ρ(θ̃, x) dx

}
.

(7)
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Theorem 1 (Affine metric function D̃ ). Consider some Ψ = (ψ1, . . . ,
ψK)� and assume that M(θ) = (Mij(θ))1≤i,j≤K ∈ R

K×K is a regular matrix
with entries

Mij(θ) = EZ∼p

( n∑
l=1

∂xl
ψi(g(θ̃, Z))∂xl

ψj(g(θ̃, Z))
)
,

where θ̃ = θ+θk

2 . Then,

D̃(θ, θk)2 =
(
EZ∼p[Ψ(g(θ, Z)) − Ψ(g(θk, Z))]

)�

M(θ̃)−1
(
EZ∼p[Ψ(g(θ, Z)) − Ψ(g(θk, Z))]

)
.

The proof is contained in the appendix. There are many possible choices for
the basis Ψ . For example, if K = n and ψk(x) = xk, k = 1, . . . , n, then M(θ) is
the identity matrix. In this case,

D̃(θ, θ̃)2 = ‖EZ∼p(g(θ, Z) − g(θk, Z))‖2.

We will focus on degree one and degree two polynomials. The algorithms are
presented in Sect. 4.3.

4.2 Relaxation from 1-D

Now we present a second method for approximating D̃. In the case of implicit
generative models with 1-dimensional sample space, the constrained Wasserstein-
2 metric tensor has an explicit formula. This allows us to define a relaxed
Wasserstein metric for implicit generative models with sample spaces of arbi-
trary dimension.

Theorem 2 (1-D sample space). If n = 1, then

Dist(θ0, θ1)2 = inf
{∫ 1

0

EZ∼p‖ d

dt
g(θ(t), Z)‖2 dt : θ(0) = θ0, θ(1) = θ1

}
,

where the infimum is taken over all continuously differentiable parameter paths.
Therefore, we have

D̃(θ, θk)2 = EZ∼p‖g(θ, Z) − g(θk, Z)‖2.

In sample spaces of dimension higher than one, we no longer have the explicit
formula for D̃. The relaxed metric consists of using the same formulas from the
theorem. Later on, we show that this formulation of D̃ still provides a metric
with parameterization invariant properties in the proximal update.
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Algorithm 1. Wasserstein Natural Proximal
Require: Fω, a parameterized function to minimize (e.g., the Wasserstein-1 with a

parameterized discriminator); gθ, the generator.
Require: OptimizerFω

; Optimizergθ
.

Require: h proximal step-size; B mini-batch size; max iterations; generator iterations.

1: for k = 0 to max iterations do
2: Sample real data {xi}B

i=1 and latent data {zi}B
i=1

3: ωk ← OptimizerFω

(
1
B

∑B
i=1 Fω(gθ(zi))

)

4: for � = 0 to generator iterations do
5: Sample latent data {zi}B

i=1

6: D̃ = RWP, or O1-SBE, or O2Diag-SBE (Sec. 4.3)

7: θk ← Optimizergθ

(
1
B

∑B
i=1 Fω(gθ(zi)) + 1

2h
D̃(θ, θk)2

)
.

8: end for
9: end for

4.3 Algorithms

The Wasserstein natural proximal method for GANs optimizes the parameter θ
of the generator by the proximal iteration (6). We implement this in the following
ways:

RWP Method. The first and simplest method follows Sect. 4.2, and updates
the generator by:

θk+1 = arg min
θ∈Θ

F (θ) +
1
2h

EZ∼p‖g(θ, Z) − g(θk, Z)‖2.

We call this the Relaxed Wasserstein Proximal (RWP) method.

SBE Order 1 Method. The second method is based on the discussion from
Sect. 4.1, approximating Φ by linear functions. We update the generator by:

θk+1 = arg min
θ∈Θ

F (θ) +
1
2h

‖EZ∼p

(
g(θ, Z) − g(θk, Z)

)
‖2,

We call this the Order-1 SBE (O1-SBE) method.

SBE Order 2 Method. In an analogous way to the SBE order 1 method, we
can approximate Φ by quadratic functions, to obtain the Order-2 SBE (O2Diag-
SBE) method:

θk+1 = arg min
θ∈Θ

F (θ) +
1
h

(
1
2
‖EZ∼p[g(θ, Z) − g(θk, Z)] − EZ∼p[Qg(θk, Z)]‖2

+
1
2
EZ∼p[〈g(θ, Z), Qg(θ, Z)〉] − 1

2
EZ∼p[

〈
g(θk, Z), Qg(θk, Z)

〉
]

− 1
2
EZ∼p[‖Qg(θk, Z)‖2]

)
,
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where Q = diag(qi)n
i=1 is the diagonal matrix with diagonal entries

qi =
1
2
EZ∼p[(g(θ, Z)i − g(θk, Z)i)2]

Var(g(θk, Z)i)
+

CovZ∼p(g(θ, Z)i, g(θk, Z)i)
VarZ∼p(g(θk, Z)i)

− 1,

where g(θ, Z)i is the ith coordinate of the samples.
The methods described above can be regarded as iterative regularizers. RWP

penalizes the expected squared norm of the differences between samples (second
moment differences). O1-SBE penalizes the squared norm of the expected differ-
ences between samples. O2Diag-SBE penalizes a combination of squared norm of
the expected differences plus variances. They all encode statistical information of
the generators. All these approaches regularize the generator by the expectation
and variance of the samples. The implementation is shown in Algorithm 1.

Because of the page limit, we leave all detailed proofs and numerical experi-
ments in [14].
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Abstract. We provide here a novel algebraic characterization of two
information measures associated with a vector-valued random variable,
its differential entropy and the dimension of the underlying space, purely
based on their recursive properties (the chain rule and the nullity-
rank theorem, respectively). More precisely, we compute the informa-
tion cohomology of Baudot and Bennequin with coefficients in a module
of continuous probabilistic functionals over a category that mixes dis-
crete observables and continuous vector-valued observables, characteriz-
ing completely the 1-cocycles; evaluated on continuous laws, these cocy-
cles are linear combinations of the differential entropy and the dimension.

Keywords: Information cohomology · Entropy · Dimension ·
Information measures · Topos theory

1 Introduction

Baudot and Bennequin [2] introduced information cohomology, and identified
Shannon entropy as a nontrivial cohomology class in degree 1. This cohomology
has an explicit description in terms of cocycles and coboundaries; the cocycle
equations are a rule that relate different values of the cocycle. When its coef-
ficients are a module of measurable probabilistic functionals on a category of
discrete observables, Shannon’s entropy defines a 1-cocycle and the aforemen-
tioned rule is simply the chain rule; moreover, the cocycle equations in every
degree are systems of functional equations and one can use the techniques devel-
oped by Tverberg, Lee, Knappan, Aczél, Daróczy, etc. [1] to show that, in degree
one, the entropy is the unique measurable, nontrivial solution. The theory thus
gave a new algebraic characterization of this information measure based on topos
theory à la Grothendieck, and showed that the chain rule is its defining algebraic
property.

It is natural to wonder if a similar result holds for the differential entropy. We
consider here information cohomology with coefficients in a presheaf of contin-
uous probabilistic functionals on a category that mixes discrete and continuous
(vector-valued) observables, and establish that every 1-cocycle, when evaluated
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on probability measures absolutely continuous with respect to the Lebesgue mea-
sure, is a linear combination of the differential entropy and the dimension of the
underlying space (the term continuous has in this sentence three different mean-
ings). We already showed that this was true for gaussian measures [9]; in that
case, there is a finite dimensional parametrization of the laws, and we were able
to use Fourier analysis to solve the 1-cocycle equations. Here we exploit that
result, expressing any density as a limit of gaussian mixtures (i.e. convex combi-
nations of gaussian densities), and then using the 1-cocycle condition to compute
the value of a 1-cocycle on gaussian mixtures in terms of its value on discrete
laws and gaussian laws. The result depends on the conjectural existence of a
“well-behaved” class of probabilities and probabilistic functionals, see Sect. 3.2.

The dimension appears here as an information quantity in its own right: its
“chain rule” is the nullity-rank theorem. In retrospective, its role as an infor-
mation measure is already suggested by old results in information theory. For
instance, the expansion of Kolmogorov’s ε-entropy Hε(ξ) of a continuous, Rn-
valued random variable ξ “is determined first of all by the dimension of the
space, and the differential entropy h(ξ) appears only in the form of the second
term of the expression for Hε(ξ).” [7, Paper 3, p. 22]

2 Some Known Results About Information Cohomology

Given the severe length constraints, it is impossible to report here the motiva-
tions behind information cohomology, its relationship with traditional algebraic
characterizations of entropy, and its topos-theoretic foundations. For that, the
reader is referred to the introductions of [9] and [10]. We simply remind here
a minimum of definitions in order to make sense of the characterization of 1-
cocycles that is used later in the article.

Let S be a partially ordered set (poset); we see it as a category, denoting the
order relation by an arrow. It is supposed to have a terminal object � and to
satisfy the following property: whenever X,Y,Z ∈ ObS are such that X → Y
and X → Z, the categorical product Y ∧Z exists in S. An object of X of S (i.e.
X ∈ ObS) is interpreted as an observable, an arrow X → Y as Y being coarser
than X, and Y ∧ Z as the joint measurement of Y and Z.

The category S is just an algebraic way of encoding the relationships between
observables. The measure-theoretic “implementation” of them comes in the form
of a functor E : S → Meas that associates to each X ∈ ObS a measurable set
E(X) = (EX ,BX), and to each arrow π : X → Y in S a measurable surjection
E(π) : E(X) → E(Y ). To be consistent with the interpretations given above,
one must suppose that E� ∼= {∗} and that E(Y ∧ Z) is mapped injectively into
E(Y ) × E(Z) by E(Y ∧ Z → Y ) × E(Y ∧ Z → Z). We consider mainly two
examples: the discrete case, in which EX finite and BX the collection of its
subsets, and the Euclidean case, in which EX is a Euclidean space and BX is
its Borel σ-algebra. The pair (S, E) is an information structure.
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Throughout this article, conditional probabilities are understood as disinte-
grations. Let ν a σ-finite measure on a measurable space (E,B), and ξ a σ-finite
measure on (ET ,BT ). The measure ν has a disintegration {νt}t∈ET

with respect
to a measurable map T : E → ET and ξ, or a (T, ξ)-disintegration, if each νt is a
σ-finite measure on B concentrated on {T = t}—i.e. νt(T �= t) = 0 for ξ-almost
every t—and for each measurable nonnegative function f : E → R, the mapping
t 	→ ∫

E
f dνt is measurable and

∫
E

f dν =
∫

ET

(∫
E

f(x) dνt(x)
)

dξ(t) [3].
We associate to each X ∈ ObS the set Π(X) of probability measures on E(X)

i.e. of possible laws of X, and to each arrow π : X → Y the marginalization map
π∗ := Π(π) : Π(X) → Π(Y ) that maps ρ to the image measure E(π)∗(ρ). More
generally, we consider any subfunctor Q of Π that is stable under conditioning:
for all X ∈ ObS, ρ ∈ Q(X), and π : X → Y , ρ|Y =y belongs to Q(X) for
π∗ρ-almost every y ∈ EY , where {ρ|Y =y}y∈EY

is the (Eπ, π∗ρ)-disintegration of
ρ.

We associate to each X ∈ ObS the set SX = {Y |X → Y }, which is
a monoid under the product ∧ introduced above. The assignment X 	→ SX

defines a contravariant functor (presheaf). The induced algebras AX = R[SX ]
give a presheaf A. An A-module is a collection of modules MX over AX , for
each X ∈ ObS, with an action that is “natural” in X. The main example is the
following: for any adapted probability functor Q : S → Meas, one introduces
a contravariant functor F = F(Q) declaring that F(X) are the measurable
functions on Q(X), and F(π) is precomposition with Q(π) for each morphism
π in S. The monoid SX acts on F(X) by the rule:

∀Y ∈ SX ,∀ρ ∈ Q(X), Y.φ(ρ) =
∫

EY

φ(ρ|Y =y) dπY X
∗ ρ(y) (1)

where πY X
∗ stands for the marginalization Q(πY X) induced by πY X : X → Y in

S. This action can be extended by linearity to AX and is natural in X.
In [10], the information cohomology H•(S,F) is defined using derived func-

tors in the category of A-modules, and then described explicitly, for each degree
n ≥ 0, as a quotient of n-cocycles by n-coboundaries. For n = 1, the coboundaries
vanish, so we simply have to describe the cocycles. Let B1(X) be the AX -module
freely generated by a collection of bracketed symbols {[Y ]}Y ∈SX

; an arrow
π : X → Y induces an inclusion B1(Y ) ↪→ B1(X), so B1 is a presheaf. A 1-cochain
is a natural transformations ϕ : B1 ⇒ F , with components ϕX : B1(X) → F(X);
we use ϕX [Y ] as a shorthand for ϕX([Y ]). The naturality implies that ϕX [Z](ρ)
equals ϕZ [Z](πZX

∗ ρ), a property that [2] called locality ; sometimes we write ΦZ

instead of ϕZ [Z]. A 1-cochain ϕ is a 1-cocycle iff

∀X ∈ ObS,∀X1,X2 ∈ SX , ϕX [X1 ∧ X2] = X1.ϕX [X2] + ϕX [X1]. (2)

Remark that this is an equality of functions in Q(X).
An information structure is finite if for all X ∈ Ob S, EX is finite. In this

case, [10, Prop. 4.5.7] shows that, whenever an object X can be written as a
product Y ∧ Z and EX is “close” to EY × EZ , as formalized by the definition of
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nondegenerate product [10, Def. 4.5.6], then there exists K ∈ R such that for all
W ∈ SX and ρ in Q(Z)

ΦW (ρ) = −K
∑

w∈EW

ρ(w) log ρ(w). (3)

The continuous case is of course more delicate. In the case of E taking values
in vector spaces, and Q made of gaussian laws, [9] treated it as follows. We
start with a vector space E with Euclidean metric M , and a poset S of vector
subspaces of E, ordered by inclusion, satisfying the hypotheses stated above;
remark that ∧ corresponds to intersection. Then we introduce E by V ∈ ObS 	→
EV := E/V , and further identify EV is V ⊥ using the metric (so that we only
deal with vector subspaces of E). We also introduce a sheaf N , such that N (X)
consists of affine subspaces of EX and is closed under intersections; the sheaf is
supposed to be closed under the projections induced by E and to contain the
fibers of all these projections. On each affine subspace N ∈ N (X) there is a
unique Lebesgue measure μX,N induced by the metric M . We consider a sheaf
Q such that Q(X) are probabilities measures ρ that are absolutely continuous
with respect to μX,N for some N ∈ N (X) and have a gaussian density with
respect to it. We also introduce a subfunctor F ′ of F made of functions that
grow moderately (i.e. at most polynomially) with respect to the mean, in such
a way that the integral (1) is always convergent. Reference [9] called a triple
(S, E ,N ) sufficiently rich when there are “enough supports”, in the sense that
one can perform marginalization and conditioning with respect to projections
on subspaces generated by elements of at least two different bases of E. In this
case, we showed that every 1-cocycle ϕ, with coefficients in F ′(Q), there are
real constants a and c such that, for every X ∈ ObS and every gaussian law ρ
with support EX and variance Σρ (a nondegenerate, symmetric, positive bilinear
form on E∗

X),
ΦX(ρ) = adet(Σρ) + c.dim(EX). (4)

Moreover, ϕ its completely determined by its behavior on nondegenerate laws.
(The measure μX = μX,EX

is enough to define the determinant det(Σρ) [9,
Sec. 11.2.1], but the latter can also be computed w.r.t. a basis of EX such that
M |EX

is represented by the identity matrix.)

3 An Extended Model

3.1 Information Structure, Supports, and Reference Measures

In this section, we introduce a more general model, that allows us to “mix”
discrete and continuous variables. It is simply the product of a structure of
discrete observables and a structure of continuous ones.

Let (Sd, Ed) be a finite information structure, such that for every n ∈ N, there
exist Yn ∈ ObSd with |EYn

| ∼= {1, 2, ..., n} =: [n], and for every X ∈ ObSd, there
is a Z ∈ ObSd that can be written as non-degenerate product and such that
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Z → X; this implies that (3) holds for every W ∈ ObSd. Let (Sc, Ec,Nc) be a
sufficiently rich triple in the sense of the previous section, associated to a vector
space E with metric M , so that (4) holds for every X ∈ ObSc.

Let (S, E : S → Meas) be the product (Sc, Ec) × (Sd, Ed) in the category of
information structures, see [10, Prop. 2.2.2]. By definition, every object X ∈ S
has the form 〈Xc,Xd〉 for Xc ∈ ObSc and Xd ∈ ObSd, and E(X) = E(X1) ×
E(X2), and there is an arrow π : 〈X1,X2〉 → 〈Y1, Y2〉 in S if and only if there
exist arrows π1 : X1 → Y1 in Sc and π2 : X2 → Y2 in Sd; under the functor
E , such π is mapped to Ec(π1) × Ed(π2). There is an embedding in the sense of
information structures, see [9, Sec. 1.4], Sc ↪→ S, X → 〈X,1〉; we call its image
the “continuous sector” of S; we write X instead of 〈X,1〉 and E(X) instead of
E(〈X,1〉) = E(X) × {∗}. The “discrete sector” is defined analogously.

We extend the sheaf of supports Nc to the whole S setting Nd(Y ) = 2Y \{∅}
when Y ∈ ObSd, and then N (Z) = {A × B |A ∈ Nc(X), B ∈ Nd(Y ) } for any
Z = 〈X,Y 〉 ∈ ObS. The resulting N is a functor on S closed under projections
and intersections, that contains the fibers of every projection.

For every X ∈ ObS and N ∈ N (X), there is a unique reference measure
μX,N compatible with M : on the continuous sector it is the Lebesgue measure
given by the metric M on the affine subspaces of E, on the discrete sector it is
the counting measure restricted to N , and for any product A × B ⊂ EX × EY ,
with X ∈ ObSc and Y ∈ ObSd, it is just

∑
y∈B μy

A, where μy
A is the image of

μA under the inclusion A ↪→ A × B, a 	→ (a, y). We write μX instead of μX,EX
.

The disintegration of the counting measure into counting measures is trivial.
The disintegration of the Lebesgue measure μV,N on a support N ⊂ EV under
the projection πWV : EV → EW of vector spaces is given by the Lebesgue
measures on the fibers (πW,V )−1(w), for w ∈ EW . We recall that we are in a
framework where EV and EW are identified with subspaces of E, which has a
metric M ; the disintegration formula is just Fubini’s theorem.

To see that disintegrations exist under any arrow of the category, consider
first an object Z = 〈X,Y 〉 and arrows τ : Z → X and τ ′ : Z → Y , when
X ∈ ObSc and Y ∈ ObSd. By definition EZ = EY × EX = ∪y∈EY

EX × {y},
and the canonical projections πY Z : EZ → EY and πXZ : EZ → EX are the
images under E of τ and τ ′, respectively. Set EZ,y := (πY Z)−1(y) = EX × {y}
and EZ,x := (πXZ)−1(x) = {x}×EY . According to the previous definitions, EZ

has reference measure μZ =
∑

y∈EY
μy

X , where μy
X is the image of μX under

the inclusion EX → EX × {y}. Hence by definition, {μy
X}y∈EY

is (πY Z , μY )-
disintegration of μZ . Similarly, μZ has as (πXZ , μX)-disintegration the family of
measures {μx

Y }, where each μx
Y is the counting measure restricted on the fiber

EZ,x
∼= EY .

More generally, the disintegration of reference measure μZ,A×B =
∑

y∈B μy
A

on a support A×B of Z = 〈X,Y 〉 under the arrow 〈π1, π2〉 : Z → Z ′ = 〈X ′, Y ′〉
is the collection of measures (μZ,A×B,x′,y′)(x′,y′)∈π1(A)×π2(B) such that

μZ,A×B,x′,y′ =
∑

y∈π−1
2 (y′)

μy
X,A,x′ (5)
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where μy
X,A,x′ is the image measure, under the inclusion EX → EX ×{y}, of the

measure μX,A,x′ that comes from the (π1, μX′,π1(A))-disintegration of μX,A.

3.2 Probability Laws and Probabilistic Functionals

Consider the subfunctor Π(N ) of Π that associates to each X ∈ ObS the
set Π(X;N ) of probability measures on E(X) that are absolutely continuous
with respect to the reference measure μX,N on some N ∈ N (X). We define the
(affine) support or carrier of ρ, denoted A(ρ), as the unique A ∈ N (X) such
that ρ � μX,A.

In this work, we want to restrict our attention to subfunctors Q ⊂ Π(N ) of
probability laws such that:

1. Q is adapted;
2. for each ρ ∈ Q(X), the differential entropy SμA(ρ)(ρ) := − ∫

log dρ
dμA(ρ)

dρ

exists i.e. it is finite;
3. when restricted to probabilities in Q(X) with the same carrier A, the differ-

ential entropy is a continuous functional in the total variation norm;
4. for each X ∈ ObSc and each N ∈ N (X), the gaussian mixtures carried by

N are contained in Q(X)—cf. next section.

Problem 1. The characterization of functors Q that satisfy properties 1–4.

Below we use kernel estimates, which interact nicely with the total variation
norm. This norm is defined for every measure ρ on (EX ,BX) by ‖ρ‖TV =
supA∈BX

|ρ(A)|. Let ϕ be a real-valued functional defined on Π(EX , μA), and
L1
1(A,μA) the space of functions f ∈ L1(A,μA) with total mass 1 i.e.

∫
A

f dμA =
1; the continuity of ϕ in the total variation distance is equivalent to the continuity
of ϕ̃ : L1

1(A,μA) → R, f 	→ ϕ(f ·μA) in the L1-norm, because of Scheffe’s identity
[5, Thm. 45.4].

The characterization referred to in Problem 1 might involve the densi-
ties or the moments of the laws. It is the case with the main result that
we found concerning convergence of the differential entropy and its continu-
ity in total variation [6]. Or it might resemble Otáhal’s result [8]: if densities
{fn} tend to f in Lα(R, dx) and Lβ(R, dx), for some 0 < α < 1 < β, then
− ∫

fn(x) log fn(x) dx → − ∫
f(x) log f(x) dx.

For each X ∈ ObS, let F(X) be the vector space of measurable functions of
(ρ, μM ), equivalently ( dρ/dμA(ρ), μM ), where ρ is an element of Q(X), μM is a
global determination of reference measure on any affine subspace given by the
metric M , and μA(ρ) is the corresponding reference measure on the carrier of ρ
under this determination.

We want to restrict our attention to functionals for which the action (1) is
integrable. Of course, these depends on the answer to Problem 1.

Problem 2. What are the appropriate restrictions on the functionals F(X) to
guarantee the convergence of (1)?
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4 Computation of 1-cocycles

4.1 A Formula for Gaussian Mixtures

Let Q be a probability functor satisfying conditions (1)–(4) in Subsect. 3.2, and
G a linear subfunctor of F such that (1) converges for laws in Q. In this section,
we compute H1(S,G).

Consider a generic object Z = 〈X,Y 〉 = 〈X, 1〉 ∧ 〈1, Y 〉 of S; we write every-
where X and Y instead of 〈X, 1〉 and 〈1, Y 〉. We suppose that EX is an Euclidean
space of dimension d. Remind that EY is a finite set and EZ = EX × EY . Let
{GMy,Σy

}y∈EY
be gaussian densities on EX (with mean My and covariance Σy),

and p : EY → [0, 1] a density on EY ; then ρ =
∑

y∈EY
p(y)GMy,Σy

μy
X is a prob-

ability measure on EZ , absolutely continuous with respect to μZ , with density
r(x, y) := p(y)GMy,Σy

(x). We have that πY Z
∗ ρ has density p with respect to the

counting measure μY , whereas πXZ
∗ ρ is absolutely continuous with respect to

μX (see [3, Thm. 3]) with density

μx
Z(r) =

∫

EX

dρ

dμZ
dμx

Z =
∑

y∈EY

p(y)GMy,Σy
(x). (6)

i.e. it is a gaussian mixture. For conciseness, we utilize here linear-functional
notation for some integrals, e.g. μx

Z(r). The measure ρ has a πXZ-disintegration
into probability laws {ρx}x∈EX

, such that each ρx is concentrated on EZ,x
∼= EY

and

ρx(x, y) =
p(y)GMy,Σy

(x)
∑

y∈EY
p(y)GMy,Σy

(x)
. (7)

In virtue of the cocycle condition (remind that ΦZ = ϕZ [Z]),

ΦZ(ρ) = ϕZ [Y ](ρ) +
∑

y∈EY

p(y)ϕZ [X](GMy,Σy
μy

X) (8)

Locality implies that ϕZ [Y ](ρ) = ΦY (πY Z
∗ ρ), and the later equals

−b
∑

y∈EY
p(y) log p(y), for some b ∈ R, in virtue of the characterization

of cocycles restricted to the discrete sector. Similarly, ϕZ [X](GMy,Σy
μy

X) =
ΦX(GMy,Σy

) = a log det(Σy) + cdim EX for some a, c ∈ R, since our hypotheses
are enough to characterize the value of any cocycle restricted to the gaussian
laws on the continuous sector. Hence

ΦZ(ρ) = −b
∑

y∈EY

p(y) log p(y) +
∑

y∈EY

p(y)(a log det(Σy) + cdim EX). (9)

Remark that the same argument can be applied to any densities {fy}y∈Y

instead {GMy,Σy
}. Thus, it is enough to determine ΦX on general densities, for

each X ∈ Sc, to characterize completely the cocycle ϕ.
The cocycle condition also implies that

ΦZ(ρ) = ΦX(πXZρ) +
∫

EX

ϕZ [Y ](ρx) dπXZ
∗ ρ(x). (10)
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The law πXZ
∗ ρ is a composite gaussian, and the law ρx is supported on the

discrete space EZ,x
∼= EY , with density

(x, y) 	→ ρx(y) =
p(y)GMy,Σy

(x)
∑

y′∈EY
p(y′)GMy,Σy

(x)
=

r(x, y)
μx

Z(r)
. (11)

Using again locality and the characterization of cocycles on the discrete sector,
we deduce that

ϕZ [Y ](ρx) = ΦY (πY Z
∗ ρx) = −b

∑

y∈EY

ρx(y) log ρx(y). (12)

A direct computation shows that
∑

y∈EY
ρx(y) log ρx(y) equals:

∑

y∈EY

p(y) log p(y) −
∑

y∈EY

p(y)SμX
(GMy,Σy

) + SμX
(μx

Z(r)), (13)

where SμX
is the differential entropy, defined for any f ∈ L1(EX , μX) by

SμX
(f) = − ∫

EX
f(x) log f(x) dμX(x).

It is well known that SμX
(GM,Σ) = 1

2 log det Σ + dimEX

2 log(2πe).
Equating the right hand sides of (9) and (10), we conclude that

ΦX(πXZρ) =
∑

y∈EY

p(y)
(

(a − b

2
) log detΣy + cd − bd

2
log(2πe))

)

+bSμX
(μx

Z(r)).

(14)

4.2 Kernel Estimates and Main Result

Equation 17 gives an explicit value to the functional ΦX ∈ F(X) evaluated on a
gaussian mixture. Any density in L1(EX , μX) can be approximated by a random
mixture of gaussians. This approximation is known as a kernel estimate.

Let X1,X2, ... be a sequence of independently distributed random elements
of R

d, all having a common density f with respect to the Lebesgue measure
λd. Let K be a nonnegative Borel measurable function, called kernel, such that∫

K dλd = 1, and (hn)n a sequence of positive real numbers. The kernel estimate
of f is given by

fn(x) =
1

nhd
n

n∑

i=1

K

(
x − Xi

hn

)

. (15)

The distance Jn =
∫

E
|fn−f |dλd is a random variable, invariant under arbitrary

automorphisms of E. The key result concerning these estimates [4, Ch. 3, Thm. 1]
says, among other things, that Jn → 0 in probability as n → ∞ for some f if
and only if Jn → 0 almost surely as n → ∞ for all f , which holds if and only if
limn hn = 0 and limn nhd

n = ∞.
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Theorem 1. Let ϕ be a 1-cocycle on S with coefficients in G, X an object in
Sc, and ρ a probability law in Q(X) absolutely continuous with respect to μX .
Then, there exist real constants c1, c2 such that

ΦX(ρ) := ϕX [X](ρ) = c1SμA
(ρ) + c2 dim EX . (16)

Proof. By hypothesis. X = 〈X,1〉 is an object in the continuous sector of S. Let
f be any density of ρ with respect to μX , (Xn)n∈N an i.i.d sequence of points
of EX with law ρ, and (hn) any sequence such that hn → 0 and nhd

n → ∞.
Let (Xn(ω))n be any realization of the process such that fn tend to f in L1.
We introduce, for each n ∈ N, the kernel estimate (15) evaluated at (Xn(ω))n,
taking K equal to the density of a standard gaussian. Each fn is the density of
a composite gaussian law ρn equal to n−1

∑n
i=1 GXi(ω),h2

nI . This can be “lifted”
to Z = 〈X,Yn〉, this is, there exists a law ρ̃ on EZ := EX × [n] with density
r(x, i) = p(i)GXi(ω),h2

nI(x), where p : [n] → R is taken to be the uniform law.
The arguments of Sect. 4 then imply that

ΦX(ρn) = 2d
(

a − b

2

)

log hn + cd − bd

2
log(2πe) + bSμA

(ρn). (17)

In virtue of the hypotheses on Q, SμA
(ρ) is finite and SμA

(ρn) → SμA
(ρ). Since

ΦX is continuous when restricted to Π(A,μA) and ΦX(f) is a real number, we
conclude that necessarily a = b/2. The statement is then just a rewriting of (17).

This is the best possible result: the dimension is an invariant associated to
the reference measure, and the entropy depends on the density.
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Belief Propagation as Diffusion
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Abstract. We introduce novel belief propagation algorithms to esti-
mate the marginals of a high dimensional probability distribution. They
involve natural (co)homological constructions relevant for a localised
description of statistical systems.

Introduction

Message-passing algorithms such as belief propagation (BP) are parallel comput-
ing schemes that try to estimate the marginals of a high dimensional probability
distribution. They are used in various areas involving the statistics of a large
number of interacting random variables, such as computational thermodynamics
[5,10], artificial intelligence [11,15,21], computer vision [18] and communications
processing [3,4].

We have shown the existence of a non-linear correspondence between BP
algorithms and discrete integrators of a new form of continuous-time diffusion
equations on belief networks [13,14]. Practical contributions include (a) regu-
larised BP algorithms for any time step or diffusivity1 coefficient 0 < ε < 1,
and (b) a canonical Bethe diffusion flux that regularises GBP messages by new
Möbius inversion formulas in degree 12.

The purpose of this text is to describe the structure of belief networks as
concisely as possible, with the geometric operations that appear in our rewriting
of BP equations. An open-sourced python implementation, hosted on github at
opeltre/topos was also used to conduct benchmarks showing the importance of
chosing ε < 1.

In the following, we denote by:

– Ω = {i, j, k, . . . } a finite set of indices (e.g. atoms, neurons, pixels, bits ...)
– xi the microstate of atom i, valued in a finite set Ei

– xΩ the microstate of the global system, valued in EΩ =
∏

i∈Ω Ei

Part of this work was supported by a PhD funding from Université de Paris.
1 This coefficient ε would appear as an exponent of messages in the usual multiplicative

writing of BP equations. Diffusivity relates energy density gradients to heat fluxes
in physics, as in ϕ = −ε · ∇(u).

2 Generalised belief propagation = BP on hypergraphs, see [21] for the algorithm. Our
algorithm 2 exponentiates their messages mαβ by the coefficients cα ∈ Z appearing
in the Bethe-Kikuchi local approximation of free energy.

c© Springer Nature Switzerland AG 2021
F. Nielsen and F. Barbaresco (Eds.): GSI 2021, LNCS 12829, pp. 547–556, 2021.
https://doi.org/10.1007/978-3-030-80209-7_59
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The statistical state of the system is described by a probability distribution pΩ

on EΩ . We write ΔΩ = Prob(EΩ) for the convex space of statistical states.

1 Graphical Models

Definition 1. A hypergraph (Ω,K) is a set of vertices Ω and a set of faces3

K ⊆ P(Ω).

Let us denote by xα the microstate of a face α ⊆ Ω, valued in Eα =
∏

i∈α Eα.
For every β ⊆ α in P(Ω), we have a canonical projection or restriction4 map:

πβα : Eα → Eβ

We simply write xβ for the restriction of xα to a subface β of α.

Definition 2. A graphical model pΩ ∈ ΔΩ on the hypergraph (Ω,K) is a pos-
itive probability distribution on EΩ that factorises as a product of positive local
factors over faces:

pΩ(xΩ) =
1

ZΩ

∏

α∈K

fα(xα) =
1

ZΩ
e− ∑

α hα(xα)

We denote by ΔK ⊆ ΔΩ the subspace of graphical models on (Ω,K).

Fig. 1. Graphical model pijkl(xijkl) = fijk(xijk) · fikl(xikl) · fjkl(xjkl) with its factor
graph representation (middle) on a simplicial complex K formed by joining 3 triangles
at a common vertex and called 2-horn Λ2 of the 3-simplex (left). The situation is
equivalent when K is a three-fold covering of Ω by intersecting regions α, α′, α′′ (right).

3 Also called hyperedges, or regions. A graph is a hypergraph with only hyperedges
of cardinality 2. A simplicial complex is a hypergraph such that any subset of a
face is also a face. A lattice is a hypergraph closed under ∩ and ∪. We shall mostly
be interested in semi-lattices, closed only under intersection, of which simplicial
complexes are a special case.

4 The contravariant functor E : P(Ω)op → Set of microstates defines a sheaf of sets
over Ω.
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A graphical model pΩ for (Ω,K) is also called Gibbs state of the associated
energy function or hamiltonian HΩ : EΩ → R:

HΩ(xΩ) =
∑

α∈K

hα(xα)

The normalisation factor of the Gibbs density e−HΩ is computed by the parti-
tion function ZΩ =

∑
xΩ

e−HΩ(xΩ). The free energy FΩ = − ln ZΩ and partition
function generate most relevant statistical quantities in their derivatives5. They
are however not computable in practice, the sum over microstates scaling expo-
nentially in the number of atoms.

Message-passing algorithms rely on local structures induced by K to estimate
marginals, providing with an efficient alternative [5,10] to Markov Chain Monte
Carlo methods such as Hinton’s contrastive divergence algorithm commonly used
for training restricted Boltzmann machines [15,17]. They are also related to
local variational principles involved in the estimation of FΩ [13,14,21] by Bethe
approximation [2,5].

We showed in [14] that message-passing explores a subspace of potentials (uα)
related to equivalent factorisations of pΩ , until an associated collection of local
probabilities (qα) is consistent. Two fundamental operations constraining this
non-linear correspondence are introduced below. They consist of a differential d
associated to a consistency constraint, and its adjoint boundary δ = d∗ enforcing
a dual energy conservation constraint. These operators relate graphical models
to a statistical (co)homology theory, in addition to generating the BP equations.

2 Marginal Consistency

In the following, we suppose given a hypergraph (Ω,K) closed under intersection:

α ∩ β ∈ K for all α, β ∈ K

We denote by Δα the space of probability distributions on Eα for all α ∈ K.
Given a graphical model pΩ ∈ ΔΩ , the purpose of belief propagation algorithms
is to efficiently approximate the collection of true marginals pα ∈ Δα for α ∈ K
by local beliefs qα ∈ Δα, in a space Δ0 of dimension typically much smaller than
ΔΩ .

Definition 3. We call belief over (Ω,K) a collection q ∈ Δ0 of local probabili-
ties over faces, where:

Δ0 =
∏

α∈K

Δα

5 Letting μH denote the image by H of the counting measure on microstates, Zθ
Ω =∫

λ∈R
e−θλμH(dλ) is the Laplace transform of μH with respect to inverse temperature

θ = 1/kBT . In [14] we more generally consider free energy as a functional AΩ → R

whose differential at HΩ ∈ AΩ is the Gibbs state pΩ ∈ A∗
Ω .
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Definition 4. For every β ⊆ α the marginal or partial integration map Σβα :
Δα → Δβ is defined by:

Σβαqα(xβ) =
∑

y∈Eα\β

qα(xβ , y)

Definition 5. Consistent beliefs span the convex subset Γ ⊆ Δ0 defined by
marginal consistency constraints6:

qβ = Σβα(qα) for all β ⊆ α

The true marginals (pα) ∈ Δ0 of a global density pΩ ∈ ΔΩ are always
consistent. However their symbolic definition pα = ΣαΩpΩ involves a sum over
fibers of EΩ\α, not tractable in practice. Message-passing algorithms instead
explore a parameterised family of beliefs q ∈ Δ0 until meeting the consistency
constraint surface Γ ⊆ Δ0.

Let us denote by A∗
α the space of linear measures on Eα for all α ⊆ Ω, and

by:
Σβα : A∗

α → A∗
β

the partial integration map.

Definition 6. We call n-density over (Ω,K) an element λ ∈ A∗
n of local mea-

sures indexed by ordered chains of faces, where:

A∗
n =

∏

α0⊃···⊃αn

A∗
αn

The marginal consistency constraints are expressed by a differential operator7

d on the graded vector space A∗
• =

∏
n A∗

n of densities over (Ω,K):

A∗
0 A∗

1 . . . A∗
n

d d d

Definition 7. The differential d : A∗
0 → A∗

1 acts on a density (λα) ∈ A∗
0 by:

d(λ)αβ = λβ − Σβαλα

Consistent densities λ ∈ [A∗
0] satisfy dλ = 0, and called 0-cocycles.

The space of consistent beliefs Γ ⊆ [A∗
0] is the intersection of Ker(d) with

Δ0 ⊆ A∗
0. True marginals define a convex map ΔΩ → Γ , restriction8 of a linear

surjection A∗
Ω → [A∗

0]. Consistent beliefs q ∈ Γ acting as for global distributions
pΩ ∈ ΔΩ , marginal diffusion iterates over a smooth subspace of Δ0, diffeomor-
phic to equivalent parameterisations of a graphical model pΩ , until eventually
reaching Γ .
6 Equivalently, Γ is the projective limit of the functor Δ : Kop → Top defined by

local probabilities and marginal projections, or space of global sections of the sheaf
of topological spaces Δ over (Ω, K).

7 Cohomology sequences of this kind were considered by Grothendieck and Verdier
[19], see also [8].

8 Note the image of ΔΩ inside Γ can be a strict convex polytope of Γ , and consistent
q ∈ Γ do not always admit a positive preimage qΩ ∈ ΔΩ [1,20].
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3 Energy Conservation

Graphical models parameterise a low dimensional subspace of ΔΩ , but Definition
2 is not injective in the local factors fα or local potentials uα = − ln fα. The
fibers of this parameterisation can be described linearly at the level of potentials,
and correspond to homology classes of the codifferential operator δ = d∗.

We denote by Aα the algebra of real functions on Eα for all α ⊆ Ω, and by:

jαβ : Aα → Aβ

the natural extension9 of functions pulled from Eβ to Eα by the restriction
xα �→ xβ .

Definition 8. We let δ = d∗ denote the adjoint of d, defined by duality:

A0 A1 . . . An
δ δ δ

Proposition 1. The divergence δ : A1 → A0 dual of d : A∗
0 → A∗

1, acts on
ϕ ∈ A1 by:

δ(ϕ)β =
∑

α⊇β

ϕαβ −
∑

γ⊆β

jβγϕβγ

Proof. Let λ ∈ A∗
0 and ϕ ∈ A1. The duality bracket A∗

0 ⊗ A0 → R is naturally
defined by sum of local duality brackets A∗

β ⊗ Aβ → R, which correspond to
integration of local measures against observables:

〈λ | δϕ 〉 =
∑

β∈K

〈λβ | δϕβ 〉 =
∑

β∈K

∑

xβ∈Eβ

λβ(xβ)δϕβ(xβ)

Substituting with the expression of δϕ we get10:

〈λ | δϕ 〉 =
∑

β∈K

∑

xβ∈Eβ

λβ(xβ)
( ∑

α⊇β

ϕαβ(xβ) −
∑

γ⊆β

ϕβγ(xγ)
)

=
∑

α⊇β

∑

xβ∈Eβ

ϕαβ(xβ)λβ(xβ) −
∑

β⊇γ

∑

xγ∈Eγ

ϕβγ(xγ)
∑

y∈Eβ\γ

λβ(xγ , y)

The factorisation of the rightmost sum by ϕβγ(xγ) reflects the duality of Σβα

with jβγ . Relabeling summation indices β ⊇ γ as α ⊇ β, we finally get:
∑

α⊇β

〈λβ |ϕαβ 〉 −
∑

β⊇γ

〈Σγβλβ |ϕβγ 〉 =
∑

α⊇β

〈λβ − Σβαλα |ϕαβ 〉

So that 〈λ | δϕ 〉 = 〈 dλ |ϕ 〉 for all λ ∈ A∗
0 and all ϕ ∈ A1.

9 Functions on Eβ =
∏

j∈β Ej can be viewed as functions on Eα =
∏

i∈α that do not
depend on the state of xi for i ∈ α \ β. Therefore Aβ is essentially a subspace of Aα

and jαβ an inclusion.
10 In this substitution, we simply wrote ϕβγ(xγ) for jβγ(ϕβγ)(xβ), as jβγ : Aγ → Aβ

is an inclusion.
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Consider the total energy map ζΩ : A0 → AΩ defined by:

ζΩ(u) =
∑

α∈K

uα

We have left injections jΩα implicit, viewing each Aα ⊆ AΩ as a subalgebra of
AΩ . Denoting by AK ⊆ AΩ the image of ζΩ , a graphical model pΩ ∈ ΔK is then
associated to u ∈ A0 by normalising the Gibbs density e−ζΩ(u), as in 2.

Theorem 1. For all u, u′ ∈ A0 the following are equivalent [14, Chapter 5]:

– conservation of total energy
∑

α u′
α =

∑
α uα in AΩ,

– there exists ϕ ∈ A1 such that u′ = u + δϕ in A0.

Theorem 1 states that Ker(ζΩ) coincides with the image of the divergence
δA1 ⊆ A0. The subspace of total energies Im(ζΩ) � A0/Ker(ζΩ) is therefore iso-
morphic to the quotient [A0] = A0/δA1, formed by homology classes of potentials
[u] = u+ δA1 ⊆ A0. Global observables of AK ⊆ AΩ can thus be represented by
equivalence classes of local potentials in [A0], homology under δ giving a local
characterisation for the fibers of ζΩ .

4 Diffusions

The local approach to the marginal estimation problem, given pΩ = 1
ZΩ

e−HΩ ,
consists of using a low dimensional map A0 → Δ0 as substitute for the high
dimensional parameterisation AΩ → ΔΩ , until parameters u ∈ A0 define a
consistent belief q ∈ Γ whose components qα ∈ Δα estimate the true marginals
pα of pΩ .

ΔΩ Γ Δ0

AΩ [A0] A0

Assume the hamiltonian is defined by HΩ =
∑

α hα for given h ∈ A0. Accord-
ing to Theorem 1, parameters u ∈ A0 will define the same total energy if and
only if:

u = h + δϕ

for some heat flux ϕ ∈ δA1. The energy conservation constraint [u] = [h] there-
fore restricts parameters to fibers of the bottom-right arrow in the above dia-
gram. The rightmost arrow A0 → Δ0 is given by the equations:

qα =
1

Zα
e−Uα where Uα =

∑

β⊆α

uβ (1)

The image of [h] in Δ0 is a smooth non-linear manifold of Δ0 ⊆ A∗
0, which may

intersect the convex polytope Γ = Ker(d)∩Δ0 of consistent beliefs an unknown
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number of times. Such consistent beliefs in Γ ⊆ Δ0 are the fixed points of belief
propagation algorithms. The central dashed vertical arrow therefore represents
what they try to compute, although no privileged q ∈ Γ may be defined from
[h] ∈ A0 in general.

Definition 9. Given a flux functional Φ : A0 → A1, we call diffusion associated
to Φ the vector field δΦ on A0 defined by:

du

dt
= δΦ(u) (2)

Letting q ∈ Δ0 be defined by (1), we say that Φ is consistent if q ∈ Γ ⇒ Φ(u) = 0,
and that Φ is faithful if it is consistent and Φ(u) = 0 ⇒ q ∈ Γ .

Consistent flux functionals Φ are constructed by composition with two
remarkable operators ζ : A0 → A0, mapping potentials to local hamiltonians
u �→ U , and D : A0 → A1, a non-linear analog of the differential d : A∗

0 → A∗
1,

measuring inconsistency of the local beliefs defined by U �→ q in (1). The def-
inition of D involves a conditional form of free energy F

βα : Aα → Aβ , which
generates conditional expectation maps with respect to local beliefs by differen-
tiation11.

Definition 10. We call effective energy the smooth map F
βα : Aα → Aβ defined

by:
F

βα(Uα | xβ) = − ln
∑

y∈Eα\β

e−Uα(xβ ,y)

and effective energy gradient the smooth map D : A0 → A1 defined by:

D(U)αβ = Uβ − F
βα(Uα)

Letting q = e−U denote local Gibbs densities, note that q ∈ Γ ⇔ D(U) = 0
by:

D(U)αβ = ln
[

Σβαqα

qβ

]

The map u �→ U is a fundamental automorphism ζ of A0, inherited from the
partial order structure of K. Möbius inversion formulas define its inverse μ = ζ−1

[7,14,16]. We have extended ζ and μ to automorphisms on the full complex A•
in [14, Chapter 3], in particular, ζ and μ also act naturally on A1.

Definition 11. The zeta transform ζ : A0 → A0 is defined by:

ζ(u)α =
∑

β⊆α

uβ

11 The tangent map of D in turn yields differential operators ∇q : A0 → A1 → . . . for
all q ∈ Γ , whose kernels characterise tangent fibers TqΓ pulled by the non-linear
parameterisation (1), see [14, Chapter 6].
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Algorithms. GBP and Bethe Diffusions12.

Input: potential u ∈ A0
diffusivity ε > 0
number of iterations nit

Output: belief q ∈ Δ0

A. GBP ε-diffusion

1: for i = 0 . . . nit do

2: Uα ← ζ(u)α

3: Uα ← Uα + ln Σe−Uα

4: Φαβ ← −D(U)αβ

5:
6: uα ← uα + ε · δ(Φ)α

7: end for

8: qα ← e−Uα

9: return q

B. Bethe ε-diffusion

1: for i = 0 . . . nit do

2: Uα ← ζ(u)α

3:
4: Φαβ ← −D(U)αβ

5: φαβ ← cα · Φαβ

6: uα ← uα + ε · δ(φ)α

7: end for

8: qα ← e−Uα

9: return q

The flux functional Φ = −D◦ζ is consistent and faithful [14], meaning that δΦ
is stationary on u ∈ A0 if and only if associated beliefs q ∈ Δ0 are consistent. This
flux functional yields the GBP equations of algorithm A (up to the normalisation
step of line 3, ensuring normalisation of beliefs). It may however not be optimal.

We propose another flux functional φ = −μ ◦ D ◦ ζ by degree-1 Möbius
inversion on heat fluxes in algorithm B. It is remarkable that the associated
diffusion δφ involves only the coefficients cα ∈ Z originally used by Bethe [2] to
estimate the free energy of statistical systems close to their critical temperature.
These coefficients also appear in the cluster variational problem [5,9,12] on free
energy, solved by fixed points of belief propagation and diffusion algorithms
[14,21].

It remains open whether fixed points of Bethe diffusion are always consis-
tent. We were only able to prove this in a neighbourhood of the consistent
manifold, a property we called local faithfulness of the Bethe diffusion flux φ,
see [14, Chapter 5]. Faithfulness proofs are non-trivial and we conjecture the
global faithfulness of φ.

Definition 12. The Bethe numbers (cα) ∈ Z
K are uniquely defined by the equa-

tions: ∑

α⊇β

cα = 1 for all β ∈ K

Both algorithms consist of time-step ε discrete Euler integrators of diffusion
equations of the form (2), for two different flux functionals. Generalised belief
propagation (GBP) is usually expressed multiplicatively for ε = 1 in terms of
beliefs qα = 1

Zα
e−Uα and messages mαβ = e−ϕαβ . A choice of ε < 1 would

12 Note the normalisation operation Uα ← Uα +ln Zα line 3 in A. It is replaced by line
4 in B, which takes care of harmonising normalisation factors by eliminating redun-
dancies in Φ. The arrows Uα ← . . . suggest map operations that may be efficiently
parallelised through asynchronous streams, by locality of the associated operators
ζ,D, δ . . .. Each stream performs local operations over tensors in Aα, whose dimen-
sions depend on the cardinality of local configuration spaces Eα =

∏
i∈α Ei.
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appear as an exponent in the product of messages by this substitution. This is
different from damping techniques [6] and has not been previously considered to
our knowledge.

Bethe numbers cα would also appear as exponents of messages in the mul-
tiplicative formulation of algorithm B. The combinatorial regularisation offered
by Bethe numbers stabilises divergent oscillations in non-constant directions on
hypergraphs, improving convergence of GBP diffusion at higher diffusivities.
When K is a graph, the two algorithms are actually equivalent, so that Bethe
numbers only regularise normalisation factors in the degree ≥ 2 case.

Fig. 2. Convergence of GBP and Bethe diffusions for different values of diffusivity
0 < ε < 1 and energy scales on the 2-horn, depicted in Fig. 1. Both diffusions almost
surely diverge for diffusivities ε ≥ 1, so that the usual GBP algorithm is not represented
in this table.

Figure 2 shows the results of experiments conducted on the simplest hyper-
graph K for which GBP does not surely converge to the unique solution
q ∈ [u] ∩ AΓ

0 , the horn Λ2 depicted in Fig. 1. Initial potentials u ∈ A0 were
normally sampled according to hα(xα) ∼ 1

T N (0, 1) at different temperatures or
energy scales T > 0. For each value of T and for each fixed diffusivity ε > 0,
GBP and Bethe diffusion algorithms were run on random initial conditions for
nit = 10 iterations. Consistency of the returned beliefs, if any, was assessed in
the effective gradient Φ to produce the represented decay ratios. Diffusivity was
then increased until the drop in Bethe diffusion convergence, occuring signifi-
cantly later than GBP diffusion but before ε < 1, reflecting the importance of
using finer integrators than usual ε = 1 belief propagation algorithms.

The discretised diffusion (1 + εδΦ)n may be compared to the approximate
integration of exp(−nεx) as (1 − εx)n, which should only be done under the
constraint ε|x| < 1. Assuming all eigenvalues of the linearised diffusion flow δΦ∗
are negative (as is the case in the neighbourhood of a stable potential), one
should still ensure ε|δΦ∗| < 1 to confidently estimate the large time asymptotics
of diffusion as exp(nεδΦ) � (1 + εδΦ)n and reach Γ .

An open-sourced python implementation of the above algorithms, with imple-
mentations of the (co)-chain complex A•(K) for arbitrary hypergraphs K, Bethe
numbers, Bethe entropy and free energy functionals, and other operations for
designing marginal estimation algorithms is on github at opeltre/topos.

https://github.com/opeltre/topos
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Abstract. A Bayesian functorial characterization of the classical rela-
tive entropy (KL divergence) of finite probabilities was recently obtained
by Baez and Fritz. This was then generalized to standard Borel spaces by
Gagné and Panangaden. Here, we provide preliminary calculations sug-
gesting that the finite-dimensional quantum (Umegaki) relative entropy
might be characterized in a similar way. Namely, we explicitly prove that
it defines an affine functor in the special case where the relative entropy
is finite. A recent non-commutative disintegration theorem provides a
key ingredient in this proof.

Keywords: Bayesian inversion · Disintegration · Optimal hypothesis

1 Introduction and Outline

In 2014, Baez and Fritz provided a categorical Bayesian characterization of the
relative entropy of finite probability measures using a category of hypotheses [1].
This was then extended to standard Borel spaces by Gagné and Panangaden in
2018 [5]. An immediate question remains as to whether or not the quantum
(Umegaki) relative entropy [12] has a similar characterization.1 The purpose of
the present work is to begin filling this gap by using the recently proved non-
commutative disintegration theorem [9].

The original motivation of Baez and Fritz came from Petz’ characteriza-
tion of the quantum relative entropy [11], which used a quantum analogue of
hypotheses known as conditional expectations. Although Petz’ characterization
had some minor flaws, which were noticed in [1], we believe Petz’ overall idea is
correct when formulated on an appropriate category of non-commutative prob-
ability spaces and non-commutative hypotheses. In this article, we show how
the Umegaki relative entropy defines an affine functor that vanishes on the sub-
category of non-commutative optimal hypotheses for faithful states. The chain
rule for quantum conditional entropy is a consequence of functoriality. The non-
faithful case will be addressed in future work, where we hope to provide a char-
acterization of the quantum relative entropy as an affine functor.
1 The ordinary Shannon and von Neumann entropies were characterized in [2] and [7],

respectively, in a similar categorical setting.
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2 The Categories of Hypotheses and Optimal Hypotheses

In this section, we introduce non-commutative analogues of the categories
from [1]. All C∗-algebras here are finite-dimensional and unital. All ∗-
homomorphisms are unital unless stated otherwise. Mn denotes the algebra of
n×n matrices. If V : C

m → C
n is a linear map, AdV : Mn

� � �� Mm denotes the
linear map sending A to V AV †, where V † is the adjoint (conjugate transpose)
of V . Linear maps between algebras are written with squiggly arrows � � �� ,
while ∗-homomorphisms are written as straight arrows →. The acronym CPU
stands for “completely positive unital.” If A and B are matrix algebras, then
trA : A ⊗ B � � �� B denotes the partial trace over A and is the unique linear
map determined by trA(A ⊗ B) = tr(A)B for A ∈ A and B ∈ B. If ω is a state
on A, its quantum entropy is denoted by S(ω) (cf. [7, Definition 2.20]).

Definition 1. Let NCFS be the category of non-commutative probability
spaces, whose objects are pairs (A, ω), with A a C∗-algebra and ω a state on A.
A morphism (B, ξ) � (A, ω) is a pair (F,Q) with F : B → A a ∗-homomorphism
and Q : A � � �� B a CPU map (called a hypothesis), such that

ω ◦ F = ξ and Q ◦ F = idB.

The composition rule in NCFS is given by

(C, ζ)
(G,R)−−−� (B, ξ)

(F,Q)−−−� (A, ω) �→ (C, ζ)
(F◦G,R◦Q)−−−−−−−� (A, ω).

Let NCFP be the subcategory of NCFS with the same objects but whose
morphisms are pairs (F,Q) as above and Q is an optimal hypothesis, i.e.
ξ ◦ Q = ω.

The subcategories of NCFSop and NCFPop consisting of commutative C∗-
algebras are equivalent to the categories FinStat and FP from [1] by stochastic
Gelfand duality (cf. [6, Sections 2.5 and 2.6], [4], and [9, Corollary 3.23]).

Notation 1. On occasion, the notation A, B, and C will be used to mean

A :=
⊕

x∈X

Mmx
, B :=

⊕

y∈Y

Mny
, and C :=

⊕

z∈Z

Moz ,

where X,Y,Z are finite sets, often taken to be ordered sets X = {1, . . . , s},
Y = {1, . . . , t}, Z = {1, . . . , u} for convenience (cf. [9, Section 5] and/or [7,
Example 2.2]). Note that every element of A (and analogously for B and C) is of
the form A =

⊕
x∈X Ax, with Ax ∈ Mmx

. Furthermore, ω, ξ, and ζ will refer
to states on A, B, and C, respectively, with decompositions of the form

ω =
∑

x∈X

pxtr(ρx · ), ξ =
∑

y∈Y

qytr(σy · ), and ζ =
∑

z∈Z

rztr(τz · ).

If Q : A � � �� B is a linear map, its yx component Qyx is the linear map obtained

from the composite Mmx
↪→ A Q B � Mny

, where the first and last maps are
the (non-unital) inclusion and projection, respectively.
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Definition 2. Let A and B be as in Notation 1. A morphism (B, ξ)
(F,Q)−−−� (A, ω)

in NCFS is said to be in standard form iff there exist non-negative integers
cFyx such that (cf. [7, Lemma 2.11] and [3, Theorem 5.6])

F (B) =
⊕

x∈X
�
y∈Y

(
1cFyx

⊗ By

) ≡
⊕

x∈X

diag
(
1cF1x

⊗ B1, . . . ,1cFtx
⊗ Bt

)
∀ B ∈ B,

which is a direct sum of block diagonal matrices. The number cFyx is called the
multiplicity of Mny

in Mmx
associated to F . In this case, each Ax ∈ Mmx

will occasionally be decomposed as Ax =
∑

y,y′∈Y E
(t)
yy′ ⊗ Ax;yy′ , where {E

(t)
yy′}

denote the matrix units of Mt and Ax;yy′ is a (cFyxny) × (cFy′xny′) matrix.

If F is in standard form and if ω and ξ are states on A and B (as in Notation 1)
such that ξ = ω ◦ F , then (cf. [7, Lemma 2.11] and [9, Proposition 5.67])

qyσy =
∑

x∈X

pxtrMcFyx
(ρx;yy). (2.1)

The standard form of a morphism will be useful later for proving functoriality
of relative entropy, and it will allow us to formulate expressions more explicitly
in terms of matrices.

Lemma 1. Given a morphism (B, ξ)
(F,Q)−−−� (A, ω) in NCFS, with A and B be

as in Notation 1, there exists a unitary U ∈ A such that (B, ξ)
(Ad

U† ◦F,Q◦AdU )−−−−−−−−−−−�
(A, ω ◦ AdU ) is a morphism in NCFS that is in standard form. Furthermore, if
(F,Q) is in NCFP, then (AdU† ◦ F,Q ◦ AdU ) is also in NCFP.

Proof. First, (AdU† ◦ F,Q ◦ AdU ) is in NCFS for any unitary U because

(ω ◦ AdU ) ◦ (AdU† ◦ F ) = ξ and (Q ◦ AdU ) ◦ (AdU† ◦ F ) = idB,

so that the two required conditions hold. Second, the fact that a unitary U exists
such that F is in the form in Definition 2 is a standard fact regarding (unital)
∗-homomorphisms between direct sums of matrix algebras [3, Theorem 5.6].
Finally, if (F,Q) is in NCFP, which means ξ ◦Q = ω, then (AdU† ◦F,Q ◦AdU )
is also in NCFP because ξ ◦ (Q ◦ AdU ) = (ξ ◦ Q) ◦ AdU = ω ◦ AdU .

Although the composite of two morphisms in standard form is not necessarily
in standard form, a permutation can always be applied to obtain one. Further-
more, a pair of composable morphisms in NCFS can also be simultaneously
rectified. This is the content of the following lemmas.

Lemma 2. Given a composable pair (C, ζ)
(G,R)−−� (B, ξ)

(F,Q)−−� (A, ω) in NCFS,
there exist unitaries U ∈ A and V ∈ B such that

(C, ζ)
(Ad

V † ◦G,R◦AdV )−−−−−−−−−−−� (B, ξ ◦ AdV )
(Ad

U† ◦F◦AdV ,Ad
V † ◦Q◦AdU )−−−−−−−−−−−−−−−−−−−� (A, ω ◦ AdU )

is a pair of composable morphisms in NCFS that are both in standard form.
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Proof. By Lemma 1, there exists a unitary V ∈ B such that

(C, ζ)
(Ad

V † ◦G,R◦AdV )−−−−−−−−−−−� (B, ξ ◦ AdV )
(F◦AdV ,Ad

V † ◦Q)−−−−−−−−−−−� (A, ω)

is a composable pair of morphisms in NCFS with the left morphism in standard
form. The right morphism is indeed in NCFS because

ω ◦ (F ◦ AdV ) = (ω ◦ F ) ◦ AdV = ξ ◦ AdV and

(AdV † ◦ Q) ◦ (F ◦ AdV ) = AdV † ◦ (Q ◦ F ) ◦ AdV = AdV † ◦ AdV = idB.

Then, applying Lemma 1 again, but to the new morphism on the right, gives a
unitary U satisfying the conditions claimed.

Lemma 3. Given a composable pair (C, ζ)
(G,R)−−� (B, ξ)

(F,Q)−−� (A, ω) in NCFS,
each in standard form, there exist permutation matrices Px ∈ Mmx

such that

(C, ζ)
(Ad

P†◦F◦G,R◦Q◦AdP )−−−−−−−−−−−−−−−� (A, ω ◦ AdP )

is also in standard form, where P :=
⊕

x∈X Px and the multiplicities cG◦F
zx of

AdP † ◦ G ◦ F are given by cG◦F
zx =

∑
y∈Y cGzyc

F
yx.

Proof. The composite F ◦ G is given by

F
(
G(C)

)
= F

(
⊕

y∈Y
�
z∈Z

(
1cGyz

⊗ Cz

)

︸ ︷︷ ︸
By

)
=

⊕

x∈X
�
y∈Y

(
1cFyx

⊗�
z∈Z

(
1cGyz

⊗ Cz

)
)

︸ ︷︷ ︸
Ax

.

The matrix Ax takes the more explicit form (with zeros in unfilled entries)

Ax = diag

⎛

⎝1cF1x
⊗

⎡

⎣
1
cG11

⊗C1

. . .
1
cGu1

⊗Cu

⎤

⎦ , . . . ,1cFtx
⊗

⎡

⎣
1
cG11

⊗C1

. . .
1
cGu1

⊗Cu

⎤

⎦

⎞

⎠ .

From this, one sees that the number of times Cz appears on the diagonal is∑
y∈Y cGzyc

F
yx. However, the positions of Cz are not all next to each other. Hence,

a permutation matrix Px is needed to put them into standard form.

Notation 2. Given a composable pair (C, ζ)
(G,R)−−−� (B, ξ)

(F,Q)−−−� (A, ω) in stan-
dard form as in Lemma 3, the states ζ ◦ R and ξ ◦ Q will be decomposed as

ζ ◦ R =
∑

y∈Y

qRy tr
(
σR
y · )

and ξ ◦ Q =
∑

x∈X

pQx tr
(
ρQx · )

.

Lemma 4. Given a morphism (F,Q) in standard form as in Notation 2 such
that all states are faithful, there exist strictly positive matrices αyx ∈ McFyx

for
all x ∈ X and y ∈ Y such that

tr

(
∑

x∈X

αyx

)
= 1 ∀ y ∈ Y, pQx ρQx = �

y∈Y

(αyx ⊗ qyσy) ∀ x ∈ X, and
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Qyx(Ax) = trMcFyx

(
(αyx ⊗ 1ny

)Ax;yy

) ∀ y ∈ Y, Ax ∈ Mmx
, x ∈ X.

Proof. Because Q and R are disintegrations of (F, ξ ◦ Q, ξ) and (G, ζ ◦ R, ζ),
respectively, the claim follows from the non-commutative disintegration theo-
rem [9, Theorem 5.67] and the fact that F is an injective ∗-homomorphism. The
αyx matrices are strictly positive by the faithful assumption.

If (C, ζ)
(G,R)−−−� (B, ξ)

(F,Q)−−−� (A, ω) is a composable pair, a consequence of
Lemma 4 is

ζ ◦ R ◦ Q =
∑

x∈X

tr

((

�
y∈Y

αyx ⊗ qRy σR
y

)
·

)
. (2.2)

3 The Relative Entropy as a Functor

Definition 3. Set RE : NCFS → B(−∞,∞] to be the assignment that sends

a morphism (B, ξ)
(F,Q)−−−� (A, ω) to S(ω ‖ ξ ◦ Q) (the assignment is trivial on

objects). Here, BM is the one object category associated to any monoid2 M ,
S(· ‖ ·) is the relative entropy of two states on the same C∗-algebra, which is
defined on an ordered pair of states (ω, ω′), with ω � ω′ (meaning ω′(a∗a) = 0
implies ω(a∗a) = 0), on A =

⊕
x∈X Mmx

by

S(ω ‖ ω′) := tr

(
⊕

x∈X

pxρx

(
log(pxρx) − log(p′

xρ′
x)

))
,

where 0 log 0 := 0 by convention. If ω � ω′, then S(ω ‖ ω′) := ∞.

Lemma 5. Using the notation from Definition 3, the following facts hold.
(a) RE factors through B[0,∞].
(b) RE vanishes on the subcategory NCFP.
(c) RE is invariant with respect to changing a morphism to standard form, i.e.

in terms of the notation introduced in Lemma 1,

RE
(

(B, ξ)
(F,Q)−−−� (A, ω)

)
= RE

(
(B, ξ)

(Ad
U† ◦F,Q◦AdU )−−−−−−−−−−−� (A, ω ◦ AdU )

)
.

Proof. Left as an exercise.

Proposition 1. For a composable pair (C, ζ)
(G,R)−−−� (B, ξ)

(F,Q)−−−� (A, ω) in
NCFS (with all states and CPU maps faithful),3 S(ω ‖ ζ ◦ R ◦ Q) = S(ξ ‖ ζ ◦
R) + S(ω ‖ ξ ◦ Q), i.e. RE

(
(F ◦ G,R ◦ Q)

)
= RE

(
(G,R)

)
+ RE

(
(F,Q)

)
.

2 The morphisms of BM from that single object to itself equals the set M and the com-
position is the monoid multiplication. Here, the monoid is (−∞, ∞] under addition,
with the convention that a + ∞ = ∞ for all a ∈ (−∞, ∞].

3 Faithfulness guarantees the finiteness of all expressions. More generally, our proof
works if the appropriate absolute continuity conditions hold. Also, note that the
“conditional expectation property” in [11] is a special case of functoriality applied

to a composable pair of morphisms of the form (C, idC)
(!B,R)−−−−� (B, ξ)

(F,Q)−−−� (A, ω),
where !B : C → B is the unique unital linear map. Indeed, Petz’ A, B, E, ω|A, ϕ|A,
and ϕ, are our B, A, Q, ξ, R, and R ◦ Q, respectively (ω is the same).
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Proof. By Lemma 5, it suffices to assume (F,Q) and (G,R) are in standard
form. To prove the claim, we expand each term. First,4

S(ω ‖ ξ ◦ Q) Lem 4==== −S(ω) −
∑

x∈X

tr

(
pxρx log

(

�
y∈Y

αyx ⊗ qyσy

))

= −S(ω) −
∑

x∈X

∑

y∈Y

tr
(
pxρx;yy

(
log(αyx) ⊗ 1ny

))

−
∑

x∈X

∑

y∈Y

tr
(
pxtrMcFyx

(ρx;yy) log(qyσy)
)
.

(3.1)

The last equality follows from the properties of the trace, partial trace, and
logarithms of tensor products. By similar arguments,

S(ξ ‖ ζ ◦ R)
(2.1)
===

∑

x∈X

∑

y∈Y

tr
(
pxtrMcFyx

(ρx;yy) log(qyσy)
)

−
∑

x∈X

∑

y∈Y

tr
(
pxtrMcFyx

(ρx;yy) log(qRy σR
y )

) (3.2)

and

S(ω ‖ ζ ◦ R ◦ Q)
(2.2)
=== −S(ω) −

∑

x∈X

∑

y∈Y

tr
(
pxρx;yy

(
log(αyx) ⊗ 1ny

))

−
∑

x∈X

∑

y∈Y

tr
(
pxtrMcFyx

(ρx;yy) log(qRy σR
y )

)
.

(3.3)

Hence, (3.1) + (3.2) = (3.3), which proves the claim.

Example 1. The usual chain rule for the quantum conditional entropy is a special
case of Proposition 1. To see this, set A := MdA

,B := MdB
, C := MdC

with
dA, dB , dC ∈ N. Given a density matrix ρABC on A ⊗ B ⊗ C, we implement
subscripts to denote the associated density matrix after tracing out a subsystem.
The chain rule for the conditional entropy states

H(AB|C) = H(A|BC) + H(B|C), (3.4)

where (for example)

H(B|C) := tr(ρBC log ρBC) − tr(ρC log ρC)

is the quantum conditional entropy of ρBC given ρC . One can show that

RE
(
(F ◦ G,R ◦ Q)

)
= H(AB|C) + log(dA) + log(dB),

RE
(
(G,R)

)
= H(B|C) + log(dB), and RE

(
(F,Q)

)
= H(A|BC) + log(dA)

4 Equation (3.1) is a generalization of Equation (3.2) in [1], which plays a crucial role
in proving many claims. We will also use it to prove affinity of RE.
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by applying Proposition 1 to the composable pair

(
C, tr(ρC · )

)
(G,R)−−−�

(
B ⊗ C, tr(ρBC · )

)
(F,Q)−−−�

(
A ⊗ B ⊗ C, tr(ρABC · )

)
,

where G and F are the standard inclusions, υB := 1
dB

1dB
, υA := 1

dA
1dA

,
and R and Q are the CPU maps given by R := trB (υB ⊗ 1C · ), and Q :=
trA (υA ⊗ 1B ⊗ 1C · ). This reproduces (3.4).

Proposition 1 does not fully prove functoriality of RE. One still needs to check
functoriality in case one of the terms is infinite (e.g. if S(ω ‖ ζ ◦ R ◦ Q) = ∞,
then at least one of S(ξ ‖ ζ ◦R) or S(ω ‖ ξ ◦Q) must be infinite, and conversely).
This will be addressed in future work. In the remainder, we prove affinity of RE.

Definition 4. Given λ ∈ [0, 1], set λ := 1 − λ. The λ-weighted convex sum
λ(A, ω) ⊕ λ(A, ω) of objects (A, ω) and (A, ω) in NCFS is given by the pair
(A ⊕ A, λω ⊕ λω), where

(
λω ⊕ λω

)
(A ⊕ A) := λω(A) + λω(A) whenever A ∈

A, A ∈ A. The convex sum λ(F,Q) ⊕ λ(F ,Q) of (B, ξ)
(F,Q)−−−� (A, ω) and

(B, ξ)
(F,Q)−−−� (A, ω) is the morphism (F ⊕ F ,Q ⊕ Q). A functor NCFS L−→

B[0,∞] is affine iff L
(
λ(F,Q) ⊕ λ(F ,Q)

)
= λL(F,Q) + λL(F ,Q) for all pairs

of morphisms in NCFS and λ ∈ [0, 1].

Proposition 2. Let (B, ξ)
(F,Q)−−−� (A, ω) and (B, ξ)

(F,Q)−−−� (A, ω) be two mor-
phisms for which RE(F,Q) and RE(F ,Q) are finite. Then RE

(
λ(F,Q) ⊕

λ(F ,Q)
)

= λRE(F,Q) + λRE(F ,Q).

Proof. When λ ∈ {0, 1}, the claim follows from the convention 0 log 0 = 0. For
λ ∈ (0, 1), temporarily set μ := RE

(
λ(F,Q) ⊕ λ(F ,Q)

)
. Then

μ
(3.1)
===

∑

x∈X

tr
(
λpxρx log(λpxρx)

)
+

∑

x∈X

tr
(
λpxρx log

(
λpxρx

))

−
∑

x,y

[
tr

(
λpxρx;yy

(
log(αyx) ⊗ 1ny

))
+ tr

(
λpxtrMcFyx

(ρx;yy) log(λqyσy)
)]

−
∑

x,y

[
tr

(
λpxρx;yy

(
log(αyx) ⊗ 1ny

))
+ tr

(
λpxtrM

cF
yx

(ρx;yy) log
(
λqyσy

))]
,

where we have used bars to denote analogous expressions for the algebras, mor-
phisms, and states with bars over them. From this, the property log(ab) =
log(a) + log(b) of logarithms is used to complete the proof.

In summary, we have taken the first steps towards illustrating that the quan-
tum relative entropy may have a functorial description along similar lines to
those of the classical one in [1]. Using the recent non-commutative disintegra-
tion theorem [9], we have proved parts of affinity and functoriality of the relative
entropy. The importance of functoriality comes from the connection between the
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quantum relative entropy and the reversibility of morphisms [10, Theorem 4].
For example, optimal hypotheses are Bayesian inverses [8, Theorem 8.3], which
admit stronger compositional properties [8, Propositions 7.18 and 7.21] than
alternative recovery maps in quantum information theory [13, Section 4].5 In
future work, we hope to prove functoriality (without any faithfulness assump-
tions), continuity, and a complete characterization.

Acknowledgements. The author thanks the reviewers of GSI’21 for their numer-
ous helpful suggestions. This research has also received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research and inno-
vation program (QUASIFT grant agreement 677368).
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Abstract. Using an algebraic approach, we prove that statistical man-
ifolds, related to exponential families and with flat structure connection
have a Frobenius manifold structure. This latter object, at the interplay
of beautiful interactions between topology and quantum field theory,
raises natural questions, concerning the existence of Gromov–Witten
invariants for those statistical manifolds. We prove that an analog of
Gromov–Witten invariants for those statistical manifolds (GWS) exists.
Similarly to its original version, these new invariants have a geometric
interpretation concerning intersection points of para-holomorphic curves.
It also plays an important role in the learning process, since it determines
whether a system has succeeded in learning or failed.
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1 Introduction

For more than 60 years statistical manifolds have been a domain of great interest
in information theory [4], machine learning [2,3,5,6] and in decision theory [6].

Statistical manifolds (related to exponential families) have an F -manifold
structure, as was proved in [7]. The notion of F -manifolds, developed in [10],
arose in the context of mirror symmetry. It is a version of classical Frobenius
manifolds, requiring less axioms.

In this paper, we restrict our attention to statistical manifolds related to
exponential families (see [6] p. 265 for a definition), which have Markov invari-
ant metrics and being totally geodesic maximal submanifolds (see [6] p.
182 and [11] p. 180 for foundations of differential geometry). The latter con-
dition implies the existence of affine flat structures. Using a purely algebraic
framework, we determine the necessary condition to have a Frobenius manifold
structure. It is possible to encapsulate a necessary (and important) property of
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Frobenius’ structure within the Witten–Dijkgraaf–Verlinde–Verlinde (WDVV)
highly non-linear PDE system:

∀a, b, c, d :
∑

ef

Φabeg
efΦfcd = (−1)a(b+c)

∑

ef

Φbceg
efΦfad. (1)

Notice that the (WDVV) system expresses a flatness condition of the manifold
(i.e. vanishing of the curvature), see [3,12,16].

However, we investigate the (WDVV) condition from a purely algebraic
framework, giving a totally different insight on this problem, and thus avoid-
ing tedious computations of differential equations. Algebraically the (WDVV)
condition is expressed by the associativity and potentiality conditions below
(see [12], pp. 19–20 for a detailed exposition):

∗ Associativity: For any (flat) local tangent fields u, v, w, we have:

t(u, v, w) = g(u ◦ v, w) = g(u, v ◦ w), (2)

where t is a rank 3 tensor, g is a metric and ◦ is a multiplication on the
tangent sheaf.

∗ Potentiality: t admits locally everywhere locally a potential function Φ such
that, for any local tangent fields ∂i we have

t(∂a, ∂b, ∂c) = ∂a∂b∂cΦ. (3)

We prove explicitly that statistical manifolds related to exponential families
with a flat structure connection (i.e. α = ±1, in the notation of Amari, indexing

the connection
α

∇, see [2]) strictly obey to the axioms of a Frobenius manifold.
This algebraic approach to statistical Frobenius manifolds allows us to define
an analog of Gromov–Witten invariants: the statistical Gromov–Witten invari-
ants (GWS). This plays an important role in the learning process, since it
determines whether a system has succeeded in learning or failed. Also, it has
a geometric interpretation (as its original version) concerning the intersection of
(para-)holomorphic curves.

In this short note, we do not discuss the Cartan–Koszul bundle approach
of the affine and projective connection [4] and which is related to the modern
algebraic approach of the Kazan–Moscow school [13,15,17].

2 Statistical Manifolds and Frobenius Manifolds

We rapidly recall material from the previous part [8]. Let (Ω,F , λ) be a measure
space, where F denotes the σ-algebra of elements of Ω, and λ is a σ-finite
measure. We consider the family of parametric probabilities S on the measure
space (Ω,F), absolutely continuous wrt λ. We denote by ρθ = dPθ

dλ , the Radon–
Nikodym derivative of Pθ ∈ S, wrt to λ and denote by S the associated family
of probability densities of the parametric probabilities. We limit ourselves to the
case where S is a smooth topological manifold.
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S =
{

ρθ ∈ L1(Ω,λ), θ = {θ1, . . . θn}; ρθ > 0 λ − a.e.,

∫

Ω

ρθdλ = 1
}

.

This generates the space of probability measures absolutely continuous with
respect to the measure λ, i.e. Pθ(A) =

∫
A

ρθdλ where A ⊂ F .
We construct its tangent space as follows. Let u ∈ L2(Ω,Pθ) be a tangent

vector to S at the point ρθ.

Tθ =

{
u ∈ L2(Ω,Pθ);EPθ

[u] = 0, u =
d∑

i=1

ui∂i
θ

}
,

where EPθ
[u] is the expectation value, w.r. to the probability Pθ.

The tangent space of S is isomorphic to the n-dimensional linear space gen-
erated by the centred random variables (also known as score vector) {∂i
θ}n

i=1,
where 
θ = ln ρθ.

In 1945, Rao [14] introduced the Riemannian metric on a statistical manifold,
using the Fischer information matrix. The statistical manifold forms a (pseudo)-
Riemannian manifold.

In the basis, where {∂i
θ}, {i = 1, . . . , n} where 
θ = ln ρθ, the Fisher metric
are just the covariance matrix of the score vector. Citing results of [5] (p. 89) we
can in particular state that:

gi,j(θ) = EPθ
[∂i
θ∂j
θ]

gi,j(θ) = EPθ
[ai

θa
j
θ],

where {ai} form a dual basis to {∂j
θ}:

ai
θ(∂j
θ) = EPθ

[ai
θ∂j
θ] = δi

j

with
EPθ

[ai
θ] = 0.

Definition 1. A Frobenius manifold is a manifold M endowed with an affine
flat structure1, a compatible metric g, and an even symmetric rank 3 tensor t.
Define a symmetric bilinear multiplication on the tangent bundle:

◦ : TM ⊗ TM → TM.

M endowed with these structures is called pre-Frobenius.

Definition 2. A pre-Frobenius manifold is Frobenius if it verifies the associa-
tivity and potentiality properties defined in the introduction as Eqs. (2) and (3).

1 Here the affine flat structure is equivalently described as complete atlas whose
transition functions are affine linear. Since the statistical manifolds are (pseudo)-
Riemannian manifolds this condition is fulfilled.
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Example 1. Take the particular case of (M, g, t), where t = ∇ − ∇∗ = 0 and
∇ 
= 0. So, ∇ = ∇∗. In this case, the WDVV condition is not satisfied, and
therefore the Frobenius manifold axioms are not fulfilled. Indeed, as stated in [3]
p. 199, the (WDVV) equations holds only if the curvature vanishes. Therefore, if
t = 0 and if the manifold has a non flat curvature i.e. ∇ 
= 0 then this manifold
is not a Frobenius one.

We now discuss the necessary conditions to have a statistical Frobenius
manifold. As was stated above, our attention throughout this paper
is restricted only to exponential families, having Markov invariant
metrics.

Let (S, g, t) be a statistical manifold equipped with the (Fischer–Rao) Rie-
mannian metric g and a 3-covariant tensor field t called the skewness tensor. It
is a covariant tensor of rank 3 which is fully symmetric:

t : TS × TS × TS → R,

given by
t|ρθ

(u, v, w) = EPθ
[uθvθwθ].

In other words, in the score coordinates, we have:

tijk(θ) = EPθ
[∂i
θ∂j
θ∂k
θ].

Denote the mixed tensor by t = t.g−1. It is bilinear map t : TS × TS → TS,
given componentwise by:

t
k
ij = gkmtijm, (4)

where gkm = EPθ
[ak

θam
θ ]. NB: This is written using Einstein’s convention.

Remark 1. The Einstein convention will be used throughout this paper, when-
ever needed.

We have:
t
k
ij = t|ρθ

(∂i
θ, ∂j
θ, a
k) = EPθ

[∂i
θ∂j
θa
k
θ ].

As for the connection, it is given by:

α

∇XY =
0

∇XY +
α

2
t(X,Y ), α ∈ R,X, Y ∈ TρS

where
α

∇XY denotes the α-covariant derivative.

Remark 2. Whenever we have a pre-Frobenius manifold (S, g, t) we call the con-

nection
α

∇ the structure connection.

In fact
α

∇ is the unique torsion free connection satisfying:

α

∇g = αt,
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i.e.

α

∇Xg(Y,Z) = αt(X,Y,Z).

Proposition 1. The tensor t : TS ×TS → TS allows to define a multiplication
◦ on TS, such that for all u, v,∈ Tρθ

S, we have:

u ◦ v = t(u, v).

Proof. By construction, in local coordinates, for any u, v,∈ Tρθ
S, we have u =

∂i
θ and v = ∂j
θ. In particular, ∂i
θ ⊗ ∂j
θ = t
k
ij∂k
θ, which by calculation

turns to be EPθ
[∂i
θ∂j
θa

k
θ ].

Lemma 1. For any local tangent fields u, v, w ∈ Tρθ
S the associativity property

holds:
g(u ◦ v, w) = g(u, v ◦ w).

Proof. Let us start with the left hand side of the equation. Suppose that u = ∂i
θ,
v = ∂j
θ, w = ∂l
θ. By previous calculations: ∂i
θ ◦ ∂j
θ = t

k
ij∂k
θ. Insert

this result into g(u ◦ v, w), which gives us g(∂i
θ ◦ ∂j
θ, ∂l
θ), and leads to
g(tkij∂k
θ, ∂l
θ). By some calculations and formula (4) it turns out to be equal
to t(u, v, w).

Consider the right hand side. Let g(u, v ◦w) = g(∂i
θ, ∂j
θ ◦∂l
θ). Mimicking
the previous approach, we show that this is equivalent to g(∂i
θ, t

k
jl∂l
θ), which

is equal to t(u, v, w).

Theorem 1. The statistical manifold (S, g, t), related to exponential families, is
a Frobenius manifold only for α = ±1.

Proof. The statistical manifold S comes equipped with a Riemannian metric g,
and a skew symmetric tensor t. We have proved that (S, g, t) is an associative
pre-Frobenius manifold (the associativity condition is fulfilled, by Lemma 1). It
remains to show that it is Frobenius. We invoke the theorem 1.5 of [12], p. 20
stating that the triplet (S, g, t) is Frobenius if and only if the structure connection
α

∇ is flat. The pencil of connections depending on a parameter α are defined by:

α

∇XY =
0

∇XY +
α

2
(X ◦ Y ), α ∈ R,X, Y ∈ TρS

where
α

∇XY denotes the α-covariant derivative. By a direct computation, we
show that only for α = ±1, the structure connection is flat. Therefore, the
conclusion is straightforward.

The (WDVV) PDE version expresses geometrically a flatness condition for a
given manifold. We establish the following statement.

Proposition 2. For α = ±1, the (WDVV) PDE system are always (uniquely)
integrable over (S, g, t).
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Proof. The WDVV equations are always integrable if and only if the curvature
is null. In the context of (S, g, t) the curvature tensor of the covariant derivative
is null for α = ±1. Therefore, in this context the WDVV equation is always
integrable (uniquely).

Corollary 1. The Frobenius manifold (S, g, t), related to exponential families,
and indexed by α = ±1 verifies the potentiality condition.2

3 Statistical Gromov–Witten Invariants and Learning

We introduce Gromov–Witten invariants for statistical manifolds, in short
(GWS). Originally, those invariants are rational numbers that count (pseudo)
holomorphic curves under some conditions on a (symplectic) manifold. The
(GWS) encode deep geometric aspects of statistical manifolds, (similarly to its
original version) concerning the intersection of (para-)holomorphic curves. Also,
this plays an important role in the learning process, since it determines whether
a system has succeeded in learning or failed.

Let us consider the (formal) Frobenius manifold (H, g). We denote k a (super)
commutative Q-algebra. Let H be a k-module of finite rank and g : H ⊗ H → k
an even symmetric pairing (which is non degenerate). We denote H∗ the dual
to H. The structure of the Formal Frobenius manifold on (H, g) is given by an
even potential Φ ∈ k[[H∗]]:

Φ =
∑

n≥3

1
n!

Yn,

where Yn ∈ (H∗)⊗n can also be considered as an even symmetric map H⊗n → k.
This system of Abstract Correlation Functions in (H, g) is a system of (symmet-
ric, even) polynomials. The Gromov–Witten invariants appear in these multi-
linear maps.

We go back to statistical manifolds. Let us consider the discrete case of the
exponential family formula:

∑

ω∈Ω

exp{−
∑

βjXj(ω)} =
∑

ω∈Ω

∑

m≥1

1
m!

⎧
⎨

⎩−
∑

j

βjXj(ω)

⎫
⎬

⎭

⊗m

, (5)

where β = (β0, ...., βn) ∈ R
n+1 is a canonical affine parametrisation, Xj(ω) are

directional co-vectors, belonging to a finite cardinality n + 1 list Xn of ran-
dom variables. These co-vectors represent necessary and sufficient statistics of
2 Another interpretation goes as follows. Since for α = ±1, (S, g, t) is a Frobenius

manifold (i.e. a flat manifold), it satisfies the condition to apply theorem 4.4 in [3].
There exist potential functions (which are convex functions) Ψ(θ) and Φ(η) such

that the metric tensor is given by: gij = ∂2

∂θi∂θj Φ and gij = ∂2

∂ηi∂ηj Ψ , where there

exists a pair of dual coordinate systems (θ, η) such that θ = {θ1, . . . , θn} is α-affine
and η = {η1, ..., ηn} is a −α-affine coordinate system. Convexity refers to local
coordinates and not to any metric.
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the exponential family. We have X0(ω) ≡ 1, and X1(ω), . . . , Xn(ω) are linearly
independent co-vectors. The family in (5) describes an analytical n-dimensional
hypersurface in the statistical manifold. It can be uniquely determined by n + 1
points in general position.

Definition 3. Let k be the field of real numbers. Let S be the statistical manifold.
The Gromov–Witten invariants for statistical manifolds (GWS) are given by the
multi-linear maps:

Ỹn : S⊗n → k.

One can also write them as follows:

Ỹn ∈
⎛

⎝−
∑

j

βjXj(ω)

⎞

⎠
⊗n

.

These invariants appear as part of the potential function Φ̃ which is a
Kullback–Liebler entropy function.

One can write the relative entropy function:

Φ̃ = ln
∑

ω∈Ω

exp (−
∑

j

βjXj(ω)). (6)

Therefore, we state the following:

Proposition 3. The entropy function Φ̃ of the statistical manifold relies on the
(GWS).

Proof. Indeed, since Φ̃, in formula (6) relies on the polylinear maps Ỹn ∈(
−∑

j βjXj(ω)
)⊗n

, defining the (GWS), the statement follows.

Consider the tangent fiber bundle over S, the space of probability distribu-
tions, with Lie group G. We denote it by (TS, S, π,G, F ), where TS is the total
space of the bundle π : TS → S is a continuous surjective map and F the fiber.
Recall that for any point ρ on S, the tangent space at ρ is isomorphic to the
space of bounded, signed measures vanishing on an ideal I of the σ−algebra.
The Lie group G acts (freely and transitively) on the fibers by f

h�→ f +h, where
h is a parallel transport, and f an element of the total space (see [7] for details).

Remark 3. Consider the (local) fibre bundle π−1(ρ) ∼= {ρ} × F . Then F can be
identified to a module over the algebra of paracomplex numbers C (see [7,8] for
details). By a certain change of basis, this rank 2 algebra generated by {e1, e2},
can always be written as 〈1, ε| ε2 = 1〉.
We call a canonical basis for this paracomplex algebra, the one given by: {e+, e−},
where e± = 1

2 (1 ± ε). Moreover, any vector X = {xi} in the module over the
algebra is written as {xiaea}, where a ∈ {1, 2}.
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Lemma 2. Consider the fiber bundle (TS, S, π,G, F ). Consider a path γ being
a geodesic in S. Consider its fiber Fγ . Then, the fiber contains two connected
compontents: (γ+, γ−), lying respectively in totally geodesic submanifolds E+

and E−.

Proof. Consider the fiber above γ. Since for any point of S, its the tangent space
is identified to module over paracomplex numbers. This space is decomposed into
a pair of subspaces (i.e. eigenspaces with eigenvalues ±ε) (see [8]). The geodesic
curve in S is a path such that γ = (γi(t)) : t ∈ [0, 1] → S. In local coordinates,
the fiber budle is given by {γiaea}, and a ∈ {1, 2}. Therefore, the fiber over γ
has two components (γ+, γ−). Taking the canonical basis for {e1, e2}, implies
that (γ+, γ−) lie respectively in the subspaces E+ and E−. These submanifolds
are totally geodesic in virtue of Lemma 3 in [8].

We define a learning process through the Ackley–Hilton–Sejnowski method [1],
which consists in minimising the Kullback–Leibler divergence. By Propositions 2
and 3 in [9], we can restate it geometrically, as follows:

Proposition 4. The learning process consists in determining if there exist inter-
sections of the paraholomorphic curve γ+ with the orthogonal projection of γ−

in the subspace E+.

In particular, a learning process succeeds whenever the distance between a
geodesic γ+ and the projected one in E+ shrinks to become as small as possible.

More formally, as was depicted in [5] (sec. 3) let us denote by Υ the set of
(centered) random variables over (Ω,F , Pθ) which admit an expansion in terms
of the scores under the following form:

ΥP = {X ∈ R
Ω |X − EP [X] = g−1(EP [Xd
]), d
}.

By direct calculation, one finds that the log-likelihood 
 = lnρ of the usual
(parametric) families of probability distributions belongs to Υp as well as the
difference 
 − 
∗ of log-likelihood of two probabilities of the same family. Being
given a family of probability distributions such that 
 ∈ ΥP for any P , let UP ,
let us denote P ∗ the set such that 
− 
∗ ∈ Υp. Then, for any P ∗ ∈ Up, we define
K(P, P ∗) = EP [
 − 
∗].

Theorem 2. Let (S, g, t) be statistical manifold. Then, the (GWS) determine
the learning process.

Proof. Since K(P, P ∗) = EP [
 − 
∗], this implies that K(P, P ∗) is minimised
whenever there is a successful learning process. The learning process is by defi-
nition given by deformation of a pair of geodesics, defined respectively in the pair
of totally geodesic manifolds E+, E−. Therefore, the (GWS), which arise in the
Ỹn in the potential function Φ̃, which is directly related to the relative entropy
function K(P, P ∗). Therefore, the (GWS) determine the learning process.
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Similarly as in the classical (GW) case, the (GWS) count intersection num-
bers of certain para-holomorphic curves. In fact, we have the following statement:

Corollary 2. Let (TS, S, π,G, F ) be the fiber bundle above. Then, the (GWS)
determine the number of intersection of the projected γ− geodesic onto E+, with
the γ+ ⊂ E+ geodesic.
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3. Ay, N., Jost, J., Vân Lê, H., Schwachhöfer, L.: Information Geometry. A Series of
Modern Surveys in Mathematics, vol. 64. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-56478-4

4. Barbaresco, F.: Jean-Louis Koszul and the elementary structures of information
geometry. In: Nielsen, F. (ed.) Geometric Structures of Information. SCT, pp. 333–
392. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-02520-5 12

5. Burdet, G., Combe, Ph., Nencka, H.: Statistical manifolds, self-parallel curves and
learning processes. Seminar on Stochastic Analysis, Random Fields and Applica-
tions (Ascona 1996), Progr. Probab., vol. 45, pp. 87–99. Birkhäuser, Basel (1999)
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affine space. (Russian) Izv. Vysš. Učebn. Zaved. Matematika 4(5), 172–183 (1958)

14. Rao, C.R.: Information and the accuracy attainable in the estimation of statistical
parameters. C.R. Bull. Calcutta Math. Soc. 37, 81–89 (1945)

15. Rozenfeld, B.: Geometry of Lie Groups. Springer, Dordrecht (1997). https://doi.
org/10.1007/978-0-387-84794-8

16. Sikorski, R.: Differential modules. Colloquium Mathematicum Fasc. 1(24), 45–79
(1971)

17. Shirokov, A.P.: Spaces over algebras and their applications. J. Math. Sci. 108(2),
232–248 (2002)

https://doi.org/10.1007/978-1-4612-5056-2
https://doi.org/10.1007/978-1-4612-5056-2
https://doi.org/10.1007/978-3-319-56478-4
https://doi.org/10.1007/978-3-319-56478-4
https://doi.org/10.1007/978-3-030-02520-5_12
https://doi.org/10.1007/978-0-387-84794-8
https://doi.org/10.1007/978-0-387-84794-8


Geometric Deep Learning



SU(1, 1) Equivariant Neural Networks
and Application to Robust Toeplitz
Hermitian Positive Definite Matrix

Classification

Pierre-Yves Lagrave1(B) , Yann Cabanes2,3 , and Frédéric Barbaresco2

1 Thales Research and Technology, Palaiseau, France
pierre-yves.lagrave@thalesgroup.com

2 Thales Land and Air Systems, Limours, France
frederic.barbaresco@thalesgroup.com
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Abstract. In this paper, we propose a practical approach for building
SU(1, 1) equivariant neural networks to process data with support within
the Poincaré disk D. By leveraging on the transitive action of SU(1, 1)
on D, we define an equivariant convolution operator on D and introduce
a Helgason-Fourier analysis approach for its computation, that we com-
pare with a conditional Monte-Carlo method. Finally, we illustrate the
performance of such neural networks from both accuracy and robustness
standpoints through the example of Toeplitz Hermitian Positive Definite
(THPD) matrix classification in the context of radar clutter identifica-
tion from the corresponding Doppler signals.

Keywords: Equivariant neural networks · Hyperbolic embedding ·
Homogeneous spaces · Burg algorithm · Radar clutter.

1 Introduction

Group-Convolutional Neural Networks (G-CNN) are becoming more and more
popular thanks to their conceptual soundness and to their ability to reach state-
of-the-art accuracies for a wide range of applications [3,9,12]. In this paper, we
propose a scalable approach for building SU(1, 1) equivariant neural networks
and provide numerical results for their application to Toeplitz Hermitian Positive
Definite (THPD) matrix classification.

Dealing with THPD matrices is indeed of particular interest for Doppler sig-
nal processing tasks, as the input data can be represented by auto-correlation
matrices assuming some stationarity assumptions [5], which can themselves be
embedded into a product space of Poincaré disks after proper rescaling [6] by
leveraging on the Trench-Verblunsky theorem. We have instanciated a SU(1, 1)
equivariant neural network in this context and have provided accuracy and
robustness results by using simulated data according to some realistic radar
clutter modeling [6].
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1.1 Related Work and Contribution

G-CNN have initially been introduced in the seminal work [8] as a generalization
of usual CNN [15] by introducing group-based convolution kernels to achieve
equivariance with respect to the action of finite groups and have further been
generalized to more generic actions [9,14]. In particular, [10] proposed a sound
theory for the case of the transitive action of a compact group on its homogeneous
space by leveraging on group representation theory, a topic also covered in [7].

In [2], G-CNN on Lie groups have been introduced for homogeneous spaces by
decomposing the kernel function on a B-splines basis. Anchoring in similar ideas,
[12] introduced a very generic approach providing equivariance to the action of
any Lie group with a surjective exponential map and which is applicable to any
input data representable by a function defined on a smooth manifold and valued
in a vectorial space.

Practical applications of G-CNN mainly relate to groups of transforms in
Euclidean spaces such as SE(2), SO(3), R∗

+, or the semi-product of those with
the translation group. In the present paper, we work with the group of isometric
transforms SU(1, 1) acting on the hyperbolic space represented as the Poincaré
disk D.

Although existing works provide tools for specifying SU(1, 1) based G-CNN
on which we will anchor, working with non-compact groups is quite challenging
from a numerical stanpoint. For instance, the Monte-Carlo approach of [12] faces
scalability issue with the number of layers of the considered network due to
the large sampling requirement for SU(1, 1). As a remediation for our specific
SU(1, 1) instanciation, we propose specifying the convolution operator on the
corresponding homogeneous space D rather than on the group itself in order to
leverage on Helgason-Fourier analysis, following the ideas introduced for compact
group actions in [14] and generalized in [7].

Finally, we have applied our approach to the problem of classifying THPD
matrices arising in the context of Doppler signals processing. We propose here
an alternative approach to [5] by using a SU(1, 1) equivariant neural network
operating on the hyperbolic representation of the THPD matrices manifold.

1.2 Preliminaries

We denote D the Poincaré unit disk D = {z = x + iy ∈ C/ |z| < 1} and by T the
unit circle T = {z = x + iy ∈ C/ |z| = 1}. We further introduce the following Lie
groups:

SU(1, 1) =
{

gα,β =
[

α β
β̄ ᾱ

∣∣∣∣ , |α|2 − |β|2 = 1, α, β ∈ C

}
(1)

U(1) =
{[

α/ |α| 0
0 ᾱ/ |α|

]
, α ∈ C

}
(2)

We can endow D with a transitive action ◦ of SU(1, 1) defined as it follows

∀gα,β ∈ SU(1, 1), ∀z ∈ D, gα,β ◦ z =
αz + β

β̄z + ᾱ
(3)



SU(1, 1) Equivariant Neural Networks 579

The Cartan decomposition associated with SU(1, 1) allows building a diffeomor-
phism between SU(1, 1) (seen as a topological space) and T×D [11]. As T � U(1)
as a group, we have D � SU(1, 1)/U(1) and we can therefore associate z ∈ D

with an element of the quotient space SU(1, 1)/U(1).
We consider in the following a supervised learning set-up in which the input

data space X corresponds to functionals defined on D and valued in a vectorial
space V . Hence, a data point xi ∈ X will be represented by the graph of
a function fxi

: D → V , so that xi = {(z, fxi
(z)) , z ∈ D}. We then extend

the action ◦ of SU(1, 1) on D to the considered input data space by writing,
∀g ∈ SU(1, 1) and ∀x ∈ X , g◦x = {(z, fx (g ◦ z)) , z ∈ D} .

2 Equivariant Convolution Operator

We introduce in this section a convolution operator defined on the Poincaré disk
D and which is equivariant with respect to the action of SU(1, 1). Corresponding
feature maps can then be embedded within usual neural network topologies.
After introducing local convolution kernels, we discuss the numerical aspects
associated with practical computations.

2.1 Convolution on D

Following [13], we will denote by μG the Haar measure of G = SU(1, 1) that
is normalized according to

∫
G

F (g ◦ 0D) dμG (g) =
∫
D

F (z) dm(z) for all F ∈
L1 (D, dm), where L1 (X, dμ) refers to the set of functions from X to C which
are integrable with respect to the measure μ, with 0D the center of D and where
the measure dm is given for z = z1 + iz2 by dm (z) = dz1dz2

(1−|z|2)2
. We can then

build feature maps ψ : D → C by leveraging on the convolution operator on D.
More precisely, for a kernel function kθ : D → C parameterized by θ ∈ R

�,
an input feature map f : D → C and an element z ∈ D, we will consider the
following operator ψθ

ψθ (z) = (kθ �D f) (z) =
∫

G

kθ

(
g−1 ◦ z

)
f (g ◦ 0D) dμG (g) (4)

as long as the right handside integral is well defined. The operator ψθ can actually
be seen as a specific group-convolution operator which is constant over each coset
so that it only requires to be evaluated on D.

Denoting Lg the left shift operator such that ∀z ∈ D, ∀g ∈ G and ∀φ : D → C,
Lgφ(z) = φ

(
g−1 ◦ z

)
, we show that ψθ is equivariant with respect to the action

of G by writing:

Lhψθ (z) =
∫

G

kθ

(
g−1 ◦

(
h−1 ◦ z

))
f (g ◦ 0D) dμG (g)

action=
∫

G

kθ

(
(hg)−1 ◦ z

)
f (g ◦ 0D) dμG (g)

Haar=
∫

G

kθ

(
g−1 ◦ z

)
Lhf (g ◦ 0D) dμG (g) = kθ �D (Lhf)
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2.2 Kernel Modeling and Locality

To accomodate with the Euclidean nature of a wide range of kernel functionals,
we propose projecting the input data to kθ to a vectorial space with the logarithm
map logD from D to its tangent space (T D)0D at its center. Following [12], we
will generically model the kernel functional as a simple neural network. However,
for the sake of computational efficiency, specific parameterizations can also be
envisioned such as the use of a B-splines expansion as in [2], or more generically,
the use of a well suited functional expansion in (T D)0D .

To localize the kernel action, we leverage on the geodesic distance in the
Poincaré disk ρD and we then restrict the integration in the convolution operator
to the points “close” to z according to the metric ρD, leading to

ψθ,M (z) =
∫

ρD(z,g◦0D)≤M

kθ

(
logD

(
g−1 ◦ z

))
f (g ◦ 0D) dμG (g) (5)

where M is a threshold to be considered as a model hyperparameter and which
could be assimilated as the filter bandwidth in standard CNN. It should also be
noted that the localization of the kernel function ensures the definition of the
integral in the right handside of (5).

2.3 Numerical Aspects

In practice, the integral (5) cannot be computed exactly and a numerical scheme
is therefore required for evaluating the convolution maps on a discrete grid of
points in D. In this section, we tackle the scalability challenges associated with
SU(1, 1) equivariant networks operating on the hyperbolic space D.

Monte-Carlo Method. Following [12], a first approach to the estimation of
(5) is to compute, ∀z ∈ D, the following Monte-Carlo estimator,

ψθ,M
N (z) =

1
N

N∑
i=1

kθ

(
logD

(
g−1

i ◦ z
))

f (gi ◦ 0D) (6)

where the gi ∈ SU(1, 1) are drawn according to the conditional Haar measure
μG

∣∣
B(z,M)

, where B (z,M) is the ball centered in z and of radius M measured
according to the metric ρD. To do so efficiently, we first sample elements in
B (0D,M) and then move to B (z,M) through the group action. The obtained
coset elements are then lifted to SU(1, 1) by sampling random elements of U(1).

Although appealing from a an implementation standpoint, this approach is
severely limited by its exponential complexity in the number of layers of the
considered neural network. To illustrate this point, let’s consider a simple archi-
tecture with 	 convolutional layers of one kernel each and let’s assume that we
are targeting an evaluation of the last convolution map of the layer 	 on m points.
By denoting ni the number of evaluation points required for the evaluation of
ψθi

i and by using a simple induction, we show that ni = mN �−i+1, for 1 ≤ i ≤ 	.
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Approaches such as [17], further generalized in [12], have been introduced to
reduce the computational cost by using a clever reordering of the computations.
However, the corresponding complexity remains exponential and therefore pre-
vents from building deep networks with this Monte-Carlo approach, especially
when working with groups such as SU(1, 1) which require significant sampling.

Helgason-Fourier Analysis. The use of Fourier analysis within G-CNN archi-
tectures to evaluate convolution operators defined on Euclidean spaces has been
previously suggested [9,14]. By leveraging on similar ideas, we here propose
an alternative approach to the Monte-Carlo sampling on SU(1, 1) by using
Helgason-Fourier (HF) transforms [13] of functions defined on the hyperbolic
space D.

For points b ∈ ∂D and z ∈ D, we denote 〈z, b〉 the algebraic distance to the
center of the horocyle based at b through z. Let’s then consider f : D → C such
that z → f(z)e(1−iρ)〈z,b〉 ∈ L1 (D, dm), ∀ρ ∈ R. The HF transform of f is then
defined on R × ∂D by

HF (f) (ρ, b) =
∫
D

f (z) e(1−iρ)〈z,b〉dm(z) (7)

[13] gives the formal expression for the horocyclic wave eν〈z,b〉, for ν ∈ C. Assum-
ing corresponding integrability conditions, the HF transform of the convolution
of two functions F1, F2 : D → C is given by

HF (F1 �D F2) (ρ, b) = HF (F1) (ρ, b) HF (F2) (ρ, b) (8)

As for the Euclidean case, an inversion formula also exists and is given by

f (z) =
1
4π

∫
R

∫
∂D

HF (f) (ρ, b) e(1+iρ)〈z,b〉ρ tanh
(πρ

2

)
dρdb (9)

Using HF transforms allows working with independent discretization grids for
the convolution maps computation across the network structure, but the point-
wise evaluation of each map requires the computation of three integrals, instead
of one in the Monte-Carlo approach. Also, the numerical estimation of the inte-
grals (7) and (9) is quite challenging and leads to convergence issues with classical
schemes. We have obtained satisfactory results by using the Quasi-Monte-Carlo
approach [4] and the corresponding GPU-compatible implementation provided
by the authors. A differentiable estimation of HF

(
z → kθi

(z)1ρD(0D,z)≤M

)
can

therefore be obtained efficiently by using a well chosen functional expansion of
the kernel (e.g., basis of the Fock-Bargmann Hilbert space [11], B-splines [3],
eigenfunctions of the Laplacian on D [13]) and by pre-computing the HF trans-
forms of the corresponding basis elements.

3 Application to THPD Matrix Classification

Let’s denote by T +
n the set of Toeplitz Hermitian Positive Definite (THPD)

matrices of size n. As described in [6], the regularized Burg algorithm allows
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transforming a given matrix Γ ∈ T +
n into a power factor in R

∗
+ and reflection

coefficients μi in a (n − 1) dimensional product of Poincaré spaces D
n−1 =

D × ... × D. Combining this with the formalism introduced in Sect. 1.2, we can
therefore see an element Γ ∈ T +

n as a power factor in R
∗
+ and n−1 coset elements

in SU(1, 1)/U(1).
In the following, we will focus on radar clutter classification and consider in

this context rescaled THPD matrices which can be represented by the reflection
coefficients only. We further assume that the ordering of these coefficients is
not material for our considered classification task, so that we will represent
a given element Γ ∈ T +

n by folding into D with the function fΓ : D → C,
with fΓ (μ) =

∑n−1
i=1 μC1{μ=μi} for μ ∈ D and where μ → μC is the canonical

embedding from D to C.

3.1 Classification Problem

We have considered the problem of pathological radar clutter classification as
formulated in [6]. More precisely, we represent each cell by its THPD auto-
correlation matrix Γ , our goal being to predict the corresponding clutter c ∈
{1, ..., nc} from the observation of Γ . Within our formalism, the training samples
are of the form (fΓi

, ci) and the input data have been obtained by simulating
the auto-correlation matrix of a given cell according to

Z =
√

τR1/2x + bradar (10)

where τ is a positive random variable corresponding to the clutter texture, R
a THPD matrix associated with a given clutter, x ∼ NC (0, σx) and bradar ∼
NC (0, σ), with NC (0, t) referring to the complex gaussian distribution with mean
0 and standard deviation t. In the following, bradar will be considered as a source
of thermal noise inherent to the sensor.

3.2 Numerical Results

We have instanciated a simple neural network constituted of one SU(1, 1) con-
volutional layer with two filters and ReLu activation functions, followed by one
fully connected layer and one softmax layer operating on the complex numbers
represented as 2-dimensional tensors. The kernel functions are modeled as a neu-
ral networks with one layer of 16 neurons with swish activation functions. The
two convolution maps have been evaluated on the same grid constituted of 100
elements of D sampled according to the corresponding volume measure.

To appreciate the improvement provided by our approach, we will compare
the obtained results with those corresponding to the use of a conventional neural
network with roughly the same numbers of trainable parameters and operating
on the complex reflection coefficients. In the following, we will denote N G

σ (resp.
N FC

σ ) the neural network with SU(1, 1) equivariant convolutional (resp. fully
connected) layers and trained on 400 THPD matrices of dimension 10 corre-
sponding to 4 different classes (100 samples in each class) which have been
simulated according to (10) with a thermal noise standard deviation σ.
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Fig. 1. Left handside: confusion matrix corresponding to the evaluation of NG
1 on the

testing set T1, averaged over 10 realizations. Right handside: average accuracy results
of the algorithms NG

1 , NFC
1 , NG

250 and NFC
250 on the testing sets Tσ shown as a function

of σ, together with the corresponding standard deviation as error bars

In order to evaluate the algorithms N G
σ and N FC

σ , we have considered several
testing sets Tσ consisting in 2000 THPD matrices of dimension 10 (500 samples in
each of the 4 classes) simulated according to (10) with a thermal noise standard
deviation σ. The obtained results are shown on Fig. 1 where it can in particular be
seen that N G

1 reaches similar performances as N G
250 and N FC

250 while significantly
outperforming N FC

1 as σ increases, meaning that our approach allows to achieve
some degree of robustness with respect to the variation of σ through the use of
equivariant layers.

4 Conclusions and Further Work

Following recent work on G-CNN specification, we have introduced an approach
for building SU(1, 1) equivariant neural networks and have discussed how to
deal with corresponding numerical challenges by leveraging on Helgason-Fourier
analysis. We have instanciated the proposed algorithm for the problem of THPD
matrix classification arising in the context of Doppler signals processing and have
obtained satisfactory accuracy and robustness results. Further work will include
studying SU(n, n) equivariant neural networks and their applicability to the
problem of classifying Positive Definite Block-Toeplitz matrices by leveraging
on their embedding into Siegel spaces [1]. We will also investigate the link with
the coadjoint representation theory which may allow generalizing our approach
while transferring convolution computation techniques to coadjoint orbits [16].
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F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems,
vol. 32, pp. 9145–9156. Curran Associates, Inc. (2019)

11. del Olmo, M.A., Gazeau, J.P.: Covariant integral quantization of the unit disk. J.
Math. Phys. 61(2) (2020). https://doi.org/10.1063/1.5128066

12. Finzi, M., Stanton, S., Izmailov, P., Wilson, A.G.: Generalizing convolutional neu-
ral networks for equivariance to lie groups on arbitrary continuous data (2020)

13. Helgason, S.: Groups and geometric analysis (1984)
14. Kondor, R., Trivedi, S.: On the generalization of equivariance and convolution in

neural networks to the action of compact groups. In: Dy, J., Krause, A. (eds.) Pro-
ceedings of the 35th International Conference on Machine Learning. Proceedings
of Machine Learning Research, vol. 80, pp. 2747–2755. PMLR, Stockholmsmässan,
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Abstract. When manipulating three-dimensional data, it is possible to
ensure that rotational and translational symmetries are respected by
applying so-called SE(3)-equivariant models. Protein structure predic-
tion is a prominent example of a task which displays these symme-
tries. Recent work in this area has successfully made use of an SE(3)-
equivariant model, applying an iterative SE(3)-equivariant attention
mechanism. Motivated by this application, we implement an iterative
version of the SE(3)-Transformer, an SE(3)-equivariant attention-based
model for graph data. We address the additional complications which
arise when applying the SE(3)-Transformer in an iterative fashion, com-
pare the iterative and single-pass versions on a toy problem, and con-
sider why an iterative model may be beneficial in some problem settings.
We make the code for our implementation available to the community
(https://github.com/FabianFuchsML/se3-transformer-public).

Keywords: Deep learning · Equivariance · Graphs · Proteins

1 Introduction

Tasks involving manipulation of three-dimensional (3D) data often exhibit rota-
tional and translational symmetry, such that the overall orientation or position
of the data is not relevant to solving the task. One prominent example of such
a task is protein structure refinement [1]. The goal is to improve on the initial
3D structure – the position and orientation of the structure, i.e. the frame of
reference, is not important to the goal. We would like to find a mapping from the
initial structure to the final structure such that if the initial structure is rotated
and translated then the predicted final structure is rotated and translated in the
same way. This symmetry between input and output is known as equivariance.
More specifically, the group of translations and rotations in 3D is called the spe-
cial Euclidean group and is denoted by SE(3). The relevant symmetry is known
as SE(3) equivariance.

In the latest Community-Wide Experiment on the Critical Assessment of
Techniques for Protein Structure Prediction (CASP14) structure-prediction chal-
lenge, DeepMind’s AlphaFold 2 team [2] successfully applied machine learning
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techniques to win the categories “regular targets” and “interdomain prediction”
by a wide margin. This is a important achievement as it opens up new routes
for understanding diseases and drug discovery in cases where protein structures
cannot be experimentally determined [3]. At this time, the full implementation
details of the AlphaFold 2 algorithm are not public. Consequently, there is a lot
of interest in understanding and reimplementing AlphaFold 2 [4–8].

One of the core aspects that enabled AlphaFold 2 to produce very high
quality structures is the end-to-end iterative refinement of protein structures
[2]. Concretely, the inputs for the refinement task are the estimated coordinates
of the protein, and the outputs are updates to these coordinates. This task is
equivariant: when rotating the input, the update vectors are rotated identically.
To leverage this symmetry, AlphaFold 2 uses an SE(3)-equivariant attention
network. The first such SE(3)-equivariant attention network described in the
literature is the SE(3)-Transformer [9]. However, in the original paper, the SE(3)-
Transformer is only described as a single-pass predictor, and its use in an iterative
fashion is not considered.

In this paper, we present an implementation of an iterative version of the
SE(3)-Transformer, with a discussion of the additional complications which arise
in this iterative setting. In particular, the backward pass is altered, as the gra-
dient of the loss with respect to the model parameters could flow through basis
functions. We conduct toy experiments to compare the iterative and single-pass
versions of the architecture, draw conclusions about why this architecture choice
has been made in the context of protein structure prediction, and consider in
which other scenarios it may be a useful choice. The code will be made publicly
available1.

2 Background

In this section we provide a brief overview of SE(3) equivariance, with a descrip-
tion of some prominent SE(3)-equivariant machine learning models. To situate
this discussion in a concrete setting, we take motivation from the task of protein
structure prediction and refinement, which is subject to SE(3) symmetry.

2.1 Protein Structure Prediction and Refinement

In protein structure prediction, we are given a target sequence of amino acids,
and our task is to return 3D coordinates of all the atoms in the encoded pro-
tein. Additional information is often needed to solve this problem – the target
sequence may be used to find similar sequences and related structures in pro-
tein databases first [10,11]. Such coevolutionary data can be used to predict
likely interresidue distances using deep learning – an approach that has been
dominating protein structure prediction in recent years [12–14]. Coevolutionary
information is encoded in a multiple sequence alignment (MSA) [15], which can
be used to learn pairwise features such as residue distances and orientations [14].

1 https://github.com/FabianFuchsML/se3-transformer-public.

https://github.com/FabianFuchsML/se3-transformer-public
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These pairwise features are constraints on the structure of the protein, which
inform the prediction of the output structure. One could start with random 3D
coordinates for the protein chain and use constraints from learnt pairwise fea-
tures to find the best structure according to those constraints. The problem can
then be approached in an iterative way, by feeding the new coordinates back in
as inputs and further improving the structure. This iterative approach can help
to improve predictions [16].

Importantly, MSA and pairwise features do not include a global orientation
of the protein – in other words, they are invariant under rotation of the protein.
This allows for the application of SE(3)-equivariant networks, which respect this
symmetry by design, as done in AlphaFold 2 [2]. The predictions of an SE(3)-
equivariant network, in this case predicted shifts to backbone and side chain
atoms, are always relative to the arbitrary input frame of reference, without the
need for data augmentation. SE(3)-equivariant networks may also be applied
in an iterative fashion, and when doing so it is possible to propagate gradients
through the whole structure prediction pipeline. This full gradient propagation
contrasts with the disconnected structure refinement pipeline of the first version
of AlphaFold [12].

2.2 Equivariance and the SE(3)-Transformer

A function, task, feature2, or neural network is equivariant if transforming the
input results in an equivalent transformation of the output. Using rotations R
as an example, this condition reads:

f(R · �x) = R · f(�x) (1)

In the following, we will focus on 3D rotations only – this group of rotations is
denoted SO(3). Adding translation equivariance, i.e. going from SO(3) to SE(3),
is easily achieved by considering relative positions or by subtracting the center
of mass from all coordinates.

A set of data relating to points in 3D may be represented as a graph. Each
node has spatial coordinates, as well as an associated feature vector which
encodes further relevant data. A node could represent an atom, with a feature
vector describing its momentum. Each edge of the graph also has a feature vector,
which encodes data about interactions between pairs of nodes. In an equivariant
problem, it is crucial that equivariance applies not only to the positions of the
nodes, but also to all feature vectors – for SO(3) equivariance, the feature vectors
must rotate to match any rotation of the input. To distinguish such equivariant
features from ordinary neural network features, we refer to them as filaments.

A filament could, for example, encode momentum and mass as a 4 dimensional
vector, formed by concatenating the two components. A momentum vector would
typically be 3 dimensional (also called type-1 ), and is rotated by a 3 × 3 matrix.
The mass is scalar information (also called type-0 ), and is invariant to rotation.

2 A feature of a neural network is an input or output of any layer of the network.
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The concept of types is used in the representation theory of SO(3), where a type-�
feature is rotated by a (2� + 1) × (2� + 1) Wigner-D matrix.3 Because a filament
is a concatenation of features of different types, the entire filament is rotated by
a block diagonal matrix, where each block is a Wigner-D matrix [17–19].

At the input and output layers, the filament structure is determined by the
task at hand. For the intermediate layers, arbitrary filament structures can be
chosen. In the following, we denote the structure of a filament as a dictionary.
E.g. a filament with 3 scalar values (e.g. RGB colour channels) and one velocity
vector has 3 type-0 and 1 type-1 feature: {0:3, 1:1}. This filament is a feature
vector of length 6.

There is a large and active literature on machine learning methods for graph
data, most importantly graph neural networks [20–24]. The SE(3)-Transformer [9]
in particular is a graph neural network explicitly designed for SE(3)-equivariant
tasks, making use of the filament structure and Wigner-D matrices discussed
above to enforce equivariance of all features at every layer of the network.

Alternative Approaches to Equivariance: The Wigner-D matrix approach4

at the core of the SE(3)-Transformer is based on closely related earlier works
[17–19]. In contrast, Cohen et al. [25] introduced rotation equivariance by stor-
ing copies corresponding to each element of the group in the hidden layers – an
approach called regular representations. This was constrained to 90 degree rota-
tions of images. Recent regular representation approaches [26–28] extend this to
continuous data by sampling the (infinite) group elements and map the group
elements to the corresponding Lie algebra to achieve a smoother representation.

2.3 Equivariant Attention

The second core aspect of an SE(3)-Transformer layer is the self-attention [29]
mechanism. This is widely used in machine learning [21,30–35] and based on
the principle of keys, queries and values – where each is a learned embedding of
the input. The word ‘self’ describes the fact that keys, queries and values are
derived from the same context. In graph neural networks, this mechanism can be
used to have nodes attend to their neighbours [21,29,36–38]. Each node serves
as a focus point and queries information from the surrounding points. That is,
the feature vector fi of node i is transformed via an equivariant mapping into
a query qi. The feature vectors fj of the surrounding points j are mapped to
equivariant keys kij and values vij

5. A scalar product between key and query –
together with a softmax normalisation – gives the attention weight. The scalar
product of two rotation equivariant features of the same type gives an invariant
feature. Multiplying the invariant weights wij with the equivariant values vij
gives an equivariant output.

3 We can think of type-0 features as rotating by the 1 × 1 rotation matrix (1).
4 This approach rests on the theory of irreducible representations [17,18].
5 Note that often, the keys and values do not depend on the query node, i.e. kij = kj .

However, in the SE(3)-Transformer, keys and values depend on the relative position
between query i and neighbour j as well as on the feature vector fj .
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3 Implementation of an Iterative SE(3)-Transformer

Here, we describe the implementation of the iterative SE(3)-Transformer cov-
ering multiple aspects such as gradient flow, equivariance, weight sharing and
avoidance of information bottlenecks.

3.1 Gradient Flow in Single-Pass vs. Iterative SE(3)-Transformers

G0

× × ×
G1

Fig. 1. Gradient flow (orange) in a conventional single-pass SE(3)-Transformer map-
ping from a graph (left) to an updated graph (right). The equivariant basis kernels
(top) need not be differentiated as gradients do not flow through them. (Color figure
online)

At the core of the SE(3)-Transformer are the kernel matrices W(�xj − �xi) which
form the equivariant linear mappings used to obtain keys, queries and values
in the attention mechanism. These matrices are a linear combination of basis
matrices. The weights for this linear combination are computed by trainable
neural networks which take scalar edge features as input. The basis matrices
are not learnable. They are defined by spherical harmonics and Clebsch-Gordan
coefficients, and depend only on the relative positions in the input graph G0 [9].

Typically, equivariant networks have been applied to tasks where 3D coordi-
nates in the input are mapped to an invariant or equivariant output in a single
pass. The relative positions of nodes do not change until the final output, and the
basis matrices therefore remain constant. Gradients do not flow through them,
and the spherical harmonics need not be differentiated, as can be seen in Fig. 1.

When applying an iterative SE(3)-Transformer (Fig. 2), each block i outputs
a graph Gi. This allows for re-evaluating the interactions between pairs of nodes.
The relative positions, and thus the basis matrices, change before the final out-
put, and gradients thus flow through the basis. The spherical harmonics used to
construct the basis are smooth functions, and therefore backpropagating through
them is possible. We provide code implementing this backpropagation.

3.2 Hidden Representations Between Blocks

In the simplest case, each SE(3)-Transformer block outputs a single type-1 fea-
ture per point, which is then used as a relative update to the coordinates before
applying the second block. This, however, introduces a bottleneck in the infor-
mation flow. Instead, we choose to maintain the dimensionality of the hidden
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G0

S1

N1

×
G1

S2

N2

×
G2

Fig. 2. Gradient flow (orange) in an iterative SE(3)-Transformer with multiple position
updates. Now the gradients do flow through the basis construction (S2) meaning this
part has to be differentiated. (Color figure online)

features. A typical choice would be to have the same number of channels (e.g. 4)
for each feature type (e.g., up to type 3). In this case the hidden representation
reads {0:4,1:4,2:4,3:4}. We then choose this same filament structure for the
outputs of each SE(3)-Transformer block (except the last) and the inputs to
the blocks (except the first). This way, the amount of information saved in the
hidden representations is constant throughout the entire network.

3.3 Weight Sharing

If each iteration is expected to solve the same sub-task, weight sharing can make
sense in order to reduce overfitting. The effect on memory consumption and
speed should, however, be negligible during training, as the basis functions still
have to be evaluated and activations have to evaluated and stored separately for
each iteration. In our implementation, we chose not to share weights between
different SE(3)-Transformer blocks. The number of trainable parameters hence
scales linearly with the number of iterations. In theory, this enables the network
to leverage information gained in previous steps for deciding on the next update.
One benefit of this choice is that it facilitates using larger filaments between the
blocks as described in Sect. 3.2 to avoid information bottlenecks. A downside is
that it fixes the number of iterations of the SE(3)-Transformer.

3.4 Gradient Descent

In this paper, we will apply the SE(3)-Transformer to an energy optimisation
problem, loosely inspired by the protein structure prediction problem. For convex
optimsation problems, gradient descent is a simple yet effective algorithm. How-
ever, long amino acid chains with a range of different interactions can be assumed
to create many local minima. Our hypothesis is that the SE(3)-Transformer is
better at escaping the local minimum of the starting configuration and likely to
find a better global minimum. We add an optional post-processing step of gra-
dient descent, which optimises the configuration within the minimum that the
SE(3)-Transformer found. In real-world protein folding, these two steps do not
have to use the same potential. Gradient descent needs a differentiable potential,
whereas the SE(3)-Transformer is not subject to that constraint.



Iterative SE(3)-Transformers 591

4 Experiments
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Fig. 3. The left plot shows a configuration of nodes, with a potential between each pair.
The gradient of each potential is represented by the colour of the edges. Blue edges
indicate repulsion and orange edges indicate attraction. Stronger colour represents
stronger interaction. Our experiment uses ten nodes, but we show only five here for
visual clarity. The right plot shows the double-minimum, pairwise potential p(s), with
parameter a = 0. (Color figure online)

We study a physical toy problem as a proof-of-concept and to get insights into
what type of tasks could benefit from iterative predictions. We consider an energy
minimisation problem with 10 particles, which we will refer to as nodes. Each
pair (ni, nj) of nodes in the graph interacts according to a potential pij(rij),
where rij is the distance between the nodes. The goal is to minimise the total
value of the potential across all pairs of nodes in the graph (Fig. 3).

We choose a pairwise potential with two local minima. This creates a complex
global potential landscape that is not trivially solvable for gradient descent:

sij = rij − aij − 1 (2)

pij(sij) = s4ij − s2ij +
sij
10

+ pmin (3)

Here pmin ≈ 0.32 ensures that pij(sij) attains a minimum value of zero. The
parameter aij = aji is a random number between 0.1 and 1.0 – this stochasticity
is necessary to avoid the existence of a single optimal solution for all examples,
which the network could simply memorise.

We consider three models for solving this problem: (i) the single-pass SE(3)-
Transformer (12 layers); (ii) a three-block iterative SE(3)-Transformer (4 × 3
layers); (iii) gradient descent (GD) on the positions of the nodes. We also
evaluate a combination of first applying an SE(3)-Transformer and then running
GD on the output. We evaluate the iterative SE(3)-Transformer both with and
without propagation of basis function gradients as described in Sect. 3.1 (the
latter case corresponds to removing the gradient flow from the upper half of
Fig. 2). We run GD until the update changes the potential by less than a fixed
tolerance value. We ran each model between 15 and 25 times – the σ values
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in Tables 1 and 2 represent 1-σ confidence intervals (computed using Student’s
t-distribution) for the mean performance achieved by each model. All models
except GD have the same overall number of parameters.

Table 1. Average energy of the system after optimisation (lower is better).

Gradient descent Single-pass No basis gradients Iterative Iterative + GD

Energy 0.0619 0.0942 0.0704 0.0592 0.0410

σ ±0.0001 ±0.0002 ±0.0025 ±0.0011 ±0.0003

The results in Table 1 show that the iterative model performs significantly
better than the single-pass model, approximately matching the performance of
gradient descent. The performance of the iterative model is significantly degraded
if gradients are not propagated through the basis functions. The best performing
method was the SE(3)-Transformer followed by gradient descent. The fact that
the combination of SE(3)-Transformer and gradient descent outperforms pure
gradient descent demonstrates that the SE(3)-Transformer finds a genuinely dif-
ferent solution to the one found by gradient descent, moving the problem into a
better gradient descent basin.

Table 2. Performance comparison of single-pass and iterative SE(3)-Transformers for
different neighbourhood sizes K and a fully connected version (FC).

FC single (K9) FC iterative (K9) K5 single K5 iterative K3 single K3 iterative

Energy 0.0942 0.0592 0.1321 0.0759 0.1527 0.0922

σ ±0.0002 ±0.0011 ±0.0003 ±0.0050 ±0.0001 ±0.0036

So far, every node attended to all N −1 other nodes in each layer, hence cre-
ating a fully connected graph. In Table 2, we analyse how limited neighborhood
sizes [9] affect the performance, where a neighborhood size of K = 5 means that
every node attends to 5 other nodes. This reduces complexity from O(N2) to
O(NK), which is important in many practical applications with large graphs,
such as proteins. We choose the neighbors of each node by selecting the nodes
with which it interacts most strongly. In the iterative SE(3)-Transformer, we
update the neighbourhoods in each step as the interactions change.

Table 2 shows that the iterative version consistently outperforms the single-
pass version across multiple neighborhood sizes, with the absolute difference
being the biggest for the smallest K. In particular, it is worth noting that the
iterative version with K = 3 outperforms the fully connected single-pass net-
work.

In summary, the iterative version consistently outperforms the single-pass
version in finding low energy configurations. We emphasise that this experiment
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is no more than a proof-of-concept. However, we expect that when moving to
larger graphs (e.g. proteins often have more than 103 atoms), being able to
explore different configurations iteratively will only become more important for
building an effective optimiser.

Acknowledgements. We thank Georgy Derevyanko, Oiwi Parker Jones and Rob
Weston for helpful discussions and feedback. This research was funded by the EPSRC
AIMS Centre for Doctoral Training at the University of Oxford and The Open Philan-
thropy Project Improving Protein Design.

A Network Architecture and Training Details

For the single-pass SE(3)-Transformer we use 12 layers. For the iterative version
we use 3 iterations with 4 layers in each iteration. In both cases, for all hidden
layers, we use type-0, type-1, and type-2 representations with 4 channels each.
The attention uses a single head. The model was trained using an Adam opti-
mizer with a cosine annealing learning rate decay starting at 10−3 and ending
at 10−4. Our gradient descent implementation uses a step size of 0.02 and stops
optimizing when the norm of every position update is below 0.001. We train the
SE(3)-Transformers for 100 epochs with 5000 examples per epoch, which takes
about 90 to 120 min on an Nvidia Titan V GPU. We did not measure the runtime
increase of backpropagating through the basis functions in a controlled environ-
ment, but an informal analysis suggested a single digit percentage increase in
wall-clock time.
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Abstract. Hierarchical clustering (HC) is a powerful tool in data anal-
ysis since it allows discovering patterns in the observed data at differ-
ent scales. Similarity-based HC methods take as input a fixed number
of points and the matrix of pairwise similarities and output the den-
drogram representing the nested partition. However, in some cases, the
entire dataset cannot be known in advance and thus neither the rela-
tions between the points. In this paper, we consider the case in which
we have a collection of realizations of a random distribution, and we
want to extract a hierarchical clustering for each sample. The number
of elements varies at each draw. Based on a continuous relaxation of
Dasgupta’s cost function, we propose to integrate a triplet loss function
to Chami’s formulation in order to learn an optimal similarity function
between the points to use to compute the optimal hierarchy. Two archi-
tectures are tested on four datasets as approximators of the similarity
function. The results obtained are promising and the proposed method
showed in many cases good robustness to noise and higher adaptability
to different datasets compared with the classical approaches.

1 Introduction

Similarity-based HC is a classical unsupervised learning problem and different
solutions have been proposed during the years. Classical HC methods such as
Single Linkage, Complete Linkage, Ward’s Method are conceivable solutions to
the problem. Dasgupta [1] firstly formulated this problem as a discrete optimiza-
tion problem. Successively, several continuous approximations of the Dasgupta’s
cost function have been proposed in recent years. However, in the formulation of
the problem, the input set and the similarities between points are fixed elements,
i.e., the number of samples to compute similarities is fixed. Thus, any change in
the input set entails a reinitialization of the problem and a new solution must
be found. In addition to this, we underline that the similarity function employed
is a key component for the quality of the solution. For these reasons, we are
interested in an extended formulation of the problem in which we assume as
input a family of point sets, all sampled from a fixed distribution. Our goal is
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to find at the same time a “good” similarity function on the input space and
optimal hierarchical clustering for the point sets. The rest of this paper is orga-
nized as follows. In Sect. 2, we review related works on hierarchical clustering,
especially the hyperbolic hierarchical clustering. In Sect. 3, the proposed method
is described. In Sect. 4, the experimental design is described. And finally, Sect. 5
concludes this paper.

2 Related Works

Our work is inspired by [2] and [3] where for the first time continuous frame-
works for hierarchical clustering have been proposed. Both papers assume that
a given weighted-graph G = (V,E,W ) is given as input. [2] aims to find the
best ultrametric that optimizes a given cost function. Basically, they exploit
the fact that the set W = {w : E → R+} of all possible functions over
the edges of G is isomorphic to the Euclidean subset R

|E|
+ and thus it makes

sense to “take a derivative according to a given weight function”. Along with
this they show that the min-max operator function ΦG : W → W, defined as
(∀w̃ ∈ W,∀exy ∈ E) ΦG(w̃)(exy) = minπ∈Πxy maxe′∈π w̃(e′), where Πxy is
the set of all paths from vertex x to vertex y, is sub-differentiable. As insight,
the min-max operator maps any function w ∈ W to its associated subdominant
ultrametric on G. These two key elements are combined to define the following
minimization problem over W, w∗ = arg minw̃∈W J(ΦG(w̃), w), where the func-
tion J is a differentiable loss function to optimize. In particular, since the metrics
w̃ are indeed vectors of R|E|, the authors propose to use the L2 distance as a
natural loss function. Furthermore, they come up with other regularization func-
tions, such as a cluster-size regularization, a triplet loss, or a new differentiable
relaxation of the famous Dasgupta’s cost function [1]. The contribution of [3] is
twofold. On the one hand, inspired by the work of [4], they propose to find an
optimal embedding of the graph nodes into the Poincaré Disk, observing that the
internal structure of the hierarchical tree can be inferred from leaves’ hyperbolic
embeddings. On the other hand, they propose a direct differentiable relaxation
of the Dasgupta’s cost and prove theoretical guarantees in terms of clustering
quality of the optimal solution for their proposed function compared with the
optimal hierarchy for the Dasgupta’s function. As said before, both approaches
assume a dataset D containing n datapoints and pairwise similarities (wij)i,j∈[n]

between points are known in advance. Even though this is a very general hypoth-
esis, unfortunately, it does not include cases where part of the data is unknown
yet or the number of points cannot be estimated in advance, for example point-
cloud scans. In this paper, we investigate a formalism to extend previous works
above to the case of n varies between examples. To be specific, we cannot assume
anymore that a given graph is known in advance and thus we cannot work on
the earlier defined set of functions W, but we would rather look for optimal
embeddings of the node features. Before describing the problem, let us review
hyperbolic geometry and hyperbolic hierarchical clustering.
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2.1 Hyperbolic Hierarchical Clustering

The Poincaré Ball Model (Bn, gB) is a particular hyperbolic space, defined by
the manifold B

n = {x ∈ R
n | ‖x‖ < 1} equipped with the following Riemani-

ann metric gBx = λ2
xgE , where λx := 2

1−‖x‖2 , where gE = In is the Euclidean
metric tensor. The distance between two points in the x, y ∈ B

n is given by

dB(x, y) = cosh−1

(
1 + 2 ‖x−y‖2

2
(1−‖x‖2

2)(1−‖y‖2
2)

)
. It is thus straightforward to prove

that the distance of a point to the origin is do(x) := d(o, x) = 2 tanh−1(‖x‖2).
Finally, we remark that gBx defines the same angles as the Euclidean metric.
The angle between two vectors u, v ∈ TxB

n \ {0} is defined as cos(∠(u, v)) =
gB

x(u,v)√
gB
x(u,u)

√
gB
x(v,v)

= 〈u,v〉
‖u‖‖v‖ , and gB is said to be conformal to the Euclidean met-

ric. In our case, we are going to work on the Poincaré Disk that is n = 2. The
interested reader may refer to [5] for a wider discussion on Hyperbolic Geome-
try. Please remark that the geodesic between two points in this metric is either
the segment of the circle orthogonal to the boundary of the ball or the straight
line that goes through the origin in case the two points are antipodal. The intu-
ition behind the choice of this particular space is motivated by the fact that the
curvature of the space is negative and geodesic coming out from a point has a
“tree-like” shape. Moreover, [3] proposed an analog of the Least Common Ances-
tor (LCA) in the hyperbolic space. Given two leaf nodes i, j of a hierarchical
T , the LCA i ∨ j is the closest node to the root r of T on the shortest path πij

connecting i and j. In other words i ∨ j = arg mink∈πij
dT (r, k), where dT (r, k)

measures the length of the path from the root node r to the node k. Similarly, the
hyperbolic lowest common ancestor between two points zi and zj in the hyper-
bolic space is defined as the closest point to the origin in the geodesic path,
denoted zi � zj , connecting the two points: zi ∨ zj := arg minz∈zi�zj

d(o, z).
Thanks to this definition, it is possible to decode a hierarchical tree starting
from leaf nodes embedding into the hyperbolic space. The decoding algorithm
uses a union-find paradigm, iteratively merging the most similar pairs of nodes
based on their hyperbolic LCA distance to the origin. Finally [3] also proposed
a continuous version of Dasgupta’s cost function. Let Z = {z1, . . . , zn} ⊂ B

2 be
an embedding of a tree T with n leaves, they define their cost function as:

CHYPHC(Z;w, τ) =
∑
ijk

(wij + wik + wjk − wHYPHC,ijk(Z;w, τ)) +
∑
ij

wij , (1)

where wHYPHC,ijk(Z;w, τ) = (wij , wik, wjk) · στ (do(zi ∨ zj), do(zi ∨ zk), do(zj ∨
zk))	, and στ (·) is the scaled softmax function στ (w)i = ewi/τ/

∑
j ewj/τ . We

recall that wij are the pair-wise similarities, which in [3] are assumed to be
known, but in this work are learned.

3 End-to-End Similarity Learning and HC

Let us consider the example of k continuous random variables that take values
over an open set Ω ⊂ R

d. Let Xt = {x
(t)
1 , . . . , x

(t)
nt } a set of points obtained



End-to-End Similarity Learning and Hierarchical Clustering 599

as realization of the k random variables at step t. Moreover, we assume to be
in a semi-supervised setting. Without loss of generality, we expect to know the
associated labels of the first l points in Xt, for each t. Each label takes value
in [k] = {1, . . . , k}, and indicates from which distribution the point has been
sampled. In our work, we aim to obtain at the same time a good similarity
function δ : Ω × Ω → R+ that permits us to discriminate the points according
to the distribution they have been drawn and an optimal hierarchical clustering
for each set Xt. Our idea to achieve this goal is to combine the continuous
optimization framework proposed by Chami [3] along with deep metric learning
to learn the similarities between points. Hence, we look for a function δθ : Ω ×
Ω → R+ such that

min
θ,Z∈Z

CHYPHC(Z, δθ, τ) + Ltriplet(δθ;α). (2)

The second term of the equation above is the sum over the set T of triplets:

Ltriplet(δθ;α) =
∑

(ai,pi,ni)∈T
max(δθ(ai, pi) − δθ(ai, ni) + α, 0), (3)

where ai is the anchor input, pi is the positive input of the same class as ai, ni is
the negative input of a different class from ai and α > 0 is the margin between
positive and negative values. One advantage of our formalism is that it allows
us to use deep learning approach, i.e., backpropagation and gradient descend
optimization to optimize the model’s parameters. As explained before, we aim
to learn a similarity function and at the same time find an optimal embedding
for a family of point sets into the hyperbolic space which implicitly encodes a
hierarchical structure. To achieve this, our idea is to model the function δθ using
a neural network whose parameters we fit to optimize the loss function defined
in (2). Our implementation consists of a neural network NNθ that carries out a
mapping NNθ : Ω → R

2. The function δθ is thus written as:

δθ(x, y) = cos(∠(NNθ(x),NNθ(y))), (4)

We use the cosine similarity for two reasons. The first comes from the intuition
that points belonging to the same cluster will be forced to have small angles
between them. As a consequence, they will be merged earlier in the hierarchy.
The second reason regards the optimization process. Since the hyperbolic met-
ric is conformal to the Euclidean metric, the cosine similarity allows us to use
the same the Riemannian Adam optimizer [6] in (2). Once computed the sim-
ilarities, the points are all normalized at the same length to embed them into
the Hyperbolic space. The normalization length is also a trainable parameter of
the model. Accordingly, we have selected two architectures. The first is a Multi-
Layer-Perceptron (MLP) composed of four hidden layers, and the second is a
model composed of three layers of Dynamic Graph Egde Convolution (DGCNN)
[7].
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Fig. 1. Different examples of circles, moons, blobs and anisotropics that have been
generated varying noise value to evaluate robustness and performance of proposed
method.

4 Experiments

Experiments Setup: Inspired by the work of [2] we took into account four sample
generators in Scikit-Learn to produce four datasets as it is illustrated in Fig. 1.
For each dataset we generate, the training set is made of 100 samples and the
validation set of 20 samples. The test set contains 200 samples. In addition, each
sample in the datasets contains a random number of points. In the experiments
we sample from 200 to 300 points each time and the labels are known only for the
30% of them. In circles and moons datasets increasing the value of noise makes
the clusters mix each other and thus the task of detection becomes more diffi-
cult. Similarly, in blobs and anisotropics, we can increase the value of standard
deviation to make the problem harder. Our goal is to explore how the models
embed the points and separate the clusters. Moreover, we want to investigate
the robustness of the models to noise. For this reason, in these datasets, we set
up two different levels of difficulty according to the noise/standard deviation
used to generate the sample. In circles and moons datasets, the easiest level is
represented by samples without noise, while the harder level contains samples
whose noise value varies up to 0.16. In Blobs and Anisotropic datasets, we chose
two different values of Gaussian standard deviation to generate the sample. In
the easiest level, the standard deviation value is fixed at 0.08, while in the harder
level is at 0.16. For each level of difficulty, we trained the models and compared
the architectures. In addition, we used the harder level of difficulty to test all
the models.

Architectures: The architectures we test are MLP and DGCNN. The dimension
of hidden layers is 64. After each Linear layer we apply a LeakyReLU defined as
LeakyReLU(x) = max{x, ηx} with a negative slope η = 0.2. In addition, we use
Batch Normalization [8] to speed up and stabilize convergence.

Metrics: Let k the number of clusters that we want to determine. For the evalu-
ation, we consider the partition of k clusters obtained from the hierarchy and we
measure the quality of the predictions using Average Rand Index (ARI), Purity,
and Normalized Mutual Information Score (NMI). Our goal is to test the ability
of the two types of architectures selected to approximate function in (4).
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Fig. 2. Effect of noise on predictions in the circles database. The model used for
prediction is an MLP trained without noise. From top to bottom, each row is a case
with an increasing level of noise. In the first column input points, while in the second
column we illustrate hidden features. Points are colored according to ground truth. The
third column illustrates hidden features after projection to Poincaré Disk. The fourth
column shows predicted labels, while the fifth column shows associated dendrograms.

Visualize the Embeddings: Let first discuss the results obtained on circles and
moons. In order to understand and visualize how similarities are learned, we first
trained the architectures at the easiest level. Figure 2 illustrates the predictions
carried out by models trained using samples without noise. Each row in the fig-
ures illustrates the model’s prediction on a sample generated with a specific noise
value. The second column from the left of sub-figures depicts hidden features in
the feature space H ⊂ R

2. The color assigned to hidden features depends on
points’ labels in the ground truth. The embeddings in the Poincaré Disk (third
column from the left) are obtained by normalizing the features to a learned scale.
Furthermore, the fourth column of sub-figures shows the prediction obtained by
extracting flat clustering from the hierarchy decoded from leaves embedding in
the Poincaré Disk. Here, colors assigned to points come from predicted labels.
The number of clusters is chosen in order to maximize the average rand index
score. It is interesting to remark how differently the two architectures extract
features. Looking at the samples without noise, it is straightforward that hidden
features obtained with MLP are aligned along lines passing through the origin.
Especially in the case of circles (Fig. 2), hidden features belonging to differ-
ent clusters are mapped to opposite sides with respect to the origin, and after
rescaling hidden features are clearly separated in the hyperbolic space. Indeed,
picking cosine similarity in (4) we were expecting this kind of solution. On the
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(a) Best ARI (b) ARI @ K (c) Purity @ K (d) Purity @ K

Fig. 3. Robustness to the noise of models on circles. We compare trained models against
classical methods as Single Linkage, Average Linkage, Complete Linkage, and Ward’s
Method. The models used have been trained on a dataset without noise. Test sets
used to measure scores contain 20 samples each. Plots show the mean and standard
deviation of scores obtained.

other hand, the more noise we add, the closer to the origin hidden features are
mapped. This leads to a less clear separation of points on the disk. Unfortu-
nately, we cannot find a clear interpretation of how DGCNN maps points to
hidden space. However, also in this case, the more noise we add, the harder is
to discriminate between points of different clusters1.

Table 1. Scores obtained by MLP and DGCNN on four datasets: circle, moons, blobs,
and anisotropics. In each dataset the models have been tested on the same test set
containing 200 samples.

Dataset k Noise/Cluster std Model Hidden Temp Margin Ari@k ± s.d Purity@k ± s.d Nmi@k ± s.d Ari ± s.d

circle 2 0.0 MLP 64 0.1 1.0 0.871 ± 0.153 0.965 ± 0.0427 0.846 ± 0.167 0.896 ± 0.123

circle 2 [0.0−0.16] MLP 64 0.1 1.0 0.919 ± 0.18 0.972 ± 0.0848 0.895 ± 0.187 0.948 ± 0.0755

circle 2 0.0 DGCNN 64 0.1 1.0 0.296 ± 0.388 0.699 ± 0.188 0.327 ± 0.356 0.408 ± 0.362

circle 2 [0.0−0.16] DGCNN 64 0.1 1.0 0.852 ± 0.243 0.947 ± 0.116 0.826 ± 0.247 0.9 ± 0.115

moons 4 0.0 MLP 64 0.1 1.0 0.895 ± 0.137 0.927 ± 0.108 0.934 ± 0.0805 0.955 ± 0.0656

moons 4 [0.0−0.16] MLP 64 0.1 1.0 0.96 ± 0.0901 0.971 ± 0.0751 0.972 ± 0.049 0.989 ± 0.017

moons 4 0.0 DGCNN 64 0.1 1.0 0.718 ± 0.247 0.807 ± 0.187 0.786 ± 0.191 0.807 ± 0.172

moons 4 [0.0−0.16] DGCNN 64 0.1 1.0 0.917 ± 0.123 0.942 ± 0.0992 0.941 ± 0.0726 0.966 ± 0.0455

blobs 9 0.08 MLP 64 0.1 0.2 0.911 ± 0.069 0.939 ± 0.057 0.953 ± 0.025 0.958 ± 0.022

blobs 9 0.16 MLP 64 0.1 0.2 0.985 ± 0.0246 0.992 ± 0.0198 0.99 ± 0.0115 0.992 ± 0.00821

blobs 9 0.08 DGCNN 64 0.1 0.2 0.856 ± 0.0634 0.891 ± 0.0583 0.931 ± 0.025 0.921 ± 0.0401

blobs 9 0.16 DGCNN 64 0.1 0.2 0.894 ± 0.0694 0.92 ± 0.0604 0.95 ± 0.0255 0.948 ± 0.0336

aniso 9 0.08 MLP 64 0.1 0.2 0.86 ± 0.0696 0.904 ± 0.0631 0.922 ± 0.0291 0.925 ± 0.0287

aniso 9 0.16 MLP 64 0.1 0.2 0.952 ± 0.0503 0.968 ± 0.044 0.972 ± 0.0189 0.976 ± 0.0133

aniso 9 0.08 DGCNN 64 0.1 0.2 0.713 ± 0.0835 0.793 ± 0.0727 0.844 ± 0.0401 0.795 ± 0.0652

aniso 9 0.16 DGCNN 64 0.1 0.2 0.84 ± 0.0666 0.879 ± 0.0595 0.922 ± 0.0274 0.914 ± 0.0436

Comparison with Classical HC Methods: In Fig. 3 we compare models trained
at easier level of difficulty against classical methods such as Single, Complete,
Average and Ward’s method Linkage on circles, moons, blobs and anisotrop-
ics respectively. The plots show the degradation of the performance of models

1 Supplementary Figures are available at https://github.com/liubigli/similarity-
learning/blob/main/GSI2021 Appendix.pdf.

https://github.com/liubigli/similarity-learning/blob/main/GSI2021_Appendix.pdf
https://github.com/liubigli/similarity-learning/blob/main/GSI2021_Appendix.pdf
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as we add noise to samples. Results on circles say that Single Linkage is the
method that performs the best for small values of noise. However, MLP shows
better robustness to noise. For high levels of noise, MLP is the best method.
On the other hand, DGCNN exhibits a low efficacy also on low levels of noise.
Other classical methods do not achieve good scores on this dataset. A similar
trend can also be observed in the moons dataset. Note that, in this case, MLP
is comparable with Single Linkage also on small values of noise, and its scores
remain good also on higher levels of noise. DGCNN and other classical methods
perform worse even in this data set. Results obtained by MLP and DGCNN on
blobs dataset are comparable with the classical methods, even though the per-
formances of models are slightly worse compared to classical methods for higher
values of noise. On the contrary, MLP and DGCNN achieve better scores on
the anisotropics dataset compared to all classical models. Overall, MLP models
seem to act better than DCGNN ones in all the datasets.

Benchmark of the Models: Table 1 reports the scores obtained by the trained
models on each dataset. Each line corresponds to a model trained either at an
easier or harder level of difficulty. The test set used to evaluate the results con-
tains 200 samples generated using the harder level of difficulty. Scores obtained
demonstrate that models trained at the harder levels of difficulty are more robust
to noise and achieve better results. As before, also in this case MLP is, in general,
better than DGCNN in all the datasets considered.

5 Conclusion

In this paper, we have studied the metric learning problem to perform hierar-
chical clustering where the number of nodes per graph in the training set can
vary. We have trained MLP and DGCNN architectures on five datasets by using
our proposed protocol. The quantitative results show that overall MLP performs
better than DGCNN. The comparison with the classic methods proves the flex-
ibility of the solution proposed to the different cases analyzed, and the results
obtained confirm higher robustness to noise. Finally, inspecting the hidden fea-
tures, we have perceived how MLP tends to project points along lines coming out
from the origin. To conclude, the results obtained are promising and we believe
that it is worth testing this solution also on other types of datasets such as 3D
point clouds.
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3. Chami, I., Gu, A., Chatziafratis, V., Ré, C.: From trees to continuous embeddings
and back: Hyperbolic hierarchical clustering. In: NIPS vol. 33 (2020)



604 L. Gigli et al.

4. Monath, N., Zaheer, M., Silva, D., McCallum, A., Ahmed, A.: Gradient-based hier-
archical clustering using continuous representations of trees in hyperbolic space. In:
25th ACM SIGKDD Conference on Discovery & Data Mining, pp. 714–722 (2019)

5. Brannan, D.A., Esplen, M.F., Gray, J.: Geometry. Cambridge University Press,
Cambridge (2011)

6. Bécigneul, G., Ganea, O.E.: Riemannian adaptive optimization methods. arXiv
preprint arXiv:1810.00760 (2018)

7. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic
graph CNN for learning on point clouds. ACM Trans. Graph. (TOG) 38(5), 1–12
(2019)

8. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

http://arxiv.org/abs/1810.00760
http://arxiv.org/abs/1502.03167


Information Theory and the Embedding
Problem for Riemannian Manifolds

Govind Menon(B)

Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
govind menon@brown.edu

Abstract. This paper provides an introduction to an information the-
oretic formulation of the embedding problem for Riemannian manifolds
developed by the author. The main new construct is a stochastic relax-
ation scheme for embedding problems and hard constraint systems. This
scheme is introduced with examples and context.
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1 The Embedding Problem for Riemannian Manifolds

The purpose of this paper is to outline an information theoretic formulation of
the embedding problem for Riemannian manifolds developed by the author. The
main new contribution is a stochastic relaxation scheme that unifies many hard
constraint problems. This paper is an informal introduction to this method.

The modern definition of a manifold was formalized by Whitney in 1936 [11].
He defined manifolds as abstract spaces covered by locally compatible charts,
thus providing a rigorous description of the intuitive idea that a manifold is a
topological space that ‘locally looks like Euclidean space’. Whitney’s definition
should be contrasted with the 19th century idea of manifolds as hypersurfaces
in Euclidean space. The embedding problem for a differentiable manifold checks
the compatibility of these notions. Given an (abstractly defined) n-dimensional
differentiable manifold Mn, an embedding of Mn is a smooth map u : Mn → R

q

that is one-to-one and whose derivative Du(x) has full rank at each x ∈ Mn.
An embedded manifold carries a pullback metric, denoted u#e, where e

denotes the identity metric on R
q. Assume that Mn is a Riemannian mani-

fold equipped with a metric g. We say that an embedding u : Mn → R
q is

isometric if u�e = g. In any local chart U , this is the nonlinear PDE
q∑

α=1

∂uα

∂xi

∂uα

∂xj
(x) = gij(x), x ∈ U, 1 ≤ i, j ≤ n. (1)

Let us contrast Eq. (1) with isometric embedding of finite spaces.
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(a) Embedding metric spaces: We are given a finite set K with a distance func-
tion ρ(x, y) and we seek a map u : K → R

q such that

|u(x) − u(y)| = ρ(x, y), x, y ∈ K. (2)

(b) Graph embedding: We are given a graph G = (V,E) with a distance function
ρ : E → R+ that associates a length to each edge. The graph embedding
problem is to find u : V → R

q such that

|u(e+) − u(e−)| = ρ(e), e ∈ E, (3)

where e± denote the vertices at the two ends of an edge e ∈ E.

In each of these problems an abstractly defined metric space is being mapped
into the reference space R

q. The LHS is the length measured in R
q. The RHS

is the intrinsic distance on the given space. In Eq. (1), the equality of length is
expressed infinitesimally, which is why we obtain a PDE.

Modern understanding of (1) begins with the pioneering work of Nash in the
1950s [8,9]. His work led to the following results: for q = n+ 1 and g ∈ C0 there
are infinitely many C1 isometric embeddings (assuming no topological obstruc-
tions); when q ≥ n + n(n + 1)/2 + 5 and g ∈ C∞ there are infinitely many C∞

isometric embeddings. These results are improvements of Nash’s original work,
but follow his ideas closely. Nash’s work has been systematized in two distinct
ways: as Gromov’s h-principle in geometry and as hard implicit function theo-
rems in analysis. However, several fundamental questions remain unresolved [5].

Our interest in the area was stimulated by an unexpected link with turbu-
lence [2]. A long-standing goal in turbulence is to construct Gibbs measures
for the Euler equations of ideal incompressible fluids whose statistical behavior
is in accordance with experiments. This connection suggests the application of
statistical mechanics to embeddings. The construction of Gibbs measures for
embeddings allows us to formalize the question ‘What does a typical isometric
embedding look like?’. This is in contrast with the questions ‘Does an isometric
embedding exist? If so, how smooth is it?’ resolved by Nash and Gromov.

The Gibbs measures have a natural information theoretic construction. We
model embedding as a stochastic process in which an observer in R

q makes a copy
of a given Riemannian geometry by measurement of distances at finer and finer
scales. This is a Bayesian interpretation suited to the interplay between geometry
and information theory at this conference. However, prior to the author’s work
there was no attempt to study (1) with probabilistic methods or to treat Eqs. (1)–
(3) through a common framework. Further, the devil lies in the details, since any
new attempt must be consistent with past work and must be nailed down with
complete rigor. This paper discusses only the evolution equations. Analysis of
these equations will be reported in forthcoming work.

2 The Role of Information Theory

The embedding theorems are interesting both for their conceptual and techni-
cal depth. They arise in apparently unrelated fields and they have been studied
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by disparate techniques. Within mathematics, Nash’s three papers on mani-
folds appear unrelated on first sight. Mathematical techniques for graph embed-
ding, mainly stimulated by computer science, appear to have little relation to
the embedding problem for manifolds [7]. The embedding problem also appears
under the guise of the nonlinear sigma models in quantum field theory. In his
breakthrough work, Friedan showed that the renormalization of the nonlinear
sigma model is the Ricci flow [3,4]. However, Friedan’s technique, renormaliza-
tion by expansion in dimension, is notoriously hard to pin down mathematically.

Such a diversity of methods and applications is bewildering until one rec-
ognizes that it offers a route to a radical conceptual simplification. In order to
obtain a unified treatment, it is necessary to insist on a minimalistic formulation
of embedding that does not rely in a fundamental manner on the structure of
the space being embedded (e.g. whether it is a graph, manifold, or metric space).
Such a formulation must be consistent with both Nash and Friedan’s approach
to the problem, as well as applications in computer science. This line of reason-
ing suggests that the appropriate foundation must be information theory – it is
the only common thread in the above applications.

The underlying perspective is as follows. We view embedding as a form of
information transfer between a source and an observer. The process of infor-
mation transfer is complete when all measurements of distances by the observer
agree with those at the source. This viewpoint shifts the emphasis from the struc-
ture of the space to an investigation of the process by which length is measured.
In the Bayesian interpretation, the world is random and both the source and
the observer are stochastic processes with well-defined parameters (we construct
these processes on a Gaussian space to be concrete). Thus, embedding is simply
‘replication’ and the process of replication is complete when all measurements
by the observer and the source agree on a common set of questions (here it is
the question: ‘what is the distance between points x and y ?’). From this stand-
point, there is no fundamental obstruction to embedding, except that implied
by Shannon’s channel coding theorem.

The challenge then is to implement this viewpoint with mathematical rigor.
In order to explain our method, we must briefly review Nash’s techniques. The
main idea in [8] is that when q = n + 2 one can relax the PDE u�g = e to a
space of subsolutions and then introduce highly structured corrugations in the
normal directions at increasingly fine scales. This iteration ‘bumps up’ smooth
subsolutions towards a solution. In [9], Nash introduces a geometric flow, which
evolves an immersion and a smoothing operator simultaneously. Unlike [8], which
is brief and intuitive, the paper [9] is lengthy and technical, introducing what
is now known as the Nash-Moser technique. A central insight in our approach
is that one can unify these methods by introducing a reproducing kernel that
evolves stochastically with the subsolution.

A rigid adherence to an information theoretic approach to embedding con-
tradicts Nash’s results in the following sense. If all that matters is agreement in
the measurement of distances between different copies of a manifold, the histor-
ical emphasis in mathematics on the role of codimension and regularity cannot
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be a fundamental feature of the problem. All embeddings are just copies of the
same object, an abstractly defined manifold. Typical embeddings of the mani-
fold (Mn, g) into R

p and R
q for p, q ≥ n should have different regularity: a C∞

metric g may yield a crumpled embedding in R
p and a smooth embedding in R

q

for p < q, but since it is only the measurement of length that matters, there is
no preferred embedding. Thus, existence and regularity of solutions to (1) must
be treated separately. This mathematical distinction acquires salience from its
physical meaning. While Wilson renormalization is often seen as a technique for
integrating out frequencies scale-by-scale, it reflects the role of gauge invariance
in the construction of a physical theory. The only true measurements are those
that are independent of the observer. Therefore, in order to ensure consistency
between mathematical and physical approaches to the isometric embedding prob-
lem it is necessary to develop a unified theory of embeddings that does not rely
substantially on codimension. Nash’s methods do not meet this criterion.

Finally, embedding theorems may be used effectively in engineering only if
the rigorous formulation can be supported by fast numerical methods. Here too
Nash’s techniques fail the test. The first numerical computations of isometric
embeddings are relatively recent [1]. Despite the inspiring beauty of these images,
they require a more sophisticated computational effort than is appropriate for a
problem of such a fundamental nature. The numerical scheme in [1] is ultimately
based on [8]. Thus, it requires the composition of functions, which is delicate
to implement accurately. The models proposed below require only semidefinite
programming and the use of Markov Chain Monte Carlo, both of which are
standard techniques, supported by excellent software.

These remarks appear to be deeply critical of Nash’s work, but the truth
is more mysterious. The imposition of stringent constraints – consistency with
applications, physics and numerical methods – has the opposite effect. It allows
us to strip Nash’s techniques down to their essence, revealing the robustness of
his fundamental insights. By using information theory to mediate between these
perspectives, we obtain a new method in the statistical theory of fields.

3 Renormalization Group (RG) Flows

3.1 General Principles

The structure of our method is as follows. Many hard constraint systems and
nonlinear PDE such as u�e = g admit relaxations to subsolutions. We will begin
with a subsolution and improve it to a solution by adding fluctuations in a
bandlimited manner. These ideas originate in Nash’s work [8,9]. We sharpen his
procedure as follows:

1. The space of subsolutions is augmented with a Gaussian filter. More precisely,
our unknown is a subsolution ut and a reproducing kernel Lt, t ∈ [0,∞). In
physical terms, the unknown is a thermal system.

2. We introduce a stochastic flow for (ut, Lt). This allows us to interpolate
between the discrete time iteration in [8] and C1 time evolution in [9], replac-
ing Nash’s feedback control method with stochastic control theory.
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3. We apply the modeling principles of continuum mechanics – a separation
between kinematics and energetics – to obtain a semidefinite program (SDP)
for the covariance of the Itô SDE.

4. A principled resolution of the SDP is the most subtle part of the problem. We
illustrate two approaches: low-rank matrix completion and Gibbs measures
for the SDP. In physical terms, this is a choice of an equation of state.

The use of reproducing kernels provides other insights too. The Aronszajn-Moore
theorem asserts that the reproducing kernel Lt is in one-to-one correspondence
with a Hilbert space HLt

. Thus, (ut, Lt) describes a stochastically evolving affine
Hilbert space (ut,HLt

) much like subspace tracking in machine learning.

3.2 An Example: Random Lipschitz Functions

Let us illustrate the structure of the RG flows on a model problem. We construct
random Lipschitz functions as solutions to the Hamilton-Jacobi equation

|∇u(x)|2 = 1, x ∈ T
n, u : Tn → R. (4)

Equation (4) is simpler than Eq. (1) because the unknown u is a scalar. We say
that v : Tn → R is a smooth subsolution if v ∈ C∞ and |∇v(x)| < 1 for x ∈ T

n.
Define the residual r(x; v), trace l, and the density matrix P by

r(x; v) = (1−|∇v(x)|2)1/2
+ , l =

∫

Tn

L(x, x) dx, P (x, y) =
1
l
L(x, y), x, y∈T

n.

(5)
The simplest RG flow associated to Eq. (4) is the stochastic evolution

dut(x)dut(y) = (PSP )(x, y) dt, Ṗ = PSP −Tr(PSP )P,
l̇

l
= Tr(PSP ), (6)

where S is a covariance kernel constructed from r(x;ut) as follows

S(x, y) = ∇r(x) · ∇r(y) =
n∑

i=1

∂xi
r(x;ut)∂yi

r(y;ut), x, y ∈ T
n. (7)

Both S and P are integral operators on L2(Tn) and PSP denotes the natural
composition of such operators.

The first equation in (6) reflects stochastic kinematics. As in Nash’s work, we
are bumping up a subsolution, but now by stochastic fluctuations with covariance
tensor PSP . The density matrix P smoothes the correction S, so that fluctua-
tions are band-limited. The last equation shows that lt is slaved to (ut, Pt). The
study of (ut, Pt) and (ut, Lt) is equivalent for this reason and both choices offer
different insights. The equation for (ut, Lt) (after a change of time-scale) is

dut(x)dut(y) = L̇(x, y) dt, L̇ = LSL. (8)

Observe that this equation is invariant under reparametrization of time.
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The specific relation between S and r in Eq. (7) emerges from an explicit
rank-one solution to a matrix completion problem. More generally, all RG flows
for Eq. (4) require the resolution of an SDP that provides a covariance kernel
S, given a residual r. An alternate resolution of this question, involving Gibbs
measures for the SDP, is described in the next section.

3.3 Interpretation

The intuition here is as follows. Assume given initial conditions (u0, L0) where u0

is a smooth subsolution and L0 is a band-limited reproducing kernel. Standard
SDE theory implies the existence of strong solutions to Eqs. (6) and (8). Equa-
tion (8) tells us that Lt is increasing in the Loewner order, so that the Hilbert
spaces HLt

are ordered by inclusion. This corresponds to the subsolutions getting
rougher and rougher, while staying band-limited. On the other hand, Eq. (6) tells
us that ut and Pt are bounded martingales, so that (u∞, P∞) := limt→∞(ut, Pt)
exists by the martingale convergence theorem. The limit u∞ is always a random
subsolution to (4). Our task is to find the smallest space L0 so that u∞ is a
solution to (4), thus providing random Lipschitz functions.

The analogous evolution for the isometric embedding problem (1) is obtained
from similar reasoning. A subsolution is a map v : Mn → R

q such that v�e
satisfies the matrix inequality v�e(x) < g(x) at each x ∈ Mn. The residual
r(x; v) is the matrix square-root of the metric defect g − v�e(x). The covariance
kernel Lt is also now a matrix valued kernel. Thus, the generalization reflects
the tensorial nature of (1) and does not change the essence of Eq. (6). The
associated flow makes precise the idea that embedding is a process of estimation
of the metric g by estimators u�

te. At each scale t, we choose the best correction
to ut given the Gaussian prior Pt and a principled resolution of an SDP.

Finally, Eq. (8) has a simple physical interpretation. The RG flows model qua-
sistatic equilibration of the thermal system (ut, Lt). This is perhaps the most
traditional thermodynamic picture of the flow of heat, dating back to Clau-
sius, Gibbs and Maxwell. What is new is the mathematical structure. The mean
and covariance evolve on different time-scales, so that the system is always in
local equilibrium. This insight originates in Nelson’s derivation of the heat equa-
tion [10]. Like Nelson, we stress the foundational role of stochastic kinematics
and time-reversibility. However, unlike Nelson, we rely on information theory as
the foundation for heat flow, not a priori assumptions about a background field.
The flows are designed so that L̇t is always the ‘most symmetric’ fluctuation
field with respect to the prior. This offers a rigorous route to the construction
of Gibbs measures by renormalization, using different techniques from Friedan’s
work. This is why we term our model an RG flow.

4 Isometric Embedding of Finite Metric Spaces into R
q

In this section we show that RG flows for Eqs. (1)–(3) may be derived from
common principles. This goes roughly as follows: the discrete embeddings (2)–
(3) have subsolutions and we use a stochastic flow analogous to (8) to push
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these up to solutions. The main insights in this section are the role of an under-
lying SDP and the use of low-rank kernels Lt as finite-dimensional analogs of
smoothing operators. Formally, we expect embeddings of the manifold to be the
continuum limit of discrete embeddings of geodesic triangulations of the mani-
fold. However, this has not yet been established rigorously.

Assume given a finite metric space (K, ρ). Equation (2) is a hard constraint
system that may not have a solution. For example, an equilateral triangle cannot
be isometrically embedded into R. It is necessary to relax the problem. Following
Nash [8], let us say that a map v : K → R

q is short if |v(x) − v(y)| < ρ(x, y) for
each pair of distinct points x, y ∈ K. These are our subsolutions.

Let P(n, q) denote the space of covariance tensors for R
q-valued centered

Gaussian processes on K. Our state space is Sq = {(u,L) ∈ R
nq × P(n, q)}. The

RG flow analogous to Eq. (8) is the Itô SDE

dui
t(x)duj

t (y) = L̇(x, y)ij dt, L̇t = C(ut, Lt), x, y ∈ K, 1 ≤ i, j ≤ q. (9)

The rest of this section describes the use of SDP to determine C. First, we set
C(u,L) ≡ 0 when u is not short. When u is short its metric defect is

r2(x, y;u) =
(
ρ2(x, y) − |u(x) − u(y)|2)

+
, x, y ∈ K. (10)

We’d like to choose C(u,L) to correct a solution by r2(x, y;u) on average. To
this end, assume dui(x)duj(y) = Qij(x, y) dt and use Itô’s formula to compute

d |u(x) − u(y)|2 = 2 (u(x) − u(y)) · (du(x) − du(y)) + ♦Qdt. (11)

The Itô correction, captured by the ♦ operator defined below, provides the
expected bump up in lengths

(♦Q) (x, y) :=
q∑

j=1

(
Qjj(x, x) + Qjj(y, y) − 2Qjj(x, y)

)
. (12)

In order to correct by the metric defect, Q must satisfy the linear constraints

(♦Q) (x, y) = r2(x, y;u), x, y ∈ K. (13)

A second set of constraints is imposed by the Cameron-Martin theorem: the
Gaussian measure associated to L̇ must be absolutely continuous with respect
to that of L. Explicitly, this means that Q = ALAT where A is a linear transfor-
mation, given in coordinates by Aij(x, y). This restriction is trivial when L has
full-rank; but when L is rank-deficient, it provides P(n, q) with a sub-Riemannian
geometry. We use the notation Q ∈ TLP(n, q) to recognize this constraint.

These constraints describe a matrix completion problem: choose Q ∈
TLP(n, q) that satisfies (13). This may not have a solution, so we introduce
the convex set

P = {Q ∈ TLP(n, q)
∣∣♦Q(x, y) ≤ r2(x, y), x, y ∈ K }. (14)

Our model design task is to make a principled choice of a point C(u,L) in P.
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Equation (7) is obtained by choosing a rank-one solution to the analogous
operator completion problem for (4). But one may also use the theory of SDP
to provide other resolutions of the above matrix completion problem. Interior
point methods for SDP associate a barrier FP to P and it is natural to choose

C(u,L) = argminQ∈PFP(Q). (15)

When FP is the canonical barrier associated to P we find that C is the analytic
center of P. This choice is similar in its minimalism to (7). The barrier FP is a
convex function on P whose Hessian D2FP provides a fundamental Riemannian
metric on P [6]. It provides a natural microcanonical ensemble for embedding.

We may also introduce Gibbs measures on TLP(n, q) that have the density

pβ(Q) =
1

Zβ
e−βEr(Q), Zβ =

∫

TLP(n,q)

e−βEr(Q) dQ, C =
∫

TLP(n,q)

Qpβ(Q) dQ,

(16)
where the energies Er replace the constraints ♦Q ≤ r2 with suitable penalties.
In these models, the covariance C(u,L) is the most symmetric choice at scale t,
with respect to the Gibbs measure pβ . As noted in Sect. 3.3, this is why these
models may be termed renormalization group flows.
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Abstract. We propose a methodology to approximate conditional dis-
tributions in the elliptope of correlation matrices based on conditional
generative adversarial networks. We illustrate the methodology with an
application from quantitative finance: Monte Carlo simulations of cor-
related returns to compare risk-based portfolio construction methods.
Finally, we discuss about current limitations and advocate for further
exploration of the elliptope geometry to improve results.

Keywords: Generative adversarial networks · Correlation matrices ·
Elliptope geometry · Empirical distributions · Quantitative finance ·
Monte Carlo simulations

1 Introduction

Since the seminal Generative Adversarial Networks (GANs) paper [10], adver-
sarial training has been successful in several areas which are typically explored
by machine learning researchers (e.g. image generation in computer vision, voice
and music generation in audio signal processing). To a smaller extent, GANs
were also applied for generating social and research citations networks. We are
not aware of existing generative adversarial networks for sampling matrices from
an empirical distribution defined in the elliptope, the set of correlation matrices,
except our previous work [18]. In this work, we propose extensions of the original
CorrGAN model keeping in mind matrix information geometry [20].

This body of work can be motivated by applications in quantitative finance,
and possibly in other fields relying on correlation and covariance matrices. Hav-
ing access to a generative model of realistic correlation matrices can enable large
scale numerical experiments (e.g. Monte Carlo simulations) when current mathe-
matical guidance falls short. In the context of quantitative finance, it can improve
the falsifiability of statements and more objective comparison of empirical meth-
ods. For example, paper A and paper B concurrently claim their novel portfolio
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allocation methods are the state of the art, out-performing the rest of the lit-
erature on well-chosen period and universe of assets. Can we verify and obtain
better insights than these claims? We will briefly illustrate that the generative
models presented in this paper can help perform a more reliable comparison
between portfolio allocation methods. Moreover, by analyzing the simulations,
we are able to extract insights on which market conditions are more favorable
to such or such portfolio allocation methods.

2 Related Work

Research related to our work can be found in three distinct areas: generation
of random correlation matrices, generative adversarial networks (in finance),
information geometry of the elliptope in machine learning.

2.1 Sampling of Random Correlation Matrices

Seminal methods detailed in the literature are able to generate random corre-
lation matrices without any structure. These methods are sampling uniformly
(in a precise sense) in the set of correlation matrices, e.g. the onion method [9].
Extended onion methods and vines can be used to generate correlation matrices
with large off-diagonal values [17], but they are not providing any other partic-
ular structure by design. Other methods allow to simulate correlation matrices
with given eigenvalues [5], or with the Perron–Frobenius property [14]. CorrGAN
[18] is the first and so far only method which attempts to learn a generative
model from a given empirical distribution of correlation matrices. Preliminary
experiments have shown that the synthetic correlation matrices sampled from
the generative model have similar properties than the original ones.

2.2 GANs in Finance

Generative Adversarial Networks (GANs) in Finance are just starting to be
explored. Most of the research papers (and many are still at the preprint stage)
were written after 2019. The main focus and motivation behind the use of GANs
in Finance is data anonymization [1], followed by univariate time series (e.g. stock
returns) modeling [8,15,24,26]. Also under investigation: modeling and generating
tabular datasets which are often the format under which the so-called ‘alternative
data’ hedge funds are using is structured; An example of such ‘alternative data’
can be credit card (and other) transactions which can also be modeled by GANs
[27]. To the best of our knowledge, only our previous work [18] tackles the problem
of modeling the joint behaviour of a large number of assets.

2.3 Geometry of the Elliptope in Machine Learning

Except a recent doctoral thesis [4], the core focus of the research community
is on the Riemannian geometry of the SPD cone, e.g. [2,19], SPDNet [13] and
its extension SPDNet with Riemannian batch normalization [3]. Concerning the
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elliptope, a non-Riemannian geometry (Hilbert’s projective geometry) has also
been considered for clustering [21]. The Hilbert elliptope distance is an example
of non-separable distance which satisfies the information monotonicity property
[21].

3 Our Contributions

We suggest the use of GANs to learn empirical conditional distributions in the
correlation elliptope; We highlight that the correlation elliptope has received
less attention from the information geometry community in comparison to the
symmetric positive definite cone of covariance matrices; We highlight where
information geometric contributions could help improve on the proposed models
(the Euclidean Deep Convolutional Generative Adversarial Network (DCGAN)
is already competitive if not fully satisfying from a geometric point of view);
Finally, we illustrate the use of such generative models with Monte Carlo sim-
ulations to understand the empirical properties of portfolio allocation methods
in quantitative finance.

4 The Set of Correlation Matrices

4.1 The Elliptope and its Geometrical Properties

Let E = {C ∈ R
n×n | C = C�, ∀i ∈ {1, . . . , n}, Cii = 1,∀x ∈ R

n, x�Cx ≥ 0}
be the set of correlation matrices, also known as the correlation elliptope.

The convex compact set of correlation matrices E is a strict subspace of the
set of covariance matrices whose Riemannian geometry has been well studied in
the information geometry literature, e.g. Fisher-Rao distance [25], Fréchet mean
[19], PCA [12], clustering [16,23], Riemannian-based kernel in SVM classification
[2]. However, E endowed with the Riemannian Fisher-Rao metric is not totally
geodesic (cf. Figs. 1, 2), and this has strong implications on the principled use of
the tools developed for the covariance matrices. For example, consider SPDNet
[13] (with an eventual Riemannian batch normalization layer [3]). Despite this
neural network is fed with correlation matrices as input, it will generate covari-
ance matrices in subsequent layers. How can we stay in the elliptope in a prin-
cipled and computationally efficient fashion?

In Fig. 1, each 2 × 2 covariance matrix is represented by a 3D point (x, y, z).
The blue segment (x = z = 1) is the set of 2 × 2 correlation matrices. In green,
the geodesic (using the Riemannian Fisher-Rao metric for covariances) between
correlation matrix γ(0) = (1,−0.75, 1) and correlation matrix γ(1) = (1, 0.75, 1).
The geodesic t ∈ [0, 1] → γ(t) (and in particular the Riemannian mean γ(0.5))
is not included in the blue segment representing the correlation matrix space.

In Fig. 2 we compare several means:

– (M1) Euclidean mean A+B
2 ,

– (M2) Riemannian barycenter (in general, a covariance matrix Σ�),
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– (M3) C� = diag(Σ�)− 1
2 Σ�diag(Σ�)− 1

2 (Σ� normalized by variance),
– (M4) Fréchet mean constrained to the space of correlation matrices,
– (M5) projection of Σ� onto the elliptope using the Riemannian distance.

We observe that (M3) is close but not equal to (M4) and (M5), which seems to
be equivalent. We have not found yet how to compute (M4) or (M5) efficiently.
Alternatively, a recent doctoral dissertation [4] on Riemannian quotient structure
for correlation matrices might help progress in this direction.

Fig. 1. 2 × 2 correlation matrices
(blue); Fisher-Rao geodesic (green)
between two matrices. The geodesic
does not stay inside the set of corre-
lation matrices. (Color figure online)

Fig. 2. Visualizing various means.

With a better understanding on how to define and efficiently compute a
Riemannian mean for correlation matrices, we can think of adapting SPDNet
to correlation matrices, and eventually use it as a component of the generative
adversarial network architecture.

4.2 Financial Correlations: Stylized Facts

Since we aim at learning empirical (conditional) distributions, different domains
may have different type of typical correlation matrices whose set describes a
subspace of the full correlation elliptope. In the present work, we will showcase
the proposed model on correlation matrices estimated on stocks returns. We
briefly describe the known properties, also known as stylized facts, of these cor-
relation matrices. We leave for future work or research collaborations to explore
the empirical space of correlation matrices in other domains.

The properties of financial correlation matrices are well-known and docu-
mented in the literature. However, until CorrGAN [18], no single model was
able to generate correlation matrices verifying a handful of them at the same
time: (SF 1) Distribution of pairwise correlations is significantly shifted to the
positive; (SF 2) Eigenvalues follow the Marchenko–Pastur distribution, but for
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a very large first eigenvalue; (SF 3) Eigenvalues follow the Marchenko–Pastur
distribution, but for ≈5% of other large eigenvalues; (SF 4) Perron-Frobenius
property (first eigenvector has positive entries); (SF 5) Hierarchical structure of
correlation clusters; (SF 6) Scale-free property of the corresponding Minimum
Spanning Tree.

When markets are under stress, it is widely known among practitioners that
the average correlation is high. More precisely, the whole correlation structure
changes and becomes different than the ones typical of rallying or steady markets.
These characteristics tied to the market regime would be even harder to capture
with a fully specified mathematical model.

5 Learning Empirical Distributions in the Elliptope
Using Generative Adversarial Networks

We suggest that conditional generative adversarial networks are promising mod-
els to generate random correlation matrices verifying all these not-so-well-
specified properties.

5.1 CorrGAN: Sampling Realistic Financial Correlation Matrices

The original CorrGAN [18] model is essentially a DCGAN (architecture based
on CNNs). CNNs have 3 relevant properties which align well with stylized facts
of financial correlation matrices: shift-invariance, locality, and compositionality
(aka hierarchy). Based on our experiments, this architecture yields the best off-
the-shelf results most consistently. However, outputs (synthetic matrices) need
to be post-processed by a projection algorithm (e.g. [11]) as they are not strictly
valid (but close to) correlation matrices. This goes against the end-to-end opti-
mization of deep learning systems. Despite CorrGAN yields correlation matrices
which verify the stylized facts, we can observe with PCA (or MDS, t-SNE) that
the projected empirical and synthetic distributions do not match perfectly. We
also noticed some instability from one trained model to another (well-known
GAN defect). For example, in our experiments, the average Wasserstein dis-
tance (using the POT package [7]) between any two (PCA-projected) training
sets is μE := 6.7 ± σE := 6.8 (max distance := 15) whereas the average distance
between a training set and a generated synthetic set is μG := 18.8 ± σG := 8
(min distance := 8). Ideally, we would obtain μE ≈ μG instead of μE � μG. We
observed that CorrGAN was not good at capturing the different modes of the
distribution. This motivated the design of a conditional extension of the model.

5.2 Conditional CorrGAN: Learning Empirical Conditional
Distributions in the Elliptope

We describe in Fig. 3 the architecture of cCorrGAN, the conditional extension of
the CorrGAN model [18]. To train this model, we used the following experimen-
tal protocol: 1. We built a training set of correlation matrices labeled with one
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of the three classes {stressed, normal, rally} depending on the performance
of an equally weighted portfolio over the period of the correlation estimation;
2. We trained several cCorrGAN models; 3. We evaluated them qualitatively
(PCA projections, reproductions of stylized facts), and quantitatively (confu-
sion matrix of a SPDNet classifier [3], Wasserstein distance between projected
empirical and synthetic distributions) to select the best model. Samples obtained
from the best model are shown in Fig. 4.

Fig. 3. Architecture of the conditional
GAN (cCorrGAN) which generates 80×
80 correlation matrices corresponding
to a given market regime {stressed,
normal, rally}

Fig. 4. Empirical (left) and cCorrGAN
generated (right) correlation matrices for
three market regimes

6 Application: Monte Carlo Simulations of Risk-Based
Portfolio Allocation Methods

Monte Carlo simulations to test the robustness of investment strategies and
portfolio construction methods were the original motivation to develop Cor-
rGAN, and its extension conditional CorrGAN. The methodology is summa-
rized in Fig. 5: 1. Generate a random correlation matrix from a given market
regime using cCorrGAN, 2. Extract features from the correlation matrix, 3.
Estimate the in-sample and out-of-sample risk on synthetic returns which verify
the generated correlation structure, 4. Predict and explain (with Shapley values)
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a) performance decay from in-sample to out-of-sample, b) out-performance of a
portfolio allocation method over another. The idea of using Shapley values to
explain portfolio construction methods can be found in [22].

Fig. 5. Methodology for analysing the results of the Monte Carlo simulations

Using such methodology, enabled by the sampling of realistic random cor-
relation matrices conditioned on a market regime, we can find, for example,
that the Hierarchicaly Risk Parity (HRP) [6] outperforms the naive risk par-
ity when there is a strong hierarchy in the correlation structure, well-separated
clusters, and a high dispersion in the first eigenvector entries, typical of a nor-
mal or rallying market regime. In the case of a stressed market where stocks
plunge altogether, HRP performs on-par (or slightly worse because of the risk
of identifying a spurious hierarchy) than the simpler naive risk parity.
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thetic correlations and explainable machine learning for constructing robust invest-
ment portfolios (2020)

23. Shinohara, Y., Masuko, T., Akamine, M.: Covariance clustering on Riemannian
manifolds for acoustic model compression. In: 2010 IEEE International Conference
on Acoustics, Speech and Signal Processing, pp. 4326–4329. IEEE (2010)

24. Takahashi, S., Chen, Y., Tanaka-Ishii, K.: Modeling financial time-series with gen-
erative adversarial networks. Physica A Stat. Mech. Appl. 527, 121261 (2019)

25. Wells, J., Cook, M., Pine, K., Robinson, B.D.: Fisher-Rao distance on the covari-
ance cone. arXiv preprint arXiv:2010.15861 (2020)

26. Wiese, M., Knobloch, R., Korn, R., Kretschmer, P.: Quant GANs: deep generation
of financial time series. Quant. Financ. 20(9), 1419–1440 (2020)

27. Zheng, Y.J., Zhou, X.H., Sheng, W.G., Xue, Y., Chen, S.Y.: Generative adversarial
network based telecom fraud detection at the receiving bank. Neural Networks 102,
78–86 (2018)

http://arxiv.org/abs/1904.11419
http://arxiv.org/abs/1406.2661
https://doi.org/10.1007/978-3-642-30232-9
https://doi.org/10.1007/978-3-030-02520-5_11
http://arxiv.org/abs/2010.15861


Topological and Geometrical Structures
in Neurosciences



Topological Model of Neural Information
Networks

Matilde Marcolli(B)

California Institute of Technology, Pasadena, CA 91125, USA
matilde@caltech.edu

Abstract. This is a brief overview of an ongoing research project,
involving topological models of neural information networks and the
development of new versions of associated information measures that
can be seen as possible alternatives to integrated information. Among
the goals are a geometric modeling of a “space of qualia” and an asso-
ciated mechanism that constructs and transforms representations from
neural codes topologically. The more mathematical aspects of this project
stem from the recent joint work of the author and Yuri Manin [18], while
the neuroscience modeling aspects are part of an ongoing collaboration
of the author with Doris Tsao.

1 Motivation

Before describing the main aspects of this project, it is useful to present some
of the main motivations behind it.

1.1 Homology as Functional to Processing Stimuli

In recent experiments on rhesus monkey, Tevin Rouse at Marlene Cohen’s lab at
Carnegie Mellon showed that visual attention increases firing rates while decreas-
ing correlation of fluctuations of pairs of neurons, and also showed that topologi-
cal analysis of the activated networks of V4 neurons reveals a peak of non-trivial
homology generators in response to stimulus processing during visual attention,
[25].

A similar phenomenon, with the formation of a high number of non-trivial
homology generators in response to stimuli, was produced in the analysis directed
by the topologist Katrin Hess [23] of simulations of the neocortical microcircuitry.
The analysis of [23] proposes the interpretation that these topological structures
are necessary for the processing of stimuli in the brain cortex.

These findings are very intriguing for two reasons: (1) they link topological
structures in the activated neural circuitry to phenomena like attention; (2) they
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suggest that a sufficient amount of topological complexity serves a functional
computational purpose.

The first point will be discussed more at length below, in Sect. 3. The second
point is relevant because it suggests a better mathematical setting for modeling
neural information networks architecture in the brain. Indeed, although the work
of [23] does not offer a theoretical explanation of why topology is needed for
stimulus processing, there is a well known context in the theory of computation
where a similar situation occurs, which may provide the key for the correct
interpretation, namely the theory of concurrent and distributed computing [11,
15]. Note that in some case, like the toroidal topology arising from grid cell
activity [14], a neuronal functional explanation for the topology is in fact known,
though not a distributed computing interpretation.

In the mathematical theory of concurrent and distributed computing, one
considers a collection of sequential computing entities (processes) that cooperate
to solve a problem (task). The processes communicate by applying operations
to objects in a shared memory, and they are asynchronous, in the sense that
they run at arbitrary varying speeds. Concurrent and distributed algorithms
and protocols decide how and when each process communicates and shares with
others. The main questions are how to design such algorithms that are efficient
in the presence of noise, failures of communication, and delays, and how to
understand when a an algorithm exists to solve a particular task.

Protocols for concurrent and distributed computing are modeled using
(directed) simplicial sets. For example, in distributed algorithms an initial or
final state of a process is a vertex, any d + 1 mutually compatible initial or final
states are a d-dimensional simplex, and each vertex is labelled by a different pro-
cess. The complete set of all possible initial and final states is then a simplicial
set. A decision task consists of two simplicial sets of initial and final states and
a simplicial map (or more generally correspondence) between them. The typi-
cal structure consists of an input complex, a protocol complex, and an output
complex, with a certain number of topology changes along the execution of the
protocol [15].

There are very interesting topological obstruction results in the theory of
distributed computing [15], which show that a sufficient amount of non-trivial
homology in the protocol complex is necessary for a decision task problem to be
solvable. Thus, the theory of distributed computing shows explicitly a setting
where a sufficient amount of topological complexity (measured by non-trivial
homology) is necessary for computation.

The working hypothesis we would like to consider here is that the brain
requires a sufficient amount of non-trivial homology because it is carrying out
a concurrent/distributed computing task that can only run successfully in the
presence of enough nontrivial homology. This suggests that the mathematical
modeling of architectures of neural information networks should be formulated
in such a way as to incorporate additional structure keeping track of associated
concurrent/distributed computational systems.
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An important aspect of the topological analysis of brain networks is the pres-
ence of directed structures on the simplicial sets involved. A directed structure
is not an orientation, but rather a kind of “flow of information” structure, as in
concurrent and distributed computing [11]. A directed n-cube models the con-
current execution of n simultaneous transitions between states in a concurrent
machine. In directed algebraic topology one considers topological (simplicial)
spaces where paths and homotopies have a preferred direction and cannot be
reversed, and directed simplicial sets can be regarded as a higher dimensional
generalization of the usual notion of directed graphs. The categorical viewpoint
is natural when one thinks of paths in a directed graph as forming a free cat-
egory generated by the edges. A similar notion for higher dimensional directed
complexes exists in the form of ω-categories [16,29].

1.2 Neural Code and Homotopical Representations

It is known from the work of Curto and collaborators (see [8] and references
therein) that the geometry of the stimulus space can be reconstructed up to
homotopy from the binary structure of the neural code. The key observation
behind this reconstruction result is a simple topological property: under the rea-
sonable assumption that the place field of a neuron (the preferred region of the
stimulus space that causes the neuron to respond with a high firing rate) is a
convex open set, the binary code words in the neural code represent the over-
laps between these regions, which determine a simplicial complex (the simplicial
nerve of the open covering of the stimulus space). Under the convexity hypoth-
esis the homotopy type of this simplicial complex is the same as the homotopy
type of the stimulus space. Thus, the fact that the binary neural code captures
the complete information on the intersections between the place fields of the
individual neurons is sufficient to reconstruct the stimulus space, but only up to
homotopy.

This suggests another working hypothesis. One can read the result about the
neural code and the stimulus space reconstruction as suggesting that the brain
represents the stimulus space through a homotopy type. We intend to use this
idea as the basic starting point and propose that the experience of qualia should
be understood in terms of the processing of external stimuli via the construction
of associated homotopy types.

The homotopy equivalence relation in topology is weaker but also more flex-
ible than the notion of homeomorphism. The most significant topological invari-
ants, such as homotopy and homology groups, are homotopy invariants. Heuris-
tically, homotopy describes the possibility of deforming a topological space in a
one parameter family. In particular, a homotopy type is an equivalence class of
topological spaces up to (weak) homotopy equivalence, which roughly means that
only the information about the space that is captured by its homotopy groups is
retained. There is a direct connection between the formulation of topology at the
level of homotopy types and “higher categorical structures”. For our purposes
here it is also worth mentioning that simplicial sets provide a good combinatorial
models for the (weak) homotopy type of topological spaces.
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Thus, these results suggest that a good mathematical modeling of network
architectures in the brain should also include a mechanism that generates homo-
topy types, through the information carried by the network via neural codes.

1.3 Consciousness and Informational Complexity

The idea of computational models of consciousness based on some measure of
informational complexity is appealing in as it proposes quantifiable measures of
consciousness tied up to an appropriate notion of complexity and interrelatedness
of the underlying system.

Tononi’s integrated information theory (or Φ function) is a proposal for such
a quantitative correlate of consciousness, which roughly measures of the least
amount of effective information in a whole system that is not accounted for by
the effective information of its separate parts. More precisely, effective informa-
tion is computed by a Kullback–Leibler divergence (relative entropy) between
an observed output probability distribution and a hypothetical uniformly dis-
tributed input. The integrated information considers all possible partitions of
a system into subsystems (two disjoint sets of nodes in a network for instance)
and assigns to each partition a symmetrized and normalized measure of effective
information with inputs and outputs on the two sides of the partition, and mini-
mizes over all partitions. The main idea is therefore that integrated information
is a measure of informational complexity and interconnectedness of a system
[30]. It is proposed as a measure of consciousness because it appears to capture
quantitatively several aspects of conscious experience (such as its compositional
and integrated qualities, see [30]).

An attractive feature of the integrated information model is an idea of con-
sciousness that is not a binary state (an entity either does or does not have
consciousness) but that varies by continuous degrees and is tied up to the intu-
itive understanding that sufficient complexity and interconnectedness is required
for the acquisition of a greater amount of consciousness. The significant ethical
implications of these assumptions are evident. On the other hand, one of the
main objections to using integrated information as a measure of consciousness is
the fact that, while it is easy to believe that sufficient informational complexity
may be a necessary condition for consciousness, the assumption that it would
also be a sufficient condition appears less justifiable.

Indeed, this approach to a mathematical modeling of consciousness has been
criticized on the ground that it is easy to construct simple mathematical mod-
els exhibiting a very high value of the Φ function (Aaronson’s Vandermonde
matrix example), that can hardly be claimed to possess consciousness. Gener-
ally, one can resort to the setting of coding theory to generate many examples of
sufficiently good codes (for example the algebro-geometric Reed-Solomon error-
correcting codes) that indeed exhibit precisely the typical from of high intercon-
nectedness that leads to large values of integrated information.

Another valid objection to the use of integrated information lies in its com-
putational complexity, given that it requires a computation and minimization
over the whole set of partitions of a given set (which in a realistic example
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like a biological brain is already in itself huge). Other computational difficulties
with integrated information and some variants of the same model are discussed
in detail in [20]. A possible approach to reducing the computational complex-
ity may be derived from the free energy principle of [12] and its informational
applications, though we will not discuss it here.

Our goal is not to improve the mathematical theory of integrated information,
but to construct a different kind of mathematical model based on topology and in
particular homotopy theory. However, assuming that high values of (some version
of) integrated information may indeed provide a valid necessary condition for
consciousness, it is natural to ask how a topological model of the kind we will
describe in the next section would constrain the values of integrated information.

In our setting, the best approach to infer the existence of lower bounds for
some integrated information is to reformulate integrated information itself from
a topological viewpoint as discussed in [18], along the lines of the cohomological
formulations of information of [4] and [31,32].

Treating integrated information as cohomological can have advantages in
terms of computability: it is well known in the context of simplicial sets that
computational complexity at the level of chains can be much higher than at the
level of (co)homology.

2 Homotopical Models of Neural Information Networks

We summarize here the main mathematical aspects of this project, with special
emphasis on the author’s joint work with Manin in [18] on a mathematical
framework for a homotopy theoretic modeling of neural information networks in
the brain, subject to informational and metabolic constraints, performing some
concurrent/distributed computing tasks, and generating associated homotopy
types from neural codes structures.

2.1 Gamma Spaces and Information Networks

The starting point of our approach is the notion of Gamma spaces, introduced
by Graeme Segal in the 1970s to model homotopy theoretic spectra. A Gamma
space is a functor from finite (pointed) sets to simplicial sets. The Segal construc-
tion associated such a functor to a given category C with some basic properties
(categorical sum and zero object), by assigning to a finite set X the nerve of
a category of C-valued summing functors that map subsets of a given finite set
and inclusions between them to objects of the category C and morphisms in a
way that is additive over disjoint subsets. One should think of summing functors
as categorically valued measures that can be used to consistently assign a struc-
ture (computational, information-theoretic, etc.) to all subsystems of a given
system. The enrichment of the notion of Gamma space with probabilistic data
was developed in [19]. The nerve of the category of summing functors is a topo-
logical model that parameterizes all the possible ways of assigning structures
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described by the target category C to the system so that they are consistent over
subsystems.

A general mathematical setting for a theory of resources and conversion of
resources was developed in [6] and [13] in terms of symmetric monoidal cate-
gories. These can be taken as targets of the summing functors in the Gamma
space construction. Thus, the language of Gamma spaces can be understood
as describing, through the category of summing functors, all possible consistent
assignments of resources to subsystems of a given system in such a way that
resources of independent subsystems behave additively. The fact that Gamma
spaces are built using data of subsystems and relations between subsystems is
reminiscent of the ideas underlying the notion of integrated information, but
it is also richer and more flexible in its applicability. One of the main advan-
tages of the categorical framework is that the categorical structure ensures that
many fundamental properties carry over naturally between different categories.
As applications of category theory in other contexts (such as theoretical com-
puter science and physics) have shown, this often renders the resulting construc-
tions much more manageable.

The target monoidal category of resources can describe computational
resources (concurrent and distributed computing structures that can be imple-
mentable on a given network) by using a category of transition systems in the
sense of [33]. One can similarly describe other kinds of metabolic or informational
resources. Different kinds of resources and constraints on resources assigned
to the same underlying network can be analyzed through functorial relations
between these categories. Gamma spaces, via spectra, have associated homo-
topy groups providing invariants detecting changes of homotopy types.

2.2 Neural Codes and Coding Theory

In the theory of error-correcting codes, binary codes are evaluated in terms of
their effectiveness at encoding and decoding. This results in a two-parameter
space (transmission rate and relative minimum distance). There are bounds in
the space of code parameters, such as the Gilbert-Varshamov bound (related to
the Shannon entropy and expressing the typical behavior of random codes) or the
asymptotic bound (related to Kolmogorov complexity and marking a boundary
above which only isolated very good codes exist). Examples of good codes above
both the Gilbert-Varshamov and the asymptotic bound typically come from
algebro-geometric constructions. As mentioned above, these are precisely the
type of codes that can generate high values of integrated information.

It is known, however, that neural codes are typically not good codes according
to these parameters: this is essentially because these codes are related to the
combinatorics of intersections of sets in open coverings and this can make the
Hamming distance between code words very small. Manin suggests in [17] the
possible existence of a secondary auxiliary level of neural codes involved in the
formation of place maps consisting of very good codes that lie near or above the
asymptotic bound. This idea that the bad neural codes are combined in the brain
into some higher structure that determines good codes can now be made precise
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through the recent work of Rishidev Chaudhuri and Ila Fiete [5], on bipartite
expander Hopfield networks. Their model is based on Hopfield networks with
stable states determined by sparse constraints with expander structure, which
have good error correcting properties and are good models of memory, where
the network dynamics extracts higher order correlations from the neural codes.

This suggests that a version of the model of Chaudhuri and Fiete, together
with a categorical form of the Hopfield network dynamics discussed below, may
be used to address the step from the (poor code) neural codes to the (good
codes) bipartite expander Hopfield networks, and from these to a lower bound
on the values of an appropriate integrated information measure.

2.3 Dynamics of Networks in a Categorical Setting

The setting described in the previous subsection is just a kinematic scaffold-
ing, in the sense that so far we have discussed the underlying geometry of the
relevant configuration space, but not yet how to introduce dynamics. Hopfield
network dynamics is a good model for how brain networks evolve over time with
excitatory/inhibitory synaptic connections. Recent work of Curto and collabo-
rators has revealed beautiful topological structures in the dynamics of Hopfield
networks [9,10].

In [18] we developed a version of the Hopfield network dynamics where the
evolution equations, viewed as finite difference equations, take place in a category
of summing functors, in the context of the Gamma space models described above.
These induce the usual non-linear Hopfield dynamics when summing functors
take values in a suitable category of weighted codes. It also induces a dynami-
cal system on the topological space given by the realization of the nerve of the
category of summing functors. This formulation has the advantage that all the
associated structures, resources with constraints, concurrent/distributed com-
puting architectures, informational measures and constraints, are all evolving
dynamically according to a common dynamics and functorial relations between
the respective categories. Phenomena such as excitatory-inhibitory balance can
also be investigated in this context. One aspect of the dynamics that is interest-
ing in this context is whether it involves changes in homotopy types, which can
be especially relevant to the interpretation discussed in §3 below.

This leads to a related question, which is a mechanism in this categorical
setting of dynamical information networks, for operations altering stored homo-
topy types, formulated in terms of a suitable “calculus” of homotopy types. This
points to the important connection between homotopy types and logic (in the
form of Church’s type theory), which is provided by the developed in Voevod-
sky’s “homotopy type theory”, see for instance [21], a setting designed to replace
set-theory based mathematical logic with a model of the logic theory of types
based on simplicial sets.
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2.4 Combined Roles of Topology

Topology in neuroscience, as mentioned above, has appeared in three different
roles: clique complexes of subnetworks activated in response to stimuli and their
persistent homology, topological internal reconstruction of external inputs and
output through the nerve complex of the code generated by the activation of
cells given their receptive fields, and information topology through information
structures and their cohomology in the sense of [31]. These roles seem apparently
unrelated. However, in the setting we are describing in [18] we see that all of these
are simultaneously accounted for. There is a functorial mapping from a category
of summing functors associated to a network to the category of information
structures that generated a functorial assignment of a cohomological version of
integrated information. Moreover, clique complexes of subnetworks and nerve
complexes of codes are also recovered from the spectra obtained through the
Gamma space formalism form categories of summing functors on networks.

3 Toward a Model of Qualia and Experience

In this final section we describe some tentative steps in the direction of using
the topological setting described above to model qualia and experience.

A homotopy type is a (simplicial) space viewed up to continuous deformations
that preserve homotopy invariants. One can imagine a time series of successive
representations of an external stimulus space that either remain within the same
homotopy type or undergo sudden transitions that causes detectable jumps in
some of the homotopy groups. This collection of discrete topological invariants
given by the homotopy groups (or homology as a simpler invariant) as detectors
triggered by sudden changes of the stimulus space that does not preserve the
homotopy type of the representation. We propose that such “jumps” in the
homotopy type are related to experience.

In “Theater of Consciousness” models like [1], it is observed how the mind
carries out a large number of tasks that are only “intermittently conscious”,
where a number of processes continue to be carried out unconsciously with “lim-
ited access” to consciousness, with one process coming to the forefront of con-
sciousness (like actors on the stage in the theater metaphor) in response to an
unexpected change. In the setting we are proposing, changes that do not alter
the stored homotopy type are like the processes running in the unconscious back-
ground in the theater of consciousness, while the jumps in the discrete homotopy
invariants affect the foregrounding to the stage of consciousness. This suggests
that one should not simply think of the stored homotopy type as the reconstruc-
tion of a stimulus space at a given time instant. It is more likely that a whole
time sequence should be stored as a homotopy type, changes to which will trig-
ger an associated conscious experience. Some filtering of the stored information
is also involved, that can be modeled through a form of persistent topology. The
Gamma spaces formalism can be adapted to this persistent topology setting, as
shown in [18].
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In this setting we correspondingly think of “qualia space” as a space of homo-
topy types. This can be compared, for example, with the proposal of a qualia
space in the theory of integrated information [2], based on probabilities on the
set of states of the system, with a conscious experience represented as a shape
in this qualia space. In [2], a “quale” is described as the set of all probability
measures on all subsystems and mappings between them corresponding to inclu-
sions. Notice how this setting is very closely related to the notion of probabilistic
Gamma spaces developed in [19].

One can fit within this framework the observed role of homology as a detector
of experience. The neuroscience experiments of [22], for example, conducted mea-
surement of persistent homology of activated brain networks, comparing resting-
state functional brain activity after intravenous infusion of either a placebo or
psilocybin. The results they obtained show a significant change in homology in
the case of psilocybin, with many transient structures of low stability and a
small number of more significant persistent structures that are not observed in
the case of placebo. These persistent homology structure are a correlate of the
psychedelic experience. This evidence supports the idea that changes in topo-
logical invariants are related to experience and different states of consciousness.

The approach described here has possible points of contacts with other recent
ideas about consciousness, beyond the integrated information proposal, including
[3,24,27], for which a comparative analysis would be interesting.

3.1 Neural Correlates of Consciousness and the Role of Topology

In recent work [28], Ann Sizemore, Danielle Bassett and collaborators conducted
a detailed topological analysis of the human connectome and identified explicit
generators for the most prominently persistent non-trivial elements of both the
first and second persistent homology groups. The persistence is computed with
respect to a filtering of the connectivity matrix. The resulting generators identify
which networks of connections between different cortical and subcortical regions
involve non-trivial homology. Moreover, their analysis shows that the subcorti-
cal regions act as cone vertices for many homology generators formed by cortical
regions. Based on the fact that electrostimulation of the posterior, but not of
the anterior cortex, elicit various forms of somatosensory experience, the poste-
rior cortex was proposed as a possible region involved in a neural correlate of
consciousness (see [7]). A question to investigate within the mathematical frame-
work outlined in the previous section is whether nontrivial topological structures
in the connectome can be linked to candidate substrates in the wiring of brain
regions for possible neural correlate of consciousness.
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Abstract. In a joint work with D. Bennequin [8], we suggested that the
(negative) minima of the 3-way multivariate mutual information corre-
spond to Borromean links, paving the way for providing probabilistic
analogs of linking numbers. This short note generalizes the correspon-
dence of the minima of k multivariate interaction information with k
Brunnian links in the binary variable case. Following [16], the negativ-
ity of the associated K-L divergence of the joint probability law with
its Kirkwood approximation implies an obstruction to local decomposi-
tion into lower order interactions than k, defining a local decomposition
inconsistency that reverses Abramsky’s contextuality local-global rela-
tion [1]. Those negative k-links provide a straightforward definition of
collective emergence in complex k-body interacting systems or dataset.

Keywords: Mutual information · Homotopy links · Contextuality ·
Synergy · Emergence

1 Introduction

Previous works established that Gibbs-Shannon entropy function Hk can be
characterized (uniquely up to the multiplicative constant of the logarithm basis)
as the first class of a Topos cohomology defined on random variables complexes
(realized as the poset of partitions of atomic probabilities), where marginaliza-
tion corresponds to localization (allowing to construct Topos of information) and
where the coboundary operator is an Hochschild’s coboundary with a left action
of conditioning ([7,30], see also the related results found independently by Baez,
Fritz and Leinster [4,5]). Vigneaux could notably underline the correspondence
of the formalism with the theory of contextuality developed by Abramsky [1,30].
Multivariate mutual informations Ik appear in this context as coboundaries [6,7],
and quantify refined and local statistical dependences in the sens that n vari-
ables are mutually independent if and only if all the Ik vanish (with 1 < k < n,
giving (2n −n−1) functions), whereas the Total Correlations Gk quantify global
or total dependences, in the sens that n variables are mutually independent if
and only if Gn = 0 (theorem 2 [8]). As preliminary uncovered by several related
studies, information functions and statistical structures not only present some
co-homological but also homotopical features that are finer invariants [6,9,21].
Notably, proposition 9 in [8], underlines a correspondence of the minima I3 = −1
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of the mutual information between 3 binary variables with Borromean link. For
k ≥ 3, Ik can be negative [15], a phenomenon called synergy and first encoun-
tered in neural coding [11] and frustrated systems [22] (cf. [8] for a review and
examples of data and gene expression interpretation). However, the possible
negativity of the Ik has posed problems of interpretation, motivating a series of
study to focus on non-negative decomposition, “unique information” [10,25,31].
Rosas et al. used such a positive decomposition to define emergence in multivari-
ate dataset [28]. Following [6,8], the present work promotes the correspondence
of emergence phenomena with homotopy links and information negativity. The
chain rule of mutual-information goes together with the following inequalities
discovered by Matsuda [22]. For all random variables X1; ..;Xk with associated
joint probability distribution P we have: I(X1; ..;Xk−1|Xk;P ) ≥ 0 ⇔ Ik−1 ≥ Ik

and I(X1; ..;Xk−1|Xk;P ) < 0 ⇔ Ik−1 < Ik that characterize the phenomenon
of information negativity as an increasing or decreasing sequence of mutual infor-
mation. It means that positive conditional mutual informations imply that the
introduction of the new variable decreased the amount of dependence, while
negative conditional mutual informations imply that the introduction of the
new variable increase the amount of dependence. The meaning of conditioning,
notably in terms of causality, as been studied at length in Bayesian network
study, DAGs (cf. Pearl’s book [26]), although not in terms of information at
the nice exception of Jakulin and Bratko [16]. Following notably their work and
the work of Galas and Sakhanenko [13] and Peltre [27] on Möbius functions,
we adopt the convention of Interaction Information functions Jk = (−1)k+1Ik,
which consists in changing the sign of even multivariate Ik (remark 10 [8]). This
sign trick, as called in topology, makes that even and odd Jk are both super-
harmonic, a kind of pseudo-concavity in the sens of theorem D [7]. In terms
of Bayesian networks, interaction information (respectively conditional interac-
tion information) negativity generalize the independence relation (conditional
independence resp.), and identifies common consequence scheme (or multiple
cause). Interaction information (Conditional resp.) negativity can be consid-
ered as an extended or “super” independence (Conditional resp.) property, and
hence J(X1; ..;Xn|Xk;P ) < 0 means that (X1; ..;Xn) are n “super” condition-
ally independent given Xk. Moreover such negativity captures common causes
in DAGs and Bayesian networks. Notably, the cases where 3 variables are pair-
wise independent but yet present a (minimally negative) J3 what is called the
Xor problem in Bayesian network [16]. In [8], we proposed that those minima
correspond to Borromean links. k-links are the simplest example of rich and
complex families of link or knots (link and knot can be described equivalently
by their braiding or braid word). k-links are prototypical homotopical invariants,
formalized as link groups by Milnor [24]. A Brunnian link is a nontrivial link
that becomes a set of trivial unlinked circles if any one component is removed.
They are peculiarly attracting because of their beauty and apparent simplicity,
and provide a clear-cut illustration of what is an emergent or purely collective
property. They can only appear in 3-dimensional geometry and above (not in 1
or 2 dimension), and their complement in the 3-sphere were coined as “the mys-
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tery of three-manifolds” by Bill Thurston in the first slide of his presentation for
Perelman proof of Poincaré conjecture (cf. Fig. 1). In what follows, we will first
generalize the correspondence of Jk minima with k-links for arbitrary k and then
establish that negativity of interaction information detects incompatible proba-
bility, which allows an interpretation with respect to Abramsky’s formalism as
contextual. The information links are clearly in line with the principles of higher
structures developed by [2,3] that uses links to account for group interactions
beyond pair interaction to catch the essence of many multi-agent interactions.
Unravelling the formal relation of information links with the work of Baas, or
with Khovanov homology [17] are open questions.

2 Information Functions - Definitions

Entropy. The joint-entropy is defined by [29] for any joint-product of k random
variables (X1, ..,Xk) with ∀i ∈ [1, .., k],Xi ≤ Ω and for a probability joint-
distribution P(X1,..,Xk):

Hk = H(X1, ..,Xk;P ) = c

N1×..×Nk∑

x1∈[N1],..,xk∈[Nk]

p(x1, .., xk) ln p(x1, .., xk) (1)

where [N1 × ... × Nk] denotes the “alphabet” of (X1, ...,Xk). More precisely,
Hk depends on 4 arguments: first, the sample space: a finite set NΩ ; second a
probability law P on NΩ ; third, a set of random variable on NΩ , which is a
surjective map Xj : NΩ → Nj and provides a partition of NΩ , indexed by the
elements xji of Nj . Xj is less fine than Ω, and write Xj ≤ Ω, or Ω → Xj , and
the joint-variable (Xi,Xj) is the less fine partition, which is finer than Xi and
Xj ; fourth, the arbitrary constant c taken here as c = −1/ ln 2. Adopting this
more exhaustive notation, the entropy of Xj for P at Ω becomes HΩ(Xj ;P ) =
H(Xj ;PXj

) = H(Xj∗(P )), where Xj∗(P ) is the marginal of P by Xj in Ω.

Kullback-Liebler Divergence and Cross Entropy. Kullback-Liebler divergence
[20], is defined for two probability laws P and Q having included support
(support(P ) ⊆ support(Q)) on a same probability space (Ω,F , P ), noted p(x)
and q(x) by:

DΩ(Xj ;P,Q) = D(Xj ; p(x)||q(x)) = c
∑

x∈X

p(x) ln
q(x)
p(x)

(2)

Multivariate Mutual Informations. The k-mutual-information (also called co-
information) are defined by [15,23]:

Ik = I(X1; ...;Xk;P ) = c

N1×...×Nk∑

x1,...,xk∈[N1×...×Nk]

p(x1.....xk) ln

∏
I⊂[k];card(I)=i;i odd pI∏
I⊂[k];card(I)=i;i even pI

(3)
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For example, I2 = c
∑

p(x1, x2) ln
p(x1)p(x2)
p(x1,x2)

and the 3-mutual information is the

function I3 = c
∑

p(x1, x2, x3) ln
p(x1)p(x2)p(x3)p(x1,x2,x3)
p(x1,x2)p(x1,x3)p(x2,x3)

. We have the alternated
sums or inclusion-exclusion rules [7,15,22]:

In = I(X1; ...;Xn;P ) =
n∑

i=1

(−1)i−1
∑

I⊂[n];card(I)=i

Hi(XI ;P ) (4)

And the dual inclusion-exclusion relation [6]:

Hn = H(X1, ...,Xn;P ) =
n∑

i=1

(−1)i−1
∑

I⊂[n];card(I)=i

Ii(XI ;P ) (5)

As noted by Matsuda [22], it is related to the general Kirkwood superposition
approximation, derived in order to approximate the statistical physic quantities
and the distribution law by only considering the k first k-body interactions terms,
with k < n [18]:

p̂(x1, ..., xn) =

∏
I⊂[n];card(I)=n−1 p(xI)
∏

I⊂[n];card(I)=n−2 p(xI)
:∏n

i=1 p(xi)

=
n−1∏

k=1

(−1)k−1
∏

I⊂[n];card(I)=n−k

p(xI)

(6)
For example:

p̂(x1, x2, x3) =
p(x1, x2)p(x1, x3)p(x2, x3)

p(x1)p(x2)p(x3)
(7)

We have directly that I3 = D(p(x1, ..., xn)||p̂(x1, ..., xn)) and −I4 =
D(p(x1, ..., xn)||p̂(x1, ..., xn)). It is hence helpful to introduce the “twin func-
tions” of k-mutual Information called the k-interaction information [8,16]
(multiplied by minus one compared to [16]), noted Jn:

Jn = J(X1; ...;Xn;P ) = (−1)i−1In(X1; ...;Xn;P ) (8)

Then we have Jn = D(p(x1, ..., xn)||p̂(x1, ..., xn)). Hence, Jn can be used to
quantify how much the Kirkwood approximation of the probability distribution
is “good” (in the sense that p = p̂ if and only if Jn = D(p||p̂) = 0). The
alternated sums or inclusion-exclusion rules becomes [16]:

Jn = J(X1; ...;Xn;P ) =
n∑

i=1

(−1)n−i
∑

I⊂[n];card(I)=i

Hi(XI ;P ) (9)

And now, their direct sums give the multivariate entropy, for example: H3 =
H(X1,X2,X3) = J(X1)+J(X2)+J(X3)+J(X1;X2)+J(X1;X3)+J(X2;X3)+
J(X1;X2;X3) Depending on the context ([8] (p. 15)) and the properties one
wishes to use, one should use for convenience either Ik or Jk functions.
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Conditional Mutual Informations. The conditional mutual information of two
variables X1;X2 knowing X3, also noted X3.I(X1;X2), is defined as [29]:

I(X1;X2|X3;P ) = c

N1×N2×N3∑

x1,x2,x3∈[N1×N2×N3]

p(x1, x2, x3) ln
p(x1, x3)p(x2, x3)
p(x3)p(x1, x2, x3)

(10)

3 Information k-Links

Fig. 1. Borromean 3-links of information (adapted from [8]) from left to right.
The two Borromean links (mirror images). The corresponding two probability laws
in the probability 7-simplex for 3 binary random variables, and below the represen-
tation of the corresponding configuration in 3 dimensional data space. The variables
are individually maximally entropic (J1 = 1), fully pairwise independent (J2 = 0
for all pairs), but minimally linked by a negative information interaction (J3 = −1).
The corresponding graph covering in the 3-cube of the two configurations. The Ham-
ming distance between two vertex having the same probability value is 2. The cover
of Bengtsson and Życzkowski’s book on “the geometry of quantum states” and the
first slide of the conference on “The Mystery of 3-Manifolds” by Bill Thurston at the
Clay-IHP Milenial conference.

Consider 3 binary random variables, then we have:

Theorem 1 (Borromean links of information [8]). The absolute minimum
of J3, equal to −1, is attained only in the two cases of three two by two inde-
pendent unbiased variables satisfying p000 = 1/4, p001 = 0, p010 = 0, p011 =
1/4, p100 = 0, p101 = 1/4, p110 = 1/4, p111 = 0, or p000 = 0, p001 = 1/4, p010 =
1/4, p011 = 0, p100 = 1/4, p101 = 0, p110 = 0, p111 = 1/4. These cases correspond
to the two borromean 3-links, the right one and the left one (cf. Fig. 1, see [8] p.
18).
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For those 2 minima, we have H1 = 1, H2 = 2, H3 = 2, and I1 = 1, I2 = 0,
I3 = −1, and G1 = 1, G2 = 0, G3 = 1, and J1 = 1, J2 = 0, J3 = −1. The same
can be shown for arbitrary n-ary variables, which opens the question of the possi-
bility or not to classify more generaly others links. For example, for ternary vari-
ables, a Borromean link is achieved for the state p000 = 1/9, p110 = 1/9, p220 =
1/9, p011 = 1/9, p121 = 1/9, p201 = 1/9, p022 = 1/9, p102 = 1/9, p212 = 1/9, and
all others atomic probabilities are 0. The values of information functions are the
same but in logarithmic basis 3 (trits) instead of 2 (bits). In other word, the
probabilistic framework may open some new views on the classification of links.

We now show the same result for the 4-Brunnian link, considering 4 binary
random variables:

Theorem 2 (4-links of information1). The absolute minimum of J4, equal
to −1, is attained only in the two cases of four two by two and three by
three independent unbiased variables satisfying p0000 = 0, p0001 = 1/8, p0010 =
1/8, p0011 = 0, p0101 = 0, p1001 = 0, p0111 = 1/8, p1011 = 1/8, p1111 = 0, p1101 =
1/8, p1110 = 1/8, p0110 = 0, p1010 = 0, p1100 = 0, p1000 = 1/8, p0100 = 1/8, or
p0000 = 1/8, p0001 = 0, p0010 = 0, p0011 = 1/8, p0101 = 1/8, p1001 = 1/8, p0111 =
0, p1011 = 0, p1111 = 1/8, p1101 = 0, p1110 = 0, p0110 = 1/8, p1010 = 1/8, p1100 =
1/8, p1000 = 0, p0100 = 0. These cases correspond to the two 4-Brunnian links,
the right one and the left one (cf. Fig. 2).

Proof. The minima of J4 are the maxima of I4. We have easily I4 ≥ −min
(H(X1),H(X2),H(X3),H(X4)) and I4 ≤ min(H(X1),H(X2),H(X3),H(X4))
[22]. Consider the case where all the variables are k-independent for all k <
4 and all H1 are maximal, then a simple combinatorial argument shows that
I4 =

(
1
4

)
.1 − (

2
4

)
.2 +

(
3
4

)
.3 +

(
4
4

)
.H4, which gives I4 = 4 − H4. Now, since I4 ≤

min(H(X1),H(X2),H(X3),H(X4)) ≤ max(H(Xi) = 1, we have H4 = 4−1 = 3
and I4 = 1 or J4 = −1, and it is a maxima of I4 because it achieves the bound
I4 ≤ min(H(X1),H(X2),H(X3),H(X4)) ≤ max(H(Xi)) = 1. To obtain the
atomic probability values and see that there are two such maxima, let’s consider
all the constraint imposed by independence. We note the 16 unknown:

a=p0000, b=p0011, c=p0101, d=p0111, e=p1001, f=p1011, g=p1101, h=p1110,

i=p0001, j=p0010, k=p0100, l=p0110, m=p1000, n=p1010, o=p1100, p=p1111.

The maximum entropy (or 1-independence) of single variable gives 8
equations:

a+b+c+d+i+j+k+l=1/2, e+f+g+h+m+n+o+p=1/2, a+b+e+f+i+j+m+n=1/2,

c+d+g+h+k+l+o+p=1/2, a+c+e+g+i+k+m+o=1/2, b+d+f+h+j+l+n+p=1/2,

a+h+j+k+l+m+n+o=1/2, b+c+d+e+f+g+i+p=1/2.

1 As the proof relies on a weak concavity theorem D [7] which proof has not been
provided yet, this theorem shall be considered as a conjecture as long as the proof
of theorem D [7] is not given.
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Fig. 2. 4-links of information from left to right. The two 4-links (mirror images).
The corresponding two probability laws in the probability 15-simplex for 4 binary
random variables. The variables are individually maximally entropic (J1 = 1), fully
pairwise and tripletwise independent (J2 = 0, J3 = 0, the link is said Brunnian), but
minimally linked by a negative 4-information interaction (J4 = −1). The correspond-
ing graph covering in the 4-cube of the two configurations, called the tesseract. The
Hamming distance between two vertex having the same probability value is 2. The
corresponding lattice representation is illustrated below.

The 2-independence of (pair of) variables gives the 24 equations:

a+b+i+j=1/4, c+d+k+l=1/4, e+f+m+n=1/4, g+h+o+p=1/4, a+c+i+k=1/4,

b+d+j+l=1/4, e+g+m+o=1/4, f+h+n+p=1/4, a+j+k+l=1/4, b+c+d+i=1/4,

h+m+n+o=1/4, e+f+g+p=1/4, a+e+i+m=1/4, b+f+j+n=1/4, c+g+k+o=1/4,

d+h+l+p=1/4, a+j+m+n=1/4, b+e+f+i=1/4, h+k+l+o=1/4, c+d+g+p=1/4,

a+k+m+o=1/4, c+e+g+i=1/4, h+j+l+n=1/4, b+d+f+p=1/4.

The 3-independence of (triplet of) variables gives the 32 equations:

a+j=1/8, b+i=1/8, k+l=1/8, c+d=1/8, m+n=1/8, e+f=1/8, h+o=1/8, g+p=1/8,

a+i=1/8, b+j=1/8, c+h=1/8, d+l=1/8, e+m=1/8, f+n=1/8, vg+o=1/8, h+p=1/8,

a+m=1/8, e+i=1/8, n+j=1/8, b+f=1/8, k+o=1/8, c+g=1/8, h+l=1/8, d+p=1/8,

a+k=1/8, c+i=1/8, j+l=1/8, b+d=1/8, m+o=1/8, e+g=1/8, k+n=1/8, f+p=1/8.

Since J4 is super-harmonic (weakly concave, theorem D [7])(See Footnote 1)
which implies that minima of J happen on the boundary of the probability
simplex, we have one additional constraint that for example a is either 0 or 1/8.
Solving this system of 64 equations with a computer with a = 0 or a = 1/(23)
gives the two announced solutions. Alternatively, one can remark that out of the
64 equations only

∑4
k=1

(
k
4

)−2+1 = 24−2+1 = 15 are independent with a = 0
or a = 1/(23), the 2 systems are hence fully determined and we have 2 solutions.
Alternatively, it could be possible to derive a geometric proof using the 4-cube
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as covering graph (called tesseract), of probability simplex, establishing that 0
probabilities only connects 1/8 probabilities as illustrated in Fig. 2.

For those 2 minima, we have H1 = 1, H2 = 2, H3 = 3, H4 = 3, and I1 = 1,
I2 = 0, I3 = 0, I4 = 1, and G1 = 1, G2 = 0, G3 = 0, G4 = 1, J1 = 1,J2 = 0,
J3 = 0, J3 = −1.

The preceding results generalizes to k-Brunnian link: consider k binary ran-
dom variables then we have the theorem:

Theorem 3 (k-links of information (See Footnote 1)). The absolute min-
imum of Jk, equal to −1, is attained only in the two cases j-independent
j-uplets of unbiased variables for all 1 < j < k with atomic probabilities
p(x1, ..., xk) = 1/2k−1 or p(x1, ..., xk) = 0 such that the associated vertex of
the associated k-hypercube covering graph of p(x1, ..., xk) = 1/2k−1 connects a
vertex of p(x1, ..., xk) = 0 and conversely. These cases correspond to the two
k-Brunnian links, the right one and the left one.

Proof. Following the same line as previously. We have Jk ≥ −min(H(X1)...,
H(Xk)) and Ik ≤ min(H(X1), ...,H(Xk)). Consider the case where all the
variables are i-independent for all i < k and all H1 are maximal, then
a simple combinatorial argument shows that Ik =

∑k−1
i=1 (−1)i−1

(
i
k

)
.i +

(−1)k−1H(X1, ...,Xk) that is Ik = k − H(X1, ...,Xk) now since I(X1; ...;Xk) ≤
min(H(X1), ...,H(Xk)) ≤ max(H(Xi) = 1, we have H(X1, ...,Xk) = k − 1 and
Ik = (−1)k−1 or J4 = −1, and it is a minima of Jk because it saturates the
bound J(X1; ...;Xk) ≥ max(H(Xi)) = −1. i-independent for all i < k imposes a
system of 2k − 2+ 1 = 15 independent equations (the +1 is for

∑
pi = 1). Since

Jk is weakly concave (theorem D [7])(See Footnote 1) which is equivalent to say
that minima of J happen on the boundary of the probability simplex, we have
one additional constraint that for example a is either 0 or 1/2k−1. It gives 2 sys-
tems of equations that are hence fully determined and we have 2 solutions. The
probability configurations corresponding to those two solutions can be found by
considering the k-cube as covering graph (well known to be bipartite: it can be
colored with only two colors) of the probability 2k −1-simplex, establishing that
0 probabilities only connects 1/2k−1 probabilities.

For those 2 minima, we have: for −1 < i < k Hi = i and Hk = k−1. We have
I1 = 1, for 1 < i < k Ii = 0, and Ik = −1k−1. We have G1 = 1, for 1 < i < k
Gi = 0, and Gk = 1. We have J1 = 1,for 1 < i < k Ji = 0,and Jk = −1.

4 Negativity and Kirkwood Decomposition Inconsistency

The negativity of K-L divergence can happen in certain cases, in an extended
context of measure theory. A measure space is a probability space that does
not necessarily realize the axiom of probability of a total probability equal to 1
[19], e.g. P (Ω) =

∑
qi = k, where k is an arbitrary real number (for real mea-

sure). In the seminal work of Abramsky and Brandenburger [1], two probability



642 P. Baudot

laws P and Q are contextual whenever there does not exist any joint probabil-
ity that would correspond to such marginals (but only non-positive measure).
In such cases, measures are said incompatible, leading to some obstruction to
the existence of a global section probability joint-distribution: P and Q are
locally consistent but globally inconsistent. This section underlines that interac-
tion information negativity displays a kind of “dual” phenomena, that we call
inconsistent decomposition (or indecomposability), whenever interaction infor-
mation is negative on a consistent global probability law then no local Kirkwood
decomposition can be consistent, leading to an obstruction to decomposability
(e.g. globally consistent but locally inconsistent decomposition measure).

Definition 1 (Inconsistent decomposition). A measure space P is consis-
tent whenever P (Ω) =

∑
pi = 1 (and hence a probability space), and inconsistent

otherwise.

We first show that given a probability law P , if D(P,Q) < 0 then Q is inconsis-
tent and cannot be a probability law.

Theorem 4 (K-L divergence negativity and inconsistency). Consider a
probability space with probability P and a measure space with measure Q, the neg-
ativity of the Kullback-Leibler divergence DΩ(Xj ;P,Q) implies that Q is incon-
sistent.

Proof. The proof essentially relies on basic argument of the proof of convex-
ity of K-L divergence or on Gibbs inequalities. Consider the K-L divergence
between P and Q: DΩ(Xj ;P,Q) = D(Xj ; p(x)||q(x)) = c

∑
i∈X pi ln qi

pi
. Since

∀x > 0, lnx � x − 1 with equality if and only if x = 1, hence we have with
c = −1/ ln 2; k

∑
i∈X pi ln qi

pi
≥ c

∑
i∈X pi( qi

pi
−1). We have c

∑
i∈X pi( qi

pi
−1) =

c
(∑

i∈X qi − ∑
i∈X pi

)
. P is a probability law, then by the axiom 4 of probabil-

ity [19], we have
∑

qi 	= 1 and hence c
(∑

i∈X qi − ∑
i∈X pi

)
= c

(∑
i∈X qi − 1

)
.

Hence if DΩ(Xj ;P,Q) < 0 then
∑

i∈X qi > 1, and since
∑

i∈X qi > 1, by defi-
nition Q is inconsistent.

Theorem 5 (Interaction negativity and inconsistent Kirkwood decom-
position, adapted from [16] p. 13). for n > 2, if Jn < 0 then no Kirkwood
probability decomposition subspace PXK

defined by the variable products of (XK)
variables with K ⊂ [n] is consistent.

Proof. The theorem is proved by remarking, that interaction negativity corre-
sponds precisely to cases where the Kirkwood approximation is not possible
(fails) and would imply a probability space with

∑
pi > 1 which contradicts

the axioms of probability theory. We will use a proof by contradiction. Let’s
assume that the probability law follows the Kirkwood approximation which can
be obtained from n − 1 products of variables and we have 6:

p̂(x1, ..., xn) =

∏
I⊂[n];card(I)=n−1 p(xI)
∏

I⊂[n];card(I)=n−2 p(xI)
:∏n

i=1 p(xi)

(11)
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Now consider that Jn < 0 then, since − log x < 0 if and only if x > 1, we have
( ∏

I⊂[n];card(I)=i;i odd pI
∏

I⊂[n];card(I)=i;i even pI

)(−1)n−1

> 1, which is the same as p̂(x1,...,xn)
p(x1,...,xn)

> 1 and

hence p̂(x1, ..., xn) > p(x1, ..., xn). Then summing over all atomic probabilities,
we obtain

∑N1×...×Nn

x1∈[N1],...,xn∈[Nn]
p̂(x1, ..., xn) >

∑N1×...×Nn

x1∈[N1],...,xn∈[Nn]
p(x1, ..., xn) and

hence
∑N1×...×Nn

x1∈[N1],...,xn∈[Nn]
p̂(x1, ..., xn) > 1 which contradicts axiom 4 of proba-

bility [19]. Hence there does not exist probability law on only n − 1 products
of variables satisfying Jn < 0. If there does not exist probability law on only
n−1 products of variables, then by marginalization on the n−1 products, there
does not exist such probability law for all 2 < k < n marginal distributions on
k variable product.

Remark: Negativity of interaction information provides intuitive insight into
contextual interactions as obstruction to decomposition-factorization into lower
order interactions, which is classical here in the sense that it does not rely on
quantum formalism: quantum information extends this phenomenon to self or
pairwise interactions: Information negativity happens also for n = 2 or n = 1
precisely for the states that violate Bell’s inequalities [12,14].

Acknowledgments. I thank warmly anonymous reviewer for helpful remarks improv-
ing the manuscript and Daniel Bennequin whose ideas are at the origin of this work.
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Abstract. Betti curves of symmetric matrices were introduced in [3] as
a new class of matrix invariants that depend only on the relative order-
ing of matrix entries. These invariants are computed using persistent
homology, and can be used to detect underlying structure in biological
data that may otherwise be obscured by monotone nonlinearities. Here
we prove three theorems that characterize the Betti curves of rank 1
symmetric matrices. We then illustrate how these Betti curve signatures
arise in natural data obtained from calcium imaging of neural activity
in zebrafish.

Keywords: Betti curves · Topological data analysis · Calcium imaging

1 Introduction

Measurements in biology are often related to the underlying variables in a non-
linear fashion. For example, a brighter calcium imaging signal indicates higher
neural activity, but a neuron with twice the activity of another does not produce
twice the brightness. This is because the measurement is a monotone nonlinear
function of the desired quantity. How can one detect meaningful structure in
matrices derived from such data? One solution is to try to estimate the mono-
tone nonlinearity, and invert it. A different approach, introduced in [3], is to
compute new matrix invariants that depend only on the relative ordering of
matrix entries, and are thus invariant to the effects of monotone nonlinearities.

Figure 1a illustrates the pitfalls of trying to use traditional linear algebra
methods to estimate the underlying rank of a matrix in the presence of a mono-
tone nonlinearity. The original 100 × 100 matrix A is symmetric of rank 5 (top
left cartoon), and this is reflected in the singular values (bottom left). In con-
trast, the matrix B with entries Bij = f(Aij) appears to be full rank, despite
having exactly the same ordering of matrix entries: Bij > Bk� if and only if
Aij > Ak�. The apparently high rank of B is purely an artifact of the monotone
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nonlinearity f . This motivates the need for matrix invariants, like Betti curves,
that will give the same answer for A and B. Such invariants depend only on the
ordering of matrix entries and do not “see” the nonlinearity [3].

Fig. 1. Low rank structure is obscured by monotone nonlinearities. The
matrix A is a 100× 100 symmetric matrix of rank 5. B is obtained from A by applying
the monotone nonlinearity f(x) = 1 − e−5x entrywise. This alters the singular values
so that B appears to be full rank, but this is purely an artifact of the nonlinearity. (b)
An axis simplex in R

10 generates a distance matrix that is full rank, and this is evident
in the singular values. The Betti curves, however, are consistent with an underlying
rank of 1.

In this paper we will characterize all Betti curves that can arise from rank
1 matrices. This provides necessary conditions that must be satisfied by any
matrix whose underlying rank is 1 – that is, whose ordering is the same as that
of a rank 1 matrix. We then apply these results to calcium imaging data of neural
activity in zebrafish and find that correlation matrices for cell assemblies have
Betti curve signatures of rank 1.

It turns out that many interesting matrices have an underlying rank of 1. For
example, consider the distance matrix induced by an axis simplex, meaning a
simplex in R

n whose vertices are α1e1, α2e2, . . . , αnen, where e1, e2, . . . , en are
the standard basis vectors. The Euclidean distance matrix D for these points
has off-diagonal entries Dij =

√
α2

i + α2
j , and is typically full rank (Fig. 1b, top).

But this matrix has underlying rank 1. To see this, observe that the matrix with
entries

√
α2

i + α2
j has the same ordering as the matrix with entries α2

i +α2
j , and

this in turn has the same ordering as the matrix with entries eα2
i+α2

j = eα2
i eα2

j ,
which is clearly rank 1. Although the singular values do not reflect this rank 1
structure, the Betti curves do (Fig. 1b, bottom).

Adding another vertex at the origin to an axis simplex yields a simplex with
an orthogonal corner. The distance matrix is now (n + 1) × (n + 1), and is
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again given by Dij =
√

α2
i + α2

j but with i, j = 0, . . . , n and α0 = 0. The same
argument as above shows that this matrix also has underlying rank 1.

The organization of this paper is as follows. In Sect. 2 we provide background
on Betti curves and prove three theorems characterizing the Betti curves of
symmetric rank 1 matrices. In Sect. 3 we illustrate our results by computing
Betti curves for pairwise correlation matrices obtained from calcium imaging
data of neural activity in zebrafish. All Betti curves were computed using the
well-known persistent homology package Ripser [1].

2 Betti Curves of Symmetric Rank 1 Matrices

Betti Curves. Given a real symmetric n × n matrix M , the
(
n
2

)
off-diagonal

entries Mij for i < j can be sorted in increasing order. We denote by M̂ be the
corresponding ordering matrix, where M̂ij = k if Mij is the k-th smallest entry.
From the ordering, we can construct an increasing sequence of graphs {Gt(M)}
for t ∈ [0, 1] as follows: for each graph, the vertex set is 1, . . . , n and the edge set
is

E(Gt(M)) =
{

(i, j) | M̂ij ≤ t

(
n

2

)}
.

Note that for t = 0, Gt(M) has no edges, while at t = 1 it is the complete graph
with all edges. Although t is a continuous parameter, it is clear that there are
only a finite number of distinct graphs in the family {Gt(M)}t∈[0,1]. Each new
graph differs from the previous one by the addition of an edge1. When it is clear
from the context, we will denote Gt(M) as simply Gt.

For each graph Gt, we build a clique complex X(Gt), where every k-clique
in Gt is filled in by a k-simplex. We thus obtain a filtration of clique complexes
{X(Gt) | t ∈ [0, 1]}. The i-th Betti curve of M is defined as

βi(t) = βi(X(Gt)) = rankHi(X(Gt),k),

where Hi is the i-th homology group with coefficients in the field k. The Betti
curves clearly depend only on the ordering of the entries of M , and are thus
invariant to (increasing) monotone nonlinearities like the one shown in Fig. 1a.
They are also naturally invariant to permutations of the indices 1, . . . , n, pro-
vided rows and columns are permuted in the same way. See [3,4] for more details.

Figure 2a shows the ordering matrix M̂ of a small matrix M . The complete
sequence of clique complexes is depicted in panel c, and the corresponding Betti
curves in panel b. Note that β2 = β3 = 0 for all values of the edge density t. On
the other hand, β1(t) = 1 for some intermediate values of t where a 1-dimensional
hole arises in the clique complex X(Gt). Note that β0(t) counts the number
of connected components for each clique complex, and is thus monotonically
decreasing for any matrix.

1 In the non-generic case of equal entries, multiple edges may be added at once.



648 C. Curto et al.

Fig. 2. Betti curves of real symmetric matrices. (a) ̂M is the ordering matrix for
a symmetric 5×5 matrix M of rank 4. (b) We plot the Betti curves β0, . . . , β3 induced

by M . (c) The filtration of clique complexes X(Gt) for ̂M from which the Betti curves
are computed. Note that at times t = 4/10 and t = 5/10, a one-dimensional hole
appears, contributing to nonzero β1 values in (b). At time t = 6/10, this hole is filled
by the cliques created after adding edge (2, 5), and thus β1(t) goes back to zero.

Our main results characterize Betti curves of symmetric rank 1 matrices. We
say that a vector x = (x1, . . . , xn) generates a rank 1 matrix M if M = xTx.
Perhaps surprisingly, there are significant differences in the ordering matrices
M̂ depending on the sign pattern of the xi. The simplest case is when M is
generated by a vector x with all positive or all negative entries. When x has
a mix of positive and negative entries, then M has a block structure with two
diagonal blocks of positive entries and two off-diagonal blocks of negative entries.
This produces qualitatively distinct M̂ . Even more surprising, taking M = −xTx
qualitatively changes the structure of the ordering in a way that Betti curves
can detect. This corresponds to building clique complexes from M by adding
edges in reverse order, from largest to smallest. Here we consider all four cases:
M = xTx and M = −xTx for x a vector whose entries are either (i) all the
same sign or (ii) have a mix of positive and negative signs.

When x has all entries the same sign, we say the matrix M = xTx is positive
rank one and M = −xTx is negative rank one. Observe in Fig. 3a that for a
positive rank one matrix, βk(t) for k > 0 is identically zero. In Fig. 3d we see
that the same is true for negative rank one matrices, though the β0(t) curve
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Fig. 3. Betti curves for different classes of symmetric rank 1 matrices. For
each of the six figures, we generate Betti curves β0, β1, β2, and β3 of twenty five ran-
domly generated 80 × 80 symmetric matrices. (a) The Betti curve of a positive rank
one matrix M = xTx where all entries of row vector x are chosen uniformly from [0, 1].
(d) The Betti curve of a negative rank one matrix, where the only difference from the
positive case is that M = −xTx. (b, e) follow similar suit, except the entries of x are
chosen uniformly from the interval [−1, 1] and thus has mixed signs. (c, f) are random
symmetric matrices constructed by making a matrix X with i.i.d. entries in [0, 1], and
setting M± = ±(X + XT )/2. For random matrices, there is no difference in the Betti
curves between the positive and negative versions.

decreases more slowly than in the positive rank one case. The vanishing of the
higher Betti curves in both cases can be proven.

Theorem 1. Let M be a positive rank one matrix or a negative rank one matrix.
The k-th Betti curve βk(t) is identically zero for all k > 0 and t ∈ [0, 1].

Proof. Without loss of generality, let x = (x1, x2, . . . , xn) be a vector such that
0 ≤ x1 ≤ x2 ≤ · · · ≤ xn. Let M = xTx be a rank one matrix generated by
x and for a given t ∈ [0, 1], consider the graph Gt. It is clear that, because x1

is minimal, if (i, j) is an edge of Gt, then (1, i) and (1, j) are also edges of Gt,
since x1xi ≤ xixj and x1xj ≤ xixj . It follows that X(Gt) is the union of a cone
and a collection of isolated vertices, and hence is homotopy equivalent to a set
of points. It follows that βk(t) = 0 for all k > 0 and all t ∈ [0, 1], while β0(t)
is the number of isolated vertices of Gt plus one (for the cone component). See
Fig. 4 for an example. The same argument works for −M , where the cone vertex
corresponds to xn instead of x1. �

The axis simplices we described in the Introduction are all positive rank one.
We thus have the following corollary.
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Fig. 4. Illustration for the proof of the positive rank one case. Note that vertex 1 has
minimal value in the generating vector x, and hence all other nodes are connected to
1 before any other node.

Corollary 1. The k-th Betti curve of a distance matrix induced by an axis sim-
plex or by a simplex with an orthogonal corner is identically zero for k > 0.

In the cases where x has mixed signs, the situation is a bit more complicated.
Figure 3b shows that for positive mixed sign matrices M = xTx, the first Betti
curve β1(t) ramps up linearly to a high value and then quickly crashes down to
1. In contrast, Fig. 3e shows that the negative mixed sign matrices M = −xTx
have vanishing β1(t) and have a similar profile to the positive and negative rank
one Betti curves in Fig. 3a, d. Note, however, that β0 decreases more quickly
than the negative rank one case, but more slowly than positive rank one.

Figure 5 provides some intuition for the mixed sign cases. The matrix
M = xTx splits into blocks, with the green edges added first. Because these
edges belong to a bipartite graph, the number of 1-cycles increases until Gt is
a complete bipartite graph with all the green edges (see Fig. 5b). This is what
allows β1(t) to increase approximately linearly. Once the edges corresponding to
the diagonal blocks are added, we obtain coning behavior on each side similar to
what we saw in the positive rank one case. The 1-cycles created by the bipartite
graph quickly disappear and the higher-order Betti curves all vanish. On the
other hand, for the negative matrix −M = −xTx, the green edges will be added
last. This changes the β1(t) behavior dramatically, as all 1-cycles in the bipartite
graph are automatically filled in with cliques because both sides of the bipartite
graph are complete graphs by the time the first green edge is added.

Lemma 1. Let M be an n × n positive mixed sign rank one matrix, generated
by a vector x with precisely � negative entries. Then Gt(M) is bipartite for
t ≤ t0 = �(n − �)/

(
n
2

)
and is the complete bipartite graph, K�,n−�, at t = t0.

The next two theorems characterize the Betti curves for the positive and
negative mixed sign cases. We assume x = (x1, x2, . . . , x�, x�+1, . . . , xn), where
x1 ≤ x2 ≤ · · · ≤ x� < 0 ≤ x�+1 ≤ · · · ≤ xn.

Theorem 2. Let M = xTx. Then β1(t) ≤ (�− 1)(n− �− 1), with equality when
Gt is the complete bipartite graph K�,n−�. The higher Betti curves all vanish:
βk(t) = 0 for k > 1 and all t ∈ [0, 1].
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Fig. 5. (a) A mixed sign rank one matrix M = xTx with negative entries in green.
(b) The graph Gt induced by M at t = 1, with edge colors corresponding to matrix
colorings. The negative entries (green) get added first and form a complete bipartite
graph. In the negative version, −xTx, the green edges are added last. This leads to
qualitative differences in the Betti curves. (Color figure online)

Theorem 3. Let M = −xTx. Then βk(t) = 0 for k > 0 and all t ∈ [0, 1].

To prove these theorems, we need a bit more algebraic topology. Let A and
B be simplicial complexes with disjoint vertex sets. Then the join of A and B,
denoted A ∗ B, is defined as

A ∗ B = {σA ∪ σB | σA ∈ A and σB ∈ B}.

The homology of the join of two simplicial complexes, was computed by J.
W. Milnor [5, Lemma 2.1]. We give the simpler version with field coefficients:

H̃r+1(A ∗ B) =
⊕

i+j=r

H̃i(A) ⊗ H̃j(B),

where H̃ denotes the reduced homology groups2. Recall that a simplicial complex
A is called acyclic if βi(A) = rank(Hi(A)) = 0 for all i > 0.

Corollary 2. If A and B are acyclic, then Hi(A ∗ B) = 0 for all i > 1. Also
β1(A ∗ B) = rankH1(A ∗ B) = rank(H̃0(A) ∗ H̃0(B)) = (β0(A) − 1)(β0(B) − 1).

Example 1. The complete bipartite graph, K�,m, is the join of two zero dimen-
sional complexes, S� and Sm. We see that β1(K�,m) = (� − 1)(m − 1). This
immediately gives us the upper bound on β1(t) from Theorem 2.

Example 2. Let G be a graph such that V (G) = B ∪R. Let GB be the subgraph
induced by B and GR the subgraph induced by R. Assume that every vertex in
B is connected by an edge to every vertex in R. Then X(G) = X(GB) ∗X(GR).

We are now ready to prove Theorems 2 and 3. Recall that in both theorems,
M is generated by a vector x with positive and negative entries. We will use
2 Note that these are the same as the usual homology groups for i > 0.
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the notation B = {i | xi < 0} and R = {i | xi ≥ 0}, and refer to these as the
“negative” and “positive” vertices of the graphs Gt(M). Note that |B| = � and
|R| = n − �. In Fig. 5b, B = {1, 2, 3} and R = {4, 5, 6, 7}. When M = xTx, as in
Theorem 2, the “crossing” edges between B and R are added first. (These are
the green edges in Fig. 5b.) When M = −xTx, as in Theorem 3, the edges within
the B and R components are added first, and the crossing edges are added last.

Proof (of Theorem 2). We’ve already explained where the Betti 1 bound β1(t) ≤
(� − 1)(n − � − 1) comes from (see Example 1). It remains to show that the
higher Betti curves all vanish for t ∈ [0, 1]. Let t0 be the value at which Gt0(M)
is the complete bipartite graph with parts B and R. For t ≤ t0, when edges
corresponding to negative entries of M are being added, Gt(M) is always a
bipartite graph (see Lemma 1). It follows that Gt(M) has no cliques of size
greater than two, and so X(Gt(M)) = Gt(M) is a one-dimensional simplicial
complex. Thus, βk(t) = 0 for all k > 1.

For t > t0, denote by MB and MR the principal submatrices induced by
the indices in B and R, respectively. Clearly, MB and MR are positive rank
one matrices, and hence by Theorem 1 the clique complexes X(Gt(MB)) and
X(Gt(MR)) are acyclic for all t. Moreover, for t > t0 we have that X(Gt(M)) =
X(Gt(MB)) ∗ X(Gt(MR)), where ∗ is the join (see Example 2). It follows from
Corollary 2 that βk(t) = 0 for all k > 1. �

The proof of Theorem 3 is a bit more subtle. In this case, the edges within
each part B and R are added first, and the “crossing” edges come last. The
conclusion is also different, as we prove that the X(Gt(M)) are all acyclic.

Proof (of Theorem 3). Recall that M = −xTx, and let t0 be the value at which
all edges for the complete graphs KB and KR have been added, so that Gt0(M) =
KB∪KR (note that this is a disjoint union). Let MB and MR denote the principal
submatrices induced by the indices in B and R, respectively. Note that for t ≤ t0,
X(Gt(M)) = X(Gt(MB)) ∪ X(Gt(MR)). Since MB and MR are both positive
rank one matrices, and the clique complexes X(Gt(MB)) and X(Gt(MR)) are
disjoint. It follows that X(Gt(M)) is acyclic for t ≤ t0.

To see that X(Gt(M)) is acyclic for t > t0, we will show that X(Gt(M))
is the union of two contractible simplicial complexes whose intersection is also
contractible. Let M∗ be the positive rank one matrix generated by the vector
of absolute values, y = (|x1|, . . . , |xn|), so that M∗ = yT y. Now observe that
for t > t0, the added edges in Gt(M) correspond to entries of the matrix where
Mij = −xixj = |xi||xj | = M∗

ij . This means that the “crossing” edges have the
same relative ordering as those of the analogous graph filtration Ft(M∗). Let s
be the value at which the last edge added to Fs(M∗) is the same as the last edge
added to Gt(M). (In general, s �= t and Fs(M∗) �= Gt(M).)

Since M∗ is positive rank one, the clique complex X(Fs(M∗)) is the union
of a cone and some isolated vertices (see the proof of Theorem 1). Let F̃s be
the largest connected component of Fs(M∗) – that is, the graph obtained by
removing isolated vertices from Fs(M∗). The clique complex X(F̃s) is a cone,
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and hence contractible (not merely acyclic). Now define two simplicial complexes,
Δ1 and Δ2, as follows:

Δ1 = X(F̃s ∪ KB) and Δ2 = X(F̃s ∪ KR).

It is easy to see that both Δ1 and Δ2 are contractible. Moreover, X(Gt) =
Δ1∪Δ2. Since the intersection Δ1∩Δ2 = X(F̃s) is contractible, using the Mayer-
Vietoris sequence we can conclude that X(Gt) is contractible for all t > t0. �

3 Application to Calcium Imaging Data in Zebrafish
Larvae

Calcium imaging data for neural activity in the optic tectum of zebrafish larvae
was collected by the Sumbre lab at École Normale Superieure. The individual
time series of calcium activation for each neuron were preprocessed to produce
neural activity rasters. This in turn was used to compute cross correlograms
(CCGs) that capture the time-lagged pairwise correlations between neurons. We
then integrated the CCGs over a time window of ±τmax for τmax = 1 s, to obtain
pairwise correlation values:

Cij =
1

2τmaxrirj

1
T

τmax∫

−τmax

T∫

−T

fi(t)fj(t + τ)dtdτ.

Here T is the total time of the recording, fi(t) is the raster data for neuron i
taking values of 0 or 1 at each (discrete) time point t. The “firing rate” ri is the
proportion of 1s for neuron i over the entire recording.

The Sumbre lab independently identified cell assemblies: subsets of neurons
that were co-active spontaneously and in response to visual stimuli, and which
are believed to underlie functional units of neural computation. Figure 6 shows
the Betti curves of principal submatrices of C for two pre-identified cell assem-
blies. The Betti curves for the assemblies display the same signature we saw for
rank 1 matrices, and are thus consistent with an underlying low rank. In con-
trast, the singular values of these same correlation matrices (centered to have
zero mean) appear random and full rank, so the structure detected by the Betti
curves could not have been seen with singular values. To check that this low
rank Betti curve signature is not an artifact of the way the correlation matrix
C was computed, we compared the Betti curves to a randomly chosen assembly
of the same size that includes the highest firing neuron of the original assembly.
(We included the highest firing neuron because this could potentially act as a
coning vertex, yielding the rank 1 Betti signature for trivial reasons.) In sum-
mary, we found that the real assemblies exhibit rank 1 Betti curves, while those
of randomly-selected assemblies do not.
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Fig. 6. We plot Betti curves and singular values of two submatrices induced by prei-
dentified cell assemblies 83 and 122 (data courtesy of the Sumbre lab at Ecole Normale
Superieure). The Betti curves are consistent with a rank one matrix. In contrast, Betti
curves for random assembly whose pairwise correlations come from the same CCG
matrix of the same order. Below each Betti curve, we plot the normalized singular
values and visually see that they are full rank and appear close to the singular values
of a random assembly of the same size.

4 Conclusion

In this paper, we proved three theorems that characterized the Betti curves of
rank 1 symmetric matrices. We also showed these rank 1 signatures are present
in some cell assembly correlation matrices for zebrafish. A limitation of these
theorems, however, is that the converse is not in general true. Identically zero
Betti curves do not imply rank 1, though our computational experiments suggest
they are indicative of low rank, similar to the case of low-dimensional distance
matrices [3]. So while we can use these results to rule out an underlying rank 1
structure, as in the random assemblies, we can not conclude from Betti curves
alone that a matrix has underlying rank 1.

Code. All code used for the construction of the figures, except for Fig. 6, is
available on Github. Code and data to produce Fig. 6 is available upon request.
https://github.com/joshp112358/rank-one-betti-curves.
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Abstract. The theory of persistence, which arises from topological data
analysis, has been intensively studied in the one-parameter case both
theoretically and in its applications. However, its extension to the multi-
parameter case raises numerous difficulties, where it has been proven
that no barcode-like decomposition exists. To tackle this problem, alge-
braic invariants have been proposed to summarize multi-parameter per-
sistence modules, adapting classical ideas from commutative algebra and
algebraic geometry to this context. Nevertheless, the crucial question of
their stability has raised little attention so far, and many of the proposed
invariants do not satisfy a naive form of stability.

In this paper, we equip the homotopy and the derived category of
multi-parameter persistence modules with an appropriate interleaving
distance. We prove that resolution functors are always isometric with
respect to this distance. As an application, this explains why the graded-
Betti numbers of a persistence module do not satisfy a naive form of sta-
bility. This opens the door to performing homological algebra operations
while keeping track of stability. We believe this approach can lead to the
definition of new stable invariants for multi-parameter persistence, and
to new computable lower bounds for the interleaving distance (which has
been recently shown to be NP-hard to compute in [2]).

1 Introduction

Persistence theory appeared in the early 2000s as a theoretical framework to
define topological descriptors of real-world datasets. At its roots, persistence
studies filtrations of topological spaces built out of datasets, and defines algebraic
invariants of these filtrations (such as the now famous barcodes) together with a
notion of metric between these invariants. It has since been widely developed and
applied. We refer the reader to [14] for an extended exposition of the classical
theory and of its applications.

The need for studying persistence modules obtained from functions valued
in higher-dimensional partially ordered sets naturally arises from the context
of data analysis, see for example [11]. However, as shown in [4], the category
Pers(Rd) of functors (Rd,≤) → Mod(k) seems to be too general at first sight
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for d ≥ 2 to allow for computer friendly analysis. Indeed, it contains a full
sub-category isomorphic to the one of Zn-graded-k[x1, ..., xn]-modules.

Ideas from algebraic geometry [7] and combinatorial commutative algebra
[5,13] have since been developed in the context of persistence to study the cat-
egory of persistence modules with multiple parameters from a computational
point of view. These works propose new invariants for summing up the alge-
braic structure of a given persistence module, arising from homological algebra
methods. While informative about the algebraic structure of a given module, the
-crucial- question of the stability of these invariants is not studied yet. Indeed,
data arising from the real world comes with noise, and one cannot avoid a theo-
retical study of the dependency of topological descriptors to small perturbations
in view of practical applications.

In this paper, we show that simple homological operations –such as consider-
ing graded-Betti numbers of a persistence module– are not stable in a naive way
with respect to the interleaving distance. To overcome this problem, we equip
the homotopy (resp. derived) category of persistence modules of an interleaving-
like distance and prove that the projective resolution functors (resp. localiza-
tion functor) are distance-preserving with respect to the distances we introduce.
These distance comparison theorems open the door to perform homological alge-
bra operations on free resolutions while keeping track of stability, and has already
drawn attention in later works [8,12]. The future directions of research we shall
undertake consist in studying precisely which meaningful stable invariants one
can derive from our distance comparison theorems, which we explain at the end
of the paper.

We acknowledge that some work has been undertaken to study interleaving
distances on the homotopy category of topological spaces [3]. It should be noticed
that these results are of a different nature than ours for that they are purely
topological.

2 Multiparameter Persistence

Throughout the paper, we let k be a field, and d ∈ Z≥0. We equip R
d with the

product order ≤ defined by coordinate-wise comparisons. We denote by (Rd,≤)
the associated partially ordered set (poset) category. We refer the reader to [10]
for a detailed exposition of the content of this section.

A persistence module over Rd is a functor from (Rd,≤) to the category of k-
vector spaces Mod(k). We denote by Pers(Rd) the category of persistence modules
over Rd with natural transformations of functors as homomorphisms. It is easily
shown to be a Grothendieck category. The main example of persistence modules
over Rd is as follows. Given a function u : X → R

d from the topological space X
(not necessarily continuous), its associated sub-level sets filtration is the functor
S(u) from the poset category (Rd,≤) to the category of topological spaces Top,
defined by S(u)(s) = u−1{x ∈ R

d | x ≤ s}, and S(u)(s ≤ t) is the inclusion of
u−1{x ∈ R

d | x ≤ s} into u−1{x ∈ R
d | x ≤ t}. For n ≥ 0, the n-th sublevel set

persistence modules associated to u is the functor Sn(u) := Hsing
n ◦ S(u), where

Hsing
n denotes the n-th singular homology functor with coefficients in k.
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Another example is given by the following. A subset I ⊂ R
d is an interval,

if it satisfies: (i) for any x, z ∈ I, and y ∈ R
d satisfying x ≤ y ≤ z, then y ∈ I;

(ii) for x, y ∈ I there exists a finite sequence (ri)i=0..n in P such that r0 = x,
rn = y and for any i < n, ri ≤ ri+1 or ri+1 ≤ ri.

Definition 1. Given I an interval of (Rd,≤), one defines kI the interval per-
sistence module associated to I by:{

kI(x) = k if x ∈ I, 0 otherwise,
kI(x ≤ y) = idk if x and y ∈ I, 0 otherwise.

One can easily prove that kI is an indecomposable persistence module.
Given ε ∈ R, the ε-shift is the functor ·[ε] : Pers(Rd) → Pers(Rd) defined by

M [ε](s) = M
(
s + (ε, ..., ε)

)
and M [ε](s ≤ t) = M

(
s + (ε, ..., ε) ≤ t + (ε, ..., ε)

)
for s ≤ t in R

d. For ϕ ∈ HomPers(Rd)(M,N), we set ϕ[ε](s) = ϕ(s + (ε, ..., ε)).
It is immediate to verify that ·[ε] ◦ ·[ε′] = ·[ε′] ◦ ·[ε] = ·[ε + ε′]. When ε ≥ 0,
one also defines the ε-smoothing morphism of M as the natural transformation
M ⇒ M [ε] defined by τM

ε (t) = M(t ≤ t + (ε, ..., ε)), t ∈ R
d.

Given M,N ∈ Pers(Rd) and ε ≥ 0, an ε-interleaving between M and N is the
data of two morphisms f : M → N [ε] and g : N → M [ε] such that g[ε] ◦ f = τM

2ε

and f [ε]◦g = τN
2ε . If such morphisms exist, we write M ∼ε N . One shall observe

that M ∼0 N if and only if M and N are isomorphic. Hence, ε-interleavings can
be thought of as a weaker form of isomorphisms.

Definition 2. Let M,N ∈ Pers(Rd). One defines their interleaving distance as
the possibly infinite number:

dI(M,N) = inf{ε ∈ R≥0 | M ∼ε N}.

The interleaving distance is an extended pseudo-distance on Pers(Rd)
(a pseudo-distance that is not always finite). It allows to express the stability
properties of the sublevel-sets persistence functor as celebrated by the algebraic
stability theorem [10, Theorem 5.3]: let u, v : X → R

d be two maps from a
topological space X to R

d, and n ≥ 0, one has

dI(Sn(u),Sn(v)) ≤ sup
x∈X

|u(x) − v(x)|.

One defines Bd to be the algebra of generalized polynomials with coefficients
in k and real positive exponents, that is polynomials that expresses as a finite
sum

∑
i αix

e1
i

1 ...x
ed

i

d , with αi ∈ k and ej
i ∈ R≥0. Given e = (e1, ..., ed) ∈ (R≥0)d,

one shall denote the monomial xe1
1 ...xed

d by xe. The polynomial k-algebra Bd is
naturally endowed with a R

d-grading, given by the decomposition of k-vector
spaces: Bd =

⊕
e∈Rd

≥0
k · xe. We denote by R

d-grad-Bd-mod the category of Rd

graded modules over Bd.

Theorem 1 [4]. There exists an equivalence of abelian categories α :
Pers(Rd) → R

d-grad-Bd-mod.
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This equivalence of categories explains the complexity and impossibility to
give a combinatorial classification of Pers(Rd) when d ≥ 2 as the existence of
barcodes in the case n = 1.

3 Homotopy and Derived Interleavings

Let C be an additive category. We shall denote by C(C ) (resp. K(C ), resp.
D(C )) the category of chain complexes of C (resp. the homotopy category of
C , resp. the derived category of C ). We denote C−(C ), K−(C ), D−(C ) their
full subcategories consisting of chain complexes X such that there exists N ∈ Z

such that Xn = 0 for n ≥ N . We also write Q for the localization functor
K(C ) → D(C ). We refer the reader to [9, Chapter 1], for the definitions of these
constructions. For ε ∈ R, since the functor ·[ε] is an additive auto-equivalence
of Pers(Rd), it is exact and preserves projective objects. Consequently, ·[ε] pre-
serves quasi-isomorphisms and induces a well-defined triangulated endofunctor
of D(Pers(Rd)), by applying ·[ε] degree-wise to a chain complex. We will still
denote ·[ε] the induced functors on C(Pers(Rd)), K(Pers(Rd)) and D(Pers(Rd)).
Let X be an object of C(Pers(Rd)). It is immediate to verify that the collection
(τXi

ε )i∈Z defines a homomorphism of chain complexes

τX
ε ∈ HomC(Pers(Rd))(X,X[ε]).

We shall denote by [τX
ε ] (resp. {τX

ε }) the image of τX
ε in K(Pers(Rd)) (resp.

D(Pers(Rd))). Given ε, ε′ ≥ 0, the equality τ
X[ε]
ε′ ◦ τX

ε = τX
ε+ε′ implies:

[τX[ε]
ε′ ] ◦ [τX

ε ] = [τX
ε+ε′ ] and {τ

X[ε]
ε′ } ◦ {τX

ε } = {τX
ε+ε′}. (1)

Definition 3. Let X and Y be two objects of C(Pers(Rd)), and ε ≥ 0. An ε-
homotopy-interleaving (resp. an ε-derived-interleaving) between X and Y is the
data of two morphisms of K(Pers(Rd)), f : X → Y [ε] and g : X → Y [ε] (resp.
two morphisms of D(Pers(Rd)), f̃ : X → Y [ε] and g̃ : X → Y [ε]) such that:

g[ε] ◦ f = [τX
2ε ] (resp. g̃[ε] ◦ f̃ = {τX

2ε}),

f [ε] ◦ g = [τY
2ε] (resp. f̃ [ε] ◦ g̃ = {τY

2ε}).

In this situation, we say that X and Y are ε-homotopy-interleaved (resp.
ε-derived-interleaved) and write X ∼K

ε Y (resp. X ∼D
ε Y ).

Definition 4. The homotopy interleaving distance (resp. derived interleaving
distance) between X and Y in C(Pers(Rd)) is the possibly infinite number:

dK
I (X, Y ) = inf{ε ∈ R≥0 | X ∼K

ε Y } (resp. dD
I (X, Y ) = inf{ε ∈ R≥0 | X ∼D

ε Y }).

Proposition 1. The map dK
I (resp. dD

I ) is an extended pseudo-distance on
Obj(K(Pers(Rd))) (resp. Obj(D(Pers(Rd)))).
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Proof. For X an object of C(Pers(Rd)), we have dK
I (X,X) = dD

I (X,X) = 0 since
isomorphisms are 0-interleavings. The triangle inequality is an easy consequence
of Eq. 1.

Definition 5. A projective resolution functor of an abelian category C is the
following data: for all objects X in K−(C ), (i) a projective resolution j(X), (ii)
a quasi-isomorphism iX : j(X) → X.

Note that Lemma 13.23.3 in [16] states that the data of a resolution functor
is equivalent to the data of a unique functor P : K−(C ) → K−(P), where P
is the full sub-category of projective objects of X, together with a unique 2-
isomorphism Q ◦ P

∼⇒ Q. From Theorem 1, the category Pers(Rd) is equivalent
to a category of modules over a commutative ring. As a consequence, it is abelian
and has enough projectives. We recall the following important proposition about
projective resolution functors.

Proposition 2. (13.23.4, [16]). Assume C is an abelian category with enough
projectives. Then there exists a projective resolution functor of C . Moreover,
for any two such functors P, P ′ there exists a unique isomorphism of functors
P

∼⇒ P ′ such that Q ◦ P
∼⇒ Q equals the composition Q ◦ P

∼⇒ Q ◦ P ′ ∼⇒ Q.

Consequently, Pers(Rd) admits a projective resolution functor (j, iPers(Rd))
with associated functor P . We will keep writing P for its restriction to Pers(Rd),
identified as the full subcategory of K−(Pers(Rd)) with objects complexes con-
centrated in degree 0. We can now state the distance comparison theorem, that
we will prove in this section.

Theorem 2. The following diagram of categories commutes up to isomorphism
of functors, and all functors are object-wise isometric.

(Pers(Rd), dI)
P

�����
���

���
��� ι

  ���
����

����
���

(K−(P), dK
I )

Q

∼ �� (D−(Pers(Rd)), dD
I )

The functor P (− · [ε])[−ε] clearly is a resolution functor. Let ηε : P (− ·
[ε])[−ε] ∼⇒ P be the unique isomorphism of functors given by Proposition 2, and
set χε := ηε[ε] : P (− · [ε]) ∼⇒ P (−)[ε].

Lemma 1. Let M ∈ Pers(Rd) and ε ≥ 0, then P (τM
ε ) = χε(M)[ε] ◦

[
τ

P (M)
ε

]
.

Consequently: H0
([

τ
P (M)
ε

])
= τM

ε .

Proof. Consider a chain morphism ϕ : P (M)[ε] → P (M [ε]) such that [ϕ] =
χε(M)[ε]. Observe the commutativity of the following diagram in C(Pers(Rd)):
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... �� P i(M)

τP i(M)
ε

��

�� ... �� P 1(M)

τP1(M)
ε

��

�� P 0(M) ��

τP0(M)
ε

��

M

τM
ε

��

�� 0

... �� P i(M)[ε] ��

ϕi

��

... �� P 1(M)[ε] ��

ϕ1

��

P 0(M)[ε] ��

ϕ0

��

M [ε] ��

idM[ε]

��

0

... �� P i(M [ε]) �� ... �� P 1(M [ε]) �� P 0(M [ε]) �� M [ε] �� 0

Therefore, ϕ ◦ τ
P (M)
ε is one lift of τM

ε , which by characterization of lifts of
morphism to projective resolutions [15, Lemma 6.7] proves that

P (τM
ε ) =

[
ϕ ◦ τP (M)

ε

]
= [ϕ] ◦

[
τP (M)
ε

]
= χε(M)[ε] ◦

[
τP (M)
ε

]
.

Lemma 2. Let M and N be two persistence modules in Pers(Rd) and ε ≥ 0.

1. If M and N are ε-interleaved with respect to f : M → N [ε] and g : N → M [ε]
in Pers(Rd), then P (M) and P (N) are ε-homotopy-interleaved with respect
to χε(N)[ε] ◦ P (f) and χε(M)[ε] ◦ P (g) in K(Pers(Rd)).

2. Conversely, if P (M) and P (N) are ε-homotopy-interleaved with respect to
α : P (M) → P (N)[ε] and β : P (N) → P (M)[ε] in K(Pers(Rd)), then M and
N are ε-interleaved with respect to H0(α) and H0(β) in Pers(Rd).

Proof. 1. Applying the functor P to the ε-interleavings gives: P (τM
2ε ) = P (g[ε])◦

P (f) and P (τN
2ε) = P (f [ε])◦P (g). Therefore we have a commutative diagram

in K(Pers(Rd)):

P (M)

P (τM
2ε )

��P (f) �� P (N [ε])
P (g[ε]) ��

χε(N)[ε] �
��

P (M [2ε])

χ2ε(M)[2ε]�
��

P (N)[ε]
χ2ε(M)[2ε]◦P (g[ε])◦(χε(N)[ε])−1

�� P (M)[2ε]

We introduce the morphisms f̃ = χε(N)[ε] ◦ P (f) and g̃ = χε(M)[ε] ◦ P (g).
By the unicity of χε, we obtain the following:

g̃[ε] = χ2ε(M)[2ε] ◦ P (g[ε]) ◦ (χε(N)[ε])−1
, H0

(
g̃[ε] ◦ f̃

)
= τM

2ε . (2)

From Eq. 2 and Lemma 1, we deduce: g̃[ε]◦ f̃ = [τP (M)
2ε ]. The above equations

also hold when intertwining f and g, M and N , f̃ and g̃. Therefore, f̃ and g̃
define a homotopy ε-homotopy-interleaving between P (N) and P (M).
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2. The converse is obtained by applying H0 to the ε-homotopy-interleaving mor-
phisms, and Lemma 1 according to which H0([τP (M)

ε ]) = τM
ε .

Proof. (of Theorem 2)
There only remains to prove that ι and Q are distance preserving. Since by

definition, ι(τM
ε ) = {τM

ε }, it is clear that ι sends ε-interleavings to ε-derived-
interleavings. Conversely, assume that ι(M) and ι(N) are ε-derived-interleaved.
Then since ι is fully-faithful, applying H0 to the ε-derived-interleaving mor-
phisms in the derived category leads to a ε-interleaving in Pers(Rd).

By definition, for X an object of K−(P), Q([τX
ε ]) = {τX

ε }, which shows that
Q preserves interleavings. Now assume that Q(X) and Q(Y ) are ε-interleaved.
Since Q is fully-faithful and Q([τX

ε ]) = {τX
ε }, one deduces the existence of a

ε-interleaving between X and Y in K−(P).

4 Application: Explaining the Instability of the
Graded-Betti Numbers of Persistence Modules

Given a ∈ R
d, let Ua = {x ∈ R

d | a ≤ x} and define Fa := kUa (see Definition
1). A finite free persistence module over R

d is a persistence module F such
that there exists a function ξ(F ) : R

d → Z≥0 with finite support such that
F 
 ⊕

a∈Rd F
⊕ξ(F )(a)
a

1. We will say that a projective resolution of M ∈ Pers(Rd)
is finite free if each step of the resolution is a finite free persistence module.
A minimal finite free resolution of M , if it exists, is a finite free resolution
X ∈ C(Pers(Rd)) such that any other finite free resolution Y ∈ C(Pers(Rd)) of
M splits as Y 
 X ⊕ Y ′, for some Y ′ ∈ C(Pers(Rd)) [15, Theorem 7.5].

Definition 6 (12.1, [15]). Let M ∈ Pers(Rd) and assume that M admits a
minimal finite free resolution F ∈ C(Pers(Rd)). The n-th graded-Betti number
of M is the function βn(M) := ξ(F−n).

We can find two persistence modules which are arbitrary close with respect
to the interleaving distance and have different graded-Betti numbers. For ε > 0,
consider M := 0 and Nε := k[0,ε)2 in Pers(R2). Then Nε admits the following
minimal finite free resolution:

Cε = 0 �� F(ε,ε)

(
1
1

)
�� F(ε,0) ⊕ F(0,ε)

( 1 −1 )�� F(0,0)
�� 0

Therefore β0(Nε)(x) = 1 for x = (0, 0) and β0(M)(x) = 0 otherwise, and
β0(M) is the zero function. Observe that the interleaving distance between M
and Nε is ε

2 , consequently:

dI(M,Nε) =
ε

2
and sup

x∈Rd

|β0(M)(x) − β0(Nε)(x)| = 1.

1 Where F
⊕ξ(F )(a)
a is the direct sum of ξ(F )(a) copies of Fa.
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This very simple example shows that graded-Betti numbers are extremely
sensitive to noise. An arbitrary small perturbation of the input persistence mod-
ules can lead to an arbitrary large change in the graded-Betti numbers. The fun-
damental reason for this, is that interleavings only lift to minimal free resolution
up to homotopy, and we know from Theorem 2 that dK

I (Cε, 0) = dI(Nε, 0) = ε
2 .

In our example, it is not possible to construct an ε
2 -interleaving between Cε

and 0 without taking homotopies into account, which explains what we call the
graded-Betti numbers instability.

5 Future Directions of Work

In [1], the author bounds the bottleneck distance between two finite free per-
sistence modules by a factor times their interleaving distance. One could ask
whether it is possible to define a bottleneck distance between minimal free reso-
lutions of two persistence modules (that would allow to match free indecompos-
able modules across degrees), and to bound this distance by a multiple of the
homotopy interleaving distance. This could lead to a computable lower bound to
the interleaving distance (which has been shown in [2] to be NP-hard to compute
for d ≥ 2), without relying on any kind of decomposition theorems.

Another interesting direction of research would be to understand the impli-
cations of [6] to our setting. Indeed, in this work, the authors classify all rank
functions on the derived category of vector spaces. This naturally leads to a
classification of rank functions for the derived category of persistence modules.
Whether these rank functions satisfy a form of stability with respect to our
derived interleaving distance should be investigated in the future.
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Abstract. Network neuroscience investigates brain functioning through
the prism of connectivity, and graph theory has been the main frame-
work to understand brain networks. Recently, an alternative framework
has gained attention: topological data analysis. It provides a set of met-
rics that go beyond pairwise connections and offer improved robustness
against noise. Here, our goal is to provide an easy-to-grasp theoretical
and computational tutorial to explore neuroimaging data using these
frameworks, facilitating their accessibility, data visualisation, and com-
prehension for newcomers to the field. We provide a concise (and by
no means complete) theoretical overview of the two frameworks and a
computational guide on the computation of both well-established and
newer metrics using a publicly available resting-state functional magnetic
resonance imaging dataset. Moreover, we have developed a pipeline for
three-dimensional (3-D) visualisation of high order interactions in brain
networks.

Keywords: Network neuroscience · Data visualisation · Topological
data analysis

1 Introduction

Network neuroscience sees the brain through an integrative lens by mapping
and modelling its elements and interactions [3,21]. The main theoretical frame-
work from complex network science used to model, estimate, and simulate brain
networks is graph theory [9,24]. A graph is comprised of a set of intercon-
nected elements, also known as vertices and edges. Vertices (also known as
nodes) in a network can be, for example, brain areas, while edges (also known
as links) are a representation of the functional connectivity between pairs of
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vertices [42]. Several descriptive graph metrics1 [16] can then be calculated
to describe the brain network’s characteristic [21,26], and they have consis-
tently allowed researchers to identify non-random features of brain networks.
An example is the ground-breaking discovery that the brain (like most other
real-world networks) follows a ‘small-world network’ architecture [2,43], indi-
cating a compromise between wiring cost and optimal efficiency. Using graph
theory, many insights have been gathered on the healthy and diseased brain neu-
robiology [19,26]. Algebraic topological data analysis (TDA) provides another
prism on brain connectivity investigation beyond the ‘simple’ pairwise connec-
tions (i.e., higher-order interactions). With TDA, one can identify a network’s
shape and its invariant properties (i.e., coordinate and deformation invariances
[47]). Moreover, TDA often provides more robustness against noise than graph
theoretical analysis [41], a significant neuroimaging data issue [30]. Although
TDA has only recently been adopted to network neuroscience [15,39], it has
already shown exciting results on brain network data [14,18]. However, clinical
scientists’ comprehension and application can be hindered by TDA’s complexity
and mathematical abstraction. Here, we want to facilitate the use of network
neuroscience and its constituents graph theory and TDA by the general neu-
roscientific community by providing both computational and theoretical expla-
nation of the primary metrics, strongly inspired by [21]. The work is divided
into a longer manuscript [13] containing several resources (see Table in [13])
and more theoretical explanations, and a publicly available Jupyter Notebook
online (https://github.com/multinetlab-amsterdam/network TDA tutorial). In
these notebooks, we use third-party Python packages for part of the computa-
tions (e.g., networkx [25] for the graph theory metrics and gudhi [32] for per-
sistent homology) and provide practical scripts for some TDA metrics and 3-D
visualisations of simplicial complexes (a new addition to the field). Our tutorial
focuses on resting-state functional magnetic resonance imaging (rsfMRI) data;
however, the main concepts and tools discussed in this paper can be extrapolated
to other imaging modalities, biological or complex networks. The extended ver-
sion [13] covers the most commonly used graph metrics in network neuroscience,
also in line with reference [21], and TDA. However, due to the size constraint,
here we prioritize the latter.

1.1 Starting Point: The Adjacency Matrix

The basic unit on which graph theory and TDA are applied in the context
of rsfMRI is the adjacency or functional connectivity matrix [3,21]. Typically,
rsfMRI matrices are symmetric and do not specify the direction of connectivity
(i.e., activity in area A drives activity in area B), therefore yielding undirected
networks. To further analyse the sfMRI connectivity matrix, one has to decide

1 Notice that the notion of metric in mathematics defines distance between two points
in a set [16], which is distinct from what we are using in this work. We denote as
metric any quantity that can be computed, i.e., “measured”, in a brain network or
simplicial complex.

https://github.com/multinetlab-amsterdam/network_TDA_tutorial
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whether to keep or not edges’ weights (e.g., correlation values in rsfMRI con-
nectivity) or to absolutise negative weights (or anticorrelations) [21,27]. These
decisions influence the computation of the different metrics described in the
tutorial and matter for the biological interpretation of the results [21]. In this
tutorial we use an undirected, weighted, and absolutised connectivity matrix.

1.2 Topological Data Analysis

TDA uses topology and geometry methods to study the shape of the data [11]
and can identify a network’s different characteristics by addressing a network’s
high-order structure [4,10,28]. A core success of TDA is the ability to provide
robust results when compared with alternative methods, even if the data are
noisy [18,41]. One of the benefits of using TDA in network neuroscience is the
possibility of finding global properties of a network that are preserved regardless
of the way we represent the network [35], as we illustrate below. Those properties
are the so-called topological invariants. Here, we cover some fundamental TDA
concepts: filtration, simplicial complexes, Euler characteristic, phase-transitions,
Betti numbers, curvature, and persistent homology.

Simplicial Complexes. In TDA, we consider that the network as a multidi-
mensional structure called the simplicial complex. Such a network is not only
made up of the set of vertices (0-simplex) and edges (1-simplex) but also of trian-
gles (2-simplex), tetrahedrons (3-simplex), and higher k-dimensional structures.
In short, a k-simplex is an object in k-dimensions and, in our work, is formed
by a subset of k + 1 vertices of the network.

Filtration. Consists of a nested sequence of simplicial complexes. Here, a fil-
tration is defined by changing the density d of the network, from 0 ≤ d ≤ 1.
This yields a nested sequence of networks, in which increasing d leads to a more
densely connected network. In neuroscience, It can be used to avoid arbitrary
threshold/density choices, which are usually made in the field.

We can encode a network into a simplicial complex in several ways [17,29,31].
Here, we focus on building a simplicial complex only from the brain network’s
cliques, i.e., we create the so-called clique complex of a brain network. In a net-
work, a k-clique is a subset of the networkwith k all-to-all connected nodes. 0-clique
corresponds to the empty set, 1-cliques correspond to nodes, 2-cliques to links, 3-
cliques to triangles, etc.. In the clique complex, each k + 1 clique is associated
with a k-simplex. This choice for creating simplexes from cliques has the advan-
tage that we can still use pairwise signal processing to create a simplicial complex
from brain networks, such as in [23]. It is essential to mention that other strate-
gies to build simplicial complexes beyond pairwise signal processing are still under
development, such as applications using multivariate information theory together
with tools from algebraic topology [1,5–7,22,36]. In our Jupyter Notebook [12], we
provide the code to visualise the clique complex developed in [38] (Fig. 1).

The Euler Characteristic. The Euler characteristic is one example of topo-
logical invariants: the network properties that do not depend on a specific graph
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representation. We first introduce the Euler characteristic for polyhredra. Later,
we translate this concept to brain networks. In 3-D convex polyhedra, the Euler
characteristic is defined as the numbers of vertices minus edges plus faces. For
convex polyhedra without cavities (holes in its shape), which are isomorphous
to the sphere, the Euler characteristic is always two. If we take the cube and
make a cavity, the Euler drops to zero as it is in the torus. If we make two
cavities in a polyhedral (as in the bitorus), the Euler drops to minus two. We
can understand that the Euler characteristic tells us something about a polyhe-
dron’s topology and its analogous surface. In other words, if we have a surface
and we make a discrete representation of it (e.g., a surface triangulation), its
Euler characteristic is always the same, regardless of the way we do it. We can
now generalise the definition of Euler characteristic to a simplicial complex in
any dimension. Thus, the high dimensional version of the Euler characteristic is
expressed by the alternate sum of the numbers Clk(d) of the k-cliques (which
are (k − 1)-simplexes) present in the network’s simplicial complex for a given
value of the density threshold d:

χ(d) = Cl1 − Cl2 + ... + Cln =
n∑

k=1

(−1)kCl(k)(d).

Betti Numbers. Another set of topological invariants are the Betti numbers
(β). Given that a simplicial complex is a high-dimensional structure, βk counts
the number of k-dimensional holes in the simplicial complex. These are topolog-
ical invariants that correspond, for each k ≥ 0, to the number of k-dimensional
holes in the simplicial complex [47]. In a simplicial complex, there can be many
of these k-holes and counting them provide the Betti number β, e.g., if β2 is
equal to five, there are 5 two-dimensional holes. The Euler characteristics of a
simplicial complex can also be computed using the β via the following formula
[17]:

χ = β0 − β1 + β2 − . . . (−1)kmax βkmax
=

kmax∑

k=0

(−1)k βk ,

where kmax the maximum dimension that we are computing the cycles.

Curvature. Curvature is a TDA metric that can link the global network proper-
ties described above to local features [20,38,44]. It allows us to compute topolog-
ical invariants for the whole-brain set of vertices and understand the contribution
of specific individual nodal, or subnetwork, geometric proprieties to the brain
network’s global properties. Several approaches to defining a curvature for net-
works are available [33,44], including some already used in neuroscientific inves-
tigations [38]. We illustrate the curvature approach linked to topological phase
transitions, previously introduced for complex systems [20,33,45]. To compute
the curvature, filtration is used to calculate the clique participation rank (i.e.,
the number of k-cliques in which a vertex i participates for density d) [40], which
we denote here by Clik(d). The curvature of the vertex based on the participation
rank is then defined as:
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Fig. 1. Simplex 3-D visualisation. Here we visualise the number of 3-cliques (triangles)
in a functional brain network as we increase the edge density d (0.01, 0.015, 0.02, and
0.025, from A to D). For higher densities, we have a more significant number of 3-cliques
compared to smaller densities. The vertex colour indicates the clique participation rank.
We used fMRI data from the 1000 Functional Connectome Project [8].

κi =
kmax∑

k=1

(−1)k+1
,

Clik (d)
k

where Clik = 1 since each vertex i participates in a single 1-clique (the vertex
itself), and kmax the maximum number of vertices that are all-to-all connected
in the network (see in Fig. 1 the participation in 3-cliques). We use the Gauss-
Bonnet theorem for networks to link the local (nodal) curvature to the network’s
global properties (its Euler characteristic). Conversely, by summing up all the
curvatures of the network across different thresholds, one can reach the alternate
sum of the numbers Clk of k-cliques (a subgraph with k all-to-all connected
vertices) present in the network’s simplicial complex for a given density threshold
d ∈ [0, 1]. By doing so, we also write the Euler characteristics as a sum of the
curvature of all network vertices, i.e.,

χ (d) =
N∑

i=1

ki (d).

1.3 Discussion

This tutorial explains some of the primary metrics related to two network neu-
roscience branches - graph theory and TDA -, providing short theoretical back-
grounds and code examples accompanied by a publicly available Jupyter Note-
book, with a special section on visualisations of simplicial complexes and cur-
vature computation in brain data. Here, we did not aim to provide a use-case
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report but rather a hands on computational resource. Finally, we would like to
mention some relevant limitations in interpretation when using these metrics in
connectivity-based data. Considering that rsfMRI data is often calculated as a
temporal correlation between time series using Pearson’s correlation coefficient,
a bias on the number of triangles can emerge [46]. This affects TDA (where
the impact depends on how high-order interactions are defined) and graph-
theoretical metrics (such as the clustering coefficient), with networks based on
this statistical method being automatically more clustered than random models.
The proper way to determine and infer high-order interactions in the brain is an
ongoing challenge in network neuroscience [1,5–7,22,36]. Moreover, it is essen-
tial to think about the computational cost. The computation of cliques falls in
the clique problem, an NP (nonpolynomial time) problem; thus, listing cliques
may require exponential time as the size of the cliques or networks grows [34].
What we can do for practical applications is to limit the clique size that can be
reached by the algorithm, which determines the dimension of the simplicial com-
plex in which the brain network is represented. This arbitrary constraint implies
a theoretical simplification, limiting the space or the dimensionality in which we
would analyse brain data. Another issue is that, to finish TDA computations in
a realistic time frame, the researcher might need to establish a maximal thresh-
old/density for convergence even after reducing the maximal clique size. Even
though TDA approaches lead to substantial improvements in network science,
apart from applications using the Mapper algorithm [37], the limitations men-
tioned above contribute to losing information on the data’s shape. In conclusion,
graph theory has been widely used in network neuroscience, but newer methods
such as TDA are gaining momentum. To further improve the field, especially for
users in the domain of clinical network neuroscience, it is imperative to make
the computation of the developed metrics accessible and easy to comprehend
and visualise. We hope to have facilitated the comprehension of some aspects
of network and topological neuroscience, the computation and visualisation of
some of its metrics.
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Abstract. We show how to bypass the integral calculation and express
the Kullback-Leibler divergence between any two densities of an expo-
nential family using a finite sum of logarithms of density ratio evaluated
at sigma points. This result allows us to characterize the exact error
of Monte Carlo estimators. We then extend the sigma point method
to the calculations of q-divergences between densities of a deformed q-
exponential family.
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Deformed exponential family · q-divergence · Unscented transform

1 Introduction

Let (X ,F , μ) be a measure space [6] with sample space X , σ-algebra of events
F , and positive measure μ (e.g., Lebesgue measure or counting measure). The
Kullback-Leibler divergence [15] (KLD), also called the relative entropy [9],
between two probability measures P and Q dominated by μ with respective
Radon-Nikodym densities p = dP

dμ and q = dQ
dμ is defined by:

DKL[p : q] :=
∫

X
p(x) log

p(x)
q(x)

dμ(x) = Ep

[
log

(
p(x)
q(x)

)]
�= DKL[q : p].

The definite integral may be infinite (e.g., the KLD between a standard Cauchy
density and a standard normal density) or finite (e.g., the KLD between a stan-
dard normal density and a standard Cauchy density). The KLD may admit
a closed-form formula or not depending on its density arguments (see Risch
pseudo-algorithm [23] in symbolic computing which depends on an oracle). When
the KLD is not available in closed-form, it is usually estimated by Monte Carlo
sampling using a set Sm = {x1, . . . , xm} of m i.i.d. variates from X ∼ p(x) as
follows D̂Sm

KL [p : q] = 1
m

∑m
i=1 log

(
p(xi)
q(xi)

)
. Under mild conditions [16], this Monte

Carlo estimator D̂KL[p : q] is consistent: limm→∞ D̂Sm

KL [p : q] = DKL[p : q].
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When the densities p and q belong to a common parametric family E = {pθ :
θ ∈ Θ} of densities, i.e., p = pθ1 and q = pθ2 , the KLD yields an equivalent
parameter divergence: DE

KL(θ1 : θ2) := DKL(pθ1 : pθ2). In the reminder, we use
the notation [· : ·] to enclose the arguments of a statistical divergence and the
notation (· : ·) to enclose the parameters of a parameter divergence. The ‘:’
notation indicates that the distance may be asymmetric.

A statistical divergence is said separable when it can be written as the definite
integral of a scalar divergence. For example, the f -divergences [10] If [p : q] :=∫

X p(x)f
(

q(x)
p(x)

)
dμ(x), induced by a convex function f (strictly convex at 1 with

f(1) = 0) are separable but the Wasserstein optimal transport distances [22] are
not separable. We say that a separable statistical divergence D[pθ1 : pθ2 ] between
two densities pθ1 and pθ2 of a parametric family can be written equivalently using
sigma points if there exists a finite set {ω1, . . . , ωs} of s points (called the sigma
points) and a bivariate scalar function h so that

D[pθ1 : pθ2 ] :=
∫

X
d(pθ1(x) : pθ2(x))dμ(x) =

1
s

s∑
i=1

h(pθ1(ωi), pθ2(ωi)).

The term sigma points is borrowed from the unscented transform [14], and
conveys the idea that the integral can be calculated exactly using a discrete
sum

∑
(Sigma), hence the terminology. Sigma points have also been used to

approximate the KLD between mixture of Gaussians [13].
The paper is organized as follows: In Sect. 2, we recall the basics of expo-

nential families and show how the KLD between two densities of an exponential
family can be calculated equivalently from a reverse Bregman divergence induced
by the cumulant function of the family. In Sect. 3, we show how to express the
KLD between densities of an exponential family using sigma points (Theorem 1),
and discuss on how this results allows one to quantify the exact error of Monte
Carlo estimators (Theorem 2). Section 4 extends the method of sigma points to
q-divergences between densities of deformed q-exponential families (Theorem 3).

2 Exponential Families and Kullback-Leibler Divergence

A natural exponential family [5] (NEF) is a set of parametric densities

E =
{
pθ(x) = exp

(
θ�t(x) − F (θ) + k(x)

)
: θ ∈ Θ

}
, (1)

admitting sufficient statistics t(x), where k(x) an auxiliary measure carrier term.
The normalizing function

F (θ) := log
(∫

X
exp(θ�t(x))dμ(x)

)
, (2)

is called the cumulant function [17] (or free energy, or log-partition function)
and is a strictly smooth convex real analytic function [5] defined on the open
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convex natural parameter space Θ. Let D denote the dimension of the parameter
space Θ (i.e., the order of the exponential family) and d the dimension of the
sample space X . We consider full regular exponential families [5] so that Θ is a
non-empty open convex domain and t(x) is a minimal sufficient statistic [11].

Many common families of distributions [19] {pλ(x) λ ∈ Λ} (e.g., Gaussian
family, Beta family, etc.) are exponential families in disguise after reparame-
terization: pλ(x) = pθ(λ)(x). We call parameter λ the ordinary parameter and
get the equivalent natural parameter as θ(λ) ∈ Θ. A dual parameterization of
exponential families is the moment parameter [5]: η = Epθ

[t(x)] = ∇F (θ).
When densities p = pθ1 and q = pθ2 both belong to the same exponential

family, we have the following well-known closed-form expressions [3] for the KLD:

DKL[pθ1 : pθ2 ] = BF
∗(θ1 : θ2) = BF (θ2 : θ1), (3)

where D∗ indicates the reverse divergence D∗(θ1 : θ2) := D(θ2 : θ1), and BF

is the Bregman divergence [7] induced by a strictly convex and differentiable
real-valued function F :

BF (θ1 : θ2) := F (θ1) − F (θ2) − (θ1 − θ2)�∇F (θ2). (4)

There exists a bijection between regular exponential families and a class of
Bregman divergences called regular Bregman divergences [4] highlighting the role
of the Legendre transform F ∗(η) := supθ∈Θ

∑D
i=1 θiηi − F (θ) of F . Notice that

although Eq. 3 expresses the KLD as an equivalent (reverse) Bregman diver-
gence thus bypassing the definite integral calculation (or infinite sums, e.g.,
Poisson case), the cumulant function F may not always be available in closed-
form (e.g., polynomial exponential families [20]), nor computationally intractable
(e.g., restricted Boltzmann machines [1] on discrete sample spaces).

3 Sigma Points for the Kullback-Leibler Divergence

Let us observe that the generator F of a Bregman divergence BF (Eq. 4) is
defined up to an affine term. That is, generator F (θ) and generator G(θ) =
F (θ) + a�θ + b for a ∈ R

D and b ∈ R yields the same Bregman divergence
BF = BG. Thus we may express the KLD equivalent Bregman divergence of
Eq. 3 with the following generator

Fω(θ) := − log(pθ(ω)) = F (θ) − (θ�t(ω) + k(ω))︸ ︷︷ ︸
affine term

(5)

for any prescribed ω ∈ X instead of the cumulant function F of Eq. 2. We get

DKL[pλ1 : pλ2 ] = BFω
(θ(λ2) : θ(λ1)), (6)

= log
(

pλ1(ω)
pλ2(ω)

)
− (θ(λ2) − θ(λ1))�∇θFω(θ(λ1)). (7)
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Since we have ∇Fω(θ(λ1)) = −(t(ω) − ∇F (θ(λ1))), it follows that:

DKL[pλ1 : pλ2 ] = log
(

pλ1(ω)
pλ2(ω)

)
+(θ(λ2)−θ(λ1))�(t(ω)−∇F (θ(λ1))), ∀ω ∈ X .

(8)
When the exponential family has order D = 1, we can choose a single sigma

point ω such that t(ω) = F ′(θ(λ1)) as illustrated in the following example:

Example 1. Consider the exponential family of Rayleigh distributions E ={
pλ(x) = x

λ2 exp
(
− x2

2λ2

)}
, for X = [0,∞) with θ = − 1

2λ2 , t(x) = x2 and

∇F (θ(λ)) = 2λ2. Let us choose ω2 = 2λ2
1 (i.e., ω = λ1

√
2). such that (θ(λ2) −

θ(λ1))�(t(ω) − ∇F (θ(λ1))) = 0. We get DKL[pλ1 : pλ2 ] = log
(

pλ1

(
1

λ1

)

pλ2

(
1

λ1

)
)

=

2 log
(

λ2
λ1

)
+ λ2

1
λ2
2

− 1.

Let us notice that ω may not belong to the support but the closed convex
hull of the support (e.g., Poisson family). Consider now exponential families of
order D > 1. Since Eq. 8 holds for any ω ∈ Ω, let us choose s values for ω (i.e.,
ω1, . . . , ωs), and average Eq. 8 for these s values. We obtain

DKL[pλ1 : pλ2 ] =
1

s

s∑

i=1

log

(
pλ1(ωi)

pλ2(ωi)

)
+(θ(λ2)− θ(λ1))

�
(

1

s

s∑

i=1

t(ωi) − ∇F (θ(λ1))

)
.

(9)
Thus we get the following theorem:

Theorem 1. The Kullback-Leibler divergence between two densities pλ1 and pλ2

belonging to a full regular exponential family E of order D can be expressed as
the average sum of logarithms of density ratios:

DKL[pλ1 : pλ2 ] =
1
s

s∑
i=1

log
(

pλ1(ωi)
pλ2(ωi)

)
,

where ω1, . . . , ωs are s ≤ D + 1 distinct points of X chosen such that
1
s

∑s
i=1 t(ωi) = Epλ1

[t(x)].

The bound s ≤ D + 1 follows from Carathéodory’s theorem [8]. Notice that
the sigma points depend on λ1: ωi = ωi(λ1). Here, we inverted the role of the
“observations” ω1, . . . , ωs and parameter λ (or θ) in the maximum likelihood
estimation’s normal equation by requiring 1

s

∑s
i=1 t(ωi) = Epλ1

[t(x)] = ∇F (θ1).

Example 2. Consider the full family of d-dimensional normal densities. We shall
use 2d vectors ωi to express DKL[pμ1,Σ1 : pμ2,Σ2 ] as follows:

ωi = μ1 −
√

dλiei, ωi+d = μ1 +
√

dλiei, i ∈ {1, . . . , d},

where the λi’s are the eigenvalues of Σ1 with the ei’s the corresponding eigen-
vectors. It can be checked that 1

2d

∑2d
i=1 ωi = Epλ1

[x] = μ1 and 1
2d

∑2d
i=1 ωiω

�
i =
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μ1μ
�
1 + Σ1. Moreover, we have

√
λiei = [

√
Σ1]·,i, the i-th column of the square

root of the covariance matrix of Σ1. Thus it follows that

DKL[pμ1,Σ1 : pμ2,Σ2 ]

=
1
2d

d∑
i=1

(
log

(
pμ1,Σ1

(
μ1 − [

√
dΣ1]·,i

)
pμ2,Σ2

(
μ1 − [

√
dΣ1]·,i

)
)

+ log

(
pμ1,Σ1

(
μ1 + [

√
dΣ1]·,i

)
pμ2,Σ2

(
μ1 + [

√
dΣ1]·,i

)
))

,

where [
√

dΣ1]·,i =
√

λiei denotes the vector extracted from the i-th column of
the square root matrix of dΣ1. This formula matches the ordinary formula for
the KLD between the two Gaussian densities pμ1,Σ1 and pμ2,Σ2 :

DKL[pμ1,Σ1 : pμ2,Σ2 ] =
1

2

(
(μ2 − μ1)

�Σ−1
2 (μ2 − μ1) + tr

(
Σ2Σ−1

1

)
+ log

( |Σ2|
|Σ1|

)
− d

)
.

See [21] for other illustrating examples.

3.1 Assessing the Errors of Monte Carlo Estimators

The Monte Carlo (MC) stochastic approximation [16] of the KLD is given by:

D̃Sm

KL [pλ1 : pλ2 ] =
1
m

m∑
i=1

log
pλ1(xi)
pλ2(xi)

, (10)

where Sm = {x1, . . . , xm} is a set of m independent and identically distributed
variates from pλ1 . Notice that the MC estimators are also average sums of loga-
rithms of density ratios. Thus we can quantify exactly the error when we perform
MC stochastic integration of the KLD between densities of an exponential family
from Eq. 9. We have:

Theorem 2. The error
∣∣∣D̃Sm

KL [pλ1 : pλ2 ] − DKL[pλ1 : pλ2 ]
∣∣∣ of the Monte Carlo

estimation of the KLD between two densities pλ1 and pλ2 of an exponential family
is ∣∣∣∣∣(θ(λ2) − θ(λ1))

�
(

1
m

m∑
i=1

t(xi) − Epλ1
[t(x)]

)∣∣∣∣∣ .

When m → ∞, we have 1
m

∑m
i=1 t(xi) → Epλ1

[t(x)], and the MC error tends
to zero, hence proving the efficiency of the MC estimator (under mild condi-
tions [16]). If we know η1 = ∇F (θ1) = Epλ1

[t(x)] and the log density ratios,
then we can calculate both the MC error and the KL divergence using Eq. 9.

4 Sigma Points for the q-divergences

We extend the sigma point method to the computation of q-divergences between
densities of a deformed q-exponential family [1,2,12]. For q > 0 and q �= 1, let
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logq(u) = 1
1−q (u1−q − 1) (for u > 0) be the deformed logarithm and expq(u) =

(1 + (1 − q)u)
1

1−q (for u > − 1
1−q ) be the reciprocal deformed exponential. When

q → 1, we have logq(u) → log(u) and expq(u) → exp(u). The q-exponential fam-
ily is defined as the set of densities such that logq pθ(x) :=

∑D
i=1 θiti(x) − Fq(θ),

where Fq(θ) is the normalizer function (q-free energy) which is proven to be
strictly convex and differentiable [2]. Thus we can define a corresponding Breg-
man divergence [1] BFq

(θ1 : θ2) between parameters θ1 and θ2 corresponding to
two densities pθ1 and pθ2 . Then we can reconstruct the corresponding statisti-
cal divergence Dq, called the q-divergence, so that Dq[pθ1 : pθ2 ] = BFq

(θ2 : θ1)
where:

Dq[p : r] :=
1

(1 − q)hq(p)

(
1 −

∫
pq(x)r1−q(x)dμ(x)

)
= BFq

(θ1 : θ2),

where hq(p) :=
∫

pq(x)dμ(x). We can also rewrite the q-divergence as Dq[p :
r] = qEp[logq p(x) − logq r(x)], where qEp denotes the q-expectation:

qEp[f(x)] :=
1

hq(p)

∫
p(x)qf(x)dμ(x) = ∇Fq(θ) = η.

Let us use the equivalent Bregman generator Fq,ω(θ) = − logq pθ(ω) =
Fq(θ) − θ�t(ω) − k(ω) instead of Fq (with ∇Fq,ω(θ) = ∇Fq(θ) − t(ω)), and
choose at most s ≤ D +1 sigma points ωi’s so that 1

s

∑s
i=1 t(ωi) = ∇Fq(θ1). We

get the following theorem:

Theorem 3. The q-divergence for q �= 1 between two densities pλ1 and pλ2

belonging to a q-exponential family E of order D can be expressed as the average
sum of difference of q-logarithms:

Dq[pλ1 : pλ2 ] =
1
s

s∑
i=1

(
logq pλ1(ωi) − logq pλ2(ωi)

)

where ω1, . . . , ωs are s ≤ D + 1 distinct samples of X chosen such that
1
s

∑s
i=1 t(ωi) = ∇Fq(θ1) = qEpλ1

[t(x)].

Example 3. Consider the family C of Cauchy distributions (a q-Gaussian fam-
ily [1] for q = 2): C :=

{
pλ(x) := s

π(s2+(x−l)2) , λ := (l, s) ∈ R × R+

}
, where l

is the location parameter (median) and s is the scale parameter (probable error).
The deformed 2-logarithm is logC(u) := 1 − 1

u (for u �= 0) and its reciprocal 2-
exponential function is expC(u) := 1

1−u (for u �= 1). The Cauchy probability den-
sity can be factorized [18] as a 2-exponential family pθ(x) = expC(θ�x − F2(θ))
where θ denotes the 2D natural parameters:

logC(pθ(x)) =
(

2π
l

s

)
x +

(
−π

s

)
x2

︸ ︷︷ ︸
θ�t(x)

−
(

πs + π
l2

s
− 1

)

︸ ︷︷ ︸
F (θ)

. (11)
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Thus the natural parameter is θ(l, s) = (θ1, θ2) =
(
2π l

s ,−π
s

) ∈ Θ = R × R−
for the sufficient statistics t(x) = (t1(x) = x, t2(x) = x2), and the deformed
log-normalizer (free energy) is FC(θ) = −π2

θ2
− θ2

1
4θ2

− 1. The gradient of the free

energy is η = ∇FC(θ) =

[− θ1
2θ2

π2

θ2
2

+ θ2
1

4θ2
2

]
=

[
s
s2 + l2

]
. The 2-divergence DC between

two Cauchy densities pλ1 and pλ2 is

DC [pλ1 : pλ2 ] :=
1∫

p2λ1
(x)dx

(∫
p2λ1

(x)
pλ2(x)

dx − 1

)
, (12)

=
π

s2
‖λ1 − λ2‖2 = BFC (θ(λ2) : θ(λ1)), (13)

and amounts to an equivalent Bregman divergence on swapped parameters.
Using a computer algebra system, we calculate the definite integrals h2(pλ) =∫

R
p2λ(x)dx = 1

2πs ,
∫
R

p2λ(x)xdx = 1
2π

l
s and

∫
R

p2λ(x)x2dx = l2+s2

2πs . The 2-escort
distributions are p̂λ := 1

h2(pλ)
p2λ(x). Thus we have the following 2-expectations

of the sufficient statistics 2Epλ
[x] = Ep̂λ

[x] = l and 2Epλ
[x2] = Ep̂λ

[x2] =
l2 + s2. Notice that the first and second moments for the Cauchy distribution
are undefined but that the first 2-expectation moments for the Cauchy densities
are well-defined and finite. Let us choose two sigma points ω1 and ω2 by solving
the system 1

2 (ω1 + ω2) = a = l and 1
2

(
ω2
1 + ω2

2

)
= b = l2 + s2. We find ω1 =

a − √
b − a2 = l − s and ω2 = a +

√
b − a2 = l + s. For q-Gaussians [24] (or

q-normals) with λ = (μ, σ) (including the Cauchy family for q = 2), we have
qEpλ

[x] = l and qEpλ
[x2] = l2 + s2. Thus we check that we have

Dq[pμ1,σ1 : pμ2,σ2 ] =
1
2

( logq pμ1,σ1(μ1 − σ1) − logq pμ2,σ2(μ1 − σ1)

+ logq pμ1,σ1(μ1 + σ1) − logq pμ2,σ2(μ1 + σ1)
)
.

Similarly, the χ-divergence between densities of a χ-deformed exponential
family [1] can be calculated using sigma points (χ-deformed exponential families
include the q-exponential families). See [21] for additional results.
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Abstract. This paper discusses the connection between inverses of
graph Laplacians with the diagonal increased by a positive vector and
the covariance matrices of associated Gaussian graphical models.

Afterwards we study the way of modification of a graph Laplacian on
the case of daisy graphs.

Keywords: Graphical models · Laplacian of a graph · Daisy graphs

1 Introduction

Let G = (V,E,C) be a simple undirected graph, where V = {1, 2, . . . , n} is a set
of vertices, E ⊂ (

n
2

)
is a set of edges and C ⊂ V is a set of source vertices, which

will be called later as a “root set” or a “root”. As a degree of a vertex deg(v)
we treat a number of its neighbours.

In our convention a graph Laplacian is defined as L(G) = {li,j}1≤i,j≤n with
li,i = deg(i), li,j = −1 if {i, j} is an edge in G and zeroes otherwise, cf. e.g. [2].

Note that the graph Laplacian is a singular matrix, since its entries in each
row (and each column) sum up to 0. Therefore we introduce an augmented graph
Laplacian by adding 1 to every entry lc,c corresponding to c ∈ C. In other words,

L∗(G) := L(G) + Ec

with Ec being a square matrix with 1 in (c, c) and zero outside. We define
L∗(G) = {l∗i,j}1≤i,j≤n with l∗i,j = li,j + 1{i = j ∈ C}

2 Trees

Let T = (V,E) be an undirected tree. We may orient it in a following way:
Choose one root vertex C = {c}. Then we orient every edge in a direction

The author is grateful to Hélène Massam (1949–2020) for her comments and fruit-
ful discussion in scope of this work and he dedicates this work to her. The author
owes thanks to the reviewers of the GSI conference and to Bartosz Ko�lodziejek for
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Scholarship.
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from c. Following this method we may induce a partial order ≤ on the set of
vertices such that v ≤ v′ if and only if there exists a directed path from v′ to v.

For every vertex v ∈ V we define its ancestry AN(v) := {w ∈ V : v ≤ w} as
a set of vertices in a unique path from v to c. Note that both the partial order
and AN depend strictly on the choice of c.

Now consider an n-dimensional Gaussian random variable (X1, . . . , Xn) with
a covariance matrix Σ = {σi,j}1≤i,j≤n such that

σi,j = |AN(i) ∩ AN(j)|

for every 1 ≤ i, j ≤ n.

c = 1
2

3

4

5

(a) Underlying graph G

⎡
⎢⎢⎢⎢⎣

1 1 1 1 1
1 2 2 2 2
1 2 3 2 2
1 2 2 3 2
1 2 2 2 3

⎤
⎥⎥⎥⎥⎦

(b) Covari-
ance matrix
Σ

⎡
⎢⎢⎢⎢⎣

2 −1 0 0 0
−1 4 −1 −1 −1
0 −1 1 0 0
0 −1 0 1 0
0 −1 0 0 1

⎤
⎥⎥⎥⎥⎦

(c) Augmented Lapla-
cian L∗(G) with C =
{1}

Theorem 1. Let (X1, . . . , Xn) be a Gaussian graphical model with an underly-
ing graph G being a tree rooted in C = {c}. Assume that its covariance matrix
Σ = (σi,j) satisfies

σi,j = |AN(i) ∩ AN(j)|.
Then the precision matrix K = Σ−1 of (X1, . . . , Xn) is equal to L∗

c = L∗
c(G).

Proof. It suffices to prove that L∗
c(G)·Σ = In. At first consider the case i = j = c.

Observe that for any 1 ≤ k ≤ n we have σc,k = 1. Therefore:

(L∗
cΣ)c,c =

n∑

k=1

l∗c,kσk,c = l∗c,cσc,j+
∑

k∼c

l∗c,kσk,c = (deg(c)+1)+deg(c)·(−1)·1 = 1.

Now consider i = j �= c:

(L∗
cΣ)i,i =

n∑

k=1

l∗i,kσk,i = l∗i,iσi,i +
∑

k∼i
k∈AN(i)

l∗i,kσk,i +
∑

k∼i
i∈AN(k)

l∗i,kσk,i

= deg(i)σi,i − (σi,i − 1) − (deg(i) − 1)σi,i = 1.
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Now we will prove that the outside of the diagonal (L∗Σ) consists only of zeroes.
Observe that for i = c, j �= c we have:

(L∗
cΣ)i,j =

n∑

k=1

l∗i,kσk,j = l∗i,iσi,j +
∑

k∼i
k/∈AN(j)

l∗i,kσk,j +
∑

k∼i
k∈AN(j)

l∗i,kσk,j

= (deg(i) + 1) · 1 − (deg(i) − 1) · 1 − 1 · 2 = 0.

On the other hand, if j = c, i �= c, then:

(L∗
cΣ)i,j =

n∑

k=1

l∗i,kσk,j =
n∑

k=1

li,k · 1 = 0,

because each row of the graph Laplacian sums up to 0. Now we let i, j �= c, i �= j.
If i ∈ AN(j), then:

(L∗
cΣ)i,j =

n∑

k=1

l∗i,kσk,j =
n∑

k=1

li,k · σk,j

= deg(i) · σi,j − (deg(i) − 2)σi,j − 1 · (σi,j − 1) − 1 · (σi,j + 1) = 0.

Analogously, if j ∈ AN(i), then σk,j = σi,j for every k ∼ i. Therefore:

(L∗
cΣ)i,j =

n∑

k=1

l∗i,kσk,j =
n∑

k=1

li,k · σk,j = deg(i) · σi,j − deg(i) · σi,j = 0.

The same argument may be applied in the only case left, when i �= j; i, j �= c, i /∈
AN(j) and j /∈ AN(i). Therefore here also (L∗

cΣ)i,j = 0.

3 Discussion and Non-tree Graphs

3.1 Non-tree Graphs

Cycles and Complete Graphs. The description of the inverse of L∗(G) for
general G is much harder for G not being a tree. So far we are not able to present
a general formula, thus we consider examples of such inverse for specific classes
of graphs G. Below we show some examples of n × Σ = [L∗(G)]−1 for cycles Cn

and complete graphs Kn with the root C = {1}:

Theorem 2. The inverse matrix Σ = (σi,j) of L∗(Cn) is a symmetric matrix
satisfying

σi,j = 1 +
(i − 1)(n − j + 1)

n
, for i ≤ j.

Proof. Again, we show L∗Σ = In, we assume that the cycle is
1 → 2 → 3 → . . . → n → 1 and take C = {1}. Then

(L∗Σ)c,c =
n∑

k=1

lc,kσk,c =
n∑

k=1

lc,k = 1.



688 T. Skalski

c = 1

2

3

4

5

(a) Graph C5

⎡
⎢⎢⎢⎢⎣

3 −1 0 0 −1
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
−1 0 0 −1 2

⎤
⎥⎥⎥⎥⎦

(b) L∗(C5)

⎡
⎢⎢⎢⎢⎣

5 5 5 5 5
5 9 8 7 6
5 8 11 9 7
5 7 9 11 8
5 6 7 8 9

⎤
⎥⎥⎥⎥⎦

(c)
5× (L∗(C5))−1

If j �= c, then we have

(L∗Σ)c,j =
n∑

k=1

lc,kσk,j = lc,cσc,j + lc,2σ2,j + lc,nσn,j

= 3 · 1 + (−1) ·
(

1 +
1 · (n − j + 1)

n

)
+ (−1) ·

(
1 +

(j − 1) · 1
n

)

= 3 − 1 − n − j + 1
n

− 1 − j − 1
n

= 0

and, analogously,

(L∗Σ)i,c =
n∑

k=1

li,kσk,c =
n∑

k=1

li,k = 0.

If i, j �= c, then on the main diagonal we have

(L∗Σ)i,i =

n∑

k=1

li,kσk,ili,i−1σi−1,i + li,iσi,i + li,i+1σi+1,i

= −
(
1 +

(i − 2)(n − i + 1)

n

)
+ 2

(
1 +

(i − 1)(n − i + 1)

n

)
−

(
1 +

(i − 1)(n − i)

n

)

=
−(i − 2)(n − i + 1) + 2(i − 1)(n − i + 1)− (i − 1)(n − i)

n

=
(n − i + 2) + (i − 1)

n
= 1.

Note that the above calculations are also true for i = n and the (n + 1)st

row/column of L and Σ being treated as cth row/column.
Now we only need to consider the outside of the main diagonal. Note that

σi,n = 1 + i−1
n . Thus

(L∗Σ)i,n =
n∑

k=1

li,kσk,n = −σi−1,n + 2σi,n − σi+1,n = 0.

Also,

(L∗Σ)n,j =
n∑

k=1

ln,kσk,j = −σn−1,j + 2σn,j − σc,j

= −1 − (j − 1) · 2
n

+ 2 +
(j − 1) · 1

n
· 2 − 1 = 0.



Remarks on Laplacian of Graphical Models in Various Graphs 689

Finally, for i, j �= 1, n, i �= j we have

(L∗Σ)i,j =
n∑

k=1

li,kσk,j = −σi−1,j + 2σi,j − σi+1,j = (∗)

Observe that as i, j, n are pairwise distinct, either i+1 ≤ j or i−1 ≥ j. Therefore
{
i + 1 ≤ j ⇒ (∗) = −1 − (i−2)(n−j+1)

n + 2 + 2 · (i−1)(n−j+1)
n − 1 − (i)(n−j+1)

n = 0,

i − 1 ≥ j ⇒ (∗) = −1 − (j−1)(n−i+2)
n + 2 + 2 · (j−1)(n−i+1)

n − 1 − (j−1)(n−i)
n = 0,

which ends the proof.

Theorem 3

[L∗(Kn)]−1
i,j =

⎧
⎪⎨

⎪⎩

1 if i = 1 or j = 1,
1 + 2

n if 1 < i = j,
1 + 1

n else.

Proof. For proving that claim we observe that L∗(Kn) = L(Kn) + E1 = nIn −
Jn +E1. Thus L∗(Kn) belongs to an associative algebra being the 5-dimensional
matrix space spanned by In, E1, Jn, E1Jn and JnE1. Therefore (L∗(Kn))−1 has
to be looked for under the form

1
n

In + aE1 + bJn + cE1Jn + dJnE1.

Clearly (L∗(Kn))−1 is a symmetric matrix, thus d = c. Solving the linear system
in a, b, c gives a = 0, b = (n + 1)/n and c = −1/n.

Daisy Graphs. The daisy graphs (cf. e.g. Nakashima and Graczyk [1]) may
be understood as a notion between a complete bipartite graph and a complete
graph. To be more specific, the daisy graph Da,b is built as a sum of the complete
bipartite graph Ka,b and a complete subgraph Ka, i.e.

Da,b := (V = VA ∪· VB , E), V = VA ∪· VB , (x, y) ∈ E ⇐⇒ {x, y} ∩ VA 
= ∅.

We may interpret VA and BB as the internal and the external part of a daisy,
respectively. To give an intuition, graphical models based on daisy graphs may
be useful for analysis of a internal features of data (without knowledge of any
independence among them) and b mutually conditionally independent external
factors, which can influence the internal environment.

Note that for b = 1 we have Da,1 being a complete graph Ka+1 and for a = 1
we have D1,a being a star graph, which is a tree (cf. Sect. 2).
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a1

a2

a3

b1

b2

(a) Graph D3,2

a1

a2

a3

b1

b3

b2

(b) Graph D3,3

The augmented Laplacian (and its inverse) depends on the choice of a root
set C ⊂ V . Below we consider four choices of a root in Da,b and their augmented
Laplacians:

L∗
in := L(Da,b) + Ec for C = {c}, c ∈ VA,

L∗∗
in := L(Da,b) +

∑

c∈A

Ec for C = VA,

L∗
ex := L(Da,b) + Ec for C = {c}, c ∈ VB ,

L∗∗
ex := L(Da,b) +

∑

c∈A

Ec for C = VB .

Without loss of generality we imply such ordering on vertices that the internal
vertices precede the external ones. Moreover, concerning cases of one rooted
internal (external) vertex we label it as the first (last) vertex.

The exact formulas for (L∗)−1(Da,b) are presented below:

Proof. Similarly to 3, the proof relies on the associative algebras being 6-
dimensional (for L∗

ex) or 10-dimensional (for L∗
in) matrix spaces. The resulting

inverses of augmented Laplacians follow from solving the corresponding systems
of equations.

3.2 Eigenvalues of L∗

Below we show that if the root consists of only one vertex, then the determinant
of L∗(G) does not depend on the choice of the root vertex. Moreover, it can be
proved that it is equal to the number of spanning trees of G.
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Remark 1. Let λ1 ≤ λ2 ≤ . . . ≤ λn be the eigenvalues of L∗. Then

n∏

i=1

λi = det(L∗) = #{spanning trees (G)}.

Proof. Recall that L∗(G) differs from L(G) only at lc,c, where c is a root vertex
of G. Let M be a matrix obtained from L by replacing the cth column with a
column with 1 at the cth row and zeroes elsewhere. Then

det(L∗(G)) = det(L(G)) + det(M).

Clearly, the Laplacian matrix L(G) is singular. We can observe that det(M) is a
(n − 1) × (n − 1) cofactor of L(G). By the Kirchhoff’s matrix-tree Theorem any
(n− 1)× (n− 1) cofactor of L(G) is equal to the number of spanning trees of G.

3.3 Discussion

Interpretations of the Inverse of the Augmented Laplacian. Below we
couple the obtained inverses of L∗ matrices with the covariance matrices of some
classical examples of random walks. At first let us remind that the covariance
function of the Wiener process (Wt)t≥0 is Cov(Ws,Wt) = min{s, t}. For example,
(W1,W2, . . . , Wn) has covariance matrix equal to (Σ)i,j = min{i, j}. At 1 we
proved that this is exactly the inverse of the augmented Laplacian of a path graph
with an initial vertex in one of its endpoints. This observation stays consistent

c = 1
2 3 4 5

(a) Path graph Pn

⎡
⎢⎢⎢⎢⎣

1 1 1 1 1
1 2 2 2 2
1 2 3 3 3
1 2 3 4 4
1 2 3 4 5

⎤
⎥⎥⎥⎥⎦

(b) Covari-
ance matrix
Σ

⎡
⎢⎢⎢⎢⎣

2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 1

⎤
⎥⎥⎥⎥⎦

(c) Inverse of covari-
ance matrix Σ−1

with the conditional independence of Wt1 and Wt2 under Wt for any t1 < t <
t2. Similarly, the broader class of trees and their augmented Laplacians can
be connected with sums of the standard Gaussian random variables ’branched’
according to the underlying tree graph.

To observe the analogy of the previous examples for the cycle graph Cn, we
may note that replacing the edge (n, 1) with (n, n + 1) (with n + 1 /∈ V ) gives a
path graph ([c = 1] − [2] − . . . − [n + 1]).
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c = 1
2

3

4

5

(a) Underlying graph G

⎡
⎢⎢⎢⎢⎣

1 1 1 1 1
1 2 2 2 2
1 2 3 2 2
1 2 2 3 2
1 2 2 2 3

⎤
⎥⎥⎥⎥⎦

(b) Covari-
ance matrix
Σ

Z1

Z1 + Z2

Z1 + Z2 + Z3

Z1 + Z2 + Z4

Z1 + Z2 + Z5

(c) Gaussian random variables
with covariance Σ

Therefore we may consider the model corresponding to the cycle graph as
the Wiener model (W1, . . . , Wn,Wn+1) conditioned by Wn+1 = W1. This gives
a sum of a random variable W1 ∼ N (0, 1) and a Brownian bridge “tied down”
at 1 and (n + 1). Therefore the covariance matrix of (W1, . . . , Wn) is equal to

σi,j = 1 +
(i − 1)(n − j + 1)

n
, i ≤ j,

cf. Theorem 2.
In order to find a model with a covariance matrix equal to

[L∗(Kn)]−1
i,j =

⎧
⎪⎨

⎪⎩

1 if i = 1 or j = 1,
1 + 2

n if 1 < i = j,
1 + 1

n else,

observe that all vertices (except of the initial one) are isomorphic and connected,
therefore each of their correspondent random variables are mutually equally
dependent Let c = 1 and let Z1, . . . , Zn be i.i.d. random variables from N (0, 1).
Therefore X1,X2, . . . , Xn are of the form

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

X1 = Z1

X2 = Z1 + αZ2 + β(Z3 + Z4 + . . . + Zn)
X3 = Z1 + αZ3 + β(Z2 + Z4 + . . . + Zn)
· · ·
Xn = Z1 + αZn + β(Z2 + Z3 + . . . + Zn−1).

The restriction on the covariance matrix of (X1, . . . , Xn) induces a system of

equations, which is satisfied only for β = 1−
√

1
n

n−1 and α = β +
√

1
n .
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Abstract. We introduce new geometrical tools to cluster data in the
Siegel space. We give the expression of the Riemannian logarithm and
exponential maps in the Siegel disk. These new tools help us to perform
classification algorithms in the Siegel disk. We also give the expression
of the sectional curvature in the Siegel disk. The sectional curvatures
are negative or equal to zero, and therefore the curvature of the Siegel
disk is non-positive. This result proves the convergence of the gradient
descent performed when computing the mean of a set of matrix points
in the Siegel disk.
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1 Complex Vectorial Autoregressive Gaussian Models

We present here the multidimensional linear autoregressive model which gener-
alize the one-dimensional model presented in [3].

1.1 The Multidimensional Linear Autoregressive Model

We assume that the multidimensional signal can be modeled as a centered sta-
tionary autoregressive multidimensional Gaussian process of order p ´ 1:

U(k) `
p´1∑

j“1

Ap´1
j U(k ´ j) “ W (k) (1)

where W is the prediction error vector which we assume to be a standard Gaus-
sian random vector and the prediction coefficients Ap´1

j are square matrices.
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1.2 Three Equivalent Representation Spaces

There are at least three equivalent spaces to represent our model parameter,
they are described in detail in [6]. The first one is the set of Hermitian Positive
Definite Block-Toeplitz matrices corresponding to the covariance matrix of the
large column vector U defined by:

U
def“ [

U(0)T , . . . , U(p ´ 1)T
]T

(2)

The second one is a product space: a HPD matrix (which characterizes the
average correlation matrix) and the coefficients

(
Ai

i

)
i“1,...,p´1

(which character-
ize the multidimensional autoregressive model). The third representation space
looks like the second one: the coefficients Ai

i are slightly modified to belong to
the Siegel disk which metric has been studied in [6,8].

1.3 A Natural Metric Coming from Information Geometry

In [6], the three equivalent representation spaces presented in Sect. 1.2 are
endowed with a natural metric coming from information geometry. Indeed, the
model assumptions done in Sect. 1.1 are equivalent to the assumption that the
large vector U described in Eq. (2) is the realisation of a Gaussian process with
zero mean and an Hermitian Positive Definite Block-Toeplitz covariance matrix.
We define a metric on this space as the restriction of the information geometry
metric on the space of Gaussian processes with zero mean and an Hermitian
Positive Definite covariance matrices. We finally transpose this metric to the
equivalent representation space constituted of a HPD matrix and coefficients in
the Siegel disks. Luckily, the metric in this space is a product metric. The metric
on the HPD manifold is the information geometry metric [6]. The metric on the
Siegel disk is described in detail in Sect. 2.

2 The Siegel Disk

In this section we present a Riemannian manifold named the Siegel disk and
introduce the Riemannian logarithm and exponential maps. These tools will be
very useful to classify data in the Siegel space, as shown in Sect. 3. We also
introduce the formula of the Siegel sectional curvature and prove it to be non-
positive which proves the convergence of classification algorithms based on mean
computations, such as the k-means algorithm. The Siegel disk generalizes the
Poincaré disk described in [3,4].

2.1 The Space Definition

Definition 1. The Siegel disk is defined as the set of complex matrices M of
shape N × N with singular values lower than one, which can also be written:

SDN “ {
M P CN×N , I ´ MMH ą 0

}
(3)
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or equally:

SDN “ {
M P CN×N , I ´ MHM ą 0

}
. (4)

We use the partial ordering of the set of complex matrices: we note A ą B
when the difference A´B is a positive definite matrix. As the Siegel disk is here
defined as an open subset of the complex matrices CN×N , its tangent space at
each point can also be considered as CN×N .

Note that another definition of the Siegel disk also exists in other papers [8],
imposing an additional symmetry condition on the matrix M : M “ MT . We
will not require the symmetry condition in our work.

Property 1. The Siegel disk can also be defined as the set of complex matrices M
with a linear operator norm lower than one: SDN “ {

M P CN×N , ~M~ < 1
}
,

where ~M~ “ supXPCN×N ,‖X‖“1 (‖MX‖).

2.2 The Metric

Square of the Line Element ds

ds2 “ trace
((

I ´ ΩΩH
)´1

dΩ
(
I ´ ΩHΩ

)´1
dΩH

)
(5)

The Scalar Product. ∀Ω P SDN ,∀v, w P CN×N :

〈v, w〉Ω “1
2
trace

((
I ´ ΩΩH

)´1
v

(
I ´ ΩHΩ

)´1
wH

)
(6)

`1
2
trace

((
I ´ ΩΩH

)´1
w

(
I ´ ΩHΩ

)´1
vH

)
(7)

The norm of a vector belonging to the tangent space is therefore:

‖v‖2Ω “ trace
((

I ´ ΩΩH
)´1

v
(
I ´ ΩHΩ

)´1
vH

)
(8)

The Distance

d2SDN
(Ω,Ψ) “1

4
trace

(
log2

(
I ` C1/2

I ´ C1/2

))
(9)

“trace
(
arctanh2

(
C1/2

))
(10)

with C “ (Ψ ´ Ω)
(
I ´ ΩHΨ

)´1 (
ΨH ´ ΩH

) (
I ´ ΩΨH

)´1.
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2.3 The Isometry

In [6], the following function is said to be an isometry for the Siegel distance
described in Eq. (9).

ΦΩ (Ψ) “ (
I ´ ΩΩH

)´1/2
(Ψ ´ Ω)

(
I ´ ΩHΨ

)´1 (
I ´ ΩHΩ

)1/2
(11)

Property 2. The differential of the isometry Φ has the following expression:

DΦΩ (Ψ) [h] “ (
I ´ ΩΩH

)1/2 (
I ´ ΨΩH

)´1
h

(
I ´ ΩHΨ

)´1 (
I ´ ΩHΩ

)1/2

(12)

Property 3. The inverse of the function Φ described in Eq. (11) is:

Φ´1
Ω (Ψ) “ ΦΩ (´Ψ) (13)

2.4 The Riemannian Logarithm Map

Riemannian Logarithm Map at 0. In [6], the logarithm map at 0 is given
by the formula :

log0 (Ω) “ V Ω (14)

with:

V “ L

(
(
ΩΩH

)1/2
, log

(
I ` (

ΩΩH
)1/2

I ´ (ΩΩH)1/2

))
(15)

where L (A,Q) is defined as the solution of:

AZ ` ZAH “ Q (16)

However, the expression of the logarithm map at zero given in [6] can be
greatly simplified.

Property 4. The Riemannian logarithm map of the Siegel disk at zero has the
following expression:

log0 (Ω) “ arctanh (X) X´1Ω where X “ (
ΩΩH

)1/2
(17)

Note that for ~X~ < 1, we can develop the function arctanh in whole series:

arctanh (X) “
`8∑

n“0

X2n`1

2n ` 1
(18)

Hence for all X in the Siegel disk, we can write the product arctanh (X) X´1

the following way:

arctanh (X) X´1 “
`8∑

n“0

X2n

2n ` 1
(19)

This new expression is also valid when the matrix X is not invertible.
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Fig. 1. The Poincaré disk logarithm map computation

2.5 The Riemannian Logarithm Map at Any Point

To compute the Riemannian logarithm map at a point Ω the key idea here is to
transport the problem at zero, compute a certain logarithm at zero and transport
the result back to Ω. If we want to compute the logartithm map: logΩ (Ψ), we
first transport both Ω and Ψ using the isometry ΦΩ given in Eq. (11). The point
Ω is sent to zero, and we denote Ψ

′
the image of Ψ by ΦΩ :

Ψ
′ def“ ΦΩ (Ψ) “ (

I ´ ΩΩH
)´1/2

(Ψ ´ Ω)
(
I ´ ΩHΨ

)´1 (
I ´ ΩHΩ

)1/2
(20)

Then we compute the logarithm map at zero log0
(
Ψ

′
)
:

V
′ def“ log0

(
Ψ

′) “ arctanh (X)X´1Ψ
′

where X “
(
Ψ

′
Ψ

′ H
)1/2

(21)

And finally, we transport back the logarithm to the point Ω using the differ-
ential of the isometry Φ given in Eq. (12):

V
def“ logΩ (Ψ) “ DΦ´Ω (0)

[
V

′] “ (
I ´ ΩΩH

)1/2
V

′ (
I ´ ΩHΩ

)1/2
(22)



698 Y. Cabanes and F. Nielsen

2.6 The Riemannian Exponential Map

Riemannian Exponential Map at 0

Property 5. The Riemannian exponential map of the Siegel disk at zero has the
following expression:

exp0 (V ) “ tanh (Y ) Y ´1V where Y “ (
V V H

)1/2
(23)

Note that for ~X~ < π
2 , we can develop the function tanh in whole series:

tanh (X) “
`8∑

n“1

22n
(
22n ´ 1

)

(2n)!
B2nX2n´1 (24)

where B2n are the Bernoulli numbers.
Hence for all X in the Siegel disk, we can write the product tanh (X) X´1

the following way:

tanh (X) X´1 “
`8∑

n“1

22n
(
22n ´ 1

)

(2n)!
B2nX2n´2 (25)

This new expression is also valid when the matrix X is not invertible.

2.7 The Riemannian Exponential Map at Any Point

To compute the Riemannian exponential map at a point Ω the key idea here
is to transport the problem at zero (as for the logarithm), compute a certain
exponential at zero and transport the result back to Ω. If we want to compute
the exponential map: expΩ (V ), we first transport the vector V at zero using the
differential of the isometry Φ given in Eq. (12):

V
′ def“DΦΩ (Ω) [V ] (26)

“ (
I ´ ΩΩH

)1/2 (
I ´ ΩΩH

)´1
V

(
I ´ ΩHΩ

)´1 (
I ´ ΩHΩ

)1/2
(27)

“ (
I ´ ΩΩH

)´1/2
V

(
I ´ ΩHΩ

)´1/2
(28)

Then we compute the exponential map at zero exp0

(
V

′
)
:

Ψ
′ def“ exp0

(
V

′) “ tanh (Y ) Y ´1V
′

where Y “
(
V

′
V

′ H
)1/2

(29)

And finally, we transport back the exponential to the point Ω using the
isometry Φ´Ω which is the inverse of isometry ΦΩ (see Property 3) and transport
the point 0 back to Ω and the point Ψ

′
back to expΩ (V ):

Ψ
def“ expΩ (V ) (30)

“ Φ´Ω

(
Ψ

′)
(31)

“ (
I ´ ΩΩH

)´1/2
(
Ψ

′ ` Ω
)(

I ` ΩHΨ
′)´1 (

I ´ ΩHΩ
)1/2

(32)
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Fig. 2. The Poincaré disk exponential map computation

2.8 The Geodesics

The expression the geodesics can be obtained using the exponential map: the
geodesic starting from Ω with velocity V is given by the application:

ζ(t) : t �→ expΩ (tV ) (33)

2.9 Sectional Curvature of the Siegel Space

We first focus on the sectional curvature at 0. We can then obtain the sectional
curvature at any point using the isometry Φ defined in Eq. (11).

Let σ be a section defined by the two first vectors of an orthogonal basis
(E1, . . . , En) of the tangent space of the Siegel disk at the point Ω “ 0.

Theorem 1. The sectional curvature at zero of the plan σ defined by E1 and
E2 has the following expression:

K(σ) “ ´1
2

(∥∥E1E
H
2 ´ E2E

H
1

∥∥2 ` ∥∥EH
1 E2 ´ EH

2 E1

∥∥2
)

(34)

As a consequence, we have:

´ 4 ď K (σ) ď 0 ∀σ (35)

The Siegel disk is therefore a Hadamard manifold. The bounds of the sec-
tional curvature provides a proof of the convergence of certain algorithms calcu-
lating the Riemannian p-mean [1] or the circumcenter [2] of a set of points on a
manifold.
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2.10 The Symmetric Siegel Disk

We defined the Siegel disk in definition 1 as the set of complex matrices with
singular values lower than one: SDN “ {

M P CN×N , I ´ MMH ą 0
}
. We recall

that another definition of the Siegel disk also exists in other papers [8], imposing
an additional symmetry condition on the matrix M : M “ MT . Note that the
symmetric Siegel disk is a totally flat submanifold of the Siegel disk. Hence the
formula of the logarithm map 2.5, the exponential map 2.7 and the sectional
curvature 2.9 computed in previous sections are still meaningful when working
in the submanifold of symmetric matrices.

3 Application to Stationary Signals Classification

An effective algorithm to estimate the model parameters from the raw data
is described in [5,7]. The classification model presented in this article has
been applied to radar clutter classification in [3,4] in the special case of one-
dimensional complex signals and in [5] in the case of simulated multidimensional
radar signals. This model will be applied in future work to stereo audio signals
classification in the case of two-dimensional real signals.
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Abstract. A wide range of metrics between phylogenetic trees are used
in evolutionary molecular biology. They are typically based directly on
the branching patterns and edge lengths represented by the trees. Metrics
have recently been proposed which are based on the information content
of distributions of genetic characters induced by the trees. We first show
how these metrics lead to a change to the topology of the underlying tree
space. Next we show via computational methods that the metrics are
stable under changes to the Markov process used to generate characters,
at least in the case of 5 taxa. As a result, a Gaussian process defined
over the edges of trees can be used to compute the metrics, leading to a
substantial computational efficiency over DNA nucleotide-valued Markov
process models.

1 Introduction

Phylogenetic trees or phylogenies represent evolutionary relationships between
species, and are a fundamental tool in evolutionary molecular biology. Phylo-
genies are usually inferred from genetic sequence data of extant species, and
phylogenetic inference has become a mature statistical field [4]. A large num-
ber of different metrics between phylogenetic trees have been developed, and
these play a key role in posterior analysis of samples of trees and in hypothesis
testing. Some distances measure differences in the branching structure alone [1]
while others also take edge lengths into account [2]. However, the definitions of
most metrics are divorced from the models of genetic sequence evolution used
to infer trees.

In contrast, Garba et al. [6] developed probabilistic or information metrics,
which are defined by comparing the distributions on genetic sequences induced
by phylogenetic trees. The idea is to take a metric such as the Hellinger or
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Jensen-Shannon metric between distributions, and pull this back onto the space
of trees. Garba et al. [6] focused on computational aspects of calculating these
metrics, and also showed how they depart in behaviour from existing metrics.
More recently, novel geometries in a space of phylogenetic trees have been con-
structed by defining distances infinitesimally using the Fisher information metric,
and globally as the infimum of the lengths of paths between trees [5]. Papers
[6] and [5] are related, since infinitesimally the Fisher information metric is pro-
portional to the information metrics considered in [6] (see [5], Theorem 3.1).
The motivation for [5] was to develop a geodesic metric space of phylogenies. A
geodesic metric space is a metric space in which every pair of points is joined by
at least one path whose length is equal to the distance between the points. The
well-known BHV tree space of Billera, Holmes and Vogtmann [2] is a geodesic
metric space, for which the metric is locally the Euclidean distance between the
vector of edge lengths for trees with the same branching pattern. The existence
of geodesics in the BHV tree space makes it amenable for a variety of statistical
methods, such as the calculation of Fréchet means [9].

Two geometries for phylogenetic trees are developed in [5]. One is the infor-
mation geometry of a two-state discrete-valued Markov process defined over the
edges of trees, while the second is the information geometry of Gaussian pro-
cess defined over the edges of trees. Geometries using Markov processes with
state space {A,C,G, T} can also be defined. The Gaussian process is an approx-
imation to the two-state discrete-valued Markov process, which in turn is an
approximation to a simple Markov model of DNA evolution over each tree [7].

Our aim in this short paper is to show, at least for trees with 5 taxa,
that the geometries obtained via these three Markov processes are similar. The
implication is that the information geometry based on the Gaussian process
model is well-motivated biologically, while having the advantage of computa-
tional efficiency over the DNA-based model. Along the way, we show how use
of information-based metrics motivates adding a boundary at infinity to BHV
tree space, thereby changing its topology. The new space is actually a space of
forests, called wald space [5,8].

2 Background

2.1 Phylogenetic Trees

Let L = {1, . . . , N} be a fixed set of species or taxa. An unrooted phylogenetic
tree on L, is a pair (T, �) which satisfies the following.

(i) T is a tree for which the degree 1 vertices (or leaves) are bijectively labelled
by the elements of L.

(ii) � is a mapping � : E → (0,∞), where E is the edge set of T .
(iii) There are no vertices with degree 2.

For any edge e in a tree, �(e) is called the length of e and can be interpreted
as a degree of evolutionary divergence along that edge. Although we focus on
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unrooted trees, since the character distribution associated to each unrooted tree
is easier to explain in this context, it is straightforward instead to work with
rooted trees: an additional taxon, labelled 0 can be added to the taxon set L to
mark the position of the root.

From now on we will just use the term tree to refer to an unrooted phyloge-
netic tree with taxon set L. Given (T, �) ∈ UN , we call T the topology of the tree.
Every tree contains N pendant edges, which are the edges containing the leaves.
The remaining edges are called internal edges. Every tree contains between 0
and N − 3 internal edges. Trees with no internal edges are called star trees and
consist of a single degree N vertex, connected via the N pendant edges to the
leaves. Trees with N −3 internal edges are called resolved, and every vertex other
than the leaves has degree 3.

Let UN denote the set of all unrooted phylogenetic trees on L = {1, . . . , N},
including both resolved and unresolved trees. Although they worked with rooted
trees, the work of Billera et al. [2] can be used to embed UN in R

M where M
increases exponentially with N . The embedded space is a product of (0,∞)N

(which parametrizes the pendant edge lengths) with a union of copies of
[0,∞)N−3 which are glued along their boundaries. Each copy of [0,∞)N−3 is
called an orthant, and its interior parametrizes the trees with some fixed resolved
topology. The boundary of each [0,∞)N−3 corresponds to certain unresolved
trees obtained by collapsing one or more internal edges. Billera et al. [2] proved
the existence of a metric dBHV on UN : it is the product metric of the Euclidean
metric on the pendant edge lengths and a metric which is locally Euclidean
within each orthant. More details are given by [2].

Later, we will consider the case of N = 5 taxa so each resolved topology
contains N−3 = 2 internal edges. The corresponding orthants are 2-dimensional,
and each point in an orthant determines the lengths of the two internal edges.
We will draw plots using three positive orthogonal axes in R

2 and 3 associated
orthants.

2.2 Substitution Models and Character Distributions

Phylogenetic trees are inferred from genetic sequence data or sometimes physical
traits. A Markov process X defined over the edges of each tree and taking values
in some set Ω is used to model the evolution of genetic sequences or traits given
the tree. A character is a map L → Ω or equivalently, an element of ΩN .

If the Markov process X is stationary, each phylogenetic tree (T, �) uniquely
determines the distribution of X at the leaves and hence a distribution of char-
acters. For example, Ω is often the set of DNA letters {A,C,G, T}, and each
phylogenetic tree determines a distribution on {A,C,G, T}N . The Markov pro-
cess X is called a substitution model since it represents how locations in DNA
sequences mutate. Given a set of characters which are assumed to be indepen-
dent observations, maximum likelihood or Bayesian inference methods are used
to infer the underlying phylogeny from the data.
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We will consider three different Markov process models defined on trees.
The first two are commonly used in the phylogenetic literature. The third is
constructed as a continuous-valued approximation to the first model.

1. The symmetric two-state model. Under the symmetric two-state model,
Ω = {0, 1} and the transition probabilities of the Markov process are defined in
terms of the path length �t1t2 between any two points t1, t2 ∈ T :

Pr(X(t2) = j |X(t1) = i) =

{
1
2 (1 + e−�t1t2 ) when i = j and
1
2 (1 − e−�t1t2 ) when i �= j

for i, j ∈ Ω. The stationary distribution of this Markov process is the uniform
distribution on Ω.

2. The Jukes-Cantor model. The Jukes-Cantor model [7] is a model of DNA
substitution so Ω = {A,C,G, T}. It is the 4-state analog of the symmetric two-
state model, in that all transitions between different states have equal rates. We
will denote the Markov process by Y , and the transition probabilities are

Pr(Y (t2) = j |Y (t1) = i) =

{
1
4 (1 + 3e−4�t1t2/3) when i = j and
1
4 (1 − e−4�t1t2/3) when i �= j

for i, j ∈ Ω. The constant 4/3 appears in the exponent to ensure that, like
the two-state symmetric model, on average one transition occurs per unit edge
length on T . The stationary distribution is the uniform distribution on Ω.

3. A Gaussian process model. In this case the Markov process Z is
continuous-valued with Ω = R. The transition kernel for Z between t1, t2 ∈ T is
specified by

{Z(t2) |Z(t1) = z} ∼ N(ze−�t1t2 , 1 − e−2�t1t2 ).

The stationary distribution is the standard normal distribution N(0, 1). The
Markov process Z was defined specifically to act as a continuous-valued ana-
log of the two-state symmetric process X [5]. In particular, if X1, . . . , XN and
Z1, . . . , ZN represent the values of the two Markov processes at the leaves L of
a tree (T, �), then it can be shown that

4Cov(Xi,Xj) = 1 − exp(−2�ij) = Cov(Zi, Zj).

(It emerges that the factor of 4 makes no difference to the geometry obtained.)
The process Z can be obtained as an approximation to binomial random variables
corresponding to many independent copies of the two-state symmetric process
X.

Lemma 1. Each of the three models determines an injective map from UN to
the set of distributions of characters ΩN .

For details of the proof see [5,10].
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3 Information Metrics from Distributions of Discrete
Characters

3.1 Definition

Suppose we fix one of the Markov processes defined above, and let p(T,�) denote
the distribution of characters ΩN induced by a tree (T, �). Any metric d on
distributions then pulls back to the tree space UN via

d∗((T1, �1), (T2, �2)) = d(p(T1,�1), p(T2,�2)).

For example, d can be the Hellinger metric or Jensen-Shannon metric. We call the
pull back metrics information metrics or probabilistic metrics. [6] considered such
metrics in the case of discrete-valued Markov substitution models. Computation
of these metrics in the discrete case involves a sum over ΩN . We will only work
with N = 4 or 5, in which cases the computation is tractable.

3.2 Properties

A key property of the information metrics is that they behave differently from
dBHV as edge lengths are scaled. If we take two distinct trees (T1, �1) and (T2, �2)
and simultaneously scale all edge lengths in the trees by a factor s, then in the
limit s → ∞ the information metrics between the trees decreases to zero [6].
This is because in the limit the distribution induced on ΩN by both trees is the
same: it is the product of N independent copies of the stationary distribution
on Ω. In evolutionary terms, as edge lengths approach infinity the number of
mutations on each edge becomes large, so the genetic sequences at the leaves of
the tree are independent from one another.

Fig. 1. Jensen-Shannon distance between two 4-taxon trees for the two-state symmet-
ric and Jukes-Cantor Markov models. Right: the trees are identical apart from the
placement of taxon 4 (dotted line for T1, dashed for T2). The distance is plotted as a
function of the length x of the edge containing taxon 4.
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This is not the only way the boundary at infinity can be approached. Consider
the star tree on L = {1, 2, 3} for which all edge lengths are 0.4 (for example). For
i = 1, 2, let (Ti, �i) be the tree obtained by attaching a fourth taxon by an edge
with length x midway along the edge containing taxon i. As shown in Fig. 1,
as x increases the Jensen-Shannon metric between the trees (T1, �1) and (T2, �2)
decreases to zero. (The Hellinger metric behaves very similarly.) In the limit, the
value of the Markov process at taxon 4 is independent of the values at the other
taxa. The limit can be thought of as the forest consisting of the original star
tree on taxa 1, 2, 3 together with the isolated vertex 4 ∈ L. In fact this forest is
obtained as the limit as x → ∞ independently of the point at which taxon 4 is
attached to the star tree. Although the information metrics are well-defined on
UN , it is natural to augment the space by adding on the boundary at infinity,
especially since the boundary is finitely far from the rest of the space:

Lemma 2. Fix a tree (T, �) ∈ UN . Setting the edge lengths of a subset S of edges
of T to infinity determines a distribution pS on ΩN , such that d(p(T,�), pS) < ∞
where d denotes the Hellinger or Jensen-Shannon metric.

The proof follows from Theorem 4.1 and Theorem 5.1 in [5], respectively for
the Markov processes X and Z. However, it is apparent that the proof also holds
for the Jukes-Cantor model Y .

The wald space described by [5] and [8] includes this boundary and cer-
tain other points (such as trees with taxon labels on internal vertices) which
are excluded from BHV tree space. The boundary at infinity contains forests
obtained by expanding subsets of edges to infinite length, which is the same as
removing these edges from trees. In particular, it contains the forest of N iso-
lated vertices which is obtained, for example, when the pendant edges become
infinitely long. Wald space is constructed in such a way that the pull back of
information metrics are true metrics as opposed to pseudometrics.

3.3 Comparison of Metrics Under 2-State and 4-State Models

Computing the information metrics is less intensive using the two-state model
than the Jukes Cantor model, since the number of possible characters (|Ω|N ) is
smaller for the former. However, from a biological perspective we would prefer
to use the Jukes-Cantor model in particular when the trees were inferred from
DNA data. To justify use of the two-state model, we investigated the similarity
of the metric by plotting contours of distance from a fixed reference tree in U5

under the two models.
Figure 2 shows typical results. The general shape of the contours is very sim-

ilar under the two metrics, in particular as the distance away from the reference
tree increases. The minimum represented by the reference tree is less steep under
the Jukes-Cantor model than the two-state model, with the contours more widely
spaced. Overall, however, the two-state model provides a good approximation to
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Fig. 2. Contour plots of the Jensen-Shannon distance from a fixed reference tree in
U5. In each plot, three neighbouring orthants in U5 are shown (see the last paragraph
of Sect. 2.1). The contours show the distance from the reference tree positioned in the
centre of concentric contours in the top right orthant. Top row: both internal edges on
the reference tree have length 0.1. Bottom row: both internal edges on the reference
tree have length 0.4. Left column: two-state model. Right: Jukes-Cantor model.

Fig. 3. Contours of distance and a selection of geodesics fired from a point in U5. The
axes give the lengths of the two internal edges. Left: Fisher information metric com-
puted under the two-state model. Right: metric computed using the Gaussian process
model.
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the Jukes-Cantor model across U5. Other contour plots for a variety of reference
trees show similar results.

4 Intrinsic Geometry for Fixed Tree Topology

As mentioned in the introduction, the aim of [5] was to construct a geodesic
metric space of trees using information geometry. Each orthant of UN is a man-
ifold which parametrizes distributions on ΩN via a choice of Markov model, as
defined in Sect. 2.2. The Fisher information metric [3] gives each orthant a Rie-
mannian inner product, and geodesics can be constructed computationally by
integrating the geodesic equation. These can be compared under the different
choices for the Markov model.

Figure 3 shows typical results under the two-state and Gaussian process mod-
els. The geodesics look almost identical, and this was replicated across different
experiments, with the plots almost indistinguishable. It can be shown on some
simple examples, however, that the Riemannian metrics determined with the
different models are in fact not equal [5].

Our conclusion is that the geometry determined by the Gaussian process
model is very similar to that under the two-state model. The former model
has a significant computational advantage: while the two-state model requires
summation over {0, 1}N to evaluate the Riemannian inner product, the corre-
sponding integral under the Gaussian process model is analytically tractable. As
shown by [5], the Fisher information metric under the Gaussian model is the
same as the affine invariant Riemannian metric on positive definite matrices,
where each tree is associated to the covariance matrix between the random vari-
ables Z1, . . . , ZN at the leaves. This raises the possibility of using geodesics in
the ambient space of positive definite matrices, which are easily computed, to
help construct information geodesics in wald space [8].
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Abstract. The recently introduced wald space models phylogenetic
trees from an evolutionary perspective. We show that it is a stratified
space and propose algorithms to compute geodesics. In application we
compute a Fréchet mean of three trees of different topologies that is fully
resolved, unlike in BHV-space. Both, preliminary results on geodesics
and on means suggest that wald space features less stickiness than BHV-
space, making it an alternative model for statistical investigations.

1 Introduction

Phylogenetic trees reflect biological species’ evolution. They are built from
genetic variation over a set of taxa. Curiously, building them for the same set
of taxa, from different genes, however, often result in fundamentally different
trees, e.g. Rokas et al. (2003). This generates a call for statistics, for instance
averaging over different trees while controlling their uncertainty. Also, this is a
call for geometry, designing suitable spaces of trees that are both, biologically
meaningful and numerically tractable.

A seminal model has been proposed twenty years ago by Billera et al. (2001),
abbreviated as the BHV-model. It has the favorable property of being a Rie-
mann stratified space of globally nonpositive curvature, thus admitting unique
geodesics and unique Fréchet means. Additionally, since it is locally flat, an
abundance of successful algorithms have been developed for their computation
that suffer only from inherent combinatorial complexity, e.g. Owen (2011); Bačák
(2014); Miller et al. (2015); Brown and Owen (2018).

While this model is mathematically intriguing, more recently new models
have been developed with geometries more closely reflecting stochastic biological
fundamentals of gene mutations, e.g. Moulton and Steel (2004); Shiers et al.
(2016); Garba et al. (2020). In Garba et al. (2018), metrics for phylogenetic
trees based on the information geometry of the two-state and four-state model
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were proposed (four states because gene entries are taken from one of the four
nucleotide bases). This study was continued in Garba et al. (2020, 2021) and - as
a further simplification - a continuous model has been proposed with moments
matching those of the two-state model.

In this contribution, we briefly review the definition of our new wald space (cf.
Garba et al. (2020)) and propose algorithms to compute geodesics and Fréchet
means. On the one hand, the wald space is geometrically more challenging. It is a
stratified space that is isometrically embedded in the space of positive symmetric
N × N matrices P (where N ∈ N is the number of taxa) equipped with the well
known affine invariant geometry of globally nonpositive curvature – hence the
need for algorithms as sophisticated as those of the BHV-space. On the other
hand, we believe it is biologically more meaningful than the BHV-space. For
example, in BHV-space the distance of two different trees with edge lengths
becoming arbitrary large diverges to infinity. In wald space, such trees converge
to the completely disconnected forest, a member of the wald space, along with
other forests. Hence these two trees become more and more similar. Simulations
and data analyses reveal advantage of wald space: degenerate trees seem to be
less sticky (sticky means have degenerate limiting distributions) in wald space
than in BHV-space, cf. Hotz et al. (2013); Huckemann et al. (2015); Barden et al.
(2013, 2018), thus more easily allowing for statistical inference.

Wald space was first proposed at the Oberwolfach workshop 1804 (2018) in
the black forest which is the Schwarzwald in German.

2 Wald Space

Let N ∈ N denote the number of taxa. A phylogenetic forest (F, �) is

(i) a forest F = (V,E) with a finite number of vertices V , undirected edges
E such that any two vertices u, v ∈ V are connected by at most one edge
denoted by {u, v} and labeled vertices L = {1, . . . , N} ⊆ V , where v ∈ V \L
implies that deg(v) ≥ 3,

(ii) with a mapping � : E → (0,∞).

Two phylogenetic forests are equivalent, (F1, �1) ∼ (F2, �2), if their label sets
agree L1 = L = L2 and if there is a graph isomorphism f : V1 → V2 such that

(i) f(u) = u for all u ∈ L, and
(ii) �1({u, v}) = �2({f(u), f(v)}) for all {u, v} ∈ E1.

Definition 1. Every equivalence class W = [F, �] is called a wald and all equiv-
alence classes form the wald space W, its geometric structure is defined further
below. Disregarding the edge lengths map �, every equivalence class of forests F
with regards to (i) above, is a wald topology. For a given wald W = [F, �], the
grove of W is WW which comprises all W ′ = [F ′, �′] ∈ W where F ′ and F have
the same wald topology.
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In the following, for any connected u, v ∈ V , E(u, v) is the set of edges along
the unique path connecting u and v. For u = v, we set any sum over E(u, u)
equal zero.

With this notation, the map φ sending W = [F, �] to the N ×N matrix with
coordinate entry at u, v ∈ L,

(
φ(W )

)
uv

=
(
φ([F, �])

)
uv

:=

{
exp

(
− ∑

e∈E(u,v) �(e)
)
, if u and v are connected,

0, else,

(1)

is well defined and maps W injectively into the set of symmetric positive N ×N
matrices P, cf. Garba et al. (2020).

Recall from Garba et al. (2020, 2021) that the affine invariant Riemannian
metric on P corresponds to the Fisher information geometry for zero-mean
nondegenerate N -dimensional Gaussians induced by tree-indexed Gaussian pro-
cesses, a continuous generalisation of the two-state model. This metric has the
advantage of turning P into a Riemannian manifold of global nonpositive curva-
ture (e.g. Lang (1999)), guaranteeing unique geodesics and unique Fréchet means
(e.g. Sturm (2003)). The squared distance induced on P is given by

d2P(P,Q) = Tr
[

log
(√

P
−1

Q
√

P
−1

)2
]

=
N∑

i=1

log(μi)2,

where
√

P is the unique positive definite square root of P and μi are the eigen-
values of P−1Q.

Definition 2. The metric dW of the wald space is the pullback of dP under φ,
which is given for W1,W2 ∈ W by

dW(W1,W2) = inf
γ : [0,1]→W

φ◦γ cont. path,
γ(0)=W1,γ(1)=W2

LdP (φ ◦ γ),

where LdP (γ) is the length of the path γ measured in dP . If no such path exists,
we set dW(W1,W2) = ∞.

As previously noted, trees with edge lengths � tending to infinity move infini-
tively far apart in the BHV geometry. In the wald geometry the distance between
these trees goes to zero. This is reflected in the following reparametrization
W = [F, λ] with λ := 1 − exp(−�), recasting (1) as

(
φ(W )

)
uv

=
(
φ([F, λ])

)
uv

:=

{∏
e∈E(u,v)

(
1 − λ(e)

)
, if u and v are connected,

0, else.

In particular, if W = [F, λ], F = (V,E), has |E| edges, vectorizing λ ∈ (0, 1)|E|,
we have the following identification for the grove of W :

WW
∼= (0, 1)|E| .
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Theorem 1. 1. For every wald W = [F, λ], F = (V,E) with grove WW , the

mapping (0, 1)|E| ∼= WW
φ→ P is an embedding.

2. If W = [F, λ] with a fully resolved (i.e. binary) tree F then WW is an open
subset of W.

Proof. cf. Lueg et al. (2021).

In consequence, W is a stratified space with strata given by groves. As BHV-
space can be viewed as a subset of wald space, cf. Garba et al. (2020), BHV-
orthants are subsets of groves. In contrast to BHV-space, groves are not only
connected to the star stratum (trees without interior edges), they are also con-
nected to forest strata including the completely disconnected forest (consisting
of N isolated vertices, no edges), which lies on the boundary of the star stratum.

3 Geodesics in Wald Space

We propose different algorithms to compute geodesics between two fully resolved
trees W1 and W2, where Algorithm 4 is only applicable if W1 and W2 lie in a
common grove WW . Dropping the embedding map φ, we consider wald space
W as a subset of the ambient space P. To this end, for P,Q ∈ P, denote the
unique geodesic between P and Q by γP,Q : [0, 1] → P, the Riemann exponen-
tial and logarithm by Exp(P)

P : TP P → P and Log(P)
P : P → TP P, respectively,

the orthogonal tangent space projection by πW : TP P → TW W and define the
projection π : P → W, P 
→ π(P ) := argminW∈W dP(P,W ), where π is only
well-defined for P ∈ P close enough to W. The following is a very simple but
naive algorithm.

Algorithm 1 (Naive Projection (NP)). Given 3 ≤ n ∈ N, W1,W2 ∈ W, for
i = 1, . . . , n compute

(1) Xi = π
(
γW1,W2(

i−1
n−1 )

)
.

Return (X1, . . . , Xn).

The next algorithm makes small (approximately geodesic) steps and successively
takes the geodesic from the newest point to the destination (note the Xi−1 and
Yi−1 in the subscript in the update step).

Algorithm 2 (Successive Projection (SP)). Given 3 ≤ n ∈ N, W1,W2 ∈
W, set X1 := W1 and Y1 := W2. For i = 2, . . . , �n

2 , do

(1) Xi := π
(
γXi−1,Yi−1(

1
n−i+1 )

)
and

(2) Yi := π
(
γYi−1,Xi−1(

1
n−i+1 )

)
.

If n is even, return (X1, . . . , X� n
2 �, Y�n

2 �, . . . , Y1).
If n is odd, set Z := π

(
γX� n

2 �,Y� n
2 �(

1
2 )

)
and return (X1, . . . , X� n

2 �, Z,

Y�n
2 �, . . . , Y1).
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The following two algorithms are inspired by Schmidt et al. (2006). They
update a given path iteratively and perform a straightening of the path, even-
tually leading to a geodesic (cf. Figs. 1–4).

Algorithm 3 (Extrinsic Path Straightening (EPS)). Let 3 ≤ n ∈ N, m ∈
N, W1,W2 ∈ W and suppose (X1, . . . , Xn) is a path in W from W1 to W2. For
j = 1, . . . , m, do

(1) for i = 2, . . . , n − 1 compute Vi = 1
2

(
LogXi

(Xi−1) + LogXi
(Xi+1)

)
and

(2) update (X2, . . . , Xn−1): for i = 2, . . . , n − 1 compute Xi := π
(
Exp(P)

Xi
(Vi)

)
.

Return (X1, . . . , Xn).

Exploiting the manifold structure of groves, for two walds W1,W2 ∈ W[F ]

with the same fully resolved tree F , we change Algorithm 3 slightly and thus
avoid using the projection.

Algorithm 4 (Intrinsic Path Straightening (IPS)). Let 3 ≤ n ∈ N, m ∈ N,
W1,W2 ∈ WW and suppose (X1, . . . , Xn) is a path in WW from X1 := W1 to
Xn := W2. For j = 1, . . . , m, do

(1) for i = 2, . . . , n − 1 compute Vi = 1
2πXi

((
LogXi

(Xi−1) + LogXi
(Xi+1)

))
and

(2) update (X2, . . . , Xn−1): for i = 2, . . . , n − 1 compute Xi := Exp(WW )
Xi

(Vi).

Return (X1, . . . , Xn).

We measure the quality of a proposal (X1, . . . , Xn), 3 ≤ n ∈ N by its length,

L(X1, . . . , Xn) =
n−1∑
i=1

dP(Xi,Xi+1)

and its energy,

E(X1, . . . , Xn) =
1
2

n−1∑
i=1

dP(Xi,Xi+1)2.

1 λ
1

2 λ
2

λ
6

λ
7

3
λ
3

4λ
4

5λ
5

Fig. 1. Tree with edge weights λ(1) = (0.5, . . . , 0.5, 0.1, 0.8) and λ(2) =
(0.5, . . . , 0.5, 0.9, 0.1) for computation of geodesics in Fig. 2.
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Fig. 2. Length (left) and energy (center) of paths between the two trees from Fig. 1
obtained from the four algorithms for n = 4, 7, . . . , 46, 49. Right: coordinates λ6, λ7 of
the paths obtained from the four algorithms for n = 10. Note that (NP), (IPS), (EPS)
almost coincide.

Fig. 3. Left: the coordinate representation (only interior edges) of different neighbour-
ing groves and two walds W1, W2 ∈ W. Second to left to right: Selected iterations of
the (EPS) algorithm for different starting paths: the output of the (SP) algorithm, the
cone path and a round path, respectively. All paths have n = 25 points.

Fig. 4. Left: length of the paths for the iterations of the (EPS) algorithm for different
starting paths. Right: energy of the paths for the iterations of the (EPS) algorithm for
different starting paths.
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Fig. 5. Three trees W1, W2, W3 ∈ W from Nye et al. (2016). Their Fréchet means are
depicted in Fig. 6.

Fig. 6. Fréchet means from the three trees from Fig. 5. Left: in BHV-space, right: in
wald space.

4 Comparing Fréchet Means

For illustration, we take n = 3 trees W1, . . . ,Wn ∈ W from Nye et al. (2016)
depicted in Fig. 5, each of which having N = 5 leaves (3 taxa and the root were
removed from the original trees for computational tractability). We compute
their Fréchet means

W ∗ ∈ argmin
W∈W

n∑
k=1

dW
(
Wk,W

)2

in BHV-space and in wald space, cf. Fig. 6. For computation we use the algorithm
of Sturm (2003). In general, the computation of other types of means is also
possible (e.g. the Riemannian 1-center, cf. Arnaudon et al. (2013)).

While in BHV-space, the Fréchet mean is unique, in wald space its uniqueness
is dubious. For both spaces we have performed 15 iterations after which the final
subsequent iterates were less than 0.05 apart, respectively. Remarkably, the mean
tree in BHV-space is a star tree. In wald space, however, it is a fully resolved
tree.
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Bačák, M.: Computing Medians and Means in Hadamard Spaces. SIAM Journal on
Optimization 24(3), 1542–1566 (2014)

Billera, L., Holmes, S., Vogtmann, K.: Geometry of the space of phylogenetic trees.
Advances in Applied Mathematics 27(4), 733–767 (2001)

Brown, D. G. and M. Owen (2018, May). Mean and Variance of Phylogenetic Trees.
arXiv:1708.00294 [math, q-bio, stat]. arXiv: 1708.00294

Garba, M.K., Nye, T.M., Boys, R.J.: Probabilistic Distances Between Trees. Systematic
Biology 67(2), 320–327 (2018)

Garba, M. K., Nye, T. M. W., Lueg, J., Huckemann, S. F.: Information geometry for
phylogenetic trees. Journal of Mathematical Biology 82(3), 1–39 (2021). https://
doi.org/10.1007/s00285-021-01553-x

Garba, M. K., T. M. W. Nye, J. Lueg, and S. F. Huckemann (2021). Information
metrics for phylogenetic trees via distributions of discrete and continuous characters.
In: Nielsen, F., Barbaresco, F. (Eds.) GSI 2021, LNCS 12829, pp. 701–709 (2021).
https://doi.org/10.1007/978-3-030-80209-7 75

Hotz, T., Huckemann, S., Le, H., Marron, J.S., Mattingly, J., Miller, E., Nolen, J.,
Owen, M., Patrangenaru, V., Skwerer, S.: Sticky central limit theorems on open
books. Annals of Applied Probability 23(6), 2238–2258 (2013)

Huckemann, S., Mattingly, J.C., Miller, E., Nolen, J.: Sticky central limit theorems
at isolated hyperbolic planar singularities. Electronic Journal of Probability 20(78),
1–34 (2015)

Lang, S.: Fundamentals of Differential Geometry. Graduate Texts in Mathematics.
Springer-Verlag, New York (1999)

Lueg, J., T. Nye, M. Garba, and S. F. Huckemann (2021). Phylogenetic wald spaces.
manuscript

Miller, E., Owen, M., Provan, J.S.: July). Polyhedral computational geometry for aver-
aging metric phylogenetic trees. Advances in Applied Mathematics 68, 51–91 (2015)

Moulton, V., Steel, M.: Peeling phylogenetic ‘oranges’. Advances in Applied Mathe-
matics 33(4), 710–727 (2004)

Nye, T. M., X. Tang, G. Weyenberg, and Y. Yoshida (2016). Principal component
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Abstract. The efficiency of estimation depends not only on the method
of estimation but also on the distribution of data. In statistical experi-
ments, statisticians can at least partially design the data-generating pro-
cess to obtain high estimation performance. This paper proposes a neces-
sary condition for a semiparametrically efficient experimental design. We
derived a formula to determine the efficient distribution of the input vari-
ables. The paper also presents an application to the optimal bid design
problem of contingent valuation survey experiments.

Keywords: Optimal design · Semiparametric efficiency ·
Binary response model · Contingent valuation survey experiments

1 Introduction

This paper investigates a class of simple statistical experiments described by a
4-tuple,

E = {(μ, ν, ρ, ϕ) | μ ∈ M, ν ∈ N}. (1)

Here, M is a set of probability measures on (W,A), N is a set of probability
measures on (X ,B), ρ is a measurable map from W × X to (Y, C), and ϕ is a
functional on M. In every experiment (μ, ν, ρ, ϕ) ∈ E , input x is drawn from ν,
output y = ρ(ω, x) with ω ∼ μ is observed, and the value of ϕ(μ) is estimated
from independent copies of (x, y).

For example, imagine that n lightning bulbs exist, whose lifetime hours
ω1, . . . , ωn are i.i.d. random variables distributed according to μ. To estimate the
expected lifetime hours ϕ(μ) = Eμω, the following experiment was conducted.
First, all n bulbs are turned on at time 0. Second, one bulb was sampled without
replacement at time x, and its status was observed. If the sampled bulb was alive,
y was set to 1. Otherwise, y was set to 0. The procedure was repeated n times until
all bulbs were sampled. Finally, data of independent pairs (x1, y1), . . . , (xn, yn)
are obtained, and Eμω will be consistently estimated by using existing estimation
methods, such as the nonparametric maximum likelihood estimation [6].

Note that the efficiency of the estimation depends not only on the estimation
method but also on the distribution ν of x1, . . . , xn. In an extreme case where
c© Springer Nature Switzerland AG 2021
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https://doi.org/10.1007/978-3-030-80209-7_77

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80209-7_77&domain=pdf
https://doi.org/10.1007/978-3-030-80209-7_77


A Necessary Condition for Semiparametric Efficiency 719

x1 = · · · = xn = 0, trivial outcomes y1 = · · · = yn = 1 will be obtained
unless some bulbs have an initial failure. In the opposite extreme case, in which
x1 = · · · = xn = +∞, y1 = · · · = yn = 0 will occur with probability one. In
both cases, the data are quite insufficient in that a consistent estimation of Eμω
is not possible. Finding the best distribution ν of x, with which the experiment
produces the most informative data, is therefore an interesting problem.

The remainder of this paper is organized as follows: Sect. 2 formally states
the problem of the paper. The efficient design is formulated as a minimizer
of the Fisher information norm of the gradient of a functional defined on a
statistical model set. Section 3 proposes a necessary condition for the efficient
design. Section 4 presents application examples of the main theorem. Specifically,
the optimal bid design problem of contingent valuation survey experiments is
solved.

2 The Model

2.1 Tangent Space of a Statistical Model

This section introduces a theory of semiparametric estimation to formulate an
efficient design problem. Terms and definitions given in the following are accord-
ing to [9]. Closely related approaches were also found in [1] and [8]. See [7] for
the generalization and comparison of different approaches.

Let M be a set of probability measures on (W,A), and let μ ∈ M. A map
t �→ μt from (−ε, ε) ⊂ R to M such that μ0 = μ is differentiable in quadratic
mean at t = 0 if α ∈ L2(μ) exists so that

lim
t→0

∫ (√
dμt − √

dμ

t
− 1

2
α
√

dμ

)2

= 0. (2)

Note that α is a quadratic-mean version of the “score function” (d/dt)t=0 log dμt.
A collection of those differentiable maps t �→ μt is denoted by M(μ). A tangent
set TμM of M at μ is a set of tangent vectors α as in (2). In the following,
assume that TμM is a linear space. Further, assume that t �→ μht ∈ M(μ) for
every h ∈ R and t �→ μt ∈ M(μ). On TμM, the Fisher information metric 〈·, ·〉μ

is given by

〈α, α′〉μ =
∫

W
αα′ dμ (3)

for every α and α′ in TμM. The Fisher information norm ‖ · ‖μ is given by
‖α‖μ = 〈α, α〉1/2

μ .

Proposition 1 [6]. Let TμM be the closure of a tangent set TμM with respect
to ‖ · ‖μ. Then, TμM = L0

2(μ) :=
{
α ∈ L2(μ)

∣∣ ∫
α dμ = 0

}
.
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2.2 Score Operator

Let N be a class of probability measures on (X ,B), and let P be a class of
probability measures on (X ×Y,B⊗C). For every P ∈ P, let P(P ) be a collection
of differentiable-in-quadratic-mean maps t ∈ (−ε, ε) �→ Pt ∈ P so that P0 = P
and

lim
t→0

∫ (√
dPt − √

dP

t
− 1

2
β
√

dP

)2

= 0 (4)

with β ∈ L2(P ). The tangent set TP P of P at P is a set of β as in (4). In the
following, assume that TP P is a linear space. The Fisher information norm on
TP P is given by ‖β‖P =

(∫
β(x, y) dP (x, y)

)1/2 for every β ∈ TP P.
Let ρν(μ)(∈ P) be the joint distribution of (x, y) given by

ρν(μ)(D) =
∫

{(x, ρ(ω, x)) ∈ D}μ(dω)ν(dx), D ∈ B ⊗ C, (5)

where ω ∼ μ, x ∼ ν, and y = ρ(ω, x). The score operator (dρν)μ : TμM �→
L2(ρν(μ)) associated with the map ρν : M �→ P, μ �→ ρν(μ), is given by

((dρν)μα)(x, y) = Eμ×ν(α(ω) | x, y), (x, y) ∈ X × Y, (6)

for every α ∈ TμM [7]. A tangent set of a subclass ρν(M) := {ρν(μ) ∈ P | μ ∈
M}, which is a set of statistical models to be estimated in experiment (μ, ν, ρ, ϕ),
is the range of the score operator as follows:

Tρν(μ)ρν(M) = R((dρν)μ) = (dρν)μ(TμM). (7)

Here, R(·) denotes the range of given operators. The score operator is linear and
continuous according to the Fisher information metrics. The conjugate operator
(dρν)∗

μ : L2(ρν(μ)) �→ L2(μ), which satisfies 〈(dρν)μα, β〉ρν(μ) =
〈
α, (dρν)∗

μβ
〉

μ

for every α ∈ L2(μ) and β ∈ L2(ρν(μ)), is given by

((dρν)∗
μβ)(ω) = Eμ×ν(β(x, y) | ω), ω ∈ W. (8)

2.3 Efficiency Bound

Assume that

(A1) there exists a linear, continuous operator ϕ′
μ : TμM �→ R such as

lim
t→0

ϕ(μt) − ϕ(μ)
t

= ϕ′
μα (9)

for every differentiable-in-quadratic-mean path t �→ μt ∈ M(μ) with a tan-
gent vector α ∈ TμM.

According to Riesz’s representation theorem, the gradient function ∂ϕμ ∈ L0
2(μ)

uniquely exists so that ϕ′
μα ≡ 〈

∂ϕμ, α
〉

μ
. Assume also that
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(A2) there exists a functional κ : P �→ R such that κ(ρν(μ)) ≡ ϕ(μ) for all
μ ∈ M.

The functional κ is said to be differentiable at P ∈ P relative to P(P ) if a linear,
continuous operator κ′

P : TP P �→ R such as

lim
t→0

κ(Pt) − κ(P )
t

= κ′
P β (10)

for every differentiable-in-quadratic-mean path t �→ Pt ∈ P(P ) exists. The effi-
cient influence function ∂κP is the Riesz representation of κ′

P on TP P. Accord-
ing to van der Vaart’s differentiability theorem [9], κ is differentiable at ρν(μ)
relative to ρν(M(μ)) := {t �→ ρν(μt) | t �→ μt ∈ M(μ)} if and only if

∂ϕμ ∈ R((dρν)∗
μ). (11)

When (11) is satisfied, ∂κρν(μ) is related to ∂ϕμ by using the score equation:

∂ϕμ = (dρν)∗
μ(∂κρν(μ)), ∂κρν(μ) ∈ R((dρν)μ). (12)

[9] also shows that the Fisher information norm ‖∂κρν(μ)‖2ρν(μ)
provides the lower

bound of the asymptotic variances of all regular estimators of ϕ(μ). Let N ∗ be a
subclass of N so that N ∗ = {ν ∈ N | ∂ϕμ ∈ R((dρν)∗

μ)}, and then an efficiency
criterion of experimental designs is given by

l.b.(ϕ(μ) | ν) :=

⎧⎨
⎩

‖∂κρν(μ)‖2ρν(μ)
if ν ∈ N ∗

+∞ if ν �∈ N ∗.
(13)

Definition 1. The probability measure ν∗ is efficient for experiment E at μ if

l.b.(ϕ(μ) | ν∗) ≤ l.b.(ϕ(μ) | ν) (14)

for every ν ∈ N .

3 Main Results

A main theorem of the paper is given as follows:

Theorem 1. If ν∗ ∈ N ∗ is efficient for experiment E at μ, then

x �→ Eμ×ν∗(∂κρν∗ (μ)(x, y)2 | x) (15)

is ν∗-a.s. constant on X .

The intuition behind the condition is obtained from the following expression:

l.b.(ϕ(μ) | ν∗) =
∫

Eμ×ν∗(∂κρν∗ (μ)(x, y)2 | x) ν∗(dx). (16)

If the lower bound is minimized at ν = ν∗, any small perturbations added to ν∗

would not significantly change the value of l.b.(ϕ(μ) | ν∗). This is possible only
if the integrand Eμ×ν∗(∂κρν∗ (μ)(x, y)2 | x) of (16) is independent of x.
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Lemma 1. For every ν ∈ N ∗, Eν

[
Eμ×ν(∂κρν(μ)(x, y)2 | x)

]1/2
< ∞.

Proof. Let ν ∈ N ∗. There exists β∗ ∈ L2(ρν(μ)) so that ∂ϕμ = (dρν)∗
μβ∗. Let

Πν be the orthogonal projection from L2(ρν(μ)) to R((dρν)μ); then,

〈β∗ − Πνβ∗, (dρν)μα〉ρν(μ) = 〈(dρν)∗
μ(β∗ − Πνβ∗), α〉μ = 0 (17)

for every α ∈ L2(μ). Hence, there exists δν ∈ Ker((dρν)∗
μ) so that Πνβ∗ =

β∗ − δν ∈ R((dρν)μ) and (dρν)∗
μΠνβ∗ = (dρν)∗

μβ∗ = ∂ϕμ, which shows that
∂κρν(μ) = Πνβ∗ is the efficient influence function of κ at ρν(μ). By Jensen’s
inequality and the property of projections,

∫ [
Eμ×ν(∂κ2

ρν(μ)
(x, y) | x)

]1/2
ν(dx) ≤

(∫
Eμ×ν(∂κ2

ρν(μ)
(x, y) | x) ν(dx)

)1/2

= ‖Πνβ∗‖ρν(μ) ≤ ‖β∗‖ρν(μ) < ∞.

Lemma 2. Define a map Γ : N ∗ �→ N by

d(Γν)
dν

(x) = C−1
[
Eμ×ν(∂κρν(μ)(x, y)2 | x)

]1/2
, (18)

where C = Eν

[
Eμ×ν(∂κρν(μ)(x, y)2 | x)

]1/2. Then, Γν ∈ N ∗ for every ν ∈ N ∗.

Proof. For the simplicity of description, let ν′ = Γν. For every ν ∈ N ∗, there
exists β∗ ∈ L2(ρν(μ)) such that ∂κρν(μ) = Πνβ∗. We define B0 ⊂ X as

B0 =
{
x ∈ X | Eμ×ν(∂κρν(μ)(x, y)2|x) = 0

}
. (19)

Let ν0(B) := ν(B\B0) and ν⊥(B) := ν(B ∩ B0) for B ∈ B so that ν′ ∼ ν0, ν′ ⊥
ν⊥, ν = ν0 + ν⊥, and (dν′/dν)(x) = (dν′/dν0)(x) = C−1

[
Eμ×ν(∂κ2

ρν(μ)
|x)

]1/2.
Note that ∂κρν(μ)(x, ρ(ω, x)){x ∈ B0} ≡ 0 μ-a.s. and that (dν0/dν′)∂κρν(μ) ∈
L2(ρν′(μ)). Let Πν′ : L2(ρν′(μ)) �→ R((dρν′)μ) be the orthogonal projection,
then

(dρν′)∗
μ

(
Πν′

dν0
dν′ ∂κρν(μ)

)
(ω) =

∫ (
dν0
dν′ (x)

)
∂κρν(μ)(x, ρ(ω, x)) ν′(dx)

=
∫

∂κρν(μ)(x, ρ(ω, x)) (ν − ν⊥)(dx) =
(
(dρν)∗

μ ∂κρν(μ)

)
(ω) = ∂ϕμ(ω).

Therefore, ∂ϕμ ∈ R((dρν′)∗
μ) holds at ν′ = Γν.

Lemma 3. For every ν ∈ N ∗, l.b.(ϕ(μ) |Γν) ≤ l.b.(ϕ(μ) | ν).

Proof. Let ν′ = Γν. Because the efficient influence function of κ at ρν′(μ) is
given by ∂κρν′ (μ) = Πν′(dν0/dν′)∂κρν(μ),

l.b.(ϕ(μ)|ν′) ≤
∥∥∥∥
(

dν0
dν′

)
∂κρν(μ)

∥∥∥∥
2

ρν′ (μ)
= C2 ≤ ∥∥∂κρν(μ)

∥∥2

ρν(μ)
= l.b.(ϕ(μ)|ν).
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Proof of Theorem 1. Let ζ∗ = Eμ×ν∗(∂κρν∗ (μ)(x, y)2 | x), and then

l.b.(ϕ(μ)|Γν∗) ≤ (Eν∗
√

ζ∗)2 ≤ Eν∗ζ∗ = l.b.(ϕ(μ)|ν∗) ≤ l.b.(ϕ(μ)|Γν∗) (20)

according to the previous lemma. Therefore, Eν∗ζ∗ = (Eν∗
√

ζ∗)2, which implies
that Varν∗ζ∗ = 0. ��

4 Examples

4.1 Model Without Information Loss

Consider an experiment E with W = X = Y = R and ρ(ω, x) = ω+x. Let M be
a set of probability measures on R, and let N ⊆ M. The model set is ρν(M) =
{ρν(μ) | μ ∈ M}, in which ρν(μ)(D) =

∫ {(x, x+ω) ∈ D}μ(dω)ν(dx). The score
operator (dρν)μ maps each α ∈ L0

2(μ) to ((dρν)μα)(x, y) = α(y−x). The adjoint
operator is ((dρν)∗

μβ)(ω) =
∫

β(x, ω + x) ν(dx). The efficient influence function
of κ(ρν(μ)) = ϕ(μ) is ∂κρν(μ)(x, y) = ∂ϕμ(y − x), and the efficiency bound is
provided by

l.b.(ϕ(μ)|ν) =
∫

∂ϕμ(y − x)2ρν(μ)(dx, dy) =
∫

∂ϕμ(ω)2μ(dω), (21)

which is independent of ν. Therefore, an arbitrary ν ∈ N is efficient for E , and
Eμ×ν(∂κ2

ρν(μ)
(x, y) | x) =

∫
∂ϕμ(ω)2μ(dω) is a constant that is independent of

ν ∈ N .
In this example, ω is always observable since ω = y−x. Therefore, the distri-

bution of x has no impact on efficiency of the estimation. The example suggests
that the choice of ν becomes significant only when a model with information loss
is estimated.

4.2 Parametric Models

Let M = {μθ | θ ∈ Θ} be a collection of statistical models parameterized by
θ ∈ Θ ⊂ R

l. Assume that every μθ is absolutely continuous with respect to a
reference measure π. Let �̇θ = (∂/∂θ)(dμθ/dπ), and then Tμθ

M = {τ ′�̇θ : τ ∈
R

l}, and R((dρν)μθ
) = R((dρν)μθ

) = {τ ′(dρν)μθ
(�̇θ) : τ ∈ R

l}. Let ϕ(μθ) be
the target of estimation and let ϕ0(θ) := ϕ(μθ). Then, κ(ρν(μθ)) = ϕ0(θ) is
differentiable if and only if τ ∈ R

l so that

(∇θϕ0)′�̇θ(ω) = τ ′Eθ

[
Eθ(�̇θ(ω)|x, y)

∣∣∣ ω
]
. (22)

Let N ∗ be a collection of ν with which (22) is satisfied by some τ . For every ν ∈
N ∗, the efficient influence function is solved as ∂κρν(μθ) = (τ∗)′�̇θ, where τ∗ =
(Eθ[Eθ(�̇θ|x, y)Eθ(�̇θ|x, y)′])−1Eθ(�̇θ �̇

′
θ)∇θϕ0. The efficiency bound of ϕ0(θ) is

now given by l.b.(ϕ0(θ)|ν) = (τ∗)′Eθ(�̇θ �̇
′
θ)(τ

∗), which is minimized with respect
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to ν only when x �→ Eθ(∂κρν(μθ)(x, y)2 | x) = (τ∗)′Eθ(�̇θ �̇
′
θ|x)(τ∗) is a constant

map. Because ω ⊥⊥ x, the condition is satisfied by an arbitrary ν ∈ N ∗.
The example suggests that, when a parametric model of M is assumed, choice

of ν is irrelevant to estimation efficiency, while it is still relevant to identification
and differentiability of the parameter. In other words, the efficient design problem
becomes degenerated when the model is parametric.

4.3 Dichotomous Choice Contingent Valuation Experiment

Consider an experiment E with W = X = [0,∞), Y = {0, 1}, and ρ(ω, x) =
{ω < x}. This dichotomous choice contingent valuation (DC-CV) experiment is
one of the most widely used experimental methods in environmental economics
[2]. The results of Monte Carlo simulations of the DC–CV experiments, showing
the sensitivity of the estimates to the choice of ν, are reported in [3]. An efficient
design for the DC–CV experiment to estimate the mean Eμω was proposed by
[4] and [5]. In the following, their results are generalized to estimate arbitrary
smooth functionals ϕ(μ).

Let M be a set of probability measures on [0,∞), where every μ ∈ M is
equivalent to the Lebesgue measure λ = λ[0,∞) on [0,∞). Let N = M, and then
the model set ρν(M) = {ρν(μ)|μ ∈ M} is provided by

ρν(μ)(D) =
∫

D

μ[0, x)yμ[x,∞)1−y ν(dx)δY(dy) (23)

for every Borel set D ⊂ R
2, where δY is the Dirac measure on Y. Note that

Eμ×ν(y | x) = μ[0, x) holds. The score operator (dρν)μ maps each α ∈ L0
2(μ) to

((dρν)μα)(x, y) =
y − μ[0, x)

μ[0, x)μ[x,∞)

∫ x

0

α dμ, (24)

and the adjoint operator is provided by

((dρν)∗
μβ)(ω) =

∫ ω

0

β(x, 0) ν(dx) +
∫ ∞

ω

β(x, 1) ν(dx). (25)

Assume that the gradient ω �→ ∂ϕμ(ω) is differentiable with respect to ω with
derivative (∂ϕμ)′(ω) = (d/dω)(∂ϕμ)(ω) and that limM↑∞ ∂ϕμ(M)μ[M,∞) = 0.
If ∂ϕμ ∈ R((dρν)μ) at some ν ∼ λ,

β(x, y) := −dλ

dν
(x)(∂ϕμ)′(x)(y − μ[0, x)) (26)

solves ∂ϕν = (dρν)∗
μβ because

((dρν)∗
μβ)(ω) =

∫ ω

0

(∂ϕμ)′(x) dx −
∫ ∞

0

(∂ϕμ)′(x)μ[x,∞) dx

= ∂ϕμ(ω) − lim
M↑∞

∂ϕμ(M)μ[M,∞) = ∂ϕμ(ω).
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If β ∈ R((dρν)μ) is satisfied, ∂κρν(μ) = β is the efficient influence function to
estimate ϕ(μ). Let ν∗ be efficient for E at μ. Then, a positive constant C exists
so that, for any x ∈ [0,∞),

C = Eμ×ν∗

[(
− dλ

dν∗ (x) (∂ϕμ)′(x) (y − μ[0, x))
)2

∣∣∣∣∣ x

]
,

which implies

dν∗

dλ
(x) =

|(∂ϕμ)′(x)| √μ[0, x)μ[x,∞)∫ ∞
0

|(∂ϕμ)′(ξ)| √μ[0, ξ)μ[ξ,∞) dξ
. (27)

Particularly when ϕ(μ) = Eμω =
∫ ∞
0

ω μ(dω), ∂ϕμ = ω − Eμω and (∂ϕμ)′ ≡ 1,
and the formula (27) becomes equivalent to the result of [4] and [5]. It is also
confirmed that ∂ϕμ ∈ R((dρν)μ) and β ∈ R((dρν)μ) are satisfied at ν = ν∗.
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Abstract. In this paper we study the natural gradient method for over-
parametrised systems. This method is based on the natural gradient field
which is invariant with respect to coordinate transformations. One cal-
culates the natural gradient of a function on the manifold by multiplying
the ordinary gradient of the function by the inverse of the Fisher Infor-
mation Matrix (FIM). In overparametrised models, the FIM is degen-
erate and therefore one needs to use a generalised inverse. We show
explicitly that using a generalised inverse, and in particular the Moore-
Penrose inverse, does not affect the parametrisation independence of the
natural gradient. Furthermore, we show that for singular points on the
manifold the parametrisation independence is not even guaranteed for
non-overparametrised models.

Keywords: Natural gradient · Riemannian metric · Deep learning ·
Information geometry

1 Introduction

Within the field of deep learning, gradient methods have become ubiquitous
tools for parameter optimisation. The natural gradient method, first proposed
by Amari [1], is an efficient method for performing gradient descent. It is an
active field of study within information geometry [2] and has been shown to be
extremely effective in many applications [3,8,9]. The natural gradient is defined
independently of a specific parametrisation. Although it is an open problem,
there is work supporting the idea that the efficiency of learning of the method
is due to this invariance [11]. The natural gradient is calculated by multiplying
the ordinary gradient by the inverse of the Fisher Information Matrix (FIM)
associated with the statistical manifold. For high-dimensional parameter spaces,
this inversion is computationally expensive but different solutions have been
proposed [2,5,7]. In many practical applications of machine learning, and in
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particular deep learning, one deals with overparametrised models, in which dif-
ferent configurations of the parameters correspond to the same output distribu-
tion. This causes the FIM to be degenerate. In this case, one uses a generalised
inverse of the FIM to calculate the natural gradient [4]. The Moore-Penrose
(MP) inverse is the canonical choice for this. The definition of the MP inverse
is based on the Euclidean inner product defined on the parameter space. Using
the MP inverse is therefore thought to affect the parametrisation independence
of the natural gradient [7], and thus potentially the performance of the natural
gradient method.

In this paper we show explicitly that for overparametrised models parametri-
sation independence is not affected when using a generalised, and in particular
MP, inverse. We will show that for non-singular points (see Sect. 2) on the man-
ifold, a generalised inverse does not introduce parametrisation dependence. Fur-
thermore, we will show that for singular points parametrisation independence is
not even guaranteed for non-overparametrised models.

2 Parametrisation (In)dependence of the Natural
Gradient

Let (Z, g) be a Riemannian manifold, Ξ ⊂ R
d a smooth manifold of parameters,

φ : Ξ → Z a smooth map (taking the role of a parametrisation), M ≡ φ(Ξ) ⊂ Z
a model, and L : M → R a smooth (loss) function. We call p ∈ M non-singular
if M is locally an embedded submanifold of Z around p and we denote the
set of non-singular points with Smooth(M). A point p is called singular if it is
not non-singular. The gradient of L at p ∈ Smooth(M) is defined implicitly as
follows:

gp

(
gradpL, ·) = dLp(·). (1)

By the Riesz representation theorem, this defines the gradient uniquely. We
define the pushforward of the tangent vector on the parameter space through
the parametrisation as ∂i(ξ) ≡ dφξ

(
∂

∂ξi |ξ
)
, and the matrix1 G(ξ) be such that

Gij(ξ) = gφ(ξ) (∂i(ξ), ∂j(ξ)). We denote the vector of coordinate derivatives with
∇∂(ξ)L ≡ (∂1(ξ)L, ..., ∂d(ξ)L) ∈ R

d. Furthermore, following the Einstein sum-
mation convention, we write aibi for the sum

∑
i aibi.

2.1 Gradient in Non-singular Points, p ∈ Smooth(M)

We assume that φ is a proper parametrisation such that for all ξ for which
φ(ξ) ∈ Smooth(M) we have: span({∂1(ξ), ..., ∂d(ξ)}) = Tφ(ξ)M.

Definition 1. A generalised inverse of a matrix A, denoted A+, is a matrix
satisfying the following property:

AA+A = A. (2)

1 Note that this becomes the FIM when g is the Fisher metric.
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Note that this definition implies that for w in the image of A, i.e. w = Av, we
have:

AA+w = AA+Av = Av = w. (3)

This shows that AA+ is the identity operator on the image of A.

Theorem 1. For ξ ∈ Ξ such that φ(ξ) = p ∈ Smooth(M), we have:

gradpL =
(
G+(ξ)∇∂(ξ)L

)i
∂i(ξ). (4)

From this theorem we can conclude that the natural gradient of a loss function
L, which is itself defined independently of any parametrisation in Eq. (1), can be
obtained by applying a generalised inverse of the FIM to the vector of coordinate
derivatives ∇∂(ξ)L. In particular this proves that the MP inverse preserves the
parameter independence in overparametrised models.

The proof of Theorem1 will be based on the following:

Lemma 1. Let (V, 〈·, ·〉) be a finite-dimensional inner product space and V ∗ its
dual space. Let {ei}i∈{1,...,d} ⊂ V be such that span({ei}i∈{1,...,d}) = V . We
denote Aij = 〈ei, ej〉. For v′ ∈ V ∗ and (v1, ..., vd) ∈ R

d we have:

v′(·) = 〈viei, ·〉 ⇐⇒ v′(ej) = Aijv
i ∀j ∈ {1, ..., d}. (5)

Moreover, the vector (v′(e1), ..., v′(ed)) ∈ R
d is in the image of A.

Proof. ( =⇒ ) filling in gives:

v′(ej) = 〈v, ej〉 = vi〈ei, ej〉 = Aijv
i (6)

( ⇐= ) Let w = wjej ∈ V be arbitrary. We have:

v′(w) = wjviAij = wjvi〈ei, ej〉 = 〈viei, wjej〉 = 〈viei, w〉 (7)

From the Riesz representation theorem it follows that there exists a v ∈ V such
that v′(·) = 〈v, ·〉, which can be written as v = viei. From the above it follows
that multiplying A with (v1, ..., vd) gives (v′(e1), ..., v′(ed)) and is therefore in
the image of A. �
Proof (of Theorem 1). We now let TpM take the role of V , dLp the role of v′,
∂i(ξ) the role of ei, and G(ξ) the role of A. From the lemma we know that for
all x = (x1, ..., xd) ∈ R

d such that:

∂j(ξ)L = Gij(ξ)xi ∀j ∈ {1, ..., d}, (8)

we have:
gradpL = xi∂i(ξ). (9)

Equation (8) can be written in vector form as follows:

∇∂(ξ)L = G(ξ)x. (10)
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Suppose there exists a generalised inverse of G(ξ), denoted G+(ξ). From the
lemma we know that ∇∂(ξ)L is in the image of G(ξ). We saw above that
G(ξ)G+(ξ) is the identity operator on the image of G(ξ) and therefore we have
that x = G+(ξ)∇∂(ξ)L satisfies (10). Plugging this into (9) gives:

gradpL =
(
G+(ξ)∇∂(ξ)L

)i
∂i(ξ), (11)

which is what we wanted to show. �
Remark 1. Note that although the calculation of the gradient vector from the
perspective of the manifold is independent of the parametrisation, the final result
of the gradient step might still depend on this. This is because the direction of
the gradient step is only at the point p parallel to the gradient vector, but will in
general not follow the gradient flow exactly after leaving point p. This is however
not an issue specific to overparametrised models but with the natural gradient
in general. See Section 12 of [6] for exact bounds on the invariance.

Parametrisation Dependence Within the Parameter Space
Let us denote the gradient of L on the parameter space Ξ at a point ξ as follows:

gradΞ
ξ L =

(
G+(ξ)∇∂(ξ)L

)i ∂

∂ξi
|ξ ∈ TξΞ. (12)

In this example, we will show explicitly that gradΞ
ξ L does depend on the choice

of parametrisation and therefore on the inner product of the parameter space,
when G+ is the MP inverse of G. However, we show as well that this dependence
disappears when gradΞ

ξ L is mapped to Tφ(ξ)M through dφ.

η ξ

p

H Ξ

M

f

φ̃

φ

∂
∂η2 |η

∂
∂η1 |η

∂
∂ξ2

|ξ

∂
∂ξ1

|ξ

∂i(ξ)

∂̃i(η)

gradΞ
ξ LgradH

η L

Fig. 1. Two parameterisations of M with different gradient vectors on the parameter
space
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Let us consider an alternative parametrisation φ̃ : H � η �→ φ̃(η) ∈ M
such that φ̃ = φ ◦ f for a diffeomorphism f : H → Ξ (see Fig. 1). We define
correspondingly: ∂̃i(η) = dφ̃η

(
∂

∂ηi |η
)
, and G̃ij(η) = gφ̃(η)

(
∂̃i(η), ∂̃j(η)

)
, and

F (η) the matrix of partial derivatives of f at η, that is: F j
i (η) = ∂fj

∂ηi (η). For
ξ = f(η) we get the following relations:

∂̃i(η) = F j
i (η) ∂j(ξ), (13)

∇∂̃(η)L = F (η)∇∂(ξ)L, (14)

G̃(η) = F (η)G(ξ)FT (η). (15)

We map gradH
η L to TξΞ through dfη and get:

dfηgradH
η L = dfη

((
G̃+(η)∇∂̃(η)L

)i ∂

∂ηi
|η

)
(16)

=
((

F (η)G(ξ)FT (η)
)+

F (η)∇∂(ξ)L
)i

F j
i (η)

∂

∂ξj
|ξ (17)

=
(
FT (η)

(
F (η)G(ξ)FT (η)

)+
F (η)∇∂(ξ)L

)j ∂

∂ξj
|ξ. (18)

From Theorem 1 and the fact that F is of full rank we know that F ∇∂(ξ)L lies
in the image of FGFT . Therefore, by the definition of the MP inverse, we have
that

(
FGFT

)+
F ∇∂(ξ)L = arg minx{||x|| : FGFT x = F ∇∂(ξ)L}, where || · ||

is the Euclidean norm on R
d. By substituting y = FT x, the coefficients in (18)

become:

yH ≡ FT (η)
(
F (η)G(ξ)FT (η)

)+
F (η)∇∂(ξ)L (19)

= arg min
y

{|| (FT (η)
)−1

y|| : G(ξ)y = ∇∂(ξ)L}. (20)

Note that || (FT
)−1 (·)|| is the pushforward of the norm on H through f . This

shows nicely the equivalence of the gradient for on the one hand constructing a
different parametrisation (φ̃), and on the other hand defining a different inner
product

(
|| (FT

)−1 (·)||
)

for the existing parametrisation (φ).

Comparing the result to gradΞ
ξ L gives:

gradΞ
ξ L =

(
G+(ξ)∇∂(ξ)L

)i ∂

∂ξi
|ξ (21)

= (yΞ)i ∂

∂ξi
|ξ, (22)

yΞ = arg min
y

{||y|| : G(ξ)y = ∇∂(ξ)L}. (23)
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Because the norms in (20) and (23) are different, generally yH �= yΞ . However,
both satisfy Gy = ∇∂(ξ)L and therefore G(yH − yΞ) = 0. This implies:

dφξ

(
dfηgradH

η L − gradΞ
ξ L

)
= (yH − yΞ)i

∂i(ξ) (24)

= 0 (25)

where the last equality follows from non-degeneracy of the norm on Tφ(ξ)M:

|| (yH − yΞ)i
∂i(ξ)||2g = (yH − yΞ)T

G(ξ) (yH − yΞ) = 0. (26)

This shows that the dependency on the inner product disappears when the gra-
dient is mapped to the manifold M. See Example 1 in the appendix for a worked-
out example of the above discussion.

2.2 Gradient in Singular Points, p /∈ Smooth(M)

In this section we will show that for p /∈ Smooth(M), even for a non-degenerate
FIM the procedure for calculating the gradient described in Theorem1 gives a
result that is parametrisation-dependent.

Ξ

R
2

M

φ

p

ξ1 ξ2

Fig. 2. Example parametrisation that contains a singular point

Let us consider the case in which φ is a smooth map from an interval on the
real line to R

2 as depicted in Fig. 2. We have that ξ1 and ξ2 are both mapped
to the same point p in R

2. Note that M is in this case not a locally embedded
submanifold around p and thus p is a singular point. For p /∈ Smooth(M), we
will denote the RHS of (4) with grad

∂(ξ)

p L, to distinguish it from gradpL which
is only defined for non-singular points. Note that G(ξ1) is a real number different
from zero and therefore non-degenerate. Applying the same procedure as above
for finding the gradient at p gives:

grad
∂(ξ1)

p L = G+(ξ1)∇∂(ξ1)L ∂(ξ1) (27)

= G−1(ξ1)
∂L ◦ φ

∂ξ
(ξ1)∂(ξ1). (28)
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Note that G−1(ξ1)∂L◦φ
∂ξ (ξ1) is a scalar. The resulting vector will therefore lie in

the span of ∂(ξ1) illustrated by the blue arrows in the figure.
Now let f : Ξ → Ξ be a diffeomorphism such that f(ξ1) = ξ2. An alternative

parametrisation of M is given by:

φ̃ = φ ◦ f. (29)

We define equivalently for this alternative parametrisation ∂̃i(ξ) ≡ dφ̃ξ( ∂
∂ξi |ξ),

and G̃(ξ) such that G̃ij(ξ) = gp

(
∂̃i(ξ), ∂̃j(ξ)

)
. Calculating the gradient for this

parametrisation gives:

grad
∂̃(ξ1)

p L = G̃−1(ξ1)
∂L ◦ φ̃

∂ξ
(ξ1)∂̃(ξ1). (30)

Note that this vector is in the span of ∂̃(ξ1) denoted by the red arrows in
the figure and therefore in general different from (28). This shows that for
p /∈ Smooth(M), this procedure is not guaranteed to be parametrisation-
independent. See Example 2 in the appendix for a worked-out example of this.

Necessity of Assumption of Proper Parametrisation
In the beginning of this section we assumed that φ is a proper parametrisation.
We will now investigate the necessity of this assumption. We start by recalling
some basic facts from smooth manifold theory: Let M,N be smooth manifolds
and F : M → N a smooth map. We call a point p ∈ M a regular point if
dFp : TpM → TF (p)N is surjective and a critical point otherwise. A point q ∈ N
is called a regular value if all the elements in F−1(q) are regular points, and a
critical value otherwise. If M is n-dimensional, we say that a subset S ⊂ M
has measure zero in M , if for every smooth chart (U,ψ) for M , the subset
ψ(S ∩ U) ⊂ R

n has n-dimensional measure zero. That is: ∀δ > 0, there exists
a countable cover of ψ(S ∩ U) consisting of open rectangles, the sum of whose
volumes is less than δ.

Proposition 1. If Smooth(M) is a manifold, then the image of the set of points
for which φ is not proper has measure zero in Smooth(M).

Proof. From the definition of Smooth(M) we know that for every p ∈
Smooth(M) there exists a Up open in Z such that Up ∩ M is an embedded sub-
manifold of Z. Let U ≡ ⋃

p∈Smooth(M) Up. Note that: U ∩M = Smooth(M) and
therefore φ−1(U) = φ−1(Smooth(M)). Since U is open in Z, φ−1(Smooth(M))
is an open subset of Ξ and thus an embedded submanifold. Therefore we can
consider the map:

φ|φ−1(Smooth(M)) : φ−1(Smooth(M)) → Smooth(M) (31)

and note that the image of the set of points for which φ is not proper is equal to
the set of critical values of φ|φ−1(Smooth(M)) in Smooth(M). A simple application
of Sard’s theorem gives the result. �
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3 Conclusion

We have shown that for non-singular points, the natural gradient of a loss
function on an overparametrised model is parametrisation-independent. Subse-
quently, we have shown that in singular points, there is no guarantee for the nat-
ural gradient to be parametrisation-independent, even in non-overparametrised
models. In this paper, we have only looked at the case for which the FIM is
known. In practice, one often has to use the empirical FIM based on the avail-
able data. When inverting this matrix it can be beneficial to apply Tikhonov
regularisation [6]. Note that by letting the regularisation parameter go to zero,
the MP inverse is obtained. Also only one type of singularity has been discussed.
A further direction of investigation is the behaviour of the natural gradient on
different types of singular points on the manifold, see also [10].

Acknowledgements. The authors acknowledge the support of the Deutsche
Forschungsgemeinschaft Priority Programme “The Active Self” (SPP 2134).

Appendix

Example 1. Let us consider the specific example where:

Z = Ξ = H = R
2, (32)

φ(ξ1, ξ2) = (ξ1 + ξ2, 0) (33)

f(η1, η2) = (2η1, η2) (34)

L(x, y) = x2 (35)

Plugging this into the expressions derived above gives:

φ̃(η1, η2) = (2η1 + η2, 0) (36)

∂1(ξ) = ∂2(ξ) =
∂

∂x
|φ(ξ) F (η) =

[
2 0
0 1

]
(37)

∂̃1(η) = 2
∂

∂x
|φ̃(η) G(ξ) =

[
1 1
1 1

]
(38)

∂̃2(η) =
∂

∂x
|φ̃(η) G̃(η) =

[
4 2
2 1

]
(39)

∇∂(ξ)L = (2(ξ1 + ξ2), 2(ξ1 + ξ2)) (40)

∇∂̃(η)L = (4(2η1 + η2), 2(2η1 + η2)) (41)

Now we fix η = (1, 1) and ξ = f(η) = (2, 1). We start by computing yΞ . From
the above we know that:

yΞ = arg min
y

{||y|| : G(ξ)y = ∇∂(ξ)L}. (42)
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It can be easily verified that this gives yΞ = (3, 3). For yH we get:

yH = arg min
y

{|| (FT
)−1

y|| : G(ξ)y = ∇∂(ξ)L} (43)

which gives: yH = (44
5 , 1 1

5 ). Evidently we have yΞ �= yH . Note however that
when we map the difference of the two gradient vectors from T(2,1)Ξ to T(3,0)M
through dφ(2,1) we get:

dφξ

(
dfηgradH

η L − gradΞ
ξ L

)
= (yH − yΞ)i

∂i(ξ) (44)

= (4
4
5

− 3)
∂

∂x
|(3,0) + (1

1
5

− 3)
∂

∂x
|(3,0) (45)

= 0 (46)

which shows that although the gradient vectors can be dependent on the
parametrisation or inner product on the parameter space, when mapped to the
manifold M they are invariant.

Example 2. We illustrate the discussion in Sect. 2.2 with a specific example.
Let us consider the following parametrisation:

φ : (−1/8π, 5/8π) → (R2, ḡ) (47)
t �→ (x, y) = (sin(2t), sin(t)) (48)

This gives ξ1 = 0, ξ2 = 1
2π in the above discussion. We get the following calcu-

lation for grad
∂(0)

p L:

∂(0) = dφt

(
∂

∂t
|t
)

(49)

= 2 cos(2t)
∂

∂x
|φ(t) + cos(t))

∂

∂y
|φ(t) (50)

∂(0) = 2
∂

∂x
|(0,0) +

∂

∂y
|(0,0) (51)

G(0) = 22 + 11 = 5 (52)

grad
∂(0)

p L =
1
5

∂

∂t
|t=0

(
L(sin(2t), sin(t))

) (
2

∂

∂x
|(0,0) +

∂

∂y
|(0,0)

)
(53)

Now let:

f : (−1/8π, 5/8π) → (−1/8π, 5/8π) (54)

t �→ −(t − 1
4
π). (55)
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We define the alternative parametrisation φ̃ = φ ◦ f . Note that we have φ̃(t) =
(− sin(2t), sin(t)) and thus φ̃(0) = φ(0) = (0, 0). A similar calculation as before
gives:

∂̃(0) = −2
∂

∂x
|(0,0) +

∂

∂y
|(0,0) (56)

grad
∂̃(0)

p L =
1
5

∂

∂t
|t=0

(
L(− sin(2t), sin(t))

) (
−2

∂

∂x
|(0,0) +

∂

∂y
|(0,0)

)
. (57)

Note that because ∂(0) �= ∂̃(0) (53) and (57) are not equal to each other.
We can therefore conclude that in this case the expression for the gradient is
parametrisation-dependent.
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Abstract. We consider a fairly wide class of nonlinear diffusion equa-
tions on networks, and derive several common and basic behaviors of
solutions to them. Further, we demonstrate that the Legendre structure
can be naturally introduced for such a class of dynamical systems, and
discuss their information geometric aspects.

Keywords: Nonlinear diffusion on networks · Graph Laplacian ·
Information geometry

1 Introduction

In the last two decades increasing attention to diffusion phenomena on huge
and complex networks has widely spread in not only statistical physics but also
various research fields and their applications such as computer-communication
networks, machine learning, random walks, biological networks, epidemics, com-
mercial or traffic networks and so on (e.g., [1,2], just to name a few).

Presently many research results and applications are reported by use of linear
diffusion equations. On the other hand, important and theoretically interesting
aspects to be developed more would be an understanding of nonlinear diffusion
phenomena and their relevance with network topology.

Among them anomalous diffusion on disordered medium, such as fractal
graphs, has been well-known and recent results can be found in e.g., [3]. Syn-
chronization phenomena of coupled oscillators, such as the Kuramoto model [4],
have been extensively explored, e.g., [5], which are closely related to nonlinear
diffusion. See also [6] for another type of synchronization.

In this paper we first derive the common and basic properties of network
diffusion equation composed by strictly monotone-increasing functions, which is
considered to be a physically natural assumption to describe various phenomena.
In addition, we define the Legendre structure for such a class of dynamical
systems and discuss information geometric aspects behind them.
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Notation: In this paper the set of n-dimensional real column vectors and n by n
real square matrices are respectively denoted by Rn and Rn×n. We express the
transpose of a vector x and a matrix A by xT and AT , respectively. A positive
(resp. nonnegative) vector x is denoted by x > 0 (resp. x ≥ 0). When a real
symmetric matrix A is positive definite (resp. positive semidefinite), we write
A � 0 (resp. A � 0). Along the context 0 is interpreted as a vector or a matrix
all the entries of which are zeros. The real column vector 1 := (1 1 · · · 1)T is
often used. The unit column vector of which the i-th entry is one and the others
are all zeros is denoted by ei.

2 Preliminaries

Consider an undirected finite graph G = (V, E), where V := {1, 2, · · · , n} is the
set of n numbered vertices (n ≥ 2) and the set of edges E is a subset of unordered
pairs (i, j) in V × V. We assume that m is the number of edges, i.e., |E| = m.

Let (i0, i1, · · · , il) be a sequence of l+1 distinct vertices. We call the sequence
a path connecting i0 and il if l ≥ 1 and (ik−1, ik) ∈ E for all k = 1, · · · , l. The
edge (i, i) is said to be a self-loop. A graph is called connected if there exists a
path connecting two arbitrary distinct vertices. A tree is a connected graph with
no self-loops for which any two distinct vertices are connected by exactly one
path. A spanning tree of G is a tree G′ = (V ′, E ′) satisfying V ′ = V and E ′ ⊂ E .

For any subset U ⊂ V we define the interior of U by
◦
U := {i ∈ U | (i, j) ∈

E ⇒ j ∈ U}. The boundary of U is denoted by ∂U := U\ ◦
U = {i ∈ U | ∃j 	∈

U , (i, j) ∈ E}.
The (weighted) graph Laplacian [7,8] L ∈ Rn×n for an undirected graph G

with no self-loops is a real symmetric matrix defined by

L := Dw − W, (1)

where the entries wij of W satisfy wij = wji > 0 for (i, j) ∈ E and wij = 0 for
(i, j) 	∈ E , and Dw is a diagonal matrix with entries di :=

∑n
j=1 wij . Note that

L is expressed as

L =
∑

(i,j)∈E
wij(ei − ej)(ei − ej)T = B0ŴBT

0 , (2)

where B0 ∈ Rn×m is a matrix consisting of column vectors ei − ej , (i, j) ∈ E
and Ŵ ∈ Rm×m is a diagonal matrix with the corresponding entries wij .

Hence, L is positive semidefinite, but not positive definite because L1 = 0.
Further, recalling a spanning tree of G, we see that the following three statements
are equivalent: i) G is connected, ii) rankB0 = n − 1, iii) the eigenvalue zero of
L is simple (i.e., the algebraic multiplicity is one).

Given a real vector x ∈ Rn, the i-th entry of Lx for the unweighted Laplacian
(wij = wji = 1, ∀(i, j) ∈ E) is

(Lx)i =
n∑

j=1

wij(xi − xj) =
∑

(i,j)∈E
xi − xj .
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Hence, the negative of the unweighted Laplacian −L can be interpreted as a
discrete analogue of the usual Laplacian in continuous spaces.

3 Nonlinear Diffusion Equations on Finite Graphs

We will denote the nonnegative orthant by

Rn
+ := {x = (xi) ∈ Rn | xi ≥ 0, i = 1, · · · , n},

and its interior and boundary, respectively, by

Rn
++ := intRn

+ = {x = (xi) ∈ Rn | xi > 0, i = 1, · · · , n},

∂Rn
+ := {x = (xi) ∈ Rn

+ | xi = 0, ∃i = 1, · · · , n}.

Let G = (V, E) for |V| = n ≥ 2 and |E| = m be a connected undirected graph
with no self-loops. Consider a function xi(t) of vertices i ∈ V and the time t ∈ R.

Let f be a function that is continuously differentiable and strictly monotone
increasing on R++. We denote the class of such functions by F . For a vector
x = (xi) ∈ Rn and a diagonal mapping F : Rn → Rn defined by

F (x) := (f(x1) f(x2) · · · f(xn))T , f ∈ F ,

we consider the following nonlinear ODE on t ≥ t0 and Rn with an initial vector
x(t0) ∈ Rn

++:

ẋ(t) :=
d

dt
x(t) = −LF (x(t)), (3)

where L is the Laplacian matrix of the graph (V, E). When f(s) = s, the
ODE is referred to the linear diffusion equation on a network (e.g., [9]) and
its behavior is well-understood because the solution is explicitly expressed by
x(t) = exp{−L(t − t0)}x(t0). The Eq. (3) is formally regarded as a nonlinear
generalization. Physically the equation ẋi =

∑
(i,j)∈E wij(f(xj) − f(xi)) implies

the Fick’s law where each flux on an edge (i, j) is proportional to the difference
f(xj) − f(xi) and a diffusion coefficient wij .

The following results in this section demonstrate some of basic properties of
the ODE (3), which commonly share with the linear diffusion equation.

For the sake of brevity we sometimes use yi instead of f(xi), i.e., y = (yi) :=
F (x) ∈ Rn. Further, we respectively denote by k and k the arbitrary indices
satisfying xk(t) := mini{xi(t)} and xk(t) := maxi{xi(t)} at each t ≥ t0.

Proposition 1. Let x(t0) ∈ Rn
++ be an initial vector for the ODE (3). Then

the following statements hold for f ∈ F :

i) The solution for (3) uniquely exists and stays in Rn
++ for all t ≥ t0.

ii) The sum of entries of the initial vector σ :=
∑n

i=1 xi(t0) is conserved and
the unique equilibrium xe expressed by

xe :=
σ

n
1 (4)

is globally asymptotically stable.
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iii) Two quantities mink{xk(t)} and maxk{xk(t)} are, respectively, non-
decreasing and non-increasing for all t ≥ t0, i.e.,

d

dt
min
i

{xi(t)} =
d

dt
xk(t) ≥ 0,

d

dt
max

i
{xi(t)} =

d

dt
xk(t) ≤ 0. (5)

Proof) Omitted.
Since the class F admits functions with a property lims↘0 f(s) = −∞, such as
the logarithmic function, the proposition restricts an initial vector in Rn

++.
When we add to F an assumption that f(0) := lims↘0 f(s) is finite to be

defined as a value at s = 0, every function f ∈ F with the assumption is
continuous on R+. Note that we still cannot expect that F is Lipschitz on Rn

+

because it might hold that lims↘0 f ′(s) = ∞. One of such examples would be
f(s) = sq for 0 < q < 1.

However, by only this additional assumption we can extend the region of
initial vectors to Rn

+ as is shown in the following corollary.

Corollary 1. Let f be in F . If f(0) is finitely defined and satisfies f(0) =
lims↘0 f(s), then the statements i), ii) and iii) in Proposition 1 hold for x(t0) ∈
Rn

+ and t ≥ t0.

Proof) Omitted.

Proposition 2. Let U be a connected subset of V. For T > t0 consider the
solution to (3), x(t) = (xi(t)), on [t0, T ]. Then xi(t) attains its maximum and
minimum on the parabolic boundary

∂P([t0, T ] × U) := ({t0} × U) ∪ ((t0, T ] × ∂U)).

Proof) Omitted.

Remark 1. The statement iii) in Proposition 1 also follows from Proposition 2
because ∂U = ∅ in case of U = V.

We can understand that the statements ii) and iii) in Proposition 1 show aver-
aging property, positivity and volume-preserving properties of solutions to (3).
Further, we can interpret Proposition 2 as the maximum and minimum princi-
ple. Thus, we confirm that the nonlinear ODE (3) still shares such fundamental
properties with the linear diffusion equation.

4 Convergence Rate

For the statement ii) in the Proposition 1, the Lyapunov function

V (x) := yTLy, y := F (x)

plays an important role. We derive one of simple convergence rates of the ODE
(3) using V (x).
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For x ∈ Rn
+ let x⊥ be the orthogonal projection of x to the hyperplane

H0 := {x| 〈1, x〉 = 0}, i.e. we can uniquely decompose x such as

x = c1 + x⊥, 〈1, x⊥〉 = 0. ∃c > 0.

For y = F (x), it follows that

x⊥(t) = 0 ⇔ y⊥(t) = 0 ⇔ x(t) = xe.

We shall give an upperbound of the convergence rate in terms of y⊥. Let λ1 =
0 < λ2 ≤ · · · ≤ λn and vi, i = 1, · · · , n be, respectively, eigenvalues and
the corresponding normalized and mutually orthogonal eigenvectors of L, where
v1 = 1/n. Note that we can represent as L =

∑n
i=2 λiviv

T
i and y⊥ =

∑n
i=2 aivi

for some reals ai. For the Lyapunov function V (x) = yTLy/2 we have

1
2
λ2‖y⊥‖22 ≤ V (x) =

1
2
(y⊥)TLy⊥ ≤ 1

2
λn‖y⊥‖22, (6)

V̇ (x) =
∂V

∂x
ẋ = −yTLTG(x)Ly ≤ −λ2

2 min
i

{f ′(xi)}‖y⊥‖22, (7)

where G(x) = (f ′(xi)δij) ,

along the trajectory of (3). For the simplicity, we write γ(t) := mini{f ′(xi(t))}. If
an initial vector x(t0) is in Rn

++, it follows from i) of Proposition 1 that γ(t) > 0
for all t ≥ t0.

Thus, by (6) and (7) it holds that

V̇ (x(t)) ≤ −2λ2
2

λn
γ(t)V (x(t)), ∀t ≥ t0,

and by the principle of comparison we have

V (x(t)) ≤ V (x(t0)) exp
{

−2λ2
2

λn

∫ t

t0

γ(τ)dτ

}

, ∀t ≥ t0.

Recall Proposition 1 and define the set C := {x ∈ Rn | ∀i, xi ≥ xk(t0) >
0} ∩ {x ∈ Rn | ∑n

i=1 xi = σ }. Since C is a compact and invariant set for (3),
there exists a minimum value γ∗ of mini{f ′(xi)} for x = (xi) in C, i.e.,

γ∗ := min
x∈C

f ′(xi) = min
s∈I

f ′(s),

where the interval I is defined by [xk(t0), σ − (n − 1)xk(t0)]. From (6) we have

‖y⊥(t)‖2 ≤ ‖y⊥(t0)‖2
√

λn

λ2
exp

{

− λ2
2

λn

∫ t

t0

γ(τ)dτ

}

≤ ‖y⊥(t0)‖2
√

λn

λ2
exp

{

−λ2
2γ

∗

λn
(t − t0)

}

.
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5 Information Geometric Viewpoints

We discuss the relation with the ODE (3) and the Legendre structure.
Since f is invertible, we can consider the inverse function h, i.e., f ◦ h =

h◦f = id, where ◦ is the composition of functions. Using their primitive functions
f̂(s) :=

∫
f(s)ds and ĥ(s) :=

∫
h(s)ds, define the following functions:

ψ(y) :=
n∑

i=1

ĥ(yi) + c1, ϕ(x) :=
n∑

i=1

f̂(xi) + c2,

where c1 and c2 are constants. Note that ψ and ϕ are convex functions with
positive definite Hessian matrices G and G−1, respectively. Further the Legendre
conjugate [10] of ϕ is obtained as

ϕ∗(y) := max
x

{xT y − ϕ(x)} =
n∑

i=1

h(yi)yi − (f̂ ◦ h)(yi) − c2

from the extreme value conditions: yi = (∂ϕ/∂xi)(x) = f(xi), i.e., xi = h(yi).
Since it holds that

∂ϕ∗

∂yi
(y) = h′(yi)yi + h(yi) − (f ◦ h)(yi)h′(yi) = h(yi) =

∂ψ

∂yi
(y),

we have ψ(y) = ϕ∗(y) + c1 + c2. Thus, ψ and ϕ are the Legendre conjugate of
each other up to constant, and the coordinate system {yi}ni=1 can be interpreted
as the Legendre transform of {xi}ni=1.

By regarding the Hessian matrix G of ϕ(x), i.e.,

G(x) =
∂2

∂xi∂xj
ϕ(x) = (f ′(xi)δij) .

as a Riemannian metric, we can consider Hessian geometric structure (R++, G).
For two points x = (xi) and x̃ = (x̃i) on Rn

+, let us represent the point x
as y = (yi) = F (x) using the coordinates {yi}ni=1 transformed from {xi}ni=1.
Consider the following function on Rn

++ × Rn
++, which is sometimes called

divergence [11]:

D(x||x̃) := ψ(y) + ϕ(x̃) −
n∑

i=1

yix̃i

=
n∑

i=1

{
(ĥ ◦ f)(xi) + f̂(x̃i) − f(xi)x̃i

}
+ c1 + c2.

The quantity D(x||x) is constant because

∂

∂xi

n∑

i=1

{
(ĥ ◦ f)(xi) + f̂(xi) − f(xi)xi

}
= 0, i = 1, · · · , n.
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Hence, by defining c1 and c2 to satisfy c1 + c2 = −∑n
i=1

{
(ĥ ◦ f)(xi) +

f̂(xi)−f(xi)xi

}
for some x = (xi) ∈ Rn

++, we have, by the Legendre conjugacy,

D(x||x̃) ≥ 0

and the equality holds if and only if x = x̃.
Without loss of generality we can take σ = 1 and consider the relative interior

of the probability simplex Sn−1 := {x ∈ Rn
++ | ∑n

i=1 xi = 1} as a state space
of the ODE (3) by the properties of Proposition 1. For the equilibrium xe = 1/n
we have

d

dt
D(xe || x(t)) =

n∑

i=1

{f(xi) − f(1/n)}ẋi

= (y − F (1/n))T ẋ = −yTLy + f(1/n)1TLy ≤ 0, (8)

and on Sn−1 the equality holds if and only if x = xe. By the similar argument,
we also find that dϕ(x)/dt ≤ 0 on Sn−1 and the equality holds at xe. Thus,
D(xe || x) and ϕ(x) − ϕ(xe) are also Lyapunov functions for the equilibrium xe

in addition to V (x).
These facts are closely related with the increase of entropy or what is called

the H-theorem in statistical physics. Actually the following example, in the case
when f(s) = log(s) and an initial vector on Sn−1, exhibits a typical one.

Example

f(s) = log s, h(s) = exp s, f̂(s) = s log s − s, ĥ(s) = exp s

ψ(y) =
n∑

i=1

exp yi, ϕ(x) =
n∑

i=1

(xi log xi − xi), G(x) = (δij/xi) .

D(x||x̃) =
n∑

i=1

{x̃i log(x̃i/xi) + xi − x̃i}

Note that −ϕ(x) and G(x) on Sn−1 are respectively called the Shannon entropy
and the Fisher information. Further, KL(x||x̃) := D(x̃||x) on Sn−1 × Sn−1 is
called the Kullback-Leibler divergence or relative entropy [11].

From the viewpoint of the Hessian geometric structure (Rn
++, G), the follow-

ing property of the ODE (3) is straightforward:

Proposition 3. The ODE (3) can be regarded as a gradient system with respect
to a Riemannian metric G(x) for the Lyapunov function V (x) = F (x)TLF (x)/2,
i.e.,

ẋ = −G(x)−1 ∂V (x)
∂x
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6 Concluding Remarks

We have derived several properties a class of nonlinear network diffusion equa-
tions with the graph Laplacian. The nonlinearity we have assumed is considered
to be physically natural and cover many important examples governed by Fick’s
law.

The basic and common behaviors of solutions are summarized in the Sect. 3.
We have analyzed the convergence rate of the solution in the Sect. 4. It is seen
that the rate is roughly evaluated by mini{f ′(xi)} on a certain compact set.
Finally, in the Sect. 5 we have derived the Legendre structure of the class of equa-
tions. Using the structure, we have shown that each equation can be regarded
as a gradient flow of a certain Lyapunov function via a Hessian metric.

Complete version with omitted proofs can be found in the near future.
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Rényi Relative Entropy from
Homogeneous Kullback-Leibler

Divergence Lagrangian

Goffredo Chirco(B)

Istituto Nazionale di Fisica Nucleare - Sezione di Napoli, Complesso Universitario
di Monte S. Angelo, ed. 6, Via Cintia, 80126 Napoli, Italy

goffredo.chirco@na.infn.it

Abstract. We study the homogeneous extension of the Kullback-Leibler
divergence associated to a covariant variational problem on the statis-
tical bundle. We assume a finite sample space. We show how such a
divergence can be interpreted as a Finsler metric on an extended statis-
tical bundle, where the time and the time score are understood as extra
random functions defining the model—-. We find a relation between the
homogeneous generalisation of the Kullback-Leibler divergence and the
Rényi relative entropy, the Rényi parameter being related to the time-
reparametrization lapse of the Lagrangian model. We investigate such
intriguing relation with an eye to applications in physics and quantum
information theory.

Keywords: Kullback-Leibler divergence · General covariance · Rényi
relative entropy · Non-parametric information geometry · Statistical
bundle

1 Information Geometry on the Statistical Bundle

The probability simplex on a finite sample space Ω, with #Ω = N , is denoted by
Δ(Ω), and Δ◦(Ω) its interior. The uniform probability function is μ, μ(x) = 1

N ,
x ∈ Ω. We regard Δ◦(Ω) as the maximal exponential family E (μ), in the sense
that each strictly positive density q can be written as q ∝ ev, where v is defined
up to a constant. The expected value of v with respect to the density q is Eq [v].

A non metric, non-parametric presentation of Information Geometry (IG)
[1] is realised via a joint geometrical structure given by the probability simplex
together with the set of q-integrable functions v ∈ L(q) : the couple (q, v) forming
a statistical vector bundle

SE (μ) =
{

(q, v) | q ∈ E (μ) , v ∈ L2
0(q)

}
, (1)

with base Δ◦(Ω). For each q ∈ Δ◦(Ω), L2(q) is the vector space of real functions
of Ω endowed with the inner product 〈u, v〉q = Eq [u v], and it holds L2(q) =
R ⊕ L2

0(p) [15,17]. A (differential) geometry for the statistical bundle SE (μ) is
naturally provided by an exponential atlas of charts given for each p ∈ E (μ) by
c© Springer Nature Switzerland AG 2021
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sp : SΔ◦(Ω) � (q, v) �→
(

log
q

p
− Ep

[
log

q

p

]
, eUp

qv

)
∈ SpΔ

◦(Ω) × SpΔ
◦(Ω)

where e
U

p
q denotes the exponential transport, defined for each p, q ∈ Δ◦(Ω) by

e
U

p
q : SqΔ

◦(Ω) � v �→ v − Ep [v] ∈ SpΔ
◦(Ω)

As sp(p, v) = (0, v), we say that sp is the chart centered at p.
We can write then

q = exp (v − Kp(v)) · p = ep(v), (2)

and see the mapping sp(q) = ep(v)−1 as a section of the bundle.

The cumulant function Kp(v) = Ep

[
log p

q

]
= D (p ‖ q) is the expression in

chart of the Kullback-Leibler divergence p �→ D (p ‖ q). The other divergence
D (q ‖ p) = Eq

[
log q

p

]
= Eq [v] − Kp(v) is the convex conjugate of the cumulant

in the chart centered at p.
With respect to any of the convex functions Kp(v) the maximal exponential

family is a Hessian manifold. The given exponential atlas then provides the sta-
tistical bundle with an affine geometry, with a dual covariant structure induced
by the inner product on the fibers given by the duality pairing between SqE (μ)
and its dual ∗SqE (μ), and the associated dual affine transports [10].

2 From Divergences on E (µ) × E (µ) to Lagrangians on
SE (µ)

A divergence is a smooth mapping D : E (μ) × E (μ) → R, such that for all
q, r ∈ E (μ) it holds D(q, r) ≥ 0 and D(q, r) = 0 iff q = r. Every divergence can
be associated to a Lagrangian function on the statistical bundle via the canonical
mapping [5]

E (μ)2 � (q, r) �→ (q, sq(r)) = (q, w) ∈ SE (μ) , (3)

where r = ew−Kq(w) · q, that is, w = sq(r) = e−1
r (w).

Remark 1. Such a mapping appears to be an instance of a general integral rela-
tion between the G = E (μ)×E (μ) intended as a pair groupoid and the associated
Lie algebroid Lie(G) corresponding to the tangent bundle SE (μ), see e.g. [11].

The inverse mapping is the retraction mapping

SE (μ) � (q, w) �→ (q, eq(w)) = (q, r) ∈ E (μ)2 . (4)

As the curve t �→ eq(tw) has null exponential acceleration [16], one could say
that Eq. (4) defines the exponential mapping of the exponential connection, while
Eq. (3) defines the so-called logarithmic mapping.

The expression in a chart centered at p of the mapping of Eq. (4) is affine:

SpE (μ) × SpE (μ) → E (μ) × E (μ) → SE (μ) → SpE (μ) × SpE (μ)
(p, u, v) �→ (ep(u), ep(v)) �→ (ep(u), sep(u)(ep(v))) �→ (p, u, (v − u)) .
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The correspondence above maps every divergence D into a divergence
Lagrangian, and conversely,

L(q, w) = D(q, eq(w)), D(q, r) = L(q, sq(r)). (5)

Notice that, according to our assumptions on the divergence, the divergence
Lagrangian defined in Eq. (5) is non-negative and zero if, and only if, w = 0.

3 Kullback-Leibler Dissimilarity Functional

Let us consider, as a canonical example, a Lagrangian given by the Kullback-
Leibler divergence D (q ‖ r), which, by means of the canonical mapping in (3),
corresponds to the cumulant function Kq(w) on SqE (μ). This is a case of high
regularity as we assume the densities q and r positive and connected by an open
exponential arc. The Hessian structure of the exponential manifold is reflected
in the hyper-regularity of the cumulant Lagrangian.

Let R � t �→ q(t) ∈ E (μ) be a smooth curve on the exponential manifold,
intended as a one-dimensional parametric model. In the exponential chart cen-
tered at p, the velocity of the curve q(t) is computed as

d

dt
sp(q(t)) =

d

dt

(
log

q(t)
p

− Ep

[
log

q(t)
p

])
=

q̇(t)
q(t)

− Ep

[
q̇(t)
q(t)

]
=

e
U

p
q(t)

q̇(t)
q(t)

= e
U

p
q(t)

d

dt
log q(t). (6)

where partial derivatives are defined in the trivialisations given by the affine
charts. By expressing the tangent at each time t in the moving frame at q(t)
along the curve, we define the velocity of the curve as the score function of the
one-dimensional parametric model (see e.g. [8, §4.2])

�
q(t) = e

U
q(t)
p

d

dt
sp(q(t)) = u̇(t) − Eq(t) [u̇(t)] =

d

dt
log q(t) =

q̇(t)
q(t)

. (7)

The mapping q �→ (q,
�
q) is a lift of the curve to the statistical bundle whose

expression in the chart centered at p is t �→ (u(t), u̇(t)).
We shall now understand the cumulant Lagrangian as a divergence between q

and r at any time, which compares the two probabilities at times infinitesimally
apart. This amounts to consider the two probabilities as two one-dimensional
parametric models constrained via the canonical mapping defined with respect
to the score velocity vector, namely r(t) = eq(t)(

�
q(t)).

By summing these divergences in time, we define a dissimilarity functional
as the integral of the Kullback-Leibler cumulant Lagrangian L : SE (μ)×R → R

along the model

(q, r) �→ A[q] =
∫

L(q(t),
�
q(t), t) dt (8)

=
∫

D
(
q(t) ‖ eq(t)(

�
q(t)), t

)
dt =

∫
Kq(t)(

�
q(t)) dt.
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As shown in [5,16], via A[q], one can consistently define a variational principle
on the statistical bundle, leading to a non-parametric expression of the Euler-
Lagrange equations in the statistical bundle. Indeed, if q is an extremal of the
action integral, one gets

D

dt
gradeL(q(t),

�
q(t), t) = gradL(q(t),

�
q(t), t), (9)

where grad indicates the natural gradient at q(t) on the manifold, grade the
natural fiber-derivative with respect to the score, and D

dt the mixture covariant
derivative, as defined in [5].

The variational problem on the statistical bundle provides a natural set-
ting for accelerated optimization on the probability simplex, with the divergence
working as a kinetic energy regulariser for the scores, leading to faster converging
and more stable optimization algorithms (see e.g. [9]).

More generally, the cumulant Lagrangian in (8) can be used to formulate a
generalised geodesic principle on the statistical bundle, in terms of a class of local
non-symmetric, non-quadratic generalizations of the Riemannian metrics. To
this aim, beside smoothness and convexity, we need in first place the divergence
Lagrangian to be positive homogenous of the first order in the scores. This brings
new structures into play.

4 Re-parametrization Invariance of the Dissimilarity
Action

Homogeneous Lagrangians (more precisely, positively homogeneous of degree
one) lead to actions that are invariant under time re-parametrizations. Consider
the action in Eq. (8) and introduce a formal time parameter τ , such that t = f(τ)
and q(t) → q(f(τ)) = q(τ). This elevates the time integration variable t to the
rank of an independent dynamical variable, with f an arbitrary function, for
which we can assume ḟ(τ) > 0.

As a consequence, the re-parametrised action reads

A[(q, t)] =
∫

dτ L(q(τ),
�
q(τ)/ḟ(τ))) ḟ(τ)

=
∫

dτ D
(
q(τ) ‖ eq(

�
q(τ)/ḟ(τ))

)
ḟ(τ),

where dt → df(τ) = d
dτ f dτ = ḟ dτ .

The new Lagrangian

L̃(q, f, v, ḟ) = D
(
q ‖ eq(v/ḟ)

)
ḟ = Kq(

�
q /ḟ) ḟ (10)

is defined on the extended statistical bundle S̃E (μ) = SE (μ) × R, with base
Ẽ (μ) = E (μ) × R.

In particular, L̃(q, f, v, ḟ) is homogeneous of degree one in the velocity (v, ḟ) ∈
S̃(q,f)E (μ), that is

L̃(q, f, λv, λḟ) = λL̃(q, f, v, ḟ). (11)
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In terms of L̃, the dissimilarity action becomes covariant to time reparametri-
sation, providing a generalisation of the notion of information length (see e.g.[6]),
which allows for a generalised geodesic principle on the (extended) statistical
bundle.

We shall focus on the very notion of homogeneous cumulant function. Our
interest in this sense is twofold. On the one hand, as already noticed in [12], the

homogenised cumulant function L̃(q, f, v, ḟ) = Kq(
�
q /ḟ) ḟ generalises the Hessian

geometry of E (μ) to a Finsler geomety for the extended exponential family Ẽ (μ),
with L̃ playing the role of the Finsler metric. On the other hand, as it will be
shown in the last section, the reparametrization invariance symmetry property
of the homogeneous cumulant can be used to newly motivate the definition of
Rényi relative entropy, with the Rényi parameter appearing as associated to the
time-reparametrization lapse of the model.

5 Finsler Structure on the Extended Statistical Bundle

A Finsler metric on a differentiable manifold M is a continuous non-negative
function F : TM → [0,+∞) defined on the tangent bundle, so that for each
point x ∈ M , (see e.g. [7])

F (v + w) ≤ F (v) + F (w) for every v, w tangent to M at x(subadditivity)
F (λv) = λF (v) ∀λ ≥ 0 (positivehomogeneity)
F (v) > 0 unless v = 0 (positivedefiniteness)

In our setting, by definition, for each point q̃ = (q, f) ∈ Ẽ (μ), and for ḟ(τ) > 0,
the Lagrangian L̃ is positively homogeneous, continuous, and non-negative on
the extended statistical bundle S̃E (μ). By labelling ṽ = (v, ḟ) ∈ S̃(q,f)E (μ),
subadditivity requires

L̃(q̃, ṽ + w̃) ≤ L̃(q̃, ṽ) + L̃(q̃, w̃) (12)

for every ṽ, w̃ ∈ S̃(q,f)E (μ). By noticing that ṽ+w̃ = (v, ḟ)+(w, ḟ) = (v+w, 2ḟ),
the subadditivity of L̃ is easily proved via Cauchy-Schwartz inequality.

We have

L̃(q̃, ṽ + w̃) = L̃(q, f, v + w, 2ḟ) = 2ḟ logEq

[
exp

(
v + w

2ḟ

)]

= 2ḟ logEq

[
exp

(
v

2ḟ

)
exp

(
w

2ḟ

)]

≤ 2ḟ log

⎛

⎝Eq

[(
exp

(
v

2ḟ

))2
]1/2

Eq

[(
exp

(
w

2ḟ

))2
]1/2

⎞

⎠

= ḟ logEq

[
exp

(
v

vf

)]
+ ḟ logEq

[
exp

(
w

ḟ

)]

= L̃(q̃, ṽ) + L̃(q̃, w̃).
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Together with the positive homogeneity expressed in (11) and the positive def-
initeness inherited by the definition of the KL divergence, we get that for each
f , the homogeneous cumulant function L̃ satisfies the properties of a Finsler
metric.

6 Re-parametrization Invariance Gives (1/ḟ)-Rényi
Divergence

The homogeneous Lagrangian (q,
�
q, f, ḟ) �→ ḟKq(

�
q /ḟ) describes a family of

scaled Kullback-Leibler divergence measure, ḟ(τ) D (q(τ) ‖ r̃(τ)), between the
probabilities q(τ) and r̃(τ) infinitesimally apart in (sample) space and time,
such that r̃(τ) can be expressed via retraction (exponential) mapping r̃(τ) =

eq(τ)(
�
q(τ)/ḟ(τ)) at any time. The same expression can be easily rewritten in

terms of unscaled distributions q and r, by virtue of the canonical (log) mapping
�
q(t) = sq(t)(r(t)). Indeed, we have

ḟ Kq(
�
q /ḟ) = ḟ logEq

[

exp

( �
q

ḟ

)]

= ḟ logEq

[
exp

(
1
ḟ

(
log

r

q
− Eq

[
log

r

q

]))]

= ḟ logEq

[(
r

q

) 1
ḟ

]

+ D (q ‖ r) = ḟ logEμ

[
r

1
ḟ q

1− 1
ḟ

]
+ D (q ‖ r) . (13)

where we use the definition Kp(v) = Ep

[
log p

q

]
= D (p ‖ q) in the second line.

We removed the dependence on time in (13) in order to ease the notation.
Therefore, we see that for ḟ = 1/1 − α, the term ḟ logEμ

[
r1/ḟ q1−1/ḟ

]
cor-

responds to the definition of the α-Rényi divergence [18] with a minus sign

Dα(q||r) =
1

α − 1
logEμ

[
r1−α qα

]
,

while the second term, giving the KL for the unscaled distributions, derives from
the centering contribution in the canonical map.

Remark 2. The Rényi parameter can be put in direct relation with the lapse
factor of the reparametrization symmetry. Since the α parameter in Rènyi’s
entropy is constant, in this sense relating the lapse ḟ to α amounts to restrict
to reparametrization function f which are linear in time.

Remark 3. The two terms together in expression Eq. (13) define a family of free
energies, typically espressed as (1/KT )Fα(q, q′) = Dα(q||q′) − log Z (see e.g.
[3]), and the action in Eq. (8) can be understood as an integrated free energy
associated with the transition from q(τ) to r(τ) along a curve in the bundle.
Similar structures appear both in physics and quantum information theory in
the study of out-of-equilibrium systems, where they provide extra constraints on
thermodynamic evolution, beyond ordinary Second Law [2].



750 G. Chirco

Remark 4. While the use of the canonical mapping in our affine setting somehow
naturally leads to the Rényi formula for the divergence, along with the exponen-
tial mean generalization of the entropy formula [13,14], the interpretation of the
relation of Rènyi index and time lapse induced by reparametrization symmetry
is open [19]. In our approach, setting ḟ > 0 just fixes α < 1. A detailed thermo-
dynamic analysis of these expressions is necessary for a deeper understanding of
the map between α and ḟ .

Remark 5. The proposed result is quite intriguing when considered together with
the Finsler characterization of the statistical manifold induced by the homog-
enized divergence, and its relation with contact geometry on the projectivised
tangent bundle of the Finsler manifold (see e.g. [4]).

Acknowledgements. The author would like to thank G. Pistone and the anonymous
referees for the careful read of the manuscript and the interesting points raised.
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11. Grabowska, K., Grabowski, J., Kuś, M., Marmo, G.: Lie groupoids in information
geometry. J. Phys. A Math. Theor. 52(50), 505202 (2019). https://doi.org/10.
1088/1751-8121/ab542e

12. Ingarden, R.S.: Information geometry of thermodynamics. In: Vǐsek, J.Á. (ed.)
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Abstract. We discuss the statistical bundle of the manifold of two-
variate stricly positive probability functions with given marginals. The
fiber associated to each coupling turns out to be the vector space of
interacions in the ANOVA decomposition with respect to the given
weight. In this setting, we derive the form of the gradient flow equa-
tion for the Kantorovich optimal transport problem.

Keywords: Statistical bundle · Kantorovich transport problem ·
Gradient flow

1 Introduction

Consider a product sample space Ω = Ω1 × Ω2 and the marginal mappings
X : Ω → Ω1, Y : Ω → Ω2. Both factors are finite sets, ni = #Ωi. If γ is a
positive probability function on Ω, we denote by γ1 and γ2 the two margins.
We denote by L2(γ), L2(γ1) and L2(γ2) the Euclidean spaces of real random
variables with the given weight, and by L2

0(γ), L2
0(γ1) and L2

0(γ2) the spaces of
random variables which are centered for the given probability function.

We aim studying evolution equations on the vector bundle defined in the
non-parametric Information Geometry (IG) of the open probability simplex of
the sample space Ω. See the tutorial [6] and the applications of this formalism
in [2,5,8]. A very short review follows below.

If Δ◦(Ω) is the open probability simplex, we define the statistical bundle
SΔ◦(Ω) to be the set of all couples (γ, u) with γ ∈ Δ◦(Ω) and u a random
variable such that Eγ [u] = 0. The fiber at γ is SγΔ◦(Ω) = L2

0(γ). The IG
dualistic structure of [1] is taken into account by saying that the dual statistical
bundle S∗Δ◦(Ω) is the bundle whose fibers are the duals L2

0(γ)∗ = L2
0(γ). In the

following of the present note, we will make the abuse of notations of identifying
the statistical bundle and its dual. Two dual affine connections are defined via
the parallel transports

m
U

μ
γ : SγΔ◦(Ω) � v �→ γ

μ
v ∈ SμΔ◦(Ω),

e
U

γ
μ : SμΔ◦(Ω) � w �→ w − Eγ [w] ∈ SγΔ◦(Ω),
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so that
〈

m
U

μ
γv, w

〉
μ

=
〈
v, e

U
γ
μw

〉
γ
. The inner product is trasported between

fibers by 〈u, v〉ν =
〈

m
U

γ
μu, e

U
γ
μv

〉
γ
.

For each smooth curve t �→ γ(t) ∈ Δ◦(Ω) the velocity (or score) is
�
γ(t) =

d
dt log γ(t). We look at t �→ (γ(t),

�
γ(t)) as a curve in the statistical bundle. In the

duality we have
d

dt
Eγ(t) [u] =

〈
u − Eγ(t) [u] ,

�
γ(t)

〉

γ(t)
. (1)

The mapping γ �→ u − Eγ [u] is the gradient mapping of γ �→ Eγ [u]. It is a
section of the statistical bundle. For each section F we define the evolution
equation

�
γ = F (γ). By writing

�
γ = γ̇/γ, we see that the evolution equation in

our sense is equivalent to the Ordinary Differential Equation (ODE) γ̇ = γF (γ).
Given a sub-manifold of Δ◦(Ω), each fiber Sγ of the statistical bundle splits

to define the proper sub-statistical bundle. We are interested in the sub-manifold
associated to transport plans, see for example [9]. Let be given μ1 ∈ Δ◦(Ω1) and
μ2 ∈ Δ◦(Ω2). The transport model with margins μ1 and μ2 is the statistical
model

Γ (μ1, μ2) = {γ ∈ Δ(Ω)| γ(·,+) = μ1, γ(+, ·) = μ2} .

Without restriction of generality, we assume the two margins μ1 and μ2 to
be strictly positive. Our sub-manifold is the open transport model

Γ ◦(μ1, μ2) = {γ ∈ Δ◦(Ω)| γ(·,+) = μ1, γ(+, ·) = μ2} .

Marginalization acts on velocities as a conditional expectation. If t �→ γ(t) is
a smooth curve in the open transport model, then Eq. (1) with u = f ◦ X gives

0 =
d

dt
Eμ1 [f ] =

d

dt
Eγ(t) [f(X)] =

〈
f(X),

�
γ(t)

〉

γ(t)
=

〈
f,

�
γ(t)1

〉

μ1

,

with
�
γ(t)1(X) = Eγ(t)

[ �
γ(t)

∣∣∣ X
]
. Similarly on the other projection. It follows

that Eγ(t)

[ �
γ(t)

∣
∣∣ X

]
= 0 and Eγ(t)

[ �
γ(t)

∣
∣∣ Y

]
= 0. This suggests the character-

ization of the velocity bundle of the open transport model we develop in the
following section.

2 ANOVA

Let us discuss more in detail the relevant splittings. We use the statistical lan-
guage of Analysis of Variance (ANOVA). Recall that γ ∈ Δ◦(Ω). The linear
sub-spaces of L2(γ) which , respectively, express the γ-grand-mean, the two γ-
simple effects, and the γ-interactions, are

B0(γ) ∼ R,

B1(γ) =
{

f ◦ X| f ∈ L2
0(γ1)

}
,

B2(γ) =
{

f ◦ Y | f ∈ L2
0(γ2)

}
,

B12(γ) = (B0(γ) + B1(γ) + B2(γ))⊥,

(2)
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where the orthogonality is computed in the γ weight, that is in the inner product
of L2(γ), 〈u, v〉γ = Eγ [uv]. Each element of the space B0(γ) + B1(γ) + B2(γ)
has the form u = u0 + f1(X) + f2(Y ), where u0 = Eγ [u] and f1, f2 are uniquely
defined.

Proposition 1. For each γ ∈ Δ(Ω) there exist a unique orthogonal splitting

L2(γ) = R ⊕ (B1(γ) + B2(γ)) ⊕ B12(γ).

Namely, each u ∈ L2(γ) can be written uniquely as

u = u0 + (u1 + u2) + u12, (3)

where u0 = Eγ [u] and (u1 + u2) is the γ-orthogonal projection of u − u0 unto
(B1(γ) + B2(γ)).

Proof. Each couple of spaces in Eq. (2) has trivial intersection {0}, hence the
splitting in Eq. (3) is unique. As Eγ [u] = u0 and B0(γ) is orthogonal to B1(γ)+
B2(γ), then u12 is the orthogonal projection of u−Eγ [u] unto (B1(γ)+B2(γ))⊥,
while u1 + u2 is the orthogonal projection of u onto (B1(γ) + B2(γ)). ��

Let us derive a system of equations for the simple effects. By definition,
u12 = (u − u0) − (u1 + u2) is γ-orthogonal to each g1 ∈ B1(γ) and each
g2 ∈ B2(γ). The orthogonal projections on B1(γ) and B2(γ) are the conditional
expectation with respect to X and Y , respectively,

0 = Eγ [ (u − u0) − (u1 + u2)| X] ,
0 = Eγ [ (u − u0) − (u1 + u2)| Y ] .

Assume zero mean, u0 = 0. We have the system of equations

Eγ [u|X] = u1 + Eγ [u2|X]
Eγ [u|Y ] = Eγ [u1|Y ] + u2

The ANOVA decomposition proves the existence of u1 and u2. The following
(n1 + n2) × (n1 + n2) linear system holds:

{∑
y∈Ω2

γ2|1(y|x)u(x, y) = u1(x) +
∑

y∈Ω2
γ2|1(y|x)u2(y), x ∈ Ω1∑

x∈Ω1
γ1|2(x|y)u(x, y) =

∑
x∈Ω1

γ1|2(x|y)u1(x) + u2(y), y ∈ Ω2

where we use the conditional probabilities γ2|1(y|x)γ1(x) = γ1|2(x|y)γ2(y) =
γ(x, y), x ∈ Ω1 and y ∈ Ω2.
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We write the previous system in matrix form with blocks

Γ2|1 = [γ2|1(y|x)]x∈Ω1,y∈Ω2 ∈ R
n1×n2

Γ1|2 = [γ1|2(x|y)]x∈Ω1,y∈Ω2 ∈ R
n1×n2

u1 = (u1(x)|x ∈ Ω1)
u2 = (u2(x)|x ∈ Ω2)

u2|1 = (
∑

y∈Ω2

u(x, y)γ2|1(y|x)|x ∈ Ω1)

u1|2 = (
∑

x∈Ω1

u(x, y)γ1|2(x|y)|x ∈ Ω2),

as [
In1 Γ2|1
ΓT
1|2 In2

] [
u1

u2

]
=

[
u2|1
u1|2

]
(4)

The block matrix is not globally invertible because the kernel contains the
vector 1n1 ⊕ 1n2 , hence we look for a generalised inverse of the block matrix
which exists uniquely because of the interpretation as the orthogonal projection
of f ∈ L2

0(γ) onto (B1(γ)+B2(γ)). Generalised inverses of the Shur complements
(In1−Γ2|1ΓT

1|2) and (In2−ΓT
1|2Γ2|1), if available, suggests the following generalised

block inversion formula:
[

In1 Γ2|1
ΓT
1|2 In2

]+

=

[
(In1 − Γ2|1ΓT

1|2)
+ −Γ2|1(In2 − ΓT

1|2Γ2|1)+

−ΓT
1|2(In1 − Γ2|1ΓT

1|2)
+ (In2 − ΓT

1|2Γ2|1)+

]

(5)

Proposition 2. The matrices P = Γ2|1ΓT
1|2 and Q = ΓT

1|2Γ2|1 are Markov, with
invariant probability γ1 and γ2 respectively, and strictly positive, hence ergodic.
It holds

(I − P )+ =
∞∑

k=0

P k , (I − Q)+ =
∞∑

k=0

Qk.

Proof. The element Px1x2 , x1, x2 ∈ Ω1, of P = Γ2|1ΓT
1|2 ∈ R

Ω1×Ω2 is

Px1x2 =
∑

y∈Ω2

γ2|1(y|x1)γ1|2(x2|y),

so that P is a Markov matrix with strictly positive entries and stationary prob-
ability γ1. Because of the ergodic theorem, Pn → P∞ = γT

1 1, n → ∞, so that

lim
n→∞

(
n∑

k=0

P k

)

(I − P ) = lim
n→∞

(
I − Pn+1

)
= I − P∞,

so that for each f1 ∈ L(Ω1) it holds

lim
n→∞

(
n∑

k=0

P k

)

(I − P )f1 = f1 − Eγ1 [f1] ,

where the last term is the orthogonal projection Πγ1 of f1 onto L0(γ1). ��
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Proposition 3. The generalised inverses (I − P )+ and (I − Q)+ are defined
and [

f1

f2

]
=

[
(I − P )+ −Γ2|1(I − Q)+

−Γ1|2(I − P )+ (I − Q)+

] [
f2|1
f1|2

]

solves Eq. (4).

Proof. Let us write

(In1 − Γ2|1ΓT
1|2)

+ = lim
n→∞

(
n∑

k=0

(Γ2|1ΓT
1|2)

k

)

Πγ1

so that
(In1 − Γ2|1ΓT

1|2)
+(In1 − Γ2|1ΓT

1|2) = Πγ1 ,

because Πγ1(In1 − Γ2|1ΓT
1|2) = (In1 − Γ2|1ΓT

1|2).
Similarly, for Q = ΓT

2|1Γ1|2, we have

(In1 − ΓT
2|1Γ1|2)+(In1 − ΓT

2|1Γ1|2) = Πγ2 ,

It follows that Eq. (4) is solved with Eq. (5). ��
We now apply the ANOVA decomposition to the study of the open transport

model geometry as a sub-bundle of the statistical bundle SΔ◦(Ω). Let us write
the ANOVA decomposition of the statistical bundle as

SγΔ◦(Ω) = (B1(γ) + B2(γ)) ⊕ B12(γ).

Proposition 4. 1. Let t �→ γ(t) ∈ Γ ◦(μ1, μ2) be a smooth curve with γ(0) = γ.

Then the velocity at γ belongs to the interactions,
�
γ(0) ∈ B12(γ).

2. Given any interaction v ∈ B12(γ), the curve t �→ γ(t) = (1 + tv)γ stays in

Γ ◦(μ1, μ2) for t in a neighborhood of 0 and v =
�
γ(0).

Proof. We already know that Eγ

[�
γ(0)

]
= 0. For each f ∈ L2

0(μ1), we have
f ◦ X ∈ B1(γ), so that

〈
f ◦ X,

�
γ(0)

〉

γ
=

d

dt
Eγ(t) [f ◦ X]

∣∣
∣∣
t=0

=
d

dt
Eγ1(t) [f ]

∣∣
∣∣
t=0

=
d

dt
Eμ1 [f ]

∣∣
∣∣
t=0

= 0.

Same argument in the other margin.
Given v ∈ B12(γ), we show there exist an open interval I around 0 such that

I � t �→ γ(t) = (1+ tv)γ is a regular curve in Γ ◦(μ1, μ2) ⊂ Δ◦(Ω). It is indeed a
curve in Δ◦(Ω) because

∑
x,y γ(x, y)(1+ tv(x, y)) = Eγ [1 + tv] = 1 and because

γ(x, y)(1+ tV (x, y)) > 0 for all x, y, provided t ∈]−(max v)−1,−(min v)−1[. The
velocity exists,

�
γ(0) =

d

dt
log ((1 + tv)γ)

∣
∣∣∣
t=0

=
v

1 + tv

∣
∣∣∣
t=0

= v.
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Finally, let us compute the margins of (x, y) �→ γ(x, y; t) = (1 + tv(x, y))γ(x, y).
The argument is the same for both margins. For all x ∈ Ω1,

∑

y

(1 + tv(x, y))γ(x, y) = γ1(x) + t
∑

y

v(x, y)γ(x, y)

= μ1(x) + tEγ [(X = x)v] = μ1(x),

where (X = x) is the indicator function of {X = x}. ��
In conclusion, the IG structure of the open transport model is the following.

Proposition 5. The transport model bundle with margins μ1 and μ2 is the
sub-statistical bundle

SΓ ◦(μ1, μ2) = { (γ, v)| γ ∈ Γ ◦(μ1, μ2),Eγ [v|X] = Eγ [v|Y ] = 0} . (6)

The transport m
U

γ̄
γ maps the fiber at γ to the fiber at γ̄.

Proof. The first statement has been already proved. If γ, γ̄ ∈ Γ ◦(μ1, μ2) and
v ∈ SγΓ ◦(μ1, μ2), we have

Eγ̄

[
m
U

γ̄
γv

∣∣X
] ∝ Eγ

[
γ̄

γ
m
U

γ̄
γv

∣∣∣
∣X

]
= Eγ [v|X] = 0.

Remark 1. In the statistical bundle setup, at each p ∈ Δ◦(Ω) there is a chart sp

derived from the exponential representation, namely

sp : Δ◦(Ω) � q �→ log
q

p
− Eγ

[
log

q

p

]
= u ∈ SpΔ

◦(Ω),

so that
u �→ eu−Kp(u) · p , Kp(u) = logEp [eu] .

The sub-manifold of the transport model is flat in the mixture geometry
and there is no simple expression of the exponential coordinate. However, the
splitting of the dual statistical bundle suggests a mixed parameterization of
Δ◦(Ω). If u ∈ SγΔ◦(Ω), consider the splitting u = u1 +u2 +u1,2. If 1+u12 > 0,
then

u �→ γ(u) ∝ eu1+u2(1 + u12) · γ ∈ Δ◦(Ω),

where (1 + u12) · γ ∈ Γ ◦(γ1, γ2) and, for each given u12, we have an exponential
family orthogonal to Γ ◦(γ1, γ2).

3 Gradient Flow of the Transport Problem

Let us discuss the optimal transport problem in the framework of the transport
model bundle of Eq. (6). Let be given a cost function c : Ω1 × Ω2 = Ω → R and
define the expected cost function C : Δ(Ω) � γ �→ Eγ [c].
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Proposition 6. The function γ �→ C(γ) restricted to the open transport model
Γ ◦(μ1, μ2) has statistical gradient in SΓ ◦(μ1, μ2) given by

gradC : γ �→ c12,γ = c − c0,γ − (c1,γ + c2,γ) ∈ SγΓ ◦(μ1, μ2). (7)

Proof. For each smooth curve t �→ γ(t), γ(0) = γ, we have

d

dt
C(γ(t)) =

d

dt
Eγ(t) [c] = Eγ(t)

[
c

�
γ(t)

]
=

〈
c12,γ(t),

�
γ(t)

〉

γ(t)
.

where we have used the splitting at γ(t),

c = c0,γ(t) + (c1,γ(t) + c2,γ(t)) + c12,γ(t)

together with the fact that the velocity
�
γ(t) is an interaction. ��

It follows that the equation of the gradient flow of C is

�
γ = − (c − c0,γ − (c1,γ + c2,γ)) .

Remark 2. As the gradient mapping gradC(γ) is defined to be the orthogonal
projection of the cost c onto the space of γ-interactions B12(γ), one could con-
sider its extension to all γ̂ ∈ Γ (μ1, μ2). If γ̂ is a zero of the extended gradient
map, gradC(γ̂) = 0, then it holds

c(x, y) = c0,γ + c1,γ(x) + c2,γ(y) , (x, y) ∈ suppγ̂.

We expect any solution t �→ γ(t) of the gradient flow to converge to a cou-
pling γ̄ = limt→∞ γ(t) ∈ Δ(Ω) such that Eγ̄ [c] is the value of the Kantorovich
optimal transport problem, Eγ̄ [c] = min {Eγ [c]| γ ∈ Γ (μ1, μ2)}. These informal
arguments should be compared with the support properties of the optimal solu-
tions of the Kantorovich problem, see [4]. For the finite state space case, see also
[3,7].

Remark 3. The splitting of the statistical bundle suggests that each γ ∈ Δ(Ω1×
Ω2) stays at the intersection of two orthogonal manifolds, namely, the model
with the margins of γ and the additive exponential model eu1+u2−Kγ(u1+u2) · γ,
u1 ∈ B1(γ) and u2 ∈ B2(γ).

Remark 4. The simplest non-trivial case is the toy example with n1 = n2 = 2.
Let us use the coding Ω1 = Ω2 = {+1,−1}. Any function u on Ω has the
pseudo-Boolean form u(x, y) = a0+a1x+a2y+a12xy. Notice that the monomials
1, x, y, xy are orthogonal in the counting measure. In particular, a probability
has the form γ(x, y) = 1

4 (1+b1x+b2y+b12xy) with margins μ1(x) = 1
2 (1+b1x),

μ2(y) = 1
2 (1+b2y). The coefficients are the values of the moments. Given b1, b2 ∈

] − 1,+1[ to fix positive margins, the transport model is the 1-parameter family

γ(x, y; θ) =
1
4
(1 + b1x + b2y + θxy) , −1 + |b1 + b2| ≤ θ ≤ 1 − |b1 − b2| .
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The conditional probability functions are

γ1|2(x|y) =
1
2

(
1 +

b1 − b2θ

1 − b22
x +

−b1b2 + θ

1 − b22
xy

)

γ2|1(y|x) =
1
2

(
1 +

b2 − b1θ

1 − b21
y +

−b1b2 + θ

1 − b21
xy

)

Let us compute the simple effects of a generic u = α0 + α1x + α2y + α12xy. We
have u0 = α0 + α1b1 + α2b2 + α12θ, so that

u(x, y) − u0 = α1(x − b1) + α2(y − b2) + α12(xy − θ).

The simple effects are u1(x)+u2(y) = β1(x−b1)+β2(y−b2) and the orthogonality
conditions 0 = Eγ [u12(x − b1)] = Eγ [u12(y − b2)] become

(α1 − β1)(1 − b21) + (α2 − β2)(θ − b1b2) = −α12(b2 − θb1),

(α1 − β1)(θ − b1b2) + (α2 − β2)(1 − b22) = −α12(b1 − θb2).

The system has a unique closed-form solution.
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Abstract. Solving the so-called geodesic endpoint problem, i.e., finding
a geodesic that connects two given points on a manifold, is at the basis of
virtually all data processing operations, including averaging, clustering,
interpolation and optimization. On the Stiefel manifold of orthonormal
frames, this problem is computationally involved. A remedy is to use
quasi-geodesics as a replacement for the Riemannian geodesics. Quasi-
geodesics feature constant speed and covariant acceleration with constant
(but possibly non-zero) norm. For a well-known type of quasi-geodesics,
we derive a new representation that is suited for large-scale computa-
tions. Moreover, we introduce a new kind of quasi-geodesics that turns
out to be much closer to the Riemannian geodesics.

Keywords: Stiefel manifold · Geodesic · Quasi-geodesic · Geodesic
endpoint problem

1 Introduction

Connecting two points on the Stiefel manifold with a geodesic requires the use of
an iterative algorithm [10], which raises issues such as convergence and compu-
tational costs. An alternative is to use quasi-geodesics [2,5–8]. The term is used
inconsistently. Here, we mean curves with constant speed and covariant accel-
eration with constant (but possibly non-zero) norm. The term quasi-geodesics
is motivated by the fact that actual geodesics feature a constant-zero covari-
ant acceleration. Such quasi-geodesics have been considered in [2,5–7], where a
representation of the Stiefel manifold with square matrices was used.

We introduce an economic way to compute these quasi-geodesics at con-
siderably reduced computational costs. Furthermore, we propose a new kind of
quasi-geodesics, which turn out to be closer to the true Riemannian geodesic but
come at a slightly higher computational cost than the aforementioned economic
quasi-geodesics. Both kinds of quasi-geodesics can be used for a wide range of
problems, including optimization and interpolation of a set of points.

c© Springer Nature Switzerland AG 2021
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2 The Stiefel Manifold

This introductory exposition follows mainly [4]. The manifold of orthonormal
frames in R

n×p, i.e. the Stiefel manifold, is St(n, p) :=
{

U ∈ R
n×p | UT U = Ip

}
.

The tangent space at any point U ∈ St(n, p) can be parameterized as

TUSt(n, p) :=
{

UA + U⊥B | A ∈ so(p), B ∈ R
(n−p)×p

}
,

where so(p) denotes the real p × p skew-symmetric matrices and U⊥ denotes an
arbitrary but fixed orthonormal completion of U such that

(
U U⊥

) ∈ O(n). A
Riemannian metric on TUSt(n, p) is induced by the canonical inner product

gU : TUSt(n, p) × TUSt(n, p) → R, gU (Δ1,Δ2) := tr
(
ΔT

1 (In − 1
2
UUT )Δ2

)
.

The metric defines geodesics, i.e. locally shortest curves. The Riemannian
exponential gives the geodesic from a point U ∈ St(n, p) in direction Δ = UA +
U⊥B ∈ TUSt(n, p). Via the QR-decomposition (In − UUT )Δ = QR, with Q ∈
St(n, p) and R ∈ R

p×p, it can be calculated as

ExpU (tΔ) :=
(
U U⊥

)
expmt

(
A −BT

B 0

)(
Ip
0

)
=

(
U Q

)
expmt

(
A −RT

R 0

)(
Ip
0

)
,

where expm denotes the matrix exponential. The inverse problem, i.e. given
U, Ũ ∈ St(n, p), find Δ ∈ TUSt(n, p) with Ũ = ExpU (Δ), is called the geodesic
endpoint problem and is associated with computing the Riemannian logarithm
[10]. There is no known closed formula. Yet, as suggested in [2,6], one can exploit
the quotient relation between St(n, p) and the Grassmann manifold [3,4] of p-
dimensional subspaces of Rn: Let U, Ũ ∈ St(n, p). Then the columns of U and
Ũ span subspaces, i.e. points on the Grassmannian. For the Grassmannian, the
Riemannian logarithm is known [3], which means that we know how to find
U⊥B ∈ TUSt(n, p) and R ∈ O(p) such that ŨR =

(
U U⊥

)
expm( 0 −BT

B 0 )
(
Ip
0

)
.

Denote A := logm(RT ), where logm is the principle matrix logarithm. Then

Ũ =
(
U U⊥

)
expm

(
0 −BT

B 0

) (
Ip
0

)
expm(A). (1)

If there is a Stiefel geodesic from U to Ũ , then there is also UÃ + U⊥B̃ ∈
TUSt(n, p) such that

Ũ =
(
U U⊥

)
expm

(
Ã −B̃T

B̃ 0

)(
Ip
0

)
. (2)

Given U, Ũ , we cannot find UÃ + U⊥B̃ ∈ TUSt(n, p) directly for (2), but we can
find UA + U⊥B ∈ TUSt(n, p) for (1). On the other hand, given U ∈ St(n, p) and
Δ = UA + U⊥B ∈ TUSt(n, p), we can define a Ũ ∈ St(n, p) via (1).
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3 Quasi-Geodesics on the Stiefel Manifold

We first reduce the computational effort associated with the quasi-geodesics of
[2,5,6]. Then, we introduce a new technique to construct quasi-geodesics.

3.1 Economy-Size Quasi-Geodesics

Similarly to [2,5,6], we use the notion of a retraction [1] as a starting point
of the construction. Let M be a smooth manifold with tangent bundle TM . A
retraction is a smooth mapping R : TM → M with the following properties:

1.) Rx(0) = x, i.e. R maps the zero tangent vector at x ∈ M to x.
2.) The derivative at 0, dRx(0) is the identity mapping on T0TxM � TxM .

Here, Rx denotes the restriction of R to TxM . An example of a retraction is
the Riemannian exponential mapping. On the Stiefel manifold, we can for any
retraction R : TSt(n, p) → St(n, p) and any tangent vector Δ ∈ TUSt(n, p) define
a smooth curve γΔ : t �→ RU (tΔ), which fulfills γΔ(0) = U and γ̇Δ(0) = Δ. The
essential difference to [2,5,6] is that we work mainly with n × p matrices instead
of n×n representatives, which entails a considerable cost reduction, when p ≤ n

2 .
The idea is to connect the subspaces spanned by the Stiefel manifold points

with the associated Grassmann geodesic, while concurrently moving along the
equivalence classes to start and end at the correct Stiefel representatives. This
principle is visualized in [2, Fig. 1]. We define the economy-size quasi-geodesics
similarly to [6, Prop. 6 and Thm. 7].

Proposition 1. Let U ∈ St(n, p) and Δ = UA + U⊥B ∈ TUSt(n, p) with com-
pact SVD (In − UUT )Δ = U⊥B

SVD= QΣV T . The mapping RS : TSt(n, p) →
St(n, p), defined by Δ maps to RSU (Δ) := (UV cos(Σ)+Q sin(Σ))V T expm(A),
is a retraction with corresponding quasi-geodesic

γ(t) = RSU (tΔ) = (UV cos(tΣ) + Q sin(tΣ))V T expm(tA). (3)

An orthogonal completion of γ(t) is γ⊥(t) =
(
U U⊥

)
expm (t( 0 −BT

B 0 ))
(

0
In−p

)
.

The quasi-geodesic γ has the following properties:

1. γ(0) = U
2. γ̇(t) = γ(t)A + γ⊥(t)Bexpm(tA)
3. ‖γ̇(t)‖2 = 1

2 tr(AT A) + tr(BT B) (constant speed)
4. γ̈(t) = γ(t)(A2 − expm(tAT )BT Bexpm(tA)) + 2γ⊥(t)BAexpm(tA)
5. Dtγ̇(t) = γ⊥(t)BAexpm(tA)
6. ‖Dtγ̇(t)‖2 = ‖BA‖2F (constant-norm covariant acceleration)

Furthermore, γ is a geodesic if and only if BA = 0.
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Proof. The fact that RSU (0) = U for all U ∈ St(n, p) is obvious. Furthermore

dRSU (0)(Δ) = (−UV sin(εΣ)Σ + Q cos(εΣ)Σ)V T expm(εA)
∣
∣
ε=0

+ (UV cos(εΣ) + Q sin(εΣ))V T expm(εA)A
∣
∣
ε=0

=QΣV T + UV V T A = Δ,

so RS is a retraction. Note that γ can also be written as

γ(t) =
(
U U⊥

)
expm

(
t

(
0 −BT

B 0

)) (
expm(tA)

0

)
,

by comparison with the Grassmann geodesics in [4, Thm. 2.3]. Therefore one
possible orthogonal completion is given by the stated formula. The formulas for
γ̇(t) and γ̈(t) can be calculated by taking the derivative of

t �→ (
γ(t) γ⊥(t)

)
=

(
U U⊥

)
expm

(
t

(
0 −BT

B 0

))(
expm(tA) 0

0 In−p

)
.

It follows that ‖γ̇(t)‖2 = tr(γ̇(t)T (In − 1
2γ(t)γ(t)T )γ̇(t)) = 1

2 tr(AT A)+tr(BT B).
To calculate the covariant derivative Dtγ̇(t), we use γ(t)T γ⊥(t) = 0 and the
formula for the covariant derivative of γ̇ along γ from [4, eq. (2.41), (2.48)],

Dtγ̇(t) = γ̈(t) + γ̇(t)γ̇(t)T γ(t) + γ(t)
(
(γ(t)T γ̇(t))2 + γ̇(t)T γ̇(t)

)
, (4)

cf. [6]. Since it features constant speed and constant-norm covariant acceleration,
γ is a quasi-geodesic. It becomes a true geodesic if and only if BA = 0. �	

Connecting U, Ũ ∈ St(n, p) with a quasi-geodesic from Proposition 1 requires
the inverse of RSU . Since RSU is the Grassmann exponential – lifted to the
Stiefel manifold – followed by a change of basis, we can make use of the modified
algorithm from [3] for the Grassmann logarithm. The procedure is stated in
Algorithm 1. Proposition 2 confirms that it yields a quasi-geodesic.

Algorithm 1. Economy-size quasi-geodesic between two given points
Input: U, Ũ ∈ St(n, p)

1: ˜Q˜S ˜RT SVD
:= ŨT U � SVD

2: R := ˜Q ˜RT

3: Ũ∗ := ŨR � Change of basis in the subspace spanned by Ũ
4: A := logm(RT )

5: QSV T SVD
:= (In − UUT )Ũ∗ � compact SVD

6: Σ := arcsin(S) � element-wise on the diagonal
Output: γ(t) = (UV cos(tΣ) + Q sin(tΣ))V T expm(tA)

Proposition 2. Let U, Ũ ∈ St(n, p). Then Algorithm 1 returns a quasi-geodesic
γ connecting U and Ũ , i.e. γ(0) = U and γ(1) = Ũ , in direction γ̇(0) = UA +
QΣV T and of length L(γ) = (12 tr(AT A) + tr(Σ2))

1
2 .

Proof. Follows from [3, Algorithm 1], Proposition 1 and a straightforward cal-
culation.
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3.2 Short Economy-Size Quasi-Geodesics

To construct an alternative type of quasi-geodesics, we make the following obser-
vation: Denote B in (1) by B̂ and calculate the SVD U⊥B̂ = QΣV T . Further-
more, compute R ∈ O(p) as in Algorithm 1 and denote a := logm(RT ) ∈ so(p)
and b := ΣV T ∈ R

p×p. Then we can rewrite (1) as

Ũ =
(
U Q

)
expm

(
0 −bT

b 0

) (
Ip

0p×p

)
expm(a)

=
(
U Q

)
expm

(
0 −bT

b 0

)
expm

(
a 0
0 c

) (
Ip
0

)
for any c ∈ so(p).

Without the factor c, this is exactly what lead to the quasi-geodesics (3). There
are however also matrices A ∈ so(p), B ∈ R

p×p and C ∈ so(p) satisfying
(

A −BT

B C

)
= logm

(
expm

(
0 −bT

b 0

)
expm

(
a 0
0 c

))
. (5)

This implies that

ρ(t) =
(
U Q

)
expm

(
t

(
A −BT

B C

))(
Ip
0

)
(6)

is a curve from ρ(0) = U to ρ(1) = Ũ . It is indeed the projection of the geodesic
in O(n) from

(
U U⊥

)
to

(
Ũ Ũ⊥

)
for some orthogonal completion Ũ⊥ of Ũ . If

C = 0, then ρ is exactly the Stiefel geodesic. For x := ( 0 −bT

b 0 ) and y := ( a 0
0 c )

with ‖x‖ + ‖y‖ ≤ ln(
√

2), we can express C with help of the (Dynkin-)Baker-
Campbell-Hausdorff (BCH) series Z(x, y) = logm(expm(x)expm(y)), [9, Sect.
1.3, p. 22]. To get close to the Riemannian geodesics, we want to find a c such
that C becomes small. Three facts are now helpful for the solution:

1. The series Z(x, y) depends only on iterated commutators [·, ·] of x and y.
2. Since the Grassmannian is symmetric, the Lie algebra so(n) has a Cartan

decomposition so(n) = v ⊕ h with [v, v] ⊆ v, [v, h] ⊆ h, [h, h] ⊆ v, [4, (2.38)].
3. For x and y defined as above, we have x ∈ h and y ∈ v ⊂ so(2p).

Considering terms up to combined order 4 in x and y in the Dynkin formula and
denoting the anti-commutator by {x, y} = xy + yx, the matrix C is given by

C = C(c) = c +
1
12

(
2babT − {bbT , c}

)
− 1

24

(
2[c, babT ] − [c, {bbT , c}]

)
+ h.o.t.

Ignoring the higher-order terms, we can consider this as a fixed point problem
0 = C(c) ⇔ c = − 1

12 (. . .) + 1
24 (. . .). Performing a single iteration starting from

c0 = 0 yields

c1 = c1(a, b) = −1
6
babT . (7)

With δ := max{‖a‖, ‖b‖} ≤ ln(
√

2), where ‖·‖ denotes the 2-norm, one can show
that this choice of c(a, b) produces a C-block with ‖C(c)‖ ≤ ( 7

216 + 1
1−δ )δ5.

A closer look at curves of the form (6) shows the following Proposition.



768 T. Bendokat and R. Zimmermann

Proposition 3. Let U,Q ∈ St(n, p) with UT Q = 0 and A ∈ so(p), B ∈ R
p×p,

C ∈ so(p). Then the curve

ρ(t) =
(
U Q

)
expm

(
t

(
A −BT

B C

))(
Ip
0

)
(8)

has the following properties, where ρ⊥(t) :=
(
U Q

)
expm

(
t
(

A −BT

B C

)) (
0
Ip

)
:

1. ρ(0) = U
2. ρ̇(0) = UA + QB ∈ TUSt(n, p)

3. ρ̇(t) =
(
U Q

)
expm

(
t

(
A −BT

B C

)) (
A
B

)
= ρ(t)A + ρ⊥(t)B ∈ Tρ(t)St(n, p)

4. ‖ρ̇(t)‖2 = 1
2 tr(AT A) + tr(BT B) (constant speed)

5. ρ̈(t) =
(
U Q

)
expm

(
t

(
A −BT

B C

)) (
A2 − BT B
BA + CB

)

= ρ(t)(A2 − BT B) + ρ⊥(t)(BA + CB)
6. Dtρ̇(t) = ρ⊥(t)CB
7. ‖Dtρ̇(t)‖2 = ‖CB‖2F (constant-norm covariant acceleration)

Proof. This can directly be checked by calculation and making use of the formula
(4) for the covariant derivative Dtρ̇(t).

Note that the property UT Q = 0 can only be fulfilled if p ≤ n
2 . Since they

feature constant speed and constant-norm covariant acceleration, curves of the
form (8) are quasi-geodesics. Now we can connect two points on the Stiefel mani-
fold with Algorithm 2, making use of expm

(
0 −Σ
Σ 0

)
=

(
cosΣ − sinΣ
sinΣ cosΣ

)
for diagonal

Σ. Curves produced by Algorithm 2 are of the form (8). We numerically verified

Algorithm 2. Short economy-size quasi-geodesic between two given points
Input: U, Ũ ∈ St(n, p)

1: ˜Q˜S ˜RT SVD
:= ŨT U � SVD

2: R := ˜Q ˜RT

3: a := logm(RT )

4: QSV T SVD
:= (In − UUT )ŨR � compact SVD

5: Σ := arcsin(S) � element-wise on the diagonal
6: b := ΣV T

7: c := c(a, b) = − 1
6
babT

8:

(

A −BT

B C

)

= logm

(

V cos(Σ)V T RT −V sin(Σ)expm(c)
sin(Σ)V T RT cos(Σ)expm(c)

)

Output: ρ(t) =
(

U Q
)

expm

(

t

(

A −BT

B C

)) (

Ip

0

)
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that they are closer to the Riemannian geodesic than the economy-size quasi-
geodesics of Algorithm 1 in the cases we considered. As geodesics are locally
shortest curves, this motivates the term short economy-size quasi-geodesics for
the curves produced by Algorithm 2.

Note that Algorithm 2 allows to compute the quasi-geodesic ρ(t) with initial
velocity ρ̇(0) = UA + QB between two given points. The opposite problem,
namely finding the quasi-geodesic ρ(t) given a point U ∈ St(n, p) with tangent
vector UA + QB ∈ TUSt(n, p), is however not solved, since the correct C ∈
so(p) is missing. Nevertheless, since ρ(t) is an approximation of a geodesic, the
Riemannian exponential can be used to generate an endpoint.

4 Numerical Comparison

To compare the behaviour of the economy-size and the short economy-size quasi-
geodesics, two random points on the Stiefel manifold St(200, 30) with a distance
of d ∈ {0.1π, 0.5π, 1.3π} from each other are created. Then the quasi-geodesics
according to Algorithms 1 and 2 are calculated. The Riemannian distance, i.e.,
the norm of the Riemannian logarithm, between the quasi-geodesics and the
actual Riemannian geodesic is plotted in Fig. 1. In all cases considered, the short
quasi-geodesics turn out to be two to five orders of magnitude closer to the
Riemannian geodesic than the economy-size quasi-geodesics.
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Fig. 1. Comparison of the distance of the quasi-geodesics (QG) to the true geodesic
between two random points. The distance between the two points is denoted by d.

In Table 1, we display the relative deviation of the length of the quasi-
geodesics from the Riemannian distance between two randomly generated points
at a distance of π

2 on St(200, p), where p varies between 10 and 100. The outcome
justifies the name short quasi-geodesics.



770 T. Bendokat and R. Zimmermann

Table 1. Comparison of the relative deviation in length of the quasi-geodesics com-
pared to the true geodesic between two random points on St(200, p) at a distance of π

2

for different values of p. The observable p-dependence suggests further investigations.

p Algorithm 2 Algorithm 1

10 1.1997e-08 9.9308e-04

20 3.6416e-10 8.6301e-04

30 8.4590e-11 8.9039e-04

40 1.9998e-11 7.7265e-04

50 8.1613e-12 7.7672e-04

p Algorithm 2 Algorithm 1

60 4.0840e-12 7.2356e-04

70 1.9134e-12 6.8109e-04

80 9.9672e-13 6.1304e-04

90 5.7957e-13 5.7272e-04

100 2.7409e-13 4.9691e-04

The essential difference in terms of the computational costs between the
quasi-geodesics of Algorithm 1, those of Algorithm 2, and the approach in [6,
Thm. 7] is that the they require matrix exp- and log-function evaluations of
(p × p)-, (2p × 2p)- and (n × n)-matrices, respectively.

5 Conclusion and Outlook

We have proposed a new efficient representation for a well-known type of quasi-
geodesics on the Stiefel manifold, which is suitable for large-scale computations
and has an exact inverse to the endpoint problem for a given tangent vector.
Furthermore, we have introduced a new kind of quasi-geodesics, which are much
closer to the Riemannian geodesics. These can be used for endpoint problems,
but the exact curve for a given tangent vector is unknown. Both kinds of quasi-
geodesics can be used, e.g., for interpolation methods like De Casteljau etc. [2,6].
In future work, further and more rigorous studies of the quasi-geodesics’ length
properties and the p-dependence displayed in Table 1 are of interest.
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Abstract. In medical imaging, the construction of a reference shape from a set of
segmentation results from different algorithms or image modalities is an impor-
tant issue when dealing with the evaluation of segmentation without knowing
the gold standard or when an evaluation of the inter or intra expert variability is
needed. It is also interesting to build this consensus shape to merge the results
obtained for the same target object from automatic or semi-automatic segmenta-
tion methods. In this paper, to deal with both segmentation fusion and evaluation,
we propose to define such a “mutual shape” as the optimum of a criterion using
both the mutual information and the joint entropy of the segmentation methods.
This energy criterion is justified using the similarities between quantities of infor-
mation theory and area measures and is presented in a continuous variational
framework. We investigate the applicability of our framework for the fusion and
evaluation of segmentation methods in multimodal MR images of diffuse intrinsic
pontine glioma (DIPG).

Keywords: Mutual shape · Segmentation fusion · Segmentation evaluation ·
Shape optimization · Information theory · Neuro-oncology · Multimodal MR
imaging

1 Introduction

In medical imaging, the construction of a reference shape from a set of segmentation
results from different image modalities or algorithms is an important issue when eval-
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uating segmentation results without knowing the gold standard or comparing differ-
ent ground truths. The STAPLE algorithm (Simultaneous Truth and Performance Level
Estimation) proposed byWarfield et al. [19] is classically used for segmentation evalua-
tion without gold standard. This algorithm consists in one instance of the EM (Expecta-
tion Maximization) algorithm, where the true segmentation is estimated by maximizing
the likelihood of the complete data. Their approach leads to the estimation of a refer-
ence shape simultaneously with the sensitivity and specificity parameters. From these
measurements, the performance level of each segmentation can be estimated and a clas-
sification of all the segmentation entries can be performed. The MAP-STAPLE [3] is
semi-local and takes benefit of a small window around the pixel. On the other hand,
the estimation of such a consensus shape is also an important issue for merging differ-
ent segmentation results from different algorithms or image modalities. Such a fusion
must take full advantage of all segmentation methods while being robust to outliers. It
then requires the optimization of suitable shape metrics. We note that shape optimiza-
tion algorithms have already been proposed in order to compute shape averages [2,22]
or median shapes [1] by minimizing different (pseudo-)metrics on the set of measur-
able geometric shapes such as the Hausdorff distance in [2] or the symmetric difference
between shapes in [22].

In this paper, inspired by the widely used STAPLE approach, we focus instead on
the estimation of a mutual shape from several segmentation methods and study this
problem under the umbrella of shape optimization and information theory. We propose
to model the estimation of a mutual shape by introducing a continuous criterion that
maximizes the mutual information between the segmentation entries and the mutual
shape while minimizing the joint entropy. Our framework can be used for segmenta-
tion evaluation and/or segmentation fusion. The optimization is solved in a continuous
framework using level sets and shape derivation tools as detailed in [10]. The proposed
criterion can be interpreted as a measure of the symmetric difference and has interesting
properties, which leads us to use the term of shape metric as detailed in Sect. 2. In the
research report [9], the whole optimization framework is detailed as well as the com-
putation of all shape derivatives. We also compared this variational mutual shape to the
STAPLE method and to the minimization of a symmetric difference [22].

In terms of application, we extend our previous work [12] to the fusion of segmen-
tation methods in the context of multimodal MR imaging in Diffuse Intrinsic Pontine
Glioma (DIPG), a pediatric brain tumor for which new therapies need to be assessed.
Our study concerns the fusion of tumor segmentation results obtained by different meth-
ods separately on the given modalities (T1 weighted, T2 weighted, FLAIR, T1 weighted
acquired after contrast injection). Despite the known localization of the tumor inside
the pons, it is difficult to segment it accurately due to the complexity of its 3D struc-
ture. We propose to test some 3D segmentation methods as segmentation entries to our
fusion process. The methods proposed as entries of the segmentation fusion algorithm
are based on the optimization of appropriate criteria [11,14] implemented using the
level set method. Our aim was not to design a new segmentation algorithm but to inves-
tigate whether the mutual shape can lead to a better and more robust segmentation. A
ground truth is available from an expert, which allows an objective evaluation of our
results using the Dice Coefficient (DC) for both segmentation and fusion.
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2 Proposition of a Criterion Based on Information Theory

Let U be a class of domains (open regular bounded sets, i.e. C2) of Rd (with d = 2
or 3). We denote by Ωi an element of U of boundary ∂Ωi. We consider {Ω1, ...,Ωn}
a family of n shapes where each shape corresponds to the segmentation of the same
unknown object O in a given image. The image domain is denoted by Ω ∈ R

d. Our
aim is to compute a reference shape μ that can closely represent the true object O. We
propose to define the problem using information theory and a statistical representation
of the shapes. We denote by Ωi the complementary shape of Ωi in Ω with Ωi ∪Ωi = Ω.
The shapes can be represented using their characteristic function : di(x) = 1 if x ∈ Ωi

and di(x) = 0 if x ∈ Ωi where x ∈ Ω is the location of the pixel within the image.
In this paper, we consider that the shape Ωi is represented through a random variable
Di whose observation is the characteristic function di. The reference shape μ is also
represented through an unknown random variable T whose associated characteristic
function t(x) = 1 if x ∈ μ and t(x) = 0 if x ∈ μ.

Our goal is here to mutualize the information given by each segmentation to define
a consensus or reference shape. In this context, we propose to take advantage of the
analogies between information measures (mutual information, joint entropy) and area
measures. As previously mentioned, Di represents the random variable associated with
the characteristic function di of the shape Ωi and T the random variable associated with
the characteristic function t of the reference shape μ. Using these notations, H(Di, T )
represents the joint entropy between the variables Di and T , and I(Di, T ) the mutual
information. We then propose to minimize the following criterion:

E(T ) =
n∑

i=1

(H(Di, T ) − I(Di, T )) = JH(T ) + MI(T ), (1)

where the sum of joint entropies is denoted by JH(T ) =
∑n

i=1 H(Di, T ) and the sum
of mutual information by MI(T ) = −∑n

i=1 I(Di, T ).

2.1 Justification of the Criterion

First of all, the introduction of this criterion can be justified by the fact that ϕ(Di, T ) =
(H(Di, T ) − I(Di, T )) is a metric which satisfies the following properties:

1. ϕ(X,Y ) ≥ 0
2. ϕ(X,Y ) = ϕ(Y,X)
3. ϕ(X,Y ) = 0 if and only if X = Y
4. ϕ(X,Y ) + ϕ(Y,Z) ≥ ϕ(X,Z)

Indeed, we can show that ϕ(Di, T ) = H(T |Di) + H(Di|T ) using the following
classical relations between the joint entropy and the conditional entropy H(Di, T ) =
H(Di)+H(T |Di) and the relation between the mutual information and the conditional
entropy I(Di, T ) = H(Di) − H(Di|T ). In [5], H(T |Di) + H(Di|T ) is shown to be a
metric that satisfies the four properties mentioned above.

On the other hand, we can give another interesting geometrical interpretation of the
proposed criterion. We propose to take advantage of the analogies between information
measures (mutual information, joint entropy) and area measures. In [17,21], it is shown
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that Shannon’s information measures can be interpreted in terms of area measures as
follows: H(Di, T ) = mes(D̃i ∪ T̃ ) and I(Di, T ) = mes(D̃i ∩ T̃ ) with X̃ the abstract
set associated with the random variable X and the term mes corresponds to a signed
measure defined on an algebra of sets with values in ] − ∞,+∞[. These properties
allow us to better understand the role of each term in the criterion to be optimized.
Using the relation: mes(A \ B) = mes(A) − mes(B) + mes(B \ A) applied to the
sets A = D̃i ∪ T̃ and B = D̃i ∩ T̃ , the proposed criterion may then also be interpreted
as the estimation of a mean shape using a measure of the symmetric difference since
B \ A = ∅. According to [7], a measure of the symmetric difference can be considered
as a metric on the set of measurable shapes under certain properties.

2.2 Modelization of the Criterion in a Continuous Variational Setting

In order to take advantage of the previous statistical criterion (1) within a continuous
shape optimization framework, and in order to optimize the criterion, we propose to
express the joint and conditional probability density functions according to the refer-
ence shape μ. This difficult but essential step is detailed below for both the mutual
information and the joint entropy.

We first propose to express MI(T ) = −∑n
i=1 I(Di, T ) in a continuous set-

ting according to the unknown shape μ. In order to simplify the criterion, we use
the classic relation between mutual information and conditional entropy mentioned
above. Since H(Di|T ) ≥ 0 and H(Di) is independent of T , we will instead mini-
mize

∑n
i=1 H(Di|T ). Denoting by t and di the observations of the random variables T

and Di, the conditional entropy of Di knowing T can be written as follows:

H(Di|T ) = −
∑

t∈{0,1}

⎡

⎣p(t)
∑

di∈{0,1}
p(di/t) log(p(di/t))

⎤

⎦ , (2)

with p(T = t) = p(t) and p(Di = di/T = t) = p(di/t). The conditional probabil-
ity p(di = 1/t = 1) corresponds to the sensitivity parameter pi (true positive fraction):
pi(μ) = p(di = 1/t = 1) = 1

|μ|
∫

μ
K(di(x) − 1)dx. The function under the inte-

gral must be chosen as a C1 function to correctly compute the shape derivative of pi as
described in [6]. Among the available functions, we can simply choose K as a Gaussian
Kernel of 0-mean and variance h where h is chosen to obtain the best estimate of pi.
We can also choose other functions such as for example K(x) = 1

1+ε ∗ 1
(1+(x2/ε2) with

ε chosen small. Such smoothed functions simply avoid instabilities in the numerical
implementation. The derivation is given for any kernel K that does not depend on μ in
[9]. Some methods for estimating pdfs may involve the size of the region to estimate the
kernel parameters. In this case, the derivation is not the same and must be recomputed.

The conditional probability p(di = 0/t = 0) corresponds to the specificity param-
eter qi (true negatives fraction) qi(μ) = p(di = 0/t = 0) = 1

|μ|
∫

μ
K(di(x))dx.

In the following, pi(μ) is replaced by pi and qi(μ) by qi. The random variable T
takes the value 1 with a probability p(t = 1) = |μ|/|Ω| and 0 with a probability
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p(t = 0) = |μ|/|Ω|. The criterion (2) can then be expressed according to μ (denoted by
EHC

(μ)):

EHC
(μ) = −

n∑

i=1

[ |μ|
|Ω| ((1 − pi) log (1 − pi) + pi log pi) +

|μ|
|Ω| (qi log qi + (1 − qi) log (1 − qi))

]
(3)

The parameters pi and qi depend explicitly on μ, which must be taken into account in
the optimization process.

Let us now express, according to μ and in a continuous setting, the sum of the joint
entropies

∑n
i=1 H(Di, T ). The following expression of the joint entropy is considered:

H(Di, T ) = −
∑

t∈{0,1}

∑

di∈{0,1}
p(di, t) log (p(di, t)) , (4)

with p(Di = di, T = t) = p(di, t).
The following estimates for the joint probabilities are then used (a = 0 or a = 1):

p(di = a, t = 1) =
1

|Ω|
∫
µ

(K(di(x) − a)) dx, p(di = a, t = 0) =
1

|Ω|
∫
µ

(K(di(x) − a)) dx.

The criterion (4) can now be expressed according to μ (denoted EHJ
(μ)):

EHJ
(µ) = −

n∑
i=1

[
p(di = 1, t = 1) log(p(di = 1, t = 1)) + p(di = 1, t = 0) log(p(di = 1, t = 0))

+ p(di = 0, t = 1) log(p(di = 0, t = 1)) + p(di = 0, t = 0) log(p(di = 0, t = 0))
]

(5)

where p(di = a, t = 1) and p(di = a, t = 0) depends on μ as expressed above.
The minimization of the criterion (1) can now be expressed according to the

unknown shape μ:

E(µ) = EHC (µ) + EHJ (µ) + EH , (6)

where the expressions of EHC
and EHJ

are given respectively in Eqs. (3) and (5). The
last term EH = −∑n

i=1 H(Di) does not depend on μ. Note that we also add a standard
regularization term based on the minimization of

∫
∂μ

ds where s is the arc length. This
term allows to favor smooth shapes and is balanced using a positive parameter λ chosen
small. In this paper λ = 5 for all the experiments.

In this given form, the minimization of such a criterion can be considered using
different optimization frameworks. In this paper, we deform an initial curve (or surface),
represented using a level set function [15], towards the boundaries of the region of
interest according to shape derivatives whose computation is given in [9].

3 Multimodality Brain Tumors Segmentation Fusion and
Evaluation

In patients with DIPG, multimodal MR images are essential for the diagnosis and
the follow-up. For the present work, MR images issued from four structural modali-
ties: T1 weighted (T1w), post-contrast T1 weighted after Gadolinium injection (T1Gd),
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T2 weighted (T2w) and FLAIR images were considered. First, a pre-processing step,
including spatial re-sampling, rigid co-registration and MR intensity standardization
was applied to MR volumes, as detailed in [8].

Three segmentation methods were applied in order to illustrate the interest of the
mutual shape estimation framework. The first segmentation method is based on the
minimization of the anti-likelihood of a Gaussian distribution, called ML (Maximum
likelihood) [23]. The second method, named VA, is based on the minimization of a
function of the variance [10]. The third method, named KL, takes benefit of the maxi-
mization of the divergence of Kullback-Leibler as proposed in [14]. In order to optimize
these three criteria, we modelled the surfaces in 3D using the level set method. Each
segmentation was applied to each MR modality independently to obtain the 3D seg-
mentation of the tumor. Other methods can be used as entries to our algorithm such as
the methods proposed in [13,18]. See for example [13] for a review on supervised and
unsupervised methods for multimodal brain tumors segmentation.

To mimic the RAPNO (Response Assessment in Pediatric Neuro-Oncology) guide-
lines for the clinical follow-up of DIPG [4], the 2D slice corresponding to the largest
area tumor was selected. Our segmentation results are illustrated in Fig. 1 for such a
slice of interest. On this slice, an expert delineated a contour which will be further con-
sidered as the “gold standard” and is displayed in Fig. 2(d). This expert segmentation
was a compromise between the different modalities.

Fig. 1. Segmentation resultsm1 tom12, performed using 3 different segmentation methods: Max-
imum Likelihood ML (first row), Variance VA (second row) and Kullback-Leibler KL (third row)
on the given modalities T1w, T2w, T1Gd and FLAIR displayed in columns.

We then estimated the mutual shape for both segmentation evaluation and segmen-
tation fusion. In a first case, the 12 segmentation results (3 methods, 4 modalities) were
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used as entries, the resulting mutual shape being called MS1. In a second case, all the
segmentation results except those obtained on the FLAIR results were used, providing
a mutual shape without FLAIR, called MS2. The two mutual shapes are presented in
Fig. 2, in addition with the expert segmentation.

In order to compare two shapes Ω1 and Ω2, the Dice Coefficient is classically used
whose formula is DC(Ω1,Ω2) = 2|Ω1| ⋂ |Ω2|

|Ω1|+|Ω2| . The parameter DC is close to 1 when
the two shapes are similar. All segmentation methods have been compared to the expert
contour in Table 1. For MS1 and MS2, the DC parameters were greater than 0.91,
which is among the best results of the 12 (or 9 for MS2) segmentation results. Note
that DC of MS2 slightly outperformed the DC coefficients of all the 12 segmentation
methods. Thus the mutual shape enables us not to choose the optimal segmentation
method, which may vary according to the context. Moreover, the mutual shape is robust
to segmentation entries of lower quality (outliers). Removing FLAIR images (images
for which the segmentation results are not in full agreement with expert) to compute
MS2 can be useful, but is not an absolute prerequisite.

As far as the segmentation evaluation task is considered, the parameters DC
obtained for the 12 segmentation results and MS1 (thus serving as a reference, without
a “gold standard”) were computed (Table 2). Globally the ranking of the 12 segmenta-
tion results was very similar to the ranking obtained with the expert segmentation. The
same best methods (m1,m3) and the same outliers (m4,m7,m8,m12) were highlighted.
The mismatch with FLAIR modality could be easily explained, since this modality was
not fully integrated by the expert when drawing the contour, since it presented some
semantic differences with tumor delineation, reflecting inflammation inside tumoral
processes [4].

In conclusion, the mutual shape allows us to classify and to combine the different
segmentation methods in an elegant and rigorous way. We can notice that the obtained
mutual shape does not vary significantly if we remove the segmentation methods result-
ing from the FLAIR modality, which shows the robustness of the estimation to outliers.
The mismatch between the FLAIR modality and the other modalities can be indepen-
dent of the segmentation methods and be used as a biomarker [20]. From a theoretical
point of view, we may further investigate the link between our work and the current
works on Riemannian shape analysis detailed in [16].

(a) Initial contour (b) MS1 (c) MS2 (wo FLAIR) (d) Expert

Fig. 2. Estimation of a mutual shape MS1 computed from the 12 segmentation methods, and the
mutual shape MS2 computed without including the FLAIR modality.
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Table 1. Dice Coefficients DC(Ωi,Ωref ) between the expert segmentation Ωref and Ωi corre-
sponding to the segmentation region given by method mi or by the mutual shape MS1 or MS2

i m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 MS1 MS2

DC 0.920 0.887 0.915 0.731 0.865 0. 881 0.740 0.740 0.881 0.841 0. 911 0.594 0.913 0.921

Table 2. Dice CoefficientsDC(Ωi,MS1) between the MS1 mutual shape and Ωi corresponding
to the segmentation region given by the method mi

i m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12

DC 0.971 0.956 0.960 0.799 0.875 0.951 0.767 0.809 0.919 0.887 0.935 0.621
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Abstract. In this paper, we propose an implementation of both Large
Deformation Diffeomorphic Metric Mapping (LDDMM) and Metamor-
phosis image registration using a semi-Lagrangian scheme for geodesic
shooting. We propose to solve both problems as an inexact matching
providing a single and unifying cost function. We demonstrate that for
image registration the use of a semi-Lagrangian scheme is more stable
than a standard Eulerian scheme. Our GPU implementation is based
on PyTorch, which greatly simplifies and accelerates the computations
thanks to its powerful automatic differentiation engine. It will be freely
available at https://github.com/antonfrancois/Demeter metamorphosis.

Keywords: Image diffeomorphic registration · LDDMM ·
Metamorphosis · Semi-Lagrangian scheme

1 Introduction

Diffeomophic image matching is a key component in computational anatomy for
assessing morphological changes in a variety of cases. Since it does not modify
the spatial organization of the image (i.e. no tearing, shearing, holes), it produces
anatomically plausible transformations. Possible applications are: alignment of
multi-modal images, longitudinal image registration (images of the same subject
at different time points) or alignment of images of the same modality across
subjects, for statistical analysis such as atlas construction.

Extensive work have been conduced to compute diffeomorphic transfor-
mations for registering medical images. One method is to use flows of time-
dependent vector fields, as in LDDMM [3,5,17]. This allows us to define a right-
invariant Riemannian metric on the group of diffeomorphisms. This metric can
be projected onto the space of images, which thus becomes a shape space, pro-
viding useful notions of geodesics, shortest paths and distances between images
[6,18]. A shortest path represents the registration between two images.

Due to the high computational cost of LDDMM, some authors proposed to
use stationary vector fields, instead than time-varying, using the Lie algebra
vector field exponential [1,2].
c© Springer Nature Switzerland AG 2021
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Diffeomorphic maps are by definition one-to-one, which means that they are
suited for matching only images characterized by the same topology. However,
many clinical or morphometric studies often include an alignment step between
a healthy template (or atlas) and images with lesions, alterations or pathologies,
like white matter multiple sclerosis or brain tumors. Three main strategies have
been proposed in the literature. Cost function masking is used in order not to
take into account the lesion or tumor (by masking it) during registration [14].
This method is quite simple and easy to implement but it does not give good
results when working with big lesions or tumors. The other two strategies consist
in modifying either the healthy template or the pathological image in order to
make them look like a pathological or healthy image respectively. For instance,
in GLISTR [8], authors first make growing a tumor into an healthy image and
then they register it to an image with tumor. This strategy is quite slow and
computationally heavy. On the other hand, in [15], authors try to fill the lesions
using inpainting in order to make the image looks like an healthy image. This
strategy seems to work well only with small lesions. Similarly, in [11], authors
proposed to estimate the healthy version of an image as its low-rank component,
which seems to work correctly only when the sample size is quite large. Here, we
propose to use a natural extension of LDDMM: the Metamorphosis framework
as introduced in [10,16,18]. It was designed to jointly estimate a diffeomorphic
deformation and a variation in image appearance, modeling, for instance, the
apparition of a tumor. Intensity variations are also deformed along the images
during the process. Metamorphosis is related to morphing in computer graphics.
Metamorphosis, like LDDMM, generates a distance between objects. This time
the integration follows two curves, one for the deformation and one for the inten-
sity changes (see definition in [9,10,18]). By comparing the works of Beg and
Vialard [5,17] for LDDMM and the Metamorphosis framework, one can notice
that they are closely related as they end up using a very similar set of variational
equations for their geodesics.

We decided to use geodesic shooting [12] as it is the only method that can
theoretically ensure to get optimal paths (geodesics), even if not performing
optimization until convergence. Once defined the Euler-Lagrange equations asso-
ciated to the functional registration, one can integrate them. The estimated
optimal paths, which are geodesics, are usually computed using the shooting
algorithm and are completely encoded by the initial conditions of the system.
The minimizing initial conditions, subject to the geodesic equations, are usually
estimated using a gradient descent scheme (which needs the computation of the
adjoint equations).

In this paper, we make the following contributions. To the best of out knowl-
edge, we provide the first implementation of both LDDMM and Metamorphosis
joined in one optimisation problem.

We also propose a full semi-Lagrangian scheme for the geodesic shooting
equations and we give access to our easy to use GPU implementation fully devel-
oped with PyTorch.
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2 Methods

LDDMM and Metamorphoses Geodesics. Let Ω ⊂ R
d be a fixed bounded

domain, where d = {2, 3}. We define a gray-scale image I ∈ I (or a gray-scale
volume) as a square-integrable function defined on Ω (i.e.: I .= L2(Ω,R)).

Let V be a fixed Hilbert space of l-times continuously differentiable vec-
tor fields supported on Ω and l times continuously differentiable (i.e.: V ⊂
Cl
0(Ω,Rd)). We consider that the time varying vector fields vt are elements of

L2([0, 1] ;V ), t ∈ [0, 1], [5,17,18]. A pure deformation flow can be deduced solv-
ing the ODE Φ̇t = vt ·Φt := vt ◦Φt , vt ∈ V,∀t ∈ [0, 1]. Hence, the flow at a given
time t is written Φt =

∫ t

0
vs ◦Φsds with Φ0 = Id. As shown in [6], the elements of

V need to be sufficiently smooth to produce a flow of diffeomorphisms. The tra-
ditional optimisation problem for LDDMM is an inexact matching. Let I, J ∈ I
be a source and a target image, it aims at minimizing a cost composed of a data
term (e.g. the L2-norm, known as the sum of images squared difference (SSD)
), and a regularisation term on v, usually defined as the total kinetic energy∫ 1

0
‖vt‖2V dt. The goal is thus to find the “simplest” deformation to correctly

match I to J .
Metamorphoses join additive intensity changes to the deformations. The goal

of Metamorphosis is to register an image I to J using variational methods with an
intensity additive term zt ∈ L1([0, 1] ;V ). The image evolution can be defined as:

∂tIt = vt · It + μzt = −〈∇It, vt〉 + μzt, s.t. I0 = I μ ∈ R
+. (1)

One can control the amount of deformation vs photometric changes by vary-
ing the hyperparameter μ ∈ R

+. The dot notation is used for infinitesimal step
composition, here writing v · It implies that It is deformed by an infinitesimal
vector field v. As described by Trouvé & Younes in [16,18], the {zt} have to be
the ‘leftovers’ of the transport of It by vt toward the exact registration, as it can
be seen by rewriting Eq. 1 as zt = 1

μ2 (∂tIt − vt · It). This is usually called the
Metamorphic residual image or the momentum.

In order to find the optimal (vt)t∈[0,1] and (zt)t∈[0,1], one can minimize the
exact matching functional [10,13,18] using Eq. 1:

EM (v, z) =
∫ 1

0

‖vt‖2V + ρ‖zt‖2L2
dt, s.t. I1 = J, I0 = I; ρ ∈ R

+, (2)

As shown in [10,18], the geodesic equations for Metamorphosis are:
⎧
⎨

⎩

vt = − ρ
μK � (zt∇It)

∂tzt = − ∇ · (ztvt)
∂tIt = −〈∇It, vt〉 + μzt

(3)

By setting ρ = μ and letting μ → 0, one recovers the geodesic equations for
LDDMM as pointed out in [17,18]. In Eq. 3, ∇·(zv) = div(zv) is the divergence of
the field v times z at each pixel, K is the chosen translation invariant reproducing
kernel (of the RKHS) and � is the convolution. In practice K is often a Gaussian
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blurring kernel [12,17]. The last line of Eq. 3 is the advection term, simulating
the movement of non diffusive material. The second (continuity) equation is a
conservative form which ensures that the amount of deformation is preserved on
the whole domain over time. Thus, given the initial conditions of the system,
I = I0 and z0, one can integrate in time the system of Eq. 3 to obtain I1. Note
that v0 can be computed from z0, making z the only unknown. Furthermore, one
can notice that the energy in Eq. 2 is conserved (i.e.: constant along the geodesic
paths) and therefore the time integrals may be replaced by the norms at time 0.

Here, we propose to solve Metamorphosis as an inexact matching problem.
This allows us to have a unifying cost function (i.e.: Hamiltonian) for both
LDDMM and Metamorphosis:

H(z0) =
1
2
‖I1 − J‖2L2

+ λ
[
‖v0‖2V + ρ‖z0‖2L2

]
(4)

with ‖v0‖2V = 〈z0∇I,K � (z0∇I)〉. The hyperparameters λ and μ define the
amount of total regularization and intensity changes respectively.

Geodesic Shooting Integration. Integration of the geodesics is a crucial
computational point for both LDDMM and Metamorphosis. In the case of image
registration using LDDMM, Beg et al. [5] initially described a method based on
gradient descent which could not retrieve exact geodesics, as shown in [17]. An
actual shooting method was then proposed in [17] for LDDMM based registration
of images. To the best of our knowledge, the only shooting method proposed
in the literature for image Metamorphosis is the one proposed in [13]. It is
based on a Lagrangian frame of reference and therefore it is not well suited for
large images showing complicated deformations, as it could be the case when
registering healthy templates to patients with large tumors. Here, we propose to
use a semi-Lagrangian scheme.

From Eulerian to Semi-lagrangian Formulation. When analysing flows
from ODE and PDE, two concurrent points of view are often discussed.
Lagrangian schemes where one follows the stream of a set of points from ini-
tialisation, and Eulerian schemes where one consider some fixed point in space
(often a grid) and evaluate the changes occurred. Eulerian schemes seem to be
the most natural candidate for flow integration over an image. In fact, in the
Lagrangian schemes the streams of pixels we follow can go far apart during inte-
gration, making impossible the image re-interpolation. However, the Lagrangian
scheme is more numerically stable than the Eulerian one thus allowing a better
convergence [4]. Indeed a necessary condition for proper convergence for Eule-
rian schemes is the Courant–Friedrichs–Lewy (CFL) condition, which defines a
maximum value for the time step. If the time step is badly chosen, ripples may
appear or, worse, the integration may fail (see Fig. 1). The minimal number of
time steps required increases with the size of the image, thus increasing the num-
ber of iterations and making it very slow to use on real imaging data. For these
reasons, the so-called semi-Lagrangian scheme seems to be a good compromise.
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The idea is to compute the deformation of a grid corresponding to a small dis-
placement Id− δt vt, and then interpolate the values of the image It on the grid.
This can be summarized by It+δt ≈ It ◦ (Id − δt vt). Semi-Lagrangian schemes
are more stable and don’t need as many iterations. Too many iterations would
blur the images due to the successive bilinear or trilinear (in 3D) interpolations.

Let’s reformulate Eq. 3 in a semi-Lagrangian formulation, starting by the
advection part [7]. From the Eulerian formulation for the closed domain [0, 1]×Ω,
we can write:

∂tIt + 〈∇It, vt〉 − μzt = ∂tIt +
d∑

i=1

∂xi
I(t, x)vxi

(t, x) − μz(t, x) = 0. (5)

where we use for convenience the notations vt(x) = v(t, x) = (vx1(t, x), · · · ,
vxd

(t, x)), t ∈ [0, 1], x ∈ Ω. We deduce the characteristics defined by the system
of differential equations :

x′
i(t) = vxi

(t, x) + μzt, i ≤ d ∈ N
∗, t ∈ [0, 1]. (6)

Then, we can also rewrite the continuity equation as:

∂tzt + ∇ · (ztvt) = ∂tzt +
d∑

i=1

∂xi
(z(t, x) × vxi

(t, x)) = 0 (7)

= ∂tzt+ < ∇zt, vt > +(∇ · vt)zt = 0 (8)

In the same way, we also extract the characteristics defined by the system of
differential equations:

x′
i(t) = vxi

(t, x) + [∇ · v(t, x)]z(t, x), i ≤ d ∈ N
∗, t ∈ [0, 1]. (9)

Note that by using a semi-Lagrangian scheme for this part we avoid to compute a
discrete approximation of ∇· (ztvt), but still need to compute an approximation
of ∇ · vt. However, the momentum zt, similarly to the image It, is potentially
non smooth, while vt is smooth due to its expression through the convolution
operator K.

In the following Section, we will compare three computational options to
integrate over the geodesics: 1- the Eulerian scheme, 2- the semi-Lagrangian app-
roach and 3- a combination of the two, where we use the semi-Lagragian scheme
for the advection (Eq. 5) and the Eulerian scheme for the residuals (Eq. 9).

3 Results and Conclusions

In Fig. 1, we can observe the lack of stability of Eulerian methods compared
to the semi-Lagrangian ones. Even if the chosen time step is rather small, the
Eulerian scheme produces ripples (in purple in the residuals) and the integration
fails (see the estimated deformation). On the contrary, semi-Lagrangian schemes
converge to a better deformation with an higher time step. It should also be noted
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Fig. 1. Comparison between the stability of the 3 geodesic shootings schemes proposed
for LDDMM. In each row, we show four intermediary shooting steps with the same
initial z0 and RKHS for v. The black and white pictures are the images, with below
the corresponding z. The deformations grids on the right are obtained by integrating
over all vt, ∀t ∈ [0, 1]. Shooting was performed using a z0 obtained from LDDMM
optimisation towards a ‘C’ picture (µ = 0). The Eulerian and semi-Lagrangian schemes
have a time step of 1/38 and 1/20 respectively.
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Fig. 2. Comparison of LDDMM vs Metamorphoses registration. Top-right final defor-
mation grids obtained by integrating over all vector fields (vt)t∈[0,1]. Bottom Rows
Image evolution during the geodesic shootings of the respective method after optimi-
sation with Eq. 4.

that the full semi-Lagrangian scheme (advection and continuity equations) is
perfectly stable without showing ripples as it is the case for the advection-only
semi-Lagrangian scheme.

In Fig. 2 we can see that Metamorphosis and LDDMM describe deformations
in a similar way. As we use the SSD (i.e. L2 norm) as data term, an object in
the source image is matched to another object in the target image only if they
have some pixels in common. For this reason, the C form is not pushed to match
the small disk on the right of the example. In the Metamorphosis deformation
grid we can see that the small disk is growing, as it is less costly to create a
small disk and make it grow. However, the Metamorphic registration, thanks to
the intensities changes modeled by z, manages to correctly take into account the
topological differences between the source and target images.

With the use of automatic differentiation, we bypass the extensive and del-
icate work of deriving the backward adjoint equations and implementing a dis-
crete scheme to solve them. This allowed us to merge LDDMM and Metamor-
phosis into a single framework and to easily test different configurations of the
problem. For this study, we optimized all costs using gradient descent. We also
provide alternative optimization methods, such as L-BFGS, in our library Deme-
ter, which will be regularly updated.
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Abstract. The symplectic Stiefel manifold, denoted by Sp(2p, 2n), is the set of
linear symplectic maps between the standard symplectic spaces R

2p and R
2n.

When p = n, it reduces to the well-known set of 2n × 2n symplectic matrices.
We study the Riemannian geometry of this manifold viewed as a Riemannian
submanifold of the Euclidean space R

2n×2p. The corresponding normal space
and projections onto the tangent and normal spaces are investigated. Moreover,
we consider optimization problems on the symplectic Stiefel manifold. We obtain
the expression of the Riemannian gradient with respect to the Euclidean metric,
which is then used in optimization algorithms. Numerical experiments on the
nearest symplectic matrix problem and the symplectic eigenvalue problem illus-
trate the effectiveness of Euclidean-based algorithms.

Keywords: Symplectic matrix · symplectic Stiefel manifold · Euclidean
metric · Optimization

1 Introduction

Let J2m denote the nonsingular and skew-symmetric matrix
[

0 Im
−Im 0

]
, where Im is the

m × m identity matrix and m is any positive integer. The symplectic Stiefel manifold,
denoted by

Sp(2p, 2n) :=
{
X ∈ R

2n×2p : X�J2nX = J2p

}
,

is a smooth embedded submanifold of the Euclidean spaceR2n×2p (p ≤ n) [11, Propo-
sition 3.1]. We remove the subscript of J2m and Im for simplicity if there is no confu-
sion. This manifold was studied in [11]: it is closed and unbounded; it has dimension
4np − p(2p − 1); when p = n, it reduces to the symplectic group, denoted by Sp(2n).
When X ∈ Sp(2p, 2n), it is termed as a symplectic matrix.

Symplectic matrices are employed in many fields. They are indispensable for find-
ing eigenvalues of (skew-)Hamiltonian matrices [4,5] and for model order reduction of
Hamiltonian systems [8,15]. They appear in Williamson’s theorem and the formulation

This work was supported by the Fonds de la Recherche Scientifique – FNRS and the Fonds
Wetenschappelijk Onderzoek – Vlaanderen under EOS Project no. 30468160.
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of symplectic eigenvalues of symmetric and positive-definite matrices [6,13,16,18].
Moreover, symplectic matrices can be found in the study of optical systems [10] and
the optimal control of quantum symplectic gates [20]. Specifically, some applications
[6,10,15,16,20] can be reformulated as optimization problems on the set of symplectic
matrices where the constraint is indeed the symplectic Stiefel manifold.

In recent decades, most of studies on the symplectic topic focused on the symplec-
tic group (p = n) including geodesics of the symplectic group [9], optimality condi-
tions for optimization problems on the symplectic group [7,14,19], and optimization
algorithms on the symplectic group [10,17]. However, there was less attention to the
geometry of the symplectic Stiefel manifold Sp(2p, 2n). More recently, the Rieman-
nian structure of Sp(2p, 2n) was investigated in [11] by endowing it with a new class of
metrics called canonical-like. This canonical-like metric is different from the standard
Euclidean metric (the Frobenius inner product in the ambient space R2n×2p)

〈X,Y 〉 := tr(X�Y ) for X,Y ∈ R
2n×2p,

where tr( · ) is the trace operator. A priori reasons to investigate the Euclidean metric
on Sp(2p, 2n) are that it is a natural choice, and that there are specific applications with
close links to the Euclidean metric, e.g., the projection onto Sp(2p, 2n) with respect to
the Frobenius norm (also known as the nearest symplectic matrix problem)

min
X∈Sp(2p,2n)

‖X − A‖2F . (1)

Note that this problem does not admit a known closed-form solution for general A ∈
R

2n×2p.
In this paper, we consider the symplectic Stiefel manifold Sp(2p, 2n) as a Rieman-

nian submanifold of the Euclidean space R
2n×2p. Specifically, the normal space and

projections onto the tangent and normal spaces are derived. As an application, we obtain
the Riemannian gradient of any function on Sp(2p, 2n) in the sense of the Euclidean
metric. Numerical experiments on the nearest symplectic matrix problem and the sym-
plectic eigenvalue problem are reported. In addition, numerical comparisons with the
canonical-like metric are also presented. We observe that the Euclidean-based optimiza-
tion methods need fewer iterations than the methods with the canonical-like metric on
the nearest symplectic problem, and Cayley-based methods perform best among all the
choices.

The rest of paper is organized as follows. In Sect. 2, we study the Riemannian geom-
etry of the symplectic Stiefel manifold endowed with the Euclidean metric. This geom-
etry is further applied to optimization problems on the manifold in Sect. 3. Numerical
results are presented in Sect. 4.

2 Geometry of the Riemannian Submanifold Sp(2p, 2n)

In this section, we study the Riemannian geometry of Sp(2p, 2n) equipped with the
Euclidean metric.

Given X ∈ Sp(2p, 2n), let X⊥ ∈ R
2n×(2n−2p) be a full-rank matrix such that

span(X⊥) is the orthogonal complement of span(X). Then the matrix [XJ JX⊥] is
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nonsingular, and every matrix Y ∈ R
2n×2p can be represented as Y = XJW+JX⊥K,

where W ∈ R
2p×2p and K ∈ R

(2n−2p)×2p; see [11, Lemma 3.2]. The tangent space of
Sp(2p, 2n) at X , denoted by TXSp(2p, 2n), is given by [11, Proposition 3.3]

TXSp(2p, 2n) = {XJW + JX⊥K : W ∈ Ssym(2p),K ∈ R
(2n−2p)×2p} (2a)

= {SJX : S ∈ Ssym(2n)}, (2b)

where Ssym(2p) denotes the set of all 2p × 2p real symmetric matrices. These two
expressions can be regarded as different parameterizations of the tangent space.

Now we consider the Euclidean metric. Given any tangent vectors Zi = XJWi +
JX⊥Ki with Wi ∈ Ssym(2p) and Ki ∈ R

(2n−2p)×2p for i = 1, 2, the standard
Euclidean metric is defined as

ge(Z1, Z2) := 〈Z1, Z2〉 = tr(Z�
1 Z2)

= tr(W�
1 J�X�XJW2) + tr(K�

1 X�
⊥X⊥K2)

+ tr(W�
1 J�X�JX⊥K2) + tr(K�

1 X�
⊥J�XJW2).

In contrast with the canonical-like metric proposed in [11]

gρ,X⊥(Z1, Z2) :=
1
ρ

tr(W�
1 W2) + tr(K�

1 K2) with ρ > 0,

ge has cross terms between W and K. Note that ge is also well-defined when it is
extended to R

2n×2p. Then the normal space of Sp(2p, 2n) with respect to ge can be
defined as

(TXSp(2p, 2n))⊥
e :=

{
N ∈ R

2n×2p : ge(N,Z) = 0 for all Z ∈ TXSp(2p, 2n)
}

.

We obtain the following expression of the normal space.

Proposition 1. Given X ∈ Sp(2p, 2n), we have

(TXSp(2p, 2n))⊥
e = {JXΩ : Ω ∈ Sskew(2p)} , (3)

where Sskew(2p) denotes the set of all 2p × 2p real skew-symmetric matrices.

Proof. Given any N = JXΩ with Ω ∈ Sskew(2p), and Z = XJW + JX⊥K ∈
TXSp(2p, 2n) with W ∈ Ssym(2p), we have ge(N,Z) = tr(N�Z) = tr(Ω�W ) = 0,
where the last equality follows from Ω� = −Ω and W� = W . Therefore, it yields
N ∈ (TXSp(2p, 2n))⊥

e . Counting dimensions of TXSp(2p, 2n) and the subspace
{JXΩ : Ω ∈ Sskew(2p)}, i.e., 4np−p(2p−1) and p(2p−1), respectively, the expres-
sion (3) holds. ��

Notice that (TXSp(2p, 2n))⊥
e is different from the normal space with respect to the

canonical-like metric gρ,X⊥ , denoted by (TXSp(2p, 2n))⊥, which has the expression
{XJΩ : Ω ∈ Sskew(2p)}, obtained in [11].

The following proposition provides explicit expressions for the orthogonal projec-
tion onto the tangent and normal spaces with respect to the metric ge, denoted by (PX)e
and (PX)⊥

e , respectively.
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Proposition 2. Given X ∈ Sp(2p, 2n) and Y ∈ R
2n×2p, we have

(PX)e (Y ) = Y − JXΩX,Y , (4)

(PX)⊥
e (Y ) = JXΩX,Y , (5)

where ΩX,Y ∈ Sskew(2p) is the unique solution of the Lyapunov equation with
unknown Ω

X�XΩ + ΩX�X = 2skew(X�J�Y ) (6)

and skew(A) := 1
2 (A − A�) denotes the skew-symmetric part of A.

Proof. For any Y ∈ R
2n×2p, in view of (2a) and (3), it follows that

(PX)e (Y ) = XJWY + JX⊥KY , (PX)⊥
e (Y ) = JXΩ,

with WY ∈ Ssym(2p), KY ∈ R
(2n−2p)×2p and Ω ∈ Sskew(2p). Further, Y can be

represented as

Y = (PX)e (Y ) + (PX)⊥
e (Y ) = XJWY + JX⊥KY + JXΩ.

Multiplying this equation from the left with X�J�, it follows that

X�J�Y = WY + X�XΩ.

Subtracting from this equation its transpose and taking into account that W� = W and
Ω� = −Ω, we get the Lyapunov equation (6) with unknown Ω. Since X�X is sym-
metric positive definite, all its eigenvalues are positive, and, hence, Eq. (6) has a unique
solution ΩX,Y ; see [12, Lemma 7.1.5]. Therefore, the relation (5) holds. Finally, (4)
follows from (PX)e (Y ) = Y − (PX)⊥

e (Y ). ��

X

M

TXM

(TXM)⊥

Y

PX(Y )

P⊥
X(Y )

(a) Canonical-like metric

X

M

TXM

(TXM)⊥e
Y

(PX)e (Y )

(PX)⊥e (Y )

(b) Euclidean metric

Fig. 1. Normal spaces and projections associated with different metrics onM = Sp(2p, 2n)

Figure 1 illustrates the difference of the normal spaces and projections for the
canonical-like metric gρ,X⊥ and the Euclidean metric ge. Note that projections with
respect to the canonical-like metric only require matrix additions and multiplications
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(see [11, Proposition 4.3]) while one has to solve the Lyapunov equation (6) in the
Euclidean case.

The Lyapunov equation (6) can be solved using the Bartels–Stewart method [3].
Observe that the coefficient matrix X�X is symmetric positive definite, and, hence,
it has an eigenvalue decomposition X�X = QΛQ�, where Q ∈ R

2p×2p is orthogo-
nal and Λ = diag(λ1, . . . , λ2p) is diagonal with λi > 0 for i = 1, . . . , 2p. Inserting
this decomposition into (6) and multiplying it from the left and right with Q� and Q,
respectively, we obtain the equation

ΛU + UΛ = R

with R = 2Q�skew(X�JY )Q and unknown U = Q�ΩQ. The entries of U can then
be computed as

uij =
rij

λi + λj
, i, j = 1, . . . , 2p.

Finally, we find Ω = QUQ�. The computational cost for matrix-matrix multiplications
involved to generate (6) is O(np2), and O(p3) for solving this equation.

3 Application to Optimization

In this section, we consider a continuously differentiable real-valued function f on
Sp(2p, 2n) and optimization problems on the manifold.

The Riemannian gradient of f at X ∈ Sp(2p, 2n) with respect to the metric ge,
denoted by gradef(X), is defined as the unique element of TXSp(2p, 2n) that satisfies
the condition ge (gradef(X), Z) = Df̄(X)[Z] for all Z ∈ TXSp(2p, 2n), where f̄ is
a smooth extension of f around X in R

2n×2p, and Df̄(X) denotes the Fréchet deriva-
tive of f̄ at X . Since Sp(2p, 2n) is endowed with the Euclidean metric, the Riemannian
gradient can be readily computed by using [1, Sect. 3.6] as follows.

Proposition 3. The Riemannian gradient of a function f : Sp(2p, 2n) → R with
respect to the Euclidean metric ge has the following form

gradef(X) = (PX)e (∇f̄(X)) = ∇f̄(X) − JXΩX , (7)

where ΩX ∈ Sskew(2p) is the unique solution of the Lyapunov equation with
unknown Ω

X�XΩ + ΩX�X = 2skew
(
X�J�∇f̄(X)

)
,

and ∇f̄(X) denotes the (Euclidean, i.e., classical) gradient of f̄ at X .

In the case of the symplectic group Sp(2n), the Riemannian gradient (7) is equiv-
alent to the formulation in [7], where the minimization problem was treated as a con-
strained optimization problem in the Euclidean space. We notice that ΩX in (7) is actu-
ally the Lagrangian multiplier of the symplectic constraints; see [7].

Expression (7) can be rewritten in the parameterization (2a): it follows from [11,
Lemma 3.2] that

gradef(X) = XJWX + JX⊥KX
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with WX = X�J�gradef(X) and KX =
(
X�

⊥JX⊥
)−1

X�
⊥gradef(X). This suf-

fices to compute the update Xk+1 = RXk

(−tkgradef(Xk)
)
required in [11, Algo-

rithm 1, line 6] in the case that R is the quasi-geodesic retraction [11, Sect. 5.1]

Rqgeo
X (Z) := [X,Z] exp

([−JW JZ�JZ
I2p −JW

])[
I2p

0

]
eJW ,

where Z ∈ TXSp(2p, 2n), W = X�JZ and exp(·) denotes the matrix exponential.
Observe that the quasi-geodesics differ from the Euclidean geodesics; to obtain the
latter, in view of (3), the term Y (t)JΩ in [11, (4.12)] has to be replaced by JY (t)Ω.
If R is instead chosen as the Cayley retraction [11, Definition 5.2]

Rcay
X (Z) :=

(
I − 1

2
SX,ZJ

)−1 (
I +

1
2
SX,ZJ

)
X,

where SX,Z = GXZ(XJ)� + XJ(GXZ)� and GX = I − 1
2XJX�J�, then it is

essential to rewrite (7) in the parameterization (2b) with S in a factorized form as in [11,
Proposition 5.4]. To this end, observe that (7) is its own tangent projection and use the
tangent projection formula of [11, Proposition 4.3] to obtain

gradef(X) = SXJX

with SX = GXgradef(X)(XJ)� + XJ(GXgradef(X))� and GX = I −
1
2XJX�J�.

4 Numerical Experiments

In this section, we adopt the Riemannian gradient (7) and numerically compare the per-
formance of optimization algorithms with respect to the Euclidean metric. All experi-
ments are performed on a laptop with 2.7GHz Dual-Core Intel i5 processor and 8GB
of RAM running MATLAB R2016b under macOS 10.15.2. The code that produces the
result is available from https://github.com/opt-gaobin/spopt.

First, we consider the optimization problem (1). We compare gradient-descent algo-
rithms proposed in [11] with different metrics (Euclidean and canonical-like, denoted
by “-E” and “-C”) and retractions (quasi-geodesics and Cayley transform, denoted by
“Geo” and “Cay”). The canonical-like metric has two formulations, denoted by “-I” and
“-II”, based on different choices of X⊥. Hence, there are six methods involved. The
problem generation and parameter settings are in parallel with ones in [11]. The numer-
ical results are presented in Fig. 2. Notice that the algorithms that use the Euclidean
metric are considerably superior in the sense of the number of iterations. Hence, in this
problem the Euclidean metric may be more suitable than other metrics. However, due to
their lower computational cost per iteration, algorithms with canonical-like-based Cay-
ley retraction perform best with respect to time among all tested methods, and Cayley-
based methods always outperform quasi-geodesics in each setting.

The second example is the symplectic eigenvalue problem. We compute the small-
est symplectic eigenvalues and eigenvectors of symmetric positive-definite matrices in

https://github.com/opt-gaobin/spopt
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Fig. 2.A comparison of gradient-descent algorithms with different metrics and retractions. Recall
that gradf differs between the “E” and “C” methods, which explains why they do not have the
same initial value.

the sense of Williamson’s theorem; see [16]. According to the performance in Fig. 2,
we consider “Cay-E” and “Cay-C-I” as representative methods. The problem genera-
tion and default settings can be found in [16]. Note that the synthetic data matrix has
five smallest symplectic eigenvalues 1, 2, 3, 4, 5. In Table 1, we list the computed sym-
plectic eigenvalues d1, . . . , d5 and 1-norm errors defined as

∑5
i=1 |di − i|. The results

illustrate that our methods are comparable with the structure-preserving eigensolver
“symplLanczos” based on a Lanczos procedure [2].

Table 1. Five smallest symplectic eigenvalues of a 1000 × 1000 matrix computed by different
methods

symplLanczos Cay-E Cay-C-I

0.999999999999997 1.000000000000000 0.999999999999992

2.000000000000010 2.000000000000010 2.000000000000010

3.000000000000014 2.999999999999995 3.000000000000008

4.000000000000004 3.999999999999988 3.999999999999993

5.000000000000016 4.999999999999996 4.999999999999996

Errors 4.75e−14 3.11e−14 3.70e−14
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Abstract. We prove that all f -divergences between univariate Cauchy
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Cauchy distributions.
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1 Introduction

Let R, R+ and R
∗
+ denote the sets of real numbers, non-negative real num-

bers, and positive real numbers, respectively. The probability density function
of a Cauchy distribution with location parameter l ∈ R and scale parameter
s ∈ R++ is pl,s(x) := 1

πs
(
1+( x−l

s )2
) , x ∈ R The space of Cauchy distributions

form a location-scale family: C =
{
pl,s(x) := 1

sp
(

x−l
s

)
: (l, s) ∈ R × R++

}
,

with standard density p(x) := p0,1(x) = 1
π(1+x2) . To measure the dissimilar-

ity between two continuous probability distributions P and Q, we consider
the class of statistical f -divergences [2,10] between their corresponding prob-
ability densities functions p(x) and q(x) assumed to be strictly positive on R:
If (p : q) :=

∫
R

p(x)f
(

q(x)
p(x)

)
dx, where f(u) is a convex function on (0,∞),

strictly convex at u = 1, and satisfying f(1) = 0 so that by Jensen’s inequal-
ity, we have If (p : q) ≥ f(1) = 0. The Kullback-Leibler divergence (KLD
also called relative entropy) is a f -divergence obtained for fKL(u) = − log u.
In general, the f -divergences are oriented dissimilarities: If (p : q) �= If (q : p)
(e.g., the KLD). The reverse f -divergence If (q : p) can be obtained as a for-
ward f -divergence for the conjugate function f∗(u) := uf

(
1
u

)
(convex with

f∗(1) = 0): If (q : p) = If∗(p : q). In general, calculating the definite integrals

The second author was supported by JSPS KAKENHI 19K14549. Further results are
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of f -divergences is non trivial: For example, the formula for the KLD between
Cauchy densities was only recently obtained [1]:

DKL(pl1,s1 : pl2,s2) := IfKL(p : q) =
∫

pl1,s1(x) log
pl1,s1(x)
pl2,s2(x)

dx,

= log

(
(s1 + s2)

2 + (l1 − l2)
2

4s1s2

)

.

Let λ = (λ1 = l, λ2 = s). We can rewrite the KLD formula as

DKL(pλ1 : pλ2) = log
(

1 +
1
2
χ(λ1, λ2)

)
, (1)

where χ(λ, λ′) := (λ1−λ′
1)

2+(λ2−λ′
2)

2

2λ2λ′
2

. We observe that the KLD between Cauchy
distributions is symmetric: DKL(pl1,s1 : pl2,s2) = DKL(pl2,s2 : pl1,s1). Let DN

χ (p :

q) :=
∫ (p(x)−q(x))2

q(x) dx and DP
χ (p : q) :=

∫ (p(x)−q(x))2

p(x) dx denote the Neyman and
Pearson chi-squared divergences between densities p(x) and q(x), respectively.
These divergences are f -divergences [10] for the generators fP

χ (u) = (u−1)2 and
fN

χ (u) = 1
u (u − 1)2, respectively. Both the Neyman and Pearson χ2-divergences

between Cauchy densities are symmetric [8]: Dχ(pλ1 : pλ2) := DN
χ (pλ1 : pλ2) =

DP
χ (pλ1 : pλ2) = χ(λ1, λ2), hence the naming of the function χ(·, ·). Notice that

χ(·, ·) is a conformal squared Euclidean divergence [12].
In this work, we first give a simple proof of the KLD formula of Eq. 1 based

on complex analysis in Sect. 3.1. Then we prove that all f -divergences between
univariate Cauchy distributions are symmetric (Theorem 1) and can be expressed
as scalar functions of the chi-squared divergence (Theorem 2) in Sect. 3. This
property holds only for the univariate case as we report in Sect. 4 an example
of bivariate Cauchy distributions for which the KLD is asymmetric. Let us start
by recalling the hyperbolic Fisher-Rao geometry of location-scale families.

2 Information Geometry of Location-Scale Families

The Fisher information matrix [6,8] of a location-scale family with continuously

differentiable standard density p(x) on full support R is I(λ) = 1
s2

[
a2 c
c b2

]
, where

a2 = Ep

[(
p′(x)
p(x)

)2
]
, b2 = Ep

[(
1 + xp′(x)

p(x)

)2
]

and c = Ep

[
p′(x)
p(x)

(
1 + xp′(x)

p(x)

)]
.

When the standard density is even (i.e., p(x) = p(−x)), we get a diagonal Fisher
matrix that can be reparameterized with θ(λ) =

(
a
b λ1, λ2

)
so that the Fisher

matrix with respect to θ becomes b2

θ2
2

[
1 0
0 1

]
. It follows that the Fisher-Rao geome-

try is hyperbolic with curvature κ = − 1
b2 < 0, and that the Fisher-Rao distance is

ρp(λ1, λ2) = b ρU

((
a
b l1, s1

)
,
(

a
b l2, s2

))
where ρU (θ1, θ2) = arccosh (1 + χ(θ1, θ2))

where arccosh(u) = log(u +
√

u2 − 1) for u > 1. For the Cauchy family,
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we have a2 = b2 = 1
2 (κ = − 1

b2 = −2), and the Fisher-Rao distance is
ρFR(pλ1 : pλ2) = 1√

2
arccosh(1 + χ(λ1, λ2)). Notice that if we let θ = l + is ∈ C

then the metric in the complex upper plane H is |dθ|2
Im(θ)2 where |x+iy| =

√
x2 + y2

denotes the complex modulus, and θ ∈ H := {x + iy : x ∈ R, y ∈ R++}.

3 f-divergences Between Univariate Cauchy
Distributions

Consider the location-scale non-abelian group LS(2) which can be represented
as a matrix group [9]. A group element gl,s is represented by a matrix element

Ml,s =
[

s l
0 1

]
for (l, s) ∈ R × R++. The group operation gl12,s12 = gl1,s1 × gl2,s2

corresponds to a matrix multiplication Ml12,s12 = Ml1,s1 × Ml2,s2 (with the

group identity element g0,1 being the matrix identity I =
[

1 0
0 1

]
). A location-

scale family is defined by the action of the location-group on a standard den-
sity p(x) = p0,1(x). That is, density pl,s(x) = gl,s.p(x), where ‘.’ denotes the
group action. We have the following invariance for the f -divergences between
any two densities of a location-scale family [9] (including the Cauchy fam-
ily): If (g.pl1,s1 : g.pl2,s2) = If (pl1,s1 : pl2,s2),∀g ∈ LS(2). Thus we have

If (pl1,s1 : pl2,s2) = If

(
p : p l2−l1

s1
,
s2
s1

)
= If

(
p l1−l2

s2
,
s1
s2

: p

)
. Therefore, we may

always consider the calculation of the f -divergence between the standard den-
sity and another density of the location-scale family. For example, we check that
χ((l1, s1), (l2, s2)) = χ

(
(0, 1),

(
l2−l1

s1
, s2

s1

))
since χ((0, 1), (l, s)) = (s−1)2+l2

2s . If

we assume that the standard density p is such that Ep[X] =
∫

xp(x)dx = 0
and Ep[X2] =

∫
x2p(x)dx = 1 (hence, X of unit variance), then the ran-

dom variable Y = μ + σX has mean E[Y ] = μ and standard deviation
σ(Y ) =

√
E[(Y − μ)2] = σ. However, the expectation and variance of Cauchy

distributions are not defined, hence we preferred the (l, s) parameterization over
the (μ, σ2) parameterization. For the Cauchy location-scale family [5], parameter
l is also called the median, and parameter s the probable error.

3.1 Revisiting the KLD Between Cauchy Densities

Let us give a simple proof of Eq. 1 (first proven in [1])

Proof.

DKL(pl1,s1 : pl2,s2) =
s1
π

∫

R

log((z − l2)2 + s22)
(z − l1)2 + s21

dz

− s1
π

∫

R

log((z − l1)2 + s21)
(z − l1)2 + s21

dz + log
s1
s2

. (2)
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As a function of z, log(z−l2+is2)
z−l1+is1

is holomorphic on the upper-half plane {x +
yi : y > 0}. By the Cauchy integral formula [7], we have that for sufficiently
large R,

1
2πi

∫

C+
R

log(z − l2 + is2)
(z − l1)2 + s21

dz =
log(l1 − l2 + i(s2 + s1))

2s1i
,

where C+
R := {z : |z| = R, Im(z) > 0} ∪ {z : Im(z) = 0, |Re(z)| ≤ R}.

Hence, by R → +∞, we get

s1
π

∫

R

log(z − l2 + is2)
(z − l1)2 + s21

dz = log(l1 − l2 + i(s2 + s1)). (3)

As a function of z, log(z−l2−is2)
z−l1−is1

is holomorphic on the lower-half plane {x+yi :
y < 0}. By the Cauchy integral formula again, we have that for sufficiently large
R,

1
2πi

∫

C−
R

log(z − l2 − is2)
(z − l1)2 + s21

dz =
log(l1 − l2 − i(s2 + s1))

−2s1i
,

where C−
R := {z : |z| = R, Im(z) < 0} ∪ {z : Im(z) = 0, |Re(z)| ≤ R}.

Hence, by R → +∞, we get

s1
π

∫

R

log(z − l2 − is2)
(z − l1)2 + s21

dz = log(l1 − l2 − i(s2 + s1)). (4)

By Eq. 3 and Eq. 4, we have that

s1
π

∫

R

log((z − l2)2 + s22)
(z − l1)2 + s21

dz = log
(
(l1 − l2)2 + (s1 + s2)2

)
. (5)

In the same manner, we have that

s1
π

∫

R

log((z − l1)2 + s21)
(z − l1)2 + s21

dz = log(4s21). (6)

By substituting Eq. 5 and Eq. 6 into Eq. 2, we obtain the formula Eq. 1.

3.2 f-divergences Between Cauchy Distributions are Symmetric

Let ‖λ‖ =
√

λ2
1 + λ2

2 denote the Euclidean norm of a 2D vector λ ∈ R
2. We

state the main theorem:

Theorem 1. All f-divergences between univariate Cauchy distributions pλ and
pλ′ with λ = (l, s) and λ′ = (l′, s′) are symmetric and can be expressed as
If (pλ : pλ′) = hf (χ(λ, λ′)) where χ(λ, λ′) := ‖λ−λ′‖2

2λ2λ′
2

and hf : R+ → R+ is a
scalar function.
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The proof does not always yield explicit closed-form formula for the f -
divergences as it can be in general difficult to obtain hf (e.g., α-divergences),
and relies on McCullagh’s complex parametrization [5] pθ of the parameter of
the Cauchy density pl,s with θ = l + is:

pθ(x) =
Im(θ)

π|x − θ|2 .

We make use of the special linear group SL(2,R) for θ the complex parameter:

SL(2,R) :=
{[

a b
c d

]
: a, b, c, d ∈ R, ad − bc = 1

}
. Let A.θ := aθ+b

cθ+d (real linear

fractional transformations) be the action of A =
[

a b
c d

]
∈ SL(2,R). McCullagh

proved that if X ∼ Cauchy(θ) then A.X ∼ Cauchy (A.θ). We can also define an
action of SL(2,R) to the real line R by x → ax+b

cx+d , x ∈ R, where we interpret
−d

c → a
c if c �= 0. We remark that d �= 0 if c = 0. This map is bijective on R. We

have the following invariance:

Lemma 1 (Invariance of Cauchy f-divergence under SL(2,R)). For any
A ∈ SL(2,R) and θ ∈ H, we have If (pA.θ1 : pA.θ2) = If (pθ1 : pθ2).

Proof. We prove the invariance by the change of variable in the integral. Let
D(θ1 : θ2) := If (pθ1 : pθ2). We have

D(A.θ1 : A.θ2) =
∫

R

Im(A.θ1)
|x − A.θ1|2 f

(
Im(A.θ2)|x − A.θ1|2
Im(A.θ1)|x − A.θ2|2

)
dx.

Since A ∈ SL(2,R), we have Im(A.θi) = Im(θi)
|cθi+d|2 , i ∈ {1, 2}.

If x = A.y, then, dx = dy
|cy+d|2 , and, |A.y − A.θi|2 = |y−θi|2

|cy+d|2|cθi+d|2 , i ∈
{1, 2}. Hence we get:

∫
R

f

(
Im(A.θ2)|x − A.θ1|2
Im(A.θ1)|x − A.θ2|2

)
Im(A.θ2)

|x − A.θ1|1 dx =

∫
R

f

(
Im(θ2)|y − θ1|2
Im(θ1)|y − θ2|2

)
Im(θ2)

|y − θ2|2 dy.

We now prove Theorem 1 using the notion of maximal invariants of Eaton [3]
(Chapter 2) that will be discussed in Sect. 3.3.

Let us rewrite the function χ with complex arguments as:

χ(z, w) :=
|z − w|2

2Im(z)Im(w)
, z, w ∈ C. (7)

Proposition 1 (McCullagh [5]). The function χ defined in Eq. 7 is a maxi-
mal invariant for the action of the special linear group SL(2,R) to H×H defined
by

A.(z, w) :=
(

az + b

cz + d
,
aw + b

cw + d

)
, A =

[
a b
c d

]
∈ SL(2,R), z, w ∈ H.

That is, we have χ(A.z,A.w) = χ(z, w), A ∈ SL(2,R), z, w ∈ H, and it holds
that for every z, w, z′, w′ ∈ H satisfying that χ(z′, w′) = χ(z, w), there exists
A ∈ SL(2,R) such that (A.z,A.w) = (z′, w′).
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By Lemma 1 and Theorem 2.3 of [3], there exists a unique function hf :
[0,∞) → [0,∞) such that hf (χ(z, w)) = D(z, w) for all z, w ∈ H.

Theorem 2. Any f-divergence between two univariate Cauchy densities is sym-
metric and can be expressed as a function of the chi-squared divergence:

If (pθ1 : pθ2) = If (pθ2 : pθ1) = hf (χ(θ1, θ1)), θ1, θ2 ∈ H. (8)

Thus all f -divergences between univariate Cauchy densities are symmetric. For
example, we have hKL(u) = log(1 + 1

2u). When the function hf is not explic-
itly known, we may estimate the f -divergences using Monte Carlo importance
samplings [9].

3.3 Maximal Invariants (Proof of Proposition 1)

Proof. First, let us show that

Lemma 2. For every (z, w) ∈ H
2, there exist λ ≥ 1 and A ∈ SL(2,R) such that

(A.z,A.w) = (λi, i).

Proof. Since the special orthogonal group SO(2,R) is the isotropy subgroup of
SL(2,R) for i and the action is transitive, it suffices to show that for every z ∈ H

there exist λ ≥ 1 and A ∈ SO(2,R) such that λi = A.z.

Since we have that for every λ > 0,
[

0 −1
1 0

]
.λi = i

λ , it suffices to show that

for every z ∈ H there exist λ > 0 and A ∈ SO(2,R) such that λi = A.z.
We have that

[
cos θ − sin θ
sin θ cos θ

]
.z =

|z|2−1
2 sin 2θ + Re(z) cos 2θ + iIm(z)

|z sin θ + cos θ|2 ,

Therefore for some θ, we have |z|2−1
2 sin 2θ + Re(z) cos 2θ = 0.

By this lemma, we have that for some λ, λ′ ≥ 1 and A,A′ ∈ SL(2,R),

(λi, i) = (A.z,A.w), (λ′i, i) = (A′.z′, A′.w′),

F (z, w) = F (λi, i) = (λ−1)2

4λ = 1
4

(
λ + 1

λ − 2
)
, and F (z′, w′) = F (λ′i, i) =

(λ′−1)2

4λ′ = 1
4 (λ′ + 1

λ′ − 2).
If F (z′, w′) = F (z, w), then, λ = λ′ and hence (A.z,A.w) = (A′.z′, A′.w′).

4 Asymmetric KLD Between Multivariate Cauchy
Distributions

This section bears a natural question about minimal conditions for symmetry.
The probability density function of a d-dimensional Cauchy distribution with
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parameters μ ∈ R
d and Σ be a d × d positive-definite symmetric matrix is

defined by:

pμ,Σ(x) :=
Cd

(det Σ)1/2

(
1 + (x − μ)′

Σ−1 (x − μ)
)−(d+1)/2

, x ∈ R
d,

where Cd is a normalizing constant. Contrary to the univariate Cauchy distri-
bution, we have the following:

Proposition 2. There exist two bivariate Cauchy densities pμ1,Σ1 and pμ2,Σ2

such that DKL (pμ1,Σ1 : pμ2,Σ2) �= DKL (pμ2,Σ2 : pμ1,Σ1).

Proof. We let d = 2. By the change of variable in the integral [9], we have

DKL (pμ1,Σ1 : pμ2,Σ2) = DKL

(
p0,I2 : p

Σ
−1/2
1 (μ2−μ1),Σ

−1/2
1 Σ2Σ

−1/2
1

)
,

where I2 denotes the unit 2 × 2 matrix.

Let μ1 = 0, Σ1 = I2, μ2 = (0, 1)�, Σ2 =
[

n 0
0 1

n

]
, where n is a natural number.

We will show that DKL (pμ1,Σ1 : pμ2,Σ2) �= DKL (pμ2,Σ2 : pμ1,Σ1) for sufficiently
large n. Then,

DKL (pμ1,Σ1 : pμ2,Σ2) =
3C2

2

∫

R2

log(1 + x2
1/n + nx2

2) − log(1 + x2
1 + x2

2)
(1 + x2

1 + x2
2)3/2

dx1dx2

and

DKL

(
pμ2,Σ2 : pμ1,Σ1

)
= DKL

(
p0,I2 : p−Σ

−1/2
1 μ1,Σ−1

1

)
,

=
3C2

2

∫

R2

log(1 + x2
1/n+ n(x2 +

√
n)2) − log(1 + x2

1 + x2
2)

(1 + x2
1 + x2

2)
3/2

dx1dx2.

Hence it suffices to show that
∫

R2

log(1 + x2
1/n + n(x2 +

√
n)2) − log(1 + x2

1/n + nx2
2)

(1 + x2
1 + x2

2)3/2
dx1dx2 �= 0

for some n. Since log(1 + x) ≤ x, it suffices to show that
∫

R2

−n2 + n − 2x2(n +
√

n)
(1 + x2

1 + x2
2)3/2(1 + x2

1/n + n(x2 +
√

n)2)
dx1dx2 < 0

for some n. We see that
∫

R2

2|x2|(n +
√

n)
(1 + x2

1 + x2
2)3/2(1 + x2

1/n + n(x2 +
√

n)2)
dx1dx2,

≤ 4n

∫ |x2|
(1 + x2

1 + x2
2)3/2(1 + x2

1/n + n(x2 +
√

n)2)
dx1dx2.
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We have that

n

∫

|x2+
√

n|>n1/3

|x2|
(1 + x2

1 + x2
2)3/2(1 + x2

1/n + n(x2 +
√

n)2)
dx1dx2,

≤
∫

|x2+
√

n|>n1/3

|x2|
(1 + x2

1 + x2
2)3/2(x2 +

√
n)2

dx1dx2.

We have that lim supn→∞ supx;|x+√
n|>n1/3

|x|
(x+

√
n)2

= 0.
Hence,

lim sup
n→∞

n

∫

|x2+
√

n|>n1/3

|x2|
(1 + x2

1 + x2
2)3/2(1 + x2

1/n + n(x2 +
√

n)2)
dx1dx2 = 0.

It holds that

lim inf
n→∞

∫

|x2+
√

n|>n1/3

n2 − n

(1 + x2
1 + x2

2)3/2(1 + x2
1/n + n(x2 +

√
n)2)

dx1dx2

≥ lim inf
n→∞

∫

x2
1+x2

2≤1

n2 − n

(1 + x2
1 + x2

2)3/2(1 + x2
1 + 2n(x2

2 + n))
dx1dx2

≥ 1
2

∫

x2
1+x2

2≤1

1
(1 + x2

1 + x2
2)3/2

dx1dx2 > 0,

where we have used the fact that {x2
1 + x2

2 ≤ 1} ⊂ {|x2 +
√

n| > n1/3} for large
n in the first inequality, and Fatou’s lemma [4] (p. 93) in the second inequality.

Hence,

lim inf
n→∞

∫

|x2+
√

n|>n1/3

n2 − n − 4|x2|n
(1 + x2

1 + x2
2)3/2(1 + x2

1/n + n(x2 +
√

n)2)
dx1dx2

≥ 1
2

∫

x2
1+x2

2≤1

1
(1 + x2

1 + x2
2)3/2

dx1dx2 > 0.

We have that for large n,
∫

|x2+
√

n|≤n1/3

n2 − n − 4|x2|n
(1 + x2

1 + x2
2)3/2(1 + x2

1/n + n(x2 +
√

n)2)
dx1dx2 ≥ 0.

Thus we have that

lim inf
n→∞

∫

R2

n2 − n − 4|x2|n
(1 + x2

1 + x2
2)3/2(1 + x2

1/n + n(x2 +
√

n)2)
dx1dx2 > 0.
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Abstract. We formulate closed-form Hessian distances of information
entropies in one-dimensional probability density space embedded with
the L2-Wasserstein metric. Some analytical examples are provided.

Keywords: Optimal transport · Information geometry · Hessian
distances

1 Introduction

Hessian distances of information entropies in probability density space play cru-
cial roles in information theory with applications in signal and image processing,
inverse problems, and AI [1,6,7]. One important example is the Hellinger dis-
tance [1,2,13,16], known as a Hessian distance of negative Boltzmann-Shannon
entropy in L2 (Euclidean) space. Nowadays, the Hellinger distance has shown
various useful properties in statistical and AI inference problems.

Recently, optimal transport distance, a.k.a. Wasserstein distance1, provides
another type of distance functions in probability density space [3,15]. Unlike the
L2 distance, the Wasserstein distance compares probability densities by their
pushforward mapping functions. More importantly, it introduces a metric space
under which the information entropies present convexity properties in term of
mapping functions. These properties nowadays have been shown useful in fluid
dynamics, inverse problems and AI [5,8,14].

Nowadays, one can show that the optimal transport distance itself is a Hes-
sian distance of a second moment functional in Wasserstein space [11]. Natural
questions arise. Can we construct Hessian distances of information entropies in
Wasserstein space? And what is the Hessian distance of negative Boltzmann-
Shannon entropy in Wasserstein space?

In this paper, we derive closed-form Hessian distances of information
entropies in Wasserstein space supported on a one dimensional sample space.
In details, given a closed and bounded set Ω ⊂ R

1, consider a (negative) f -
entropy by

F(p) =
∫

Ω

f(p(x))dx,

1 There are various generalizations of optimal transport distances using different
ground costs defined on a sample space. For the simplicity of discussion, we focus
on the L2-Wasserstein distance.

c© Springer Nature Switzerland AG 2021
F. Nielsen and F. Barbaresco (Eds.): GSI 2021, LNCS 12829, pp. 808–817, 2021.
https://doi.org/10.1007/978-3-030-80209-7_87

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80209-7_87&domain=pdf
https://doi.org/10.1007/978-3-030-80209-7_87
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where f : R → R is a second differentiable convex function and p is a given
probability density function. We show that the Hessian distance of f -entropy in
Wasserstein space between probability density functions p and q satisfies

DistH(p, q) =

√∫ 1

0

h(∇yF−1
p (y)) − h(∇yF−1

q (y))|2dy,

where h(y) =
∫ y

1

√
f ′′( 1z ) 1

z
3
2
dz, Fp, Fq are cumulative density functions (CDFs)

of p, q respectively, and F−1
p , F−1

q are their inverse CDFs. We call DistH(p, q)
transport information Hessian distances. Shortly, we show that the proposed
distances are constructed by the Jacobian operators (derivatives) of mapping
functions between density functions p and q.

This paper is organized as follows. In Sect. 2, we briefly review the Wasser-
stein space and its Hessian operators for information entropies. In Sect. 3, we
derive closed-form solutions of Hessian distances in Wasserstein space. Several
analytical examples are presented in Sect. 4.

2 Review of Transport Information Hessian Metric

In this section, we briefly review the Wasserstein space and its induced Hessian
metrics for information entropies.

2.1 Wasserstein Space

We recall the definition of a one dimensional Wasserstein distance [3]. Denote
a spatial domain by Ω = [0, 1] ⊂ R

1. We remark that one dimensional sample
space has an independent interest since it applies to univariate (one-variable)
statistical problems.

Consider the space of smooth positive probability densities by

P(Ω) =
{

p(x) ∈ C∞(Ω) :
∫

Ω

p(x)dx = 1, p(x) > 0
}

.

Given any two probability densities p, q ∈ P(Ω), the squared Wasserstein dis-
tance in Ω is defined by

DistT(p, q)2 =
∫

Ω

|T (x) − x|2q(x)dx,

where | · | represents a Euclidean norm and T is a monotone transport mapping
function such that T#q(x) = p(x), i.e.

p(T (x))∇xT (x) = q(x).

Since Ω ⊂ R
1, then the mapping function T can be solved analytically. Con-

cretely,
T (x) = F−1

p (Fq(x)),
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where F−1
p , F−1

q are inverse CDFs of probability densities p, q, respectively.
Equivalently,

DistT(p, q)2 =
∫

Ω

|F−1
p (Fq(x)) − x|2q(x)dx

=
∫ 1

0

F−1
p (y) − F−1

q (y)|2dy,

where we apply the change of variable y = Fq(x) ∈ [0, 1] in the second equality.
There is also a metric formulation for the L2-Wasserstein distance. Denote

the tangent space of P(Ω) at a probability density p by

TpP(Ω) =
{

σ ∈ C∞(Ω) :
∫

Ω

σ(x)dx = 0
}

.

The L2-Wasserstein metric refers to the following bilinear form:

gT(p)(σ, σ) =
∫

Ω

(∇xΦ(x),∇xΦ(x))p(x)dx,

where Φ, σ ∈ C∞(Ω) satisfy an elliptical equation

σ(x) = −∇x · (p(x)∇xΦ(x)), (1)

with either Neumann or periodic boundary conditions on Ω. Here, the above
mentioned boundary conditions ensure the fact that σ stays in the tangent space
of probability density space, i.e.

∫
Ω

σ(x)dx = 0. As a known fact, the Wasserstein
metric can be derived from a Taylor expansion of the Wasserstein distance. i.e.,

DistT(p, p + σ)2 = gT(σ, σ) + o(|σ|2L2),

where σ ∈ TpP(Ω) and | · |L2 represents the L2 norm. In literature, (P(Ω), gT)
is often called the Wasserstein space.

2.2 Hessian Metrics in Wasserstein Space

We next review the Hessian operator of f -entropies in Wasserstein space [15].
Consider a (negative) f -entropy by

F(p) =
∫

Ω

f(p(x))dx,

where f : R → R is a one dimensional second order differentiable convex function.
The Hessian operator of f -entropy in one dimensional Wasserstein space is a
bilinear form satisfying

HessTF(p)(σ, σ) =
∫

Ω

|∇2
xΦ(x)|2f ′′(p(x))p(x)2dx.

where f ′′ represents the second derivative of function f and (Φ, σ) satisfies an
elliptic equation (1).
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In this paper, we seek closed-form solutions for transport Hessian (pseudo)
distances of F . Here, the Hessian distances of entropies are of interests in mathe-
matical physics equations and AI inference problems [4,11]. They generalize the
optimal transport distances by using the Hessian operator of entropies. Here we
aim to solve an action functional in (P(Ω),HessTF).
Definition 1 (Transport information Hessian distance [11]). Define a dis-
tance function DistH : P(Ω) × P(Ω) → R by

DistH(p, q)2 = inf
p : [0,1]×Ω→R

{ ∫ 1

0
HessTF(p)(∂tp, ∂tp)dt : p(0, x) = q(x), p(1, x) = p(x)

}
.

(2)
Here the infimum is taken among all smooth density paths p : [0, 1] × Ω → R,

which connects both initial and terminal time probability density functions q,
p ∈ P(Ω).

From now on, we call DistH the transport information Hessian distance. Here the
terminology of “transport” corresponds to the application of Wasserstein space,
while the name of “information” refers to the usage of f -entropies.

3 Transport Information Hessian Distances

In this section, we present the main result of this paper.

3.1 Formulations

We first derive closed-form solutions for transport information Hessian distances
defined by (2).

Theorem 1. Denote a one dimensional function h : Ω → R by

h(y) =
∫ y

1

√
f ′′(

1
z
)

1
z

3
2
dz.

Then the squared transport Hessian distance of f-entropy has the following for-
mulations.

(i) Inverse CDF formulation:

DistH(p, q)2 =
∫ 1

0

|h(∇yF−1
p (y)) − h(∇yF−1

q (y))|2dy.

(ii) Mapping formulation:

DistH(p, q)2 =
∫

Ω

|h(
∇xT (x)

q(x)
) − h(

1
q(x)

)|2q(x)dx,

where T is a mapping function, such that T#q = p and T (x) = F−1
p (Fq(x)).

Equivalently,

DistH(p, q)2 =
∫

Ω

|h(
∇xT−1(x)

p(x)
) − h(

1
p(x)

)|2p(x)dx,
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where T−1 is the inverse function of mapping function T , such that
(T−1)#p = q and T−1(x) = F−1

q (Fp(x)).

Proof. We first derive formulation (i). To do so, we consider the following two
set of change of variables. First, denote p0(x) = q(x) and p1(x) = p(x). Denote
the variational problem (2) by

DistH(p0, p1)2 = inf
Φ,p : [0,1]×Ω→R

{ ∫ 1

0

∫

Ω
|∇2

yΦ(t, y)|2f ′′(p(t, y))p(t, y)2dydt :

∂tp(t, y) + ∇ · (p(t, y)∇yΦ(t, y)) = 0, fixed p0, p1
}

,

where the infimum is among all smooth density paths p : [0, 1]×Ω → R satisfying
the continuity equation with gradient drift vector fields ∇Φ : [0, 1] × Ω → R.
Denote a monotone mapping function T : [0, 1] × Ω → Ω by

y = T (t, x).

Denote the vector field function v : [0, 1] × Ω → Ω by

∂tT (t, x) = v(t, T (t, x)) = ∇yΦ(t, y).

Hence

DistH(p
0
, p

1
)
2
= inf

T : [0,1]×Ω→Ω

{ ∫ 1

0

∫

Ω

|∇yv(t, T (t, x))|2f
′′
(p(t, T (t, x)))p(t, T (t, x))

2
dT (t, x)dt :

T (t, ·)#p(0, x) = p(t, x)
}

,

where the infimum is taken among all smooth monotone transport mapping
functions T : [0, 1] × Ω → Ω with T (0, x) = x and T (1, x) = T (x). We observe
that the above variation problem leads to

∫ 1

0

∫
Ω

|∇y∂tT (t, x)|2f ′′(p(t, T (t, x)))p(t, T (t, x))2∇xT (t, x)dxdt

=
∫ 1

0

∫
Ω

|∇x∂tT (t, x)
dx

dy
|2f ′′(p(t, T (t, x)))p(t, T (t, x))2∇xT (t, x)dxdt

=
∫ 1

0

∫
Ω

|∇x∂tT (t, x)
1

∇xT (t, x)
|2f ′′(

p(0, x)
∇xT (t, x)

)
p(0, x)2

∇xT (t, x)
dxdt

=
∫ 1

0

∫
Ω

|∂t∇xT (t, x)
1

(∇xT (t, x))3/2

√
f ′′(

q(x)
∇xT (t, x)

)|2q(x)2dxdt.

(3)

Second, denote y = Fq(x), where y ∈ [0, 1]. By using a chain rule for
T (t, ·)#q(x) = pt with pt := p(t, x), we have

q(x) =
dy

dx
=

1
dx
dy

=
1

∇yF−1
q (y)

,
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and

∇xT (t, x) = ∇xF−1
pt

(Fq(x)) = ∇yF−1
pt

(y)
dy

dx
=

∇yF−1
pt

(y)

∇yF−1
q (y)

.

Under the above change of variables, variation problem (3) leads to

DistH(p
0
, p

1
)
2
= inf

∇yF
−1
pt

: [0,1]2→R

{ ∫ 1

0

∫ 1

0
|∂t∇yF

−1
pt

(y)
1

(∇yF −1
pt (y))

3
2

√
f ′′(

1

∇yF −1
pt (y)

)|2dydt
}

= inf
∇yF

−1
pt

: [0,1]2→R

{ ∫ 1

0

∫ 1

0
|∂th(∇yF

−1
pt

(y))|2dydt
}

,

(4)

where the infimum is taken among all paths ∇yF−1
pt

: [0, 1]2 → R with fixed
initial and terminal time conditions. Here we apply the fact that

∇yh(y) =
√

f ′′(
1
y
)

1
y

3
2
,

and treat ∇yF−1
pt

as an individual variable. By using the Euler-Lagrange equation
for ∇yF−1

pt
, we show that the geodesic equation in transport Hessian metric

satisfies
∂tth(∇yF−1

pt
(y)) = 0.

In details, we have

h(∇yF−1
pt

(y)) = th(∇yF−1
p (y)) + (1 − t)h(∇yF−1

q (y)),

and
∂th(∇yF−1

pt
(y)) = h(∇yF−1

p (y)) − h(∇yF−1
q (y)).

Therefore, variational problem (4) leads to the formulation (i).
We next derive formulation (ii). Denote y = Fq(x) and T (x) = F−1

p (Fq(x)).
By using formulation (i) and the change of variable formula in integration, we
have

DistH(p0, p1)2 =
∫ 1

0

|h(∇yF−1
p (y)) − h(∇yF−1

q (y))|2dy

=
∫

Ω

|h(∇yF−1
p (Fq(x)) − h(∇yx)|2dFq(x)

=
∫

Ω

|h(
∇xT (x)

dy
dx

) − h(
1
dy
dx

)|2q(x)dx

=
∫

Ω

|h(
∇xT (x)

q(x)
) − h(

1
q(x)

)|2q(x)dx.

This finishes the first part of proof. Similarly, we can derive the transport infor-
mation Hessian distance in term of the inverse mapping function T−1.

Remark 1. We notice that DistH forms a class of distance functions in proba-
bility density space. Compared to the classical optimal transport distance, it
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emphasizes on the differences by the Jacobian (derivative) operators of map-
ping operators. The nondecreasing function h plays the role of “ground metric”
defined on the Jacobian operators of mapping functions. In this sense, we call
the transport information Hessian distance the “Optimal Jacobian transport dis-
tance”.

Remark 2. Transport information Hessian distances share similarities with
transport Bregman divergences defined in [12]. Here we remark that transport
Hessian distances are symmetric to p, q, i.e. DistH(p, q) = DistH(q, p), while the
transport Bregman divergences are often asymmetric to p, q; see examples in
[12].

3.2 Properties

We next demonstrate that transport Hessian distances have several basic prop-
erties.

Proposition 1. The transport Hessian distance has the following properties.

(i) Nonnegativity:
DistH(p, q) ≥ 0.

In addition,
DistH(p, q) = 0 iff p(x + c) = q(x),

where c ∈ R is a constant.
(ii) Symmetry:

DistH(p, q) = DistH(q, p).

(iii) Triangle inequality: For any probability densities p, q, r ∈ P(Ω), we have

DistH(p, r) ≤ DistH(p, q) + DistH(q, r).

(v) Hessian metric: Consider a Taylor expansion by

DistH(p, p + σ)2 = HessTF(p)(σ, σ) + o(|σ|2L2),

where σ ∈ TpP(Ω).

Proof. From the construction of transport Hessian distance, the above proper-
ties are satisfied. Here we only need to show (i). DistH(p, q) = 0 implies that
|h(∇xT (x)) − h(1)| = |h(∇xT (x))| = 0 under the support of density q. Notice
that h is a monotone function. Thus ∇xT (x) = 1. Hence T (x) = x + c, for some
constant c ∈ R. From the fact that T#q = p, we derive p(T (x))∇xT (x) = q(x).
This implies p(x + c) = q(x).
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4 Closed-Form Distances

In this section, we provide several closed-form examples of transport information
Hessian distances. From now on, we always denote

y = Fq(x) and T (x) = F−1
p (Fq(x)).

Example 1 (Boltzmann-Shanon entropy). Let f(p) = p log p, i.e.

F(p) = −H(p) =
∫

Ω

p(x) log p(x)dx.

Then h(y) = log y. Hence

DistH(p, q) =

√∫
Ω

| log ∇xT (x)|2q(x)dx

=

√∫ 1

0

| log ∇yF−1
p (y) − log ∇yF−1

q (y)|2dy.

(5)

Remark 3 (Comparisons with Hellinger distances). We compare the Hessian dis-
tance of Boltzmann-Shannon entropy defined in either L2 space or Wasserstein
space. In L2 space, this Hessian distance is known as the Hellinger distance,
where Hellinger(p, q)2 = 1

2

∫
Ω

|√p(x) − √
q(x)|2dx. Here distance (5) is an ana-

log of the Hellinger distance in Wasserstein space.

Example 2 (Quadratic entropy). Let f(p) = 1
2p2, then h(y) = −2(y− 1

2 − 1).
Hence

DistH(p, q) = 2

√∫
Ω

|(∇xT (x))− 1
2 − 1|2q(x)2dx

= 2

√∫ 1

0

|(∇yF−1
p (y))− 1

2 − (∇yF−1
q (y))− 1

2 |2dy.

Example 3 (Cross entropy). Let f(p) = − log p, then h(y) = 2(y
1
2 − 1). Hence

DistH(p, q) = 2

√∫
Ω

|(∇xT (x))
1
2 − 1|2dx

= 2

√∫ 1

0

|(∇yF−1
p (y))

1
2 − (∇yF−1

q (y))
1
2 |2dy.



816 W. Li

Example 4. Let f(p) = 1
2p , then h(y) = y − 1. Hence

DistH(p, q) =

√∫
Ω

|∇xT (x) − 1|2q(x)−1dx

= 2

√∫ 1

0

|∇yF−1
p (y) − ∇yF−1

q (y)|2dy.

Example 5 (γ-entropy). Let f(p) = 1
(1−γ)(2−γ)p

2−γ , γ �= 1, 2, then h(y) =
2

γ−1 (y
γ−1
2 − 1). Hence

DistH(p, q) =
2

|γ − 1|

√∫
Ω

|(∇xT (x))
γ−1
2 − 1|2q(x)2−γdx

=
2

|γ − 1|

√∫ 1

0

|(∇yF−1
p (y))

γ−1
2 − (∇yF−1

q (y))
γ−1
2 |2dy.
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Abstract. We apply divergences to project a prior guess discrete prob-
ability law on pq elements towards a subspace defined by fixed margins
constraints μ and ν on p and q elements respectively. We justify why
the Kullback-Leibler and the Chi-square divergences are two canonical
choices based on a 1991 work of Imre Csiszár. Besides we interpret the
so called indetermination resulting from the second divergence as a con-
struction to reduce couple matchings. Eventually, we demonstrate how
both resulting probabilities arise in two information theory applications:
guessing problem and task partitioning where some optimization remains
to minimize a divergence projection.

Keywords: Mathematical relational analysis · Logical
indetermination · Coupling functions · Task partitioning problem ·
Guessing problem

1 Introduction

The present document is interested in the poorly studied indetermination (also
called indeterminacy) as a natural second canonical coupling, the first one being
the usual independence. We extract both notions from a projection of a prior uni-
form guess U to a subset of the set of probabilities defined by fixed margins. The
problem is closely linked with contingency table adjustment exposed by Maurice
Fréchet in [9] or [10] as well as by Edwards Deming and Frederick Stephan [8]
or by Sir Alan G. Wilson [18] or [19]. Although we will limit ourselves to the
discrete case it can be transposed in a continuous domain (see for example [16]
in the same proceeding as the present paper) leading to the optimal transport
theory for which an overview and recent breakthroughs are presented in [17].

When limited to the discrete case, a work of Csiszár [7] shows that two pro-
jection functions set apart from all the others as they are the only ones to convey
“natural” properties. As we shall see, the first one leads to independence while
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the second one, since canonic, motivates our interest for the indetermination
coupling it generates.

We gather here a unified construction for both couplings and show inde-
termination comes with a stunning property of couple matchings minimization
that one could have expected to happen under independence. Eventually this
property is applied to two concrete problems: guessing and task partitioning.

2 Projection Using Divergences

Consider two given discrete probabilities μ = μ0, . . . , μp on p elements and ν =
ν0, . . . , νq on q elements with non zero values (it amounts to reduce p and q).
We associate to them the subspace Lμ,ν of probability laws π on pq elements
where:

πu,· =
q∑

v=1

πu,v = μu,∀1 ≤ u ≤ p,

π·,v =
p∑

u=1

πu,v = νv,∀1 ≤ v ≤ q,

namely, μ and ν are the margins of π. Lμ,ν is thus defined by a set of linear
constraints on the components of π where π is a probability law living inside the
simplex Spq.

As spotted in [3], we can interpret discrete transport problems related to
contingency table adjustments, as projections of a prior guess, typically the
uniform law U = 1

pq , . . . , 1
pq , to our just defined subspace Lμ,ν .

It happens that the projections of a prior guess that we fix equal to U to a
subspace L of Spq defined by a set of linear constraints was deeply studied in
[7]. Formally, we are minimizing a divergence (see Definition 1) between U and
any element of L as exposed in Problem 1.

Definition 1 (Divergence with functional parameter φ also called f-
divergence).
Given, a positive function φ : R+ → R

+, strictly convex at 1 with φ(1) = 0, and
given two discrete probabilities m and n on pq elements, we define the divergence
Dφ as:

Dφ(m|n) =
p∑

u=1

q∑

v=1

nu,vφ

(
mu,v

nu,v

)
= En

[
φ

(
mu,v

nu,v

)]
.

Additionally we set 0 ∗ φ(x) = 0 for all x ∈ R
+.

Problem 1 (Generic Projection Problem).
Given a subspace L of Spq defined by a set of linear constraints, the projec-
tion problem of the uniform law U to L using a divergence Dφ as defined in
Definition 1, states as follows:

min
π∈L

Dφ (π |U ) .
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Remark 1.
As mentioned by an anonymous reviewer, since L is a m−affine subspace and
Dφ is a f−divergence, the unicity of the optimal is stated from information
geometry theory (see [14]).

A key result of the paper [7] is that, provided we add some hypotheses on
the cost function we can limit ourselves to two divergences. We do not gather
here those hypotheses, but one can find them obviously in the quoted paper as
well as summarized in [3]. Eventually, we obtain the two eligible divergences by
setting φ : x �→ x log(x)−x+1 leading to the usual Kullback-Leibler divergence:

DKL (π |U ) =
p∑

u=1

q∑

v=1

πu,v log(pqπu,v); (1)

and thus to the transport problem using entropy exposed in [18] or with φ : x �→
(x − 1)2 leading to the so-called Pearson Chi-square divergence function:

D2 (π |U ) = pq

p∑

u=1

q∑

v=1

(
πu,v − 1

pq

)2

(2)

hence to the minimal transport problem exposed in [15].
Typical computations, using Karush–Kuhn–Tucker, provide for the two

divergences, a closed-form expression of the projections that we summarize in
the Fig. 1 below where π× is the independence coupling of the two margins:

π×(u, v) = μuνv; (3)

and π+ is the so-called indetermination (or indeterminacy) coupling:

π+(u, v) =
μu

q
+

νv

p
− 1

pq
. (4)

At this point we must notice that π+ is not always defined since it may
contain negative values. We add a hypothesis on the margins μ and ν to get rid
of this problem:

p min
u

μu + q min
v

νv ≥ 1. (5)

Regarding Eq. 5, a typical modification of any couple of margins to deduce
eligible margins can be found in [3] while the probability to draw adapted mar-
gins if μ and ν are uniformly drawn on Sp and Sq respectively is provided in
[1].

Using Mathematical Relational Analysis notations, one can show that π+

leads to an equality between a “for” vs “against” notion which justifies the name
indetermination historically coined in [12]. Besides, the + notation we chose in
[2] comes from the Full-Monge property (see for instance the survey [6]) that
the associated contingency matrix respects. Eventually, we can also extend the
notion of indeterminacy in a continuous space and estimate an associated copula
as exposed in [4]. In the present paper we shall not detail further the properties
π+ conveys and refer the interested reader to the aforementioned articles.
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Prior guess U

Entropy DKL

min
π

uv

πu,v ln(πu,v)

Square deviation D2

min
π

u,v

π2
u,v − 1

pq

Constraints on
margins L(μ, ν)

v

πu,v = μu, ∀1 ≤ u ≤ p

u

πu,v = νv, ∀1 ≤ v ≤ q

0 ≤ πu,v ≤ 1

Independence

π×
u,v = μuνv

Indetermination

π+
u,v =

μu

q
+

νv

p
− 1

pq

Fig. 1. Summary of a symmetric construction

3 Mimisation of Couple Matchings

We insist on a property expressed at the very beginning of the indetermination
construction. Let us say π is a probability law on pq elements. If we independently
draw two occurrences of W = (U, V ) ∼ π, the probability of getting a matching
for a couple, that is to say U1 = U2 and V1 = V2 simultaneously, is given by
πU1,V1 × πU2,V2 = π2

U1,V1
.

Besides, it turns out that

D2 (π |U ) = pq

p∑

u=1

q∑

v=1

(
πu,v − 1

pq

)2

(6)

= pq

p∑

u=1

q∑

v=1

(πu,v)2 − 1 (7)

so that the shift introduced by U vanishes and minimizing D2 (π |U ) amounts
to minimize the probability of a couple matching.

This property is illustrated by a decomposition of π+ whose proof is avail-
able in [3] and which leads to a method for drawing under π+. We first set u0

such that it corresponds to the smallest line meaning μu0 is minimal. Then,
quoting ∀u, δu = μu − μu0 , we can show that the following drawing realizes
indetermination:
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1. We draw u through μ.
2. We roll a loaded dice with the Bernoulli’s skew: I = Be

(
δu
μu

)
.

3. If we get 0, we draw v under the distribution
(
π+

u0,1, . . . , π
+
u0,q

)
that we nor-

malize to 1, else, we draw v uniformly hence under
(

1
q , . . . , 1

q

)
.

The method this coupling uses to minimize couple matchings reads as follows.
If U1 is frequent then μU1 is high, hence δU1 is high, this means that I will often
draw 1 and that v will often be uniform preventing V1 = V2 as much as possible.
On the opposite, if U1 is rare (typically U1 = u0) then U1 = U2 is already rare
and I will be allowed to often draw 0 so that v will follow

(
π+

u0,v

)
v
.

Best option of course would be to stay uniform every time, this is the prior
guess U solution but it does not belong to Lμ,ν . The trick with indetermination
is that it hides the disequilibrium on v that is needed to respect margins inside
rare lines.

A stunning result is that couple reduction is not ensured by independence but
by indetermination; though the difference between both is small. One can show
that in the discrete case, the expected L

2-difference is 1
pq (see [2]). Furthermore

the probability of a couple matching with a variable under a second law π′ only
depends on its margins as stated in Proposition 1.

Proposition 1 (Matchings with another variable).
Let us suppose that π′ is a second probability law on pq elements with margins
μ′ and ν′. We give ourselves a first couple W = (U1, U2) drawn under π+ and
a second one W ′ = (U ′

1, U
′
2) independently drawn under π′. Then the probability

of couple matching only depends on the margins and is given by:

Pπ+×π′(W = W ′) =
p∑

u=1

(
μuμ′

u

q

)
+

q∑

v=1

(
νvν′

v

p

)
− 1

pq
. (8)

Proof. The result is due to the structure of π+. Formally:

Pπ+×π′(W = W ′) =
∑

(u,v)

π+
u,vπ′

u,v

=
∑

(u,v)

(
μu

q
+

νv

p
− 1

pq

)
π′

u,v

=
p∑

u=1

(
μuμ′

u

q

)
+

q∑

v=1

(
νvν′

v

p

)
− 1

pq

In particular, the last Proposition 1 shows that any π′ ∈ Lμ,ν has the same prob-
ability of a couple matching with π+ than π+ itself. The next section leverages
on that ability to reduce couple matching in two applications.
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4 Applications

4.1 Guessing Problem

In cryptography, a message u in a finite alphabet U of size p is typically sent
from Alice to Bob while a spy whose name is Charlie tries to decode it. A
common strategy for Alice to communicate efficiently and secretly with Bob
consists in encoding the message using a couple of keys (public, private) for
each character or a symmetric encryption which only requires one shared key
between Alice and Bob. The literature concerned with the encryption method to
choose according to the situation is diverse, the most-used standard is Advanced
Encryption Standard described in various articles. Possibly, Charlie observes an
encrypted message V in a second finite alphabet V of size q which is a function
of the message u. We choose to gather in V any additional data Charlie may
observe (the channel used, the sender’s location, . . . ). In the end U and V are
correlated but not always in a deterministic link.

Related to the cryptography situation, the guessing problem quoted hereafter
as Problem 2 was first introduced in the article [13] and extended in [11] to take
V into account. While in cryptography Charlie tries to decode a sequence of
messages, the guessing problem focuses on decoding a unique message.

Let us formalize the situation: Charlie chooses its strategy (see Definition 2)
according to the value taken by the observed second variable V : he typically
adapts himself to the conveyed encryption. The probability law of the couple
(U, V ) is quoted PU,V = π while its margins are PU = μ and PV = ν with no
zero values.

Problem 2 (Original Guessing Problem or Spy Problem).
When Alice sends a message U = u to Bob, the spy Charlie observes a variable
V = v and must find out the value u of the realization. He has access to a
sequence of formatted questions for any guess ũ he may have: “Does u equal ũ?”
for which the binary answer is limited to “yes/no”.

Definition 2 (Strategy).
For any value v, a strategy σv = S|v of Charlie is defined by an order on U
representing the first try, the second and so on until number p. It can be deter-
ministic or random: we quote PS|v its probability law. The global strategy quoted
σ or S gathers all the marginal strategies Sv and is a random variable dependent
only on V (not U) whose probability law is quoted PS.

Besides, for a given position i ∈ [1, p], and an order σ, σ[i] is the element in
U corresponding to the i-th try.

The usual performance G(σ, u) of a spy consists in counting the number
of questions required to eventually obtain a “yes” in Problem 2 when Charlie
proposed the order S = σ and Alice generated the message U = u. For instance,
with an alphabet U = {a, b, c, d}, if the message is u = c and the strategy σ of
the spy consists in the order (b, c, a, d) (meaning he first proposes message b then
c,. . . ) we have:
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G(σ, u) =
p∑

i=1

i1u=σ[i]

= 1 · 1u=b + 2 · 1u=c + 3 · 1u=a + 4 · 1u=d

= 2 · 1u=c

= 2

Eventually in [13], they compute the ρ−moment of G as an estimation of the
efficiency of a strategy S:

||G(S,U)||ρ =
[
E(S,U,V )∼PS,U,V

(G(S,U)ρ)
]
. (9)

We notice that G actually takes as granted that Charlie has up to p trials
which is not adapted in case Alice sends a sequence of messages due to a lack of
time. Let us move away from the literature and measure Charlie’s performance
by its probability to find out after one trial the message u Alice sent. It is
a reasonable measure as, if a sequence of messages is sent, he may have to
jump from one to the following after only one trial. What actually matters (as
mentioned by an anonymous reviewer) is the number of attempts k Charlie can
try between two messages from Alice. It could be captured with the one-shot
performance M using a trick and supposing that Alice repeats each message k
times.

Definition 3 (one-shot performance).
For a given strategy S (which can depend on V with a non deterministic link),
we define the following performance measure as the probability to find out the
value u after one trial, formally:

M(S,U, V ) = M(S, π) = P(S,U,V ) (S[1] = U) .

We suppose as for the original optimal strategy that the spy has access to the
distribution π = PU,V . We can imagine he previously observed the non-encrypted
messages in a preliminary step.

Two strategies immediately stand out:

1. Smax: systematically returns at v fixed (observed by hypothesis), the u asso-
ciated with the maximal probability on the margin PU |V =v;

2. Smargin: returns at v fixed a random realization in U under the law PU |V =v.

Similarly as in see [13] where they prove Smax is the best strategy in case
the performance measure is G, we can show it also maximizes the one-shot
performance. Actually, M rewrites:

M(S,U, V ) =
q∑

v=1

νvP(Sv,U)∼PSv⊗PU|V =v
(Sv[1] = U) (10)

=
p∑

u=1

q∑

v=1

πu,vPSv
(Sv[1] = u) . (11)
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Since PSv
only depends on v, M is maximal under Smax, when PSv

= δuv

where uv = argmaxuπu,v so that:

M(S,U, V ) ≥ M(Smax, U, V ) =
q∑

v=1

πuv,v. (12)

Eventually, we quote u1 = argmaxuμu and notice that
∑q

v=1 πuv,v ≥ μu1

leading to the Proposition 2.

Proposition 2 (Charlie’s best performance).
We suppose that the margins μ and ν are fixed. Then, for any coupling probability
π between messages U and ciphers V , the best one-shot performance Charlie can
perform always happens under Smax. Furthermore it admits a fixed lower-bound
μu1 independent on π; to summarize:

M(S,U, V ) ≥ M(Smax, U, V ) =
q∑

v=1

πuv,v ≥ μu1 . (13)

Let us suppose, commendable task if any, that Alice wants to minimize Char-
lie’s best one-shot performance. We also suppose that the margins μ on U and ν
on V are fixed. It is a common hypothesis: the alphabet U in which the messages
are composed typically respects a distribution on letters; variable V on its own,
if it represents frequencies for instance may have to satisfy occupation weights
on each channel. Eventually, Alice can only leverage on the coupling between U
and V .

Precisely, let us now compute the corresponding value for our two couplings,
both are optimal (for Alice).

M× = M(Smax, π×) = μu1 M+ = M(Smax, π+) = μu1

Regarding the second strategy Smargin we know it is less efficient for Charlie
in term of one-shot performance. Yet, it is by far harder to cope with for the
sender who cannot easily prevent random conflicts. Consequently we come back
to the reduction of couple matchings (here a success for Charlie), whose “inde-
termination coupling”, we know, prevents us against. Let us unfold this remark
hereafter.

Replacing PSv
by its value under the second strategy in Eq. 11 allows us to

estimate the one-shot performance of Smargin which is given by:

M(Smargin, U, V ) =
∑

u∈U

∑

v∈V
νv(πu|V =v)2. (14)

Concerning the strategy Smargin we have the two bounds:

||π||22
minv∈V νv

≥ M(Smargin, U, V ) ≥ ||π||22
maxv∈V νv

, (15)

with
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||π||2 =
√∑

u∈U

∑

v∈V
(πu,v)2.

Depending on ν the bounds are more or less tight. If νv goes to the uniform,
the situation becomes similar to Smax: both couplings are equal and optimal.

In any case, Eq. 15 shows that studying the guessing problem brings us back
to Problem 1 associated with cost D2 whose solution is given by the indetermina-
tion coupling of the margins. It guarantees an efficient reduction of conflicts (see
Sect. 3) and eventually a weak one-shot performance under Smargin as expressed
in Eq. (15) and an optimal one under Smax.

4.2 Task Partitioning

Task partitioning problem is originally introduced in [5] where the authors pro-
vide a lower bound on the moment of the number of tasks to perform. Let us
follow the gathering work of [11] where they also coin a generalized task parti-
tioning problem basically adapting it as a special case of the guessing problem.

Formally, we begin with the original problem of tasks partitioning: a finite
set U of p tasks is given together with an integer q ≤ p. The problem consists in
creating a partition A = (A1, . . . ,Aq) of U in q classes to minimize the number
of tasks to perform, knowing that if one needs to perform a task u ∈ Ai, it is
mandatory to launch simultaneously the whole subset of tasks included within
Ai.

Practically, a task U = u to perform is randomly drawn from U under a
probability distribution PU = μ representing the tasks frequencies. As any task,
the task u to perform is assigned to a unique class Ai(u) of the arbitrary partition.
Hence, A(u) = |Ai(u)| counts the number of tasks to perform. Precisely, one plays
on the partition knowledge to perform, in average, as few tasks as possible.

Similarly to the guessing problem, the performance of a partition A is esti-
mated through the ρ−moment of the number of tasks A(U) to perform:

EU∼PU
[A(U)ρ] . (16)

Inspired by the general guessing problem, paper [11] extends the task parti-
tioning problem. Let us introduce here this generalized version, in which we are
no longer interested in minimizing the number of tasks to perform but rather in
reducing the number of tasks before a selected (or a chosen) task u.

Indeed, in the first version, as soon as u is drawn, an arbitrary rule imposes
to perform the whole subset Ai(u) leading to realize A(u) tasks. In the new
version, tasks are performed sequentially in Ai(u) according to a global strategy
S that can be deterministic or random. Typically, tasks may consist in a flow
of signatures which an administration requires while q would be the number of
workers dedicated to perform those signatures on incoming documents. A worker
can be given the entitlement to perform several signatures, assistants usually
do. In that case, the partition encodes the assignments of tasks to workers.
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When a worker V = v is assigned a document, the depositor waits until the
signature. At the same time the worker follows his own strategy Sv to sign his
assigned documents, meaning he can always follow the same order leading to a
deterministic strategy or change every day leading to a random strategy.

With a global strategy S which gathers the workers’ strategies Sv, ∀1 ≤ v ≤ q
and for a task u to perform, the performance of a partition A is measured using

NS,A(u) = j / Si(u)[j] = u,

which represents the number of tasks performed before the intended task u (u
included) by the worker i[u] it is affected to according to partition A. A lower
bound is provided in the paper [11].

Let us now suppose that the keys 1 ≤ v ≤ q are associated with offices
that must perform a proportion νv of the incoming tasks which still follow a
distribution μ. It actually appears as a sensible problem where a manager would
have to distribute in advance tasks among teams according to the usual observed
distribution of tasks and a list of available teams with their capacities.

Besides, we suppose that each team uses the strategy Smargin to perform
tasks, meaning they randomly perform one according to their margin theoretical
distribution; for a document signing, they randomly sign one.

From now on, we can rewrite our task partitioning problem under the form
of a guessing problem:

– V = v, formerly corresponds to a worker, now it represents the information
the spy has access to;

– U = u, formerly represents a task to perform, now it represents a sent mes-
sage;

– S = σ, formerly represents the order in which tasks are performed, now it
represents the order in which Charlie proposes his guesses.

Under this formalism, we are interested in measuring the probability
M(S,U, V ) of executing u first as an extended application of the one-shot per-
formance of Definition 3 and we have:

M(S,U, V ) ≥ ||π||22
max1≤v≤q νv

≥ ||π+||22
max1≤v≤q νv

. (17)

This inequality provides a lower bound for any distribution of the tasks among
the team, no distribution can generate a worst “one-shot probability” of satis-
fying the intended task. In task partitioning actually, each task u is uniquely
associated to a worker v = i(u) so that the random variable representing the
worker is deterministic conditionally to U : πu,v = δv=i(u).
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Abstract. We present a toolkit of directed distances between quan-
tile functions. By employing this, we solve some new optimal transport
(OT) problems which e.g. considerably flexibilize some prominent OTs
expressed through Wasserstein distances.

Keywords: Scaled Bregman divergences · φ-divergences · Mass
transport

1 Introduction

Widely used tools for various different tasks in statistics and probability (and
thus, in the strongly connected fields of information theory, artificial intelligence
and machine learning) are density-based “directed” (i.e. generally asymmet-
ric) distances – called divergences – which measure the dissimilarity/proximity
between two probability distributions; some comprehensive overviews can be
found in the books of e.g. Liese and Vajda [19], Read and Cressie [30], Vajda [40],
Csiszár and Shields [10], Stummer [36], Pardo [24], Liese and Miescke [18],
Basu et al. [4]. Amongst others, some important density-based directed-distance
classes are:

(1) the Csiszar-Ali-Silvey-Morimoto φ-divergences (CASM divergences) [1,8,
22]: this includes e.g. the total variation distance, exponentials of Renyi
cross-entropies, and the power divergences; the latter cover e.g. the
Kullback-Leibler information divergence (relative entropy), the (squared)
Hellinger distance, the Pearson chi-square divergence;

(2) the “classical” Bregman distances (CB distances) (see e.g. Csiszar [9], Pardo
and Vajda [25,26]): this includes e.g. the density-power divergences (cf. [3])
with the squared L2-norm as special case.

More generally, Stummer [37] and Stummer and Vajda [38] introduced the con-
cept of scaled Bregman distances, which enlarges and flexibilizes both the above-
mentioned CASM and CB divergence/distance classes; their use for robustness
c© Springer Nature Switzerland AG 2021
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of minimum-distance parameter estimation, testing as well as applications can
be found e.g. in Kißlinger and Stummer [13–16], Roensch and Stummer [31–
33], Krömer and Stummer [17]. An even much wider framework of directed dis-
tances/divergences (BS distances) was introduced in the recent comprehensive
paper of Broniatowski and Stummer [6].

Another important omnipresent scientific concept is optimal transport ; com-
prehensive general insights into this (and directly/closely related topics such as
e.g. mass transportation problems, Wasserstein distances, optimal coupling prob-
lems, extremal copula problems, optimal assignment problems) can be found in
the books of e.g. Rachev and Rüschendorf [29], Villani [41,42], Santambrogio [35],
Peyre and Cuturi [27], and the survey paper of e.g. Ambrosio and Gigli [2].

In the light of the above explanations, the main goals of this paper are:

(i) To apply (for the sake of brevity, only some subset of) the BS distances to
the context of quantile functions (see Sect. 2).

(ii) To establish a link between (i) and a new class of optimal transport problems
where the cost functions are pointwise BS distances (see Sect. 3).

2 A Toolkit of Divergences Between Quantile Functions

By adapting and widening the concept of scaled Bregman distances of Stum-
mer [37] and Stummer and Vajda [38], the recent paper of Broniatowski and
Stummer [6] introduced a fairly universal, flexible, multi-component system of
“directed distances” (which we abbreviate as BS distances) between two arbi-
trary functions; in the following, we apply (for the sake of brevity, only parts of)
this to the important widely used context of quantile functions. We employ the
following ingredients:

2.1 Quantile Functions

(I1) Let X :=]0, 1[ (open unit interval). For two probability distributions P and
Q on the one-dimensional Euclidean space R, we denote their cumulative
distribution functions (cdf) as FP and FQ, and write their quantile functions
as

F←
P := {F←

P (x)}x∈X := {inf{z ∈ R : FP(z) ≥ x}}x∈X ,

F←
Q :=

{
F←
Q (x)

}
x∈X

:= {inf{z ∈ R : FQ(z) ≥ x}}x∈X ;

if (say) P is concentrated on [0,∞[ (i.e., the support of P is a subset of [0,∞[),
then we alternatively take (for our purposes, without loss of generality)

F←
P := {F←

P (x)}x∈X := {inf{z ∈ [0,∞[: FP(z) ≥ x}}x∈X

which leads to the nonnegativity F←
Q (x) ≥ 0 for all x ∈ X .
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Of course, if the underlying cdf z → FP(z) is strictly increasing, then x →
F←
P (x) is nothing but its “classical” inverse function. Let us also mention that

in quantitative finance and insurance, the quantile F←
P (x) (e.g. quoted in US

dollars units) is called the value-at-risk for confidence level x · 100%. A detailed
discussion on properties and pitfalls of univariate quantile functions can be found
e.g. in Embrechts and Hofert [11].

2.2 Directed Distances—Basic Concept

We quantify the dissimilarity between the two quantile functions F←
P , F←

Q in
terms of BS distances Dc

β

(
F←
P , F←

Q

)
with β = (φ,M1,M2,M3), defined by

0 ≤ Dc
φ,M1,M2,M3

(
F ←
P , F ←

Q

)

:=
∫
X

[
φ
(

F ←
P (x)

M1(x)

)
− φ

(
F ←
Q (x)

M2(x)

)
− φ′

+,c

(
F ←
Q (x)

M2(x)

)
·
(

F ←
P (x)

M1(x)
− F ←

Q (x)

M2(x)

)]
· M3(x) dλ(x); (1)

the meaning of the integral symbol
∫

will become clear in (3) below. Here, in
accordance with Broniatowski and Stummer [6] we use:

(I2) the Lebesgue measure λ (it is well known that in general an integral∫
. . . dλ(x) turns—except for rare cases—into a classical Riemann integral∫
. . . dx).

(I3) (measurable) scaling functions M1 : X → [−∞,∞] and M2 : X →
[−∞,∞] as well as a nonnegative (measurable) aggregating function M3 :
X → [0,∞] such that M1(x) ∈]−∞,∞[, M2(x) ∈]−∞,∞[, M3(x) ∈ [0,∞[
for λ-a.a. x ∈ X . In analogy with the above notation, we use the symbols
Mi :=

{
Mi(x)

}
x∈X

to refer to the whole functions. In the following, R
(
G

)

denotes the range (image) of a function G :=
{
G(x)

}
x∈X

.
(I4) the so-called “divergence-generator” φ which is a continuous, convex (finite)

function φ : E →] − ∞,∞[ on some appropriately chosen open interval
E =]a, b[ such that [a, b] covers (at least) the union R

(F ←
P

M1

)∪R(F ←
Q

M2

)
of both

ranges R
(F ←

P

M1

)
of

{F ←
P (x)

M1(x)

}
x∈X

and R
(F ←

Q

M2

)
of

{F ←
Q (x)

M2(x)

}
x∈X

; for instance,
E =]0, 1[, E =]0,∞[ or E =] − ∞,∞[; the class of all such functions will
be denoted by Φ(]a, b[). Furthermore, we assume that φ is continuously
extended to φ : [a, b] → [−∞,∞] by setting φ(t) := φ(t) for t ∈]a, b[ as
well as φ(a) := limt↓a φ(t), φ(b) := limt↑b φ(t) on the two boundary points
t = a and t = b. The latter two are the only points at which infinite
values may appear. Moreover, for any fixed c ∈ [0, 1] the (finite) function
φ′
+,c :]a, b[→]−∞,∞[ is well-defined by φ′

+,c(t) := c ·φ′
+(t)+ (1− c) ·φ′

−(t),
where φ′

+(t) denotes the (always finite) right-hand derivative of φ at the
point t ∈]a, b[ and φ′

−(t) the (always finite) left-hand derivative of φ at
t ∈]a, b[. If φ ∈ Φ(]a, b[) is also continuously differentiable – which we denote
by φ ∈ ΦC1(]a, b[) – then for all c ∈ [0, 1] one gets φ′

+,c(t) = φ′(t) (t ∈]a, b[)
and in such a situation we always suppress the obsolete indices +, c in
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the corresponding expressions. We also employ the continuous continuation
φ′
+,c : [a, b] → [−∞,∞] given by φ′

+,c(t) := φ′
+,c(t) (t ∈]a, b[), φ′

+,c(a) :=
limt↓a φ′

+,c(t), φ′
+,c(b) := limt↑b φ′

+,c(t). To explain the precise meaning of
(1), we also make use of the (finite, nonnegative) function ψφ,c :]a, b[×]a, b[→
[0,∞[ given by ψφ,c(s, t) := φ(s) − φ(t) − φ′

+,c(t) · (s − t) ≥ 0 (s, t ∈]a, b[).
To extend this to a lower semi-continuous function ψφ,c : [a, b] × [a, b] →
[0,∞] we proceed as follows: firstly, we set ψφ,c(s, t) := ψφ,c(s, t) for all
s, t ∈]a, b[. Moreover, since for fixed t ∈]a, b[, the function s → ψφ,c(s, t)
is convex and continuous, the limit ψφ,c(a, t) := lims→a ψφ,c(s, t) always
exists and (in order to avoid overlines in (1)) will be interpreted/abbreviated
as φ(a) − φ(t) − φ′

+,c(t) · (a − t). Analogously, for fixed t ∈]a, b[ we set
ψφ,c(b, t) := lims→b ψφ,c(s, t) with corresponding short-hand notation φ(b)−
φ(t) − φ′

+,c(t) · (b − t). Furthermore, for fixed s ∈]a, b[ we interpret φ(s) −
φ(a) − φ′

+,c(a) · (s − a) as

ψφ,c(s, a) :=
{
φ(s) − φ′

+,c(a) · s + limt→a
(
t · φ′

+,c(a) − φ(t)
)} · 1]−∞,∞[

(
φ′
+,c(a)

)

+ ∞ · 1{−∞}
(
φ′
+,c(a)

)
,

where the involved limit always exists but may be infinite. Analogously, for
fixed s ∈]a, b[ we interpret φ(s) − φ(b) − φ′

+,c(b) · (s − b) as

ψφ,c(s, b) :=
{
φ(s) − φ′

+,c(b) · s + limt→b

(
t · φ′

+,c(b) − φ(t)
)} · 1]−∞,∞[

(
φ′
+,c(b)

)

+ ∞ · 1{+∞}
(
φ′
+,c(b)

)
,

where again the involved limit always exists but may be infinite. Finally, we
always set ψφ,c(a, a) := 0, ψφ,c(b, b) := 0, and ψφ,c(a, b) := lims→a ψφ,c(s, b),
ψφ,c(b, a) := lims→b ψφ,c(s, a). Notice that ψφ,c(·, ·) is lower semi-continuous
but not necessarily continuous. Since ratios are ultimately involved, we also
consistently take ψφ,c

(
0
0 , 0

0

)
:= 0.

With (I1) to (I4), we define the BS distance (BS divergence) of (1) precisely as

0 ≤ Dc
φ,M1,M2,M3

(
F←
P , F←

Q

)
=

∫
X ψφ,c

(
F ←

P (x)
M1(x)

,
F ←

Q (x)

M2(x)

)
· M3(x) dλ(x) (2)

:=
∫
X ψφ,c

(
F ←

P (x)
M1(x)

,
F ←

Q (x)

M2(x)

)
· M3(x) dλ(x), (3)

but mostly use the less clumsy notation with
∫

given in (1), (2) henceforth, as
a shortcut for the implicitly involved boundary behaviour.

Notice that generally (with some exceptions) one has the asymmetry
Dc

φ,M1,M2,M3

(
F←
P , F←

Q

) �= Dc
φ,M1,M2,M3

(
F←
Q , F←

P

)
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leading—together with the nonnegativity—to the (already used above) inter-
pretation of Dc

φ,M1,M2,M3

(
F←
P , F←

Q

)
as a candidate of a “directed” dis-

tance/divergence. To make this proper, one needs to verify

(NNg) Dc
φ,M1,M2,M3

(
F ←
P , F ←

Q

) ≥ 0.

(REg) Dc
φ,M1,M2,M3

(
F ←
P , F ←

Q

)
= 0 if and only if F ←

P (x) = F ←
Q (x) for λ-a.a. x ∈ X .

As already indicated above, the nonnegativity (NNg) holds per construction.
For the reflexivity (REg) one needs further assumptions. Indeed, in a more
general context beyond quantile functions and the Lebesgue measure, Broni-
atowski and Stummer [6] gave conditions such that objects as in (2) and (3)
satisfy (REg). We shall adapt this to the current special context, where for the
sake of brevity, for the rest of this paper we shall always concentrate on the
important adaptive subcase M1(x) := W

(
F←
P (x), F←

Q (x)
)
, M2(x) := M1(x),

M3(x) := W3

(
F←
P (x), F←

Q (x)
)
, for some (measurable) functions

W : R
(
F←
P

) × R
(
F←
Q

) → [−∞,∞] and W3 : R
(
F←
P

) × R
(
F←
Q

) → [0,∞].
Accordingly, (1), (2) and (3) simplify to

0 ≤ Dc
φ,W,W3

(
F←
P , F←

Q

)
:= Dc

φ,W
(
F ←

P ,F ←
Q

)
,W

(
F ←

P ,F ←
Q

)
,W3

(
F ←

P ,F ←
Q

)(
F←
P , F←

Q

)

=
∫
X

[
φ
(

F ←
P (x)

W
(
F ←

P (x),F ←
Q (x)

)
)

− φ
(

F ←
Q (x)

W
(
F ←

P (x),F ←
Q (x)

)
)

−φ′
+,c

(
F ←

Q (x)

W
(
F ←

P (x),F ←
Q (x)

)
)

·
(

F ←
P (x)

W
(
F ←

P (x),F ←
Q (x)

) − F ←
Q (x)

W
(
F ←

P (x),F ←
Q (x)

)
)]

·W3

(
F←
P (x), F←

Q (x)
)
dλ(x) (4)

=:
∫
X Υφ,c,W,W3

(
F←
P (x), F←

Q (x)
) · dλ(x), (5)

where we employ Υφ,c,W,W3 : R
(
F←
P

) × R
(
F←
Q

) 	→ [0,∞] defined by

Υ φ,c,W,W3 (u, v) := W3(u, v) · ψφ,c

(
u

W
(
u,v

) , v

W
(
u,v

)
)

≥ 0 with (6)

ψφ,c

(
u

W
(
u,v

) , v

W
(
u,v

)
)
:=

[
φ
(

u
W (u,v)

)−φ
(

v
W (u,v)

)−φ′
+,c

(
v

W (u,v)

) · (
u

W (u,v)
− v

W (u,v)

)]
.(7)

We give conditions for the validity of the crucial reflexivity in the following sub-
section; this may be skipped by the non-specialist (and the divergence expert).

2.3 Justification of Distance Properties

By construction, one gets for all φ ∈ Φ(]a, b[) and all c ∈ [0, 1] the important
assertion Dc

φ,W,W3

(
F←
P , F←

Q

) ≥ 0 with equality if F←
P (x) = F←

Q (x) for λ-almost
all x ∈ X . As investigated in Broniatowski and Stummer [6], in order to get
“sharp identifiability” (i.e. reflexivity) one needs further assumptions on φ ∈
Φ(]a, b[), c ∈ [0, 1]; for instance, if φ ∈ Φ(]a, b[) is affine linear on the whole
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interval ]a, b[ and W3 is constant (say, 1), then Υφ,c,W,W3 takes the constant
value 0, and hence Dc

φ,W,W3

(
F←
P , F←

Q

)
= 0 even in cases where F←

P (x) �= F←
Q (x)

for λ-a.a. x ∈ X . In order to avoid such and similar phenomena, we use the
following

Assumption 1. Let c ∈ [0, 1], φ ∈ Φ(]a, b[) and

R
(

F ←
P

W
(
F ←

P ,F ←
Q

)
)

∪ R
(

F ←
Q

W
(
F ←

P ,F ←
Q

)
)

⊂ [a, b].

Moreover, for all s ∈ R
(

F ←
P

W
(
F ←

P ,F ←
Q

)
)
, all t ∈ R

(
F ←

Q

W
(
F ←

P ,F ←
Q

)
)
,

all u ∈ R
(
F←
P

)
and all v ∈ R

(
F←
Q

)
let the following conditions hold:

(a) φ is strictly convex at t;
(b) if φ is differentiable at t and s �= t, then φ is not affine-linear on the interval

[min(s, t),max(s, t)] (i.e. between t and s);
(c) if φ is not differentiable at t, s > t and φ is affine linear on [t, s], then we

exclude c = 1 for the (“globally/universally chosen”) subderivative φ′
+,c(·) =

c · φ′
+(·) + (1 − c) · φ′

−(·);
(d) if φ is not differentiable at t, s < t and φ is affine linear on [s, t], then we

exclude c = 0 for φ′
+,c(·);

(e) W3

(
u, v

)
< ∞;

(f) W3

(
u, v

)
> 0 if u �= v;

(g) by employing (with a slight abuse of notation) the function
Υ (u, v) := W3(u, v) · ψφ,c

(
u

W (u,v) ,
v

W (u,v)

)
, we set by convention

Υ (u, v) := 0 if u
W (u,v) = v

W (u,v) = a;
(h) by convention, Υ (u, v) := 0 if u

W (u,v) = v
W (u,v) = b;

(i) Υ (u, v) > 0 if u
W (u,v) = a and v

W (u,v) = t /∈ {a, b};
this is understood in the following way: for v

W (u,v) = t /∈ {a, b}, we require
lim u

W (u,v)→a Υ (u, v) > 0 if this limit exists, or otherwise we set by convention
Υ (u, v) := 1 (or any other strictly positive constant) if u

W (u,v) = a; the
following boundary-behaviour conditions have to be interpreted analogously;

(j) Υ (u, v) > 0 if u
W (u,v) = b and v

W (u,v) = t /∈ {a, b};
(k) Υ (u, v) > 0 if v

W (u,v) = a and u
W (u,v) = s /∈ {a, b};

(�) Υ (u, v) > 0 if v
W (u,v) = b and u

W (u,v) = s /∈ {a, b};
(m) Υ (u, v) > 0 if v

W (u,v) = b and u
W (u,v) = a

(as limit from (�) or by convention);
(n) Υ (u, v) > 0 if v

W (u,v) = a and u
W (u,v) = b

(as limit from (k) or by convention).

Remark 1. We could even work with a weaker assumption obtained by replacing
s with F ←

P (x)

W
(
F ←

P (x),F ←
Q (x)

) , t with F ←
Q (x)

W
(
F ←

P (x),F ←
Q (x)

) , u with F←
P (x), v with F←

Q (x),

and by requiring that then the correspondingly plugged-in conditions (a) to (n)
hold for λ-a.a. x ∈ X .
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The following requirement is stronger than the “model-individual/dependent”
Assumption 1 but is more “universally applicable”:

Assumption 2. Let c ∈ [0, 1], φ ∈ Φ(]a, b[) on some fixed ]a, b[∈ ] − ∞,+∞[

such that R
(

F ←
P

W
(
F ←

P ,F ←
Q

)
)

∪ R
(

F ←
Q

W
(
F ←

P ,F ←
Q

)
)

⊂ ]a, b[.

Moreover, for all s ∈ ]a, b[, all t ∈ ]a, b[, all u ∈ R
(
F←
P

)
and all v ∈ R

(
F←
Q

)
the

conditions (a) to (n) of Assumption 1 hold.

By adapting Theorem 4 and Corollary 1 of Broniatwoski and Stummer [6], under
Assumption 1 (and hence, under Assumption 2) we obtain

(NN) Dc
φ,W,W3

(
F ←
P , F ←

Q

) ≥ 0.

(RE) Dc
φ,W,W3

(
F ←
P , F ←

Q

)
= 0 if and only if F ←

P (x) = F ←
Q (x) for λ-a.a. x ∈ X .

The non-negativity (NN) and the reflexivity (RE) say that Dc
φ,W,W3

(
F←
P , F←

Q

)
is

indeed a “proper” divergence under Assumption 1 (and hence, under Assumption
2). Thus, the latter will be assumed for the rest of the paper.

3 New Optimal Transport Problems

For our applications to optimal transport, we impose henceforth the additional
requirement that the nonnegative (extended) function Υφ,c,W,W3 is continuous
and quasi-antitone1 in the sense

Υφ,c,W,W3(u1, v1) + Υφ,c,W,W3(u2, v2) ≤ Υφ,c,W,W3(u2, v1) + Υφ,c,W,W3(u1, v2)
for all u1 ≤ u2, v1 ≤ v2; (8)

in other words, −Υφ,c,W,W3(·, ·) is assumed to be continuous and quasi-
monotone2,3. For such a setup, we consider the novel Kantorovich transportation
problem (KTP) with the pointwise-BS-distance-type (pBS-type) cost function
Υφ,c,W,W3(u, v); indeed, we obtain the following

Theorem 3. Let Γ̃ (P,Q) be the family of all probability distributions P on
R × R which have marginal distributions P[ · × R] = P[·] and P[R × · ] = Q[ · ].
Moreover, we denote the corresponding upper Hoeffding-Fréchet bound (cf. e.g.

1 Other names are: submodular, Lattice-subadditive, 2-antitone, 2-negative, Δ-
antitone, supernegative, “satisfying the (continuous) Monge property/condition”.

2 Other names are: supermodular, Lattice-superadditive, 2-increasing, 2-positive, Δ-
monotone, 2-monotone, “fulfilling the moderate growth property”, “satisfying the
measure property”, “satisfying the twist condition”.

3 A comprehensive discussion on general quasi-monotone functions can be found e.g.
in Chap. 6.C of Marshall et al. [21].
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Theorem 3.1.1 of Rachev and Rüschendorf [29]) by Pcom having “comonotonic”
distribution function FPcom(u, v) := min{FP(u), FQ(v)} (u, v ∈ R). Then

min{X∼P, Y ∼Q} E
[

Υφ,c,W,W3(X,Y )
]

(9)

= min{P∈ ˜Γ (P,Q)}
∫
R×R Υφ,c,W,W3(u, v) dP(u, v) (10)

=
∫
R×R Υφ,c,W,W3(u, v) dPcom(u, v) (11)

=
∫
[0,1]

Υφ,c,W,W3(F
←
P (x), F←

Q (x)) dλ(x) (12)

=
∫
]0,1[

[
φ
(

F ←
P (x)

W (F ←
P (x),F ←

Q (x))

)
− φ

(
F ←

Q (x)

W (F ←
P (x),F ←

Q (x))

)

−φ′
+,c

(
F ←

Q (x)

W (F ←
P (x),F ←

Q (x))

)
·
(

F ←
P (x)

W (F ←
P (x),F ←

Q (x)) − F ←
Q (x)

W (F ←
P (x),F ←

Q (x))

) ]

·W3(F←
P (x), F←

Q (x)) dλ(x) (13)

= Dc
φ,W,W3

(
F←
P , F←

Q

) ≥ 0, (14)

where the minimum in (9) is taken over all R-valued random variables X, Y
(on an arbitrary probability space (Ω,A ,S)) such that P[X ∈ · ] = P[ · ], P[Y ∈
· ] = Q[ · ]. As usual, E denotes the expectation with respect to P.

The assertion (11) follows by applying Corollary 2.2a of Tchen [39] (see also
– with different regularity conditions and generalizations – Cambanis et al. [7],
Rüschendorf [34], Theorem 3.1.2 of Rachev and Rüschendorf [29], Theorem 3.8.2
of Müller and Stoyan [23], Theorem 2.5 of Puccetti and Scarsini [28], Theorem
2.5 of Ambrosio and Gigli [2]).

Remark 2. (i) Notice that Pcom is Υφ,c,W,W3-independent, and may not be the
unique minimizer in (10). As a (not necessarily unique) minimizer in (9), one
can take X := F←

P (U), Y := F←
Q (U) for some uniform random variable U on

[0, 1].
(ii) In Theorem 3 we have shown that Pcom (cf. (11)) is an optimal
transport plan of the KTP (10) with the pointwise-BS-distance-type (pBS-
type) cost function Υφ,c,W,W3(u, v). The outcoming minimal value is equal to
Dc

φ,W,W3

(
F←
P , F←

Q

)
which is typically straightforward to compute (resp. approx-

imate).

Remark 2(ii) generally contrasts to those prominently used KTP whose cost func-
tion is a power d(u, v)p of a metric d(u, v) (denoted as POM-type cost function)
which leads to the well-known Wasserstein distances. (Apart from technicalities)
There are some overlaps, though:

Example 1. (i) Take the non-smooth φ(t) := φTV (t) := |t − 1| (t ∈ R), c = 1
2 ,

W (u, v) := v, W3(u, v) := |v| to obtain ΥφT V ,1/2,W,W3(u, v) = |u − v| =: d(u, v).

(ii) Take φ(t) := φ2(t) := (t−1)2

2 (t ∈ R, with obsolete c), W (u, v) := 1 and

W3(u, v) := 1 to end up with Υφ2,c,W,W3(u, v) = (u−v)2

2 = d(u,v)2

2 .

(iii) The symmetric distances d(u, v) and d(u,v)2

2 are convex functions of u − v
and thus continuous quasi-antitone functions on R × R. The correspondingly
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outcoming Wasserstein distances are thus considerably flexibilized by our new
much more general distance Dc

φ,W,W3

(
F←
P , F←

Q

)
of (14).

Depending on the chosen divergence, one may have to restrict the support of
P respectively Q, for instance to [0,∞[. We give some further special cases of
pBS-type cost functions, which are continuous and quasi-antitone, but which are
generally not symmetric and thus not of POM-type:

Example 2. “smooth” pointwise Csiszar-Ali-Silvey-Morimoto divergences
(CASM divergences): take φ : [0,∞[	→ R to be a strictly convex, twice con-
tinuously differentiable function on ]0,∞[ with continuous extension on t = 0,
together with W (u, v) := v, W3(u, v) := v (v ∈]0,∞[) and c is obsolete. Accord-
ingly, Υφ,c,W,W3(u, v) := v ·φ(

u
v

)− v ·φ(1)−φ′(1) · (u − v), and hence the second

mixed derivative satisfies ∂2Υφ,c,W,W3 (u,v)

∂u∂v = − u
v2 φ′′(u

v

)
< 0 (u, v ∈]0,∞[); thus,

Υφ,c,W,W3 is quasi-antitone on ]0,∞[×]0,∞[. Accordingly, (9) to (13) applies to
(such kind of) CASM divergences concerning P,Q having support in [0,∞[. As
an example, take e.g. the power function φ(t) := tγ−γ·t+γ−1

γ·(γ−1) (γ ∈ R\{0, 1}). A
different connection between optimal transport and other kind of CASM diver-
gences can be found in Bertrand et al. [5] in the current GSI2021 volume.

Example 3. “smooth” pointwise classical (i.e. unscaled) Bregman divergences
(CBD): take φ : R 	→ R to be a strictly convex, twice continuously differen-
tiable function W (u, v) := 1, W3(u, v) := 1, and c is obsolete. Accordingly,

Υφ,c,W,W3(u, v) := φ(u) − φ(v) − φ′(v) · (u − v) and hence ∂2Υφ,c,W,W3 (u,v)

∂u∂v =
−φ′′(v) < 0 (u, v ∈ R); thus, Υφ,c,W,W3 is quasi-antitone on R × R. Accordingly,
the representation (9) to (13) applies to (such kind of) CBD. The corresponding
special case of (10) is called “a relaxed Wasserstein distance (parameterized by
φ) between P and Q” in the recent papers of Lin et al. [20] and Guo et al. [12]
for a restrictive setup where P and Q are supposed to have compact support; the
latter two references do not give connections to divergences of quantile functions,
but substantially concentrate on applications to topic sparsity for analyzing user-
generated web content and social media, respectively, to Generative Adversarial
Networks (GANs).

Example 4. “smooth” pointwise Scaled Bregman Distances: for instance, con-
sider P and Q with support in [0,∞[. Under W = W3 one gets that Υφ,c,W,W

is quasi-antitone on ]0,∞[×]0,∞[ if the generator function φ is strictly con-
vex and thrice continuously differentiable on ]0,∞[ (and hence, c is obsolete)
and the so-called scale connector W is twice continuously differentiable such
that – on ]0,∞[×]0,∞[ – Υφ,c,W,W is twice continuously differentiable and
∂2Υφ,c,W,W (u,v)

∂u∂v ≤ 0 (an explicit formula of the latter is given in the appendix
of Kißlinger and Stummer [16]). Illustrative examples of suitable φ and W can
be found e.g. in Kißlinger and Stummer [15].

Returning to the general context, it is straightforward to see that if P does not
give mass to points (i.e. it has continuous distribution function FP) then there
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exists even a deterministic optimal transportation plan: indeed, for the map
T com := F←

Q ◦ FP one has Pcom[ · ] = P[(id, T com) ∈ · ] and thus (11) is equal to

∫
R Υφ,c,W,W3(u, T com(u)) dP(u) (15)

= min{T∈ ̂Γ (P,Q)}
∫
R Υφ,c,W,W3(u, T (u)) dP(u) (16)

= min{X∼P, T (X)∼Q} E
[

Υφ,c,W,W3(X,T (X))
]

(17)

where (16) is called Monge transportation problem (MTP). Here, Γ̂ (P,Q)
denotes the family of all measurable maps T : R 	→ R such that P[T ∈ · ] = Q[ · ].

Acknowledgement. I am grateful to the four referees for their comments and sug-
gestions on readability improvements.
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Abstract. In this paper, we present a robust version of the empiri-
cal likelihood estimator for semiparametric moment condition models.
This estimator is obtained by minimizing the modified Kullback-Leibler
divergence, in its dual form, using truncated orthogonality functions.
Some asymptotic properties regarding the limit laws of the estimators
are stated.

Keywords: Moment condition models · Robustness · Divergence
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1 Introduction

We consider a moment condition model, namely a family M of probability
measures Q, all defined on the same measurable space (Rm,B(Rm)), such that∫
Rm g(x, θ) dQ(x) = 0. The unknown parameter θ belongs to the interior of a

compact set Θ ⊂ R
d, and the function g := (g1, . . . , g�)�, with � ≥ d, is defined

on the set R
m × Θ, each gi being a real valued function. Denoting by M the set

of all probability measures on (Rm,B(Rm)) and defining the sets

Mθ :=
{

Q ∈ M s.t.
∫

Rm

g(x, θ) dQ(x) = 0
}

, θ ∈ Θ,

then the moment condition model M can be written under the form

M =
⋃

θ∈Θ

Mθ. (1)
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Let X1, . . . , Xn be an i.i.d. sample with unknown probability measure P0.
We assume that the equation

∫
Rm g(x, θ) dP0(x) = 0 has a unique solution (in

θ) which will be denoted θ0. We consider the estimation problem of the true
unknown value θ0.

Among the most known methods for estimating the parameter θ0, we recall
the Generalized Method of Moments (GMM) of [6], the Continuous Updating
(CU) estimator of [7], the Empirical Likelihood (EL) estimator of [8,14,15], the
Exponential Tilting (ET) of [11], as well as the Generalized Empirical Likelihood
(GEL) class of estimators of [13] that contains the EL, ET and CU estimators
in particular. Some alternative methods have been proposed in order to improve
the finite sample accuracy or the robustness under misspecification of the model,
for example in [4,8,11,12,16].

The authors in [3] have developed a general methodology for estimation and
testing in moment condition models. Their approach is based on minimizing
divergences in dual form and allows the asymptotic study of the estimators
(called minimum empirical divergence estimators) and of the associated test
statistics, both under the model and under misspecification of the model. Using
the approach based on the influence function, [18] studied robustness properties
for these classes of estimators and test statistics, showing that the minimum
empirical divergence estimators of the parameter θ0 of the model are generally
not robust. This approach based on divergences and duality was initially used
in the case of parametric models, the results being published in the articles,
[2,19,20].

The classical EL estimator represents a particular case of the class of esti-
mators from [3], namely, when using the modified Kullback-Leibler divergence.
Although the EL estimator is superior to other above mentioned estimators in
what regards higher-order asymptotic efficiency, this property is valid only in
the case of the correct specification of the moment conditions. It is a known
fact that the EL estimator and the EL ratio test for moment condition mod-
els are not robust with respect to the presence of outliers in the sample. Also,
[17] showed that, when the support of the p.m. corresponding to the model and
the orthogonality functions are not bounded, the EL estimator is not root n
consistent under misspecification.

In this paper, we present a robust version of the EL estimator for moment
condition models. This estimator is defined by minimizing an empirical ver-
sion of the modified Kullback-Leibler divergence in dual form, using truncated
orthogonality functions. For this estimator, we present some asymptotic proper-
ties regarding both consistency and limit laws. The robust EL estimator is root
n consistent, even under misspecification, which gives a solution to the problem
noticed by [17] for the EL estimator.

2 A Robust Version of the Empirical Likelihood
Estimator

Let {Pθ; θ ∈ Θ} be a reference identifiable model, containing probability mea-
sures such that, for each θ ∈ Θ, Pθ ∈ Mθ, meaning that

∫
Rm g(x, θ) dPθ(x) = 0,
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and θ is the unique solution of the equation. We assume that the p.m. P0 of the
data, corresponding to the true unknown value θ0 of the parameter to be esti-
mated, belongs to this reference model. The reference model will be associated
to the truncated orthogonality function gc, defined hereafter, that will be used
in the definition of the robust version of the EL estimator of the parameter θ0.
We use the notation ‖ · ‖ for the Euclidean norm. Similarly as in [16], using the
reference model {Pθ; θ ∈ Θ}, define the function gc : R

m × Θ → R
�,

gc(x, θ) := Hc (Aθ [g(x, θ) − τθ]) , (2)

where Hc : R
� → R

� is the Huber’s function

Hc(y) :=

{
y · min

(
1, c

‖y‖
)

if y �= 0,

0 if y = 0,
(3)

and Aθ, τθ are determined by the solutions of the system of implicit equations
{∫

gc(x, θ) dPθ(x) = 0,∫
gc(x, θ) gc(x, θ)� dPθ(x) = I�,

(4)

where I� is the � × � identity matrix and c > 0 is a given positive constant.
Therefore, we have ‖gc(x, θ)‖ ≤ c, for all x and θ. We also use the function

hc(x, θ,A, τ) := Hc (A [g(x, θ) − τ ]) , (5)

when needed to work with the dependence on the � × � matrix A and on the
�-dimensional vector τ . Then,

gc(x, θ) = hc(x, θ,Aθ, τθ), (6)

where Aθ and τθ are the solution of (4). For given Pθ from the reference model,
the triplet (θ,Aθ, τθ) is the unique solution of the system

⎧
⎨

⎩

∫
g(x, θ) dPθ(x) = 0,∫
gc(x, θ) dPθ(x) = 0,∫
gc(x, θ) gc(x, θ)� dPθ(x) = I�.

(7)

The uniqueness is justified in [16], p. 48.

In what follows, we will use the so-called modified Kullback-Leibler diver-
gence between probability measures, say Q and P , defined by

KLm(Q,P ) :=
∫

Rm

ϕ

(
dQ

dP
(x)

)

dP (x), (8)

if Q is absolutely continuous with respect to P , and KLm(Q,P ) := +∞, else-
where. The strictly convex function ϕ is defined by ϕ(x) := − log x + x − 1, if
x > 0, respectively ϕ(x) := +∞, if x ≤ 0. Straightforward calculus show that
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the convex conjugate1 of the convex function ϕ is ψ(u) = − log(1 − u) if u < 1,
respectively ψ(u) = +∞, if u ≥ 1. Recall that the Kullback-Leibler divergence,
between any probability measures Q and P , is defined by

KL(Q,P ) :=
∫

Rm

ϕ

(
dQ

dP
(x)

)

dP (x),

if Q is absolutely continuous with respect to P , and KLm(Q,P ) := +∞, else-
where. Here, the strictly convex function ϕ is defined by ϕ(x) = x log x − x + 1,
if x ≥ 0, and ϕ(x) = +∞, if x < 0. Notice also that KLm(Q,P ) = KL(P,Q),
for all probability measures Q and P . For any subset Ω of M , we define the
KLm-divergence, between Ω and any probability measure P , by

KLm(Ω,P ) := inf
Q∈Ω

KLm(Q,P ).

Define the moment condition model

Mc :=
⋃

θ∈Θ

Mc,θ :=
⋃

θ∈Θ

{

Q ∈ M s.t.
∫

Rm

gc(x, θ) dQ(x) = 0
}

. (9)

For any θ ∈ Θ, define the set

Λc,θ := Λc,θ(P0) :=
{

t ∈ R
� s.t.

∫

Rm

|ψ (
t� gc(x, θ)

) | dP0(x) < ∞
}

.

Since gc(x, θ) is bounded (with respect to x), then on the basis of Theorem 1.1
in [1] and Proposition 4.2 in [3], the following dual representation of divergence
holds

KLm(Mc,θ, P0) = sup
t∈Λc,θ

∫

Rm

mc(x, θ, t) dP0(x), (10)

where
mc(x, θ, t) := −ψ(t�gc(x, θ)) = log(1 − t�gc(x, θ)), (11)

and the supremum in (10) is reached, provided that KLm(Mc,θ, P0) is finite.
Moreover, the supremum in (10) is unique under the following assumption

P0

(
{x ∈ R

m s.t. t
�

gc(x, θ) �= 0}
)

> 0, for all t ∈ R
1+�\{0}, (12)

where t := (t0, t1, . . . , t�)� and g := (g0, gc,1, . . . , gc,�)�. This last condition
is satisfied if the functions g0(·) := 1Rm(·), gc,1(·, θ), . . . , gc,�(·, θ) are linearly
independent and P0 is not degenerate. The empirical measure, associated to the
sample X1, . . . , Xn, is defined by

Pn(·) :=
1
n

n∑

i=1

δXi
(·),

1 The convex conjugate, called also Fenchel-Legendre transform, of ϕ, is the function
defined on R by ψ(u) := supx∈R

{ux − ϕ(x)}, ∀u ∈ R.
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δx(·) being the Dirac measure at the point x. Denote

Λc,θ,n := Λc,θ(Pn) =
{

t ∈ R
� s.t.

∫

Rm

|ψ (
t� gc(x, θ)

) | dPn(x) < ∞
}

(13)

=

⎧
⎨

⎩
t ∈ R

� s.t.
1
n

n∑

i=1

∣
∣
∣
∣
∣
∣
log(1 −

�∑

j=1

tj gc,j(Xi, θ))

∣
∣
∣
∣
∣
∣

< ∞
⎫
⎬

⎭
.

In view of relation (10), for given θ ∈ Θ, a natural estimator of

tc,θ := arg sup
t∈Λc,θ

∫
mc(x, θ, t) dP0(x), (14)

can be defined by “plug-in” as follows

t̂c,θ := arg sup
t∈Λc,θ,n

∫
mc(x, θ, t) dPn(x). (15)

A “dual” plug-in estimator of the modified Kullback-Leibler divergence, between
Mc,θ and P0, can then be defined by

K̂Lm(Mc,θ, P0) := sup
t∈Λc,θ,n

∫
mc(x, θ, t) dPn(x) (16)

= sup
(t1,...,t�)∈R�

⎧
⎨

⎩
1
n

n∑

i=1

log

⎛

⎝1 −
�∑

j=1

tj gc,j(Xi, θ)

⎞

⎠

⎫
⎬

⎭
,

where log(·) is the extended logarithm function, i.e., the function defined by
log(u) = log(u) if u > 0, and log(u) = −∞ if u ≤ 0. Hence,

KLm(Mc, P0) := inf
θ∈Θ

KLm(Mc,θ, P0) (17)

can be estimated by

K̂Lm(Mc, P0) := inf
θ∈Θ

K̂Lm(Mc,θ, P0)

= inf
θ∈Θ

sup
(t1,...,t�)∈R�

{
1

n

n∑
i=1

log

(
1 −

�∑
j=1

tj gc,j(Xi, θ)

)}
. (18)

Since θ0 = arg inf
θ∈Θ

KLm(Mc,θ, P0), where the infimum is unique, we propose

then to estimate θ0 by

θ̂c := arg inf
θ∈Θ

sup
t∈Λc,θ,n

∫
mc(x, θ, t) dPn(x) (19)

= arg inf
θ∈Θ

sup
(t1,...,t�)∈R�

⎧
⎨

⎩
1
n

n∑

i=1

log

⎛

⎝1 −
�∑

j=1

tj gc,j(Xi, θ)

⎞

⎠

⎫
⎬

⎭
,
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which can be seen as a “robust” version of the classical EL estimator. Recall
that the EL estimator, see e.g. [14], can be written as

θ̂ = arg inf
θ∈Θ

sup
(t1,...,t�)∈R�

⎧
⎨

⎩
1
n

n∑

i=1

log

⎛

⎝1 −
�∑

j=1

tj gj(Xi, θ)

⎞

⎠

⎫
⎬

⎭
.

A slightly different definition of an estimator for the parameter θ0 was introduced
in [10], where robustness and consistency properties are also stated. However,
the limiting distribution of the estimator in [10] is not standard, and not easy
to be obtained, due to the fact that the used bounded orthogonality functions
depend on both θ and the data. The present version is simpler and does not
present this difficulty. We give in the following sections, the influence function
of the estimator (19), and state both consistency and the limiting distributions
of all the proposed estimators (15), (16), (19) and (18).

2.1 Robustness Property

The classical EL estimator of the parameter θ0 of a moment condition model
can be obtained as a particular case of the class of minimum empirical diver-
gence estimators introduced by [3]. [18] showed that the influence functions for
the estimators from this class, so particularly the influence function of the EL
estimator, are each proportional to the orthogonality function g(x, θ0) of the
model. These influence functions also coincide with the influence function of the
GMM estimator obtained by [16]. Therefore, when g(x, θ) is not bounded in x,
all these estimators, and particularly the EL estimator of θ0, are not robust.

Denote Tc(·) the statistical functional associated to the estimator θ̂c, so that
θ̂c = Tc(Pn). The influence function IF(x;Tc, P0) of Tc at P0 is defined by

IF(x;Tc, P0) :=
∂

∂ε
Tc(Pε,x)

∣
∣
∣
∣
ε=0

,

where Pε,x(·) = (1−ε)P0(·)+ε δx(·), ε ∈ ]0, 1[; see e.g. [5]. The influence function
IF(x;Tc, P0) of the estimator θ̂c presented in this paper is linearly related to the
bounded function gc(x, θ), more precisely, the following result holds

IF(x;Tc, P0) =

{[∫
∂

∂θ
gc(y, θ0) dP0(y)

]� ∫
∂

∂θ
gc(y, θ0) dP0(y)

}−1

·

·
[∫

∂

∂θ
gc(y, θ0) dP0(y)

]�
gc(x, θ0),

which implies the robustness of the estimator θ̂c of the parameter θ0. The proof
of this result is similar to the one presented in [10].
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2.2 Asymptotic Properties

In this subsection, we give the limiting distributions of the proposed estimators,
under some regularity assumptions similar to those used by [3].

Proposition 1. For any fixed θ ∈ Θ, under some regularity assumptions, we
have

(1)
√

n(t̂c,θ − tc,θ) converges in distribution to a centered normal random vector;
(2) If P0 �∈ Mc,θ, then

√
n(K̂Lm(Mc,θ, P0)−KLm(Mc,θ, P0)) converges in dis-

tribution to a centered normal random variable;
(3) If P0 ∈ Mc,θ, then 2n K̂Lm(Mc,θ, P0) convergences in distribution to a χ2(�)

random variable.

Proposition 2. Under some regularity assumptions, we have

(1)
√

n
(
θ̂c − θ0

)
converges in distribution to a centered normal random vector;

(2) If � > d, then 2n K̂Lm(Mc, P0) converges in distribution to a χ2(� − d)
random variable.
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Abstract. Training generative adversarial networks (GANs) on high
quality (HQ) images involves important computing resources. This
requirement represents a bottleneck for the development of applications
of GANs. We propose a transfer learning technique for GANs that sig-
nificantly reduces training time. Our approach consists of freezing the
low-level layers of both the critic and generator of the original GAN. We
assume an auto-encoder constraint to ensure the compatibility of the
internal representations of the critic and the generator. This assumption
explains the gain in training time as it enables us to bypass the low-level
layers during the forward and backward passes. We compare our method
to baselines and observe a significant acceleration of the training. It can
reach two orders of magnitude on HQ datasets when compared with
StyleGAN. We provide a theorem, rigorously proven within the frame-
work of optimal transport, ensuring the convergence of the learning of
the transferred GAN. We moreover provide a precise bound for the con-
vergence of the training in terms of the distance between the source and
target dataset.

1 Introduction

The recent rise of deep learning as a leading paradigm in AI mostly relies on
computing power (with generalized use of GPUs) and massive datasets. These
requirements represent bottlenecks for most practitioners outside of big labs in
industry or academia and are the main obstacles to the generalization of the use
of deep learning. Therefore, methods that can bypass such bottlenecks are in
strong demand. Transfer learning is one of them and various methods of transfer
learning (for classification tasks) specific to deep neural networks have been
developed [20].

A generative problem is a situation in which one wants to be able to pro-
duce elements that could belong to a given data set D. Generative Adversarial
Networks (GANs) were introduced in 2014 [8,18] to tackle generative tasks with
deep learning architectures and improved in [1,9] (Wasserstein GANs). They
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immediately took a leading position in the world of generative models, com-
forted by progress with HQ images [11,12]. The goal of our work (see Sect. 3) is
to develop in a generative setting, i.e., for GAN architectures, the analog of the
cut-and-paste approach.

The main idea of our method is to reuse, for the training of a GAN, the
weights of an autoencoder already trained on a source dataset D. The weights
of the low level layers of the generator (resp. critic) will be given by those of the
decoder (resp. encoder). By analogy with humans (Sect. 3), we call MindGAN
the high level layers of the generator. It is a subnetwork that is trained as a
GAN on the encoded features of the target dataset D′.

We provide in Sect. 4 a theorem that controls the convergence of the trans-
ferred GAN in terms of the quality of the autoencoder, the domain shift between
D and D′ and the quality of the MindGAN. As a consequence, our experimental
results in Sect. 5 rely heavily on the choice of the autoencoder. ALAE autoen-
coders [17] are extremely good autoencoders that turned out to be crucial in
our experiments with HQ images. Their use, in conjunction with our transfer
technique, enables an acceleration of the training by a factor of 656, while
keeping a good quality.

2 Preliminaries

A GAN consists of two networks trained adversarially. The generator g : Z → χ
associates to a vector z sampled from a latent vector space Z a vector g(z) in
another vector space χ while the discriminator c : χ → R learns to associate
a value close to 1 if the vector g(z) belongs to D and zero otherwise. Their
respective loss functions, Lg and Lc are recalled in Sect. 3.

One can assume that elements of D can be sampled from an underlying
probability distribution PD on a space χ and try to approximate it by Pθ, another
distribution on χ that depends on some learnable parameters θ. Generating then
means sampling from the distribution Pθ. Among the distributions on χ, some
can be obtained from a prior distribution PZ on an auxiliary latent space Z
and a map g : Z → χ as follows. The push-forward of PZ under g is defined
so that a sample is given by g(z) the image through g of a sample z from the
distribution PZ . We will denote this pushforward by g�PZ and when g depends on
parameters θ use instead the notation Pθ := g�PZ . In practice, one can choose for
PZ a uniform or Gaussian distribution, and for g a (de)convolution deep neural
network. In our applications, we will consider for instance Z := R

128 equipped
with a multivariate gaussian distribution and χ = [−1, 1]28×28, the space of gray
level images of resolution 28×28. Hence, sampling from Pθ will produce images.

The main idea behind a Wasserstein GAN is to use the Wasserstein distance
(see Definition 1) to define by W (PD,Pθ) the loss function for this optimisation
problem. More precisely, the Wasserstein distance is a distance on Borel proba-
bility measures on χ (when compact metric space). In particular, the quantity
W (PD,Pθ) gives a number which depends on the parameter θ since Pθ depends
itself on θ. The main result of [1] asserts that if g is of class Ck almost every-
where as a function of θ, W (PD,Pθ) is also of class Ck with respect to θ. As a
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consequence, one can solve this optimization problem by doing gradient descent
for the parameters θ (using a concrete gradient formula provided by the same
theorem) until the two probability distributions coincide.

In order to minimize the function W (PD,Pθ), one needs a good estimate
of the Wasserstein distance. The Rubinstein-Kantorovich duality states that
W (P,P′) = max|c|L≤1 Ex∼P c(x) − Ex∼P′ c(x), where Ex∼Pf(x) denotes the
expected value of the function f for the probability measure P, while the max
is taken on the unit ball for the Lipschitz semi-norm. Concretely, this max is
obtained by gradient ascent on a function cθ encoded by a deep convolution
neural network.

In our case, when P
′ := Pθ, the term Ex∼P′ c(x) takes the form

Ez∼PZ
cθ(gθ(z)). One recovers the diagram

Z
gθ−→ χ

cθ−→ R (1)

familiar in the adversarial interpretation of GANs. With this observation, one
understands that one of the drawbacks of GANs is that there are two networks to
train. They involve many parameters during the training, and the error needs to
backpropagate through all the layers of the two networks combined, i.e., through
cθ ◦ gθ. This process is computationally expensive and can trigger the vanishing
of the gradient. Therefore, specific techniques need to be introduced to deal
with very deep GANs, such as in [12]. The approach we present in Sect. 3 can
circumvent these two problems.

Transfer learning is a general approach in machine learning to overcome
the constraints of the volume of data and computing power needed for training
models (see [5]). It leverages a priori knowledge from a learned task T on a
source data set D in order to learn more efficiently a task T ′ on a target data
set D′. It applies in deep learning in at least two ways: Cut and Paste and Fine
tuning.

Cut and Paste takes advantage of the difference between high and low-
level layers of the network c. It assumes that the network c is composed of two
networks c0 and c1 stacked one on each other, i.e., mathematically that c = c0◦c1
(one understands the networks as maps). While the low-level layers c1 process
low-level features of the data, usually common for similar datasets, the high-level
layers c0 are in charge of the high-level features which are very specific to each
dataset. This approach consists in the following steps :

1. identify a dataset D similar to the data set D′ we are interested in, both in
the same space χ,

2. import a network c : χ
c1−→ M

c0−→ C, already trained on the dataset D,
where C is the space of classes, M the space of features at that cut level,

3. pass the new dataset D′ through c1 and train c′
0 on c1(D′), and

4. use c′ := c′
0 ◦ c1 as the new classifier on D′.

This approach requires much fewer parameters to train, passes the data D′

only once through c1, and does not need to backpropagate the error through c1.
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Fine tuning is based on the same first two steps than Cut and Paste, but
instead of steps 3 and 4, uses the weights of c to initialise the training of the
new network c′ on D′. It is assumed that c and c′ share the same architecture.

3 Mind to Mind Algorithm

We now adapt to GANs the cut-and-paste procedure described in Sect. 2. Let us
consider factorisations of the form g : Z

g0−→ M ′ g1−→ χ, c : χ
c1−→ M

c0−→ C.

Algorithm 1. Mind2Mind transfer learning.
Require: (c1, g1), an autoencoder trained on a source dataset D, α, the learning rate,

b, the batch size, n, the number of iterations of the critic per generator iteration, D′,
a target dataset, ϕ′ and θ′ the initial parameters of the critic c′

0 and of the generator
g′
0. We denote by Lc and Lg the losses of the c and g.
Compute c1(D′).
while θ′ has not converged do

for t = 0, ..., n do
Sample {m(i)}b

i=1 ∼ c1�PD′ a batch from c1(D′).
Sample {z(i)}b

i=1 ∼ PZ a batch of prior samples.
Update c′

0 by descending Lc.
end for
Sample {z(i)}b

i=1 ∼ PZ a batch of prior samples.
Update g′

0 by descending −Lg.
end while
return g1 ◦ g′

0. (Note that c0 and g0 were never used).

From now on, as in [9]: Lg := Ez∼PZ
c′
0(g

′
0(z)), Lc := −Em∼c1�PD′ c′

0(m) +
Lg + λEm∼c1�PD′ ,z∼PZ ,α∼(0,1){(‖∇c′

0(αm + (1 − α)g′
0(z))‖2 − 1)2}.

Motivation for the Approach. The architectures of a generator and a critic
of a GAN are symmetric to one another. The high-level features appear in g0,
the closest to the prior vector (resp. c0, the closest to the prediction), while the
low-level features are in g1, the closest to the generated sample (resp c1, the
closest to the input image). Therefore, the analogy with cut and paste is to keep
g1 (the low level features of D) and only learn the high level features g′

0 of the
target data set D′. However, the only way a generator can access to information
from D′ is through the critic c via the value of c ◦ g = c′

0 ◦ c1 ◦ g1 ◦ g′
0 [9]. Hence,

the information needs to back-propagate through c1 ◦ g1 to reach the weights
of g′

0. Our main idea is to bypass this computational burden and train directly
g′
0 and c′

0 on c1(D′). But this requires that the source of c′
0 coincides with the

target of g′
0. Therefore, we assume that M = M ′, a first hint that autoencoders

are relevant for us.
A second hint comes from an analogy with humans learning a task, like

playing tennis, for instance. One can model a player as a function Z
g→ χ, where
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χ is the space of physical actions of the player. His/her coach can be understood
as a function χ

c→ R, giving c(g(z)) as a feedback for an action g(z) of g. The
objective of the player can be understood as to be able to generate instances
of the distribution D′ on χ corresponding to the “tennis moves”. However, in
practice, a coach rarely gives his/her feedback as a score. He instead describes
what the player has done and should do instead. We can model this description as
a vector c1(g(z)) in M , the mind of c = c0 ◦c1. In this analogy, c1 corresponds to
the coach analyzing the action, while c0 corresponds to the coach giving a score
based on this analysis. One can also decompose the player itself as g = g1 ◦ g0.
Here g0 corresponds to the player conceiving the set of movements he/she wants
to perform and g1 to the execution of these actions. Therefore, two conditions
are needed for the coach to help efficiently his/her student:

1. they must speak the same language in order to understand one each other,
2. the player must already have a good command of his/her motor system g1.

In particular, the first constraint implies that they must share the same
feature space, i.e., M = M ′. A way to ensure that both constraints are satisfied
is to check whether the player can reproduce a task described by the coach, i.e.,
that

g1(c1(x)) = x (2)

holds. One recognizes in (2) the expression of an autoencoder. It is important
to remark that usually, based on previous learning, a player already has a good
motor control and he/she and his/her coach know how to communicate together.
In other words g1 and c1 satisfy (2) before the training starts. Then the training
consists only in learning g′

0 and c′
0 on the high level feature interpretations of

the possible tennis movements, i.e., on c1(D′).

4 Theoretical Guarantee for Convergence

Let us start by recalling the relevant definitions.

Definition 1. Let (X, ‖.‖) be a metric space. For two probability measure P1,
P2 on X, a transference plan with marginals P1 and P2 is a measure γ on X×X
such that:

γ(A × X) = P1(A) and γ(X × B) = P2(B).

The Wasserstein distance between P1 and P2 is defined by

W (P1,P2) = inf
γ∈Π(P1,P2)

E(x,y)∼γ‖x − y‖, (3)

where Π(P1,P2) denotes the set of transference plans with marginals P1 and P2.

Our main theorem controls the convergence of the generated distribution
towards the true target distribution. Very concretely, Theorem 1 tells us that in
order to control the convergence error erconv = W (PD′ ,P′

θ) of the transferred
GAN towards the distribution of the target dataset D′, we need the exact ana-
logues of steps 1–3 of 2:
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1. choose two datasets D′ and D very similar, i.e., ershift = W (PD,PD′) small,
2. choose a good autoencoder (c1, g1) so that erAE = W (PD, AE(PD)) is small,
3. train well the MindGAN (g′

0, c
′
0) on c1(D′), i.e., ermind = W (c1�PD′ ,P′0

θ )
small, where P

′0
θ = g′

0�PZ .

Theorem 1. There exist two positive constants a and b such that

erconv ≤ a · ershift + erAE + b · ermind. (4)

Proof. From the triangle inequality property of the Wasserstein metric and the
definition of P′

θ, one has:

W (PD′ ,P′
θ) ≤ W (PD′ , AE(PD′)) + W (AE(PD′), g1�P

′0
θ ).

One concludes with Lemma 2 and Lemma 1 with φ = g1.

Lemma 1. Let φ : X → Y be a C-lipschitz map, then:

WY (φ�μ, φ�ν) ≤ CWX(μ, ν).

Proof. Let γ be a transference plan realising WX(μ, ν). Define γ′ := (φ × φ)�γ.
One can check that γ′ defines a transference plan between φ�μ and φ�ν. There-
fore, one has the following relation

WY (φ�μ, φ�ν) ≤
∫

‖x − y‖dγ′(x, y)

=
∫

‖φ(x) − φ(y)‖dγ(x, y)

≤
∫

C‖x − y‖dγ(x, y)

= CWX(μ, ν),

where the first inequality comes from the fact that γ′ is a transference plan, the
first equality from the definition of the push-forward of a measure by a map
(recalled in Sect. 2), and the last equality from the choice of γ.

Lemma 2. There exist a positive constant a such that

W (PD′ , AE(PD′)) ≤ aW (PD,PD′) + W (PD, AE(PD)).

Proof. Applying twice the triangle inequality, one has:

W (PD′ , AE(PD′)) ≤ W (PD′ ,PD) + W (PD, AE(PD))
+ W (AE(PD), AE(PD′)).

One concludes with Lemma 1 with φ = g1 ◦ c1.
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Fig. 1. Mind2Mind training and samples in 28 × 28.

5 Evaluation

Datasets. We have tested our algorithm at resolution 28 × 28 in grey levels on
MNIST [13], KMNIST [4], FashionMNIST [23] and at resolution 1024 × 1024 in
color on CelabaHQ [12] from models trained on the 60 000 first images of FFHQ
[11], using the library Pytorch. Despite its limitations [3], we have used FID
(Frechet Inception Distance) as metric. It is the current standard for evaluations
of GANs. Wasserstein distance can be faithfully estimated in low dimensions.
However, in these regimes our method is not efficient (cf discussion at end of
Sect. 5). Our code, description of hardware and models are at [15].

At Resolution 28 × 28. We report the results with D′ = MNIST for c1 trained
on each dataset. We compare our results to a Vanilla WGAN with architecture
(g1 ◦ g0, c0 ◦ c1), so that the number of parameters agrees, for fair comparison.

Baseline 1. Vanilla WGAN with gradient penalty trained on MNIST. We have
used for the Vanilla WGAN a model similar to the one used in [9]. However, this
model would not converge properly, due to a problem of “magnitude race.” We
have therefore added an ε-term [12]. Our results appear in the first graph on the
l.h.s of Fig. 1, with time in seconds in abscissa. One can observe extremely fast
convergence of the mindGAN to good scores, in comparison with the Vanilla
WGAN. Note that we have not smoothed any of the curves. This observation
suggests that our approach, beyond the gain in training time, provides a regular-
ising mechanism. The stability of the training confirms this hypothesis. Indeed,
statistics over 10 runs demonstrate a very small standard deviation. In par-
ticular, this regularization enabled us to use a much bigger learning rate (10−3

instead of 10−4), adding to the speed of convergence. In terms of epochs, the
MindGAN and the Vanilla WGAN learn similarly.

Baseline 2. Fine tuning studied in [22]. We have trained a Vanilla WGAN with
gradient penalty on D = KMNIST, the dataset the closest to D′ = MNIST.
We have then fine-tuned it on D′, i.e., trained a new network on D′, initialized
with the weights of this previously trained Vanilla WGAN. We display it on the
l.h.s of Fig. 1 under the name Vanilla init Kmnist, together with our best result,
namely a Mind2Mind transfer on D′ = MNIST from D = KMNIST. One can
observe that the Mind2Mind approach achieves significantly better performances
in FID.
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Fig. 2. Mind2Mind on CelebaHQ transfered from FFHQ.

The r.h.s of Fig. 1 displays samples of images produced by a MindGAN
trained on MNIST images encoded using a KMNIST autoencoder.

At Resolution 1024 × 1024. We train a mindGAN on CelebaHQ [12] encoded
with the ALAE model [17] pre-trained on FFHQ. We reach (over 5 runs) an
average FID of 15.18 with an average standard deviation of 0.8. This is a better
result than the FID score (19.21) of an ALAE directly trained from scratch (see
table 5 from [17]). Samples are displayed in Fig. 2. Our training (1.5 h) on a
GPU V100 is 224 (resp. 656) times faster than the training of a proGAN
(resp. StyleGAN) (14, resp. 41 days) [11,12]. On a GTX 1060 it is 112 (resp.
328) times faster than the training of a proGAN (resp. StyleGAN) both
on a V100. Note that a GTX 1060 costs around 200 USD while a V100 is
around 8000 USD. We see two factors that can explain the acceleration of the
training. The first one is that there are much less parameters to train. Indeed, our
mindGAN in HD has around 870K parameters, while the ALAE model (based
on a StyleGAN architecture) has 51M parameters. So this already represents a
difference of almost two orders of magnitude. One can suspect that the rest of
the difference comes from the fact that we bypass 18 layers in the computation of
the backpropagation. We believe that the validation of this hypothesis deserves
a careful experimental study.

6 Discussion

Previous works considered adversarial learning with autoencoders ([2,6,7,10,14,
17,21,24]), without considering transfer learning. It was addressed by [19] and
[22] with fine-tuning (see Sect. 5), which can be also applied in our setting, see
Fig. 1. Transferring layers enables faster learning at the price of possibly worse
quality. However, in practice, we obtained a better asymptote with a FID of
15.18 (resp. 19.21) for the transferred model (resp. from scratch) on CelebaHQ
thanks to the focus of the training on a more significant part of the network (the
MindGAN). Our primary objective was not to improve training on limited data:
the targeted users are practitioners without significant computing capacity. Their
need is to reach a reasonable quality in a short time. In terms of wall clock time,
we learn roughly 224 (resp. 656) times faster than a ProGAN (resp. StyleGAN)
on CelebaHQ, at a price of a worse performance in terms of quality (FID of
15.18 compared to 8.03 for ProGAN and 4.40 for StyleGAN, see table 5 and
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4 from [17] and [11]). So merits of our algorithm will depend on the tradeoff
between the needs of the users in terms of quality and their constraints in terms
of computing capacity.
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Abstract. We study the problem of optimally steering a network flow
to a desired steady state, such as the Boltzmann distribution with a
lower temperature, both in finite time and asymptotically. In the infinite
horizon case, the problem is formulated as constrained minimization of
the relative entropy rate. In such a case, we find that, if the prior is
reversible, so is the solution.
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1 Introduction

We consider in this paper optimal steering for networks flows over a finite or
infinite time horizon. The goal is to steer a Markovian evolution to a steady state
with desirable properties while minimizing relative entropy or relative entropy
rate for distributions on paths. For the case of infinite time horizon, we derive
discrete counterparts of our cooling results in [3]. In particular, we characterize
the optimal Markov decision policy and show that, if the prior evolution is
reversible, so is the solution.

The problem relates to a special Markov Decision Process problem, cf. [6,
Section 6] which is referred to as a Schrödinger Bridge Problem or as regularized
Optimal Mass Transport. This field was born with two impressive contributions
by Erwin Schrödinger in 1931/32 [31,32] dealing with a large deviation problem
for the Wiener measure.
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The delicate existence question, left open by Schrödinger, was solved in vari-
ous degrees of generality by Fortet, Beurling, Jamison and Föllmer [1,17,18,22].
The connection between Schrödinger Bridges and Optimal Mass Transport was
discovered more recently in [27], see also [23] and references therein. It is impor-
tant to stress that Fortet’s proof is algorithmic, establishing convergence of a
(rather complex) iterative scheme. This predates by more than twenty years the
contribution of Sinkhorn [33], who established convergence in a special case of
the discrete problem where the proof is much simpler. Thus, these algorithms
should be called Fortet-IPF-Sinkhorn, where IPF stands for the Iterative Pro-
portional Fitting algorithm proposed in 1940 without proof of convergence in
[15].

These “bridge” problems may be formulated in a “static” or “dynamic”
form. The static, discrete space version was studied by many after Sinkhorn,
see [14,30] and references therein. The dynamic, discrete problem was consid-
ered in [9–11,19,29]. It should be remarked that the latter papers feature a
general “prior” measure on paths, differently from the static problem which is
viewed as a regularized optimal mass transport problem. Moreover, the static
formulation does not readily provide by-product information on the new transi-
tion probabilities nor does it suggest the paths where the optimal mass flows. It
is therefore less suited for typical network routing applications. Convergence of
the iterative scheme in a suitable projective metric was also established in [19]
for the discrete case and in [4] for the continuous case.

This general topic lies nowadays at the crossroads of many fields of science
such as probability, statistical physics, optimal mass transport, machine learning,
computer graphics, statistics, stochastic control, image processing, etc. Several
survey papers have appeared over time emphasizing different aspects of the sub-
ject, see [5–7,23,30,36].

We finally mention, for the benefit of the reader, that, starting from [37],
several attempts have been made to connect Schrödinger Bridges with various
versions of stochastic mechanics, the most notable of the latter being due to
Fényes, Bohm, Nelson, Levy-Krener [2,16,24,28]. In a series of recent papers
[12,13,34], the flows of one time marginals (displacement interpolation) associ-
ated to the Optimal Mass Transport (OMT), to the Schrödinger Bridge (SB)
and to the Fényes-Bohm-Nelson Stochastic Mechanics (SM) are characterized
as extremal curves in Wasserstein space [35]. The actions in SB and in SM
feature, besides the kinetic energy term of OMT, a Fisher Information Func-
tional with the plus sign for SB and the minus sign for SM, see [13, Section VI].
From the latter viewpoint, the misterious “quantum potential” appearing in the
Madelung fluid [25] associated to the Schrödinger Equation simply originates
from the Wasserstein gradient of the Fisher Information Functional.

The outline of the paper is as follows. In Sect. 2, we collect a few basic facts
on the discrete Schrödinger bridge problem. In Sect. 3, we introduce the infinite-
horizon steering problem by minimizing the entropy rate with respect to the prior
measure. We then discuss existence for the one-step Schrödinger system leading
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to existence for the steering problem. Section 4 is devoted to an interesting result
linking optimality in the steering problem to reversibility of the solution.

2 Discrete Schrödinger Bridges

Let M = (mij) be a matrix with nonnegative elements compatible with the
topology of the directed, strongly connected, aperiodic graph G = (X , E). Here
X = {1, 2, . . . , n} is the vertex set and E ⊆ X × X the edge set. Compatibility
means that mij = 0 whenever (i, j) �∈ E . Let time vary in T = {0, 1, . . . , N}. Let
μ0 be a probability distribution supported on all of X . Consider the Markovian
evolution

μt+1(xt+1) =
∑

xt∈X
μt(xt)mxtxt+1 , t = 0, 1, . . . , N − 1. (1)

As we do not assume that the rows of M sum to one, the total mass is not
necessarily preserved. We can then assign a measure to each feasible1 path x =
(x0, x1, . . . , xN ) ∈ X N+1,

M(x0, x1, . . . , xN ) = μ0(x0)mx0x1 · · · mxN−1xN
. (2)

One-time marginals are then recovered through

μt(xt) =
∑

x� �=t

M(x0, x1, . . . , xN ), t ∈ T .

We seek a probability distribution P on the feasible paths, with prescribed
initial and final marginals ν0(·) and νN (·), respectively, which is closest to the
“prior” measure M in relative entropy2. Let P(ν0, νN ) denote the family of such
probability distributions. This brings us to the statement of the Schrödinger
Bridge Problem (SBP):

Problem 1. Determine

P∗[ν0, νN ] := argmin{D(P‖M) | P ∈ P(ν0, νN )}. (3)

1 x = (x0, x1, . . . , xN ) is feasible if (xi, xi+1) ∈ E , ∀i.
2 Relative entropy (divergence, Kullback-Leibler index) is defined by

D(P‖M) :=

{∑
x P(x) log P(x)

M(x)
, Supp(P) ⊆ Supp(M),

+∞, Supp(P) �⊆ Supp(M),

Here, by definition, 0 · log 0 = 0. The value of D(P‖M) may turn out to be negative
due to the different total masses in the case when M is not a probability measure.
The optimization problem, however, poses no challenge as the relative entropy is
(jointly) convex over this larger domain and bounded below.
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Theorem 1 [9,19,29]. Assume that MN has all positive elements. Then there
exists a pair of nonnegative functions (ϕ, ϕ̂) defined on T ×X and satisfying the
system

ϕ(t, xt) =
∑

xt+1

mxtxt+1ϕ(t + 1, xt+1), t = 0, 1, . . . , N − 1, (4)

ϕ̂(t + 1, xt+1) =
∑

xt

mxtxt+1 ϕ̂(t, xt), t = 0, 1, . . . , N − 1, (5)

as well as the boundary conditions

ϕ(0, x0)·ϕ̂(0, x0) := ν0(x0), ϕ(N,xN )·ϕ̂(N,xN ) := νN (xN ), ∀x0, xN ∈ X . (6)

Suppose moreover that ϕ(t, i) > 0, ∀ t ∈ T ,∀x ∈ X . Then, the Markov distribu-
tion P∗ in P(ν0, νN ) having transition probabilities

π∗
xtxt+1

(t) = mxtxt+1

ϕ(t + 1, xt+1)
ϕ(t, xt)

(7)

solves Problem 1.

For an extension of this result to a time-varying M see, e.g. [9]. In Theorem
1, if (ϕ, ϕ̂) satisfies (4)–(5)–(6), so does the pair (cϕ, 1

c ϕ̂) for all c > 0. Hence,
uniqueness for the Schrödinger system is always intended as uniqueness of rays.
The solution can be computed through the Fortet-IPF-Sinkhorn3 iteration [14,
15,18,19,33].

Consider now an “energy function” Ex on the vertex set and the Boltzmann
distribution

πT (x) = Z(T )−1 exp
[
−Ex

kT

]
, where Z(T ) =

∑

x

exp
[
−Ex

kT

]
, (8)

for a suitable value of the “temperature” parameter T , and k a (Boltzmann)
constant in units of energy. This distribution tends to the uniform for T → ∞.
For T ↘ 0, it has the remarkable property of concentrating on the set of minimal
energy states. This is exploited in the search for absolute minima of non convex
functions or even NP-hard problems such as the traveling salesman problem.
Indeed, in Metropolis-like algorithms, it is more likely at low temperatures to
sample minimal energy states [20]. Simulated annealing is then used to avoid
getting stuck in local minima. In the case when M = P (T ) is an irreducible
stochastic matrix such that

P (T )′πT = πT ,

Theorem 1 can be used to optimally steer the Markov chain to the desired
πTeff , Teff < T , at time t = N . To keep the chain in πTeff after time N , however,
one has to switch to the time-invariant transition mechanism derived in the next
section.
3 Please see the Introduction for the historical justification of this name.



864 Y. Chen et al.

3 Optimal Steering to a Steady State

Suppose π is a desired probability distribution over the state space X of our
resources, goods, packets, vehicles, etc. We tackle below the following key ques-
tion: How should we modify Mso that the new evolution stays as close as possible
to the prior but admits π as invariant distribution?

3.1 Minimizing the Relative Entropy Rate

Let M be the prior measure on the feasible paths as in Sect. 2. Our goal is to find
a stochastic matrix Π such that Π ′π = π and the corresponding time-invariant
measure P on X × X × · · · is closest to M. Let P be the family of Markovian
distributions on the feasible paths. More precisely, we consider the following
problem:

Problem 2.

min
P∈P

lim
N→∞

1
N

D
(
P[0,N ]‖M[0,N ]

)

subject to Π ′π = π,

Π1 = 1,

where 1 is the vector of all ones.

By formula (18) in [29]

D
(
P[0,N ]‖M[0,N ]

)
= D(π‖m0) +

N−1∑

k=0

∑

ik

D(πikik+1‖mikik+1)π(ik). (9)

Thus, Problem 2 becomes the stationary Schrödinger bridge problem:

Problem 3.

min
(πij)

∑

i

D(πij‖mij)π(i),

subject to
∑

i

πijπ(i) = π(j), j = 1, 2, . . . , n,

∑

j

πij = 1, i = 1, 2, . . . , n,

where we have ignored the nonnegativity of the πij . This problem is readily
seen to be equivalent to a standard one-step Schrödinger bridge problem for the
joint distributions p(i, j) and m(i, j) at times t = 0, 1 with the two marginals
equal to π. Following Theorem 1, suppose there exist vectors with nonnegative
components (ϕ(t, ·), ϕ̂(t, ·)), t = 0, 1 satisfying the Schrödinger system
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ϕ(0, i) =
∑

j

mijϕ(1, j), (10a)

ϕ̂(1, j) =
∑

i

mijϕ̂(0, i), (10b)

ϕ(0, i) · ϕ̂(0, i) = π(i), (10c)
ϕ(1, j) · ϕ̂(1, j) = π(j). (10d)

Then, we get

π∗
ij =

ϕ(1, j)
ϕ(0, i)

mij , (11)

which satisfies both constraints of Problem 3. The corresponding measure P∗ ∈
P solves Problem 2. There is, however, a difficulty. The assumption in Theorem
1 which guarantees existence for the Schrödinger system takes here the form
that M must have all positive elements: This is typically not satisfied. A more
reasonable condition is provided below.

3.2 Existence for the One-Step Schrödinger System

Definition 1 [26]. A square matrix A is called fully indecomposable if there
exist no pair of permutation matrices P and Q such that

A = P

[
A11 0
A21 A22

]
Q (12)

where A11 and A22 are nonvacuous square matrices.

The following result may be proven along the lines of [26, Theorem 5].

Proposition 1. Suppose M is fully indecomposable and π has all positive com-
ponents. Then there exists a solution to (10) with ϕ(0, ·) and ϕ(1, ·) with positive
components which is unique in the sense of the corresponding rays.

A question that naturally arises in this context is the following: Given the graph
G, what distributions π admit at least one stochastic matrix compatible with
the topology of the graph for which they are invariant? Clearly, if all self loops
are present ((i, i) ∈ E ,∀i ∈ X ), any distribution is invariant with respect to
the identity matrix which is compatible. Without such a strong assumption, a
partial answer is provided by the following result which follows from Theorem 1
and Proposition 1 taking as M the adjacency matrix, see [8].

Proposition 2. Let π be a probability distribution supported on all of X , i.e.
π(i) > 0,∀i ∈ X . Assume that the adjacency matrix A of G = (X , E) is
fully indecomposable. Then, there exist stochastic matrices Π compatible with
the topology of the graph G such that

Π ′π = π.
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4 Reversibility

In [3, Corollary 2], we have shown that, in the case of a reversible prior
(Boltzmann-Gibbs density) for a stochastic oscillator, the solution of the continu-
ous countepart of Problem 2 (minimizing the expected input power) is reversible.
We prove next that the same remarkable property holds here in the discrete
setting.

Theorem 2 [8]. Assume that M is reversible with respect to μ, i.e., that

diag(μ)M = M ′ diag(μ). (13)

Assume that M is fully indecomposable and that μ has all positive components.
Then, the solution Π∗ of Problem 3 is also reversible with respect to π.

Remark 1. Notice that reversibility in (13) does imply invariance as the rows of
M do not necessarily sum to one.

Corollary 1. Let M = A the adjacency matrix. Suppose A is symmetric and
fully indecomposable. Suppose π has all positive components. Then, the solution
to Problem 3 is reversible with respect to π. Moreover, the corresponding path
measure maximizes the entropy rate.

Proof. The first part follows from Theorem 2 observing that A being symmetric
is equivalent to A being reversible with respect to 1. For the second part, recall
that entropy (rate) is the opposite of relative entropy (rate) with respect to the
uniform. Finally, observe that, up to a positive scalar, the adjacency matrix is
the uniform on the set of edges E .
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31. Schrödinger, E.: Über die Umkehrung der Naturgesetze, Sitzungsberichte der
Preuss Akad. Wissen. Berlin Phys. Math. Klasse 10, 144–153 (1931)
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Abstract. We present low complexity and efficient path selection algo-
rithms for limiting the exposure to pandemic virus during and between
lock-downs. The average outdoor exposure rate reduction is around 3.

Keywords: Virus exposure · Random walks · City maps

1 Introduction

The Covid-19 pandemic has caused repetitive lock-downs for most of mankind
in order to limit the virus circulation. In many countries outdoor excursion were
permitted during lock-downs under strict restrictions; in France, no more than
1 h within 1 km from home. All efforts done in order to reduce the daily exposure
time to virus, the lock-down’s aim is to “flatten the curve” in order to limit the
congestion in hospitals and must be repeated every time the curve becomes
critical and before vaccines and herd-immunity take over. But social distancing
needs to be applied during inter lock-down periods.

This paper is divided in two parts. In the first part we introduce an appli-
cation, called Ariadne Covid. It selects outdoor excursion path with limited
exposure to virus during lock-downs based on its geometrical properties. The
second part is dedicated to inter lock-downs periods, and we introduce a class
of algorithms to select commuting paths.

The fundamental tool in Ariadne Covid is the use of random walks which nat-
urally leads to to a better load balance between streets while avoiding crowded
areas. The application is shown to give a benefit to the first user, although to
have an impact on the pandemic, it must be used by a majority of users.

During inter lock-downs periods people are allowed to commute from home
to work. The path selection presented in the second part is based on drifted
random walks in order to reach the destinations without too much elongations
while offering balanced loads on city streets. Both applications take benefit from
the geometry of city maps which leads to naturally homogeneous street networks.
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2 Covid Exposure During Outdoor Excursion in Cities

The virus of Covid-19 is supposed to have some probability to be transferred
when an infected person is within 1 m of another person during a certain time
(10 m when running or biking). The larger is the exposure time the higher is the
contamination probability (the average contamination delay is around 30 min).
We call exposure time the cumulated time a given person is within 1 m of any
other person during an outdoor excursions.

There are 2,900 km of cumulative pedestrian path length in Paris for a pop-
ulation of 2.2 million inhabitants [1]. Therefore there is ample room for all of
the inhabitants to walk 24/24 h within safe distance. Since only a fraction of the
inhabitant are expected to be walking at the same time, it should be easy to get
the safe spacing.

The problem is that people show a social trend to gather in the same streets,
even during lock-downs, rising the exposure to virus. Data sampled via Google
Street View show how negative is the impact of the social trends. In the paper
we will call social walkers (or social joggers) the walkers who follow the social
trends during outdoor excursions in the city.

We have sampled 55 km of Paris street via Google Street View. We have
made 11 independent random walks starting in different arrondissements. A
segment (30 m) of pedestrian path is sampled every 100 m. Figure 1 displays the
histogram of segment densities sampled in Paris. The Street View pictures date
before the lockdown, and mix several periods. The histogram shows a profile
close to a Zipf distribution of coefficient close to 0.75. We have no yet records for
the period during the lockdown, but we expect a more concentrated distribution
with a larger Zipf coefficient, since the most of the commercial areas are closed
and therefore attraction streets are reduced.

Fig. 1. Histogram of Pedestrian densities in Paris

We represent the city by an abstract graph, with the street intersection (ver-
tices) linked by street segments (edge). We denote V the set of intersections and
E the set of street segments.
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3 Path Selection During Lock-Downs

3.1 Ariadne String Protocol Description

The application consists into delivering on request, a random path for the excur-
sion and a time slot in the day. This path will reduce the exposure to the virus by
avoiding the dangerous areas with an abnormal density of social walkers. In its
most basic setting the path will be a pure random walk, since it shows to actu-
ally reduce the exposure rate even if the user faces only social walkers. Indeed
it is shown that the outdoor exposure to virus is even more reduced compared
to the situation where all inhabitants use the application.

During the excursion the user will have his/her own position displayed on
her/his mobile phone. At half of the excursion time the walker will receive a
notification to reverse the path in order to come back home by keeping path
uniformization. The path may contain loops, because they are necessary in order
to get the uniform density. If it is the case the walker will proceed with the loops.
The walker may skip the loop in the way back but this will shorten the delay of
the excursion. The application terminates (at least its embedded mobile part)
when the user is back home. There are several options in the randomized path
selection.

Time Slot Determination. The time slot is selected uniformly on the time
schedule proposed by the user in his/her request. In France, the slot has a max-
imum duration of one hour.

Path Initialisation. The first step is to randomly select the initial direction:
left or right with probability 1/2, 1/2 on the street/edge of the home address.

Non-backtracking Algorithm: at each intersection J the algorithm randomly
selects the exit road excluding the entry street. If the intersection has four roads,
thus three eligible exits, the weight of each exit is 1/3, 1/3, 1/3. In case of dead-
end, the algorithm selects the U turn. This guarantees the uniformisation of
the densities. If the cartesian distance to home address exceeds the authorized
distance (1 km in France), the path should make a U-turn.

Non-backtracking Algorithm with Reduced Path Diversions: if the
intersection has an even number of streets (thus an odd number of exits) more
weight will be given to the exit street facing the entry street, i.e. the median exit.
For example, the median exit has 1/2 probability to be selected, and the other
exits are uniformly selected. This minor trick still maintain the uniformization
of the densities.
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3.2 Estimation of Exposure Reduction During Covid-19
Lock-Downs

Let E be the street set and for s ∈ E, let �(s) its length and λ(s, t) its linear
density at time t. The total length of the pedestrian network is L =

∑
s∈E �(s).

The total pedestrian population at time t is N(t) =
∑

s∈E λ(s, t)�(s). The prob-
ability that a pedestrian walk on segment s at time t is ρ(s, t) = �(s)λ(s,t)

N(t) . If
we assume that the distribution on every segment is uniform (and ignoring side
effects) the probability that a given pedestrian on segment s is within distance r
to another given pedestrian on the same segment is 2r

�(s) which could be reduced
to r

�(s) if the dangerous zone stands forward to the pedestrian.
Thus if a total population of N pedestrians are present on the streets,

each independently following the density pattern of the λ(s, t), the probabil-
ity that a pedestrian on segment s is not on situation of contact at time t is
(
1 − ρ(s, t) 2r

�(s)

)N

or equivalently
(
1 − 2r λ(s,t)

N(t)

)N

.
Let NT the total population of the city. If the proportion of inhabitants

walking outdoor is ν, the average exposure rate EG(ν) satisfies

EG(ν) = 1 −
∑

s∈E

ρ(s)
(

1 − ρ(s)
2r

�(s)

)νNT

. (1)

assuming that ρ(s) := ρ(s, t) does not vary (too much) during the permitted
hours. If ρ(s, t) varies during the day and ρ(s) is its average on segment s, then
by concavity the above expression is an upper bound of the exposure rate.

Theorem 1. The stationary distribution of the non-backtracking random walk
is the uniform distribution density.

By uniform distribution we mean that the average densities in every street are
identical.

Proof. This is mainly a state of the art result.

But the random walk may be long to converge to its steady state. In our case
it is faster because the density of inhabitant in Paris is almost uniform along
each street, thanks to Hausmannian construction rules dating from the XIXth
century. From now we take the simplified assumption that walkers using the
random walk are indeed in uniform density in the streets.

Let EU (ν) be the average exposure rate when all walkers are random walkers.
It satisfies:

EU (ν) = 1 −
(

1 − 2r

L

)νNT

. (2)

Indeed it suffices to consider the whole pedestrian network as a single segment.
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More interestingly we have the case when a single random walker proceeds
among νNT walkers following their social trends. Let’s call EUG(ν) her/his expo-
sure rate:

EUG(ν) = 1 −
∑

s∈E

�(s)
L

(

1 − ρ(s)
2r

�(s)

)νNT

. (3)

We assume that Parisians have a daily time span (10 h) when excursions are
permitted.

The Fig. 2 shows the cumulative time spent within unsafe distance to any
another individual. Notice that with one hour of excursion time with all social
walkers, each walker cumulates nearly half of this time at less than 1 m of another
individual. This duration drops to 8 min with random walking. If the excursions
were extended to 5 h, the social walkers would cumulate 4 h 30 min within unsafe
distance, the random walkers around 2 h 30 min.

Fig. 2. Virus exposure time (min) as function of outdoor excursion duration (in hours).
(Left) red: all walkers are social but randomly dispatched on 10 h (solid) on 5 h (dashed);
blue: when walkers are all random. (Right) red: for a single social walker, when all other
walkers are social walkers during 1 h, green: the single walker is random, dashed: social
walkers select slot on an interval of 5 h instead of 20 h. (Color figure online)

4 Path Selection During Lock-Downs Periods

Contrary to lock-down outdoor excursions which are mostly aimless (walking,
jogging), the excursions during inter lock-downs periods are now aimed (com-
muting between home and work place). The public transportation will be mostly
discarded because of poor social distancing. The city of Paris has increased the
number of biking lanes. However the biking lanes will be very busy because
people commute around the same hours. Our work is to extend Ariadne Covid
application in order to help the user to find biking routes from home to work,
which limit the virus exposure.
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4.1 Path Selection Algorithm

An initial position of a user is on a segment (IU , ID) ∈ E. The path will take
the intersection among IU and ID which lies ahead of the destination zf , i.e. if
〈zf − z0|IU − ID〉 ≥ 0 then IU is selected: z1 = IU , otherwise z1 = ID.

At step number k of the algorithm, let zk be the intersection, where the path
is currently ending. Let d be the degree of the intersection zk. If d = 1, then the
path backtracks. If d > 1 then with probability ε the path proceeds as a non-
backtracking random walk, i.e. the path takes any other neighbor edge distinct
of the entrance street with equal probability. Otherwise, with probability 1 − ε,
the path takes one of the two best sectored streets, defined as follows. Assuming
the heading of the segment (zk, zk−1) is θ0, and we enumerate θ1, θ2, . . . θd−1 the
headings in increasing order of the other exit segments of the intersection zk.
Let θ be the heading of the vector (zk, zf ) toward the destination.

The Isotropic Walk Algorithm. Let j be such that j 2π
d < θ ≤ (j + 1)2π

d .
Note here that j + 1 must be considered by modulo of d. Let variables αd(θ)
and βd(θ) such that αd(θ) + βd(θ) = 1 and αd(θ)e2ijπ/d + βd(θ)e2i(j+1)π/d be
proportional to eiθ. Numerically we have

{
αd(θ) = sin(2(j+1)π/d−θ)

sin(θ−2jπ/d)+sin(2(j+1)π/d−θ)

βd(θ) = sin(θ−2jπ/d)
sin(θ−2jπ/d)+sin(2(j+1)π/d−θ) .

(4)

The selection of the next intersection zk+1 is done as follows: with probability
αd(θ) it selects the edge corresponding to angle θj , and with probability βd(θ)
the edge corresponding to the angle θj+1. The algorithm is much less complex
than the Dijkstra shortest path algorithm and contrary to the later provides
path diversity. Indeed the shortest path algorithm leads to a complexity larger
than the number of edges, while the randomized algorithm is at most linear, in
the number of vertices, in fact proportional to the diameter of the graph.

Definition 1 (Isotropic walk condition). A walk is isotropic, when reaching
any given intersection I, the difference of an angle θ toward a destination with
an angle θ0 to an arriving edge, satisfies a certain distribution PI(θ − θ0).

Theorem 2. Under the isotropic walk condition, and assuming the same con-
stant speed v of all travellers in each street, the aggregation of paths leads to
uniform densities of travellers on streets.

Proof. We show that uniform rate situation is stationary. Let’s consider that
a walker enters an intersection I of degree d. In the epsilon mode the walker
uniformly exits on the other streets. In the sectored mode, enumerating the edges
in counter clockwise way from the entrance street, the isotropic walk conditions
leads to the probability pd(j) that the edge j is selected:

pd(j) =
∫ 2(j+1)π/d

2jπ/d

PI(θ)αd(θ) +
∫ 2jπ/d

2(j−1)π/d

PI(θ)βd(θ). (5)
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Let us assume that before time t all streets have same exit rate ρ. Therefore
the entrance flow on any of the streets is ερ + (1 − ε)

∑j=d
j=0 pd(j)ρ = ρ and

consequently the exit rates are uniform beyond t. Assuming a uniform speed v
on each street, the density of travellers on each street is ρ/v per unit length.

4.2 The Geo-Routing Algorithm

We introduce the geo-routing algorithm ispired from [2], which is very close to
the isotropic walk with the difference that we replace the 2jπ/d by the actual
angles of the streets. The consequences are twofold: (i) the average exit path
is heading toward the destination, (ii) we lose the pure isotropic property, the
densities in the exit streets will now vary with the angles between the streets.

Fig. 3. Left: Illustration of steps of the randomized geo-routing algorithm. The traveller
enters the intersection via the large blue arrow. Right: the map of Kaliningrad. (Color
figure online)

4.3 Simulation of the Algorithms

We have simulated the algorithms on the map of the city of Kaliningrad, famous
for its network of bridges, river and marshes (Fig. 3). Instead of the classic grid
maps of modern cities, the natural obstacles, blocking direct headings, hamper
the performances of the algorithms. Indeed we get some blocking loops. In order
to cope with looping problems we used the concept of the so-called accessibility
graph, see [3]. Let G = G(V,E) be the street graph. The second degree accessi-
bility graph of the graph G ∗ G or G∗2 is the graph whose vertex set is V and
the edge set is E2 such that for (x, y) ∈ V 2, (xy) ∈ E2 if there exists z ∈ V
such that (xz) and (zy) belong to E. We have computed G∗2, G∗4 and G∗8. If
the algorithm on a path determination fails on G because of a permanent loop,
we run the algorithm on G∗2. Then, if it again fails on G∗2k we run the algo-
rithm on the accessibility graph of the next degree G∗2k+1

until the accessibility
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graph becomes fully connected graph (we never get to this). When the path is
determined one unfolds the path on the original graph G. We have simulated
the application of the isotropic walk and the geo-routing algorithm over 1,000
requests between the same pair initial point and destination point. We set ε = 0.
The Fig. 4 shows the various path provided by the algorithms.

Fig. 4. Path diversity in central Königsberg. Left: geo-routing algorithm. Right:
isotropic walks. In green the streets belonging to less than 25 paths, in blue, between
25 and 50, in red, between 50 and 200. In black, above 200. (Color figure online)

Let s ∈ E, �(s) is the segment length, and let λ(s) be the traffic load
after N0 initial-destination random pairs. The average path length is LG =
1

N0

∑
s∈E λ(s)�(s). The average travel time is LG/v. If the simulated time is T ,

the segment s sees an average entrance rate λ(s)
T and the density on the segment

length is λ(s)
vT , assumed to be Poisson. If we consider a total number of travellers

N , then the density on a segment is λ(s)
vT

N
N0

, where N0 is a number of travellers
needed to simulate the estimate of λ(s). Given the Poisson density, a probability
that a random traveller at a random time on the segment is not within distance
R0 of another traveller is exp

(
−λ(s) 2R0

vT
N
N0

)
, R0 is the safe distance against

the virus (for biking 10m). We write the expression of an average cumulative
exposure time E(N) for a random walk (traveller):

E(N) =
∑

s∈E

λ(s)�(s)
vN0

(

1 − exp
(

−λ(s)
2R0

vT

N

N0

))

. (6)

Figure 5 shows the simulation of the path length and exposure times with both
algorithms after N0 = 5, 000 random initial-destination pairs. The geo-routing
algorithm shows a slightly better path length and cumulated exposure.
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Fig. 5. In blue the isotropic routing, in brown the geo-routing in Kaliningrad
(Königsberg). (Left) average path length in km. (Right) the exposure time in minute
as function of travellers number N , peak time duration: 2 h. (Color figure online)

5 Conclusions

We have presented the path selection algorithms and efficient path selection,
which limits outdoor virus exposure during or between lock-down periods by path
diversity and exploiting the geometry of street networks in cities. The proposed
solution is based on low complexity algorithms. For practical applications one
needs to take into account that success rate of the algorithm implementation
strongly depends on users acceptance of those rules, which is left as an outlook.
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Abstract. We propose an innovative algorithm that iteratively evolves a
particle system to approximate the sample-wised Optimal Transport plan
for given continuous probability densities. Our algorithm is proposed via
the gradient flow of certain functional derived from the Entropy Trans-
port Problem constrained on probability space, which can be understood
as a relaxed Optimal Transport problem. We realize our computation
by designing and evolving the corresponding interacting particle system.
We present theoretical analysis as well as numerical verifications to our
method.
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1 Introduction

Optimal transport (OT) provides powerful tools for comparing probability mea-
sures in various types. The optimal Transport problem was initially formalized
by Gaspard Monge [19] and later generalized by Leonid Kantorovich [12]. Later
a series of significant contribution in transportation theory leads to deep connec-
tions with more mathematical branches including partial differential equations,
geometry, probability theory and statistics [5,12]. Researchers in applied science
fields also discover the importance of Optimal Transport. In spite of elegant the-
oretical results, generally computing Wasserstein distance is not an easy task,
especially for the continuous case.

In this paper, instead of solving the standard Optimal Transport (OT) prob-
lem, we start with the so-called Entropy Transport (ET) problem, which can
be treated as a relaxed OT problem with soft marginal constraints. Recently,
the importance of Entropy Transport problem has drawn researchers’ attention
due to its rich theoretical properties [16]. By restricting ET problem to prob-
ability manifold and formulating the gradient flow of the target functional of
the Entropy Transport problem, we derive a time-evolution Partial Differential
Equation (PDE) that can be then realized by evolving an interacting particle
system via Kernel Density Estimation techniques [22].
c© Springer Nature Switzerland AG 2021
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Our method directly computes for the sample approximation of the optimal
coupling to the OT problem between two density functions. This is very different
from traditional methods like Linear Programming [20,24,27], Sinkhorn itera-
tion [8], Monge-Ampère Equation [4] or dynamical scheme [3,15,23]; or methods
involving neural network optimizations [13,18,25].

Our main contribution is to analyze the theoretical properties of the Entropy
Transport problem constrained on probability space and derive its Wasserstein
gradient flow. To be specific, we study the existence and uniqueness of the solu-
tion to ET problem and further study its Γ -convergence property to the classical
OT problem. Then based on the gradient flow we derive, we propose an innova-
tive particle-evolving algorithm for obtaining the sample approximation of the
optimal transport plan. Our method can deal with optimal transport problem
between two known densities. As far as we know, despite the classical discretiza-
tion methods [3,4,15] there is no scalable way to solve this type of problem. We
also demonstrate the efficiency of our method by numerical experiments.

2 Constrained Entropy Transport as a Regularized
Optimal Transport Problem

2.1 Optimal Transport Problem and Its Relaxation

In our research, we will mainly focus on Euclidean Space R
d. We denote P(E)

as the probability space defined on the given measurable set E. The Optimal
Transport problem is usually formulated as

inf
γ∈P(Rd×R

d),
γ1=μ,γ2=ν

∫∫
c(x, y) dγ(x, y). (1)

Here μ, ν ∈ P(Rd), we denote γ1 as the marginal distribution of γ w.r.t. com-
ponent x and γ2 as the marginal distribution w.r.t. y. We call the optimizer of
(1)1 as Optimal Transport plan and we denote it as γOT .

We can also reformulate (1) as minγ∈P(Rd×Rd)

{Eι(γ|μ, ν)
}

where

Eι(γ|μ, ν) =
∫∫

c(x, y)dγ(x, y) +
∫

ι

(
dγ1
dμ

)
dμ +

∫
ι

(
dγ2
dν

)
dν (2)

Here ι is defined as ι(1) = 0 and ι(s) = +∞ when s �= 1. We now derive a
relaxed version of (1) by replacing ι(·) with ΛF (·), where Λ > 0 is a tunable
positive parameter and F is a smooth convex function with F (1) = 0 and 1
is the unique minimizer. In our research, we mainly focus on F (s) = s log s −
s + 1 [16]. It is worth mentioning that after such relaxation, the constraint
term

∫
F (dγ1

dμ ) dμ is usually called Kullback-Leibler (KL) divergence [14] and is
denoted as DKL(γ1‖μ).

1 When μ, ν are absolute continuous with respect to the Lebesgue measure on R
d, the

optimizer of (1) is guaranteed to be unique.
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From now on, we should focus on the following functional involving cost
c(x, y) = h(x−y) with h as a strictly convex function, and enforcing the marginal
constraints by using KL-divergence:

EΛ,KL(γ|μ, ν) =
∫∫

Rd×Rd

c(x, y) dγ(x, y) + ΛDKL(γ1‖μ) + ΛDKL(γ2‖ν). (3)

2.2 Constrained Entropy Transport Problem and Its Properties

For the following discussions, we always assume that μ, ν ∈ P(Rd) are absolute
continuous with respect to the Lebesgue measure on R

d. We now focus on
solving the following problem

min
γ∈P(Rd×Rd)

{EΛ,KL(γ|μ, ν)}. (4)

A similar problem
min

γ∈M(Rd×Rd)
{EΛ,KL(γ|μ, ν)} (5)

has been studied in [16] with P(Rd × R
d) being replaced by the space of pos-

itive measures M(Rd × R
d) and is named as Entropy Transport problem

therein. In our case, since we restrict γ to probability space, we call (4) con-
strained Entropy Transport problem and call EΛ,KL the Entropy Transport
functional.

Let us denote Emin = infγ∈P(Rd×Rd){EΛ,KL(γ|μ, ν)}. The following theorem
shows the existence of the optimal solution to problem (4). It also describes the
relationship between the solution to the constrained ET problem (4) and the
solution to the general ET problem (5):

Theorem 1. Suppose γ̃ is the solution to original Entropy Transport problem
(5). Then we have γ̃ = Zγ, here Z = e− Emin

2Λ and γ ∈ P(Rd ×R
d) is the solution

to constrained Entropy Transport problem (4).

The proof is provided in [17]. The following corollary guarantees the uniqueness
of optimal solution to (4):

Corollary 1. The constrained ET problem (4) admits a unique optimal solution.

Despite the discussions on the constrained problem (4) with fixed Λ, we also
establish asymptotic results for (4) with quadratic cost c(x, y) = |x − y|2 as
Λ → +∞. For the rest of this section, we define:

P2(E) =
{

γ
∣∣∣ γ ∈ P(E), γ � L d,

∫
E

|x|2dγ(x) < +∞
}

E measurable.

Here we denote L d as the Lebesgue measure on R
d.

Let us now consider P2(Rd×R
d) and assume it is equipped with the topology

of weak convergence. We are able to establish the following Γ -convergence result.
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Theorem 2. Suppose c(x, y) = |x−y|2, let us assume μ, ν ∈ P2(Rd), μ, ν � L d

and both μ, ν satisfy the Logarithmic Sobolev inequality with constants Kμ,Kν >
0. Let {Λn} be a positive increasing sequence with limn→∞ Λn = +∞.

We consider the sequence of functionals {EΛn,KL(·|μ, ν)}. Recall the func-
tional Eι(·|μ, ν) defined in (2). Then {EΛn,KL(·|μ, ν)} Γ - converges to Eι(·|μ, ν)
on P2(Rd × R

d).
Furthermore, (4) with functional EΛn,KL(·|μ, ν) admits a unique optimal solu-

tion, let us denote it as γn. At the same time, the Optimal Transport prob-
lem (1) also admits a unique optimal solution, we denote it as γOT . Then
limn→∞ γn = γOT in P2(Rd × R

d).

Remark 1. We say a distribution μ satisfies the Log-Sobolev inequality with
K > 0 if for any μ̃ � μ, DKL(μ̃|μ) ≤ 1

2K I(μ̃|μ) always holds. Here I(μ̃|μ) =∫ |∇ log
(

dμ̃
dμ

)
|2 dμ̃.

Theorem 2 justifies the asymptotic convergence property of the approximation
solutions {γn} to the desired Optimal Transport plan γOT . The proof of Theorem
2 is provided in [17].

3 Wasserstein Gradient Flow Approach for Solving the
Regularized Problem

3.1 Wasserstein Gradient Flow

There are already numerous references [2,11,21] regarding Wasserstein gra-
dient flows of functionals defined on the Wasserstein manifold-like structure
(P2(Rd), gW ). The Wasserstein manifold-like structure is the manifold P2(Rd)
equipped with a special metric gW compatible to the 2-Wasserstein distance
[2,26]. Under this setting, the Wasserstein gradient flow of a certain functional
F can thus be formulated as:

∂γt

∂t
= −gradW F(γt) (6)

3.2 Wasserstein Gradient Flow of Entropy Transport Functional

We now come back to our constrained Entropy Transport problem (4). There
are mainly two reasons why we choose to compute the Wasserstein gradient flow
of functional EΛ,KL(·|μ, ν):

– Computing the Wasserstein gradient flow is equivalent to applying gradient
descent method to determine the minimizer of the ET functional (3);

– In most of the cases, Wasserstein gradient flows can be viewed as a time
evolution PDE describing the density evolution of a stochastic process. As a
result, once we derived the gradient flow, there will be a natural particle ver-
sion associated to the gradient flow, which makes the computation of gradient
flow tractable.
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Now let us compute the Wasserstein gradient flow of EΛ,KL(·|μ, ν):

∂γt

∂t
= −gradW EΛ,KL(γt|μ, ν), γt|t=0 = γ0 (7)

To keep our notations concise, we denote ρ(·, t) = dγt

dL 2d , 	1 = dμ
dL d , 	2 = dν

dL d ,
we can show that the previous Eq. (7) can be written as:

∂ρ

∂t
= ∇ · (ρ ∇(c(x, y) + Λ log(

ρ1(x, t)
	1(x)

) + Λ log(
ρ2(y, t)
	2(y)

))) (8)

Here ρ1(·, t) =
∫

ρ(·, y, t) dy and ρ2(·, t) =
∫

ρ(x, ·, t) dx are density functions of
marginals of γt.

3.3 Relating the Wasserstein Gradient Flow to a Particle System

Let us treat (8) as certain kind of continuity equation, i.e. we treat ρ(·, t) as
the density of the time-evolving random particles. Then the vector field that
drives the random particles at time t should be −∇(c(x, y) + Λ log

(
ρ1(x,t)
�1(x)

)
+

Λ log
(

ρ2(y,t)
�2(y)

)
). This helps us design the following dynamics {(Xt, Yt)}t≥0: (here

Ẋt denotes the time derivative dXt

dt )
{

Ẋt = −∇xc(Xt, Yt) + Λ(∇ log 	1(Xt) − ∇ log ρ1(Xt, t));
Ẏt = −∇yc(Xt, Yt) + Λ(∇ log 	2(Yt) − ∇ log ρ2(Yt, t));

(9)

Here ρ1(·, t) denotes the probability density of random variable Xt and ρ2(·, t)
denotes the density of Yt. If we assume (9) is well-posed, then the density ρt(x, y)
of (Xt, Yt) solves the PDE (8).

When we take a closer look at (9), the movement of the particle (Xt, Yt)
at certain time t depends on the probability density ρ(Xt, Yt, t), which can be
approximated by the distribution of the surrounding particles near (Xt, Yt). Gen-
erally speaking, we plan to evolve (9) as a particle aggregation model in order to
converge to a sample-wised approximation of the Optimal Transport plan γOT

for OT problem (1).

4 Algorithmic Development

To simulate the stochastic process (9) with the Euler scheme, we apply the
Kernel Density Estimation [22] here to approximate the gradient log function
∇ log ρ(x) by convolving it with kernel K(x, ξ)2:

∇ log ρ(x) ≈ ∇ log(K ∗ ρ)(x) =
(∇xK) ∗ ρ(x)

K ∗ ρ(x)
(10)

2 In this paper, we choose the Radial Basis Function (RBF) as the kernel: K(x, ξ) =

exp(− |x−ξ|2
2τ2 ).
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Algorithm 1. Random Batch Particle Evolution Algorithm
Input: The density functions of the marginals �1, �2, timestep Δt, total number of
iterations T , parameters of the chosen kernel K
Initialize: The initial locations of all particles Xi(0) and Yi(0) where i = 1, 2, · · · , n,
for t = 1,2,· · · ,T do

Shuffle the particles and divide them into m batches: C1, · · · , Cm

for each batch Cq do
Update the location of each particle (Xi, Yi) (i ∈ Cq) according to (11)

end for
end for
Output: A sample approximation of the optimal coupling: Xi(T ), Yi(T ) for i =
1, 2, · · · , n

Here K ∗ ρ(x) =
∫

K(x, ξ)ρ(ξ)dξ, (∇xK) ∗ ρ(x) =
∫ ∇xK(x, ξ)ρ(ξ)dξ3. Such

technique is also known as blobing method, which was first studied in [6] and
has already been applied to Bayesian sampling [7]. With the blobing method,
∇ log ρ(x) is evaluated based on the locations of the particles:

Eξ∼ρ∇xK(x, ξ)
Eξ∼ρK(x, ξ)

≈
∑N

k=1 ∇xK(x, ξk)∑N
k=1 K(x, ξk)

ξ1, ..., ξN , i.i.d. ∼ ρ

Now we are able to simulate (9) with the following interacting particle system
involving N particles {(Xi, Yi)}i=1,...,N . For the i-th particle, we have:
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ẋi(t) = −∇xc(Xi(t), Yi(t)) − Λ

(
∇V1(Xi(t)) +

∑N
k=1 ∇xK(Xi(t),Xk(t))∑N

k=1 K(Xi(t),Xk(t))

)

Ẏi(t) = −∇yc(Xi(t), Yi(t)) − Λ

(
∇V2(Yi(t)) +

∑N
k=1 ∇xK(Yi(t), Yk(t))∑N

k=1 K(Yi(t), Yk(t))

)

(11)
Here we denote V1 = − log 	1, V2 = − log 	2. Since we only need the gra-
dients of V1, V2 , our algorithm can deal with unnormalized probability mea-
sures. We numerically verify that when t → ∞, the empirical distribution
1
N

∑N
i=1 δ(Xi(t),Yi(t)) will converge to the optimal distribution γcET that solves

(4) with sufficient large N and Λ, while the rigorous proof is reserved for our
future work. The algorithm scheme is summarized in the algorithm 1.

Remark 2. Inspired by [10], we apply the Random Batch Methods (RBM) here
to reduce the computational effort required to approximate ∇ log ρ(x) with blob-
ing method: We divide all N particles into m batches equally, and we only con-
sider the particles in the same batch as the particle Xi when we evaluate the
∇ log ρ(Xi). Now in each time step, the computational cost is reduced from O(n2)
to O(n2/m).

3 Notice that we always use ∇xK to denote the partial derivative of K with respect
to the first components.
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5 Numerical Experiments

In this section, we test our algorithm on several toy examples.

Gaussian. We first apply the algorithm to compute the sample approxima-
tion of the Optimal Transport plan between two 1D Gaussian distributions
N (−4, 1),N (6, 1)4. We set λ = 200,Δt = 0.001, c(x, y) = |x − y|2 and run it
with 1000 particles (Xi, Yi)’s for 1000 iterations. We initialize the particles by
drawing 1000 i.i.d. sample points from N (−20, 4) as Xi’s and 1000 i.i.d. sample
points from N (20, 2) as Yi’s. The empirical results are shown in Fig. 1 and Fig. 2.

Fig. 1. Marginal plot for 1D Gaussian example. The red and black dashed lines cor-
respond to two marginal distribution respectively and the solid blue and green lines
are the kernel estimated density functions of particles at certain iterations. After first
25 iterations, the particles have matched the marginal distributions very well. (Color
figure online)

Fig. 2. The sample approximation for 1D Gaussian example. The orange dash line
corresponds to the Optimal Transport map T (x) = x + 10. (Color figure online)

Gaussian Mixture. Then we apply the algorithm to two 1D Gaussian mixture
	1 = 1

2N (−1, 1) + 1
2N (1, 1), 	2 = 1

2N (−2, 1) + 1
2N (2, 1). For experiment, we set

λ = 60,Δt = 0.0004, c(x, y) = |x−y|2 and run it with 1000 particles (Xi, Yi)’s for
5000 iterations. We initialize the particles by drawing 2000 i.i.d. sample points
from N (0, 2) as Xi’s and Yi’s. Figure 3 gives a visualization of the marginal
distributions and the Optimal Transport map.
4 Here N (μ, σ2) denotes the Gaussian distribution with mean value μ and variace σ2.
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Fig. 3. 1D Gaussian mixture. Left. Marginal plot. The dash lines correspond to two
marginal distributions. The histogram indicates the distribution of particles after 5000
iterations. Right. Sample approximation for the optimal coupling.

Wasserstein Barycenters. Our framework can be easily extended to solve the
Wasserstein barycenter problem [1,9]

min
μ∈P2(Rd)

m∑
i=1

λiW
2
2 (μ, μi) (12)

where λi > 0 are the weights. Similar to our previous treatment on OT problem,
we can relax the marginal constraints in (12) and consider

min
γ∈P(R(m+1)d)

∫
R(m+1)d

m∑
j=1

λj |x − xj |2 dγ(x, x1, ..., xm) +
m∑

j=1

ΛjDKL(γj‖μj) (13)

Then we can apply similar particle-evolving method to compute for problem
(13), which can be treated as an approximation of the original barycenter prob-
lem (12). Here is an illustrative example: Given two Gaussian distributions
ρ1 = N (−10, 1), ρ2 = N (10, 1), and cost function c(x, x1, x2) = w1|x − x1|2 +
w2|x−x2|2, we can compute sample approximation of the barycenter ρ̄ of ρ1, ρ2.
We try different weights [w1, w2] = [0.25, 0.75], [0.5, 0.5], [0.75, 0.25] to test our
algorithm. The experimental results are shown in Fig. 4. The distribution of
the particles corresponding to the barycenter random variable X0 converges to
N (5, 1),N (0, 1),N (−5, 1) successfully after 2000 iterations.

Fig. 4. Density plots for 1D Wasserstein barycenter example. The red dashed lines corre-
spond to two marginal distributions respectively and the solid green lines are the kernel
estimated density functions of the particles X1’s and X2’s. The solid blue line represents
the kernel estimated density function of the particles corresponding to the barycenter.
[w1, w2] = [0.25, 0.75], [0.5, 0.5], [0.75, 0.25] from left to right. (Color figure online)
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6 Conclusion

We propose the constrained Entropy Transport problem (4) and study some of
its theoretical properties. We discover that the optimal distribution of (4) can
be treated as an approximation to the optimal plan of the Optimal Transport
problem (1) in the sense of Γ -convergence. We also construct the Wasserstein
gradient flow of the Entropy Transport functional. Based on that, we propose
a novel algorithm that computes for the sample-wised optimal transport plan
by evolving an interacting particle system. We demonstrate the effectiveness
of our method by several illustrative examples. More theoretical analysis and
numerical experiments on higher dimensional cases including comparisons with
other methods will be included in our future work.
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Abstract. Aim of this paper is to take the first steps in the study of
the Schrödinger problem for lattice gases (SPLG), which we formulate
relying on classical results in large deviations theory. Our main contribu-
tions are a dynamical characterization of optimizers through a coupled
system of PDEs and a precise study of the evolution and convexity of
the quasi-potential along Schrödinger bridges. In particular, our compu-
tations show that, although SPLG does not admit a variational interpre-
tation through Otto calculus, the fundamental geometric properties of
the classical Schrödinger problem for independent particles still admit a
natural generalization. These observations motivate the development of
a Riemannian calculus on the space of probability measures associated
with the class of geodesic distances studied in [3]. All our computations
are formal, further efforts are needed to turn them into rigorous results.

Keywords: Large deviations · Schrödinger problem · Optimal
transport · Non-linear mobility · Displacement convexity · Gamma
calculus

1 Introduction

In its original formulation, the Schrödinger problem (henceforth SP) is the prob-
lem of finding the most likely evolution of a cloud of independent Brownian par-
ticles conditionally to the observation of its initial (at t = 0) and final (at t = T )
configurations. From a physical standpoint, it is very natural to address the same
question for a system of interacting particles. This has led to the so-called mean
field Schrödinger problem [1], where the underlying particle system is made of
diffusions interacting through their empirical distribution. Without relying on a
large deviations interpretation, other generalizations of the Schrödinger problem
have been proposed, see e.g. [7,9]. All the versions of the Schrödinger problem
considered in these works can be interpreted as the problem of controlling a
gradient flow in such a way that a target distribution is attained and the control
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energy is minimized, once the space of probability measures is endowed with
the Riemannian metric of optimal transport, also called Otto metric [13]. In the
recent work [12] the Schrödinger problem is formulated in a purely metric set-
ting, thus without relying on a Riemannian structure. In this general context, the
authors obtain a Γ -convergence result of SP towards the corresponding geodesic
problem. However, there are interesting results available for the classical SP that
do rely on geometric, rather than metric considerations and are therefore unlikely
to hold under the weak hypotheses of [12]. These include the convexity of the
entropy along Schrödinger bridges, the symmetric form of optimality conditions
for the dual variables, also called Schrödinger-Kantorovich potentials, and the
interpretation of optimizers as solutions to Newton’s laws. In this note we con-
sider the Schrödinger problem for lattice gases (henceforth SPLG) and formally
establish the analogous of some of the aforementioned geometric results. This
task is not trivial since SPLG does not admit an interpretation in terms of Otto
calculus and Wasserstein geometry. The metric aspects and small-noise limit of
this problem have been studied in [12, Sec 6.4], although without noticing the
connection with large deviations theory. Leaving precise statements to the main
body of the article, we summarize our main contributions.

– We derive necessary optimality conditions in the form of (non-linear) coupled
Hamilton-Jacobi-Bellman and Fokker-Planck equations. We also show that
through a change of variable inspired by time-reversal considerations we can
write optimality conditions in a form akin to the celebrated Schrödinger sys-
tem, that is to say, two HJB equations having the same form except for the
terms containing the time derivative, which have opposite signs.

– We prove representation formulas for the first and second derivative of the
entropy along Schrödinger bridges that formally resemble those for the clas-
sical Schrödinger problem. Under the generalized McCann condition put for-
ward in [3], we show that the entropy is convex along Schrödinger bridges.

We stress that all our calculations are formal and there are serious technical
issues to be overcome in order to turn them into rigorous results. We plan to
address this non-trivial task in future work(s).

2 Schrödinger Problem for Lattice Gases (SPLG)

Stochastic lattice gases may be described as a large collection of interacting par-
ticles performing random walks on the macroscopic blow-up ΛN = NΛ∩Z

d of a
set Λ ⊆ R

d. Particles are indistinguishable and the effect of the interaction is that
the jump rates depend on the empirical particle distribution. Thermal reservoirs
are modeled by adding creation/annihilation of particles at the boundary ∂ΛN

and the influence of an external field is modeled by perturbing the rates giving a
net drift toward a specified direction. Notable examples include the simple exclu-
sion process, zero-range processes and the Glauber-Kawasaki dynamics. In the
diffusive limit N → +∞, the empirical distribution of these systems converges
to the hydrodynamic limit equation
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∂tρ + ∇ · (J(t, ρ)) = 0, where J(t, ρ) = −D(ρ)∇ρ + χ(ρ)E(t).

The vector field J(t, ρ) is called the hydrodynamic current, χ(ρ) ≥ 0 is the
mobility, D(ρ) ≥ 0 the diffusion coefficient and E(t) the external field. D and χ
are connected through the Einstein relation

D(ρ) = f ′′(ρ)χ(ρ), (1)

where f is the free energy of the model. The above equations are supplemented
by the boundary conditions

f ′(ρ(t, x)) = λ(t, x), x ∈ ∂Λ.

All coefficients χ,D,E, λ are macroscopic quantities reflecting the microscopic
description of the particle system: for example, the simple exclusion process
corresponds to χ(ρ) = ρ(1 − ρ), J(t, ρ) = −∇ρ and its hydrodynamic limit
was studied in [8]; the zero-range dynamics corresponds to χ(ρ) = ϕ(ρ),
J(t, ρ) = −ϕ′(ρ)∇ρ, see [2]. The rate function quantifying the large deviations
from the hydrodynamic limit is given by the following “fundamental formula”
in the context of macroscopic fluctuation theory [2]

I[0,T ](ρ, j) =
1
4

∫ T

0

∫
Λ

(j − J(t, ρ)) · χ(ρ)−1 · (j − J(t, ρ)) dxdt, (2)

where ρ is the local density of particles and j is connected to ρ by the continuity
equation. It is worth mentioning that the rate function (2) captures the large
deviations behavior of other relevant interacting systems beyond lattice gases
such as Ginzburg-Landau models [6]. The Schrödinger problem for lattice gases
is therefore given by

CT (μ, ν) = min{I[0,T ](ρ, j) : ∂tρ + ∇ · j = 0, ρ0 = μ, ρT = ν}. (SPLG)

3 Optimality Conditions

From now on we consider the simpler situation of periodic boundary conditions,
where Λ = T

d is the d-dimensional torus and there is no external field, that
is E = 0. To simplify computations we also assume that the mobility χ is a
scalar quantity. Note that the optimal current and density for (SPLG) need to
satisfy χ(ρ)−1(j − J(t, ρ)) = ∇H for some corrector H. Indeed, if we let u =
χ(ρ)−1(j − J(t, ρ)) and w is any smooth vector field satisfying ∇ · (χ(ρ)w) = 0,
then ∂tρ + ∇ · (j + εχ(ρ)w) = 0 for all ε, and by the optimality of (ρ, j)

0 =
d
dε

∣∣∣∣
ε=0

I[0,T ](ρ, j + εwχ(ρ)) =
1
2

∫ T

0

∫
Λ

u · χ(ρ)w dxdt,

which implies that u belongs to the closure of smooth gradients in L2(χ(ρ)).
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We can then rewrite (SPLG) as the problem of minimizing

Ī0,T (ρ,H) =
1
4

∫ T

0

∫
Λ

|∇H|2χ(ρ) dxdt (3)

among all curves (ρ,H) satisfying the continuity equation ∂tρ+∇· (χ(ρ)(∇H −
f ′′(ρ)∇ρ)) = 0 and such that ρ(0, ·) = μ, ρ(T, ·) = ν.

Theorem 1. Let (ρ,H) be an optimal solution. Then

⎧⎪⎪⎨
⎪⎪⎩

∂tρ − ∇ · (D(ρ)∇ρ) + ∇ · (χ(ρ)∇H) = 0,

∂tH + D(ρ)ΔH +
1
2
|∇H|2χ′(ρ) = 0,

ρ(0, ·) = μ, ρ(T, ·) = ν.

(4)

Proof. The equation for ρ is simply a rewriting of the continuity equation with
the Einstein relation D(ρ) = f ′′(ρ)χ(ρ). The equation for H requires more care.
We call variation a curve ρ̃ : (−ε, ε) × [0, T ] × Λ → R≥0 such that

– ρ̃(u, 0, ·) = μ, ρ̃(u, T, ·) = ν for all u ∈ (−ε, ε),
– ρ̃(0, t, ·) = μ, ρ̃(0, t, ·) = ρ(t, ·) for all t ∈ [0, T ].

Let ψ : (−ε, ε) × [0, T ] × Λ → R be a potential such that ∀u ∈ (−ε, ε) we have
∇ψ(u, 0, ·) ≡ ∇ψ(u, T, ·) ≡ 0, and consider the variation which satisfies

∂uρ̃ + ∇ · (χ(ρ̃)∇ψ) = 0, (5)

then there is a potential H̃ : (−ε, ε) × [0, T ] × Λ → R such that ∀t ∈ [0, T ]

∇H̃(0, t, ·) = ∇H(t, ·), ∂tρ̃ − ∇ · (D(ρ̃)∇ρ̃) + ∇ · (χ(ρ̃)∇H̃) = 0. (6)

Imposing the condition
∫∫

∂u

(∇H̃χ(ρ̃)∇H̃
)∣∣

u=0
dxdt = 0,

we are led to analyze at u = 0 the two terms

A =
∫∫

2∇∂uH̃ · ∇H̃χ(ρ̃) dxdt, B =
∫∫

|∇H̃|2χ′(ρ̃) ∂uρ̃dxdt.
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We have, using Eqs. (5), (6) and a series of integration by parts

A =
∫∫

2H̃ ∂u∇ · (
χ(ρ̃)∇H̃

)
dxdt

=
∫∫

2H̃ ∂u

( − ∂tρ̃ + ∇ · (D(ρ̃)∇ρ̃)
)
dxdt

=
∫∫

2∂tH̃∂uρ̃ − 2∇H̃ · (
D′(ρ̃)∂uρ̃ ∇ρ̃ + D(ρ̃)∇∂uρ̃

)
dxdt

=
∫∫

2[∂tH − D′(ρ)∇H · ∇ρ + ∇ · (
D(ρ)∇H)]∂uρ̃ dxdt

=
∫∫

2[∂tH + D(ρ)ΔH]∂uρ̃ dxdt

=
∫∫

∇
(
2[∂tH + D(ρ)ΔH]

)
· ∇ψ χ(ρ) dxdt.

Likewise, using (5) and integration by parts

B =
∫∫

∇(∇Hχ′(ρ)∇H
) · ∇ψ χ(ρ) dxdt.

Imposing criticality, i.e. A + B = 0 we find that along any variation,
∫∫

∇
(
[∂tH + D(ρ)ΔH) +

1
2
|∇H|2χ′(ρ)]

)
· ∇ψ χ(ρ) dxdt = 0.

Since ∇ψ can be chosen arbitrarily, the conclusion follows.

The Schrödinger system
⎧⎪⎨
⎪⎩

∂tH +
1
2
|∇H|2 +

1
2
ΔH = 0,

−∂tĤ +
1
2
|∇Ĥ|2 +

1
2
ΔĤ = 0.

expresses the optimality conditions for the classical Schrödinger problem. It has
a peculiar structure in the sense that H and Ĥ evolve according to two HJB
equations which are identical except for the ∂t term, which changes sign from
one equation to the other. The relation between the Schrödinger system and the
HJB-FP system is given in the classical SP through the Hopf-Cole transform.
It is natural to wonder whether such a structure is conserved in SPLG. In the
next Theorem we answer affirmatively and find a change of variables, inspired
by considerations on time reversal for diffusion processes, that turns (4) into a
symmetric system of non-linear HJB equations.

Theorem 2. Let (ρ,H) be optimal and define Ĥ by

∀(t, x) ∈ [0, T ] × Λ, Ĥ(t, x) + H(t, x) = 2f ′(ρ(t, x)). (7)
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Then we have ⎧⎪⎨
⎪⎩

∂tH + D(ρ)ΔH +
1
2
|∇H|2χ′(ρ) = 0,

−∂tĤ + D(ρ)ΔĤ +
1
2
|∇Ĥ|2χ′(ρ) = 0.

Proof. We have
∂tĤ = 2f ′′(ρ)∂tρ − ∂tH. (8)

We analyze the first term using the continuity equation and f ′′(ρ)∇ρ = ∇(f ′(ρ)).

2f ′′(ρ)∂tρ = 2f ′′(ρ)∇ · (χ(ρ)(∇(f ′(ρ)) − ∇H))

= 2D(ρ)(Δ(f ′(ρ)) − ΔH) + χ′(ρ)
[
2|∇(f ′(ρ))|2 − 2∇(f ′(ρ)) · ∇H

]
.

Plugging this relation into (8) and using (4) to handle ∂tH we finally arrive at

∂tĤt = D(ρ)
[
Δ(2f ′(ρ) − H)

]

+
1
2
χ′(ρ)

[
4|∇(f ′(ρ))|2 − 4∇(f ′(ρ)) · ∇H + |∇H|2]

= D(ρ)
[
Δ(2f ′(ρ) − H)

]
+

1
2
χ′(ρ)|∇(2f ′(ρ) − H)|2.

The conclusion follows from the definition of Ĥ, see (7).

As a corollary of the optimality conditions we deduce that the function

t �→
∫

Λ

∇H · ∇Ĥdx, t ∈ [0, T ],

is conserved along Schrödinger bridges. We denote ET (μ, ν) its constant value.
Beside having the interpretation of a conserved total energy, it is very natural
to conjecture that it expresses the derivative of the cost, viewed as a function of
the time horizon T , i.e.

d
dT

CT (μ, ν) = −ET (μ, ν).

Rigorous results in this direction have been obtained in [5] for the classical SP.

4 Convexity Along Optimal Flow

We consider the energy functional

F(ρ) =
∫

Λ

f(ρ) dx. (9)

This energy functional is naturally associated to the dynamical rate function and
in large deviations theory it is often called the quasi-potential, [2]. A remarkable
fact with many interesting consequences is that the relative entropy is convex
along classical Schrödinger bridges. It is natural to wonder if this remains true in
the non-linear setting. We show two formulas for the first and second derivative
of the entropy that have to be seen as the non-linear analogue of [4,10] and the
stochastic counterpart of those in [3].
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Proposition 1. We have

d
dt

F(ρ) =
1
4

∫
|∇H|2χ(ρ) dx − 1

4

∫
|∇Ĥ|2χ(ρ) dx.

Proof. Using the formula (7) we find ∂tρt+ 1
2∇·((∇Ht−∇Ĥt)χ(ρ)) = 0, whence,

after an integration by parts we obtain

d
dt

F(ρ) =
1
2

∫
∇(f ′(ρ))

(∇H − ∇Ĥ
)
χ(ρ) dx.

The desired conclusion follows again from (7).

Theorem 3. Let g be the primitive of χ′(·)D(·) such that g(0) = 0. Along any
optimal flow (ρ,H) we have

d
dt

1
4

∫
|∇H|2χ(ρ) dx =

1
2

∫
(D(ρ)χ(ρ) − g(ρ))(ΔH)2 dx (10)

+
1
2

∫
g(ρ)

(1
2
Δ|∇H|2 − ∇ΔH · ∇H

)
− 1

2
|∇H|2|∇ρ|2D(ρ)χ′′(ρ) dx,

− d
dt

1
4

∫
|∇Ĥ|2χ(ρ) dx =

1
2

∫
(D(ρ)χ(ρ) − g(ρ))(ΔĤ)2 dx (11)

+
1
2

∫
g(ρ)

(1
2
Δ|∇Ĥ|2 − ∇ΔĤ · ∇Ĥ

)
− 1

2
|∇Ĥ|2|∇ρ|2D(ρ)χ′′(ρ) dx.

In particular,

d2

dt2
F(ρ) =

1
2

∫
(D(ρ)χ(ρ) − g(ρ))

(
(ΔH)2 + (ΔĤ)2

)
dx

+
1
2

∫
g(ρ)

(1
2
Δ|∇H|2 − ∇ΔH · ∇H +

1
2
Δ|∇Ĥ|2 − ∇ΔĤ · ∇Ĥ

)
dx

− 1
4

∫ (
|∇H|2 + |∇Ĥ|2

)
|∇ρ|2D(ρ)χ′′(ρ) dx. (12)

Proof. We only prove (10), since (11) is completely analogous and (12) follows
from Proposition 1. A direct calculation gives

d
dt

1
2

∫
|∇H|2χ(ρ) dx = A + B

with
A =

∫
∇(

∂tH
) · ∇Hχ(ρ) dx, B =

1
2

∫
|∇H|2χ′(ρ)∂tρdx.

Using the optimality conditions (4) we write A = A1 + A2 with

A1 = −
∫

∇(D(ρ)ΔH)·∇Hχ(ρ) dx, A2 = −1
2

∫
∇(|∇H|2χ′(ρ)

)·∇Hχ(ρ) dx.
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Also we have B = B1 + B2 with

B1 =
1
2

∫
|∇H|2χ′(ρ)∇·(−∇Hχ(ρ)) dx, B2 =

1
2

∫
|∇H|2χ′(ρ)∇·(D(ρ)∇ρ) dx.

Integrating by parts yields B1+A2 = 0. Integrating twice by parts, and applying
the definition of g we also get

A1 =
∫

D(ρ)χ(ρ)(ΔH)2dx +
∫

ΔH ∇H · ∇(g(ρ)) dx

=
∫ [

D(ρ)χ(ρ) − g(ρ)
]
(ΔH)2 dx −

∫
∇ΔH · ∇H g(ρ) dx. (13)

To analyze B2 we integrate twice more by parts and get

B2 = −1
2

∫
|∇H|2|∇ρ|2χ′′(ρ)D(ρ) dx − 1

2

∫
∇(|∇H|2) · ∇(g(ρ)) dx

= −1
2

∫
|∇H|2|∇ρ|2χ′′(ρ)D(ρ) dx +

1
2

∫
Δ

(|∇H|2)g(ρ) dx.

The conclusion follows from this last identity, A2 + B1 = 0 and (13).

4.1 Convexity Under the Generalized McCann Condition

In [3] the authors proposed a generalization of McCann’s condition [11] which
implies the convexity of an energy functional along the geodesic problem built
setting D = 0 in (SPLG). For the functional F we consider, the condition reads

χ′′ ≤ 0, D(·)χ(·) ≥ (1 − 1/d) g(·), (14)

where either χ′ ≥ 0 or χ is defined on some interval [0,M) where it is non-
negative and concave. With the help of Bochner’s formula

1
2
Δ|∇H|2 − ∇ΔH · ∇H ≥ 1

d
(ΔH)2,

we immediately derive from Theorem 3 the following

Corollary 1. Under the generalized McCann’s condition (14) it follows that the
quasi-potential (9) is convex along Schrödinger bridges.

It is straightforward to check that this condition is verified in the setting of the
simple exclusion process.
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1 Variational Formulation in Nonequilibrium
Thermodynamics

In this section we review the variational formulations of isolated and open ther-
modynamic systems as extensions of the variational formulation of classical
mechanics [2–5]. In a similar way to the Lagrange-d’Alembert principle of non-
holonomic mechanics, the variational formulation consists of a critical action
principle subject to two types of constraints: a kinematic constraints on the
critical curve and a variational constraint on the variations to be considered
in the critical action principle. For nonequilibrium thermodynamics, these two
constraints are related in a specific way, which are referred to as constraints
of thermodynamic type. The kinematic constraints are phenomeneological con-
straints since they are constructed from the thermodynamic fluxes Jα associated
to the irreversible processes α of the system, which are given by phenomenologi-
cal expressions [1]. An important ingredient in the variational formulation is the
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concept of thermodynamic displacements Λα, such that Λ̇α = Xα, with Xα the
thermodynamic force of the process α.

1.1 Variational Formulation in Mechanics

Consider a mechanical system with configuration manifold Q and Lagrangian
L : TQ → R, defined on the tangent bundle of Q. In absence of nonholonomic
constraints and irreversible processes, the equations of motion are given by the
Euler-Lagrange equations which arise from the Hamilton principle

δ

∫ t1

t0

L(q, q̇)dt = 0 (1)

for arbitrary variations δq of the curve q(t) with δqt=t0,t1 = 0. Assume now that
the system is subject to linear nonholonomic constraints on velocities given by
a vector subbundle Δ ⊂ TQ. The equations of motion for the nonholonomic
system follow from the Lagrange-d’Alembert principle given as follows:

δ

∫ t1

t0

L(q, q̇)dt = 0 (2)

with q̇ ∈ Δ(q) and δq ∈ Δ(q). (3)

The first condition in (3) is the constraint on the critical curve q(t) of (2), called
the kinematic constraint, while the second condition is the constraint on the
variation δq to be considered in (2), called the variational constraint. In local
coordinates, the constraints (3) take the form

Al
i(q)q̇

i = 0 and Al
i(q)δq

i = 0, l = 1, ..., N. (4)

1.2 Variational Formulation for Isolated Thermodynamic Systems

The variational formulation of isolated systems [2,3] is an extension of the Hamil-
ton principle (1) and the Lagrange-d’Alembert principle (2)–(3) which falls into
the following abstract formulation. Let Q be a manifold and L : TQ → R

a Lagrangian. Let CV be a variational constraint, i.e., a submanifold CV ⊂
TQ ×Q TQ such that the set CV (x, v) := CV ∩ ({(x, v)} × TxQ) is a vector
subspace of TxQ for every (x, v) ∈ TQ. We consider the variational formulation:

δ

∫ t1

t0

L(x, ẋ)dt = 0 (5)

with ẋ ∈ CV (x, ẋ) and δx ∈ CV (x, ẋ). (6)

In a similar way to (3), the first condition in (6) is a kinematic constraint on the
critical curve x(t) while the second condition in (6) is a variational constraint.
Variational and kinematic constraints related as in (6) are called constraints of
the thermodynamic type. In local coordinates the constraints (6) take the form

Al
i(x, ẋ)ẋi = 0 and Al

i(x, ẋ)δxi = 0, l = 1, ..., N.
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Example 1: A Thermomechanical System. One of the simplest example of a ther-
modynamic system is the case of a mechanical system with only one entropy
variable. The Lagrangian of this system is a function L : TQ × R → R depend-
ing on the position and velocity of the mechanical part of the system and on
the entropy. A standard expression is L(q, q̇, S) = 1

2m|q̇|2 − U(q, S) where U is
an internal energy depending on both the position q and the entropy S of the
system. We assume that the irreversible process is described by a friction force
F fr : TQ × R → T ∗Q. The variational formulation is

δ

∫ t1

t0

L(q, q̇, S)dt = 0, subject to (7)

∂L

∂S
Ṡ =

〈
F fr, q̇

〉
and

∂L

∂S
δS =

〈
F fr, δq

〉
. (8)

It yields the equations of motion
d

dt

∂L

∂q̇
− ∂L

∂q
= F fr,

∂L

∂S
Ṡ =

〈
F fr, q̇

〉
. (9)

One checks that the total energy Etot = 〈∂L
∂q̇ , q̇〉−L is preserved by the equations

of motion (9) while the entropy equation is Ṡ = − 1
T

〈
F fr, q̇

〉
, where T = −∂L

∂S is
the temperature. It is assumed that L is such that T is strictly positive. Hence,
from the second law, F fr must be a dissipative force.

One easily checks that (7)–(8) is a particular instance of (5)–(6) with x =
(q, S), L(x, ẋ) = L(q, q̇, S), and CV given from (8).

Example 2: The Heat and Matter Exchanger. We consider a thermodynamic sys-
tem made from several compartments exchanging heat and matter. We assume
that there is a single species and we denote by NA and SA the number of moles
and the entropy of the species in the compartment A, A = 1, ....,K. The inter-
nal energies are given as UA(SA, NA) where we assume that the volume of each
compartment is constant. The variational formulation is based on the concept of
thermodynamic displacement associated to an irreversible process, defined such
that its time rate of change equals the thermodynamic force of the process. In our
case, the thermodynamic forces are the temperatures TA = ∂U

∂SA
and the chemi-

cal potentials μA = ∂U
∂NA

, so the thermodynamic displacements are variables ΓA

and WA with Γ̇A = TA and ẆA = μA. We denote by JA→B the molar flow
rate from compartment A to compartment B due to diffusion of the species. We
also introduce the heat fluxes JAB , A �= B associated to heat transfer and define
JAA := −∑

A �=B JAB . The variational formulation for this class of systems is

δ

∫ t1

t0

[
L(S1, ..., SK , N1, ..., NK) +

∑
A

ẆANA +
∑
A

Γ̇A(SA − ΣA)
]
dt = 0 (10)

∂L

∂SA
Σ̇A =

∑
B

JABΓ̇B +
∑
B

JB→AẆA, A = 1, ...,K

∂L

∂SA
δΣA =

∑
B

JABδΓB +
∑
B

JB→AδWA, A = 1, ...,K.

(11)
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In our case, the Lagrangian is L(S1, ..., SK , N1, ..., NK) = −∑
A UA(SA, NA)

and from (10)–(11) one gets the system of equations

ṄA =
∑
B

JB→A, TAṠA = −
∑
B

JAB(TB −TA)−
∑
B

JB→AμA, A = 1, ...,K,

together with Γ̇A = TA, ẆA = μA, and Σ̇A = ṠA. One checks that the total
energy and number of moles are preserved while the total entropy satisfies

Ṡ =
∑
A<B

(
1

TB
− 1

TA

)
JAB(TB − TA) +

∑
A<B

(
μA

TA
− μB

TB

)
JB→A,

which dictates the phenomenological expressions for JAB and JB→A, see [5].
One easily checks that (10)–(11) is a particular case of (5)–(6) with x =

(S1, N1, Γ
1,W 1,Σ1, ...), with L(x, ẋ) given by the integrand in (10), and with

CV given by (11).

1.3 Variational Formulation for Open Thermodynamics Systems

The variational formulation of open systems [4] is an extension of the Hamilton
principle (1), the Lagrange-d’Alembert principle (2)–(3), and the variational
formulation (5)–(6) with constraints of thermodynamic type. It falls into the
following abstract formulation.

Let Q be a manifold and L : R × TQ → R be a Lagrangian, possibly time
dependent. Let Fext : R × TQ → T ∗Q be a given exterior force. We consider a
time dependent variational constraint CV given by a submanifold CV ⊂ (R ×
TQ)×R×QT (Q×R) such that the set CV (t, x, v) := CV ∩({(t, x, v)}×T(t,x)(R×Q))
is a vector subspace of T(t,x)(R×Q) for every (t, x, v) ∈ R×TQ. It is thus locally
defined with the help of functions Al

i(t, x, ẋ) and Bl(t, x, ẋ). We consider the
variational formulation:

δ

∫ t1

t0

L(t, x, ẋ)dt +
∫ t1

t0

〈
Fext(t, x, ẋ), δx

〉
dt = 0, subject to (12)

Al
i(t, x, ẋ)ẋi + Bl(t, x, ẋ) = 0 and Al

i(t, x, ẋ)δxi = 0, l = 1, ..., N. (13)

In a similar way to the previous cases, the first condition in (13) is a kinematic
constraint on the critical curve x(t) while the second condition in (13) is a
variational constraint. Variational and kinematic constraints related as in (6)
in the time-dependent setting are also called constraints of the thermodynamic
type.

Remark 1. The constraints in (13) are explicitly time dependent. Allowing this
time dependence is important for the applications to open thermodynamic sys-
tems. Consistently with this, we have considered that both L and Fext may
be explicitly time dependent in (12), by defining them on R × TQ 	 (t, x, ẋ). It
turns out that this time dependence is very natural if one considers the geometric
setting underlying (12)–(13), see Remark 2.
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Remark 2. The appropriate geometric setting underlying (12)–(13) is that of
time dependent mechanics, seen as a special instance of the geometric setting
of classical field theories. The basic object is the configuration bundle Y → X,
here given by Y = R × Q → R where X = R. Then, the Lagrangian in (12) is
defined on the first jet bundle J1Y = R × TQ of R × Q → R and the variational
constraint CV mentioned above is CV ⊂ J1Y ×Y TY, see [6].

2 Open Reacting Systems

In this section we show how the variational formulation (12)–(13) for open ther-
modynamic systems is used to model the dynamics of an open system exchanging
heat and mass with the exterior and involving chemical reactions.

2.1 General Setting, Thermodynamic Forces and Displacements

We assume that the system involves R chemical species I = 1, ..., R and r chem-
ical reactions a = 1, ..., r. Chemical reactions may be represented by

∑
I

ν′a
I I

a(1)

�
a(2)

∑
I

ν′′a
I I, a = 1, ..., r,

where a(1) and a(2) are the forward and backward reactions associated to the
reaction a, and ν′′a

I , ν′a
I are the forward and backward stoichiometric coefficients.

Mass conservation during each reaction is given by
∑

I

mIν
a
I = 0 for a = 1, ..., r (Lavoisier law),

where νa
I := ν′′a

I − ν′a
I and mI is the molecular mass of species I.

We denote by U = U(S, V,N1, ..., NR) the internal energy of the system,
written in terms of the entropy S, the volume V , and the number of moles NI

of each species I = 1, ..., R.
We have already seen above the thermodynamic forces, displacements, and

fluxes associated to heat and matter transfer. For chemical reactions, the ther-
modynamic forces are the affinities of the reactions defined by

Aa = −
∑

I

νa
I μI , a = 1, ..., r.

Following our definition, the corresponding thermodynamic displacement,
denoted νa, satisfies

ν̇a = −Aa, a = 1, ..., r.

The thermodynamic fluxes are the rates of extent denoted Ja given by phe-
nomenological laws, see Sect. 2.4.

We assume that the system has several ports through which species can flow
into or out of the system. To fix the ideas, we assume that for each species there
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is one inlet (i) and one outlet (o) with corresponding molar flow rates into the
system denoted Ji

I > 0 and Jo
I < 0, I = 1, ..., R. The associated entropy flow

is Jk
S,I = Jk

IS
k
I , where Sk

I is the molar entropy of species I at k = i, o. We also
assume that there is a heat source with entropy flow rate JS,h. We denote by
μI

k, T I
k , k = i, o, the chemical potentials and temperatures at the ports and by

Th the temperature of the heat source.

2.2 Variational Setting

Following the general approach mentioned above, the variational formulation is:

δ

∫ t1

t0

[
L(q, q̇, S, N1, ..., NR) +

∑
I

Ẇ INI + Γ̇ (S − Σ)
]
dt +

∫ t1

t0

〈
F ext, δq

〉
dt = 0 (14)

with kinematic and variational constraints

∂L

∂S
Σ̇ =

〈
F fr, q̇

〉
+

∑
a

Jaν̇a +
∑
I,k

(
J
k
I (Ẇ I − μI

k) + J
k
S,I(Γ̇ − T I

k )
)

+ JS,h(Γ̇ − Th)

ν̇a =
∑
I

νa
I Ẇ I

(15)
∂L

∂S
δΣ =

〈
F fr, δq

〉
+

∑
a

Jaδνa +

k∑
I

(
J
k
I δW I + J

k
S,IδΓ

)
+ JS,hδΓ

δνa =
∑
I

νa
I δW I .

(16)

We note that the variational constraint (16) follows from the phenomenologi-
cal constraint (15) by formally replacing the time derivatives Σ̇, q̇, ν̇a, Ẇ I , Γ̇ by
the corresponding virtual displacements δΣ, δq, δνa, δW I , δΓ , and by removing
all the terms that depend uniquely on the exterior, i.e., the terms Jk

IμI
k, Jk

S,IT
I
k ,

and JS,hTh. This is consistent with the general setting in (13).
Taking variations of the integral in (14), integrating by parts, and using

δq(t0) = δq(t1) = 0, δW I(t0) = δW I(t1) = 0, and δΓ (t0) = δΓ (t1) = 0 and
using the variational constraint (16), we get the following conditions:

δq :
d

dt

∂L

∂q̇
− ∂L

∂q
= F fr + F ext, δΓ : Ṡ = Σ̇ +

∑
I,k

Jk
S,I + JS,h,

δNI : Ẇ I = − ∂L

∂NI
, δS : Γ̇ = −∂L

∂S
, δW I : ṄI =

∑
k

Jk
I +

∑
a

Jaνa
I .

(17)

By the third and fourth equations the variables Γ and W I are thermodynamic
displacements. Using (15), we get the following system of evolution equations
for the curves q(t), S(t), NI(t):
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt

∂L

∂q̇
− ∂L

∂q
= F fr + F ext,

d

dt
NI =

∑
k

Jk
I +

∑
a

Jaνa
I ,

∂L

∂S

(
Ṡ −

∑
I,k

Jk
S,I − JS,h

)
=

〈
F fr, q̇

〉 −
∑
a,I

Jaνa
I

∂L

∂NI

−
∑
I,k

[
Jk

I

( ∂L

∂NI
+ μI

k

)
+ Jk

I,S

(∂L

∂S
+ T I

k

)]
− JS,h

(∂L

∂S
+ Th

)
.

(18)

2.3 The First and Second Law of Thermodynamics

The energy balance for this system is computed as

d

dt
E =

〈
F ext, q̇

〉
+ JS,hTh +

∑
I,k

(Jk
IμI

k + Jk
S,IT

I
k ) =: P ext

W + P ext
H + P ext

M ,

with the three terms representing the power associated to the transfer of mechan-
ical work, heat, and matter into the system, respectively. From the last equation
in (18), the entropy equation reads

Ṡ = I +
∑
I,k

Jk
S,I + JS,h, (19)

where I is the rate of internal entropy production given by

I = − 1
T

〈
F fr, q̇

〉
︸ ︷︷ ︸

mechanical friction

+
1
T

∑
a

JaA
a

︸ ︷︷ ︸
chemistry

+
1
T

∑
I,k

[
Jk

I

(
μI

k − μI
)

+ Jk
S,I

(
T I

k − T
)]

︸ ︷︷ ︸
mixing of matter flowing into the system

+
1
T
JS,h

(
Th − T

)

︸ ︷︷ ︸
heating

.
(20)

From the second equation in (17) and from (19) we obtain the interpretation of
the variable Σ, namely, Σ̇ = I is the rate of internal entropy production. The
second and third terms in (19) represent the entropy flow rate into the system
associated to the ports and the heat sources. The second law requires I ≥ 0,
whereas the sign of the rate of entropy flow into the system is arbitrary. Of
course, at the outlet in which μI

o = μI and T I
o = T I , the corresponding entropy

production term vanishes. The second term in (19) can be written in terms of
the molar enthalpy Hk

I of species I at k = i, o, as 1
T

∑k
I J

k
I

(
HI

k − TSI
k − μI

)
.

2.4 Entropy Production Associated to Chemical Reactions

We give here the expression of the entropy production for elementary chemical
reactions in a form general enough to cover the case of real gas mixtures and
non-isothermal chemical reactions.
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For a mixture of gas, the affinity of a reaction can be written in the form

Aa(T, p,N1, ..., NR) = RT ln
(
K◦

a(T )
∏
A

(fA/p0)
−νa

A

)
,

where the state function fA is the fugacity of component A, p0 is a standard or
reference pressure, and

K◦
a(T ) := exp

(
− 1

RT

∑
A

νa
AμA

0 (T, p0)
)

is the thermodynamic equilibrium constant of reaction a, with μA
0 the chemical

potential of component A seen as a perfect gas. The quotient aA = fA/p0 is the
activity of component A, defined with respect to the prefect gas reference state.
The rates of extend Ja have the general expression

Ja

V
= Ra

f − Ra
r = ka

f (T )
R∏

A=1

a
κ′a

A

A − ka
r (T )

R∏
A=1

a
κ′′a

A

A

with Ra
f , Ra

r the forward and reverse reaction rates, ka
f , ka

r the forward and
reverse rate constants, and κ′a

A, κ′′a
A the order of the reactants and of the

products [7]. The quantities ka
f , ka

r are given by phenomenological expressions,
the most widely used being the Arrhenius equation, and satisfy the condition
K◦

a(T ) = ka
f (T )/ka

r (T ). For elementary reactions, we have κ′a
A = ν′a

A, κ′a
A = ν′a

A,
hence the entropy production term in (20) associated to chemical reactions is

1
T

∑
a

JaA
a =

∑
a

V R
(
Ra

f − Ra
r

)
ln

Ra
f

Ra
r

≥ 0.

Remark 3. The Lagrangian variational formulation presented above can be
transformed into the Hamiltonian setting when the given Lagrangian is nonde-
generate with respect to the mechanical variable. We will show the Hamiltonian
variational formulation for thermodynamics as a future work.
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Abstract. In the study of time evolution of the parameters in Deep
Learning systems, subject to optimization via SGD (stochastic gradient
descent), temperature, entropy and other thermodynamic notions are
commonly employed to exploit the Boltzmann formalism. We show that,
in simulations on popular databases (CIFAR10, MNIST), such simpli-
fied models appear inadequate: different regions in the parameter space
exhibit significantly different temperatures and no elementary function
expresses the temperature in terms of learning rate and batch size, as
commonly assumed. This suggests a more conceptual approach involving
contact dynamics and Lie Group Thermodynamics.

Keywords: Deep Learning · Statistical mechanics · Lie groups
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1 Introduction

In the study of artificial neural networks, thermodynamics and statistical
mechanics modeling proved to be a driving force leading to the development of
new algorithms, starting from the pioneering work by Jaynes [8], going from Hop-
field neural networks [7] to Boltzmann machines [1] and their newer restricted
and deep versions [12]. As the new successful family of Deep Learning algorithms
emerged, the language of thermodynamics and statistical mechanics is commonly
employed to draw analogies and boost intuition on the functioning of optimizers
based on SGD (Stochastic Gradient Descent), see [5,6] and refs. therein.

Our purpose is to establish a dictionary connecting neural networks notions
commonly used in such algorithms (e.g. loss, parameters, learning rate, mini-
batch, etc.) and statistical mechanics concepts (e.g. particles, masses, energy,
temperature, etc.), so that the analogies may be exploited with a deeper under-
standing and go beyond a qualitative analysis.
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Our paper is organized as follows. In Sect. 2 we establish the above mentioned
correspondence, relating thermodynamics concepts with neural networks ones.
We then validate our model in Sect. 3 through some experiments and in Sect.
4 we suggest a more conceptual approach based on the formalism of contact
dynamics and Lie Groups Thermodynamics [3,4,13].

2 Thermodynamics and Deep Learning

Let Σ = {zi |1 ≤ i ≤ N} ⊂ R
D represent a dataset of size N , i. e. |Σ| = N and

let f = 1
N

∑N
i=1 fi be the loss function, fi being the loss of the i-th datum zi.

A popular choice for f , for example, is the Kullback-Leibler divergence of the
Amari loss [2] (Softmax). We assume the training to take place through Stochas-
tic Gradient Descent (SGD) with minibatch B, |B| << N . We call x ∈ R

d the
vector consisting of the learning parameters of the model. The value of the kth

parameter is thus xk. Since parameters evolve in time during training, we write
x(t), or xk(t) to emphasize this. In practical implementations, with optimiza-
tion obtained via Gradient Descent (GD), t is a discrete variable indicating the
timestep:

x(t + 1) = x(t) − η∇f (1)

η denoting the learning rate. Equation (1) is often expressed in its continuous
version as:

dx

dt
= −η∇f (2)

Notice that, since Σ is fixed, the loss function f(t) at time t is determined by the
parameters x(t). If SGD is used for optimization, Eq. (2) could be substituted
with (see [6]):

dx

dt
= −η∇fB (3)

where the full loss function is replaced with fB = 1
|B|

∑|B|
i=1 fi and at each time

step B is chosen in Σ. Our purpose is to show that if (2) is properly interpreted
in a thermodynamics context, we can analyze effectively the dynamics of SGD,
without introducing stochastic variables as in (3) studied in [6], besides the ones
intrinsic to Boltzmann statistical mechanics and its far reaching generalizations
(see [3,4,11] and refs. therein).

We now proceed with our thermodynamic interpretation. Let x(t) represent
the position (or geometry) of a mechanical system at time t and consider the
loss f(t) as the potential energy associated with the geometry of the system.

We first look at the system as conservative, i.e., the force acting on each
particle according to (2) is the negative gradient of the potential:

Fk = − ∂f

∂xk
or F = −∇f
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The velocity at each optimization step is:

vk(t) =
xk(t) − xk(t − 1)

Δt
or v(t) =

x(t) − x(t − 1)
Δt

We assign masses mk to each particle. i.e. to each parameter xk. If the
mechanical system were ideal and isolated, it would evolve following Newton’s
law:

Fk = mk
dvk

dt

For finite time steps Δt, the corresponding position update would be

Δxk = vkΔt +
1
2

Fk

mk
(Δt)2 (4)

In this case, the total energy would be conserved (up to numerical integration
errors) and the system would convert potential into kinetic energy and vice versa.

In the language of atomistic simulations, this is referred to as Constant
Energy dynamics, but it is not what occurs during neural network training.
In fact, typical optimization algorithms use the gradient to update coordinates,
not velocities. The equation ruling the dynamics is in fact (1): Δx = −η∇f Δt.
Let us rewrite (4), taking the force term as the gradient of the potential:

Δxk = vkΔt − Δt

2mk

∂f

∂xk
Δt (5)

This is the same as Δx = −η∇fΔt, if the velocities are set to zero before taking
each step and η = Δt/(2mk). Notice that the higher the masses, the lower is
the learning rate, since the parameters are “harder to move”. The variations of
the learning rate can be seen equivalently as altering the time step: a smaller
learning rate means a slower simulation, that is a smaller time step. In Sect. 3
we will study the dependence of the key hyperparameters η and |B| from the
temperature, (see [6]), but this relation will be more elusive.

We define the instantaneous temperature T (t) of the system as the kinetic
energy K(t) divided by the number of degrees of freedom d and a constant kB

to obtain the desired units:

T (t) =
K(t)
kB d

=
1

kB d

d∑

k=1

1
2
mk vk(t)2

The thermodynamics temperature is then the time average of T (t):

T =
1
τ

∫ τ

0

T (t) dt =
1

τkB d

∫ τ

0

K(t) =
K

kB d

where K is the average kinetic energy and τ is long enough to yield small fluc-
tuations in T and depends on the time scale of the individual particle motions.
In practice, to perform mechanical simulations at constant (or regularly vary-
ing) temperature, coupling with a thermal reservoir is introduced by rescaling
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the velocities every fixed number of steps to match the desired temperature.
These are called constant temperature simulations; we set the temperature equal
to zero every step (instead every few steps as usual). The mechanical equiva-
lent, is a dynamic simulation where heat is extracted from the system at each
step. Performing such an optimization with the gradient descent (GD), has a
clear mechanical interpretation: it leads to a (local) minimum in the potential
or, equivalently, a minimum of the total energy at zero temperature, when the
kinetic energy vanishes.

We now turn to examine the effect of SGD, Stochastic Gradient Descent.
With SGD, the gradient for a given geometry changes each time it is computed,
because of the random choice of the minibatch B. This amounts to a residual
velocity associated to each particle even after equilibrium is reached. Hence, our
system does not evolve according to Newton dynamics and in particular the
mechanical energy is not constant.

Once the equilibrium is reached, the macroscopic parameters (the loss and
temperature) will no longer change, i.e. they will have small fluctuations only.
In particular 〈v〉 = 0, that is, we expect the average value of velocity to vanish.
Notice that here we have a key difference between GD (gradient descent) and
SGD (stochastic gradient descent): at equilibrium

σ2 = 〈v2〉 − 〈v〉2

σ2 = 0 for GD but σ2 = 〈v2〉 for SGD. This corresponds to the physical fact
that GD reaches the equivalent of the zero Kelvin (no temperature), while with
SGD we maintain a residual finite temperature. With a constant temperature
simulation we will achieve the minimum free energy and not a minimum of the
potential energy, that is our loss function.

We now recall the principle of equipartition of energy: at thermodynamic
equilibrium, all accessible degrees of freedom have, on a sufficiently long time
average, the same kinetic energy.

Let Kav be the time average kinetic energy of particle (i.e. parameter) k. By
the principle of equipartition of energy, this is 1/d the total kinetic energy:

Kav = K/d = kBT

Hence knowing the average value of v2
k at equilibrium, i.e., the variance of the

gradient, this equation allows us to compute the temperature (if we set all masses
equal to 1).

In the next section we will perform experiments to test our thermodynamic
model and the relation between some of the notions we introduced. In Sect. 4,
we shall interpret the continuous version of the time evolution of our system as
the dynamics of a mechanical system with Hamiltonian H consisting of the sum
of a conservative term Hmech = K + V and a dissipative term.
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3 Experiments

Our experiments were performed on both the MNIST and CIFAR10 datasets
(see [9,10]) obtaining similar results. We report the experiments on the MNIST
dataset only. We are using a LeNet modified architecture in colab platform
(Fig. 1):

Fig. 1. Modified LeNet

This is an accurate, yet simple, network consisting of two convolutional lay-
ers (Conv1, Conv2) followed by two linear ones (Linear1, Linear2), with a low
number of parameters. Batchnormalization and maxpool are also used.

We use SGD to optimize the network, with a constant for the regularization
penalty λ = 4 ·10−2 and minibatch size β = 32. We start our training with learn-
ing rate η = 10−2, then decrease it to 10−3 after 300 epochs and finally to 10−4

at 600 epochs. The loss function fB during training and average temperature at
equilibrium in layers are expressed in Fig. 2 and 3.

Fig. 2. Loss function Fig. 3. Temperature in layers

Notice that different layers exhibit significantly different temperatures.
In Fig. 4 and 5 we describe the behaviour of the temperature T , as defined in

our previous section, depending on the inverse 1/β of the minibatch size and the
learning rate η. Despite in the literature ([6] and refs therein) T is commonly
believed to behave proportionally to such parameters, we discover in practice
quite a different behaviour.
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Fig. 4. Batch size and temperature

Notice first that different layers exhibit significantly different behaviour in
the dependence of η and β from the temperature, hence they should be examined
separately. In fact we see a linear behaviour of the temperature with respect to
1/β just for the Convolutional 2 and Linear 2. While we have an essential non
linearity for the others. Similar considerations hold for the quadratic behaviour
with respect to the learning rate. We now look at the temperature of the filters
of the first convolutional layer at equilibrium (see the values of parameters in
Conv 1 in Fig. 6).
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Fig. 5. Learning rate and temperature

Fig. 6. Temperature of filters in the first
convolutional layer

Clearly the parameters of differ-
ent filters have different temperature
behaviours at equilibrium: some filters
tend to stay stable while others keep
changing. A possible interpretation of
this is that some filters are more effec-
tive than others, so once learnt the sys-
tem will not forget them. Vice versa,
non effective filters in image recogni-
tion still change since they do not con-
tribute to loss reduction.
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4 Contact Hamiltonian Dynamics, Lie Groups
Thermodynamics and SGD

In this section we provide some mathematical insight to our thermodynamic
interpretation of SGD described in Sec. 2 and the experiments in Sec. 3. Since
at each step we extract heat from our system, we cannot assume that the sum
of kinetic energy and potential (the loss function) Hmech is preserved; we need
to consider a term taking into account dissipation.

We assume then (see [4], Sec. 5) that the thermodynamic space of parameters
R

d+1 is equipped with a contact structure:

α = dS − padqa

The contact hamiltonian dynamics is then ruled by the contact hamiltonian:

H = Hmech + V(S)

where Hmech = K + V as above. We could take as first approximation (see [4]),
V(S) = γS, where γ is a constant and S is the entropy of the system. This leads
to the contact Hamilton equations:

⎧
⎪⎨

⎪⎩

q̇a = ∂H
∂pa

ṗa = − ∂H
∂qa − pa

∂H
∂S

Ṡ = pa
∂H
∂pa

(6)

We plan to measure in the future, with a long enough simulation the entropy
S in this context, by knowing the temperature and the area sampled by the
evolution of the system in the parameter space. This will enable the modelling
with a contact hamiltonian system and a concrete mean to test it. Also, the
entropy comes into play in other contexts, like the Koszul-Souriau approach to
thermodynamics.

We now make some considerations on Lie group thermodynamics and sug-
gest possibly future mathematically interesting directions. Consider the action
of G the Galilei group on space time. As Souriau proves, this action is hamilto-
nian, so it makes sense to speak of its moment map. We cannot however expect
generalized Gibbs states to exist for the full Galilean group, but, as specified in
[11] 7.3.3 only for one-parameter subgroups. If we are able to run our experiment
long enough, the system would explore a large portion of the parameter space, so
to test the partition function predicted by the probability function ([11] 7.1.1):

ρb =
1

P (b)
e−〈J,b〉, b ∈ Lie(G) (7)

where J denotes the moment map.
We also believe that if would be mathematically interesting to fit contact

dynamics for a thermodynamics system into the framework of Souriau Lie group
thermodynamics and measurements on this simple model could be an experimen-
tal evidence that these these two theories are effective and equivalent ways to
describe popular machine learning systems.
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5 Conclusions

We described a parallelism between SGD dynamics in Deep Learning and a
thermodynamics system. Experiments show that the temperatures of each layer
behaves independently, hence it is necessary to treat layers as independent sys-
tems. Furthermore, the temperature of each layer does not depend in a consistent
and simple way on the size of the minibatch and the learning rate: extra care
must then be exerted when defining the relation of the temperature with such
key hyperparameters. Insight from Lie group thermodynamics and its general-
ization to contact hamiltonian dynamics suggests to push this analogy further
to obtain quantitative experimental results.

Acknowledgements. We are indebted with Prof. P. Chaudhari, Dr. A. Achille and
Prof. S. Soatto for many helpful discussions. We also thank our Referees for valuable
suggestions.
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1 Variational Formulation of Non-simple Systems

Before exploring Dirac structures underlying the thermodynamics of non-simple
systems, we review the variational setting of such non-simple systems by focusing
on the internal irreversible processes associated with friction and heat conduc-
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denotes a system that has only one variable to represent the thermodynamic
state, usually denoted by entropy. Since Σ is an interconnected system of sim-
ple subsystems Σ1, ...,ΣP , it becomes a “non-simple” system that has several
entropy (or temperature) variables (see [7]) and we note that all the irreversible
processes are internal. For each simple subsystem ΣA, A = 1, ..., P , SA ∈ R indi-
cates its entropy variable. Here, we assume that the mechanical configuration of
Σ is given by independent mechanical variables q = (q1, ..., qn) ∈ Q, where Q is
the mechanical configuration manifold of Σ.

Friction,HeatConduction andExternal Forces. Let F ext→A : T ∗Q×R
P →

T ∗Q be an external force that acts on ΣA and hence the total exterior force is
F ext =

∑P
A=1 F ext→A. Let F fr(A) : T ∗Q × R

P → T ∗Q be the friction forces
associated with the irreversible processes of each subsystem ΣA, which yield an
entropy production for subsystem ΣA. Associated with the heat exchange between
ΣA and ΣB , let JAB be the fluxes such that for A �= B, JAB = JBA and for A = B,
JAA := −∑

B �=A JAB , where
∑P

A=1 JAB = 0 for all B.

Thermodynamic Displacements. In our formulation, we introduce the con-
cept of thermodynamic displacements, see [3,4]. For the case of heat exchange,
we define the thermal displacements ΓA, A = 1, ..., P such that its time rate Γ̇A

becomes the temperature of ΣA. We also introduce a new variable ΣA associated
with the internal entropy production.

1.2 Variational Formulation of Non-simple Systems

The Lagrange-d’Alembert Principle for Non-simple Systems. Now we
consider a variational formulation of Lagrange-d’Alembert type for non-simple
systems with friction and heat conduction, which is a natural extension of Hamil-
ton’s principle in mechanics (see [4]).

Given a Lagrangian L : TQ × R
P → R and an external force F ext : TQ ×

R
P → T ∗Q, find the curves q(t), SA(t), ΓA(t), ΣA(t) which are critical for the

variational condition

δ

∫ t2

t1

[
L (q, q̇, SA) + Γ̇A(SA − ΣA)

]
dt +

∫ t2

t1

〈
F ext, δq

〉
dt = 0,

subject to the phenomenological constraint

∂L

∂SA
Σ̇A =

〈
F fr(A), q̇

〉
+ JABΓ̇B , for A = 1, ..., P , (1)

and for variations subject to the variational constraint

∂L

∂SA
δΣA =

〈
F fr(A), δq

〉
+ JABδΓB, for A = 1, ..., P , (2)

with δq(t1) = δq(t2) = 0 and δΓA(t1) = δΓA(t2) = 0, A = 1, ..., P .
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By direct computations, we obtain the following evolution equations:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt

∂L

∂q̇
=

∂L

∂q
−

P∑

A=1

Γ̇A

∂L
∂SA

F fr(A) + F ext,

∂L

∂SA
+ Γ̇A = 0, A = 1, ..., P,

ṠA − Σ̇A +
P∑

B=1

Γ̇A

∂L
∂SA

JBA = 0, A = 1, ..., P.

(3)

From the second equation in (3), the temperature of the subsystem ΣA, i.e., TA

can be obtained as Γ̇A = − ∂L
∂SA

=: TA. Because
∑P

A=1 JAB = 0 for all B, the
last equation in (3) yields ṠA = Σ̇A. Hence, together with (1), we obtain the
following Lagrange-d’Alembert equations for the curves q(t) and SA(t):

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d

dt

∂L

∂q̇
− ∂L

∂q
=

P∑

A=1

F fr(A) + F ext,

∂L

∂SA
ṠA =

〈
F fr(A), q̇

〉
−

P∑

B=1

JAB

(
∂L

∂SB
− ∂L

∂SA

)

, A = 1, ..., P.

(4)

The First Law of Energy Balance. For the total energy E : TQ ×R
P → R

given by E (q, vq, SA) =
〈

∂L
∂vq

(q, vq, SA) , vq

〉
− L (q, vq, SA) , we have d

dtE =

〈F ext, q̇〉 = P ext
W along the solution curve of (4). If the Lagrangian is given by

L(q, v, S1, ..., SP ) =
∑P

A=1 LA(q, v, SA), the evolution equations for ΣA are

d

dt

∂LA

∂q̇
− ∂LA

∂q
= F fr(A) + F ext→A +

P∑

B=1

FB→A, A = 1, ..., P,

where FB→A is the internal force exerted by ΣB on ΣA. From Newton’s third
law, we have FB→A = −FA→B . Denoting by EA the total energy of ΣA, we
have

d

dt
EA = P ext→A

W +
P∑

B=1

PB→A
W +

P∑

B=1

PB→A
H , (5)

where P ext→A
W =

〈
F ext→A, q̇

〉
is the mechanical power that flows from the exte-

rior into ΣA, PB→A
W =

∑P
B=1

〈
FB→A, q̇

〉
is the internal mechanical power that

flows from ΣB into ΣA, and PB→A
H =

∑P
B=1 JAB

(
∂L

∂SB
− ∂L

∂SA

)
is the internal

heat power from ΣB to ΣA. It follows that the power exchange can be written
as PB→A

H = JAB(TA − TB).



Dirac Structures in Thermodynamics of Non-simple Systems 921

The Second Law and Internal Entropy Production. The total entropy of
the system is S =

∑P
A=1 SA. Therefore, it follows from (4) that the rate of total

entropy production of the system is given by

Ṡ = −
P∑

A=1

1
TA

〈
F fr(A), q̇

〉
+

P∑

A<B

JAB

(
1

TB
− 1

TA

)

(TB − TA),

which becomes always positive because of the second law. This is consistent with
the phenomenological relations of the form

F
fr(A)
i = −λA

ij q̇
j and JAB

TA − TB

TATB
= LAB(TB − TA). (6)

In the above, λA
ij and LAB are functions of the state variables, where the

symmetric part of λA
ij are positive semi-definite and with LAB ≥ 0 for all

A,B. From the second relation, we get JAB = −LABTATB = −κAB , with
κAB = κAB(q, SA, SB) the heat conduction coefficients between ΣA and ΣB .

2 Dirac Formulation of Non-simple Systems

In this section, we develop the Dirac formulation for the dynamics of non-simple
systems by means of an induced Dirac structure the Pontryagin bundle; for the
details, see [1,5,6].

2.1 Dirac Structures in Thermodynamics

Thermodynamic Configuration Space. For our class of non-simple sys-
tems, let Q = Q × V be a thermodynamic configuration space, where Q
denotes the mechanical configuration space with mechanical variables q ∈ Q
as before and V = R

P × R
P × R

P is the thermodynamic space with ther-
modynamic variables (SA, ΓA, ΣA) ∈ V . We denote by x = (q, SA, ΓA, ΣA)
an element of Q, by (x, v) an element in the tangent bundle TQ where
v = (vq, vSA

, vΓA , vΣA
) ∈ TxQ, and by (x, p) an element of the cotangent bundle

T ∗Q, where p = (pq, pSA
, pΓA , pΣA

) ∈ T ∗
xQ.

Nonlinear Constraints of Thermodynamic Type. Let CV ⊂ TQ ×Q TQ
be the variational constraint locally given as

CV =

{

(x, v, δx) ∈ TQ ×Q TQ

∣
∣
∣
∣
∣

∂L

∂SA
δΣA =

〈
F fr(A), δq

〉

+
P∑

B=1

JABδΓB, A = 1, ..., P

}

.

(7)

For every (x, v) ∈ TQ, we consider the subspace of TxD given by

CV (x, v) := CV ∩ ({(x, v)} × TxQ
) ⊂ TxQ.
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The kinematic constraint associated to CV is defined by

CK = {(x, v) ∈ TQ | (x, v) ∈ CV (x, v)}, (8)

which is given locally as

CK =

{

(x, v) ∈ TQ

∣
∣
∣
∣
∣

∂L

∂SA
vΣA

=
〈
F fr(A), vq

〉
+

P∑

B=1

JABvΓB , A = 1, ..., P

}

. (9)

Variational and kinematic constraints CV and CK are called nonlinear con-
straints of thermodynamic type if they are related as in (8).

Note also that the annihilator of CV (x, v) ⊂ TxQ, defined by

CV (x, v)◦ =
{
(x, ζ) ∈ T ∗

xQ
∣
∣ 〈ζ, δx〉 = 0, ∀δx ∈ CV (x, v)

} ⊂ T ∗
xQ,

is given, in coordinates ζ = (ζq, ζSA
, ζΓA , ζΣA

) ∈ T ∗
xQ, by

CV (x, v)◦ =

{

(x, ζ) ∈ T ∗
xQ

∣
∣
∣
∣
∣
ζq +

ζΣA

∂L
∂SA

F fr(A) = 0, ζSA
= 0,

ζΓA
=

ζΣA

∂L
∂SA

P∑

B=1

JAB , A = 1, ..., P

}

.

Dirac Structures on the Pontryagin Bundle. P =TQ⊕T ∗Q. The Pon-
tryagin bundle P is defined as the Whitney sum bundle of P = TQ ⊕ T ∗Q,
with vector bundle projection, π(P ,Q) : P = TQ⊕T ∗Q → Q, x = (x, v, p) → x.
Given a variational constraint CV ⊂ TQ×Q TQ as in (7), we define the induced
distribution ΔP on P by

ΔP (x, v, p) :=
(
T(x,v,p)π(P ,Q)

)−1 (CV (x, v)) ⊂ T(x,v,p)P,

for each (x, v, p) ∈ P. Locally, this distribution reads

ΔP (x, v, p) =
{
(x, v, p, δx, δv, δp) ∈ T(x,v,p)P | (x, δx) ∈ CV (x, v)

}
.

Further, the presymplectic form on P is defined from the canonical symplectic
form ΩT ∗Q on T ∗Q as ΩP := π∗

(P ,T ∗Q)ΩT ∗Q , which is locally given by using
local coordinates (x, v, p) = (q, SA, ΓA, ΣA, vq, vSA

, vΓA , vΣA
, pq, pSA

, pΓA , pΣA
)

for each x = (x, v, p) ∈ P as

ΩP = dq ∧ dpq + dSA ∧ dpSA
+ dΓA ∧ dpΓ + dΣA ∧ dpΣA

.

Definition 1. The Dirac structure DΔP
induced on P from ΔP and ωP is

defined by, for each x ∈ P,

DΔP
(x) : =

{
(ux, αx) ∈ TxP × T ∗

xP | ux ∈ ΔP (x) and

〈αx, wx〉 = ΩP (x)(ux, wx) for all wx ∈ ΔP (x)
}
.
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Proposition 1. The local expression of the Dirac condition, for each x =
(x, v, p), (

(x, v, p, ẋ, v̇, ṗ), (x, v, p, α, β, γ)
) ∈ DΔP

(x, v, p)

is equivalent to

(x, ẋ) ∈ CV (x, v), β = 0, γ = ẋ, ṗ + α ∈ CV (x, v)◦.

In coordinates (α, β, γ) = (αq, αSA
, αΓA , αΣA

, βq, βSA
, βΓA , βΣA

, γq, γSA
, γΓA ,

γΣA
), this condition reads as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṗq + αq + (ṗΣA
+ αΣA

)
1

∂L
∂SA

F fr(A) = 0, ṗSA
+ αSA

= 0,

ṗΓA
+ αΓA

= ṗΣA
+ αΣA

1
∂L

∂SA

P∑

B=1

JAB ,

βq = 0, βSA
= 0, βΓA = 0, βΣA

= 0,

q̇ = γq, ṠA = γSA
, Γ̇A = γΓA , Σ̇A = γΣA

,

∂L

∂SA
γΣA

=
〈
F fr(A), γq

〉
+

P∑

B=1

JABγΣB
.

2.2 Dirac Formulation for Thermodynamics of Non-simple Systems

Dirac Dynamical Systems on P = TQ⊕T ∗Q. For a given Lagrangian
L (q, vq, SA) on TQ × R

P , we introduce an augmented Lagrangian by
L (q, SA, ΓA, ΣA, vq, vΓA) := L (q, vq, SA) + vΓA(SA − ΣA).

In the above, note that the augmented Lagrangian may be regarded as a
(degenerate) Lagrangian function L (x, v) on TQ. Further, define the generalized
energy E on P = TQ ⊕ T ∗Q as

E (x, v, p) := 〈p, v〉 − L (x, v).

Given an external force F ext(q, vq, SA), which may be regarded as a map
F ext : TQ → T ∗Q, a horizontal one-form F̃ ext : P → T ∗P is induced by

〈
F̃ ext(x, v, p), u

〉
=

〈
F ext(x, v), Tπ(P ,Q)(u)

〉
, for all u ∈ T(x,v,p)P.

Theorem 1. Given CV and CK as in (7) and (9), the solution curve x =
(x(t), v(t), p(t)) of the Dirac system

(
(x, v, p, ẋ, v̇, ṗ),dE (x, v, p) − F̃ ext(x, v, p)

)
∈ DΔP

(x, v, p), (10)
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satisfies the equations of motion

(x, ẋ) ∈ CV (x, v), p−∂L

∂v
= 0, ẋ = v, ṗ−∂L

∂x
−F ext(x, v) ∈ CV (x, v)◦.

In coordinates, we obtain the system
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṗq =
∂L

∂q
−

P∑

A=1

Γ̇A

∂L
∂SA

F fr(A) + F ext = 0, ṗΓA +
P∑

B=1

Γ̇A

∂L
∂SA

JBA = 0,

q̇ = vq, Γ̇A = vΓA , Σ̇A = vΣA
,

pq =
∂L

∂vq
, pΓA = SA − ΣA,

∂L

∂SA
+ Γ̇A = 0,

∂L

∂SA
vΣA

=
〈
F fr(A), vq

〉
+

P∑

B=1

JABvΓB .

(11)

This system yields the Lagrange-d’Alembert evolution Eq. (4) for non-simple
thermodynamic systems with friction and heat conduction.,

Along the solution curve (x(t), v(t), p(t)) ∈ P of the Dirac dynamical system
in (10), the energy balance equation holds as

d

dt
E (x, v, p) =

〈
F ext(x, v), ẋ

〉
.

2.3 Example of the Adiabatic Piston

The Adiabatic Piston. Now we consider a piston-cylinder system that is
consisted of two cylinders connected by a rod, each of which contains a fluid (or
an ideal gas) and is separated by a movable piston, as in Fig. 1 (see [2]).

Fig. 1. The adiabatic piston problem

The system Σ is an interconnected system that is composed of three simple
systems; the two pistons Σ1,Σ2 with mass m1,m2 and the connecting rod Σ3
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with mass m3. As in Fig. 1, q and r = D−�−q denote the distances between the
bottom and the top in each piston where D = const. Choose the state variables
(q, vq, S1, S2) (the entropy of Σ3 is constant), and the Lagrangian is

L(q, vq, S1, S2) =
1
2
Mv2

q − U1(q, S1) − U2(q, S2),

where M := m1 + m2 + m3, U1(q, S1) := U1(S1, V1 = α1q,N1), and U2(q, S2) :=
U2(S2, V2 = α2r,N2), with Ui(Si, Vi, Ni) the internal energies of the fluids, Ni the
constant numbers of moles, and αi the constant areas of the cylinders, i = 1, 2.
As in (6), we have F fr(A)(q, q̇, SA) = −λAq̇, with λA = λA(q, SA) ≥ 0, A = 1, 2
and JAB = −κAB =: −κ, where κ = κ(S1, S2, q) ≥ 0 is the heat conductivity of
the connecting rod.

From the Dirac system formulation (11), we obtain the evolution equations
as ⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ṗq = Π1(q, S1)α1 − Π2(q, S2)α2 − (λ1 + λ2)q̇,

q̇ = vq, pq = Mvq,

T 1(q, S1)Ṡ1 = λ1q̇2 + κ
(
T 2(q, S2) − T 1(q, S1)

)
,

T 2(q, S2)Ṡ2 = λ2q̇2 + κ
(
T 1(q, S1) − T 2(q, S2)

)
,

where T i(q, Si) = ∂Ui

∂Si
(q, Si), ∂U1

∂q = −Π1(q, S1)α1, and ∂U2
∂q = Π2(q, S2)α2.

Since the system is isolated, we recover the first law d
dtE = 0, where E =

1
2Mq̇2 + U1(q, S1) + U(q, S2). The second law is also recovered as

d

dt
S =

(
λ1

T 1
+

λ2

T 2

)

q̇2 + κ
(T 2 − T 1)2

T 1 T 2
≥ 0.
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