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Abstract. A modification of petroleum bitumen for road building was carried
out by devulcanizing rubber crumb and adding modified dispersion, consisting of
single-walled carbon nanotubes (SWCNT), distributed in industrial oil (I-20A). To
solve the problem of distribution of nanotubes in industrial oil I-20A it is necessary
to «break» their aggregates using ultrasound [26—28]. The SWCNTs distribution
was observed using a HoribalLA-950 laser analyzer and a KFK-3 photoelectric
photometer for optical density evaluating. Softening point, penetration index (PI),
penetration at 25 °C (P25), ductility at 25 °C (D25) and elasticity at 25 °C (E25)
were respectively determined to GOST 32054-2013, GOST 33134-2014, GOST
33136-2014, GOST 33138-2014, GOST EN 13398-2013 (Russian standards).
With the introduction of nanotubes, the effect of the dispersed phase on the prop-
erties decreases and the presence of nanotubes in dispersion, when introduced
after devulcanization, does not give a plasticizing effect. But it simultaneously
increases both ductility and elasticity, which is rarely observed. The introduction
of nanotubes before devulcanization plasticizes the binder by reducing the ther-
mal distillation of the oil during devulcanization or by the plasticizing effect of
nanotubes.
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1 Introduction

Itis generally accepted that physical or chemical modification is one of the most effective
ways to obtain or improve the properties of almost any composite building material [1-4].

Modifying petroleum bitumen with polymers allows, as it is known from [5-7],
eliminating a number of disadvantages associated with binders. The most important of
them are a narrow temperature range of plasticity, insufficient resistance to atmospheric
aging, and low elasticity [8—10]. However, the high cost of the polymer leads to a strong
increase in the cost of the final product.

Earlier [11], a bitumen-polymer composition was developed, obtained by devul-
canization of rubber crumb in a bitumen environment, which features a high range of
properties and is able to solve the problem of high cost of bitumen-polymer binders
(BPB) and environmental pollution. The modification technology was as follows: rub-
ber crumb and a devulcanizing agent (DA) were introduced into the heated petroleum
bitumen with constant stirring. The composition, however, was characterized by low
elongation. These disadvantages are common to all BPBs [12, 13], which nevertheless
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limits their application. These disadvantages can be eliminated by introducing plasticiz-
ers, but their use leads to a decrease in the softening point and an increase in the tendency
to aging due to thermal distillation [14—16]. Moreover, the paradoxical effect of reducing
the viscosity of binders (and couplers) when introducing carbon nanomaterials, e.g., in
bitumen, is known [17-19].

2 Materials and Methods

To achieve a uniform distribution of nanotubes in a bitumen-polymer binder, it is also
necessary to use a plasticizer, but the total amount of it in the binder is much lower. We
used I-20A industrial oil as a plasticizer.

It is known from literature [20-22] that when single-walled carbon nanotubes
(SWCNT) are added to bitumen, the complex of the obtained properties is higher
than when it is modified with multi-walled carbon nanotubes (MWCNT). SWCNTs
are characterized by such factors as high strength of sp 2 C—C bonds, high packing
density of atoms in graphenes, absence or low density of structural defects [23-25]. We
used SWCNT by «Tubal», Novosibirsk. The characteristics of the used SWCNTSs are
presented in Table 1.

Table 1. Characteristics of Tuball TM (Batch number 73-21052015).

Parameters Unit Values Assessment method

Carbon content wt. % 92 +1 TGA, EDA

CNT content wt. % 76 £1 TEM, TGA

Metallic impurities wt. % 8+ 1 EDA, TGA

Number of walls in CNT units 1-2 TEM

Length microns | >5 AFM

Outer average diameter of CNT | nm 1.4 £ 0.15 | Raman spectroscopy, TEM
G/D ratio units 161 Raman spectroscopy, 488 nm
Total specific surface m2/g 450 Adsorption of Np at 77K

Initially, CNTs were introduced into industrial oil, and then the binder was modified
with the resulting dispersion. This dispersion, as well as the model system in the form of
pure I-20A oil without SWCNTs, were introduced in two ways: either simultaneously
with rubber crumb (RC), or after the devulcanization process into the finished bitumen-
polymer binder. The optimal concentration of nanotubes in bitumen was considered
5-107 ppm, according to [20]. The content of the plasticizer was calculated in such
a way that the optimal concentration of nanotubes in the bitumen was achieved at a
concentration of plasticizer of 2%, which corresponds to its usual content. The maximum
plasticizer concentration was initially limited to four percent.

To solve the problem of distribution of nanotubes in industrial oil I-20A4, it is neces-
sary to «break» their aggregates using ultrasound [26-28]. The SWCNTs distribution was
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observed using a HoribalLA-950 laser analyzer and a KFK-3 photoelectric photometer for
optical density evaluating. Softening point, penetration index (PI), penetration at 25 °C
(P25), ductility at 25 °C (D»s) and elasticity at 25 °C (Ejs) were respectively determined
to GOST 32054-2013, GOST 33134-2014, GOST 33136-2014, GOST 33138-2014,
GOST EN 13398-2013 (Russian standards).

3 Results and Discussions

For clarity, the particle size distribution of the dispersion was determined up to (Fig. 1)
and after (Fig. 2) sonication.
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Fig. 1. Particle size before sonication.
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Fig. 2. Particle size after 10 min of sonication.

With dispersion, the histogram shifts to the left, which can be seen when comparing
Fig. 1 and 2, i.e., the particle size after sonication became significantly smaller. The
optimal dispersion time t was 10 min, since further ultrasonic exposure was not accom-
panied by a change in the histogram. Furthermore, the absolute particle size, according
to the laser analyzer, does not reach the «nano» level, but it must be remembered that the
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device is designed to determine the size of spherical particles. It should also be noted
that the Gaussian distribution in Fig. 2 indicates the presence of one dominant size in
the initial SWCNT product, i.e., its purity.

Photoelectric photometer KFK-3 (photometer) is designed to measure the transmit-
tance and optical density of transparent solutions and transparent solid samples [29,
30].

The principle of operation of the photometer is based on comparing the luminous flux
FO, passed through the standard solution, in relation to which the measurement is carried
out, and the luminous flux F, passed through the investigated solution. The photodetector
converts light fluxes FO and F into electrical signals U0, U and UT (UT signal when the
receiver is not illuminated) which are processed by a microcomputer photometer and
presented on the digital board as the transmittance (T) and optical density (D).

It was experimentally determined that the optimal wavelength for measuring optical
density and transmittance is . =430 nm. Dispersion was carried out in an ultrasonic bath.
Optical density was measured every 30 s. The increase in optical density with increasing
time of ultrasonic treatment is shown in Fig. 3. The transmission ratio decreases rapidly
with increasing optical density, and, as it is known, depends on it in the following way:
T = 10-D. When the optical density is equal to 2, the transmittance becomes so low
(0.01), that it ceases to be recorded by the photometer.
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Fig. 3. A graph of optical density versus dispersion time.

Thus, according to the results of the data obtained using a Horiba LA-950 and a
KFK-3 spectrophotometer, the optimal dispersion time required for the distribution of
nanotubes in oil was accepted as t = 10 min.

Figure 4 shows the dependence of the softening point of the binder on the
concentration of the modifying dispersion.

Comparing curves 3 and 4 it can be seen that the introduction of nanotubes induces
the plasticization of the binder probably due to a decrease in the thermal distillation of the
oil during devulcanization. A comparison of curves 1 and 2 shows that the presence of
nanotubes in the dispersion, when introduced after devulcanization, has no effect. Curve
3 lies above curve 1, which indicates the volatilization of oil during devulcanization;
however, curves 2 and 4 are close to each other, which again indicates that, in the presence
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of nanotubes, the oil either does not thermally distill during the devulcanization process,
or thermal distillation is compensated by the plasticizing effect of the tubes. This effect
is confirmed by penetration data (Fig. 5). In this case, the introduction of SWCNTs,
regardless of the method of preparation of the binder, increases its hardness, which can
be seen from a comparison of curves 1 and 2, as well as curves 3 and 4 in Fig. 5.
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Fig. 4. Dependence of the softening point of the binder on the concentration of the dispersion.
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Fig. 5. Dependence of the binder penetration on the concentration of the modifying dispersion.

Figure 6 shows the dependence of the ductility of the binder on the concentration of
the modifying dispersion. Noteworthy is the extremum with 3% of variance. It is obvious
that the tubes significantly increase the extensibility of the binder. It is known [31-33]
that the more bitumen deviates from the Newtonian flow, the less it is extensible. Put in
other words, carbon nanotubes do not structure the binder, but, rather, bring the nature
of its flow closer to the Newtonian one.
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Fig. 6. Dependence of the ductility of the binder on the concentration of the modifying dispersion.

It should be noted that nanotubes introduced into the finished composition increase
both ductility and elasticity simultaneously (curves 1 and 2 in Fig. 6 and 7), which is
rarely observed. This effect does not appear after heat treatment of the binder during
devulcanization, and the low elasticity of composites with SWCNTs (curves 3 and 4 in
Fig. 7) is associated with an increase in the plasticity of the BPB [34, 35], reflected in
the results of ductility.
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Fig. 7. Dependence of the elasticity of the binder on the concentration of the modifying dispersion.

Curves 2 and 4, characterizing binders with nanotubes, lie lower than curves 1 and
3 (Fig. 8), i.e., with the introduction of nanotubes, the degree of colloid of the binder
decreases, that is the effect of the dispersed phase on the properties.

It should be noted that all developed binders have disadvantages typical for plas-
ticized bitumen. However, the introduction of carbon nanotubes through a plasticizer
makes it possible to evenly distribute them in the volume of the binder, and the above
results allow us to see their effect on the properties of the composition.
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Fig. 8. Dependence of the bitumen penetration index on the SWCNT concentration.

4 Conclusion

1. Theintroduction of nanotubes before devulcanization plasticizes the binder by reduc-
ing the thermal distillation of the oil during devulcanization or by the plasticizing
effect of nanotubes.

2. The presence of nanotubes in a dispersion, when introduced after devulcanization,
does not give a plasticizing effect, but it simultaneously increases both ductility and
elasticity, which is rarely observed.

3. With the introduction of nanotubes, the effect of the dispersed phase on the properties
decreases.
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