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Abstract. Simultaneous Localization and Mapping (SLAM) algorithms have
been growing popular in indoor navigation and mapping. However, it often fails
in many real-world environments, such as low-lighting, fast motion, featureless
walls, and large buildings. There are also usability issues with the 3D point
clouds for actual indoor localization and mapping for humans and autonomous
robots. In this study, we use depth sensor to generate 3D point cloud and then
register that to the 2D building floor plan or footprint. We extract the ground
plane from the point cloud and create a 2D point cloud and contours to be
registered to the map. The experiments show that 2D map is more intuitive than
3D point cloud. Furthermore, the contour map reduces computational time in
orders of magnitude. We also developed a graphical user interface to enable the
user to register the 2D point cloud interactively. It is a new way to use SLAM
data. Our case studies in large office buildings demonstrate that this approach is
simple, intuitive, and effective to enhance the localization and mapping in the
real-world.
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1 Introduction

Indoor navigation is a challenge when the GPS signals and infrastructural positioning
sensors are not available. Visual Simultaneous Localization and Mapping (Visual-
SLAM) algorithms have attracted broad attention because it relies on an affordable
camera without any infrastructural positioning sensors. Visual-SLAM is designed to
localize the user’s moving trajectory and orientation, while simultaneously mapping
the environment with a 3D point cloud. However, there is a significant gap between the
SLAM results and the practical applications. Visual-SLAM works well in “normal”
environments, e.g., a well-lighted space and full of “features” in the scene. It often fails
in many real-world environments, such as low-lighting, fast motion, and “featureless”
walls. There are also usability issues about how to use the 3D point clouds for indoor
navigation.

In this study, we explore depth cameras to generate a point cloud and register it to a
floor plan or a footprint of the building from open sources or satellite images. The point
cloud down-sampling, floor plane detection, and projection, as well as edge detection
algorithms, are implemented to generate a floor map for mapping and localization.
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An interactive graphical user interface is developed to enable the user to register the
scanned floor map to the floor plan or building footprint. We tested the method in two
extremely realistic environments: a large office building with a long route including
multiple turns, low feature walls, low-lighting, and a loop, and a large hospital
building. Compared to the conventional RGB-camera-based Visual-SLAM, this
method shows better mapping and localization accuracy, flexibility, and potential
applications for first responders, building inspection, and subterranean mapping.

2 Review of SLAM Algorithms and Depth Sensors

Early probabilistic approaches were introduced in the paper by Lu and Milios [1],
followed by Gutmann and Konolige [2], in which local frames, as well as the spatial
relationship between local frames, was derived by modeling it as a random variable and
matching pairwise scans for odometry. Further approaches [3] formulate SLAM as a
maximum a posteriori estimation problem with factor graphs to represent interdepen-
dence among variables. Extended Kalman Filters (EKF), followed by FastSLAM [4]
are also methods that have been increasingly used for this problem, and these are
feature-based methods that use maximum likelihood algorithms for exploiting inter-
dependency between frames. These methods also involved the representation of the
model/environment as an occupancy grid map, that has been extended to 2D and 3D
grid-based structures representing the probability of a cell being occupied.

Prominent visual SLAM methods include Large Scale Direct SLAM (LSD-SLAM)
[5] and Oriented FAST and Rotated BRIEF SLAM (ORB SLAM) [6]. LSD-SLAM, in
contrast to ORB-SLAM, is a featureless method that uses monocular RGB data to build
large-scale consistent maps based on image alignment, and pose-graph of keyframes
with associated semi-dense depth maps. Tracking of new camera images is based on
mapping of pose between current and previous frame initialization. A depth map is
further estimated to refine or replace the current keyframe. It is followed by opti-
mization for loop closures and scale drifts. ORB-SLAM is a feature-based method for
the generation of camera trajectory and sparse reconstruction of a 3D point cloud. It
involves automatic robust initialization of Scale Invariant Feature Transform (SIFT)
features from planar and non-planar scenes using homograph transformation and
fundamental matrices. Thus, they require the cameras to be calibrated. Overall, similar
to LSD-SLAM, it also involves tracking, mapping, and optimization.

Light Detection and Ranging (LiDAR) based SLAM methods involve the use of
depth information to develop scan mapping and matching methods [7]. A commonly
used method is Normal Distributions Transform (NDT) matching [8] that involves scan
matching based on observed features such as points and lines. Originally developed for
2D applications, NDT models laser scan data as a collection of local normals, and
divides the space around a SLAM agent into grids. It then estimates the mean and
standard deviation between points in that particular grid cell for modeling as a normal
distribution. Scan alignments are then performed for different scans with reference to
the coordinate system based on which the transform was built. Loop detection and
closure based on the bag-of-words model was proposed in [8], in which range data in
3D was used to robustly detect previously seen places and estimate relative orientation.
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Another popular method recently developed was Visual-LiDAR Odometry and
Mapping (V-LOAM) [9], in this work, Zhang and Singh propose a method for fusion
of odometry and LiDAR data as a principal step for mapping. The LiDAR odometry
framework matches point clouds at lower frequencies to refine motion estimates while
accounting for distortion and scaling parameters. Another extension of this line of work
is visual-inertial SLAM (VI-SLAM) methods [10] that fuse IMU data with estimated
pose based on conventional SLAM methods. This helps improve the accuracy and
reliability of estimation.

Shin, Sik, and Kim [11] present a thermal infrared-based SLAM system that is
aided by range measurements from LiDAR scan data. This method is relatively robust
against fog, smoke, and dim-lit conditions in comparison to RGB-based methods that
exploit well-lit environments for mapping. Their proposed method focuses on the
reliable estimation of 6-DOF camera pose for tracking and loop detection based on raw
14-bit features obtained from the thermal sensor by using a thermographic error model
for optimization.

The most commonly used commercially available LiDAR is Velodyne, VLP32, etc.
These have ROS-packages that can be used for easy interfacing. It generates a 3D
visualization of the surroundings by shooting pulses of the wavelength of 905 nm at a
600 kHz frequency. It has a range of about 200m and has a full 360  field of view [12].
The primary sensor used in this work is the Intel RealSense™ D345i sensor that is
equipped with an RGB camera, depth camera, accelerometer, and gyroscope. Depth-
based SLAM [14] methods involve the use of this depth data for the triangulation of 3D
points in the frame of the camera. These methods then exploit matching features and
aligning scans relative to the camera pose of the previous frame for tracking and
mapping.

3 Depth-Based SLAM Algorithm

The main objective of this task is to create a 3D point cloud of the surrounding
environment from 3D depth scans. We estimate the trajectory using point cloud reg-
istration with NDT and reduce drift using pose-graph optimization when the agent
revisits a place using a trust region solver [15].

The algorithm takes an N � 3 positional data as input per scan. This corresponds to
the depth data back-projected as points based on triangulation and camera intrinsic by
RealSense™. Parameters such as the maximum range of 3D laser scan data, reference
vectors that act as normal to ground plane, minimum Euclidean and angular distances
for plane fitting, down sampling ratio for point clouds, voxel grid size corresponding to
NDT registration, the minimum distance between poses for a scan to be considered
valid, loop closure radius, submaps scan count, submap threshold, RMSE error
threshold are initialized. These parameters required a considerable amount of tuning
depending on how the data is structured.
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After initialization, the point cloud is filtered to remove outliers, points on the
ground, and ceiling plane. The point cloud is also down sampled to improve the speed
and accuracy of point cloud registration. Point cloud registration then estimates the
relative pose (translation and orientation) between the previous and current scan.
A pose graph 3D object is used to store the estimated poses. The next step is to perform
loop closure, the agent searches within a small radius, it is sufficient to do so since drift
in LiDAR data is low and it is time-consuming to exhaustively search all scans.
Submaps are created from consecutive scans. These submaps are matched with the
current scan and are scored to determine whether or not they are probable loop can-
didates. The relative pose is estimated and accepted if the root means square (RMSE) is
within the threshold set in initialization. After a sufficient number of loop edges are
accepted, pose graph optimization is performed to reduce drift in the estimated tra-
jectory. The point clouds are then combined based on the estimated poses and
visualized.

4 Registration of the 3D Point Cloud to a Floor Map

4.1 Ground Plane Extraction

Given 3D point cloud data of the generated map, a reduced 2D floor map is generated.
The point cloud is formatted where x, y, and z correspond to each 3D point. In no
particular order, all points in the generated point cloud are listed. Using a simple
python interface, the generated 3D map is stored as an array subsampled depending on
the density of the data.

The ground plane is estimated from this data using RANSAC. For a plane
parameterized as, Ax + By + Cz + D = 0, where, [A, B, C] represent the normal to the
plane, D represents the distance of this plane from the origin, all points along the
ground plane satisfy the equation. Hence, RANSAC [13] is applied to estimate the set
of points that lie within an error bound owing to noisy data. The algorithm is described
as follows:

First, extract the ground plane. Only two thresholds need to be initialized [zmin,
zmax] that describe the range of points to be considered as inliers. The z range is
chosen as [−0.15, 0.2] for this problem.

Second, estimate the set of points that fall within the range after subsampling by
fitting the z = 0 plane. Since the data must be planar, project the points by taking the
dot product of the points, p, with the normal vector n, as p � n ¼ pncos hð Þ, where h
represents the angle between the projected point and normal.

Finally, the resulting 2D plot results in the ground plane, which is saved as an
image using Matplotlib with an equal axis.

4.2 Floor Map Registration

An interactive floor map registration tool is developed in Python for all platforms.
The GUI can perform operations such as scaling, translation, and translation. The
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interface can be used to register the floor map with the generated 2D map. The
transformation performed by the GUI can be summarized as:

P ¼ Hp

where P is the set of homogeneous transformed points after application of similarity
transform H on homogenous points p. H is given by:

AcosðhÞ �AsinðhÞ tx
AsinðhÞ �AcosðhÞ ty

0 0 1

2
4

3
5

where A represents scaling, h represents rotation angle about the z-axis, tx; ty represents
translation along the x-axis and y-axis respectively.

4.3 Floor Mapping with a Floor Plan or Footprint

Assume we have a 3D point cloud and a building’s floor map (floor plan). We can use
the interface to generate a 2D point cloud to be overlaid on the floor map. The left
image in Fig. 1 shows the 3D point cloud from iPhone 12 Pro has been successfully
registered onto the building floor map. However, in many cases, we don’t have a
building floor map. But we can find the building’s footprint from Google Map or other
open sources such as OpenStreetMap. The image on the right of Fig. 1 shows an
example of the 3D point cloud data from iPhone 12 Pro has been registered to the
medical center’s footprint on Google Map by matching entrance and the dome-shaped
structures.

Fig. 1. Long route registration with the office building floor map (left) and the route registration
with a hospital footprint (right)
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5 Edge Detection

Manipulating a large 3D point cloud is computationally expensive to machines and
humans! Our eyes in fact prefer smooth, clean, and straight lines, rather than messy
point cloud. We use the popular Canny edge detection algorithm to extract the edges
from the point cloud. It performs Gaussian filtering to remove noise, followed by
finding image gradients and suppressing spurious detections. The gradient thresholds
are set to detect edges. This boundary approximately represents the floor plan of the
mapped environment. Figure 2 shows examples of the edge detection results.

6 Conclusions

In this study, we use depth sensor to generate 3D point cloud and then register that to
the 2D building floor plan or footprint. We extract the ground plane from the point
cloud and create a 2D point cloud and contours to be registered to the map. The
experiments show that 2D map is more intuitive than 3D point cloud; furthermore, the
contour map reduces computational time in orders of magnitude. We also developed a
graphical user interface to enable the user to register the 2D point cloud interactively. It
is a new way to use SLAM data. Our case studies in large office buildings and medical
centers demonstrate that this approach is simple, intuitive, and effective to enhance the
localization and mapping in the real-world.
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