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Abstract. In language learning in the limit, the most common type of
hypothesis is to give an enumerator for a language, a W -index. These
hypotheses have the drawback that even the membership problem is
undecidable. In this paper, we use a different system which allows for
naming arbitrary decidable languages, namely programs for characteris-
tic functions (called C-indices). These indices have the drawback that it
is now not decidable whether a given hypothesis is even a legal C-index.

In this first analysis of learning with C-indices, we give a structured
account of the learning power of various restrictions employing C-indices,
also when compared with W -indices. We establish a hierarchy of learning
power depending on whether C-indices are required (a) on all outputs;
(b) only on outputs relevant for the class to be learned or (c) only in the
limit as final, correct hypotheses. We analyze all these questions also in
relation to the mode of data presentation.

Finally, we also ask about the relation of semantic versus syntactic
convergence and derive the map of pairwise relations for these two kinds
of convergence coupled with various forms of data presentation.

1 Introduction

We are interested in the problem of algorithmically learning a description for a
formal language (a computably enumerable subset of the set of natural numbers)
when presented successively all and only the elements of that language; this is
called inductive inference, a branch of (algorithmic) learning theory. For example,
a learner h might be presented more and more even numbers. After each new
number, h outputs a description for a language as its conjecture. The learner h
might decide to output a program for the set of all multiples of 4, as long as all
numbers presented are divisible by 4. Later, when h sees an even number not
divisible by 4, it might change this guess to a program for the set of all multiples
of 2.
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Many criteria for determining whether a learner h is successful on a lan-
guage L have been proposed in the literature. Gold, in his seminal paper [10],
gave a first, simple learning criterion, TxtGEx-learning1, where a learner is
successful if and only if, on every text for L (listing of all and only the elements
of L) it eventually stops changing its conjectures, and its final conjecture is a
correct description for the input language.

Trivially, each single, describable language L has a suitable constant function
as a TxtGEx-learner (this learner constantly outputs a description for L). Thus,
we are interested in analyzing for which classes of languages L is there a single
learner h learning each member of L. This framework is also known as language
learning in the limit and has been studied extensively, using a wide range of
learning criteria similar to TxtGEx-learning (see, for example, the textbook
[11]).

In this paper, we put the focus on the possible descriptions for languages.
Any computably enumerable language L has as possible descriptions any pro-
gram enumerating all and only the elements of L, called a W -index (the language
enumerated by program e is denoted by We). This system has various drawbacks;
most importantly, the function which decides, given e and x, whether x ∈ We

is not computable. We propose to use different descriptors for languages: pro-
grams for characteristic functions (where such programs e describe the language
Ce which it decides). Of course, only decidable languages have such a description,
but now, given a program e for a characteristic function, x ∈ Ce is decidable.
Additionally to many questions that remain undecidable (for example, whether
C-indices are for the same language or whether a C-index is for a finite language),
it is not decidable whether a program e is indeed a program for a characteristic
function. This leads to a new set of problems: Learners cannot be (algorithmi-
cally) checked whether their outputs are viable (in the sense of being programs
for characteristic functions).

Based on this last observation, we study a range of different criteria which for-
malize what kind of behavior we expect from our learners. In the most relaxed
setting, learners may output any number (for a program) they want, but in
order to Ex-learn, they need to converge to a correct C-index; we denote this
restriction with ExC . Requiring additionally to only use C-indices in order to
successfully learn, we denote by CIndExC ; requiring C-indices on all inputs
(not just for successful learning, but also when seeing input from no target
language whatsoever) we denote by τ(CInd)ExC . In particular, the last restric-
tion requires the learner to be total; in order to distinguish whether the loss of
learning power is due to the totality restriction or truly due to the additional
requirement of outputting C-indices, we also study RCIndExC , that is, the
requirement CIndExC where additionally the learner is required to be total.

We note that τ(CInd)ExC is similar to learning indexable families. Indexable
families are classes of languages L such that there is an enumeration (Li)i∈N of all
and only the elements of L for which the decision problem “x ∈ Li” is decidable.

1 Txt stands for learning from a text of positive examples; G for Gold, indicating
full-information learning; Ex stands for explanatory.
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Already for such classes of languages, we get a rich structure (see a survey of
previous work [16]). For a learner h learning according to τ(CInd)ExC , we have
that Lx = Ch(x) gives an indexing of a family of languages, and h learns some
subset thereof. We are specifically interested in the area between this setting and
learning with W -indices (ExW ).

The criteria we analyze naturally interpolate between these two settings. We
show that we have the following hierarchy: τ(CInd)ExC allows for learning
strictly fewer classes of languages than RCIndExC , which allow for learning
the same classes as CIndExC , which again are fewer than learnable by ExC ,
which in turn renders fewer classes learnable than ExW .

All these results hold for learning with full information. In order to study the
dependence on the mode of information presentation, we also consider partially
set-driven learners (Psd, [2,19]), which only get the set of data presented so far
and the iteration number as input; set-driven learners (Sd, [20]), which get only
the set of data presented so far; iterative learners (It, [8,21]), which only get
the new datum and their current hypothesis and, finally, transductive learners
(Td, [4,15]), which only get the current data. Note that transductive learners
are mostly of interest as a proper restriction to all other modes of information
presentation. In particular, we show that full-information learners can be turned
into partially set-driven learners without loss of learning power and iterative
learning is strictly less powerful than set-driven learning, in all settings.

Altogether we analyze 25 different criteria and show how each pair relates.
All these results are summarized in Fig. 1(a) as one big map stating all pairwise
relations of the learning criteria mentioned, giving 300 pairwise relations in one
diagram, proven with 13 theorems in Sect. 3. Note that the results comparing
learning criteria with W -indices were previously known, and some proofs could
be extended to also cover learning with C-indices. For the proofs, please consider
the full version of this paper [1].

In Sect. 4, we derive a similar map considering a possible relaxation on ExC-
learning: While ExC requires syntactic convergence to one single correct C-
index, we consider behaviorally correct learning (BcC , [6,17]) where the learner
only has to semantically converge to correct C-indices (but may use infinitely
many different such indices). We again consider the different modes of data
presentation and determine all pairwise relations in Fig. 1(b). The proofs are
again deferred to the full version [1].

2 Preliminaries

2.1 Mathematical Notations and Learning Criteria

In this section, we discuss the used notation as well as the system for learning
criteria [15] we follow. Unintroduced notation follows the textbook [18].

With N we denote the set of all natural numbers, namely {0, 1, 2, . . .}. We
denote the subset and proper subset relation between two sets with ⊆ and �,
respectively. We use ∅ and ε to denote the empty set and empty sequence,
respectively. The set of all computable functions is denoted by P, the subset of
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Fig. 1. Relation of (a) various requirements when to output characteristic indices
and (b) various learning criteria, both paired with various memory restrictions β.
Black solid respectively dashed lines imply trivial respectively non-trivial inclusions
(bottom-to-top, left-to-right). Furthermore, greyly edged areas illustrate a collapse of
the enclosed learning criteria and there are no further collapses.

all total computable functions by R. If a function f is (not) defined on some
argument x ∈ N, we say that f converges (diverges) on x, denoting this fact with
f(x)↓ (f(x)↑). We fix an effective numbering {ϕe}e∈N of P. For any e ∈ N, we
let We denote the domain of ϕe and call e a W -index of We. This set we call the
e-th computably enumerable set. We call e ∈ N a C-index (characteristic index )
if and only if ϕe is a total function such that for all x ∈ N we have ϕe(x) ∈ {0, 1}.
Furthermore, we let Ce = {x ∈ N}ϕe(x) = 1. For a computably enumerable set
L, if some e ∈ N is a C-Index with Ce = L, we write ϕe = χL. Note that, if a set
has a C-index, it is recursive. The set of all recursive sets is denoted by REC.
For a finite set D ⊆ N, we let ind(D) be a C-index for D. Note that ind ∈ R.
Furthermore, we fix a Blum complexity measure Φ associated with ϕ, that is,
for all e, x ∈ N, Φe(x) is the number of steps the function ϕe takes on input x to
converge [3]. The padding function pad ∈ R is an injective function such that,
for all e, n ∈ N, we have ϕe = ϕpad(e,n) . We use 〈·, ·〉 as a computable, bijective
function that codes a pair of natural numbers into a single one. We use π1 and
π2 as computable decoding functions for the first and section component, i.e.,
for all x, y ∈ N we have π1(〈x, y〉) = x and π2(〈x, y〉) = y.

We learn computably enumerable sets L, called languages. We fix a pause
symbol #, and let, for any set S, S# := S ∪{#}. Information about languages is
given from text, that is, total functions T : N → N∪{#}. A text T is of a certain
language L if its content is exactly L, that is, content(T ) := range(T ) \ {#} is
exactly L. We denote the set of all texts as Txt and the set of all texts of a
language L as Txt(L). For any n ∈ N, we denote with T [n] the initial sequence
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of the text T of length n, that is, T [0] := ε and T [n] := (T (0), . . . , T (n − 1)).
Given a language L and t ∈ N, the set of sequences consisting of elements of
L ∪ {#} that are at most t long is denoted by L≤t

# . Furthermore, we denote
with Seq all finite sequences over N# and define the content of such sequences
analogous to the content of texts. The concatenation of two sequences σ, τ ∈ Seq
is denoted by στ or, more emphasizing, σ�τ . Furthermore, we write ⊆ for the
extension relation on sequences and fix a order ≤ on Seq interpreted as natural
numbers.

Now, we formalize learning criteria using the following system [15]. A learner
is a partial function h ∈ P. An interaction operator β is an operator that takes
a learner h ∈ P and a text T ∈ Txt as input and outputs a (possibly partial)
function p. Intuitively, β defines which information is available to the learner for
making its hypothesis. We consider Gold-style or full-information learning [10],
denoted by G, partially set-driven learning (Psd, [2,19]), set-driven learning
(Sd, [20]), iterative learning (It, [8,21]) and transductive learning (Td, [4,15]).
To define the latter formally, we introduce a symbol “?” for the learner to sig-
nalize that the information given is insufficient. Formally, for all learners h ∈ P,
texts T ∈ Txt and all i ∈ N, define

G(h, T )(i) = h(T [i]);
Psd(h, T )(i) = h(content(T [i]), i);
Sd(h, T )(i) = h(content(T [i]));

It(h, T )(i) =

{
h(ε), if i = 0;
h(It(h, T )(i − 1), T (i − 1)), otherwise;

Td(h, T )(i) =

⎧⎪⎨
⎪⎩

?, if i = 0;
Td(h, T )(i − 1), else, if h(T (i − 1)) = ?;
h(T (i − 1)), otherwise.

For any of the named interaction operators β, given a β-learner h, we let h∗

(the starred learner) denote a G-learner simulating h, i.e., for all T ∈ Txt, we
have β(h, T ) = G(h∗, T ). For example, let h be a Sd-learner. Then, intuitively,
h∗ ignores all information but the content of the input, simulating h with this
information, i.e., for all finite sequences σ, we have h∗(σ) = h(content(σ)).

For a learner to successfully identify a language, we may oppose constraints
on the hypotheses the learner makes. These are called learning restrictions. As
a first, famous example, we required the learner to be explanatory [10], i.e., the
learner must converge to a single, correct hypothesis for the target language.
We hereby distinguish whether the final hypothesis is interpreted as a C-index
(ExC) or as a W -index (ExW ). Formally, for any sequence of hypotheses p and
text T ∈ Txt, we have

ExC(p, T ) ⇔ ∃n0 : ∀n ≥ n0 : p(n) = p(n0) ∧ ϕp(n0) = χcontent(T );
ExW (p, T ) ⇔ ∃n0 : ∀n ≥ n0 : p(n) = p(n0) ∧ Wp(n0) = content(T ).
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We say that explanatory learning requires syntactic convergence. If there exists a
C-index (or W -index) for a language, then there exist infinitely many. This moti-
vates to not require syntactic but only semantic convergence, i.e., the learner
may make mind changes, but it has to, eventually, only output correct hypothe-
ses. This is called behaviorally correct learning (BcC or BcW , [6,17]). Formally,
let p be a sequence of hypotheses and let T ∈ Txt, then

BcC(p, T ) ⇔ ∃n0 : ∀n ≥ n0 : ϕp(n) = χcontent(T );
BcW (p, T ) ⇔ ∃n0 : ∀n ≥ n0 : Wp(n) = content(T ).

In this paper, we consider learning with C-indices. It is, thus, natural to require
the hypotheses to consist solely of C-indices, called C-index learning, and
denoted by CInd. Formally, for a sequence of hypotheses p and a text T , we
have

CInd(p, T ) ⇔ ∀i, x : ϕp(i)(x) ∈ {0, 1}.

For two learning restrictions δ and δ′, their combination is their intersection,
denoted by their juxtaposition δδ′. We let T denote the learning restriction that
is always true, which is interpreted as the absence of a learning restriction.

A learning criterion is a tuple (α, C, β, δ), where C is the set of admissible
learners, usually P or R, β is an interaction operator and α and δ are learning
restrictions. We denote this criterion with τ(α)CTxtβδ, omitting C if C = P,
and a learning restriction if it equals T. We say that an admissible learner h ∈ C
τ(α)CTxtβδ-learns a language L if and only if, for arbitrary texts T ∈ Txt, we
have α(β(h, T ), T ) and for all texts T ∈ Txt(L) we have δ(β(h, T ), T ). The set
of languages τ(α)CTxtβδ-learned by h ∈ C is denoted by τ(α)CTxtβδ(h). With
[τ(α)CTxtβδ] we denote the set of all classes τ(α)CTxtβδ-learnable by some
learner in C. Moreover, to compare learning with W - and C-indices, these classes
may only contain recursive languages, which we denote as [τ(α)CTxtβδ]REC.

2.2 Normal Forms

When studying language learning in the limit, there are certain properties of
learner that are useful, e.g., if we can assume a learner to be total. Cases where
learners may be assumed total have been studied in the literature [13,14]. Impor-
tantly, this is the case for explanatory Gold-style learners obeying delayable
learning restrictions and for behaviorally correct learners obeying delayable
restrictions. Intuitively, a learning restriction is delayable if it allows hypotheses
to be arbitrarily, but not indefinitely postponed without violating the restric-
tion. Formally, a learning restriction δ is delayable, if and only if for all non-
decreasing, unbounded functions r : N → N, texts T, T ′ ∈ Txt and learning
sequences p such that for all n ∈ N, content(T [r(n)]) ⊆ content(T ′[n]) and
content(T ) = content(T ′), we have, if δ(p, T ), then also δ(p ◦ r, T ′). Note that
ExW , ExC , BcW , BcC and CInd are delayable restrictions.
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Another useful notion are locking sequences. Intuitively, these contain enough
information such that a learner, after seeing this information, converges correctly
and does not change its mind anymore whatever additional information from the
target language it is given. Formally, let L be a language and let σ ∈ L∗

#. Given a
G-learner h ∈ P, σ is a locking sequence for h on L if and only if for all sequences
τ ∈ L∗

# we have h(σ) = h(στ) and h(σ) is a correct hypothesis for L [2]. This
concept can immediately be transferred to other interaction operators. Exem-
plary, given a Sd-learner h and a locking sequence σ of the starred learner h∗,
we call the set content(σ) a locking set. Analogously, one transfers this defini-
tion to the other interaction operators. It shall not remain unmentioned that,
when considering Psd-learners, we speak of locking information. In the case of
BcW -learning we do not require the learner to syntactically converge. Therefore,
we call a sequence σ ∈ L∗

# a BcW -locking sequence for a G-learner h on L if,
for all sequences τ ∈ L∗

#, h(στ) is a correct hypothesis for L [11]. We omit the
transfer to other interaction operators as it is immediate. It is an important
observation that for any learner h and any language L it learns, there exists a
(BcW -) locking sequence [2]. These notions and results directly transfer to ExC-
and BcC-learning. When it is clear from the context, we omit the index.

3 Requiring C-Indices as Output

This section is dedicated to proving Fig. 1(a), giving all pairwise relations for
the different settings of requiring C-indices for output in the various mentioned
modes of data presentation. In general, we observe that the later we require
C-indices, the more learning power the learner has. This holds except for trans-
ductive learners which converge to C-indices. We show that they are as powerful
as CInd-transductive learners.

Although we learn classes of recursive languages, the requirement to converge
to characteristic indices does heavily limit a learners capabilities. In the next
theorem we show that even transductive learners which converge to W -indices
can learn classes of languages which no Gold-style ExC-learner can learn. We
exploit the fact that C-indices, even if only conjectured eventually, must contain
both positive and negative information about the guess.

Theorem 1. We have that [TxtTdExW ]REC \ [TxtGExC ]REC �= ∅.
Proof. We show this by using the Operator Recursion Theorem (ORT) to pro-
vide a separating class of languages. To this end, let h be the Td-learner with
h(#) = ? and, for all x, y ∈ N, let h(〈x, y〉) = x. Let L = TxtTdExW (h)∩REC.
Assume L can be learned by a TxtGExC-learner h′. We may assume h′ ∈ R [13].
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Then, by ORT there exist indices e, p, q ∈ N such that

L := We = range(ϕp);

∀x : T̃ (x) := ϕp(x) = 〈e, ϕq(T̃ [x])〉;
ϕq(ε) = 0;

∀σ �= ε : σ̄ = min{σ′ ⊆ σ | ϕq(σ
′) = ϕq(σ)};

∀σ �= ε : ϕq(σ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ϕq(σ̄), if ∀σ′, σ̄ ⊆ σ′ ⊆ σ : Φh′(σ′)(〈e, ϕq(σ̄) + 1〉) > |σ|;
ϕq(σ̄) + 1, else, for min. σ′ contradicting the previous case, if

ϕh′(σ′)(〈e, ϕq(σ̄) + 1〉) = 0;

ϕq(σ̄) + 2, otherwise.

Here, Φ is a Blum complexity measure [3]. Intuitively, to define the next ϕp(x),
we add the same element to content(T̃ ) until we know whether 〈e, T̃ [x] + 1〉 ∈
Ch′(σ̄) holds or not. Then, we add the element contradicting this outcome.

We first show that L ∈ L and afterwards that L cannot be learned by h′. To
show the former, note that either L is finite or T̃ is a non-decreasing unbounded
computable enumeration of L. Therefore, we have L ∈ REC. We now prove that
h learns L. Let T ∈ Txt(L). For all n ∈ N where T (n) is not the pause symbol,
we have h(T (n)) = e. With n0 ∈ N being minimal such that T (n0) �= #, we
get for all n ≥ n0 that Td(h, T )(n) = e. As e is a correct hypothesis, h learns
L from T and thus we have that L ∈ TxtTdExW (h). Altogether, we get that
L ∈ L.

By assumption, h′ learns L from the text T̃ ∈ Txt(L). Therefore, there exists
n0 ∈ N such that, for all n ≥ n0,

h′(T̃ [n]) = h′(T̃ [n0]) and χL = ϕh′(T̃ [n]),

that is, h′(T̃ [n]) is a C-index for L. Now, as h′ outputs C-indices when converg-
ing, there are t, t′ ≥ n0 such that

Φh′(T̃ [t′])(〈e, ϕq(T̃ [n0]) + 1〉) ≤ t.

Let t′0 and t0 be the first such found. We show that h′(T̃ [t′0]) is no correct
hypothesis of L by distinguishing the following cases.

1. Case: ϕh′(T̃ [t′
0])

(〈e, ϕq(T̃ [n0])+1〉) = 0. By definition of ϕq and by minimality

of t′0, we have that 〈e, ϕq(T̃ [n0])+1〉 ∈ L, however, the hypothesis of h′(T̃ [t′0])
says differently, a contradiction.

2. Case: ϕh′(T̃ [t′
0])

(〈e, ϕq(T̃ [n0])+1〉) = 1. By definition of ϕq and by minimality

of t′0, we have that 〈e, ϕq(T̃ [n0])+1〉 ∈ L, but 〈e, ϕq(T̃ [n0])+1〉 /∈ L. However,
the hypothesis of h′(T̃ [t′0]) conjectures the latter to be in L, a contradiction.

��
Furthermore, the following known equalities from learning W -indices directly

apply in the studied setting as well.
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Theorem 2 ([12], [9,19]). We have that

[TxtItExW ]REC ⊆ [TxtSdExW ]REC,

[TxtPsdExW ]REC = [TxtGExW ]REC.

The remaining separations we will show in a more general way, see Theo-
rems 11 and 12. We generalize the latter result [9,19], namely that Gold-style
learners may be assumed partially set-driven, to all considered cases. The idea
here is to, just as in the ExW -case, mimic the given learner and to search for
minimal locking sequences. Incorporating the result that unrestricted Gold-style
learners may be assumed total [13], we even get a stronger result.

Theorem 3. For δ, δ′ ∈ {CInd,T}, we have that

[τ(δ)TxtGδ′ExC ]REC = [τ(δ)RTxtPsdδ′ExC ]REC.

We also generalize the former result of Theorem 2 to hold in all considered
cases. The same simulating argument (where one mimics the iterative learner on
ascending text with a pause symbol between two elements) suffices regardless
the exact setting.

Theorem 4. Let δ, δ′ ∈ {CInd,T} and C ∈ {R,P}. Then, we have that

[τ(δ′)CTxtItδExC ]REC ⊆ [τ(δ′)CTxtSdδExC ]REC.

Interestingly, totality is not restrictive solely for Gold-style (and due to the
equality also partially set-driven) learners. For the other considered learners with
restricted memory, being total lessens the learning capabilities. This weakness
results from the need to output some guess. A partial learner can await this
guess and outperform it. This way, we obtain self-learning languages [5] to show
the three following separations.

Theorem 5. We have that [RTxtSdCIndExC ]REC � [TxtSdCIndExC ]REC.

Theorem 6. We have that [RTxtItCIndExC ]REC � [TxtItCIndExC ]REC.

Theorem 7. We have that [RTxtTdCIndExC ]REC � [TxtTdCIndExC ]REC.

Next, we show the gradual decrease of learning power the more we require the
learners to output characteristic indices. We have already seen in Theorem 1 that
converging to C-indices lessens learning power. However, this allows for more
learning power than outputting these indices during the whole learning process
as shows the next theorem. The idea is that such learners have to be certain about
their guesses as these are indices of characteristic functions. When constructing
a separating class using self-learning languages [5], one forces the CInd-learner
to output C-indices on certain languages to, then, contradict its choice there.
This way, the ExC-learner learns languages the CInd-learner cannot.
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Theorem 8. We have that [TxtItExC ]REC \ [TxtGCIndBcC ]REC �= ∅.
Since languages which can be learned by iterative learners can also be learned

by set-driven ones (see Theorem 4), this result suffices. Note that the idea above
requires some knowledge on previous elements. Thus, it is no coincidence that
this separation does not include transductive learners. Since these learners base
their guesses on single elements, they cannot see how far in the learning process
they are. Thus, they are forced to always output C-indices.

Theorem 9. We have that [TxtTdCIndExC ]REC = [TxtTdExC ]REC.

For the remainder of this section, we focus on learners which output charac-
teristic indices on arbitrary input, that is, we focus on τ(CInd)-learners. First,
we show that the requirement of always outputting C-indices lessens a learners
learning power, even when compared to total CInd-learners. To provide the sep-
arating class of self-learning languages, one again awaits the τ(CInd)-learner’s
decision and then, based on these, learns languages this learner cannot.

Theorem 10. We have [RTxtTdCIndExC ]REC \ [τ(CInd)TxtGBcC ]REC �= ∅.
Proof. We prove the result by providing a separating class of languages. Let
h be the Td-learner with h(#) = ? and, for all x, y ∈ N, let h(〈x, y〉) = x.
By construction, h is total and computable. Let L = RTxtTdCIndExC(h) ∩
REC. We show that there is no τ(CInd)TxtGBcC-learner learning L by way
of contradiction. Assume there is a τ(CInd)TxtGBcC-learner h′ which learns
L. With the Operator Recursion Theorem (ORT), there are e, p ∈ N such that
for all x ∈ N

L := range(ϕp);
ϕe = χL;

T̃ (x) := ϕp(x) =

{
〈e, 2x〉, if ϕh′(ϕp[x])(〈e, 2x〉) = 0;
〈e, 2x + 1〉, otherwise.

Intuitively, for all x either ϕp(x) is an element of L if it is not in the hypothesis
of h′ after seeing ϕp[x], or there is an element in this hypothesis that is not in
content(T̃ ). As any hypothesis of h′ is a C-index, we have that ϕp ∈ R and, as
ϕp is strictly monotonically increasing, that L is decidable.

We now prove that L ∈ L and afterwards that L cannot be learned by h′.
First, we need to prove that h learns L. Let T ∈ Txt(L). For all n ∈ N where
T (n) is not the pause symbol, we have h(T (n)) = e. Let n0 ∈ N with T (n0) �= #.
Then, we have, for all n ≥ n0, that Td(h, T )(n) = e and, since e is a hypothesis
of L, h learns L from T . Thus, we have that L ∈ RTxtTdCIndExC(h)∩REC.

By assumption, h′ learns L and thus it also needs to learn L on text T̃ .
Hence, there is x0 such that for all x ≥ x0 the hypothesis h′(T̃ [x]) = h′(ϕp[x])
is a C-index for L. We now consider the following cases.

1. Case: ϕh′(ϕp[x])(〈e, 2x〉) = 0. By construction, we have that T̃ (x) = 〈e, 2x〉.
Therefore, 〈e, 2x〉 ∈ L, which contradicts h′(ϕp[x]) being a correct hypothesis.
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2. Case: ϕh′(ϕp[x])(〈e, 2x〉) = 1. By construction, we have that T̃ (x) �= 〈e, 2x〉 and
thus, because T̃ is strictly monotonically increasing, 〈e, 2x〉 /∈ L = content(T̃ ).
This, again, contradicts h′(ϕp[x]) being a correct hypothesis.

As in all cases h′(ϕp[x]) is a wrong hypothesis, h′ cannot learn L. ��
It remains to be shown that memory restrictions are severe for such learners

as well. First, we show that partially set-driven learners are more powerful than
set-driven ones. Just as originally witnessed by for W -indices [9,19], this is solely
due to the lack of learning time. In the following theorem, we already separate
from behaviorally correct learners, as we will need this stronger version later on.

Theorem 11. We have that [τ(CInd)TxtPsdExC ]REC \ [TxtSdBcW ]REC �=
∅.

In turn, this lack of time is not as severe as lack of memory. The standard class
(of recursive languages) to separate set-driven learners from iterative ones [11]
can be transferred to the setting studied in this paper.

Theorem 12. We have that [τ(CInd)TxtSdExC ]REC\[TxtItExW ]REC �= ∅.

Lastly, we show that transductive learners, having basically no memory, do
severely lack learning power. As they have to infer their conjectures from single
elements they, in fact, cannot even learn basic classes such as {{0}, {1}, {0, 1}}.
The following result concludes the map shown in Fig. 1(a) and, therefore, also
this section.

Theorem 13. For β ∈ {It,Sd}, we have that

[τ(CInd)TxtβExC ]REC \ [TxtTdExW ]REC �= ∅.

4 Syntactic Versus Semantic Convergence to C-indices

In this section, we investigate the effects on learners when we require them to
converge to characteristic indices. We study both syntactically converging learn-
ers as well as semantically converging ones. In particular, we compare learners
imposed with different well-studied memory restrictions.

Surprisingly, we observe that, although C-indices incorporate and, thus,
require the learner to obtain more information during the learning process than
W -indices, the relative relations of the considered restrictions remain the same.
We start by gathering results which directly follow from the previous section.

Corollary 1. We have that

[TxtPsdExC ]REC = [TxtGExC ]REC, (Theorem 3),
[TxtItExC ]REC ⊆ [TxtSdExC ]REC, (Theorem 4),
[TxtGExC ]REC \ [TxtSdBcC ]REC �= ∅, (Theorem 11),

[TxtSdExC ]REC \ [TxtItExC ]REC �= ∅, (Theorem 12),
[TxtItExC ]REC \ [TxtTdExC ]REC �= ∅, (Theorem 13).
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We show the remaining results. First, we show that, just as for W -indices,
behaviorally correct learners are more powerful than explanatory ones. We pro-
vide a separating class exploiting that explanatory learners must converge to
a single, correct hypothesis. We collect elements on which mind changes are
witnessed, while maintaining decidability of the obtained language.

Theorem 14. We have that [TxtSdBcC ]REC \ [TxtGExC ]REC �= ∅.
Next, we show that, just as for W -indices, a padding argument makes itera-

tive behaviorally correct learners as powerful as Gold-style ones.

Theorem 15. We have that [TxtItBcC ]REC = [TxtGBcC ]REC.

We show that the classes of languages learnable by some behaviorally correct
Gold-style (or, equivalently, iterative) learner, can also be learned by partially
set-driven ones. We follow the proof which is given in a private communication
with Sanjay Jain [7]. The idea there is to search for minimal Bc-locking sequences
without directly mimicking the G-learner. We transfer this idea to hold when
converging to C-indices as well. We remark that, while doing the necessary
enumerations, one needs to make sure these are characteristic. One obtains this
as the original learner eventually outputs characteristic indices.

Theorem 16. We have that [TxtPsdBcC ]REC = [TxtGBcC ]REC.

Lastly, we investigate transductive learners. Such learners base their hypothe-
ses on a single element. Thus, one would expect them to benefit from dropping
the requirement to converge to a single hypothesis. Interestingly, this does not
hold true. This surprising fact originates from C-indices encoding characteristic
functions. Thus, one can simply search for the minimal element on which no “?”
is conjectured. The next result finalizes the map shown in Fig. 1(a) and, thus,
this section.

Theorem 17. We have that [TxtTdExC ]REC = [TxtTdBcC ]REC.
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