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Abstract. We describe subquadratic algorithms, in the algebraic
decision-tree model of computation, for detecting whether there exists a
triple of points, belonging to three respective sets A, B, and C of points
in the plane, that satisfy a pair of polynomial equations. In particular,
this has an application to detect collinearity among three sets A, B, C
of n points each, in the complex plane, when each of the sets A, B, C
lies on some constant-degree algebraic curve. In another development, we
present a subquadratic algorithm, in the algebraic decision-tree model,
for the following problem: Given a pair of sets A, B each consisting of
n pairwise disjoint line segments in the plane, and a third set C of arbi-
trary line segments in the plane, determine whether A×B ×C contains
a triple of concurrent segments. This is one of four 3sum-hard geometric
problems recently studied by Chan (2020). The results reported in this
extended abstract are based on the recent studies of the author with
Aronov and Sharir (2020, 2021).

Keywords: 3SUM-hard problems · Algebraic decision tree model ·
Collinearity testing · Segment concurrency

1 Introduction

In theoretical computer science, analysis of algorithms in non-uniform models is
often applied when one is interested in optimizing the number of certain opera-
tions, while the remaining operations performed by the algorithm are disregarded
in the complexity analysis.

A central problem, which received considerable attention due to its relation to
conditional lower bounds on the complexity of fundamental geometric questions,
is 3sum, namely, given a set of n real numbers, decide whether there is a triple of
them that sums to 0. We sometimes refer to the trichromatic version of 3SUM,
where we are given three sets A, B, C of n real numbers each, and the question
is to determine whether there is a triple (a, b, c) ∈ A × B × C with a + b + c = 0.

There is a large family of geometric problems that are known to be 3sum-
hard, in the sense that 3sum can be reduced to them. In fact, Gajentaan and
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Overmars [15], who introduced this concept, initially coined these problems
“n2-hard,” as it was strongly believed that 3sum cannot be solved in sub-
quadratic time (it can easily be solved in O(n2) time). Moreover, Erickson [11]
showed a matching quadratic lower bound in the 3-linear decision-tree model (see
also [4]),namely, in the linear decision-tree model the only operation allowed to
directly access the input data is a sign test of a linear function of the input
numbers; these are the operations counted by the model, while all the remaining
operations are free. In the 3-linear model, the linear functions are restricted to
three parameters, in particular, Erickson [11] used comparisons of the form: “Is
a + b greater/smaller/equal to c?”

As a consequence, it was conjectured that there is no subquadratic solution.
However, this prevailing conjecture was refuted by Grønlund and Pettie [16],
who showed an upper bound close to O(n3/2) in the 4-linear decision-tree model
(using the so-called Fredman’s trick - see Sect. 2 for this notion in geometric prob-
lems), and a slightly subquadratic algorithm in the RAM model. This pioneering
work raised the interest of researchers from the entire theoretical computer sci-
ence community. Soon afterwards, the more general question of k-SUM (deciding
whether there is a k-tuple of the input numbers which sum to 0) was studied by
Cardinal et al. [8], Kane et al. [19] and by the author and collaborators [13,14].
The main idea is to reduce the problem to point location in high-dimensional
“hyperplane arrangements,” where the challenge is to bring down the query time,
so that its dependence on the dimension d is polynomial rather than exponen-
tial (see also [20,21]). In fact, the work of the author in [13] presents a point-
location mechanism for arbitrary hyperplanes in the RAM model (whereas the
work in [14] considered this problem only in the linear decision-tree model). Very
recently Hopkins et al. [18] showed an improvement for such a mechanism, yield-
ing an almost optimal bound in the linear decision-tree model. The approach in
[18,19] uses the concept of inference adapted from active learning. Inference
dimension refers to the situation where one considers linear comparisons on a
set of items, and the quantity to be measured is, roughly speaking, what is the
smallest number of comparisons from which one can deduce the result of another
comparison. A key property in the analysis in [19], which eventually led to the
near-linear bound for the k-SUM problem, is that the inference dimension is only
linear in n in this case.

The seminal work of Gajentaan and Overmars [15] presents a fairly long list
of geometric 3sum-hard problems in two and three dimensions (they all have a
simple reduction from 3sum), such as: (i) Collinearity testing : Given a set of
points in R

2, do they contain a collinear triple? (ii) Covering by strips: Given
strips in the plane, does their union cover the unit square? (iii) Separator prob-
lems: Given a set of non-intersecting axis-parallel line segments in R

2, is there
a line separating them into two non-empty sets? Among geometric 3sum-hard
problems, collinearity testing is perhaps the most fundamental one, since many
such problems are intrinsically “collinearity-hard”. In this extended abstract we
refer to the trichromatic version of collinearity testing, which is described next.
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In the sequel we focus on two main developments concerning collinearity
testing in the algebraic decision tree model, that is, each comparison is a sign
test of some constant-degree polynomial in the coordinates of a constant number
of input points. In the first we consider the trichromatic problem in the complex
plane, where the input consists of three sets of points A, B, C, each lying on some
constant-degree algebraic (complex) curve. We in fact present a more general
scheme, for detecting whether there exists a triple of points, belonging to three
respective sets A, B, and C of points in the plane, that satisfy two polynomial
equations, and show a subquadratic bound in the algebraic decision tree model.
These results are briefly described in Sect. 2; we refer the reader to [5] for further
details.1

In the second development we study the segment concurrency problem in
the algebraic decision tree model: Given a pair of sets A, B each consisting of
n pairwise disjoint line segments in the plane, and a third set C of arbitrary
line segments in the plane, determine whether A × B × C contains a triple of
concurrent segments. When A, B, C are three sets of lines in the plane (rather
than line segments as above), the problem is exactly the dual to collinearity
testing, which is 3sum-hard. In fact, our restricted setting is still 3sum-hard, and
is among four such problems studied by Chan [9], all of which can be reduced to
the problem of triangle intersection counting : That is, given two sets A and B,
each consisting of n pairwise disjoint line segments in the plane, and a set C of n
triangles in the plane, count, for each triangle Δ ∈ C, the number of intersection
points between the segments of A and those of B that lie inside Δ. The other
two problems are: (i) Intersection of three polygons: Given three simple n-gons
A, B, C in the plane, determine whether A ∩ B ∩ C is nonempty.(ii) Coverage
by three polygons: Given three simple n-gons A, B, C in the plane, determine
whether A∪B ∪C covers a given triangle Δ0. The property that these problems
are 3SUM-hard, as well as the reduction to the problem of triangle intersection
counting, are described in [9].

In Sect. 3 we briefly describe a subquadratic solution to the segment concur-
rency problem in the algebraic decision tree model. This is part of the work in
progress of the author with Aronov and Sharir [6] where they presented a sub-
quadratic solution to the triangle intersection counting problem in the algebraic
decision tree model.

2 Testing a Pair of Polynomial Equations and Collinearity
Testing in the Complex Plane

For simplicity of presentation, we present a solution sketch for the following
problem: We are given three sets A, B, and C, each consisting of n points in the
plane, and we seek a triple (a, b, c) ∈ A × B × C that satisfies two polynomial
1 The work in [5] also shows how to detect whether A, B, C satisfy a single polyno-

mial equation under the condition that two of the sets lie on two respective one-
dimensional curves and the third is placed arbitrarily in the plane. We do not report
this particular development in this extended abstract.
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equations. We assume that they are of the form c1 = F (a, b), c2 = G(a, b),
for c = (c1, c2), where F and G are constant-degree 4-variate polynomials with
good fibers, in the following sense: For any pair of real numbers κ1, κ2, the two-
dimensional surface π(κ1,κ2) := {(a, b) ∈ R

4 | F (a, b) = κ1, G(a, b) = κ2} has
good fibers2.

Polynomial Partitioning. Our analysis relies on planar polynomial partitioning
and on properties of Cartesian products of pairs of them. For a polynomial
f : Rd → R, for any d ≥ 2, the zero set of f is Z(f) := {x ∈ R

d | f(x) = 0}.
We refer to an open connected component of Rd \Z(f) as a cell. A fundamental
result of Guth and Katz [17] is:

Proposition 1 (Polynomial partitioning [17]). Let P be a finite set of
points in R

d, for any d ≥ 2. For any real parameter D with 1 ≤ D ≤ |P |1/d,
there exists a real d-variate polynomial f of degree O(D) such that Rd \Z(f) has
O(Dd) cells, each containing at most |P |/Dd points of P .

Agarwal et al. [3] presented an algorithm that computes a polynomial parti-
tioning in expected O(npoly(D)) time, whose degree is within a constant factor
of that stated in Proposition 1.

We now proceed as follows. We apply a “block” partitioning for the points in
A and in B, using Cartesian products of pairs polynomial partitions, based on
the analysis of Solymosi and de Zeeuw [22]. Roughly speaking, we fix a parameter
g � n (whose value will be set later), and use Proposition 1 in order to form a
polynomial partitioning of degree D = O(

√
n/g) for each of the sets A, B. Each

connected component in the partition of A (resp., B) contains at most g point of
A (resp.,., B). We then form the Cartesian product of the partitioning of A and
B. Let ζ denote a cell in this partition, this cell is the Cartesian product τ × τ ′

of a cell τ from the partition of A and a cell τ ′ from the partition of B. Since
|A ∩ τ |, |B ∩ τ ′| ≤ g, we have that ζ contains at most g2 points of A × B, and
the overall number of cells in this partition is O((n/g)2+ε), for any prescribed
ε > 0.3

Put Aτ := A ∩ τ and Bτ ′ := B ∩ τ ′. The high-level idea of the algorithm
is to sort lexicographically each of the sets Hτ,τ ′ := {(F (a, b), G(a, b)) | (a, b) ∈
Aτ ×Bτ ′}, over all pairs of cells (τ, τ ′). We then search with each c = (c1, c2) ∈ C
through the sorted lists of those sets Hτ,τ ′ that might contain (c1, c2). We show
that each c ∈ C has to be searched for in only a small number of sets. Typically
to this kind of problems [16], sorting the sets explicitly is too expensive. We
overcome this issue by considering the problem in the algebraic decision-tree
model, and by using an algebraic variant of Fredman’s trick (extending those
used in [7,16]).

2 A two-dimensional algebraic surface S in R
4 has good fibers if, for every point p ∈ R

2,
the fibers ({p} × R

2) ∩ S and (R2 × {p}) ∩ S are finite.
3 The number of cells is in fact O(n/g)2), but the analysis in [5] uses hierarchical
polynomial partitioning in order to speed up computation, which slightly increases
the number of cells to O((n/g)2+ε). We skip this variant in this extended abstract.
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Implicit Sorting and Batched Point Location. Consider the step of sorting
{F (a, b) | (a, b) ∈ Aτ × Bτ ′} (the sorting of the values G(a, b) is done in a
secondary round and is treated analogously). It has to perform various com-
parisons of pairs of values F (a, b) and F (a′, b′), for a, a′ ∈ Aτ , b, b′ ∈ Bτ ′ .
We consider Aτ × Aτ as a set of g2 points in R

4, and associate, with each
pair (b, b′) ∈ Bτ ′ × Bτ ′ , the 3-surface σb,b′ = {(a, a′) ∈ R

4 | F (a, b) = F (a′, b′)}.
Let Στ ′ denote the set of these surfaces. The arrangement A(Στ ′) has the
property that each of its cells ζ has a fixed sign pattern with respect to all
these surfaces. That is, each comparison of F (a, b) with F (a′, b′), for any (a, b),
(a′, b′) ∈ Aτ × Bτ ′ , has a fixed outcome for all points (a, a′) ∈ ζ (for a fixed
pair b, b′). In other words, if we locate the points of Aτ × Aτ in A(Στ ′),
we have available the outcome of all the comparisons needed to sort the set
{F (a, b) | (a, b) ∈ Aτ × Bτ ′}

Following the above steps is still too expensive, and takes Ω(n2) steps (in the
algebraic decision-tree model) if implemented näıvely. We circumvent this issue,
in the algebraic decision-tree model, by forming the unions P :=

⋃
τ Aτ ×Aτ , and

Σ :=
⋃

τ ′ Στ ′ ; we have |P |, |Σ| = O(g2 · (n/g)1+ε) = O(n1+εg1−ε). By locating
each point of P in A(Σ), we get all the signs that are needed to sort all the sets
{F (a, b) | (a, b) ∈ Aτ × Bτ ′}, over all pairs τ , τ ′ of cells, and then the actual
sorting costs nothing in algebraic decision tree model. In a main step in [5] we
show:

Lemma 1. One can complete the above sorting step, in the algebraic decision
tree model, in O

(
(ng)8/5+ε

)
randomized expected time, for any prescribed ε > 0,

where the constant of proportionality depends on ε and the degree of F and G.

Searching with the Points of C. We next search the structure with every
c = (c1, c2) ∈ C. We only want to visit subproblems (τ, τ ′) where there might
exist a ∈ τ and b ∈ τ ′, such that F (a, b) = c1 and G(a, b) = c2. To find
these cells, and to bound their number, we consider the two-dimensional surface
πc=(c1,c2) := {(a, b) ∈ R

4 | F (a, b) = c1, G(a, b) = c2}, and our goal is to enumer-
ate the cells τ ×τ ′ in the polynomial partition of A×B crossed by πc. By assump-
tion, πc has good fibers, so, by [5, Theorem 3.2], it crosses only O((n/g)1+ε) cells
τ × τ ′, and we can compute them in time O((n/g)1+ε), for any ε > 0 (see [5] for
these details).

Summing over all the n possible values of c, the number of crossings between
the surfaces πc and the cells τ × τ ′ is O(n2+ε/g1+ε), for any ε > 0. Thus com-
puting all such surface-cell crossings, over all c ∈ C, costs O(n2+ε/g1+ε) time.
The cost of searching with any specific c, in the structure of a cell τ × τ ′ crossed
by πc, is O(log g) (it is simply a binary search over the sorted lists). Hence the
overall cost of searching with the elements of C through the structure is (with a

slightly larger ε) O

(
n2+ε

g1+ε

)
.

The Overall Algorithm. Combining the above costs we get total expected run-

ning time of O

(
(ng)8/5+ε +

n2+ε

g1+ε

)
. We now choose g = n2/13, and obtain
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expected running time of O
(
n24/13+ε

)
, where the implied constant of propor-

tionality depends on the degrees of F and G and on ε. In summary, we have
shown:

Theorem 1 (Aronov et al. [5]). Let A, B, C be three n-point sets in the
plane, and let F , G be a pair of constant-degree 4-variate polynomials with good
fibers (in the sense defined at the beginning of this section). Then one can test,
in the algebraic decision-tree model, whether there exists a triple a ∈ A, b ∈ B,
c = (c1, c2) ∈ C, such that c1 = F (a, b) and c2 = G(a, b), using only O

(
n24/13+ε

)

polynomial sign tests (in expectation), for any ε > 0.

Collinearity Testing in the Complex Plane. In a further development in the
Arxiv version of [5], the author with Aronov and Sharir extend Theorem 1 and
show that one can test in the same asymptotic time bound (in the algebraic
decision tree model) whether there exists a triple a ∈ A, b ∈ B, c ∈ C, such
that F (a, b, c) = 0, G(a, b, c) = 0, where now F,G are algebraic functions that
satisfy some mild assumptions. Generally speaking, this involves a non-trivial
and technical procedure for sorting roots of polynomials in the algebraic decision
tree model.

We next apply this property to the problem of collinearity testing in the
complex plane, for the following setup. The sets A, B, C are now sets of points
in the complex plane C

2, each consisting of n points and lying on a constant-
degree algebraic curve, and we wish to determine whether A × B × C contains
a collinear triple. For simplicity of exposition, we assume that the curves γA,
γB , and γC that contain, respectively, A, B, and C are represented parameter-
ically by equations of the form (w, z) = (fA(t), gA(t)), (w, z) = (fB(t), gB(t)),
and (w, z) = (fC(t), gC(t)), where t is a complex parameter and fA, gA, fB , gB,
fC , and gC are constant-degree univariate (complex) polynomials.

With this parameterization the points of A, B, C can be represented as points
in the real plane (representing the complex numbers t), and the complex poly-
nomial whose vanishing (that is, once it is compared to zero) asserts collinearity
of a triple a = (za, wa), b = (zb, wb), c = (zc, wc), is

H(ta, tb, tc) :=

∣∣∣∣
∣∣

1 fA(ta) gA(ta)
1 fB(tb) gB(tb)
1 fC(tc) gC(tc)

∣∣∣∣
∣∣
, (1)

where ta, tb, tc are the parameters that specify a, b, c, respectively, so its real
and imaginary components form a pair of real polynomial equations. This is the
role assignment of the above polynomials F and G. In summary this shows (once
again, refer to the Arxiv version of [5]):

Corollary 1 (Aronov et al. [5]). Let A, B, C be n-point sets in the com-
plex zw-plane, so that A (resp., B, C) lies on a curve γA (resp., γB, γC)
represented by parametric equations of the form (z, w) = (fA(t), gA(t)) (resp.,
(z, w) = (fB(t), gB(t)), (z, w) = (fC(t), gC(t))), where fA, gA, fB, gB, fC ,
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gC are constant-degree univariate complex polynomials. Then one can deter-
mine, in the algebraic decision-tree model, whether there exists a collinear triple
(a, b, c) ∈ A×B×C, with O

(
n24/13+ε

)
real polynomial sign tests, in expectation,

for any ε > 0.

3 Segment Concurrency

We now sketch a subquadratic algorithm, in the algebraic decision tree model,
for the segment concurrency problem. We use the notation of Sect. 1.

The Decomposition. Fix a parameter g � n, put r := n/g. We construct a (1/r)-
cutting ΞA for the segments of A, that is, a partition of the plane into interior-
disjoint simplices, the interior of each of which meets at most n/r = g segments
of A. Since the segments are pairwise disjoint, we can construct ΞA so that it
consists of only O(r) trapezoids, each of which is crossed by at most g segments
of A. The construction time, in the real-RAM model, is O(n log r) = O(n log n);
see [10, Theorem 1] for these details. We apply a similar construction for B, and
let ΞB denote the resulting cutting, with similar properties.

We next overlay ΞA with ΞB, to obtain a decomposition Ξ of the plane into
O(r2) convex polygons of constant complexity. Each cell σ of Ξ is identified by
a pair (τ, τ ′), where τ and τ ′ are the respective cells (simplices) of ΞA and ΞB

whose intersection is σ. Each cell σ of Ξ is crossed by at most n/r = g segments
of A and by at most n/r = g segments of B.

Classifying the Segments in a Cell. Let σ = (τ, τ ′) be a cell of Ξ. Call a segment
e of A long (resp., short) within σ if e crosses σ and neither of its endpoints lies
in σ (resp., at least one endpoint lies in σ). We apply analogous definitions to
the segments of B and to the segments of C.

The high-level structure of the algorithm proceeds as follows. We construct
ΞA and ΞB. For each simplex τ of ΞA (resp., τ ′ of ΞB), we compute its conflict
list Aτ (resp., Bτ ′), which is the set of all segments of A that cross τ (resp.,
segments of B that cross τ ′). We then form the overlay Ξ, and for each of its
cells σ = (τ, τ ′), we compute the set Aσ of the segments of Aτ that cross σ, and
the set Bσ of the segments of Bτ ′ that cross σ. We partition Aσ into the subsets
of long and short segments (within σ), respectively, and apply an analogous
partition to Bσ. We also trace each segment c ∈ C through the cells of Ξ that it
crosses, and form, for each cell σ of the overlay, the list Cσ of segments of C that
cross σ, partitioned into the subsets of long and short segments. Using standard
properties of (1/r)-cuttings, the overall complexity of these sets (of both long
and short segments), over all cells σ, is O(r2 · n/r) = O(nr) = O(n2/g), and the
additional overall cost of constructing them is O(n2 log n/g).

In this extended abstract we only present the main steps of the analysis for
triples in A×B×C all of whose segments are long in a cell σ, the remaining cases
(that is, when at least one of these segments is short in σ) are fairly standard and
can be handled by the theory of range search [1]; these steps are presented [6].
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Point Location in Planar Arrangements. Passing to the dual plane, the segments
of A (resp., B, C), or rather the lines containing them, are mapped to points.
We denote the set of points dual to the segments of A (resp., B, C) as A∗

(resp., B∗, C∗). Our goal is to determine whether there exists a collinear triple
(a∗, b∗, c∗) ∈ A∗ × B∗ × C∗, so that the corresponding primal segments a, b, c
intersect each other (necessarily at the same common point).

We follow the scheme of Sect. 2, let F (ξ, η, ζ) be the quadratic 6-variate
polynomial whose vanishing expresses collinearity of the three points ξ, η, ζ ∈ R

2.
Ignoring C for the time being, we preprocess A and B into a data structure that
we will then search with the points dual to the (lines containing the) segments
of C. For each a ∈ A, b ∈ B, we define the line

γa,b = {ζ ∈ R
2 | F (a∗, b∗, ζ) = 0},

which is the line passing through a∗ and b∗. Let Γ0 denote the set of these
O(n2) lines. Our goal is to determine whether any point c∗ ∈ C∗ lies on any of
the lines γa,b, and then also make sure that the corresponding primal segments
a, b, c intersect each other (it is possible that a, b, c are long in a cell σ but
intersect outside σ; this scenario is handled using range search, as shown in [6]).
This requires to preprocess the arrangement A(Γ0) into a point-location data
structure, and then search that structure with each c∗ ∈ C∗.

Fredman’s Trick and Batched Point Location. As above, a näıve implementation
of this approach would be way too expensive. Instead, we return to the partitions
ΞA, ΞB and Ξ, and iterate over all cells σ = (τ, τ ′) of Ξ, defining

Γσ = {γa,b | (a, b) ∈ Aσ × Bσ}.

In principle, we want to construct the separate arrangements A(Γσ), over the
cells σ, preprocess each of them into a point-location structure, and search with
each c∗ ∈ C∗ in the structures that correspond to the cells of Ξ that c crosses.
This is also too expensive if implemented näıvely. We circumvent it, using Fred-
man’s trick, as follows.

Consider the step of constructing A(Γσ) for some fixed cell σ. We observe
that it suffices to construct and sort the vertices of A(Γσ) in the x-direction,
and also to sort the lines of Γσ at x = −∞ (see [5,6] for details). The rest of the
construction, including the preprocessing of the arrangement into an efficient
point-location data structure, costs nothing in the algebraic decision-tree model,
as it is based on a sweeping procedure on the lines of Γσ, and all the input-
dependent data that the sweep requires has already been computed by the steps
just mentioned, so the sweep does not have to access A or B explicitly; Searching
the structure with any c∗ ∈ C∗

σ (that is, applying a point location query) takes
O(log g) time, since Γσ consists of only g2 lines.

Consider then the step of sorting the vertices of A(Γσ). In this step we
need to compare the x-coordinates of pairs of these vertices. In general, such a
comparison involves four pairs (ai, bi) ∈ Aσ × Bσ, i = 1, . . . , 4, where γa1,b1 and
γa2,b2 intersect at one of the vertices and γa3,b3 and γa4,b4 intersect at the other



186 E. Ezra

vertex. Roughly speaking, such a comparison can be expressed as testing the
sign of some constant-degree 16-variate polynomial G(a1, a2, a3, a4; b1, b2, b3, b4).

We now apply Fredman’s trick. We fix a cell τ of ΞA. For each quadruple
(a1, a2, a3, a4) ∈ A4

τ , we define the surface

ψa1,a2,a3,a4 = {(b1, b2, b3, b4) ∈ R
8 | G(a1, a2, a3, a4; b1, b2, b3, b4) = 0},

and denote by Ψ the collection of these surfaces, over all cells τ . We have |Ψ | =
O((n/g) · g4) = O(ng3). Similarly, we let P denote the set of all quadruples
(b1, b2, b3, b4), for b1, b2, b3, b4 ∈ B4

τ ′ , over all cells τ ′ of ΞB . We have |P | =
O(ng3).

We apply a batched point location procedure to the points of P and
the surfaces of Ψ . The output of this procedure tells us the sign of
G(a1, a2, a3, a4; b1, b2, b3, b4), for every pair of quadruples (a1, a2, a3, a4) ∈ A4

τ ,
(b1, b2, b3, b4) ∈ B4

τ ′ , over all pairs of cells (τ, τ ′) ∈ ΞA × ΞB , and these signs
allow us to sort the vertices of the arrangements A(Γσ), for all cells σ of Ξ, at
no extra cost in our model. In a main technical step in [6], based on the recent
multilevel polynomial partitioning technique of Agarwal et al. [2, Corollary 4.8],
we show:

Lemma 2. One can complete the above sorting step, in the algebraic decision
tree model, in O

(
(ng3)16/9+ε

)
randomized expected time, for any prescribed ε >

0, where the constant of proportionality depends on ε.

Searching with the Elements of C and Wrapping Up. We now need to search the
structures computed at the preceding phase with the dual points of C∗. Each
such point c∗ comes from a segment c ∈ C, which crosses only O(r) = O(n/g)
cells of Ξ (once again, this follows from standard properties of (1/r)-cuttings).
For each of these cells σ, we need to locate c∗ in the arrangement A(Γσ). There
are O(nr) = O(n2/g) such segment-cell crossings, and each resulting search
takes O(log g) time, using a suitable point-location data structure for each such

arrangement, for a total of O

(
n2 log g

g

)
time. The cost of the overall algorithm

is thus

O

(
(ng3)16/9+ε +

n2 log g

g

)
.

We (nearly) balance this bound by taking g = n2/57, and conclude that the cost
of this procedure, in the algebraic decision-tree model, is O(n112/57+ε), for any
ε > 0. In summary, we have shown:

Theorem 2. Given three sets A, B, C, each consisting of n line segments in
the plane, where the segments of A, B are pairwise disjoint, one can determine
whether there exists a concurrent triple of segments (a, b, c) ∈ A × B × C, in
the algebraic decision-tree model, with O(n112/57+ε) polynomial sign tests (in
expectation), for any ε > 0.
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Discussion and Open Problems. In spite of the progress in the study of collinear-
ity testing in the algebraic decision tree model [5–7], as well as in the RAM
model [7,9], the unrestricted setting of collinearity testing (that is, where A,B,C
are collections of arbitrary points in the plane) has still remained elusive in both
models of computation. Moreover, we are not aware of subquadratic solutions
in either model even for the case where one set of points is one-dimensional and
the other two are unrestricted.

Given the subquadratic solutions for 3sum [16,18] in both models of compu-
tation, one may hope that this should also be the case for collinearity testing, as
well as other geometric 3SUM-hard problems (see problems (i)–(iii) in Sect. 1).
Unfortunately, we are still facing a gap between 3sum and its geometric coun-
terparts. Perhaps, this is because the sign test required for 3sum is a linear
function of the input, whereas other geometric 3sum-hard problems do not have
this property. In particular, for collinearity testing, the basic operation one needs
to apply is orientation testing, which corresponds to a quadratic inequality in
the input point coordinates, and thus does not benefit from the linear structural
properties of 3sum.

References

1. Agarwal, P.K.: Simplex range searching and its variants: a review. In: Loebl, M.,
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