
Liesbeth De Mol
Andreas Weiermann
Florin Manea
David Fernández-Duque (Eds.)

LN
CS

 1
28

13 Connecting
with Computability
17th Conference on Computability in Europe, CiE 2021
Virtual Event, Ghent, July 5–9, 2021
Proceedings

Lecture Notes in Computer Science 12813

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Liesbeth De Mol • Andreas Weiermann •

Florin Manea • David Fernández-Duque (Eds.)

Connecting
with Computability
17th Conference on Computability in Europe, CiE 2021
Virtual Event, Ghent, July 5–9, 2021
Proceedings

123

Editors
Liesbeth De Mol
University of Lille
Lille, France

Andreas Weiermann
Vakgroep Wiskunde
Ghent University
Ghent, Belgium

Florin Manea
University of Göttingen
Göttingen, Germany

David Fernández-Duque
Ghent University
Ghent, Belgium

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-80048-2 ISBN 978-3-030-80049-9 (eBook)
https://doi.org/10.1007/978-3-030-80049-9

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-6094-3324
https://doi.org/10.1007/978-3-030-80049-9

Preface

CiE 2021: Connecting with Computability, 5–9 July 2021, virtual conference
hosted in Ghent, Belgium

Computability in Europe (CiE) is an annual conference organized under the auspices
of the Association CiE (ACiE), a European association that brings together researchers
from a broad variety of backgrounds (mathematics, computer science, logic, history,
biology, philosophy, and physics, among others) connected to one another through
their work on computability. The conference series has built up a strong tradition for
developing a scientific program which is interdisciplinary and embracive at its core,
bringing together all aspects of computability and foundations of computer science, as
well as exploring the interplay of these theoretical areas with practical issues in both
computer science and other disciplines. Its purpose is not only to report on ongoing
research but also to broaden perspectives by engaging with the work of others from
different backgrounds. As such, the conference has allowed participants to enlarge and
transform our view on computability and its interface with other areas of knowledge.

Over the years the conference series has been organized in a spirit of
open-mindedness and generosity, and also this year we have again aimed for this,
despite the circumstances. The motto of CiE 2021 was Connecting with Computability,
a clear acknowledgement of the connecting and interdisciplinary nature of the con-
ference series, which is all the more important in a time when people are more dis-
connected from one another than ever due to the COVID-19 pandemic. It was
organized virtually using the software gather.town as a means to create a virtual social
environment with a nod to the host city of Ghent, with its characteristic castle and river
as well as its vibrant social life.

CiE 2021 is the 17th conference in the series. Previous meetings have taken place in
Amsterdam (2005), Swansea (2006), Siena (2007), Athens (2008), Heidelberg (2009),
Ponta Delgada (2010), Sofia (2011), Cambridge (2012), Milan (2013), Budapest
(2014), Bucharest (2015), Paris (2016), Turku (2017), Kiel (2018), Durham (2019),
and, virtually, in Salerno (2020).

The conference series has become a major event and is the largest international
conference that brings together researchers focusing on computability-related issues.
The CiE conference series is coordinated by the ACiE conference Steering Committee
consisting of Alessandra Carbone (Paris), Liesbeth De Mol (Lille), Gianluca Della

Vedova (Executive Officer, Milan), Mathieu Hoyrup (Nancy), Nataša Jonoska
(Tampa), Benedikt Löwe (Amsterdam), Florin Manea (Chair, Göttingen), Klaus Meer
(Cottbus), Russell Miller (New York), and Mariya Soskova (Wisconsin-Madison),
along with ex-officio members Elvira Mayordomo (President of the Association,
Zaragoza) and Dag Normann (Treasurer, Oslo).

Structure and Program of the Conference

The conference program is based on invited lectures and tutorials, and a set of special
sessions on a variety of topics; there were also several contributed papers and informal
abstract presentations. The Program Committee of CiE 2021 was chaired by Liesbeth
De Mol (CNRS and Université de Lille, France) and Andreas Weiermann (Ghent
University, Belgium). The committee, consisting of 33 members, selected the invited
speakers, the tutorial speakers, and the special session organizers and coordinated the
reviewing process and the selection of submitted contributions. The Program Com-
mittee selected for publication in this volume 28 of the 49 non-invited papers submitted
to the conference. Each paper received at least three reviews by members of the
Program Committee and their subreviewers. In addition to the contributed papers, this
volume contains 18 invited papers and abstracts.

Invited Tutorials

Russell Miller (CUNY, USA), Computable procedures for field
Christine Tasson (Université de Paris, France), Probabilistic Programming and
Computation

Invited Lectures

Laura Crosilla (University of Oslo, Norway), Cantor’s paradise and the forbidden fruit
Markus Lohrey (Universität Siegen, Germany), Compression techniques in group
theory
Joan Rand Moschovakis (Occidental College, USA), Minimum classical extensions of
constructive theories
Joël Ouaknine (Max Planck Institute for Software Systems, Germany), Holonomic
Techniques, Periods, and Decision Problems
Keita Yokoyama (Japan Advanced Institute of Science and Technology, Japan),
Reverse mathematics and proof and model theory of arithmetic
Henry Yuen (Columbia University, USA), Einstein meets Turing: The Computability
of Nonlocal Games

vi Preface

Special Sessions

Computational Geometry

Organizers: Maike Buchin (Ruhr-Universität Bochum, Germany) and Maarten Löffler
(Utrecht University, The Netherlands)

Karl Bringmann (Saarland University, Germany), Conditional lower bounds for geo-
metric problems.
Esther Ezra (Bar-Ilan University, Israel), On 3SUM-hard problems in the Decision Tree
Model.
Tillmann Miltzow (Utrecht University, The Netherlands), Recent trends in geometric
computation models and its relation to the existential theory of the reals.
Wolfgang Mulzer (Free University Berlin, Germany), The many computational models
of computational geometry.

Classical Computability Theory: Open Problems and Solutions

Organizers: Noam Greenberg (Victoria University of Wellington, New Zealand) and
Steffen Lempp (University of Wisconsin, USA)

Marat Faizrakhmanov (Kazan Federal University, Russia), Limitwise Monotonic
Spectra and Their Generalizations
Andrea Sorbi (University of Siena, Italy), Effective inseparability and its applications
Liang Yu (Nanjing University, China), TD implies CCR
Ning Zhong (University of Cincinnati, USA), Computability of limit sets for
two-dimensional flows

Proof Theory and Computation

Organizers: David Fernández-Duque (Ghent University, Belgium) and Juan Pablo
Aguilera (Ghent University, Belgium)

Lorenzo Carlucci (University of Rome La Sapienza, Italy), Restrictions of Hindman’s
Theorem: an overview with questions
Leszek Kolodziejczyk (University of Warsaw, Poland), Reverse mathematics of
combinatorial principles over a weak base theory
Francesca Poggiolesi (CNRS and Université Paris 1 Panthéon-Sorbonne, France),
Defining Formal Explanation in Classical Logic by Substructural Derivability
Yue Yang (National University of Singapore, Singapore), Some results on Ramsey’s
theorems for trees

Preface vii

Quantum Computation and Information

Organizers: Harry Buhrman (Universiteit van Amsterdam, The Netherlands) and Frank
Verstraete (Ghent University, Belgium)

Yfke Dulek (QuSoft and CWI, Netherlands). How to Verify a Quantum Computation
David Gross (University of Cologne, Germany), The axiomatic and the operational
approaches to resource theories of magic do not coincide
David Pérez-Garciá (Universidad Complutense de Madrid, Spain), Uncomputability in
quantum many body problems
Jens Eisert (Freie Universität Berlin, Germany), Undecidability in Quantum Physics

Church’s Thesis in Constructive Mathematics (HaPoC Session)

Organizers: Marianna Antonutti-Marfori (Ludwig-Maximilians-Universität München,
Germany) and Alberto Naibo (Université Paris 1 Panthéon-Sorbonne, France)

The HaPoC special session was part of a satellite workshop on the same topic. Other
speakers invited to this workshop were Benno van den Berg, Takako Nemoto, Douglas
Bridges, and Johanna Franklin.

Liron Cohen (Ben-Gurion University, Israel), Formally Computing with the
Non-Computable
Angeliki Koutsoukou-Argyraki (University of Cambridge, UK) On preserving the
computational content of mathematical proofs: toy examples for a formalising strategy
Máté Szabó (University of Oxford, UK), Péter on Church’s Thesis, Constructivity and
Computers
David Turner (University of Kent, UK), Constructive mathematics, Church’s Thesis,
and free choice sequences.

Computational Pangenomics

Organizers: Nadia Pisanti (University of Pisa, Italy) and Solon Pissis (CWI and Vrije
Universiteit, The Netherlands)

Brona Brejova (Comenius University in Bratislava, Slovakia), Probabilistic models for
k-mer frequencies
Rayan Chikhi (Pasteur Institute, France), A tale of optimizing the space taken by de
Bruijn graphs
Francesca Ciccarelli (King’s College London, UK), Gene deregulations driving cancer
at single patient resolution
Benedict Paten (University of California, Santa Cruz, USA), Walk-preserving trans-
formation of overlapped sequence graphs into blunt sequence graphs with GetBlunted

viii Preface

Women in Computability Workshop

Since CiE 2007, the Association CiE and the conference have built up a strong tradition
of encouraging women to participate in computability-related research. In 2016,
a Special Interest Group for Women in Computability was established. This year Mariya
Soskova took the initiative of setting up an online mentorship programme for Women in
Computability (https://www.acie.eu/women-in-computability-mentorship-programme).
These kind of initiatives are anchored in the annual Women in Computability workshop,
which was held virtually with the following speakers:

Laura Crosilla (University of Oslo, Norway)
Joan Rand Moschovakis (Occidental College, USA)
Christine Tasson (Université de Paris, France)

Organization and Acknowledgements

The CiE 2021 conference was organized by the Analysis, Logic and Discrete Math-
ematics group at the mathematics department of Ghent University, Belgium. It was
chaired by David Fernández-Duque. We wish to thank all the other members of the
Organizing Committee, without their help this conference would not have been
possible.

We are very happy to acknowledge and thank the following for their basic financial
support: the Fund for Scientific Research, Flanders (FWO), the National Centre for
Research in Logic (CNRL-NCNL), Facultaire Commissie voor Wetenschappelijk
Onderzoek (FCWO), and, finally, Springer.

The high quality of the conference was due to the careful work of the Program
Committee, the special session organizers, and the external referees, and we are very
grateful that they helped to create an exciting program for CiE 2021.

May 2021 Liesbeth De Mol
Ghent, Belgium Andreas Weiermann

Florin Manea
David Fernández-Duque

Preface ix

https://www.acie.eu/women-in-computability-mentorship-programme

Organization

Program Committee

Marianna Antonutti Marfori Ludwig Maximilian University of Munich, Germany
Nathalie Aubrun ENS de Lyon, CNRS, Inria, and UCBL, France
Christel Baier TU Dresden, Germany
Nikolay Bazhenov Sobolev Institute of Mathematics, Russia
Arnold Beckmann Swansea University, UK
David Belanger Ghent University, Belgium
Marie-Pierre Béal Université Gustave Eiffel, France
Joel Day Loughborough University, UK
Liesbeth De Mol (Co-chair) CNRS and Université de Lille, France
Carola Doerr Sorbonne University and CNRS, France
Jérôme Durand-Lose LIFO and Université d’Orléans, France
David Fernández-Duque Ghent University, Belgium
Zuzana Hanikova Institute of Computer Science, Czech Academy

of Sciences, Czech Republic
Mathieu Hoyrup Loria, France
Assia Mahboubi Inria, France
Florin Manea University of Göttingen, Germany
Irène Marcovici Université de Lorraine, France
Klaus Meer BTU Cottbus-Senftenberg, Germany
Ludovic Patey Institut Camille Jordan, France
Cinzia Pizzi University of Padova, Italy
Giuseppe Primiero University of Milan, Italy
Simona Ronchi Della Rocca Universita’ di Torino, Italy
Svetlana Selivanova KAIST, South Korea
Paul Shafer University of Leeds, UK
Alexander Shen LIRMM CNRS and Université de Montpellier, France
Alexandra Soskova Sofia University, Bulgaria
Mariya Soskova University of Wisconsin-Madison, USA
Frank Stephan National University of Singapore, Singapore
Peter Van Emde Boas Universiteit van Amsterdam, The Netherlands
Sergey Verlan Université Paris-Est Créteil, France
Andreas Weiermann

(Co-chair)
Ghent University, Belgium

Damien Woods Maynooth University, Ireland

Organizing Committee

David Fernández-Duque
(Chair)

Ghent University, Belgium

Juan Pablo Aguilera Ghent University, Belgium
David Belanger Ghent University, Belgium
Ana Borges University of Barcelona, Spain
Liesbeth De Mol CNRS and Université de Lille, France
Andreas Debrouwere Ghent University, Belgium
Lorenz Demey Catholic University of Leuven, Belgium
Oriola Gjetaj Ghent University, Belgium
Eduardo Hermo-Reyes University of Barcelona, Spain
Brett McLean Ghent University, Belgium
Christian Michaux University of Mons, Belgium
Fedor Pakhomov Ghent University, Belgium
Konstantinos Papafilippou Ghent University, Belgium
Pawl Pawlowsky Ghent University, Belgium
Frederik Van De Putte Ghent University, Belgium, Erasmus University

of Rotterdam, The Netherlands
Peter Verdée Catholic University of Leuven, Belgium
Andreas Weiermann Ghent University, Belgium

Additional Reviewers

Aguilera, Juan
Anglès d’Auriac, Paul-Elliot
Baillot, Patrick
Berndt, Sebastian
Bienvenu, Laurent
Bournez, Olivier
Boyar, Joan
Buchin, Maike
Calvert, Wesley
Cardone, Felice
Carlucci, Lorenzo
Carton, Olivier
Dean, Walter
Dürr, Christoph
Epstein, Leah
Franklin, Johanna
Ganardi, Moses
Gao, Ziyuan
Gregoriades, Vassilios
Harizanov, Valentina

Hermo Reyes, Eduardo
Hofstra, Pieter
Kach, Asher
Kihara, Takayuki
Kohlenbach, Ulrich
Krejca, Martin S.
Kristiansen, Lars
Lechine, Ulysse
Lempp, Steffen
Loewe, Benedikt
Lubarsky, Robert
Martin, Eric
Melnikov, Alexander
Mercas, Robert
Minnes, Mia
Miquel, Alexandre
Miyabe, Kenshi
Monin, Benoît
Neumann, Eike
Neuwirth, Stefan

xii Organization

Normann, Dag
Ollinger, Nicolas
Pagani, Michele
Pakhomov, Fedor
Patey, Ludovic
Pisanti, Nadia
Pissis, Solon
Porter, Christopher
Pouly, Amaury
Péchoux, Romain
Quinon, Paula
Raskin, Mikhail
Richard, Gaétan

Sabili, Ammar Fathin
San Mauro, Luca
Sanders, Sam
Schmid, Markus L.
Schroeder, Matthias
Thies, Holger
Tirnauca, Cristina
Valiron, Benoît
Vatev, Stefan
Walsh, James
Weiss, Armin
Yokoyama, Keita
Zheng, Xizhong

Organization xiii

Invited Talks

Don’t Be Afraid to Burn Your Fingers
on the Definition of the Real RAM

Tillmann Miltzow

Utrecht University, The Netherlands
t.miltzow@uu.nl

Abstract. We review the real RAM model of computation. The emphasis of this
talk is its relation to the existential theory of the reals

Keywords: Real RAM � Computational geometry � Model of computation.

In Computational Geometry, we design and analyze algorithms for the real RAM
model of computation. The real RAM is an abstraction of an ordinary computer. It
consists of an array of registers to store the data, a central processing unit (CPU) to
manipulate the data and a set of instructions for the CPU. The real RAM is capable to
store and manipulate real numbers. It was originally defined by Shamos [3] in his PhD
thesis. Unfortunately, the real RAM as defined by Shamos had some seriously unin-
tended consequences. In short, it is possible to abuse the power of the real RAM in
various ways by having access to the binary representation of real numbers [2]. Since
then, researchers used implicitly a version of the real RAM that avoided access to the
binary representation of real numbers. Recently, Erickson, van der Hoog, and Milt-
zow [1] made that new real RAM definition explicit. Furthermore, they gave some
arguments why this new model may avoid previous pitfalls. In the talk, we will explain
and repeat those arguments. Specifically, we will highlight the relation to the existential
theory of the reals. It is conceivable that the new real RAM model has other weak-
nesses that will be discovered in the near or far future. In this case, the authors will
have burned their fingers. Even if some new pitfalls and weaknesses will be found, we
believe that this will not mean the end of Computational Geometry as we know it. This
motivates the following hypothesis.

There is a rigorous definition of the real RAM model of computation for which
the majority of algorithms and their analysis in Computational Geometry remain
meaningful.

As the current model of the real RAM has not exposed any weaknesses within the
last forty years, we may have confidence that it will not expose major weaknesses in the
next forty years either.

Supported by NWO Veni grant EAGER.

https://orcid.org/0000-0003-4563-2864

References

1. Erickson, J., van der Hoog, I., Miltzow, T.: Smoothing the gap between NP and ER. In: 2020
IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS), pp. 1022–1033.
IEEE (2020)

2. Schönhage, A.: On the power of random access machines. In: Maurer, H.A. (ed.) ICALP
1979. LNCS, vol. 71, pp. 520–529. Springer, Heidelberg (1979). https://doi.org/10.1007/3-
540-09510-1_42

3. Aichholzer, O., Cetina, M., Fabila-Monroy, R., Leaños, J., Salazar, G., Urrutia, J.: Convex-
ifying monotone polygons while maintaining internal visibility. In: Márquez, A., Ramos, P.,
Urrutia, J. (eds.) EGC 2011. LNCS, vol. 7579, pp. 98–108. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34191-5_9

xviii T. Miltzow

https://doi.org/10.1007/3-540-09510-1_42
https://doi.org/10.1007/3-540-09510-1_42
https://doi.org/10.1007/978-3-642-34191-5_9

The Many Computational Models
of Computational Geometry

Wolfgang Mulzer

Institut für Informatik, Freie Universität Berlin, 14195 Berlin, Germany
mulzer@inf.fu-berlin.de

Abstract. I will present a short survey of the many different computational
models that have been used in computational geometry over the last 50 years,
both for describing geometric algorithms and for obtaining lower bounds.

Keywords: Real RAM �Word RAM � Algebraic decision tree � Pointer machine

Computational geometry is the subfield of theoretical computer science that is con-
cerned with the design and analysis of algorithms that deal with geometric inputs, such
as, e.g., points, lines, triangles, or circles. In many ways, computational geometry is
very similar to the study of traditional combinatorial algorithms: we aim for methods
that are provably correct on all inputs, we search for upper and lower bounds on the
worst-case complexity of well-defined computational problems, and we consider tra-
ditional computational resources such as space, time, or randomness.

However, the geometric nature of the inputs presents an additional set of challenges
over the combinatorial regime: geometric objects typically live in Euclidean spaces and
are represented by arbitrary real numbers. Even if we choose to restrict our attention to
inputs with integer coordinates, the need to compute angles and (sums of) distances
arises often. High precision is necessary to evaluate geometric primitives accurately.
Thus, in computational geometry, we must be more careful about our model of com-
putation and which operations it allows. Over time, several such models have been
proposed, both for describing upper and lower bounds for geometric algorithms.

The two most widespread models for algorithmic results are the real RAM, which
allows operations on arbitrary real numbers, and the word RAM, which can handle only
bit strings of a certain length. Lower bounds are typically proved in the algebraic
decision tree model, which enhances traditional comparison-based decision trees by
algebraic operations. For lower bounds in geometric data structures, the pointer
machine model is used frequently.

In my talk, I will provide a survey of these models, their definitions, applications,
advantages, and disadvantages.

Supported in part by ERC STG 757609.

https://orcid.org/0000-0002-1948-5840

Holonomic Techniques, Periods, and Decision
Problems

Joël Ouaknine

Max Planck Institute for Software Systems, Saarland Informatics Campus,
Saarbrücken, Germany
joel@mpi-sws.org

Abstract. Holonomic techniques have deep roots going back to Wallis, Euler,
and Gauss, and have evolved in modern times as an important subfield of
computer algebra, thanks in large part to the work of Zeilberger and others over
the past three decades. In this talk, I give an overview of the area, and in
particular present a select survey of known and original results on decision
problems for holonomic sequences and functions. I also discuss some surprising
connections to the theory of periods and exponential periods, which are classical
objects of study in algebraic geometry and number theory; in particular, I relate
the decidability of certain decision problems for holonomic sequences to deep
conjectures about periods and exponential periods, notably those due to Kont-
sevich and Zagier.

Contents

Searching for Applicable Versions of Computable Structures 1
P. E. Alaev and V. L. Selivanov

On Measure Quantifiers in First-Order Arithmetic . 12
Melissa Antonelli, Ugo Dal Lago, and Paolo Pistone

Learning Languages with Decidable Hypotheses . 25
Julian Berger, Maximilian Böther, Vanja Doskoč,
Jonathan Gadea Harder, Nicolas Klodt, Timo Kötzing,
Winfried Lötzsch, Jannik Peters, Leon Schiller, Lars Seifert,
Armin Wells, and Simon Wietheger

Robust Online Algorithms for Dynamic Choosing Problems 38
Sebastian Berndt, Kilian Grage, Klaus Jansen, Lukas Johannsen,
and Maria Kosche

On the Degrees of Constructively Immune Sets . 50
Samuel D. Birns and Bjørn Kjos-Hanssen

Fine-Grained Complexity Theory: Conditional Lower Bounds
for Computational Geometry . 60

Karl Bringmann

The Lost Melody Theorem for Infinite Time Blum-Shub-Smale Machines . . . 71
Merlin Carl

Randomising Realizability . 82
Merlin Carl, Lorenzo Galeotti, and Robert Passmann

Restrictions of Hindman’s Theorem: An Overview 94
Lorenzo Carlucci

Complexity and Categoricity of Injection Structures Induced by Finite
State Transducers . 106

Richard Krogman and Douglas Cenzer

A Tale of Optimizing the Space Taken by de Bruijn Graphs 120
Rayan Chikhi

Formally Computing with the Non-computable . 135
Liron Cohen

Mapping Monotonic Restrictions in Inductive Inference 146
Vanja Doskoč and Timo Kötzing

Normal Forms for Semantically Witness-Based Learners
in Inductive Inference . 158

Vanja Doskoč and Timo Kötzing

Walk-Preserving Transformation of Overlapped Sequence Graphs
into Blunt Sequence Graphs with GetBlunted . 169

Jordan M. Eizenga, Ryan Lorig-Roach, Melissa M. Meredith,
and Benedict Paten

On 3SUM-hard Problems in the Decision Tree Model 178
Esther Ezra

Limitwise Monotonic Spectra and Their Generalizations 189
Marat Faizrahmanov

On False Heine/Borel Compactness Principles in Proof Mining. 199
Fernando Ferreira

Placing Green Bridges Optimally, with a Multivariate Analysis. 204
Till Fluschnik and Leon Kellerhals

A Church-Turing Thesis for Randomness? . 217
Johanna N. Y. Franklin

Probabilistic Models of k-mer Frequencies (Extended Abstract). 227
Askar Gafurov, Tomáš Vinař, and Broňa Brejová

Defining Formal Explanation in Classical Logic
by Substructural Derivability . 237

Francesco A. Genco and Francesca Poggiolesi

Dedekind Cuts and Long Strings of Zeros in Base Expansions 248
Ivan Georgiev

On the Impact of Treewidth in the Computational Complexity
of Freezing Dynamics . 260

Eric Goles, Pedro Montealegre, Martín Ríos Wilson,
and Guillaume Theyssier

Towards a Map for Incremental Learning in the Limit from Positive
and Negative Information. 273

Ardalan Khazraei, Timo Kötzing, and Karen Seidel

On Preserving the Computational Content of Mathematical Proofs:
Toy Examples for a Formalising Strategy. 285

Angeliki Koutsoukou-Argyraki

xxii Contents

In Search of the First-Order Part of Ramsey’s Theorem for Pairs 297
Leszek Aleksander Kołodziejczyk and Keita Yokoyama

On Subrecursive Representation of Irrational Numbers:
Contractors and Baire Sequences. 308

Lars Kristiansen

Learning Languages in the Limit from Positive Information with Finitely
Many Memory Changes. 318

Timo Kötzing and Karen Seidel

Compression Techniques in Group Theory . 330
Markus Lohrey

Computable Procedures for Fields . 342
Russell Miller

Minimum Classical Extensions of Constructive Theories 353
Joan Rand Moschovakis and Garyfallia Vafeiadou

Subrecursive Equivalence Relations and (non-)Closure Under Lattice
Operations . 363

Jean-Yves Moyen and Jakob Grue Simonsen

Interactive Physical ZKP for Connectivity: Applications to Nurikabe
and Hitori . 373

Léo Robert, Daiki Miyahara, Pascal Lafourcade, and Takaaki Mizuki

Positive Enumerable Functors . 385
Barbara F. Csima, Dino Rossegger, and Daniel Yu

Splittings and Robustness for the Heine-Borel Theorem 395
Sam Sanders

Non-collapse of the Effective Wadge Hierarchy . 407
Victor Selivanov

Effective Inseparability and Its Applications . 417
Andrea Sorbi

Simple Betting and Stochasticity . 424
Tomasz Steifer

Péter on Church’s Thesis, Constructivity and Computers 434
Máté Szabó

Constructive Mathematics, Church’s Thesis, and Free Choice Sequences 446
D. A. Turner

Contents xxiii

KL-Randomness and Effective Dimension Under Strong Reducibility 457
Bjørn Kjos-Hanssen and David J. Webb

An Algorithmic Version of Zariski’s Lemma . 469
Franziskus Wiesnet

Einstein Meets Turing: The Computability of Nonlocal Games 483
Henry Yuen

Computability of Limit Sets for Two-Dimensional Flows 494
Daniel S. Graça and Ning Zhong

Author Index . 505

xxiv Contents

Searching for Applicable Versions
of Computable Structures

P. E. Alaev1 and V. L. Selivanov2(B)

1 S.L. Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia
alaev@math.nsc.ru

2 A.P. Ershov Institute of Informatics Systems SB RAS and S.L. Sobolev Institute
of Mathematics SB RAS, Novosibirsk, Russia

vseliv@iis.nsk.su

Abstract. We systematise notions and techniques needed for develop-
ment of the computable structure theory towards applications such as
symbolic algorithms and on-line algorithms. On this way, we introduce
some new notions and investigate their relation to the already existing
ones. In particular, in the context of polynomial-time presentability such
relation turns out to depend on complexity-theoretic conjectures like
P = NP.

Keywords: Structure · Quotient-structure · Computable
presentation · Grzegorczyk’s presentation · Polynomial-time
presentation

1 Introduction

“Structure” in this paper always means “countably infinite algebraic structure
of a finite signature”. Computable structure theory (CST) is a well established
branch of computability theory [2,16]. The key notion here is that of a com-
putably presentable structure, i.e. a structure isomorphic to a computable struc-
ture (a structure is computable if its universe is N and all signature functions
and relations are computable). In the Russian literature, instead of the term
“computably presentable structure” people often use the equivalent notion of a
constructivizable structure defined in terms of numberings (see the next section
for precise definitions). Using these notions, computability issues in algebra and
model theory were thoroughly investigated.

Since CST is based on the general Turing computability and often uses the
unbounded search through universes of structures, it is not well suited for com-
puter implementations. In implementations, one has of course pay attention to
the complexity of algorithms and of structure presentations. The complexity of

The work is supported by Mathematical Center in Akademgorodok under agreement
No. 075-15-2019-1613 with the Ministry of Science and Higher Education of the Russian
Federation.

c© Springer Nature Switzerland AG 2021
L. De Mol et al. (Eds.): CiE 2021, LNCS 12813, pp. 1–11, 2021.
https://doi.org/10.1007/978-3-030-80049-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80049-9_1&domain=pdf
https://doi.org/10.1007/978-3-030-80049-9_1

2 P. E. Alaev and V. L. Selivanov

structure presentations was pioneered by F. Cannonito [12] and studied in a more
general setting by D. Cenzer, R. Downey, A. Nerode, and J. Remmel (see e.g.,
[13,14] and references therein) where, in particular, the notion of a polynomial-
time presentable (P-presentable) structure was introduced and some interesting
properties of such structures were established. This research was motivated by
analogies with CST rather than by applications. A popular class of automatic
structures (see e.g., [19] and references therein) has deep connections with com-
puter science but the majority of structures of interest to mathematics fail to be
automatic.

There exist active fields of applied computer science which use “feasible”
structure presentations, often implicitly. An example is a well-developed theory
of symbolic computations closely related to computer algebra (see e.g., [1,27,29])
which investigates, in particular, feasible algorithms over number fields and poly-
nomial rings and implements them in computer systems which have important
applications. Somehow related to this is a rather active research on complexity
issues of finitely generated groups and of polynomial rings (see e.g., [22,23]).
One usually studies “off-line” algorithms with a completely given finite input.
However, many modern computational tasks need to be performed upon a con-
stantly updated and potentially unbounded input, like in dealing with a huge
constantly changing database where one cannot have knowledge of the whole of
the database before acting. This leads to a new paradigm of so called “on-line”
algorithms (see e.g., [6] and references therein).

Although the theories mentioned in the previous paragraph are clearly inti-
mately related to CST, the two fields were developing apparently independently
until very recently (at least, there were essentially no references and interactions
between them). The situation changed with a series of papers (see [9,15,20] and
references therein) promoting the development of feasible CST as a foundation
for on-line computations. Independently, the study of P-presentable structures
was pushed forward in [3–5], and in [7,8] where the relation of feasible CST to
computer algebra is stressed. In [24–26] some applications of feasible CST to
computable linear algebra and analysis were discovered and a bridge between
symbolic and numeric computations was constructed.

Note that the term “feasible” is understood here in a very broad sense, includ-
ing even primitive recursive (PR) structures which have some features making
them closer to complexity theory than to general computability. A more precise
term would be perhaps “subrecursive”.

The aim of this paper is to systematise the sketched interaction of feasible
CST to the aforementioned applied fields, and to discuss some related basic
definitions and facts. On the way from CST to a more applicable CST some
equivalent notions become non-equivalent, hence they have to be carefully anal-
ysed and tested on their relevance to the applied fields. On this way some new
notions were already discovered, e.g., the notion of a PR-presentation without
delay [20] and of a P-computable quotient-structure [7]. This paper is thus par-
tially “ideological” but it also contains some new technical results.

Searching for Applicable Versions of Computable Structures 3

The next section contains some definitions of feasible structure presentations
and discussions of their relevance to the mentioned applied fields; in particular,
we introduce En-constructive structures, where En are the Grzegorczyk classes
(see e.g., [28]). In Sect. 3 we show that En-constructive structures share some
properties of PR structures but also have specific features. In Sect. 4 we dis-
cuss P-constructive structures, in particular we show that the assertion “the
P-presentable structures coincide with the P-constructivizable ones” is almost
equivalent to the P = NP problem. We also show that any finitely generated sub-
structure of a P-computable quotient-structure is isomorphic to a P-computable
structure. The latter two results are probably the main technical contributions
of this paper.

2 Structure Presentations

We start with recalling some basic notions of CST in the Russian terminology
[21] based on numberings. Let ν : N → S be a numbering. A relation P ⊆ Sn

on S is ν-computable if the relation P (ν(k1), . . . , ν(kn)) on N is computable. A
function f : Sn → S is ν-computable if f(ν(k1), . . . , ν(kn)) = νg(k1, . . . , kn) for
some computable function g : Nn → N.

Definition 1. A structure A = (A;σ) of a finite signature σ is called construc-
tivizable iff there is a numbering α of A such that all signature predicates and
functions, and also the equality predicate, are α-computable. Such a numbering
α is called a constructivization of A, and the pair (A, α) is called a constructive
structure.

The Mal’cev notion of a constructivizable structure is equivalent to the notion
of a computably presentable structure popular in the western literature. We use
both terminologies when we find it convenient. The feasible versions of construc-
tivizable and of computably presentable structures are often not equivalent, as
will be further discussed below. PR-versions of the notions defined above are
obtained by changing “computable” to “PR” in the definitions above, and tak-
ing partial PR-constructivizations with PR-domains instead of the total con-
structivizations in Definition 1; see [21] for additional details. It is easy to see
that a structure is PR-constructivizable iff it is PR-presentable, i.e. isomorphic
to a structure with a PR universe A such that all signature functions are the
restrictions of suitable PR functions to A and all signature relations are PR.
This relates the Russian and western terminologies in the PR-case.

After a long break, PR-structures appeared as an intermediate stage of prov-
ing P-presentability of a structure (see e.g., [13,17]). After another break, PR-
structures appeared as a promising candidate for capturing the on-line structures
which give a practically relevant alternative to computable structures (see the
discussion and additional references in [9]). Many results about on-line algo-
rithms are focused on making algorithms PR as opposed to general Turing com-
putable. The following notion from [9] is important for this approach: a structure
is fully PR-presentable (FPR-presentable, or PR-presentable without delay) if it

4 P. E. Alaev and V. L. Selivanov

is isomorphic to a PR structure with universe N. As shown in [20], there is a PR
graph which is not FPR-presentable. In [26] a characterisation of FPR-structures
in the Mal’cev terminology is given.

Note that some notions equivalent in CST become non-equivalent in the PR-
version of CST. E.g., any computable structure whose universe is any infinite
computable set, is computably isomorphic to a computable structure with uni-
verse N but, by the previous paragraph, the PR version of this fact fails. Thus,
CST is much less relevant to on-line computations than its PR-version. Another
example is the fact that, in CST, any computable structure is essentially equiv-
alent to the computable relational structure where the signature functions are
replaced by the relations corresponding to the graphs of the functions. This is
not the case for the PR-version because any computable relational structure is
isomorphic to a PR-structure (even to a P-computable structure), while this is
not the case for structures of signatures with functional symbols [13]. Thus, func-
tional symbols are more important for PR (and more feasible) structure theory
than for CST.

The class of PR functions is naturally refined to the well known Grzegorczyk’s
hierarchy {En}n≥0; we refer to [28] for definitions. For n � 2, the Grzegorczyk
classes En have many nice closure properties and characterisations which may
be found e.g., in [28]. In particular, for any n � 2 the class En is closed under
bounded minimization, and En+1 coincides with the class of functions obtained
from the simplest functions by substitutions and at most n applications of prim-
itive recursion (see Theorem 2.18 and the corresponding references in [28]).

It is straightforward to adjust the definition of PR-constructivizable structure
to Grzegorczyk’s classes: a structure A = (A;σ) is En-constructivizable, if there
is a partial numbering α of A with an En-domain such that all σ-functions and
relations are En-computable w.r.t. α; such α is called an En-constructivization
of A, and the pair (A, α) is called an En-constructive structure. The western-
style version looks as follows: a structure is En-presentable if it is isomorphic to
an En-computable structure; a structure is En-computable if its universe is an
En-set and all signature functions and relations are the restrictions of suitable
En-functions and relations. Similarly, a structure is FEn-presentable if it is iso-
morphic to an En-computable structure with universe N; this is the version of
En-computable structure “without delay”.

For the usual “small” complexity classes like P or L, it is more natural to
use words over a non-unary alphabet Σ as names for abstract objects instead
of natural numbers in Definition 1. In this way we straightforwardly obtain e.g.,
the following polynomial-time versions of these definitions. By a P -naming we
mean any function whose domain is a P-computable set of words over Σ. A
P-naming μ is P-reducible to a P-naming ν (in symbols, μ �P ν) if μ = ν ◦ f for
a P-computable function f : dom(μ) → dom(ν), and μ, ν are P-equivalent (in
symbols, μ ≡P ν) if μ �P ν and ν �P μ. By a P-naming of a set S we mean a
P-naming ν with rng(ν) = S. A structure (A;σ) is P-constructivisable if there is
a P-naming α of A such that all the signature functions and predicates, as well
as the equality predicate on A, are P-computable w.r.t. α. Such a P-naming is
called a P-constructivisation of (A;σ), and ((A; , σ), α) is called a P-constructive
structure.

Searching for Applicable Versions of Computable Structures 5

The western-style version of P-constructive structures was introduced in
[7] under the name “P-computable quotient-structures” and used to show P-
equivalence of three presentations of the ordered field of algebraic reals popular
in the literature on symbolic computations and computer algebra. This result
could not be proved using only the more restricted notion of P-presentable struc-
ture from [13] (which is equivalent to P-constructivizability with a bijective
P-naming) because some of those presentations essentially use non-bijective P-
namings. Since we use the corresponding terminology in Sect. 4, we recall it here.

Let A ⊆ Σ∗ and let E ⊆ A2 be an equivalence relation on A. With any such
pair (A,E) we associate the quotient set Ā = A/E = {[x]E | x ∈ A} consisting
of the equivalence classes. We call the set Ā a quotient set in Σ∗. Clearly, any
family Ā of nonempty pairwise disjoint subsets of Σ∗ is a quotient set of the form
A/E, and the pair (A,E) is uniquely determined by Ā. Thus, we can sometimes
identify Ā and (A,E).

A quotient-set Ā is P-computable if Ā = A/E, where A and E are P-
computable sets. Let Ā = A/E and B̄ = B/F be P-computable quotient-
sets. We call a map f : Ā → B̄ P-computable if there is a P-computable
function f0 : A → B such that f([x]) = [f0(x)] for x ∈ A. Notice that in
this case (x, y) ∈ E implies (f0(x), f0(y)) ∈ F . Similarly we define the notion
of a P-computable function f : (Ā)n → B̄: for some P-computable function
f0 : An → B we have f([x1], . . . , [xn]) = [f0(x1, . . . , xn)].

We call a structure A quotient-structure, if its universe is a quotient-set. We
say that a structure A = (Ā, σ) is a P-computable quotient-structure if Ā is
a P-computable quotient-set, and all signature operations and relations are P-
computable on Ā. Quotient-structures A and B are P-computably isomorphic,
if there is an isomorphism f : A → B s.t. f and f−1 are P-computable func-
tions. Identifying a set A with the quotient-set A/idA, we can consider the usual
structures as a particular case of quotient-structures. It is easy to see that, up to
isomorphism (even up to P-isomorphism), the P-computable quotient-structures
coincide with the P-constructivizable structures.

We conclude this section with mentioning some other notions of feasible
structures. As for the class P, such notions are straightforwardly defined for any
functional complexity class (more precise notations for such functional classes
would be perhaps FP, FL and so on). These include, e.g., the classes L (log-
arithmic space), LSPACE (linear space), E (Kalmar’s elementary functions),
and PSPACE (polynomial space). For definitions of these and other complex-
ity classes see e.g., [28]. It is known (see e.g., Theorem 10.16 in [28]) that
LSPACE = E2, E = E3, and E coincides with the class of functions computed
in deterministic tower-of-exponents time. To show the equalities, one identifies
natural numbers with binary words via the dyadic bijection. Note that FPR-
presentability is modified to any functional complexity class in a straightforward
way.

“Small” complexity classes (like L, P or PSPACE) are very useful and popular
but they are often not closed under basic mathematical constructions. “Large”
complexity classes (like PR or En for n � 3) have much better closure prop-
erties but are not suitable for computer implementations. Although the upper

6 P. E. Alaev and V. L. Selivanov

complexity bounds for, say, PR-algorithms may be awfully large, such algo-
rithms are much better than those in the general Turing computability where
estimation of computation resources is impossible in principle. The relevance of
presentability w.r.t. the “large” complexity classes stems from the fact that it is
in some respects close to feasible presentability but technically easier, and the
corresponding complexity classes have better closure properties.

3 Grzegorczyk’s Structures

Here we discuss Grzegorczyk’s versions of some facts known for PR-structures.
First we show that the Russian-style notion of En-constructivizable structure
coincides with the western-style notion of En-presentable structure.

Proposition 1. For any n � 0, a structure A is En-constructivizable iff it is
En-presentable.

Proof. If ϕ is an isomorphism of A onto an En-computable structure B then
ϕ−1 is an En-constructivization of A which proves the assertion from right to
left.

Conversely, let α : D → A be an En-constructivization of A, in particular,
D ∈ En and E = {(x, y) ∈ D2 | α(x) = α(y)} is an En-equivalence relation
on D. Let h(x) = 0 for x ∈ N \ D and h(x) be the smallest number in the
equivalence class [x]E for x ∈ D. Let sg(x) = 1 ⇔ sg(x) = 0 ⇔ x > 0 and
sg(x) = 0 ⇔ sg(x) = 1 ⇔ x = 0. Since the functions sg(x), sg(x), sg(x) ∧ sg(y),

and sg(x)∨ sg(y) are in E0, and the value h(x) coincides with
x∑

z=0

z∏

t=0
sg(E(x, t)),

we have h ∈ En. Since x ∈ h(D) ⇔ x ∈ D ∧ x = h(x), we have B = h(D) ∈ En.
We interpret σ-symbols in B as follows. For a constant symbol c ∈ σ, let cB

be the smallest number in α−1(cA); then cB ∈ B. For a k-ary predicate symbol
P ∈ σ, k � 1, let PB(b1, . . . , bk) iff PA(α(b1), . . . , α(bk)); then PB is an En-
relation on B. For a k-ary functional symbol f ∈ σ, k � 1, let fB(b1, . . . , bk)
be the smallest number in α−1(fA(α(b1), . . . , α(bk))); then fB : Bk → B is the
restriction of an En-function to B. Thus, h induces an isomorphism of A onto
the En-computable structure (B;σB).
�

A principal question is of course the question about non-collapse of the hier-
archy of structures induced by the Grzegorczyk hierarchy, i.e., whether for any
n there is an En+1-computable structure which is not En-presentable. We guess
this is true for every n � 2, though do not yet have a proof at hand. But we can
prove the following weaker version (see also [12] for similar facts, our proof here
is much simpler).

Proposition 2. For any n � 2 there is an En+2-computable structure which is
not En-presentable.

Proof. Let A = (N; s, P) where P is a set in En+2 \ En+1 (considered as a
unary predicate on N). Such P is known to exist (see e.g., Theorem 2.19(5) in

Searching for Applicable Versions of Computable Structures 7

[28]). Then A is an En+2-computable structure, so it remains to show that it is
not En-presentable. Suppose the contrary: A is isomorphic to an En-computable
structure B = (B; sB , PB) via isomorphism ϕ : A → B, so P is an En-set
and sB is the restriction to B of an En-function. Let f be the iteration of sB

starting with ϕ(0) ∈ B, i.e. f(0) = ϕ(0) and f(x + 1) = sB(f(x)). By Theorem
2.18 in [28] mentioned in the previous section, f is an En+1-function. Since
x ∈ P ⇔ f(x) ∈ PB , we see that P is an En+1-set. Contradiction.
�

We conclude this section with the Russian-style characterisation of the FEn-
presentable structures. We call a numbering ν En-infinite if there is an En-
function f such that ν(f(i)) �= ν(f(j)) whenever i �= j. The next result is a
straightforward version of the corresponding fact for PR-presentations in [26].

Proposition 3. For any n � 3 and any structure B, B is FEn-presentable iff it
has a total En-constructivization β which is En-infinite.

Proof. We consider the less obvious direction. Let β be a total En-
constructivization of B which is En-infinite via f . Define a function g : N → N

as follows: g(0) = 0 and g(n + 1) = μx.∀i � n(β(x) �= β(g(i))). Since B
is infinite, g is total and injective. Let h(n) = max{f(0), . . . , f(n)}. Then
g(n + 1) = μx � h(n).∀i � n(β(x) �= β(g(i))) and h is En, hence g is also
En (by the well known closure properties of En).

The numbering γ = β ◦ g is En-reducible to β and injective. Conversely,
β �En γ via the En function u(n) = μx � n.β(n) = β(x). Thus, γ is a bijective
numbering of B En-equivalent to β, so it is a bijective En-constructivization of
B. Copying interpretations of signature symbols from B to N via γ−1 we obtain
an En-computable copy of B with universe N.
�

As observed in [26], any PR-constructivization β of an associative commu-
tative ring with 1 of characteristic 0 is PR-infinite (via any PR function f such
that β(f(i)) coincide with the element 1+ · · ·+1 ∈ B (i+1 summands)), hence
any such PR-constructive ring is FPR-constructivizable. Unfortunately, the En-
version of this fact does not hold automatically, hence we currently do not have
a rich class of natural FEn-presentable structures. Nevertheless, many structures
popular in computer algebra (in particular, the ordered fields of rationals and
algebraic reals, and the field of algebraic complex numbers), are FE3-presentable.

4 Polynomial Time Structures

Here we compare P-constructivizable and P-presentable structures.
Let Σ be a non-unary finite alphabet, A ⊆ (Σ∗)n, n � 1. We say that the set

A is in P, if it is P-computable, i.e. its characteristic function χA : (Σ∗)n → {0, 1}
is P-computable. If x̄ = x1, . . . , xn ∈ (Σ∗)n, then by |x̄| we denote maxi�n{|xi|}.
Suppose that |Σ| � 2. We say that A is in NP, if there is a set B ⊆ (Σ∗)n+1

from P and a polynomial p(u) ∈ Z[u] such that, for all x1, . . . , xn ∈ Σ∗,

(x1, . . . , xn) ∈ A ⇔ ∃y ∈Σ∗ (x1, . . . , xn, y) ∈ B,

and (x̄, y) ∈ B implies |y| � p(|x̄|).

8 P. E. Alaev and V. L. Selivanov

Proposition 4. Let A = (A/E, σĀ) be a P-computable quotient-structure. Then
the following are equivalent:

a) A is P-computably isomorphic to some P-computable structure B;
b) there is a P-computable function β : A → A such that xEβ(x) and xEy ⇒

β(x) = β(y) for x, y ∈ A.

Proof. (a ⇒ b) Let f : A → B be an isomorphism such that f and f−1 are
P-computable functions. By the definition, there exist P-computable functions
g : A → B and h : B → A such that f([x]) = g(x) for x ∈ A and f−1(y) = [h(y)]
for y ∈ B. Let β(x) = h(g(x)). Then [β(x)] = f−1(f([x])) = [x] and xEβ(x) for
x ∈ A. If x, y ∈ A and xEy, then [x] = [y] and g(x) = f([x]) = f([y]) = g(y),
hence β(x) = β(y).

(b ⇒ a) If x ∈ A, then xEβ(x), hence β(x) = β(β(x)). Let B = {x ∈ A |
β(x) = x}. Then B is P-computable, β : A → B is surjective, and β(x) =
β(y) ⇔ xEy for x, y ∈ A. Define an interpretation of signature symbols in B as
follows.

Let P be a predicate from σ. By the definition, there is a P-computable
relation P0 ⊆ An such that P Ā([x1], . . . , [xn]) ⇔ P0(x1, . . . , xn) for xi ∈ A,
i � n. Let PB(x1, . . . , xn) ⇔ P0(x1, . . . , xn) for xi ∈ B, i � n.

Let now f be a function from σ. There is a P-computable function f0 :
An → A such that f Ā([x1], . . . , [xn]) = [f0(x1, . . . , xn)]. Let fB(x1, . . . , xn) =
β(f0(x1, . . . , xn)) for xi ∈ B, i � n.

If the map β′ : A/E → B is defined by β′([x]) = β(x), then β′ is a P-
computable isomorphism from A onto B. The inverse isomorphism is given by
the function idB : B → A.
�

This proposition shows that item a) reduces to the properties of A ⊆ Σ∗

and of the equivalence relation E ⊆ A2. Function β with this property was
considered in [10] for equivalence relations E ⊆ (Σ∗)2. The question about the
existence of such a function was called there the normal form problem because
β(x) may be considered as a unified normal form for all elements equivalent to
x. In particular, it was shown that if P = NP then a P-computable function β
with the specified property exists. Uniting this fact with some results in [18] and
[11], we obtain the following discouraging result where Σp

n and Πp
n denote levels

of the polynomial-time hierarchy.

Theorem 1. a) Suppose that P = NP. Then every P-computable quotient-
structure A is P-computably isomorphic to some P-computable structure B.

b) Suppose that P �= NP and, moreover, Σp
2 �= Πp

2 . Then there is a P-
computable quotient-structure of the empty signature which is not P-computably
isomorphic to a P-computable structure.

Proof. a) The argument in [10] is not complicated, so we briefly sketch it for
completeness. Define on Σ∗ a natural order as follows: x � y ⇔ |x| < |y| or
(|x| = |y| and x �l y), where x �l y is the lexicographic order on Σ∗. Then
(Σ∗,�) ∼= (ω,�), i.e. the order is linear and well founded.

If E is a P-computable equivalence relation on A, where A ⊆ Σ∗ is a P-
computable set then it can be extended to the relation E1 = E ∪ {(x, y) |

Searching for Applicable Versions of Computable Structures 9

x, y ∈ Σ∗ \ A} on the whole Σ∗. Under the assumption P = NP, the function
β that assigns to any x ∈ Σ∗ the smallest element of Σ∗ equivalent to x, is
P-computable. Indeed, the pair (x, y) is in the graph Γβ of β, iff xE1y, and
∀y1 [y1 < y → ¬(y1E1x)]. The latter condition gives a set from co-NP, which
coincides with P. If the graph Γβ is P-computable then the first symbol β(x) may
be found by searching through a ∈ Σ and checking whether there exists y1 ∈ Σ∗

such that (x, ay1) ∈ Γβ . The latter is an NP-condition. Once we found the first
symbol, we can in the same way find the second and so on. Since |β(x)| � |x|,
the whole algorithm is polynomial.

b) We say that NP has the shrinking property if for any A,B ∈ NP there are
A′, B′ ∈ NP such that A′ ⊆ A, B′ ⊆ B, A′ ∩ B′ = ∅ and A′ ∪ B′ = A ∪ B. Of
course, this definition may be formulated for any class of sets. By Theorem 2.9
in [18], the condition Σp

2 �= Πp
2 implies that the shrinking property for NP fails.

In [11, Theorem 3] it was proved that if NP does not have the shrinking
property then there is a p-computable equivalence relation E ⊆ (Σ∗)2, for which
there is no p-computable function β with the property in item b) of Proposition 4.
Moreover, β can not be computed in polynomial time even by a non-deterministic
Turing machine.
�

If we do not plan to solve the P = NP problem, our best hope could be to
prove that any P-computable quotient-structure of a finite signature is isomor-
phic to some P-computable structure. The next result shows that this holds in
an important particular case.

Theorem 2. Let A be a P-computable quotient-structure. Then every one of its
finitely generated substructures is isomorphic to some P-computable structure.

Proof. Let A = (A/E, σĀ) be a quotient-structure where A ⊆ Σ∗ \ {∅}
and E ⊆ A2 are P-computable sets. If f is an n-ary function from σ then,
by the definition, there is a P-computable function f0 : An → A such that
f Ā([x1], . . . , [xn]) = [f0(x1, . . . , xn)]. If P is an n-ary predicate from σ then there
is a P-computable relation P0 ⊆ An with P Ā([x1], . . . , [xn]) ⇔ P0(x1, . . . , xn).
In this way we obtain a P-computable structure A0 with the universe A, the
specified interpretations f0 and P0, and the congruence E such that A0/E ∼= A.

If t is a term then denote by h(t) its height defined as follows:

a) if t is a constant or a variable then h(t) = 0;
b) if t = f(t1, . . . , tk) where ti are terms for each i � k, then h(t) =

maxi�k{h(ti)} + 1.

Let ē = e1, . . . , en ∈ A and let [e1], . . . , [en] be elements generating the sub-
structure Aē of A. In [5] the following criterion is proved: a finitely generated
structure Aē has a P-computable presentation iff there is a constant c ∈ ω such
that:

1) there is an algorithm that for given σ-terms t1(x̄), t2(x̄) checks whether Aē

satisfies the condition t1([e1], . . . , [en]) = t2([e1], . . . , [en]) in time O(22
ch

),
where h = max{h(t1), h(t2)};

10 P. E. Alaev and V. L. Selivanov

2) for any k-ary predicate P from σ there is an algorithm that for given terms
t1(x̄), . . . , tk(x̄) of L checks whether Aē satisfies the condition

P (t1([e1], . . . , [en]), . . . , tk([e1], . . . , [en]))

in time O(22
ch

), where h = maxi�k{h(ti)}.
We show that these conditions hold in our case. Let t1(x1, . . . , xn) be a term

of σ and h = h(t). Then its value tĀ1 ([e1], . . . , [en]) equals [b1], where b1 =
tA0
1 (e1, . . . , en) is the value in A0. As shown in [5, Theorem 1], in this case

the computation of b1 may be done in time O(22
c1h

), where c1 is a constant
(depending on A0 and ē), and for the length |b1| a similar estimation holds.

To check the condition in 1), we have to compute b1 = tA0
1 (ē), b2 = tA0

2 (ē)
and then check whether [b1] = [b2], i.e. b1Eb2. The latter computation requires
O(max{|b1|, |b2|}p) steps where p is a constant. This estimation has the form
O(22

c1h+log p

), equivalent to the estimation in 1).
The argument for 2) is similar. We compute bi = tA0

i (ē) for i � k in
O(22

c1h

) steps and then check the condition P0(b1, . . . , bk) in time polynomial
in maxi�k{|bi|}.
�

Concerning the P-version of on-line presentations, a natural candidate are
the P-computable structures with universe Σ∗. Similar restrictive versions of
P-presentable structures were discussed in [13,14] but no robust notion was
identified so far. There are many other open questions related to this paper.
E.g.: Is the ordered field Ralg of algebraic reals FP-presentable? Are there P-
computable real closed ordered fields not isomorphic to Ralg?

References

1. Akritas, A.G.: Elements of Computer Algebra with Applications. Wiley Inter-
science, New York (1989)

2. Ash, C., Knight, J.: Computable Structures and the Hyperarithmetical Hierarchy.
Studies in Logic and the Foundations of Mathematics, vol. 144. North-Holland
Publishing Co., Amsterdam (2000)

3. Alaev, P.E.: Existence and uniqueness of structures computable in polynomial
time. Algebra Logic 55(1), 72–76 (2016)

4. Alaev, P.E.: Structures computable in polynomial time. I. Algebra Logic 55(6),
421–435 (2016)

5. Alaev, P.E.: Finitely generated structures computable in polynomial time. Algebra
Logic 59(3), 385–394 (2020). (in Russian, there is an English translation)

6. Albers, S.: Online algorithms. In: Goldin, D., Smolka, S.A., Wegner, P. (eds.) Inter-
active Computation, pp. 143–164. Springer, Heidelberg (2006). https://doi.org/10.
1007/3-540-34874-3 7

7. Manea, F., Miller, R.G., Nowotka, D. (eds.): CiE 2018. LNCS, vol. 10936. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-94418-0

8. Alaev, P.E., Selivanov, V.L.: Fields of algebraic numbers computable in polynomial
time. I. Algebra Logic 58(6), 673–705 (2019)

https://doi.org/10.1007/3-540-34874-3_7
https://doi.org/10.1007/3-540-34874-3_7
https://doi.org/10.1007/978-3-319-94418-0

Searching for Applicable Versions of Computable Structures 11

9. Bazhenov, N., Downey, R., Kalimullin, I., Melnikov, A.: Foundations of online
structure theory. Bull. Symbolic Logic 25(2), 141–181 (2019)

10. Blass, A., Gurevich, Yu.: Equivalence relations, invariants, and normal forms.
SIAM J. Comput. 13(4), 682–689 (1984)

11. Blass, A., Gurevich, Y.: Equivalence relations, invariants, and normal forms. II.
In: Börger, E., Hasenjaeger, G., Rödding, D. (eds.) LaM 1983. LNCS, vol. 171, pp.
24–42. Springer, Heidelberg (1984). https://doi.org/10.1007/3-540-13331-3 31

12. Cannonito, F.B.: Hierarchies of computable groups and the word problem. J. Sym-
bolic Logic 31(3), 376–392 (1966)

13. Cenzer, D.A., Remmel, J.B.: Polynomial-time versus recursive models. Ann. Pure
Appl. Logic 54(1), 17–58 (1991)

14. Cenzer, D., Remmel, J.B.: Complexity theoretic model theory and algebra. In:
Handbook of Recursive Mathematics, vol. 1 (1998)

15. Downey, R., Melnikov, A., Ng, K.M.: Foundations of on-line structure theory II:
the operator approach. arxiv:2007.07401v1 (2020)

16. Ershov, Y.L., Goncharov, S.S.: Constructive Models. Plenum, New York (1999)
17. Grigorieff, S.: Every recursive linear ordering has a copy in DTIMESPACE(n,

log(n)). J. Symb. Log. 55(1), 260–276 (1990)
18. Glasser, C., Reitwiessner, C., Selivanov, V.: The shrinking property for NP and

coNP. Theoret. Comput. Sci. 412, 853–864 (2011)
19. Khoussainov B., Minnes M.: Three lectures on automatic structures. In: Logic

Colloquium 2007. Lecture Notes in Logic, vol. 35, pp. 132–176. Association for
Symbolic Logic, La Jolla, CA (2010)

20. Kalimullin, I., Melnikov, A., Ng, K.M.: Algebraic structures computable without
delay. Theoret. Comput. Sci. 674, 73–98 (2017)

21. Mal’cev A.I.: Constructive algebras. Uspechi mat. nauk 16(3), 3–60 (1961). (in
Russian, English translation). In: The Metamathematics of Algebraic Systems,
North Holand, Amsterdam, pp. 148–214 (1971)

22. Mayr, E.W.: Some complexity results for polynomial ideals. J. Complex. 13(3),
303–325 (1997)

23. Myasnikov, A., Roman’kov, V., Ushakov, A., Vershik, A.: The word and geodesic
problems in free solvable groups. Trans. Amer. Math. Soc. 362(9), 4655–4682
(2010)

24. Selivanova, S., Selivanov, V.: Computing solution operators of boundary-value
problems for some linear hyperbolic systems of PDEs. Log. Meth. Comput. Sci.
13(4:13), 1–31 (2017)

25. Selivanova, S.V., Selivanov, V.L.: Bit complexity of computing solutions for sym-
metric hyperbolic systems of PDEs (extended abstract). In: Manea, F., Miller,
R.G., Nowotka, D. (eds.) CiE 2018. LNCS, vol. 10936, pp. 376–385. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-94418-0 38

26. Selivanov V.L., Selivanova S.V.: Primitive recursive ordered fields and some appli-
cations. arxiv:2010.10189v1 (2020)

27. Winkler, F.: Polynomial Algorithms in Computer Algebra. Springer, Wien (1996).
https://doi.org/10.1007/978-3-7091-6571-3

28. Wagner, K., Wechsung, G.: Computational Complexity. VEB, Berlin (1986)
29. Yap, C.K.: Fundamental Problems in Algorithmic Algebra. Oxford University Press

(2000)

https://doi.org/10.1007/3-540-13331-3_31
http://arxiv.org/abs/2007.07401v1
https://doi.org/10.1007/978-3-319-94418-0_38
http://arxiv.org/abs/2010.10189v1
https://doi.org/10.1007/978-3-7091-6571-3

On Measure Quantifiers in First-Order
Arithmetic

Melissa Antonelli(B), Ugo Dal Lago, and Paolo Pistone

University of Bologna, Bologna, Italy
{melissa.antonelli2,ugo.dallago,paolo.pistone2}@unibo.it

Abstract. We study the logic obtained by endowing the language of
first-order arithmetic with second-order measure quantifiers. This new
kind of quantification allows us to express that the argument formula is
true in a certain portion of all possible interpretations of the quantified
variable. We show that first-order arithmetic with measure quantifiers is
capable of formalizing simple results from probability theory and, most
importantly, of representing every recursive random function. Moreover,
we introduce a realizability interpretation of this logic in which programs
have access to an oracle from the Cantor space.

Keywords: Probabilistic computation · Peano Arithmetic ·
Realizability

1 Introduction

The interactions between first-order arithmetic and the theory of computation
are plentiful and deep. On the one side, proof systems for arithmetic can be
used to prove termination of certain classes of algorithms [24], or to establish
complexity bounds [5]. On the other, higher-order programming languages, such
as typed λ-calculi, can be proved to capture the computational content of arith-
metical proofs. These insights can be pushed further, giving rise to logical and
type theories of various strengths. Remarkably, all the quoted research directions
rely on the tight connection between the concepts of totality (of functions) and
termination (of algorithms).

However, there is one side of the theory of computation which was only
marginally touched by this fruitful interaction, that is, randomized computation.
Probabilistic models have been widely investigated and are nowadays pervasive
in many areas of computer science. The idea of relaxing the notion of algorithm
to account for computations involving random decisions appeared early in the
history of modern computability theory and studies on probabilistic computation
have been developed since the 1950s and 1960s [17]. Today several formal models
are available, such as probabilistic automata [20] probabilistic Turing machines
(from now on, PTMs) [10,22], and probabilistic λ-calculi [21].

Supported by ERC CoG “DIAPASoN”, GA 818616.

c© Springer Nature Switzerland AG 2021
L. De Mol et al. (Eds.): CiE 2021, LNCS 12813, pp. 12–24, 2021.
https://doi.org/10.1007/978-3-030-80049-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80049-9_2&domain=pdf
https://doi.org/10.1007/978-3-030-80049-9_2

On Measure Quantifiers in First-Order Arithmetic 13

In probabilistic computation, behavioral properties, such as termination,
have a quantitative nature: any computation terminates with a given probability.
Can such quantitative properties be studied within a logical system? Of course,
logical systems for set-theory and second-order logic can be expressive enough to
represent measure theory [23] and, thus, are inherently capable of talking about
randomized computations. Yet, what should one add to first-order arithmetic to
make it capable of describing probabilistic computation?

In this paper we provide an answer to this question by introducing a somehow
minimal extension of first-order Peano Arithmetic by means of measure quanti-
fiers. We will call this system MQPA. Its language is obtained by enriching the
language of PA with a special unary predicate, FLIP(·), whose interpretation is
an element of the Cantor space {0, 1}N, and with measure-quantified formulas,
such as C

1
2 F , which expresses the fact that F has probability ≥ 1

2 of being true
(that is, the subset of {0, 1}N which makes A true has measure ≥ 1

2). The appeal
to the Cantor space is essential here, since there is no a priori bound on the
amount of random bits a given computation might need; at the same time, we
show that it yields a very natural measure-theoretic semantics.

The rest of this paper is structured as follows. In Sect. 2 we introduce the
syntax and semantics of MQPA. Section 3 shows that some non-trivial results in
probability theory can be naturally expressed in MQPA. In Sect. 4 we establish
our main result, that is, a representation theorem within MQPA for random
functions computed by PTMs, which is the probabilistic analogous to Gödel’s
arithmetization theorem for recursive functions in PA [12]. Finally, in Sect. 5,
a realizability interpretation for MQPA in terms of computable functions with
oracles on the Cantor space is presented. For further details, an extended version
of this work is available, see [1].

2 Measure-Quantified Peano Arithmetic

This section is devoted to the introduction of the syntax and semantics for
formulas of MQPA. Before the actual presentation, we need some (very modest)
preliminaries from measure theory.

Preliminaries. The standard model (N,+,×) has nothing probabilistic in itself.
Nevertheless, it can be naturally extended into a probability space: arithmetic
being discrete, one may consider the underlying sample space as just BN, namely
the set of all infinite sequences of elements from B = {0, 1}. We will use metavari-
ables, such as ω1, ω2, . . . , for the elements of BN. As it is known, there are stan-
dard ways of building a well behaved σ-algebra and a probability space on B

N,
which we will briefly recall here. The subsets of BN of the form

CX = {s · ω | s ∈ X & ω ∈ B
N},

where X ⊆ B
n and · denotes sequence concatenation, are called n-cylinders [4].

Specifically, we are interested in Xs defined as follows: Xb
n = {s ·b | s ∈ B

n & b ∈
B} ⊆ B

n+1, with n ∈ N. We will deal with cylinders of the form CX1
n
. We let Cn

14 M. Antonelli et al.

and C indicate the set of all n-cylinders and the corresponding algebra, made of
the open sets of the natural topology on B

N. The smallest σ-algebra including
C, which is Borel, is indicated as σ(C). There is a natural way of defining a
probability measure μC on C, namely by assigning to CX the measure |X|

2n .
There exist canonical ways to extend this to σ(C). In doing so, the standard
model (N,+,×) can be generalized to P = (N,+,×, σ(C), μC), which will be
our standard model for MQPA.1 When interpreting sequences in B

N as infinite
supplies of random bits, the set of sequences such that the k-th coin flip’s result
is 1 (for any fixed k) is assigned measure 1

2 , meaning that each random bit is
uniformly distributed and independent from the others.

Syntax. We now introduce the syntax of MQPA. Terms are defined as in classic
first-order arithmetic. Instead, the formulas of MQPA are obtained by endow-
ing the language of PA with flipcoin formulas, such as FLIP(t), and measure-
quantified formulas, as for example Ct/sF and Dt/sF . Specifically, FLIP(·) is
a special unary predicate with an intuitive computational meaning. It basically
provides an infinite supply of independently and randomly distributed bits. Intu-
itively, given a closed term t, FLIP(t) holds if and only if the n-th tossing returns
1, where n denotes t + 1.

Definition 1 (Terms and Formulas of MQPA). Let G be a denumerable set
of ground variables, whose elements are indicated by metavariables such as x, y.
The terms of MQPA, denoted by t, s, are defined as follows:

t, s := x | 0 | S(t) | t + s | t × s. (1)

The formulas of MQPA are defined by the following grammar:

F,G := FLIP(t) | (t = s) | ¬F | F ∨ G | F ∧ G | ∃x.F | ∀x.F | Ct/sF | Dt/sF.
(2)

Semantics. Given an environment ξ : G → N, the interpretation �t�ξ of a term t
is defined as usual. Instead, the interpretation of formulas requires a little care,
being it inherently quantitative: any formula F is associated with a measurable
set, �F �ξ ∈ σ(C) (similarly, for example, to [18]).

Definition 2 (Semantics for Formulas of MQPA). Given a formula F and
an environment ξ, the interpretation of F in ξ is the measurable set of sequences
�F �ξ ∈ σ(C) inductively defined as follows:

1 Here, we will focus on this structure as a “standard model” of MQPA, leaving the
study of alternative models for future work.

On Measure Quantifiers in First-Order Arithmetic 15

�FLIP(t)�ξ := CX1
�t�ξ

�t = s�ξ :=

{
B
N if �t�ξ = �s�ξ

∅ otherwise

�¬G�ξ := B
N − �G�ξ

�G ∨ H�ξ := �G�ξ ∪ �H�ξ

�G ∧ H�ξ := �G�ξ ∩ �H�ξ

�∃x.G�ξ :=
⋃
i∈N

�G�ξ{x←i}

�∀x.G�ξ :=
⋂
i∈N

�G�ξ{x←i}

�Ct/sG�ξ :=

{
B
N if �s�ξ > 0 and μC (�G�ξ) ≥ �t�ξ/�s�ξ

∅ otherwise

�Dt/sG�ξ :=

{
B
N if �s�ξ = 0 or μC (�G�ξ) < �t�ξ/�s�ξ

∅ otherwise

The semantics is well-defined since the sets �FLIP(t)�ξ and �t = s�ξ are measur-
able, and measurability is preserved by all the logical operators. It is not difficult
to see that any n-cylinder can be captured as the interpretation of some MQPA
formula. However, the language of MQPA allows us to express more and more
complex measurable sets, as illustrated in the next sections.

A formula of MQPA, call it F , is valid if and only if for every ξ, �F �ξ = B
N.

The notion of logical equivalence is defined in a standard way: two formulas of
MQPA, call them F,G, are logically equivalent F ≡ G if and only if for every
ξ, �F �ξ = �G�ξ. Notably, the two measure quantifiers are inter-definable, since
one has �Ct/sF �ξ = �¬Dt/sF �ξ. The following examples illustrate the use of
measure-quantifiers Ct/s and Dt/s and, in particular, the role of probabilities of
the form t

s .

Example 1. The formula F = C1/1∃x.FLIP(x) states that a true random bit will
almost surely be met. It is valid, as the set of constantly 0 sequences forms a
singleton, which has measure 0.

Example 2. The formula2 F = ∀x.C1/2x∀y≤x.FLIP(y) states that the probability
for the first x random bits to be true is at least 1

2x . This formula is valid too.

3 On the Expressive Power of MQPA

As anticipated, the language of MQPA allows us to express some elementary
results from probability theory, and to check their validity in the structure P.
In this section we sketch a couple of examples.

2 For the sake of readability, F has been written with a little abuse of notation the
actual MQPA formula being ∀x.C1/z(EXP(z, x) ∧ ∀y.(∃w.(y + w = x) → FLIP(y)),
where EXP(z, x) is an arithmetical formula expressing z = 2x and ∃w.y + w = x
expresses y ≤ x.

16 M. Antonelli et al.

The Infinite Monkey Theorem. Our first example is the so-called infinite mon-
key theorem (IMT). It is a classic result from probability theory stating that a
monkey randomly typing on a keyboard has probability 1 of ending up writing
the Macbeth (or any other fixed string), sooner or later. Let the formulas F (x, y)
and G(x, y) of PA express, respectively, that “y is strictly smaller than the length
of (the binary sequence coded by) x”, and that “the y+1-th bit of x is 1”. We
can formalize IMT through the following formula:

FIMT : ∀x.C1/1∀y.∃z.∀w.F (x,w) → (G(x,w) ↔ FLIP(y + z + w)). (3)

Indeed, let x be a binary encoding of the Macbeth. The formula FIMT says then
that for all choice of start time y, there exists a time y + z after which FLIP(·)
will evolve exactly like x with probability 1.

How can we justify FIMT using the semantics of MQPA? Let ϕ(x, y, z, w) indi-
cate the formula F (x,w) → (G(x,w) ↔ FLIP(y+z+w)). We must show that for
every natural number n ∈ N, there exists a measurable set Sn ⊆ B

N of measure
1 such that any sequence in Sn satisfies the formula ∀y.∃z.∀w.ϕ(n, y, z, w). To
prove this fact, we rely on a well-known result from measure theory, namely the
second Borel-Cantelli Lemma:

Theorem 1 ([4], Thm. 4.4, p. 55). If (Uy)y∈N is a sequence of independent

events in B
N, and

∑∞
y μC (Uy) diverges, then μC

(⋂
y

⋃
z>y Uz

)
= 1.

Let us fix n ∈ N and let �(n) indicate the length of the binary string encoded by
n. We suppose for simplicity that �(n) > 0 (as the case �(n) = 0 is trivial). We
construct Sn in a few steps as follows:

• for all p ∈ N, let Un
p be the cylinder of sequences which, after p steps, agree

with n; observe that the sequences in Un
p satisfy the formula ∀w.ϕ(n, p, 0, w);

• for all p ∈ N, let V n
p = Un

p·�(n)+1; observe that the sets V n
p are pairwise

independent and μC (
∑∞

p V n
p) = ∞;

• for all p ∈ N, let Sn
p =

⋃{Un
p+q | ∃s>p.p + q = s · �(n) + 1}. Observe that

any sequence in Sn
p satisfies ∃z.∀w.ϕ(n, p, z, w); Moreover, one can check that

Sn
p =

⋃
q>p V n

q ;
• we finally let Sn :=

⋂
p Sn

p .

We now have that any sequence in Sn satisfies ∀y.∃z.∀w.ϕ(n, y, z, w); further-
more, by Theorem 1, μC (Sn) = μC (

⋂
p

⋃
q>p V n

q) = 1. Thus, for each choice of
n ∈ N, μC (�∀y.∃z.∀w.ϕ(x, p, z, w)�{x←n}) ≥ μC (Sn) ≥ 1, and we conclude that
�FIMT�ξ = B

N.

The Random Walk Theorem. A second example we consider is the random walk
theorem (RW): any simple random walk over Z starting from 1 will pass through
1 infinitely many times with probability 1. More formally, any ω ∈ B

N induces a
simple random walk starting from 1, by letting the n-th move be right if ω(n) = 1
holds and left if ω(n) = 0 holds. One has then:

On Measure Quantifiers in First-Order Arithmetic 17

Theorem 2 ([4], Thm. 8.3, p. 117). Let U
(n)
ij ⊆ B

N be the set of sequences
for which the simple random walk starting from i leads to j in n steps. Then
μC

(⋂
x

⋃
y≥x U

(y)
11

)
= 1.

Similarly, the random predicate FLIP(n) induces a simple random walk starting
from 1, by letting the n-th move be right if FLIP(n) holds and left if ¬FLIP(n)
holds. To formalize RW in MQPA we make use two arithmetical formulas:

• H(y, z) expresses that y is even and z is the code of a sequence of length y
2 ,

such that for all i, j < y
2 , zi < y, and zi = zj ⇒ i = j (that is, z codes a

subset of {0, . . . , y − 1} of cardinality y
2);

• K(y, z, v) = H(y, z) ∧ ∃i.i < y
2 ∧ zi = v.

The formula of MQPA expressing RW is as follows:

FRW : C1/1∀x.∃y.∃z.y ≥ x∧H(y, z)∧∀v.
(
v < y → (

K(y, z, v) ↔ FLIP(v)
))

. (4)

FRW basically says that for any fixed x, we can find y ≥ x and a subset z of
{0, . . . , y − 1} of cardinality y

2 , containing all and only the values v < y such
that FLIP(v) holds (so that the number of v < y such that FLIP(v) holds coincides
with the number of v < y such that ¬FLIP(v) holds). This is the case precisely
when the simple random walk goes back to 1 after exactly y steps.

To show the validity of FRW we can use the measurable set S =
⋂

n

⋃
p≥n U

(p)
11 .

Let ψ(y, z, v) be the formula (v < y → (K(y, z, v) ↔ FLIP(v))). Observe that
any sequence in U

(n)
11 satisfies the formula ∃z.H(n, z) ∧ ∀v.ψ(y, z, v, w). Then,

any sequence in S satisfies the formula ∀x.∃y.∃z.y ≥ x ∧ H(y, z) ∧ ∀v.ψ(y, z, v).
Since, by Theorem 2, μC (S) = 1, we conclude that μC (�FRW�ξ) ≥ μC (S) ≥ 1,
and thus that �FRW�ξ = B

N.

4 Arithmetization

It is a classical result in computability theory [12,24] that all computable func-
tions are arithmetical, that is, for each partial recursive function f : Nm ⇀ N

there is an arithmetical formula Ff , such that for every n1, . . . , nm, l ∈ N:
f(n1, . . . , nm) = l ⇔ (N,+,×) � Ff (n1, . . . , nm, l). In this section we show that,
by considering arithmetical formulas of MQPA, this fundamental result can be
generalized to computable random functions.

Computability in Presence of Probabilistic Choice. Although standard compu-
tational models are built around determinism, from the 1950s on, models for
randomized computation started to receive wide attention [10,17,22]. The first
formal definitions of probabilistic Turing machines are due to Santos [22] and
Gill [10,11]. Roughly, a PTM is an ordinary Turing machine (for short, TM) with
the additional capability of making random decisions. Here, we consider the def-
inition by Gill, in which the probabilistic choices performed by the machines are
binary and fair.

18 M. Antonelli et al.

Definition 3 (Probabilistic Turing Machine [10,11]). A (one-tape) proba-
bilistic Turing machine is a 5-tuple (Q,Σ, δ, q0, Qf), whose elements are defined
as in a standard TM, except for the probabilistic transition function δ, which,
given the current (non-final) state and symbol, specifies two equally-likely tran-
sition steps.

As any ordinary TM computes a partial function on natural numbers, PTM can
be seen as computing a so-called random function [22, pp. 706–707]. Let D(N)
indicate the set of pseudo-distributions on N, i.e. of functions f : N → R[0,1],
such that

∑
n∈N

f(n) ≤ 1. Given a PTM M, a random function is a function
〈M〉 : N → D(N) which, for each natural number n, returns a pseudo-distribution
supporting all the possible outcomes M produces when fed with (an encoding
of) n in input, each with its own probability. As expected, the random function
f : N → D(N) is said to be computable when there is a PTM M, such that
〈M〉 = f .

Stating the Main Result. In order to generalize Gödel’s arithmetization of par-
tial recursive functions to the class of computable random functions, we first
introduce the notion of arithmetical random function.

Definition 4 (Arithmetical Random Function) . A random function f :
N

m → D(N) is said to be arithmetical if and only if there is a formula of MQPA,
call it Ff , with free variables x1, . . . , xm, y, such that for every n1, . . . , nm, l ∈ N,
it holds that:

μC

(
�Ff (n1, . . . , nm, l)�

)
= f(n1, . . . , nm)(l). (5)

The arithmetization theorem below relates random functions and the formulas
of MQPA, and is the main result of this paper.

Theorem 3. All computable random functions are arithmetical.

Actually, we establish a stronger fact. Let us call a formula A of MQPA Σ0
1

if A is equivalent to a formula of the form ∃x1.∃xn.B, where B contains
neither first-order or measure quantifiers. Then, Theorem 3 can be strengthened
by saying that any computable random function is represented (in the sense
of Definition 4) by a Σ0

1 -formula of MQPA. Moreover, we are confident that a
sort of converse of this fact can be established, namely that for any Σ0

1 -formula
A(x1, . . . , xm), there exists a computable random relation r(x1, . . . , xm) (i.e. a
computable random function such that r(x1, . . . , xn)(i) = 0, whenever i �= 0, 1)
such that μC (�A(n1, . . . , nm)�) = r(n1, . . . , nm)(0) and μC (�¬A(n1, . . . , nm)�) =
r(n1, . . . , nm)(1). However, we leave this fact and, more generally, the exploration
of an arithmetical hierarchy of randomized sets and relations, to future work.

Given the conceptual distance existing between TMs and arithmetic, a direct
proof of Theorem 3 would be cumbersome. It is thus convenient to look for an
alternative route.

On Measure Quantifiers in First-Order Arithmetic 19

On Function Algebras. In [7], the class PR of probabilistic or random recursive
functions is defined as a generalization of Church and Kleene’s standard one [6,
14]. PR is characterized as the smallest class of functions, which (i) contains
some basic random functions, and (ii) is closed under composition, primitive
recursion and minimization. For all this to make sense, composition and primitive
recursion are defined following the monadic structure of D(·). In order to give a
presentation as straightforward as possible, we preliminarily introduce the notion
of Kleisli extension of a function with values in D(N).

Definition 5 (Kleisli Extension). Given a k-ary function f : X1 × · · · ×
Xi−1 × N × Xi+1 × · · · × Xk → D(N), its i-th Kleisli extension fK

i : X1 × · · · ×
Xi−1 × D(N) × Xi+1 × · · · × Xk → D(N) is defined as follows:

fK
i (x1, . . . , xi−1, d, xi+1, . . . , xk)(n) =

∑

j∈N

d(j) · f(x1, . . . , xi−1, j, xi+1, . . . , xk)(n).

The construction at the basis of the K-extension can be applied more than
once. Specifically, given a function f : Nk → D(N), its total K-extension fK :
(D(N))k → D(N) is defined as follows:

fK(d1, . . . , dk)(n) =
∑

i1,...,ik∈N

f(i1, . . . , ik)(n) ·
∏

1≤j≤k

dj(ij).

We can now formally introduce the class PR as follows:

Definition 6 (The Class PR [7]). The class of probabilistic recursive func-
tions, PR, is the smallest class of probabilistic functions containing:

• The zero function such that for every x ∈ N, z(x)(0) = 1;
• The successor function such that for every x ∈ N, s(x)(x + 1) = 1;
• The projection function such that for 1 ≤ m ≤ n, πn

m(x1, . . . , xn)(xm) = 1;
• The fair coin function, r : N → D(N), defined as follows:

r(x)(y) =

{
1
2 if y = x
1
2 if y = x + 1;

and closed under:

• Probabilistic composition. Given f : Nn → D(N) and g1, . . . , gn : Nk → D(N),
their composition is defined as follows:

(f � (g1, . . . , gn))(x) = fK(g1(x), . . . , gn(x));

• Probabilistic primitive recursion. Given f : N
k → D(N), and g : N

k+2 →
D(N), the function obtained from them by primitive recursion is as follows:

h(x, 0) = f(x) h(x, y + 1) = gKk+2(x, y, h(x, y));

20 M. Antonelli et al.

• Probabilistic minimization. Given f : Nk+1 → D(N), the function obtained
from it by minimization is defined as follows:

μf(x)(y) = f(x, y)(0) ·
(∏

z<y

(∑
k>0

f(x, z)(k)
))

.

Proposition 1 ([7]). PR coincides with the class of computable random
functions.

The class PR is still conceptually far from MQPA. In fact, while the latter has
access to randomness in the form of a global supply of random bits, the former
can fire random choices locally through a dedicated initial function. To bridge
the gap between the two, we introduce a third characterization of computable
random functions, which is better-suited for our purposes. The class of oracle
recursive functions, OR, is the smallest class of partial functions of the form
f : Nm ×B

N ⇀ N, which (i) contains the class of oracle basic functions, and (ii)
is closed under composition, primitive recursion, and minimization. Remarkably,
the only basic function depending on ω is the query function. All the closure
schemes are independent from ω as well.

But in what sense do functions in OR represent random functions? In order
to clarify the relationship between OR and PR, we associate each OR function
with a corresponding auxiliary function.

Definition 7 (Auxiliary Function). Given an oracle function f : Nm×B
N →

N, the corresponding auxiliary function, f∗ : Nm × N → P(BN), is defined as
follows: f∗(x1, . . . , xm, y) = {ω | f(x1, . . . , xm, ω) = y}.
The following lemma ensures that the value of f∗ is always a measurable set:
Lemma 1. For every oracle recursive function f ∈ OR, f : Nm ×B

N → N, and
natural numbers x1, . . . , xm, y ∈ N, the set f∗(x1, . . . , xm, y) is measurable.
Thanks to Lemma 1, we can associate any oracle recursive function f : Nm ×
B
N → N with a random function f# : Nm → D(N), defined as: f#(x1, . . . , xm)(y)

= μC (f∗(x1, . . . , xm, y)). This defines a close correspondence between the classes
PR and OR.
Proposition 2. For each f ∈ PR, there is an oracle function g ∈ OR, such that
f = g#. Symmetrically, for any f ∈ OR, there is a random function g ∈ PR,
such that g = f#.

The Proof of the Main Result. The last ingredient to establish Theorem 3 is the
following lemma, easily proved by induction on the structure of OR functions.
Lemma 2. For every oracle function f ∈ OR, the random function f# is arith-
metical.
Since for both OR and MQPA the source of randomness consists in a denu-
merable amount of random bits, the proof of Lemma 2 is easy, and follows the
standard induction of [12]. Theorem 3 comes out as a corollary of Lemma 2
above, together with Proposition 1: any computable random function is in PR,
by Proposition 1, and each PR function is arithmetical, by Lemma 2 and
Proposition 2.

On Measure Quantifiers in First-Order Arithmetic 21

5 Realizability

In this section we sketch an extension of realizability, a well-known computa-
tional interpretation of Peano Arithmetics, to MQPA. The theory of realizabil-
ity [26], which dates back to Kleene’s 1945 paper [15], provides a strong con-
nection between logic, computability, and programming language theory. The
fundamental idea behind realizability is that from every proof of an arithmetical
formula in HA or equivalently (via the Gödel-Gentzen translation) in PA, one
can extract a program, called the realizer of the formula, which encodes the com-
putational content of the proof. In Kreisel’s modified-realizability [16] realizers
are typed programs: any formula A of HA is associated with a type A∗ and any
proof of A yields a realizer of type A∗.

Our goal is to show that the modified-realizability interpretation of HA can
be extended to the language MQPA. As we have not introduced a proof system
for MQPA yet, we limit ourselves to establishing the soundness of modified-
realizability with respect to the semantics of MQPA. Similarly to what happens
with the class OR, the fundamental intuition is that realizers correspond to
programs which can query an oracle ω ∈ B

N. For instance, a realizer of Ct/sA
is a program which, for a randomly chosen oracle, yields a realizer of A with
probability at least �t�ξ/�s�ξ.

Our starting point is a PCF-style language with oracles. The types of this
language are generated by basic types nat,bool and the connectives → and ×.
We let O := nat → bool indicate the type of oracles. For any type σ, we let [σ]
(resp. [σ]O) indicate the set of closed terms of type σ (resp. of terms of type σ
with a unique free variable o of type O). Moreover, for all i ∈ {0, 1} (resp. n ∈ N),
we indicate as i (resp. n) the associated normal form of type bool (resp. nat).
For all term M and normal form N , we let M ⇓ N indicate that M converges
to N . For any term M ∈ [σO] and oracle ω ∈ B

N, we let Mω ∈ [σ] indicate the
closed program in which any call to the variable o is answered by the oracle ω.

We consider the language of MQPA without negation and disjunction,
enriched with implication A → B. As is usually done in modified-realizability,
we take ¬A and A ∨ B as defined connectives, given by A → (0 = S(0)) and
∃x.(x = 0 → A) ∧ (x = S(0) → B), respectively. With any closed formula A of
MQPA we associate a type A∗ defined as follows:

FLIP(t)∗ = nat (∀x.A)∗ = nat → A∗

(t = u)∗ = bool (∃x.A)∗ = nat × A∗

(A ∧ B)∗ = A∗ × B∗ (Ct/sA)∗ = (Dt/sA)∗ = O → A∗

(A → B)∗ = A∗ → B∗

We define by induction the realizability relation M,ω � A where ω ∈ B
N

and, if A = Ct/sB or A = Dt/sB, M ∈ [σ], and otherwise M ∈ [σ]O.

1. M,ω � FLIP(t) iff ω(�t�) = 1;
2. M,ω � t = s iff �t� = �s�;
3. M,ω � A1 ∧ A2 iff π1(M), ω � A1 and π2(M), ω � A2;

22 M. Antonelli et al.

4. M,ω � A → B iff ω ∈ �A → B� and P, ω � A implies MP,ω � B;
5. M,ω � ∃x.A iff π1(Mω) ⇓ k and π2(M), ω � A(k/x);
6. M,ω � ∀x.A iff for all k ∈ N, Mk,ω � A(k/x);
7. M,ω � Ct/sA iff �s� > 0 and μC ({ω′ | Mo,ω′ � A}) ≥ �t�/�s�;
8. M,ω � Dt/sA iff ω ∈ �Dt/sA�, and �s� = 0 or μC ({ω′ | Mo,ω′ � A}) <

�t�/�s�.

Condition 7 is justified by the fact that for all term M and formula A, the set
{ω | M,ω � A} can be shown to be measurable. Conditions 5 and 9 include a
semantic condition of the form ω ∈ �A�, which has no computational meaning.
This condition is added in view of Theorem 4 below. In fact, also in standard
realizability a similar semantic condition for implication is required to show that
realizable formulas are true in the standard model, see [26].

Theorem 4 (Soundness). For a closed formula A, if M,ω � A, then ω ∈ �A�.

For example, the term M = λo.fix
(
λfx.(iszero(ox))(f(x + 1))〈x, x〉)0 real-

izes the valid formula C1/1∃x.FLIP(x). Indeed, M looks for the first value
k such that o(k) = 1 and returns the pair 〈k, k〉. Similarly, the program
λxoyz.o(y), which checks whether the y-th bit of ω is true, realizes the formula
∀x.C1/2x∀y≤xFLIP(y). With the same intuition, one can imagine how a realizer
M of the formula FIMT can be constructed: given inputs x, o, y, M looks for the
first k such that the finite sequence o(y + k), o(y + k + 1), . . . , o(y + k + �(n))
coincides with the string coded by x (where this last check can be encoded by a
program λw.P (x, o, y, z, w)), and returns the pair 〈k, λw.P (x, 0, y, k, w)〉.

6 Conclusion

Future and Ongoing Work. This paper can be seen as “a first exploration” of
MQPA, providing some preliminary results, but also leaving many problems and
challenges open. The most compelling one is certainly that of defining a proof
system for MQPA, perhaps inspired by realizability. Furthermore, our extension
of PA is minimal by design. In particular, we confined our presentation to a
unique predicate variable, FLIP(x). Yet, it is possible to consider a more general
language with countably many predicate variables FLIPa(x), and suitably-named
quantifiers Ct/s

a and Dt/s
a , as in [2]. We leave the exploration of this more sophis-

ticated syntax to future work. Another intriguing line of work concerns the study
of bounded versions of MQPA, which may suggest novel ways of capturing prob-
abilistic complexity classes, different from those in the literature, e.g. [13].

Related Work. To the best of the authors’ knowledge, the term “measure quanti-
fier” was first introduced in 1979 to formalize the idea that a formula F (x) is true
for almost all values of x [19]. In the same years, similar measure quantifiers were
investigated from a model-theoretic perspective by H. Friedman (see [25] for a
survey). More recently, Mio et al. [18] studied the application of such quantifiers
to define extensions of MSO. However, the main source of inspiration for our

On Measure Quantifiers in First-Order Arithmetic 23

treatment of measure quantifiers comes from computational complexity, namely
from Wagner’s counting operator on classes of languages [27].3 On the other
hand, an extensive literature exists on formal methods to describe probabilis-
tic reasoning (without any reference to arithmetic), in particular in the realm
of modal logic [3,8]. Moreover, classes of probabilistic modal logics have been
designed to model Markov chains and similar structure, e.g. in [9]. Universal
modalities show affinities with counting quantifiers, which however focusses on
counting satisfying valuations, rather than on identifying (sets of) worlds.

References

1. Antonelli, M., Dal Lago, U., Pistone, P.: On measure quantifiers in first-order
Arithmetic (2021). https://arxiv.org/abs/2104.12124

2. Antonelli, M., Dal Lago, U., Pistone, P.: On counting propositional logic (2021).
https://arxiv.org/abs/2103.12862

3. Bacchus, F.: Representing and Reasoning with Probabilistic Knowledge. MIT
Press, Cambridge (1990)

4. Billingsley, P.: Probability and Measure. Wiley, New York (1995)
5. Buss, S.: Bounded Arithmetic. Ph.D. thesis, Princeton University (1986)
6. Church, A., Kleene, S.: Formal definitions in the theory of ordinal numbers. Fund.

Math. 28, 11–21 (1936)
7. Dal Lago, U., Gabbrielli, M., Zuppiroli, S.: Probabilistic recursion theory and

implicit computational complexity. Sci. Ann. Comput. Sci. 24(2), 177–216 (2014)
8. Fagin, R., Halpern, J., Megiddo, N.: A logic for reasoning about probabilities. Inf.

Comput. 87(1/2), 78–128 (1990)
9. Furber, R., Mardare, R., Mio, M.: Probabilistic logics based on Riesz spaces. LMCS

16(1), (2020)
10. Gill, J.: Computational complexity of probabilistic Turing machines. In: STOC,

pp. 91–95. ACM (1974)
11. Gill, J.: Computational complexity of probabilistic turing machines. J. Comput.

6(4), 675–695 (1977)
12. Gödel, K.: Über formal unentscheidbare sätze der Principia Mathematica und ver-

wandter systeme. Monatsch. Math. Phys. 38, 173–178 (1931)
13. Jerábek, E.: Approximate counting in bounded arithmetic. J. Symb. Log. 72(3),

959–993 (2007)
14. Kleene, S.: General recursive functions of natural numbers. Math. Ann. 112, 727–

742 (1936)
15. Kleene, S.: On the interpretation of intuitionistic number theory. J. Symb. Log.

10(4), 109–124 (1945)
16. Kreisel, G.: Gödel’s interpretation of Heyting’s arithmetic. In: Summaries of talks,

Summer Institute for Symbolic Logic (1957)
17. de Leeuw, K., et al.: Computability by probabilistic machines. In: Press, P.U. (ed.)

Automata Studies, pp. 183–212. No. 34, Shannon, C.E. and McCarthy, J. (1956)
18. Mio, M., Skrzypczak, M., Michalewski, H.: Monadic second order logic with mea-

sure and category quantifiers. LMCS 8(2), (2012)

3 For further details, see [2], where the model theory and proof theory of an extension
of propositional logic with counting quantifiers is studied (in particular, the logic
CPL0 can be seen as a “finitary” fragment of MQPA).

https://arxiv.org/abs/2104.12124
https://arxiv.org/abs/2103.12862

24 M. Antonelli et al.

19. Morgenstern, C.: The measure quantifier. J. Symb. Log. 44, 1 (1979)
20. Rabin, M.O.: Probabilistic automata. Inf. Comput. 6(3), 230–245 (1963)
21. Saheb-Djaromi, N.: Probabilistic LCF. In: MFCS, no. 64, pp. 442–452 (2021)
22. Santos, E.: Probabilistic Turing machines and computability. AMS 22(3), 704–710

(1969)
23. Simpson, S.: Subsystems of Second Order Arithmetic. Cambridge Press, London

(2009)
24. Sorensen, M., Urzyczyn, P.: Lectures on the Curry-Howard Isomorphism. Elsevier,

Amsterdam (2006)
25. Steinhorn, C.I.: Borel structures and measure and category logics. Assoc. Symb.

Log. 8, 579–596 (1985)
26. Troelstra, A.: Realizability. In: Buss, S.R. (ed.) Handbook of Proof Theory, vol.

137, pp. 407–473. Elsevier (1998)
27. Wagner, K.: The complexity of combinatorial problems with succinct input repre-

sentation. Acta Informatica 23, 325–356 (1986)

Learning Languages with Decidable
Hypotheses

Julian Berger, Maximilian Böther, Vanja Doskoč(B), Jonathan Gadea Harder,
Nicolas Klodt, Timo Kötzing, Winfried Lötzsch, Jannik Peters, Leon Schiller,

Lars Seifert, Armin Wells, and Simon Wietheger

Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
{vanja.doskoc,timo.koetzing}@hpi.de

{julian.berger,maximilian.boether,jonathan.gadeaharder,nicolas.klodt,
winfried.loetzsch,jannik.peters,leon.schiller,lars.seifert,armin.wells,

simon.wietheger}@student.hpi.uni-potsdam.de

Abstract. In language learning in the limit, the most common type of
hypothesis is to give an enumerator for a language, a W -index. These
hypotheses have the drawback that even the membership problem is
undecidable. In this paper, we use a different system which allows for
naming arbitrary decidable languages, namely programs for characteris-
tic functions (called C-indices). These indices have the drawback that it
is now not decidable whether a given hypothesis is even a legal C-index.

In this first analysis of learning with C-indices, we give a structured
account of the learning power of various restrictions employing C-indices,
also when compared with W -indices. We establish a hierarchy of learning
power depending on whether C-indices are required (a) on all outputs;
(b) only on outputs relevant for the class to be learned or (c) only in the
limit as final, correct hypotheses. We analyze all these questions also in
relation to the mode of data presentation.

Finally, we also ask about the relation of semantic versus syntactic
convergence and derive the map of pairwise relations for these two kinds
of convergence coupled with various forms of data presentation.

1 Introduction

We are interested in the problem of algorithmically learning a description for a
formal language (a computably enumerable subset of the set of natural numbers)
when presented successively all and only the elements of that language; this is
called inductive inference, a branch of (algorithmic) learning theory. For example,
a learner h might be presented more and more even numbers. After each new
number, h outputs a description for a language as its conjecture. The learner h
might decide to output a program for the set of all multiples of 4, as long as all
numbers presented are divisible by 4. Later, when h sees an even number not
divisible by 4, it might change this guess to a program for the set of all multiples
of 2.

This work was supported by DFG Grant Number KO 4635/1-1.

c© Springer Nature Switzerland AG 2021
L. De Mol et al. (Eds.): CiE 2021, LNCS 12813, pp. 25–37, 2021.
https://doi.org/10.1007/978-3-030-80049-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80049-9_3&domain=pdf
https://doi.org/10.1007/978-3-030-80049-9_3

26 J. Berger et al.

Many criteria for determining whether a learner h is successful on a lan-
guage L have been proposed in the literature. Gold, in his seminal paper [10],
gave a first, simple learning criterion, TxtGEx-learning1, where a learner is
successful if and only if, on every text for L (listing of all and only the elements
of L) it eventually stops changing its conjectures, and its final conjecture is a
correct description for the input language.

Trivially, each single, describable language L has a suitable constant function
as a TxtGEx-learner (this learner constantly outputs a description for L). Thus,
we are interested in analyzing for which classes of languages L is there a single
learner h learning each member of L. This framework is also known as language
learning in the limit and has been studied extensively, using a wide range of
learning criteria similar to TxtGEx-learning (see, for example, the textbook
[11]).

In this paper, we put the focus on the possible descriptions for languages.
Any computably enumerable language L has as possible descriptions any pro-
gram enumerating all and only the elements of L, called a W -index (the language
enumerated by program e is denoted by We). This system has various drawbacks;
most importantly, the function which decides, given e and x, whether x ∈ We

is not computable. We propose to use different descriptors for languages: pro-
grams for characteristic functions (where such programs e describe the language
Ce which it decides). Of course, only decidable languages have such a description,
but now, given a program e for a characteristic function, x ∈ Ce is decidable.
Additionally to many questions that remain undecidable (for example, whether
C-indices are for the same language or whether a C-index is for a finite language),
it is not decidable whether a program e is indeed a program for a characteristic
function. This leads to a new set of problems: Learners cannot be (algorithmi-
cally) checked whether their outputs are viable (in the sense of being programs
for characteristic functions).

Based on this last observation, we study a range of different criteria which for-
malize what kind of behavior we expect from our learners. In the most relaxed
setting, learners may output any number (for a program) they want, but in
order to Ex-learn, they need to converge to a correct C-index; we denote this
restriction with ExC . Requiring additionally to only use C-indices in order to
successfully learn, we denote by CIndExC ; requiring C-indices on all inputs
(not just for successful learning, but also when seeing input from no target
language whatsoever) we denote by τ(CInd)ExC . In particular, the last restric-
tion requires the learner to be total; in order to distinguish whether the loss of
learning power is due to the totality restriction or truly due to the additional
requirement of outputting C-indices, we also study RCIndExC , that is, the
requirement CIndExC where additionally the learner is required to be total.

We note that τ(CInd)ExC is similar to learning indexable families. Indexable
families are classes of languages L such that there is an enumeration (Li)i∈N of all
and only the elements of L for which the decision problem “x ∈ Li” is decidable.

1 Txt stands for learning from a text of positive examples; G for Gold, indicating
full-information learning; Ex stands for explanatory.

Learning Languages with Decidable Hypotheses 27

Already for such classes of languages, we get a rich structure (see a survey of
previous work [16]). For a learner h learning according to τ(CInd)ExC , we have
that Lx = Ch(x) gives an indexing of a family of languages, and h learns some
subset thereof. We are specifically interested in the area between this setting and
learning with W -indices (ExW).

The criteria we analyze naturally interpolate between these two settings. We
show that we have the following hierarchy: τ(CInd)ExC allows for learning
strictly fewer classes of languages than RCIndExC , which allow for learning
the same classes as CIndExC , which again are fewer than learnable by ExC ,
which in turn renders fewer classes learnable than ExW .

All these results hold for learning with full information. In order to study the
dependence on the mode of information presentation, we also consider partially
set-driven learners (Psd, [2,19]), which only get the set of data presented so far
and the iteration number as input; set-driven learners (Sd, [20]), which get only
the set of data presented so far; iterative learners (It, [8,21]), which only get
the new datum and their current hypothesis and, finally, transductive learners
(Td, [4,15]), which only get the current data. Note that transductive learners
are mostly of interest as a proper restriction to all other modes of information
presentation. In particular, we show that full-information learners can be turned
into partially set-driven learners without loss of learning power and iterative
learning is strictly less powerful than set-driven learning, in all settings.

Altogether we analyze 25 different criteria and show how each pair relates.
All these results are summarized in Fig. 1(a) as one big map stating all pairwise
relations of the learning criteria mentioned, giving 300 pairwise relations in one
diagram, proven with 13 theorems in Sect. 3. Note that the results comparing
learning criteria with W -indices were previously known, and some proofs could
be extended to also cover learning with C-indices. For the proofs, please consider
the full version of this paper [1].

In Sect. 4, we derive a similar map considering a possible relaxation on ExC-
learning: While ExC requires syntactic convergence to one single correct C-
index, we consider behaviorally correct learning (BcC , [6,17]) where the learner
only has to semantically converge to correct C-indices (but may use infinitely
many different such indices). We again consider the different modes of data
presentation and determine all pairwise relations in Fig. 1(b). The proofs are
again deferred to the full version [1].

2 Preliminaries

2.1 Mathematical Notations and Learning Criteria

In this section, we discuss the used notation as well as the system for learning
criteria [15] we follow. Unintroduced notation follows the textbook [18].

With N we denote the set of all natural numbers, namely {0, 1, 2, . . .}. We
denote the subset and proper subset relation between two sets with ⊆ and �,
respectively. We use ∅ and ε to denote the empty set and empty sequence,
respectively. The set of all computable functions is denoted by P, the subset of

28 J. Berger et al.

G

Psd

Sd

It

Td

G

Psd

Sd

It

Td

G

Psd

Sd

It

Td

G

Psd

Sd

It

Td

G

Psd

Sd

It

Td

TxtβExWTxtβExCTxtβCIndExCRTxtβCIndExCτ(CInd)TxtβExC

(a)

G

Psd

Sd

It

Td

G

Psd

Sd

It

Td

TxtβExC TxtβBcC

(b)

Fig. 1. Relation of (a) various requirements when to output characteristic indices
and (b) various learning criteria, both paired with various memory restrictions β.
Black solid respectively dashed lines imply trivial respectively non-trivial inclusions
(bottom-to-top, left-to-right). Furthermore, greyly edged areas illustrate a collapse of
the enclosed learning criteria and there are no further collapses.

all total computable functions by R. If a function f is (not) defined on some
argument x ∈ N, we say that f converges (diverges) on x, denoting this fact with
f(x)↓ (f(x)↑). We fix an effective numbering {ϕe}e∈N of P. For any e ∈ N, we
let We denote the domain of ϕe and call e a W -index of We. This set we call the
e-th computably enumerable set. We call e ∈ N a C-index (characteristic index)
if and only if ϕe is a total function such that for all x ∈ N we have ϕe(x) ∈ {0, 1}.
Furthermore, we let Ce = {x ∈ N}ϕe(x) = 1. For a computably enumerable set
L, if some e ∈ N is a C-Index with Ce = L, we write ϕe = χL. Note that, if a set
has a C-index, it is recursive. The set of all recursive sets is denoted by REC.
For a finite set D ⊆ N, we let ind(D) be a C-index for D. Note that ind ∈ R.
Furthermore, we fix a Blum complexity measure Φ associated with ϕ, that is,
for all e, x ∈ N, Φe(x) is the number of steps the function ϕe takes on input x to
converge [3]. The padding function pad ∈ R is an injective function such that,
for all e, n ∈ N, we have ϕe = ϕpad(e,n) . We use 〈·, ·〉 as a computable, bijective
function that codes a pair of natural numbers into a single one. We use π1 and
π2 as computable decoding functions for the first and section component, i.e.,
for all x, y ∈ N we have π1(〈x, y〉) = x and π2(〈x, y〉) = y.

We learn computably enumerable sets L, called languages. We fix a pause
symbol #, and let, for any set S, S# := S ∪{#}. Information about languages is
given from text, that is, total functions T : N → N∪{#}. A text T is of a certain
language L if its content is exactly L, that is, content(T) := range(T) \ {#} is
exactly L. We denote the set of all texts as Txt and the set of all texts of a
language L as Txt(L). For any n ∈ N, we denote with T [n] the initial sequence

Learning Languages with Decidable Hypotheses 29

of the text T of length n, that is, T [0] := ε and T [n] := (T (0), . . . , T (n − 1)).
Given a language L and t ∈ N, the set of sequences consisting of elements of
L ∪ {#} that are at most t long is denoted by L≤t

. Furthermore, we denote
with Seq all finite sequences over N# and define the content of such sequences
analogous to the content of texts. The concatenation of two sequences σ, τ ∈ Seq
is denoted by στ or, more emphasizing, σ�τ . Furthermore, we write ⊆ for the
extension relation on sequences and fix a order ≤ on Seq interpreted as natural
numbers.

Now, we formalize learning criteria using the following system [15]. A learner
is a partial function h ∈ P. An interaction operator β is an operator that takes
a learner h ∈ P and a text T ∈ Txt as input and outputs a (possibly partial)
function p. Intuitively, β defines which information is available to the learner for
making its hypothesis. We consider Gold-style or full-information learning [10],
denoted by G, partially set-driven learning (Psd, [2,19]), set-driven learning
(Sd, [20]), iterative learning (It, [8,21]) and transductive learning (Td, [4,15]).
To define the latter formally, we introduce a symbol “?” for the learner to sig-
nalize that the information given is insufficient. Formally, for all learners h ∈ P,
texts T ∈ Txt and all i ∈ N, define

G(h, T)(i) = h(T [i]);
Psd(h, T)(i) = h(content(T [i]), i);
Sd(h, T)(i) = h(content(T [i]));

It(h, T)(i) =

{
h(ε), if i = 0;
h(It(h, T)(i − 1), T (i − 1)), otherwise;

Td(h, T)(i) =

⎧⎪⎨
⎪⎩

?, if i = 0;
Td(h, T)(i − 1), else, if h(T (i − 1)) = ?;
h(T (i − 1)), otherwise.

For any of the named interaction operators β, given a β-learner h, we let h∗

(the starred learner) denote a G-learner simulating h, i.e., for all T ∈ Txt, we
have β(h, T) = G(h∗, T). For example, let h be a Sd-learner. Then, intuitively,
h∗ ignores all information but the content of the input, simulating h with this
information, i.e., for all finite sequences σ, we have h∗(σ) = h(content(σ)).

For a learner to successfully identify a language, we may oppose constraints
on the hypotheses the learner makes. These are called learning restrictions. As
a first, famous example, we required the learner to be explanatory [10], i.e., the
learner must converge to a single, correct hypothesis for the target language.
We hereby distinguish whether the final hypothesis is interpreted as a C-index
(ExC) or as a W -index (ExW). Formally, for any sequence of hypotheses p and
text T ∈ Txt, we have

ExC(p, T) ⇔ ∃n0 : ∀n ≥ n0 : p(n) = p(n0) ∧ ϕp(n0) = χcontent(T);
ExW (p, T) ⇔ ∃n0 : ∀n ≥ n0 : p(n) = p(n0) ∧ Wp(n0) = content(T).

30 J. Berger et al.

We say that explanatory learning requires syntactic convergence. If there exists a
C-index (or W -index) for a language, then there exist infinitely many. This moti-
vates to not require syntactic but only semantic convergence, i.e., the learner
may make mind changes, but it has to, eventually, only output correct hypothe-
ses. This is called behaviorally correct learning (BcC or BcW , [6,17]). Formally,
let p be a sequence of hypotheses and let T ∈ Txt, then

BcC(p, T) ⇔ ∃n0 : ∀n ≥ n0 : ϕp(n) = χcontent(T);
BcW (p, T) ⇔ ∃n0 : ∀n ≥ n0 : Wp(n) = content(T).

In this paper, we consider learning with C-indices. It is, thus, natural to require
the hypotheses to consist solely of C-indices, called C-index learning, and
denoted by CInd. Formally, for a sequence of hypotheses p and a text T , we
have

CInd(p, T) ⇔ ∀i, x : ϕp(i)(x) ∈ {0, 1}.

For two learning restrictions δ and δ′, their combination is their intersection,
denoted by their juxtaposition δδ′. We let T denote the learning restriction that
is always true, which is interpreted as the absence of a learning restriction.

A learning criterion is a tuple (α, C, β, δ), where C is the set of admissible
learners, usually P or R, β is an interaction operator and α and δ are learning
restrictions. We denote this criterion with τ(α)CTxtβδ, omitting C if C = P,
and a learning restriction if it equals T. We say that an admissible learner h ∈ C
τ(α)CTxtβδ-learns a language L if and only if, for arbitrary texts T ∈ Txt, we
have α(β(h, T), T) and for all texts T ∈ Txt(L) we have δ(β(h, T), T). The set
of languages τ(α)CTxtβδ-learned by h ∈ C is denoted by τ(α)CTxtβδ(h). With
[τ(α)CTxtβδ] we denote the set of all classes τ(α)CTxtβδ-learnable by some
learner in C. Moreover, to compare learning with W - and C-indices, these classes
may only contain recursive languages, which we denote as [τ(α)CTxtβδ]REC.

2.2 Normal Forms

When studying language learning in the limit, there are certain properties of
learner that are useful, e.g., if we can assume a learner to be total. Cases where
learners may be assumed total have been studied in the literature [13,14]. Impor-
tantly, this is the case for explanatory Gold-style learners obeying delayable
learning restrictions and for behaviorally correct learners obeying delayable
restrictions. Intuitively, a learning restriction is delayable if it allows hypotheses
to be arbitrarily, but not indefinitely postponed without violating the restric-
tion. Formally, a learning restriction δ is delayable, if and only if for all non-
decreasing, unbounded functions r : N → N, texts T, T ′ ∈ Txt and learning
sequences p such that for all n ∈ N, content(T [r(n)]) ⊆ content(T ′[n]) and
content(T) = content(T ′), we have, if δ(p, T), then also δ(p ◦ r, T ′). Note that
ExW , ExC , BcW , BcC and CInd are delayable restrictions.

Learning Languages with Decidable Hypotheses 31

Another useful notion are locking sequences. Intuitively, these contain enough
information such that a learner, after seeing this information, converges correctly
and does not change its mind anymore whatever additional information from the
target language it is given. Formally, let L be a language and let σ ∈ L∗

#. Given a
G-learner h ∈ P, σ is a locking sequence for h on L if and only if for all sequences
τ ∈ L∗

we have h(σ) = h(στ) and h(σ) is a correct hypothesis for L [2]. This
concept can immediately be transferred to other interaction operators. Exem-
plary, given a Sd-learner h and a locking sequence σ of the starred learner h∗,
we call the set content(σ) a locking set. Analogously, one transfers this defini-
tion to the other interaction operators. It shall not remain unmentioned that,
when considering Psd-learners, we speak of locking information. In the case of
BcW -learning we do not require the learner to syntactically converge. Therefore,
we call a sequence σ ∈ L∗

a BcW -locking sequence for a G-learner h on L if,
for all sequences τ ∈ L∗

#, h(στ) is a correct hypothesis for L [11]. We omit the
transfer to other interaction operators as it is immediate. It is an important
observation that for any learner h and any language L it learns, there exists a
(BcW -) locking sequence [2]. These notions and results directly transfer to ExC-
and BcC-learning. When it is clear from the context, we omit the index.

3 Requiring C-Indices as Output

This section is dedicated to proving Fig. 1(a), giving all pairwise relations for
the different settings of requiring C-indices for output in the various mentioned
modes of data presentation. In general, we observe that the later we require
C-indices, the more learning power the learner has. This holds except for trans-
ductive learners which converge to C-indices. We show that they are as powerful
as CInd-transductive learners.

Although we learn classes of recursive languages, the requirement to converge
to characteristic indices does heavily limit a learners capabilities. In the next
theorem we show that even transductive learners which converge to W -indices
can learn classes of languages which no Gold-style ExC-learner can learn. We
exploit the fact that C-indices, even if only conjectured eventually, must contain
both positive and negative information about the guess.

Theorem 1. We have that [TxtTdExW]REC \ [TxtGExC]REC �= ∅.
Proof. We show this by using the Operator Recursion Theorem (ORT) to pro-
vide a separating class of languages. To this end, let h be the Td-learner with
h(#) = ? and, for all x, y ∈ N, let h(〈x, y〉) = x. Let L = TxtTdExW (h)∩REC.
Assume L can be learned by a TxtGExC-learner h′. We may assume h′ ∈ R [13].

32 J. Berger et al.

Then, by ORT there exist indices e, p, q ∈ N such that

L := We = range(ϕp);

∀x : T̃ (x) := ϕp(x) = 〈e, ϕq(T̃ [x])〉;
ϕq(ε) = 0;

∀σ �= ε : σ̄ = min{σ′ ⊆ σ | ϕq(σ
′) = ϕq(σ)};

∀σ �= ε : ϕq(σ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ϕq(σ̄), if ∀σ′, σ̄ ⊆ σ′ ⊆ σ : Φh′(σ′)(〈e, ϕq(σ̄) + 1〉) > |σ|;
ϕq(σ̄) + 1, else, for min. σ′ contradicting the previous case, if

ϕh′(σ′)(〈e, ϕq(σ̄) + 1〉) = 0;

ϕq(σ̄) + 2, otherwise.

Here, Φ is a Blum complexity measure [3]. Intuitively, to define the next ϕp(x),
we add the same element to content(T̃) until we know whether 〈e, T̃ [x] + 1〉 ∈
Ch′(σ̄) holds or not. Then, we add the element contradicting this outcome.

We first show that L ∈ L and afterwards that L cannot be learned by h′. To
show the former, note that either L is finite or T̃ is a non-decreasing unbounded
computable enumeration of L. Therefore, we have L ∈ REC. We now prove that
h learns L. Let T ∈ Txt(L). For all n ∈ N where T (n) is not the pause symbol,
we have h(T (n)) = e. With n0 ∈ N being minimal such that T (n0) �= #, we
get for all n ≥ n0 that Td(h, T)(n) = e. As e is a correct hypothesis, h learns
L from T and thus we have that L ∈ TxtTdExW (h). Altogether, we get that
L ∈ L.

By assumption, h′ learns L from the text T̃ ∈ Txt(L). Therefore, there exists
n0 ∈ N such that, for all n ≥ n0,

h′(T̃ [n]) = h′(T̃ [n0]) and χL = ϕh′(T̃ [n]),

that is, h′(T̃ [n]) is a C-index for L. Now, as h′ outputs C-indices when converg-
ing, there are t, t′ ≥ n0 such that

Φh′(T̃ [t′])(〈e, ϕq(T̃ [n0]) + 1〉) ≤ t.

Let t′0 and t0 be the first such found. We show that h′(T̃ [t′0]) is no correct
hypothesis of L by distinguishing the following cases.

1. Case: ϕh′(T̃ [t′
0])

(〈e, ϕq(T̃ [n0])+1〉) = 0. By definition of ϕq and by minimality

of t′0, we have that 〈e, ϕq(T̃ [n0])+1〉 ∈ L, however, the hypothesis of h′(T̃ [t′0])
says differently, a contradiction.

2. Case: ϕh′(T̃ [t′
0])

(〈e, ϕq(T̃ [n0])+1〉) = 1. By definition of ϕq and by minimality

of t′0, we have that 〈e, ϕq(T̃ [n0])+1〉 ∈ L, but 〈e, ϕq(T̃ [n0])+1〉 /∈ L. However,
the hypothesis of h′(T̃ [t′0]) conjectures the latter to be in L, a contradiction.

��
Furthermore, the following known equalities from learning W -indices directly

apply in the studied setting as well.

Learning Languages with Decidable Hypotheses 33

Theorem 2 ([12], [9,19]). We have that

[TxtItExW]REC ⊆ [TxtSdExW]REC,

[TxtPsdExW]REC = [TxtGExW]REC.

The remaining separations we will show in a more general way, see Theo-
rems 11 and 12. We generalize the latter result [9,19], namely that Gold-style
learners may be assumed partially set-driven, to all considered cases. The idea
here is to, just as in the ExW -case, mimic the given learner and to search for
minimal locking sequences. Incorporating the result that unrestricted Gold-style
learners may be assumed total [13], we even get a stronger result.

Theorem 3. For δ, δ′ ∈ {CInd,T}, we have that

[τ(δ)TxtGδ′ExC]REC = [τ(δ)RTxtPsdδ′ExC]REC.

We also generalize the former result of Theorem 2 to hold in all considered
cases. The same simulating argument (where one mimics the iterative learner on
ascending text with a pause symbol between two elements) suffices regardless
the exact setting.

Theorem 4. Let δ, δ′ ∈ {CInd,T} and C ∈ {R,P}. Then, we have that

[τ(δ′)CTxtItδExC]REC ⊆ [τ(δ′)CTxtSdδExC]REC.

Interestingly, totality is not restrictive solely for Gold-style (and due to the
equality also partially set-driven) learners. For the other considered learners with
restricted memory, being total lessens the learning capabilities. This weakness
results from the need to output some guess. A partial learner can await this
guess and outperform it. This way, we obtain self-learning languages [5] to show
the three following separations.

Theorem 5. We have that [RTxtSdCIndExC]REC � [TxtSdCIndExC]REC.

Theorem 6. We have that [RTxtItCIndExC]REC � [TxtItCIndExC]REC.

Theorem 7. We have that [RTxtTdCIndExC]REC � [TxtTdCIndExC]REC.

Next, we show the gradual decrease of learning power the more we require the
learners to output characteristic indices. We have already seen in Theorem 1 that
converging to C-indices lessens learning power. However, this allows for more
learning power than outputting these indices during the whole learning process
as shows the next theorem. The idea is that such learners have to be certain about
their guesses as these are indices of characteristic functions. When constructing
a separating class using self-learning languages [5], one forces the CInd-learner
to output C-indices on certain languages to, then, contradict its choice there.
This way, the ExC-learner learns languages the CInd-learner cannot.

34 J. Berger et al.

Theorem 8. We have that [TxtItExC]REC \ [TxtGCIndBcC]REC �= ∅.
Since languages which can be learned by iterative learners can also be learned

by set-driven ones (see Theorem 4), this result suffices. Note that the idea above
requires some knowledge on previous elements. Thus, it is no coincidence that
this separation does not include transductive learners. Since these learners base
their guesses on single elements, they cannot see how far in the learning process
they are. Thus, they are forced to always output C-indices.

Theorem 9. We have that [TxtTdCIndExC]REC = [TxtTdExC]REC.

For the remainder of this section, we focus on learners which output charac-
teristic indices on arbitrary input, that is, we focus on τ(CInd)-learners. First,
we show that the requirement of always outputting C-indices lessens a learners
learning power, even when compared to total CInd-learners. To provide the sep-
arating class of self-learning languages, one again awaits the τ(CInd)-learner’s
decision and then, based on these, learns languages this learner cannot.

Theorem 10. We have [RTxtTdCIndExC]REC \ [τ(CInd)TxtGBcC]REC �= ∅.
Proof. We prove the result by providing a separating class of languages. Let
h be the Td-learner with h(#) = ? and, for all x, y ∈ N, let h(〈x, y〉) = x.
By construction, h is total and computable. Let L = RTxtTdCIndExC(h) ∩
REC. We show that there is no τ(CInd)TxtGBcC-learner learning L by way
of contradiction. Assume there is a τ(CInd)TxtGBcC-learner h′ which learns
L. With the Operator Recursion Theorem (ORT), there are e, p ∈ N such that
for all x ∈ N

L := range(ϕp);
ϕe = χL;

T̃ (x) := ϕp(x) =

{
〈e, 2x〉, if ϕh′(ϕp[x])(〈e, 2x〉) = 0;
〈e, 2x + 1〉, otherwise.

Intuitively, for all x either ϕp(x) is an element of L if it is not in the hypothesis
of h′ after seeing ϕp[x], or there is an element in this hypothesis that is not in
content(T̃). As any hypothesis of h′ is a C-index, we have that ϕp ∈ R and, as
ϕp is strictly monotonically increasing, that L is decidable.

We now prove that L ∈ L and afterwards that L cannot be learned by h′.
First, we need to prove that h learns L. Let T ∈ Txt(L). For all n ∈ N where
T (n) is not the pause symbol, we have h(T (n)) = e. Let n0 ∈ N with T (n0) �= #.
Then, we have, for all n ≥ n0, that Td(h, T)(n) = e and, since e is a hypothesis
of L, h learns L from T . Thus, we have that L ∈ RTxtTdCIndExC(h)∩REC.

By assumption, h′ learns L and thus it also needs to learn L on text T̃ .
Hence, there is x0 such that for all x ≥ x0 the hypothesis h′(T̃ [x]) = h′(ϕp[x])
is a C-index for L. We now consider the following cases.

1. Case: ϕh′(ϕp[x])(〈e, 2x〉) = 0. By construction, we have that T̃ (x) = 〈e, 2x〉.
Therefore, 〈e, 2x〉 ∈ L, which contradicts h′(ϕp[x]) being a correct hypothesis.

Learning Languages with Decidable Hypotheses 35

2. Case: ϕh′(ϕp[x])(〈e, 2x〉) = 1. By construction, we have that T̃ (x) �= 〈e, 2x〉 and
thus, because T̃ is strictly monotonically increasing, 〈e, 2x〉 /∈ L = content(T̃).
This, again, contradicts h′(ϕp[x]) being a correct hypothesis.

As in all cases h′(ϕp[x]) is a wrong hypothesis, h′ cannot learn L. ��
It remains to be shown that memory restrictions are severe for such learners

as well. First, we show that partially set-driven learners are more powerful than
set-driven ones. Just as originally witnessed by for W -indices [9,19], this is solely
due to the lack of learning time. In the following theorem, we already separate
from behaviorally correct learners, as we will need this stronger version later on.

Theorem 11. We have that [τ(CInd)TxtPsdExC]REC \ [TxtSdBcW]REC �=
∅.

In turn, this lack of time is not as severe as lack of memory. The standard class
(of recursive languages) to separate set-driven learners from iterative ones [11]
can be transferred to the setting studied in this paper.

Theorem 12. We have that [τ(CInd)TxtSdExC]REC\[TxtItExW]REC �= ∅.

Lastly, we show that transductive learners, having basically no memory, do
severely lack learning power. As they have to infer their conjectures from single
elements they, in fact, cannot even learn basic classes such as {{0}, {1}, {0, 1}}.
The following result concludes the map shown in Fig. 1(a) and, therefore, also
this section.

Theorem 13. For β ∈ {It,Sd}, we have that

[τ(CInd)TxtβExC]REC \ [TxtTdExW]REC �= ∅.

4 Syntactic Versus Semantic Convergence to C-indices

In this section, we investigate the effects on learners when we require them to
converge to characteristic indices. We study both syntactically converging learn-
ers as well as semantically converging ones. In particular, we compare learners
imposed with different well-studied memory restrictions.

Surprisingly, we observe that, although C-indices incorporate and, thus,
require the learner to obtain more information during the learning process than
W -indices, the relative relations of the considered restrictions remain the same.
We start by gathering results which directly follow from the previous section.

Corollary 1. We have that

[TxtPsdExC]REC = [TxtGExC]REC, (Theorem 3),
[TxtItExC]REC ⊆ [TxtSdExC]REC, (Theorem 4),
[TxtGExC]REC \ [TxtSdBcC]REC �= ∅, (Theorem 11),

[TxtSdExC]REC \ [TxtItExC]REC �= ∅, (Theorem 12),
[TxtItExC]REC \ [TxtTdExC]REC �= ∅, (Theorem 13).

36 J. Berger et al.

We show the remaining results. First, we show that, just as for W -indices,
behaviorally correct learners are more powerful than explanatory ones. We pro-
vide a separating class exploiting that explanatory learners must converge to
a single, correct hypothesis. We collect elements on which mind changes are
witnessed, while maintaining decidability of the obtained language.

Theorem 14. We have that [TxtSdBcC]REC \ [TxtGExC]REC �= ∅.
Next, we show that, just as for W -indices, a padding argument makes itera-

tive behaviorally correct learners as powerful as Gold-style ones.

Theorem 15. We have that [TxtItBcC]REC = [TxtGBcC]REC.

We show that the classes of languages learnable by some behaviorally correct
Gold-style (or, equivalently, iterative) learner, can also be learned by partially
set-driven ones. We follow the proof which is given in a private communication
with Sanjay Jain [7]. The idea there is to search for minimal Bc-locking sequences
without directly mimicking the G-learner. We transfer this idea to hold when
converging to C-indices as well. We remark that, while doing the necessary
enumerations, one needs to make sure these are characteristic. One obtains this
as the original learner eventually outputs characteristic indices.

Theorem 16. We have that [TxtPsdBcC]REC = [TxtGBcC]REC.

Lastly, we investigate transductive learners. Such learners base their hypothe-
ses on a single element. Thus, one would expect them to benefit from dropping
the requirement to converge to a single hypothesis. Interestingly, this does not
hold true. This surprising fact originates from C-indices encoding characteristic
functions. Thus, one can simply search for the minimal element on which no “?”
is conjectured. The next result finalizes the map shown in Fig. 1(a) and, thus,
this section.

Theorem 17. We have that [TxtTdExC]REC = [TxtTdBcC]REC.

References

1. Berger, J., et al.: Learning languages with decidable hypotheses. CoRR (2020)
2. Blum, L., Blum, M.: Toward a mathematical theory of inductive inference. Inf.

Control 28, 125–155 (1975)
3. Blum, M.: A machine-independent theory of the complexity of recursive functions.

J. ACM 14, 322–336 (1967)
4. Carlucci, L., Case, J., Jain, S., Stephan, F.: Results on memory-limited U-shaped

learning. Inf. Comput. 205, 1551–1573 (2007)
5. Case, J., Kötzing, T.: Strongly non-U-shaped language learning results by general

techniques. Inf. Comput. 251, 1–15 (2016)
6. Case, J., Lynes, C.: Machine inductive inference and language identification. In:

Nielsen, M., Schmidt, E.M. (eds.) ICALP 1982. LNCS, vol. 140, pp. 107–115.
Springer, Heidelberg (1982). https://doi.org/10.1007/BFb0012761

https://doi.org/10.1007/BFb0012761

Learning Languages with Decidable Hypotheses 37

7. Doskoč, V., Kötzing, T.: Cautious limit learning. In: Proceedings of the Interna-
tional Conference on Algorithmic Learning Theory (ALT) (2020)

8. Fulk, M.: A Study of Inductive Inference Machines. Ph.D. thesis (1985)
9. Fulk, M.A.: Prudence and other conditions on formal language learning. Inf. Com-

put. 85, 1–11 (1990)
10. Gold, E.M.: Language identification in the limit. Inf. Control 10, 447–474 (1967)
11. Jain, S., Osherson, D., Royer, J.S., Sharma, A.: Systems that Learn: An Introduc-

tion to Learning Theory. MIT Press, Cambridge, Second Edition (1999)
12. Kinber, E.B., Stephan, F.: Language learning from texts: Mindchanges, limited

memory, and monotonicity. Inf. Comput. 123, 224–241 (1995)
13. Kötzing, T., Palenta, R.: A map of update constraints in inductive inference. The-

oret. Comput. Sci. 650, 4–24 (2016)
14. Kötzing, T., Schirneck, M., Seidel, K.: Normal forms in semantic language identi-

fication. In: Proceedings of the International Conference on Algorithmic Learning
Theory (ALT), pp. 76:493–76:516 (2017)

15. Kötzing, T.: Abstraction and Complexity in Computational Learning in the Limit.
Ph.D. thesis, University of Delaware (2009)

16. Lange, S., Zeugmann, T., Zilles, S.: Learning indexed families of recursive languages
from positive data: A survey. Theor. Comput. Sci. 397, 194–232 (2008)

17. Osherson, D.N., Weinstein, S.: Criteria of language learning. Inf. Control 52, 123–
138 (1982)

18. Rogers, H., Jr.: Theory of Recursive Functions and Effective Computability. MIT
Press, Cambridge (1987)

19. Schäfer-Richter, G.: Über Eingabeabhängigkeit und Komplexität von Inferenzs-
trategien. Ph.D. thesis, RWTH Aachen University, Germany (1984)

20. Wexler, K., Culicover, P.W.: Formal Principles of Language Acquisition. MIT
Press, Cambridge (1980)

21. Wiehagen, R.: Limes-Erkennung rekursiver Funktionen durch spezielle Strategien.
J. Inf. Proc. Cybern. 12, 93–99 (1976)

Robust Online Algorithms for Dynamic
Choosing Problems

Sebastian Berndt1, Kilian Grage2(B), Klaus Jansen2, Lukas Johannsen2,
and Maria Kosche3

1 University of Lübeck, 23562 Lübeck, Germany
s.berndt@uni-luebeck.de

2 Kiel University, 24118 Kiel, Germany
{kig,kj}@informatik.uni-kiel.de

3 Göttingen University, 37073 Göttingen, Germany
maria.kosche@cs.uni-goettingen.de

Abstract. Semi-online algorithms that are allowed to perform a
bounded amount of repacking achieve guaranteed good worst-case
behaviour in a more realistic setting. Most of the previous works focused
on minimization problems that aim to minimize some costs. In this work,
we study maximization problems that aim to maximize their profit.

We mostly focus on a class of problems that we call choosing problems,
where a maximum profit subset of a set objects has to be maintained.
Many known problems, such as Knapsack, MaximumIndependentSet

and variations of these, are part of this class. We present a framework
for choosing problems that allows us to transfer offline α-approximation
algorithms into (α − ε)-competitive semi-online algorithms with amor-
tized migration O(1/ε). Moreover we complement these positive results
with lower bounds that show that our results are tight in the sense that
no amortized migration of o(1/ε) is possible.

Keywords: Online algorithms · Dynamic algorithms · Competitive
ratio · Migration · Knapsack · Maximum independent set

1 Introduction

Optimization problems and how fast we can solve them optimally or approxima-
tively have been a central topic in theoretical computer science. In this context,
there is one major problem that is unique to applications: an unknown future.
In the real world, we are often not given all the information in advance, as
unforeseeable things like customers cancelling or new urgent customer requests
can happen at any moment. The study of online problems addresses this kind
of uncertainty in different variants. The classical model starts with an empty

Supported by DFG-Project JA 612 /19-1 and GIF-Project “Polynomial Migration for
Online Scheduling”. A full version of the paper is available at http://arxiv.org/abs/
2104.09803.

c© Springer Nature Switzerland AG 2021
L. De Mol et al. (Eds.): CiE 2021, LNCS 12813, pp. 38–49, 2021.
https://doi.org/10.1007/978-3-030-80049-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80049-9_4&domain=pdf
http://arxiv.org/abs/2104.09803
http://arxiv.org/abs/2104.09803
https://doi.org/10.1007/978-3-030-80049-9_4

Robust Online Algorithms for Dynamic Choosing Problems 39

instance and in subsequent time steps, new parts of the instance are added. In
order to solve a problem, an online algorithm must generate a solution for every
time step without knowing any information about future events.

In the strictest setting, the algorithm is not allowed to alter the solution
generated in a previous step at all, so every mistake will carry weight into the
future. As this is a very heavy restriction for online algorithms, there are also
variants where the algorithm is allowed to change solutions to some degree. We
cannot allow for an arbitrary number of changes as this only leads to the offline
setting. We therefore consider the migration model, where every change in the
instance, e. g., an added node to a graph or a new item, comes with a migration
potential. Intuitively, this migration potential is linked to some size or weight
which means objects that have a larger impact on the optimization criteria will
yield larger migration potential allowing more change. Similarly, small objects
will only allow for small changes of the solution.

We consider this migration setting in an amortized way by allowing the
migration to accumulate over time. This way we allow our algorithm to gen-
erally handle newly arriving objects without changing the solution (apart from
extending the solution with regards to the new objects) and at some later point
of time we will repack the solution and use the sum of all migration potential
of items that arrived up to that time. While there is usually a trade-off between
maintaining a good solution and constraining the migration, in this paper, we
will present a very simple framework that achieves results close to the best offline
results for a large range of problems while maintaining an amortized migration
factor of O(1/ε). In fact, we manage to keep solutions on par with the best offline
algorithms except an additive ε-term. For many problems this framework even
works when considering the problem variants where objects not only appear but
are also removed from the instance. In addition to these positive results, we
also show that a migration of only Ω(1/ε) is needed even for relatively simple
problems such as the SubsetSum problem.

2 Preliminaries

We are given some optimization problem Πoff consisting of a set of objects and
consider the online version Πon, where these objects arrive one by one over time
(the static case). If arrived items can also be removed from the instance, we call
this the dynamic case. For an instance I ∈ Πon and some time t we denote the
instance at time t containing the first t objects by It. As discussed above, we
allow a certain amount of repacking and thus, every object has an associated
migration potential, which typically corresponds to its size or its weight. For the
problems considered in this paper, the migration potential and cost is linked to
the profits of the individual items being inserted into the problem instance.

The item arriving or departing at time t has migration potential Δ(It). Then,
Δ(It → It′) denotes the migration potential that we received starting at time t
until t′ for t ≤ t′. As the given instance is usually clear from the context, we sim-
ply this notation and write Δt:t′ := Δ(It → It′). The total migration potential
up to some time t is thus given by Δ0:t.

40 S. Berndt et al.

We further assume that for every two feasible solutions St and S′
t′ at times

t, t′, we also have a necessary migration cost that we denote by φ(St → S′
t′),

respectively. This resembles the costs to migrate from solution St to solution
S′

t′ . Note that the initial assignment of an item does not cost any migration.
Therefore, φ(St → St+1) denotes the migration cost of changing solution St to
solution St+1 without accounting for the newly arrived item.

We say that an online algorithm has amortized migration factor γ if, for all
time steps t, the sum of the migration costs is at most γ · ∑t

i=1 Δ(It) = γ · Δ0:t,
i. e.

∑t
i=1 φ(Si−1 → Si) ≤ γ · Δ0:t, where Si are the solutions produced by the

algorithm with S0 being the empty solution. We will sometimes make use of the
amortized migration factor inside a time interval t → · · · → t′, which we will
denote by γt:t′ . The notions of migration or migration factor are interchangeably
used by us and always describe the amortized migration factor.

In this work, we only consider maximization problems. Hence, every solution
St of an instance It has some profit profit(St) and opt(It) denotes the optimal
profit of any solution to It. An algorithm that achieves competitive ratio 1 − ε
and has migration f(1/ε) for some function f is called robust [29].

2.1 KNAPSACK-Type Problems

The Knapsack problem is one of the classical maximization problems. In its
most basic form, it considers a capacity C ∈ N and a finite set I of items, each of
which is assigned a weight wi ∈ N and a profit pi ∈ N. The objective is to find a
subset S ⊆ I, interpreted as a packing of the figurative knapsack, with maximum
profit profit(S) =

∑
i∈S pi while the total weight weight(S) =

∑
i∈S wi does

not exceed C. The special case in which all weights are equal to their respec-
tive profits is the SubsetSum problem. In this case, because weight and profit
coincide, we will simply call both the size of an item. A natural generalization
of Knapsack is to generalize capacity and weight vector to be d-dimensional
vectors, i.e., C,wi ∈ N

d for some d ∈ N. The problem of finding a maximum
profit packing fulfilling all d constraints is then known as the d-dimensional
Knapsack problem.

In the MultipleKnapsack problem, one is given an instance I consisting
of items with assigned weights and profits, just like in the Knapsack prob-
lem. However, in contrast, we are given not one but m different knapsacks
with respective capacities C(1), . . . , C(m). The goal is to find m disjoint subsets
S(1), . . . , S(m) of I, such that the total profit

∑m
j=1 profit(S(j)) is maximized

w.r.t. the capacity conditions

weight(S(j)) ≤ C(j), ∀j = 1, . . . , m.

Note that the Knapsack problem is a special case of the MultipleKnapsack

problem with m = 1. Another generalization of the standard Knapsack prob-
lem is 2DGeoKnapsack. This problem takes as input the width W ∈ N and
height H ∈ N of the knapsack and a set I of axis-aligned rectangles r ∈ I with
widths wr ∈ N, heights hr ∈ N, and profits pr ∈ N. An optimal solution to

Robust Online Algorithms for Dynamic Choosing Problems 41

this instance consists of a subset S ⊆ I of the rectangles together with a non-
overlapping axis-aligned packing of S inside the rectangular knapsack of size
W × H such that profit(S) is maximized.

2.2 Independent Set

Another classical optimization problem is the MaximumIndependentSet

problem. While it can be considered for different types of graphs, the most
basic variant is defined on a graph G = (V,E) with a set of nodes V and a set of
corresponding edges E. A subset S ⊆ V is called independent if for all u, v ∈ S it
holds that (u, v) /∈ E, i.e., u and v are not neighbours. A maximal independent
set is then an independent set that is no strict subset of another independent set.
MaximumIndependentSet is the problem of finding a maximum independent
set for a given graph G. In the literature, MaximumIndependentSet is, among
others, studied in planar, perfect, or claw-free graphs. For the online variant, we
usually assume that a node is added (or removed) to the instance in every time
step along with its adjacent edges.

Closely related to the well-studied MaximumIndependentSet problem is
the MaximumDisjointSet problem. For a given instance I that consists of
items with a geometrical shape, the goal is to find a largest disjoint set which
is a set of non-overlapping items. As we can convert an MDS instance to an
MIS instance, we sometimes use MIS to also denote this problem. MDS is often
considered limited to certain types of objects. These can be (unit-sized) disks,
rectangles, polygons or other objects, and any d-dimensional generalization of
them. We will also consider pseudo-disks, which are objects that pairwise inter-
sect at most twice in an instance.

The standard MIS and MDS problems are both special cases of the gen-
eralized MaxWeightIndependentSet or MaxWeightDisjointSet, respec-
tively, where each node i is assigned a profit value wi. The goal for these problems
is to find a maximum profit independent subset.

2.3 Our Results

Our main result is a framework that is strongly inspired by the approach of
Berndt et al. [2]. For minimization problems, they proposed a framework using
two known algorithms, one online and one offline algorithm, in order to solve a
given problem. This approach behaves a bit differently for maximization prob-
lems in terms of the competitive ratio. While a respective α-approximation
offline algorithm paired with a fitting β-competitive online algorithm yields an
α + O(1)βε competitive-algorithm for minimization problems, we show that for
maximization problems such fitting algorithms will result in a α · β-competitive
algorithm. The general analysis on this framework had to be moved to the full
version due to spacial constraints.

In this work we discuss a class of problems that is characterized by the com-
mon task of choosing a subset of objects with maximum profit fulfilling some

42 S. Berndt et al.

secondary constraints. Many important problems like the above presented vari-
ants of Knapsack or MaximumIndependentSet are covered by this class of
problems. We show that for these kind of problems, which we will call choosing
problems in the following, the framework can be simplified by completely remov-
ing the online algorithm.Using this simplified framework, we achieve (1 − ε)-
competitive algorithms for Knapsack even when generalized to arbitrary but
fixed dimension d. In the 2DGeoKnapsack where we additionally interpret
items as rectangles that need to be packed into a rectangular knapsack, we
achieve a (9

17 − ε)-competitive ratio. We also consider problem variants outside
of the class of choosing problems and show that the static cases of MaximumIn-

dependentSet for planar graphs with arriving edges and MultipleKnapsack

also admit robust approximation schemes. We complement these positive results
by also proving lower bounds for the necessary migration showing that some of
our results are indeed tight. We also give lower bounds for different variants,
including starting with an adversarially chosen solution and different migration
models. Due to page restrictions, parts of our detailed analysis and some proofs
had to be omitted. We refer the reader to the full version. However, a summary
of our results can be seen in the following table.

Problem Competitive Ratio MF Lower bound MF

Knapsack/SubsetSum (fixed d) (1 − ε) O(1/ε) Ω(1/ε)

2DGeoKnapsack (9/17 − ε) O(1/ε) Open1

MIS (unweighted planar) (1 − ε) O(1/ε) Open

MIS (unweighted unit-disk) (1 − ε) O(1/ε) Open

MIS (weighted disk-like objects2) (1 − ε) O(1/ε) Ω(1/ε)

MIS on pseudo-disks (1 − ε) O(1/ε) Open

MultipleKnapsack (1 − ε) O(1/ε) Ω(1/ε)

MIS (unw. planar, edge arrival) (1 − ε) O(1/ε) Open

1We prove a lower bound of Ω(1/ε) for comp. ratio (1 − ε).
2Result applies to all objects that the PTAS from Erlebach et al. [16] can
be used on, even in higher dimensions.

2.4 Related Work

Upper Bounds: The general idea of bounded migration was introduced by
Sanders, Sivadasan, and Skutella [29]. They developed an (1 + ε)-competitive
algorithm with non-amortized migration factor f(1/ε) for the Makespan-

Scheduling problem. Gálvez et al. [19] showed two (c + ε)-competitive algo-
rithms with migration factor (1/ε)O(1) for some constants c for the same prob-
lem. Skutella and Verschae [30] were able to transfer the (1 + ε)-competitive
algorithm also to the setting, where items depart. They also considered the
MachineCovering problem and obtained an (1 + ε)-competitive algorithm
with amortized migration factor f(1/ε). For BinPacking, Epstein and Levin [12]
presented a (1 + ε)-competitive algorithm with non-amortized migration factor

Robust Online Algorithms for Dynamic Choosing Problems 43

f(1/ε). Jansen and Klein [24] were able to obtain a non-amortized migration
factor of (1/ε)O(1) for this problem, and Berndt et al. [4] showed that such a
non-amortized migration factor is also possible for the scenario, where items
can depart. Considering amortized migration, Feldkord et al. [17] presented a
(1 + ε)-competitive algorithm with migration factor O(1/ε) that also works for
departing items. Epstein and Levin [13] investigated a multidimensional exten-
sion of BinPacking problem, called HypercubePacking where hypercubes
are packed geometrically. They obtained an (1 + ε)-competitive algorithm with
worst-case migration factor f(1/ε). For the preemptive variant of Makespan-

Scheduling, Epstein and Levin [14] obtained an exact online algorithm with
non-amortized migration factor 1 + 1/m. Berndt et al. [3] studied the BinCov-

ering problem with amortized migration factor and non-amortized migration
factor and obtained (1 + ε)-competitive algorithms and matching lower bounds,
even if items can depart. Jansen et al. [25] developed a (1 + ε)-competitive algo-
rithm with amortized migration factor f(1/ε) for the StripPacking problem.
Finally, Berndt et al. [2] developed a framework similar to this work, but only for
minimization problems, and showed that for a certain class of packing problems,
any c-approximate algorithm can be combined with a suitable online algorithm
to obtain a (c+ε)-competitive algorithm with amortized migration factor O(1/ε).

Lower Bounds: Skutella and Verschae [30] showed that a non-amortized migra-
tion factor of f(1/ε) is not possible for any function f for MachineCover-

ing. Berndt et al. showed that a non-amortized migration factor of Ω(1/ε) is
needed [4] for BinPacking, and Feldkord et al. [17] showed that this also holds
for the amortized migration factor. Epstein and Levin [14] showed that exact
algorithms for the makespan minimization problem on uniform machines and for
identical machines in the restricted assignment setting have worst-case migra-
tion factor at least Ω(m).

Dynamic Algorithms: In the semi-online setting, there are several metrics that
one tries to optimize. First of all, there is the competitive ratio measuring the
quality of the solution. Second, in order to prevent that the online problem simply
degrades to the offline problem, one needs to bound some resource. In the setting
that we consider, we bound the amount of repacking possible, as such a repacking
often comes with a high cost in practical applications. In an alternate approach,
often called dynamic algorithms, we restrict the running time needed to update a
solution, ideally to a sub-linear function (see e. g., the surveys [7,22]). Note that
the amount of repacking used here can be arbitrarily high (using a suitable repre-
sentation of the current solution). This setting has been also studied recently for
Knapsack variants [6] and MaximumIndependentSet variants [23]. There are
also works aiming to combine both of the before mentioned approaches [21,27].

44 S. Berndt et al.

3 Upper Bounds for Choosing Problems

3.1 Framework for Choosing Problems

In this section, we will consider the aforementioned class of choosing problems. In
general, a choosing problem is defined by a set of objects with some properties,
and the objective is to select a subset of these objects with maximum profit,
while potentially respecting some secondary constraints.

Definition 1. Consider a problem Π where every instance I ∈ Π is given by a
set of objects, where each object i ∈ I is assigned a fixed profit value pi, and a
set of feasible solutions sol(I). We call Π a choosing problem if sol(I) ⊆ P(I),
and the objective of some instance I ∈ Π is to find a subset S ∈ sol(I) while
maximizing the total profit profit(S) =

∑
i∈S pi. We further make the following

two requirements for choosing problems that we will discuss in this paper:

(i) For any feasible solution S ∈ sol(I), we have that any subset S′ ⊆ S is also
a feasible solution, i. e. S′ ∈ sol(I).

(ii) For any solution S ∈ sol(It) for an instance It with respective follow-up
instance It+1 = It�{it+1}, the solution S′ := S\{it+1} stays feasible for
It+1, i. e. S′ ∈ sol(It+1).

For choosing problems, the profits of objects are their migration potential and
costs; Δ(It) = pi, where i is the object added or removed at time t. Given two
solutions S1, S2 ⊆ I, we further have that φ(S1 → S2) = profit(S1�S2).

While we restrict the range of problems with these properties, it is neces-
sary to do so since an adversary can enforce an unreasonably high migration
factor for problems we excluded this way. In particular the first property guar-
antees that there is no low profit item with low migration potential added by
the adversary which would allow for a completely new solution with high profit
that we would need to switch to. The second property serves a similar purpose,
as it prevents the adversary from adding any arbitrary items making our current
solution infeasible.

We could approach choosing problems like Berndt et al. [2] and use a greedy
online algorithm in conjunction with the best known offline algorithm. While
this would also create good results, we want to show that an online algorithm is
not even necessary. We propose instead the algorithm that computes an offline
solution S with profit V and then waits until the total profit of items being added
or removed from the instance exceeds εV . At this point we simply replace S with
a new offline solution for the current instance. This algorithm already achieves
a competitive ratio close to the approximation ratio of the offline algorithm.

Theorem 1. Let Aoff be an offline algorithm with an approximation ratio of α.
Then the resulting framework using Aoff is a (1 − ε) · α-competitive algorithm
requiring a migration factor of O(1/(ε · α)).

Robust Online Algorithms for Dynamic Choosing Problems 45

Proof. In the following, we refer to time steps where the offline algorithm is
applied as repacking times. Note that for the start of any online instance and
the first arriving items, we will just add the first eligible item with the offline
algorithm when it arrives. This results in the first repacking time. Consider now
any repacking time t with generated solution St, and let t′ be the first point of
time where Δt:t′ > εprofit(St). First we will show that the migration factor of
the applied framework is small. We do so by proving that the migration potential
between two repacking times accommodates for the repacking at the later repack-
ing time. Denote with At:t′ the total profit of items that arrived up until time t′.

We now have that

φ(St → St′)
Δt:t′

≤ opt(It) + opt(It′)
Δt:t′

≤ opt(It) + opt(It) + At:t′

Δt:t′

≤ opt(It) + opt(It) + Δt:t′

Δt:t′
≤ 2 · opt(It)

Δt:t′
+ 1 ≤ 2 · profit(St)

αΔt:t′
+ 1

<
2 · profit(St)
αεprofit(St)

+ 1 ∈ O(1/(ε · α)).

Now it is left to show that up until time t′ −1 we have maintained a competitive
ratio of (1 − ε)α. Denote with At:t′−1 and Rt:t′−1 the total profit of items that
arrived or departed up until time t′ − 1, and note that by choice of t′, we have
that At:t′−1 + Rt:t′−1 ≤ εprofit(St). We now have

profit(St′−1) ≥ profit(St) − Rt:t′−1

= profit(St) + At:t′−1 − At:t′−1 − Rt:t′−1 ≥ profit(St) + At:t′−1 − εprofit(St)

= (1 − ε)profit(St) + At:t′−1 ≥ (1 − ε)αopt(St) + At:t′−1

≥ (1 − ε)α(opt(St) + At:t′−1) ≥ (1 − ε)α(opt(St′−1)).

Hence, our algorithm obtains a competitive ratio of (1 − ε)α. �	

3.2 Resulting Upper Bounds

The framework introduced can be applied to any choosing problem with some
existing offline algorithm. We observe that by using Theorem1 for problems that
admit a PTAS, we get a respective robust PTAS, and for other problems, we
achieve the ratio of any offline algorithm with small additional error. We note
without proof that all problems mentioned in the following theorem are choos-
ing problems as solutions are made up of sets of items or nodes and they stay
feasible under the required circumstances. For a more detailed recap on these
problems we refer to the full version.

Theorem 2. For the following problems there exists an online algorithm with
competitive ratio 1 − ε and migration factor O(1/ε).

– SubsetSum and Knapsack using the FPTAS by Jin [26]
– d-dimensional Knapsack using the PTAS from Caprara et al. [8]

46 S. Berndt et al.

– MaximumIndependentSet on unweighted planar graphs by using the PTAS
by Baker [1]

– MaximumIndependentSet on (weighted) d-dimensional disk-like objects
with fixed d using the PTAS by Erlebach et al. [16]

– MaximumIndependentSet on pseudo-disks using a PTAS by Chan and
Har-Peled [9]

Additionally, for the 2DGeoKnapsack problem, there exists an online algo-
rithm with a competitive ratio 9/17− ε and migration factor O(1/ε) by using the
9/17 approximation algorithm from Gálvez et al. [18]

Proof. We prove that a (1 − ε) approximation yields the desired result. The
statement for 2DGeoKnapsack follows similarly. Note that using a (1 − ε)
approximation with Theorem1, we achieve an online algorithm with a competi-
tive ratio of (1 − ε)2 = 1 − 2ε + ε2. By applying the framework with ε′ = 1/2ε,
we achieve the desired PTAS quality. The required migration of our framework
is bounded by O(1

ε(1−ε)) = O(1/ε). �	
We also show how to apply our framework in a setting outside of choosing

problems. We consider two problems still similar to the given context of Knap-

sack and MaximumIndependentSet.

Theorem 3. The static cases of MaximumIndependentSet on weighted pla-
nar graphs when adding edges and MultipleKnapsack both admit a robust
PTAS with competitive ratio 1 − ε and migration factor O(1/ε).

3.3 Lower Bounds on Migration

We now want to complement these positive results by showing that the amount of
migration these algorithms use, is also required. In the dynamic setting of online
problems the adversary is quite powerful because removing objects only leaves
the option to repack our solution while the range of possibilities has become
smaller. This scenario is especially difficult when our current solution becomes
inefficient and we might have to change the whole leftover solution in order to
meet our competitive ratio. We want to create a scenario where the adversary
forces our algorithm to switch between two solutions. For that we want to use
two instances that we call alternating instances:

Definition 2. Consider some dynamic online choosing problem Πon, two
instances I1 and I2, and some desired competitive ratio β < 1. We call the
instances I1 and I2 alternating instances when there exists I ′

1 ⊂ I1, such that
the following properties hold:

– The solutions S1 = I1 and S2 = I2 are feasible and hence also S′
1 = I ′

1 is
feasible, but any solution S with S ∩ I1 �= ∅ and S ∩ I2 �= ∅ is infeasible.

– We have that profit(I ′
1) < βprofit(I2) < β2

profit(I1).

We will use these alternating instance and show how to gain lower bounds
of migration in the following lemma.

Robust Online Algorithms for Dynamic Choosing Problems 47

Lemma 1. Let Πon be a dynamic online choosing problem and consider two
alternating instances I1, I2 for a desired competitive ratio β < 1 with I ′

1 ⊆
I2 fulfilling the requirements of Definition 2. When we additionally have that
βprofit(I2) ∈ Ω(γ) for some desired migration factor γ and profit(I1) −
profit(I ′

1) ≤ c for some c, then any β-competitive algorithm requires a migra-
tion factor of Ω(γ

2(c+1)).

Proof. Consider some β-competitive algorithm A and the following order of
events: First add all items from I1 and A will generate some approximate solu-
tion S1 for I1. Now, add also all items from I2 and note that A will not change
anything, since we have by definition that profit(I2) < βprofit(I1) and adding
items from I2 would make S1 infeasible.

We now proceed to remove and add again all items of I1\I ′
1 and repeat this

N times for some large N ∈ N. By removing all these items the previous solution
S1 would consequently be reduced to a solution S′

1 ⊆ I ′
1, and as profit(I ′

1) <
βprofit(I2), our algorithm needs to change to a solution S2 ⊆ I2. When the
items are added again, the algorithm switches from S2 to a solution of I1.

Let us now look at the necessary migration and the migration potential.
The total migration potential we received is given through the arrival of all
items and the repeated removal and re-adding of items and altogether we have
migration potential of profit(I1)+profit(I2)+N(profit(I1)−profit(I ′

1)) =
profit(I1)+profit(I2)+2Nc. The necessary migration results from the repack-
ing of the solutions of I ′

1 and I2. We have to note however, that the necessary
migration for the solutions of I ′

1 might be small or even 0, when the approximate
solution S1 for I1 does not use any items of I ′

1. We know however that for I2

we at least exchange a full approximate solution which yields a total necessary
migration of at least Nβprofit(I2). For the migration factor, we now have that:

Nβprofit(I2)
profit(I1) + profit(I2) + 2Nc

≥ βprofit(I2)
2(c + 1)

when N is chosen large enough. �	
Using this approach we are actually able to prove matching lower bounds for

the central choosing problems. For the proofs and an even more detailed analysis
on lower bounds of migration we refer the reader to the full version.

Theorem 4. For the online SubsetSum problem and (weighted) MaximumIn-

dependentSet problem, there is an instance such that the migration needed for
a solution with value (1 − ε)opt is Ω(1/ε).

4 Conclusion

In this paper, we present a general framework to transfer approximation
algorithms for many maximization problems to the semi-online setting with
bounded migration. Furthermore, we show that the algorithms constructed
this way achieve optimal migration. We expect our framework to be also

48 S. Berndt et al.

applicable to other problems such as 2DGeoKnapsack variants with more
complex objects [20,28], 3DGeoKnapsack [11], DynamicMapLabeling [5],
ThroughputScheduling [10], or MaxEdgeDisjointPaths [15].

References

1. Baker, B.S.: Approximation algorithms for NP-complete problems on planar
graphs. In: 24th Annual Symposium on Foundations of Computer Science, pp.
265–273. IEEE (1983)

2. Berndt, S., Dreismann, V., Grage, K., Jansen, K., Knof, I.: Robust online algo-
rithms for certain dynamic packing problems. In: Bampis, E., Megow, N. (eds.)
WAOA 2019. LNCS, vol. 11926, pp. 43–59. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-39479-0 4

3. Berndt, S., Epstein, L., Jansen, K., Levin, A., Maack, M., Rohwedder, L.: Online
bin covering with limited migration. In: Bender, M.A., Svensson, O., Herman,
G. (eds.) 27th Annual European Symposium on Algorithms, ESA 2019. LIPIcs,
Munich/Garching, Germany, 9–11 September 2019, vol. 144, pp. 18:1–18:14.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)

4. Berndt, S., Jansen, K., Klein, K.-M.: Fully dynamic bin packing revisited. Math.
Program., 109–155 (2018). https://doi.org/10.1007/s10107-018-1325-x

5. Bhore, S., Li, G., Nöllenburg, M.: An algorithmic study of fully dynamic inde-
pendent sets for map labeling. In: ESA. LIPIcs, vol. 173, pp. 19:1–19:24. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2020)

6. Böhm, M., et al.: Fully dynamic algorithms for knapsack problems with polyloga-
rithmic update time. CoRR arXiv:2007.08415 (2020)

7. Boria, N., Paschos, V.T.: A survey on combinatorial optimization in dynamic envi-
ronments. RAIRO Oper. Res. 45(3), 241–294 (2011)

8. Caprara, A., Kellerer, H., Pferschy, U., Pisinger, D.: Approximation algorithms
for knapsack problems with cardinality constraints. Eur. J. Oper. Res. 123(2),
333–345 (2000)

9. Chan, T.M., Har-Peled, S.: Approximation algorithms for maximum independent
set of pseudo-disks. In: Proceedings of the 25th Annual Symposium on Computa-
tional Geometry, SCG 2009, pp. 333–340. Association for Computing Machinery
(2009)

10. Cieliebak, M., Erlebach, T., Hennecke, F., Weber, B., Widmayer, P.: Scheduling
with release times and deadlines on a minimum number of machines. In: Levy,
J.-J., Mayr, E.W., Mitchell, J.C. (eds.) TCS 2004. IIFIP, vol. 155, pp. 209–222.
Springer, Boston, MA (2004). https://doi.org/10.1007/1-4020-8141-3 18

11. Diedrich, F., Harren, R., Jansen, K., Thöle, R., Thomas, H.: Approximation algo-
rithms for 3D orthogonal knapsack. J. Comput. Sci. Technol. 23(5), 749–762 (2008)

12. Epstein, L., Levin, A.: A robust APTAS for the classical bin packing problem.
Math. Program. 119(1), 33–49 (2009)

13. Epstein, L., Levin, A.: Robust approximation schemes for cube packing. SIAM J.
Optim. 23(2), 1310–1343 (2013)

14. Epstein, L., Levin, A.: Robust algorithms for preemptive scheduling. Algorithmica
69(1), 26–57 (2014)

15. Erlebach, T., Jansen, K.: The maximum edge-disjoint paths problem in bidirected
trees. SIAM J. Discret. Math. 14(3), 326–355 (2001)

https://doi.org/10.1007/978-3-030-39479-0_4
https://doi.org/10.1007/978-3-030-39479-0_4
https://doi.org/10.1007/s10107-018-1325-x
http://arxiv.org/abs/2007.08415
https://doi.org/10.1007/1-4020-8141-3_18

Robust Online Algorithms for Dynamic Choosing Problems 49

16. Erlebach, T., Jansen, K., Seidel, E.: Polynomial-time approximation schemes for
geometric intersection graphs. SIAM J. Comput. 34(6), 1302–1323 (2005)

17. Feldkord, B., et al.: Fully-dynamic bin packing with little repacking. In: Proceed-
ings of the ICALP, pp. 51:1–51:24 (2018)

18. Galvez, W., Grandoni, F., Heydrich, S., Ingala, S., Khan, A., Wiese, A.: Approxi-
mating geometric knapsack via l-packings. In: 2017 IEEE 58th Annual Symposium
on Foundations of Computer Science (FOCS), Los Alamitos, CA, USA, pp. 260–
271. IEEE Computer Society (October 2017)

19. Gálvez, W., Soto, J.A., Verschae, J.: Symmetry exploitation for online machine cov-
ering with bounded migration. In: Proceedings of the ESA, pp. 32:1–32:14 (2018)

20. Grandoni, F., Kratsch, S., Wiese, A.: Parameterized approximation schemes for
independent set of rectangles and geometric knapsack. In: ESA. LIPIcs, vol. 144,
pp. 53:1–53:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)

21. Gupta, A., Krishnaswamy, R., Kumar, A., Panigrahi, D.: Online and dynamic
algorithms for set cover. In: STOC, pp. 537–550. ACM (2017)

22. Henzinger, M.: The state of the art in dynamic graph algorithms. In: Tjoa, A.M.,
Bellatreche, L., Biffl, S., van Leeuwen, J., Wiedermann, J. (eds.) SOFSEM 2018.
LNCS, vol. 10706, pp. 40–44. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-73117-9 3

23. Henzinger, M., Neumann, S., Wiese, A.: Dynamic approximate maximum indepen-
dent set of intervals, hypercubes and hyperrectangles. In: Symposium on Compu-
tational Geometry. LIPIcs, vol. 164, pp. 51:1–51:14. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2020)

24. Jansen, K., Klein, K.: A robust AFPTAS for online bin packing with polynomial
migration. In: Proceedings of the ICALP, pp. 589–600 (2013)

25. Jansen, K., Klein, K., Kosche, M., Ladewig, L.: Online strip packing with polyno-
mial migration. In: Proceedings of the APPROX-RANDOM, pp. 13:1–13:18 (2017)

26. Jin, C.: An improved FPTAS for 0–1 knapsack. In: Baier, C., Chatzigiannakis, I.,
Flocchini, P., Leonardi, S. (eds.) 46th International Colloquium on Automata,
Languages, and Programming, ICALP 2019. Leibniz International Proceedings
in Informatics (LIPIcs), Dagstuhl, Germany, vol. 132, pp. 76:1–76:14. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik (2019)

27. Lacki, J., Ocwieja, J., Pilipczuk, M., Sankowski, P., Zych, A.: The power of dynamic
distance oracles: efficient dynamic algorithms for the Steiner tree. In: STOC, pp.
11–20. ACM (2015)

28. Merino, A.I., Wiese, A.: On the two-dimensional knapsack problem for convex
polygons. In: ICALP. LIPIcs, vol. 168, pp. 84:1–84:16. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2020)

29. Sanders, P., Sivadasan, N., Skutella, M.: Online scheduling with bounded migra-
tion. Math. Oper. Res. 34(2), 481–498 (2009)

30. Skutella, M., Verschae, J.: Robust polynomial-time approximation schemes for par-
allel machine scheduling with job arrivals and departures. Math. Oper. Res. 41(3),
991–1021 (2016)

https://doi.org/10.1007/978-3-319-73117-9_3
https://doi.org/10.1007/978-3-319-73117-9_3

On the Degrees of Constructively
Immune Sets

Samuel D. Birns and Bjørn Kjos-Hanssen(B)

University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA
{sbirns,bjoern.kjos-hanssen}@hawaii.edu
http://math.hawaii.edu/wordpress/bjoern/

Abstract. Xiang Li (1983) introduced what are now called construc-
tively immune sets as an effective version of immunity. Such have been
studied in relation to randomness and minimal indices, and we add
another application area: numberings of the rationals. We also inves-
tigate the Turing degrees of constructively immune sets and the closely
related Σ0

1 -dense sets of Ferbus-Zanda and Grigorieff (2008).

Keywords: Constructively immune · Turing degrees · Theory of
numberings

1 Introduction

Effectively immune sets, introduced by Smullyan in 1964 [12], are well-known
in computability as one of the incarnations of diagonal non-computability, first
made famous by Arslanov’s completeness criterion. A set A ⊆ ω is effectively
immune if there is a computable function h such that |We| ≤ h(e) whenever
We ⊆ A, where {We}e∈ω is a standard enumeration of the computably enumer-
able (c.e.) sets.

There is a more obvious effectivization of immunity (the lack of infinite com-
putable subsets), however: constructive immunity, introduced by Xiang Li [8]
who actually (and inconveniently) called it “effective immunity”.

Definition 1. A set A is constructively immune if there exists a partial recur-
sive ψ such that for all x, if Wx is infinite then ψ(x) ↓ and ψ(x) ∈ Wx\A.

The Turing degrees of constructively immune sets and the related Σ0
1 -dense

sets have not been considered before in the literature, except that Xiang Li
implicitly showed that they include all c.e. degrees. We prove in Sect. 3 that the
Turing degrees of Σ0

1 -dense sets include all non-Δ0
2 degrees, all high degrees, and

all c.e. degrees. We do not know whether they include all Turing degrees.
The history of the study of constructive immunity seems to be easily sum-

marized. After Xiang Li’s 1983 paper, Odifreddi’s 1989 textbook [9] included

This work was partially supported by a grant from the Simons Foundation (#704836
to Bjørn Kjos-Hanssen).

c© Springer Nature Switzerland AG 2021
L. De Mol et al. (Eds.): CiE 2021, LNCS 12813, pp. 50–59, 2021.
https://doi.org/10.1007/978-3-030-80049-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80049-9_5&domain=pdf
http://orcid.org/0000-0002-1825-0097
https://doi.org/10.1007/978-3-030-80049-9_5

On the Degrees of Constructively Immune Sets 51

Li’s results as exercises, and Calude’s 1994 monograph [2] showed that the set
RANDC

t = {x : C(x) ≥ |x| − t} is constructively immune, where C is Kol-
mogorov complexity. Schafer 1997 [11] further developed an example involving
minimal indices, and Brattka 2002 [1] gave one example in a more general set-
ting than Cantor space. Finally in 2008 Ferbus-Zanda and Grigorieff proved an
equivalence with constructive Σ0

1 -density.

Definition 2 (Ferbus-Zanda and Grigorieff [6]). A set A ⊆ ω is Σ0
1 -dense

if for every infinite c.e. set C, there exists an infinite c.e. set D such that D ⊆ C
and D ⊆ A.

If there is a computable function f : ω → ω such that for each We, Wf(e) ⊆
A∩We, and Wf(e) is infinite if We is infinite, then A is constructively Σ0

1 -dense.

We should note that while the various flavors of immune sets are always
infinite by definition, Ferbus-Zanda and Grigorieff do not require Σ0

1 -dense sets
to be co-infinite.

The Σ0
1 -dense sets form a natural Π0

4 class in 2ω that coincides with the
simple sets on Δ0

2 but is prevalent (in fact exists in every Turing degree) outside
of Δ0

2 by Theorem 8 below.

2 Σ0
1-density

To show that there exists a set that is Σ0
1 -dense, but not constructively so, we use

Mathias forcing. A detailed treatment of the computability theory of Mathias
forcing can be found in [3].

Definition 3. A Mathias condition is a pair (d,E) where d,E ⊆ ω, d is a finite
set, E is an infinite computable set, and max(d) < min(E). A condition (d2, E2)
extends a condition (d1, E1) if

– d1 = d2 ∩ (max d1 + 1), i.e., d1 is an initial segment of d2,
– E2 is a subset of E1, and
– d2 is contained in d1 ∪ E1.

A set A is Mathias generic if it is generic for Mathias forcing.

Theorem 1. If A is Mathias generic, then

1. ω\A is Σ0
1 -dense.

2. ω\A is not constructively Σ0
1 -dense.

Proof. 1. Let We be an infinite c.e. set. Let (d,E) be a Mathias condition.
Case (i): E ∩ We is finite. Then for any Mathias generic A extending the

condition (d,E), ω\A contains an infinite subset of We, in fact a set of the form
We\F where F is finite.

Case (ii): E ∩ We is infinite. Then E ∩ We is c.e., hence has an infinite
computable subset D. Write D = D1 ∪ D2 where D1,D2 are disjoint infinite
c.e. sets. The condition (d,D1) extends (d,E) and forces a Mathias generic A

52 S. D. Birns and B. Kjos-Hanssen

extending it to be such that ω\A has an infinite subset in common with We,
namely D2.

We have shown that for each infinite c.e. set We, each Mathias condition has
an extension forcing the statement that a Matias generic A satisfies

ω\A has an infinite c.e. subset in common with We. (*)

Thus by standard forcing theory it follows that each Mathias generic satisfies
(∗).
2. Let f be a computable function. It suffices to show that for each Mathias
generic A, there exists an i such that Wi is infinite and Wf(i) is either finite, or
not a subset of Wi, or not a subset of A. For this, as in (1) above it suffices to
show that for each condition (d,D) there exists a condition (d′, E′) extending
(d,E) and an i such that Wi is infinite and Wf(i) is either finite, or not a subset
of Wi, or not a subset of A for any A extending (d′,D′).

Let (d,E) be a Mathias condition and write D = Wi. If Wf(i) is finite or
not a subset of Wi then we are done. Otherwise there exists a condition (d′, E′)
extending (d,E) such that E′ ∩ Wf(i) is nonempty. This can be done by a finite
extension (making only finitely many changes to the condition).

Theorem 2 ([6, Proposition 3.3]). A set Z ⊆ ω is constructively immune if
and only if it is infinite and ω\Z is constructively Σ0

1 -dense.

Since Ferbus-Zanda and Grigorieff’s paper has not gone through peer review, we
provide the proof.

Proof. ⇐: Let the function g witness that ω\Z is constructively Σ0
1 -dense. Define

a partial recursive function ϕ by stipulating that ϕ(i) is the first number in the
enumeration of Wg(i), if any.

⇒: Define a partial recursive function μ(i, n) by

– μ(i, 0) = ϕ(i);
– μ(i, n + 1) = ϕ(in), where in is such that Win = Wi\{μ(i,m) : m ≤ n}.

Let g be total recursive so that Wg(i) = {μ(i,m) : m ∈ ω}. If Wi is infinite then
all μ(i,m)’s are defined and distinct and belong to Wi ∩ Z. Thus, Wg(i) is an
infinite subset of Wi ∩ Z.

Recall that a c.e. set is simple if it is co-immune.

Theorem 3 (Xiang Li [8]). Let A be a set and let {φx}x∈ω be a standard
enumeration of the partial computable functions.

1. If A is constructively immune then A is immune and A is not immune.
2. If A is simple then A is constructively immune.
3. {x : (∀y)(φx = φy → x ≤ y)} is constructively immune.

On the Degrees of Constructively Immune Sets 53

2.1 Numberings

A numbering of a countable set A is an onto function ν : ω → A. The theory of
numberings has a long history [5]. Numberings of the set of rational numbers Q

provide an application area for Σ0
1 -density. Rosenstein [10, Sect. 16.2: Looking

at Q effectively] discusses computable dense subsets of Q. Here we are mainly
concerned with noncomputable sets.

Proposition 1. Let A ⊆ ω. The following are equivalent:

1. ν(A) is dense for every injective computable numbering ν of Q;
2. A is co-immune.

Proof. (1) =⇒ (2): We prove the contrapositive. Suppose A contains an infinite
c.e. set We. Consider a computable numbering ν that maps We onto [0, 1] ∩ Q.
Then ν(A) is disjoint from [0, 1] and hence not dense.

(2) =⇒ (1): We again prove the contrapositive. Assume that ν(A) is not
dense for a certain computable ν. Let {xn : n ∈ ω} be a converging infinite
sequence of rationals disjoint from ν(A). Then {ν−1(xn) : n ∈ ω} is an infinite
c.e. subset of A.

Definition 4. A subset A of Q is co-nowhere dense if for each interval [a, b] ⊆
Q, [a′, b′] ⊆ A for some [a′, b′] ⊆ [a, b].

Proposition 2. A set is co-nowhere dense under every numbering iff it is co-
finite.

Proof. Only the forward direction needs to be proven; the other direction is
immediate. Let A be a co-infinite set, and define ν by letting ν map ω\A onto
[0, 1]. Then A is not co-nowhere dense.

Proposition 3. A is infinite and non-immune iff there exists a computable
numbering with respect to which A is co-nowhere dense.

Proof. Let A be infinite and not immune. Thus, there is an infinite We ⊆ A for
some e. Let ν be a computable numbering that maps We onto Q\ω. Then A is
co-nowhere dense under ν.

Conversely, let A be co-nowhere dense under some computable numbering ν.
Then ν−1([a, b]) is an infinite c.e. subset of A for some suitable a, b.

A set D ⊆ Q is effectively dense if there is a computable function f(a, b)
giving an element of D ∩ (a, b) for a < b ∈ Q.

Proposition 4. A set A is constructively Σ0
1 -dense iff it is effectively dense for

all computable numberings.

Proof. By Theorem 2, A is constructively Σ0
1 -dense iff it is infinite and ω\A is

constructively immune. Constructive immunity of ω\A implies effective density
of A since the witnessing function for constructive immunity can be used to
witness effective density. For the converse we exploit the assumption that we get
to choose a suitable ν.

54 S. D. Birns and B. Kjos-Hanssen

Let A and B be sets, with B computable. We say that A is co-immune within
B if there is no infinite computable subset of Ac ∩ B. The following diagram
includes some claims not proved in the paper, whose proof (or disproof) may
be considered enjoyable exercises. The quantifiers ∃ν, ∀ν range over computable
numberings of Q.

co-finite (Proposition 2)
(eff.) co-nowhere dense ∀ν

��

constructively
Σ0

1 -dense (Proposition 4)
constr. co-immune

eff. dense ∀ν
strict: Theorem 1

��
Σ0

1 -dense

strict: ω⊕∅
������

����
����

����
��

strict: any bi-immune

��
infinite & non-immune (Proposition 3)

(eff.) co-nowhere dense ∃ν
eff. dense ∃ν

 ���
����

����
����

co-immune (Proposition 1)
dense ∀ν

��

dense ∃ν
co-immune within

some infinite computable set
��

3 Prevalence of Σ0
1-density

In this section we investigate the existence of Σ0
1 -density in the Turing degrees

at large.

3.1 Closure Properties and Σ0
1-density

Proposition 5. 1. The intersection of two Σ0
1 -dense sets is Σ0

1 -dense.
2. The intersection of two constructively Σ0

1 -dense sets is constructively Σ0
1 -

dense.

Proof. Let A and B be Σ0
1 -dense sets. Let We be an infinite c.e. set. Since A is

Σ0
1 -dense, there exists an infinite c.e. set Wd ⊆ A ∩ We. Since B is Σ0

1 -dense,
there exists an infinite c.e. set Wa ⊆ B∩Wd. Then Wa ⊆ (A∩B)∩We, as desired.
This proves (1). To prove (2), let f and g witness the effective Σ0

1 -density of A
and B, respectively. Given We, we have Wf(e) ⊆ A ∩ We and then

Wg(f(e)) ⊆ B ∩ Wf(e) ⊆ A ∩ B ∩ We.

In other words, g ◦ f witnesses the effective Σ0
1 -density of A ∩ B.

On the Degrees of Constructively Immune Sets 55

Corollary 1. Bi-Σ0
1 -dense sets do not exist.

Proof. If A and Ac are both Σ0
1 -dense then by Proposition 5, A∩Ac is Σ0

1 -dense,
which is a contradiction.

For sets A and B, A ⊆∗ B means that A\B is a finite set.

Proposition 6. 1. If A is Σ0
1 -dense and A ⊆∗ B, then B is Σ0

1 -dense.
2. If A is constructively Σ0

1 -dense and A ⊆∗ B, then B is constructively Σ0
1 -

dense.

Proof. Let We be an infinite c.e. set. Since A is Σ0
1 -dense, there exists an infinite

c.e. set Wd such that Wd ⊆ A ∩ We. Let Wc = Wd\(A\B). Since A\B is finite,
Wc is an infinite c.e. set. Since Wd ⊆ A, we have Wc = Wd ∩ (B ∪Ac) = Wd ∩B.
Then, since Wd ⊆ We, we have Wc ⊆ B ∩ We, and we conclude that B is
Σ0

1 -dense. This proves (1). To prove (2), if f witnesses that A is constructively
Σ0

1 -dense then a function g with Wg(e) = Wf(e)\(A \ B) witnesses that B is
constructively Σ0

1 -dense.

Proposition 7. Let B be a co-finite set. Then B is constructively Σ0
1 -dense.

Proof. The set ω is constructively Σ0
1 -dense as witnessed by the identity function

f(e) = e. Thus by Item 2 of Proposition 6, B is as well.

As usual we write A ⊕ B = {2x | x ∈ A} ∪ {2x + 1 | x ∈ B}.

Proposition 8. 1. If X0 and X1 are Σ0
1 -dense sets then so is X0 ⊕ X1.

2. If X0 and X1 are constructively Σ0
1 -dense sets then so is X0 ⊕ X1.

Proof. Let We = Wc0 ⊕ Wc1 be an infinite c.e. set. For i = 0, 1, since Xi is
Σ0

1 -dense there exists Wdi
⊆ Xi ∩ Wci such that Wdi

is infinite if Wci is infinite.
Then Wd0 ⊕ Wd1 is an infinite c.e. subset of (X0 ⊕ X1) ∩ We.

This proves (1). To prove (2), if di are now functions witnessing the effective
Σ0

1 -density of Xi then Wdi(ci) ⊆ Xi ∩ Wci , and Wd0(c0) ⊕ Wd1(c1) is an infinite
c.e. subset of (X0 ⊕ X1) ∩ We. Thus a function g satisfying

Wg(e) = Wd0(c0) ⊕ Wd1(c1),

where We = Wc0 ⊕ Wc1 , witnesses the effective Σ0
1 -density of X0 ⊕ X1.

Theorem 4. There is no Σ0
1 -dense set A such that all Σ0

1 -dense sets B satisfy
A ⊆∗ B.

Proof. Suppose there is such a set A. Let Wd be an infinite computable subset
of A. Let G be a Mathias generic with G∩W c

d = ∅, i.e., G ⊆ Wd. Then B := Gc

is Σ0
1 -dense by Theorem 1. Thus A ∩ Gc is also Σ0

1 -dense by Proposition 5. And
G ⊆ Wd ⊆ A and by assumption A ⊆∗ Gc so we get G ⊆∗ Gc, a contradiction.

These results show that the Σ0
1 -dense sets under ⊆∗ form a non-principal

filter whose Turing degrees form a join semi-lattice.

56 S. D. Birns and B. Kjos-Hanssen

Theorem 5. Let A be a c.e. set. The following are equivalent:

1. A is co-infinite and constructively Σ0
1 -dense.

2. A is co-infinite and Σ0
1 -dense.

3. A is co-immune.

Proof. 1 =⇒ 2 =⇒ 3 is immediate from the definitions, and 3 =⇒ 1 is
immediate from Theorem 2 and Theorem 3.

Theorem 6. Every c.e. Turing degree contains a constructively Σ0
1 -dense set.

Proof. Let a be a c.e. degree. If a > 0 then a contains a simple set A, see, e.g.,
[13], so Theorem 5 finishes this case. The degree 0 contains all the co-finite sets,
which are constructively Σ0

1 -dense by Proposition 7.

3.2 Cofinality in the Turing Degrees of Constructive Σ0
1-density

Definition 5. For k ≥ 0, let Ik be intervals of length k+2 such that min(I0) = 0
and max(Ik) + 1 = min(Ik+1).

Let Ve =
⋃

s∈ω Ve,s be a subset of We defined by the condition that x ∈ Ik

enters Ve at a stage s where x enters We if this makes |Ve,s ∩ Ik| ≤ 1, and for
all j > k, Vj,s ∩ Ik = ∅.
Lemma 1. There exists a c.e., co-infinite, constructively Σ0

1 -dense, and effec-
tively co-immune set.

Proof. Let A =
⋃

e∈ω Ve. Ve is c.e. by construction, and if We is infinite, Ve is also
infinite. So Ve = Wf(e) is the set witnessing that A is constructively Σ0

1 -dense.
Moreover A is coinfinite since |A ∩ Ik| ≤ k + 1 < k + 2 = |Ik| gives Ik �⊆ A

for each k and

|ω\A| =

∣
∣
∣
∣
∣

(
⋃

k∈ω

Ik

)

\A

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

⋃

k∈ω

(Ik\A)

∣
∣
∣
∣
∣
=

∑

k∈ω

|Ik\A| ≥
∑

k∈ω

1 = ∞.

The set A is effectively co-immune because if We is disjoint from A then since
as soon as a number in Ik for k ≥ e enters We then that number is put into A,
We ⊆ ⋃

k<e Ik so |We| ≤ ∑
k<e(k + 2) =

∑
k≤e+1 k = (e+1)(e+2)

2 .

Theorem 7. For each set R there exists a constructively Σ0
1 -dense, effectively

co-immune set S with R ≤T S.

Proof. Let R be any set, which we may assume is co-infinite. Let A be as in the
proof of Lemma 1. Let S ⊇ A be defined by

S = A ∪
⋃

k∈R

Ik.

Since A ⊆ S and S is co-infinite, S is constructively Σ0
1 -dense and effectively

co-immune. Since k ∈ R ⇐⇒ Ik ⊆ S, we have R ≤T S.

On the Degrees of Constructively Immune Sets 57

3.3 Non-Δ0
2 Degrees

Lemma 2. Suppose that T ⊆ 2<ω is a tree with only one infinite path. Then for
each length n there exists a length m > n such that exactly one string of length
n has an extension of length m in T .

Proof. Suppose not, i.e., there is a length n such that for all m > n there are
at least two strings σm, τm of length n with extensions of length m in T . By
the pigeonhole principle there is a pair (σ, τ) that is a choice of (σm, τm) for
infinitely many m. Then by compactness both σ and τ must be extendible to
infinite paths of T .

Lemma 3. Suppose that T ⊆ 2<ω is a tree with only one infinite path A, and
that T is a c.e. set of strings. Then A is Δ0

2.

Proof. By Lemma 2, for each length n there exists a length m > n such that
exactly one string of length n has an extension of length m in T . Using 0′ as an
oracle we can find that m and define A � n by looking for such a string. In fact,
T ≤T 0′ and so its unique path A ≤T 0′ as well.

Theorem 8. Given A ∈ 2ω, let Â := {σ ∈ 2<ω | σ ≺ A} be the set of finite
prefixes of A. If A is not Δ0

2 then Â is co-Σ0
1 -dense.

Proof. Let A∗ be the complement of Â. Let We ⊆ 2<ω be an infinite c.e. set of
strings. Let T be the set of all prefixes of elements of We. Then T is an infinite
tree, hence by compactness it has at least one infinite path. That is, there is at
least one real B such that all its prefixes are in T .

Case 1: The only such real is B = A. Then by Lemma 3, A is Δ0
2.

Case 2: There is a B �= A such that all its prefixes are in T . Let σ be a prefix
of B that is not a prefix of A. Let Wd = [σ] ∩ We. Since all prefixes of B are
prefixes of elements of We, there are infinitely many extensions of σ that are
prefixes of elements of We. Consequently Wd is infinite. Thus, Wd is our desired
infinite subset of A∗ ∩ We.

3.4 High Degrees

Definition 6. A set A is co-r-cohesive if its complement is r-cohesive. This
means that for each computable (recursive) set Wd, either Wd ⊆∗ A or W c

d ⊆∗ A.

Definition 7 (Odifreddi [9, Exercise III.4.8], Jockusch and Stephan [7]).
A set A is strongly hyperhyperimmune (s.h.h.i.) if for each computable f : ω → ω
for which the sets Wf(e) are disjoint, there is an e with Wf(e) ⊆ ω\A.

A set A is strongly hyperimmune (s.h.i.) if for each computable f : ω →
ω for which the sets Wf(e) are disjoint and computable, with

⋃
e∈ω Wf(e) also

computable, there is an e with Wf(e) ⊆ ω\A.

Proposition 9. Every s.h.i. set is co-Σ0
1 -dense.

58 S. D. Birns and B. Kjos-Hanssen

Proof. Let A be s.h.i. Let We be an infinite c.e. set. Let Wd be an infinite
computable subset of We. Effectively decompose Wd into infinitely many disjoint
infinite computable sets,

Wd =
⋃

i∈ω

Wg(d,i).

For instance, if Wd = {a0 < a1 < . . . } then we may let Wg(e,i) = {an : n =
2i(2k+1), i ≥ 0, k ≥ 0}. Since A is s.h.i., there exists some ie such that Wg(d,ie) ⊆
Ac. The sets Wg(d,ie) witness that Ac is Σ0

1 -dense.

Clearly r-cohesive implies s.h.i., and s.h.h.i. implies s.h.i. It was shown by
Jockusch and Stephan [7, Corollary 2.4] that the cohesive degrees coincide with
the r–cohesive degrees and (Corollary 3.10) that the s.h.i. and s.h.h.i. degrees
coincide.

Proposition 10. Every high degree contains a Σ0
1 -dense set.

Proof. Let h be a Turing degree. If h �≤ 0′, then h contains a Σ0
1 -dense set by

Theorem 8.
If h ≤ 0′ and h is high then since the strongly hyperhyperimmune and

cohesive degrees coincide, and are exactly the high degrees [4], h contains a
strongly hyperimmune set. Hence by Theorem 9, h contains a Σ0

1 -dense set.

3.5 Progressive Approximations

Definition 8. Let A be a Δ0
2 set. A computable approximation {σt}t∈ω of A,

where each σt is a finite string and limt→∞ σt = A, is progressive if for each t,

– if |σt| ≤ |σt−1| then σt � (|σt| − 1) = σt−1 � (|σt| − 1) (the last bit of σt is the
only difference with σt−1);

– if |σt| > |σt−1| then σt−1 ≺ σt; and
– if σt �≺ σs for some s > t then σt �≺ σs′ for all s′ ≥ s (once an approximation

looks wrong, it never looks right again).

If A has a progressive approximation then we say that A is progressively approx-
imable.

Note that a progressively approximable set must be h-c.e. where h(n) = 2n.

Theorem 9. Let A be a progressively approximable and noncomputable set. Let
{σt}t∈ω be a progressive approximation of A. Then {t : σt ≺ A} is constructively
immune.

Proof. Let We be an infinite c.e. set and let T be an infinite computable subset
of We. Since A is noncomputable, we do not have T ⊆ {t : σt ≺ A}. Since the
approximation {σt}t∈ω is progressive, once we observe a t for which σt �≺ σs, for
some s > t, then we know that σt �≺ A. Then we define ϕ(e) = t, and ϕ witnesses
that {t : σt ≺ A} is constructively immune.

A direction for future work may be to find new Turing degrees of progressively
approximable sets.

On the Degrees of Constructively Immune Sets 59

References

1. Brattka, V.: Random numbers and an incomplete immune recursive set. In: Wid-
mayer, P., Eidenbenz, S., Triguero, F., Morales, R., Conejo, R., Hennessy, M. (eds.)
ICALP 2002. LNCS, vol. 2380, pp. 950–961. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45465-9 81

2. Calude, C.: Information and Randomness: An Algorithmic Perspective. Mono-
graphs in Theoretical Computer Science. An EATCS Series. Springer, Berlin
(1994). With forewords by Gregory J. Chaitin and Arto Salomaa. https://doi.
org/10.1007/978-3-662-03049-3

3. Cholak, P.A., Dzhafarov, D.D., Hirst, J.L., Slaman, T.A.: Generics for computable
Mathias forcing. Ann. Pure Appl. Logic 165(9), 1418–1428 (2014)

4. Cooper, S.B.: Jump equivalence of the Δ0
2 hyperhyperimmune sets. J. Symbolic

Logic 37, 598–600 (1972)
5. Ershov, Y.L.: Theory of numberings. In: Handbook of Computability Theory. Stud-

ies in Logic and the Foundations of Mathematics, vol. 140, pp. 473–503. North-
Holland, Amsterdam (1999)

6. Ferbus-Zanda, M., Grigorieff, S.: Refinment of the “up to a constant” ordering
using contructive co-immunity and alike. Application to the min/max hierarchy of
Kolmogorov complexities. arXiv:0801.0350 (2008)

7. Jockusch, C., Stephan, F.: A cohesive set which is not high. Math. Logic Quart.
39(4), 515–530 (1993)

8. Li, X.: Effective immune sets, program index sets and effectively simple sets–
generalizations and applications of the recursion theorem. In: 1981 Southeast Asian
Conference on Logic. Studies in Logic and the Foundations of Mathematics, Sin-
gapore, vol. 111, pp. 97–106. North-Holland, Amsterdam (1983)

9. Odifreddi, P.: Classical Recursion Theory: The Theory of Functions and Sets of
Natural Numbers. Studies in Logic and the Foundations of Mathematics, vol. 125.
North-Holland Publishing Co., Amsterdam (1989). With a foreword by G. E. Sacks

10. Rosenstein, J.G.: Linear Orderings. Pure and Applied Mathematics, vol. 98. Aca-
demic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, London
(1982)

11. Schaefer, M.: A guided tour of minimal indices and shortest descriptions. Arch.
Math. Logic 37(8), 521–548 (1998)

12. Smullyan, R.M.: Effectively simple sets. Proc. Amer. Math. Soc. 15, 893–895 (1964)
13. Soare, R.: Recursively Enumerable Sets and Degrees. Springer, Heidelberg (1987)

https://doi.org/10.1007/3-540-45465-9_81
https://doi.org/10.1007/3-540-45465-9_81
https://doi.org/10.1007/978-3-662-03049-3
https://doi.org/10.1007/978-3-662-03049-3
http://arxiv.org/abs/0801.0350

Fine-Grained Complexity Theory:
Conditional Lower Bounds for

Computational Geometry

Karl Bringmann(B)

Saarland University and Max Planck Institute for Informatics,
Saarland Informatics Campus, Saarbrücken, Germany

bringmann@cs.uni-saarland.de

Abstract. Fine-grained complexity theory is the area of theoretical
computer science that proves conditional lower bounds based on the
Strong Exponential Time Hypothesis and similar conjectures. This area
has been thriving in the last decade, leading to conditionally best-
possible algorithms for a wide variety of problems on graphs, strings,
numbers etc. This article is an introduction to fine-grained lower bounds
in computational geometry, with a focus on lower bounds for polynomial-
time problems based on the Orthogonal Vectors Hypothesis. Specifically,
we discuss conditional lower bounds for nearest neighbor search under
the Euclidean distance and Fréchet distance.

Keywords: Fine-grained complexity · Computational geometry

1 Introduction

The term fine-grained complexity theory was coined in the last decade to describe
the area of theoretical computer science that proves conditional lower bounds
on the time complexity of algorithmic problems, assuming some hypothesis. The
goal is to explain the computational complexity of many different problems based
on a small number of core barriers. The general approach dates back to the
introduction of 3SUM-hardness in ’95 [25] (or even to the introduction of NP-
hardness, depending on the interpretation). The last decade has seen several new
hypotheses and a wealth of new techniques for proving conditional lower bounds,
leading to a large body of literature on the topic, see the surveys [10,30]. In this
article we give a self-contained introduction to recent fine-grained complexity
results in the area of computational geometry. Instead of the most technically
deep results, we focus on simple techniques that can be easily transferred to other
problems. Moreover, we focus on lower bounds for polynomial-time problems.

This work is part of the project TIPEA that has received funding from the Euro-
pean Research Council (ERC) under the European Unions Horizon 2020 research and
innovation programme (grant agreement No. 850979).

c© Springer Nature Switzerland AG 2021
L. De Mol et al. (Eds.): CiE 2021, LNCS 12813, pp. 60–70, 2021.
https://doi.org/10.1007/978-3-030-80049-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80049-9_6&domain=pdf
https://doi.org/10.1007/978-3-030-80049-9_6

Conditional Lower Bounds for Computational Geometry 61

The basic setup of fine-grained lower bounds is similar to classic NP-hardness
reductions: A fine-grained reduction from problem P to problem Q is an algo-
rithm that given an instance I of size n for problem P computes in time r(n) an
equivalent instance J of size s(n) for problem Q.1 Thus, if there is an algorithm
solving problem Q in time T (n), by this reduction there is an algorithm solving
problem P in time r(n) + T (s(n)). In particular, if r(n) + T (s(n)) is faster than
the hypothesized optimal time complexity of problem P , then problem Q can-
not be solved in time T (n) assuming the hypothesis for P . We will see several
concrete examples of this argumentation throughout this article.

1.1 Hardness Hypotheses

Let us discuss the three main hypotheses used in computational geometry.

3SUM Hypothesis. In the 3SUM problem, given n integers, we want to decide
whether any three of them sum to 0. The 3SUM Hypothesis postulates that the
classic O(n2)-time algorithm for 3SUM cannot be improved to time O(n2−ε) for
any ε > 0. This hypothesis was introduced in ’95 in a seminal work by Gajentaan
and Overmars [25], making computational geometry a pioneer in fine-grained
complexity theory. We refer to [30] for an overview of lower bounds based on the
3SUM Hypothesis; in this introduction we focus on other hypotheses.

Strong Exponential Time Hypothesis. The strongest new impulse for con-
ditional lower bounds in the last two decades was the introduction of the Strong
Exponential Time Hypothesis. This hypothesis concerns the fundamental k-SAT
problem: Given a formula φ in conjunctive normal form of width k on n vari-
ables and m clauses, decide whether φ is satisfiable. Naively this problem can be
solved in time O(2nm). Improved algorithms solve k-SAT in time O(2(1−εk)n)
for some constant εk > 0, but for all known algorithms the constant εk tends
to 0 for k → ∞. This lead Impagliazzo and Paturi [26] to postulate the following:

Hypothesis 1 (Strong Exponential Time Hypothesis – SETH). For any
ε > 0, there exists k ≥ 3 such that k-SAT on formulas with n variables cannot
be solved in time O(2(1−ε)n).

This has become the most standard hypothesis in fine-grained complexity
theory [30], and it has been used to prove tight lower bounds for a wide variety
of problems, see, e.g., [1,3,9,12,14–19,22,28,32].

1 What we sketched here is a many-one reduction, since each instance of P is reduced
to one instance of Q. One can also consider Turing reductions, where the reduction
algorithm is allowed to make several calls to an oracle for Q. See [20, Definition 1]
for the formal definition of (Turing-style) fine-grained reductions.

62 K. Bringmann

Orthogonal Vectors Hypothesis. In the Orthogonal Vectors problem (OV),
given sets of Boolean vector A,B ⊆ {0, 1}d of size n, we ask whether there exists
a pair (a, b) ∈ A×B that is orthogonal, that is, 〈a, b〉 =

∑d
i=1 ai · bi = 0. Naively

this problem can be solved in time O(n2d). For small dimension d = O(log n)
there are improved algorithms [4], but for ω(log n) ≤ d ≤ no(1) no algorithm
running in time O(n2−ε) is known. This barrier is formalized as follows.

Hypothesis 2 (OV Hypothesis – OVH [31]). For any ε > 0, OV cannot
be solved in time O(n2−εpoly(d)).

Note that for d = nΩ(1) we can naively solve OV in time O(n2d) = poly(d) =
O(n2−εpoly(d)), and thus OVH does not apply. Indeed, the hypothesis only
asserts that there exists a dimension d = d(n) such that OV cannot be solved in
time O(n2−εpoly(d)); this dimension d must be of the form ω(log n) ≤ d ≤ no(1).

OVH has been used to prove tight conditional lower bounds for a wide range
of problems, see, e.g., [1,9,12,14,16,17,19,32]. It is known that OVH is at least
as believable as SETH, because SETH implies OVH [31].

In this article we focus on lower bounds based on OVH (since SETH implies
OVH this also yields lower bounds based on SETH). Specifically, in Sect. 2 we
consider nearest neighbor search, and in Sect. 3 we discuss curve similarity.

2 Nearest Neighbor Search

A fundamental problem of computer science is to compute the nearest neighbor
of a point q ∈ R

d among a set of points P ⊂ R
d, that is, to determine the point

p ∈ P minimizing the Euclidean distance ‖p − q‖. This has an abundance of
applications such as pattern recognition, spell checking, or coding theory. These
applications often come in the form of a data structure problem, where we can
first preprocess P to build a data structure that can then quickly answer nearest
neighbor queries. Naively, a nearest neighbor query can be answered in time
O(nd), where n is the number of points in the data set P . Improved algorithms
exist in small dimensions, for example k-d-trees have a worst-case query time of
O(d · n1−1/d) [27]. However, already for a large constant dimension d ≥ 1/ε this
query time is essentially linear, specifically it is Ω(n1−ε). We can thus ask:

Does high-dimensional nearest neighbor search require near-linear query time?

In the following we answer this question affirmatively assuming OVH. To
connect nearest neighbor search to the OV problem we make use of the following
embedding, which maps Boolean vectors to points in R

d such that from the
points’ Euclidean distance we can read off whether the vectors are orthogonal.

Lemma 1 (Embedding Orthogonality into Euclidean Distance). There
are functions A,B : {0, 1}d �→ R

d and a threshold τ such that 〈a, b〉 = 0 if and
only if ‖A(a) − B(b)‖ ≤ τ for any a, b ∈ {0, 1}d. The functions A,B and the
threshold τ can be evaluated in time O(d).

Conditional Lower Bounds for Computational Geometry 63

Proof. For any a ∈ {0, 1}d we construct p := A(a) by setting pi := 1 + 2ai for
any 1 ≤ i ≤ d. Similarly, for any b ∈ {0, 1}d we construct q := B(b) by setting
qi := 2 − 2bi. Note that |pi − qi| = |2(ai + bi) − 1|, which evaluates to 3 if
ai = bi = 1 and to 1 otherwise. Therefore, we obtain

‖p− q‖ =
(d∑

i=1

|pi − qi|2
)1/2

=
(
32 · 〈a, b〉+12 · (d−〈a, b〉))1/2 = (d+8〈a, b〉)1/2.

Setting τ := d1/2 yields ‖p − q‖ = ‖A(a) − B(b)‖ ≤ τ if and only if 〈a, b〉 = 0.

2.1 Bichromatic Closest Pair

We use the above embedding to prove a conditional lower bound for the Bichro-
matic Closest Pair problem, an offline variant of nearest neighbor search:

Problem 1 (Bichromatic Closest Pair). Given sets P,Q ⊂ R
d of size n, compute

the pair (p, q) ∈ P × Q minimizing the Euclidean distance ‖p − q‖.

Bichromatic Closest Pair cannot be solved in time O(n2−εpoly(d)) under OVH:

Theorem 1 (Lower Bound for Bichromatic Closest Pair [6]). For any
ε > 0, Bichromatic Closest Pair cannot be solved in time O(n2−εpoly(d)), unless
OVH fails.

Proof. We reduce from OV to Bichromatic Closest Pair using the embedding
from Lemma 1. Given an OV instance (A,B) of size n in dimension d, we con-
struct the point sets P = {A(a) | a ∈ A} and Q := {B(b) | b ∈ B}. By Lemma 1,
the bichromatic closest pair of (P,Q) has distance ≤ τ if and only if there exists
an orthogonal pair of vectors. Thus, a solution to the constructed Bichromatic
Closest Pair instance solves the given OV instance. Since n and d do not change,
the running time lower bound is immediate from OVH (Hypothesis 2).

2.2 Nearest Neighbor Data Structures

Now we consider the data structure version of nearest neighbor search.

Problem 2 (Nearest Neighbor Data Structure). In the preprocessing we are given
a set P ⊂ R

d of size n and we build a data structure. The data structure allows
to answer nearest neighbor queries: Given a point q ∈ R

d, compute the point
p ∈ P minimizing the Euclidean distance ‖p − q‖.

Observe that any nearest neighbor data structure also solves the Bichromatic
Closest Pair Problem, by building the data structure for P and then querying
every q ∈ Q. If the data structure has preprocessing time TP (n, d) and query time
TQ(n, d), then this solves Bichromatic Closest Pair in time TP (n, d)+n·TQ(n, d).
Theorem 1 thus implies that Bichromatic Closest Pair cannot be solved with
preprocessing time O(n2−εpoly(d)) and query time O(n1−εpoly(d)):

64 K. Bringmann

Corollary 1 (Lower Bound for Nearest Neighbor Data Structures I).
For any ε > 0, there is no nearest neighbor data structure with preprocessing
time O(n2−εpoly(d)) and query time O(n1−εpoly(d)), unless OVH fails.

It might seem natural that the preprocessing time is limited to O(n2−ε),
because from OVH we can prove only quadratic lower bounds. In the following
we show that this intuition is wrong, and the above corollary can be improved to
rule out any polynomial preprocessing time. To this end, we need an unbalanced
version of OVH, which shows that the brute force enumeration of all |A| · |B|
pairs of vectors is also necessary when |A| = nα n = |B|. This tool was
introduced in [3]; see also [14] for a proof that unbalanced OV and standard OV
are equivalent.

Lemma 2 ([3]). For any ε, α ∈ (0, 1), OV on instances (A,B) with |B| = n
and |A| = Θ(nα) cannot be solved in time O(n1+α−εpoly(d)), unless OVH fails.

Proof. Let (A′, B′) be a balanced instance of OV, that is, |A′| = |B′| = n. Split
B′ into Θ(n1−α) sets B′

1, . . . , B
′
� of size Θ(nα). Run an unbalanced OV algorithm

on each pair (A′, B′
i), and note that from the results we can infer whether (A′, B′)

contains an orthogonal pair of vectors. If each unbalanced instance can be solved
in time O(n1+α−ε), then all Θ(n1−α) unbalanced instances in total can be solved
in time O(n2−ε), contradicting OVH.

With this tool, we can rule out any polynomial preprocessing time poly(n, d)
and query time O(n1−εpoly(d)) for nearest neighbor search:

Theorem 2 (Lower Bound for Nearest Neighbor Data Structures II).
For any ε, β > 0, there is no nearest neighbor data structure with preprocessing
time O(nβpoly(d)) and query time O(n1−εpoly(d)), unless OVH fails.

Proof. Fix ε, β > 0 and suppose nearest neighbor can be solved with preprocess-
ing time O(|P |βpoly(d)) and query time O(|P |1−εpoly(d)). Set α := 1/β. Given
an OV instance (A,B) with |B| = n and |A| = Θ(nα), we use the embedding
from Lemma 1 to construct the sets P := {A(a) | a ∈ A} and Q := {B(b) | b ∈
B}. We run the preprocessing of the nearest neighbor data structure on P ; this
takes time O(|P |βpoly(d)) = O((nα)βpoly(d)) = O(npoly(d)). Then we query
the data structure for each q ∈ Q; over all |Q| queries this takes total time

O(|Q| · |P |1−εpoly(d)) = O(n1+α·(1−ε)poly(d)) = O(n1+α−ε′
poly(d)),

for ε′ := α · ε. By Lemma 1, some query q ∈ Q returns a point p ∈ P within
distance τ if and only if there exists an orthogonal pair of vectors in A × B.
We can thus solve unbalanced OV in time O(n1+α−ε′

poly(d)), contradicting
Lemma 2.

We have thus shown that high-dimensional nearest neighbor search requires
almost-linear query time, even if we allow any polynomial preprocessing time.

Conditional Lower Bounds for Computational Geometry 65

2.3 Further Results on Nearest Neighbor Search

Let us discuss some advanced research directions on nearest neighbor search.
The proofs here are beyond the scope of this introduction to the topic.

– Smaller Dimension: The best known query time for nearest neighbor search
is of the form n1−Θ(1/d) [27], which is near-linear n1−o(1) for any unbounded
dimension d = ω(1). Recall that OVH asserts hardness for some dimension
ω(log n) ≤ d ≤ no(1). A line of research has tried to close this gap [22,32];
the current record shows that Theorem1 already holds in dimension d =
2O(log∗ n) [22]. It remains an important open problem to close the remaining
gap and show hardness for any dimension d = ω(1).

– Approximate Nearest Neighbor: In many practical applications it suffices to
compute nearest neighbors approximately. Note that the OV problem asks
whether there is a pair of vectors with 〈a, b〉 = 0 or whether all vectors
have 〈a, b〉 ≥ 1. Inspecting the proof of Lemma 1, we see that it is hard to
distinguish between Euclidean distance at most d1/2 or at least (d+8)1/2. This
shows hardness of computing a (d + 8)1/2/d1/2 = 1 + Θ(1/d) approximation
for Bichromatic Closest Pair. A big leap forward was made by Rubinstein [28],
who proved that Theorem1 even holds for (1 + δ)-approximation algorithms,
where δ = δ(ε) is some positive constant. See also [29] for more hardness of
approximation results in fine-grained complexity theory.

3 Curve Similarity and the Fréchet Distance

We now turn to a different realm of applications. For our purposes, a curve
is a sequence of points in the plane, that is, π = (π1, . . . , πn) with πi ∈ R

2.
We call n the length of π. A typical task is to judge the similarity of two given
curves. Several distance measures have been proposed for this task, but the most
classical and most popular in computational geometry is the Fréchet distance2.
For intuition, imagine a dog walking along curve π and its owner walking along
curve σ, connected by a leash. They start at the respective startpoints and end
at their endpoints, and at any point in time either the dog advances to the next
vertex along its curve, or the owner advances, or they both advance together.
The shortest possible leash length admitting such a traversal is called the Fréchet
distance of π and σ.

Formally, for curves π = (π1, . . . , πn) and σ = (σ1, . . . , σm), a traversal is a
sequence ((i1, j1), . . . , (iT , jT)) such that (i1, j1) = (1, 1), (iT , jT) = (n,m), and
for every 1 ≤ t < T we have (it+1, jt+1) ∈ {(it +1, jt), (it, jt +1), (it +1, jt +1)}.
The (discrete) Fréchet distance between π and σ is defined as

dF (π, σ) = min
((i1,j1),...,(iT ,jT))

max
1≤t≤T

‖πit − σjt‖,

where the minimum goes over all traversals of π and σ.
2 For simplicity, we focus on the discrete Fréchet distance [24] instead of the slightly

more standard continuous variant [7].

66 K. Bringmann

The Fréchet distance of two curves of length n can be computed in time
O(n2), by a simple dynamic programming algorithm that computes the Fréchet
distance of any prefix (π1, . . . , πi) of π and any prefix (σ1, . . . , σj) of σ [24].

In the following, we first discuss the Fréchet distance from the viewpoint of
nearest neighbor search, and then we elaborate on the problem of computing the
Fréchet distance of two given curves.

3.1 Nearest Neighbor Search Under Fréchet Distance

We start with an embedding of vectors into curves, similar to Lemma 1.

Lemma 3 (Embedding Orthogonality into Fréchet Distance [9]). There
are functions A,B mapping any z ∈ {0, 1}d to a curve of length d in the plane,
such that 〈a, b〉 = 0 if and only if dF (A(a),B(b)) ≤ 1 for any a, b ∈ {0, 1}d. The
functions A,B can be evaluated in time O(d).

Proof. For any a ∈ {0, 1}d we construct the curve π := A(a) by setting πi :=
(3i, 1 + 2ai) ∈ R

2 for any 1 ≤ i ≤ d. Similarly, for any b ∈ {0, 1}d we construct
σ := B(b) by setting σi := (3i, 2 − 2bi). Note that ‖πi − σi‖ = |2(ai + bi) − 1|,
which evaluates to 3 if ai = bi = 1 and to 1 otherwise. Moreover, for i �= j we
have ‖πi − σj‖ ≥ 3.

Consider a traversal of π and σ. If at some point the dog advances but not
the owner (or the owner advances but not the dog), we get a distance of the
form ‖πi − σj‖ for i �= j, and thus the leash length must be at least 3. In the
remaining case, the dog and its owner always advance together, meaning that at
time i the dog is at position πi and the owner is at position σi. This traversal
has distance max1≤i≤d ‖πi −σi‖ = max1≤i≤d |2(ai + bi)−1|, which is 1 if a, b are
orthogonal, and 3 otherwise. Hence, dF (π, σ) ≤ 1 holds if and only if 〈a, b〉 = 0.

Using this embedding, we can show lower bounds for nearest neighbor search
among curves in the plane, analogously to the results for Euclidean nearest neigh-
bor search from Sect. 2 (the same proofs work almost verbatim). Specifically, in
the problem Bichromatic Closest Pair under Fréchet Distance we are given sets
P,Q, each containing n curves of length d in the plane, and we want to compute
the pair (π, σ) ∈ P × Q that minimizes the Fréchet distance dF (π, σ). Naively,
this can be solved in time O(n2d2).

Theorem 3 (Lower Bound for Bichromatic Closest Pair under Fréchet
Distance). For any ε > 0, Bichromatic Closest Pair under Fréchet Distance
cannot be solved in time O(n2−εpoly(d)), unless OVH fails.

Similarly, in nearest neighbor data structures for the Fréchet distance we can
preprocess a given set P consisting of n curves of length d in the plane, and then
given a query curve σ of length d in the plane we want to find the curve π ∈ P
minimizing dF (π, σ).

Theorem 4 (Lower Bound for Nearest Neighbor Data Structures
under Fréchet Distance). For any ε, β > 0, there is no data structure
for nearest neighbor search under Fréchet distance with preprocessing time
O(nβpoly(d)) and query time O(n1−εpoly(d)), unless OVH fails.

Conditional Lower Bounds for Computational Geometry 67

3.2 Computing the Fréchet Distance

A classic dynamic programming algorithm computes the Fréchet distance
between two curves of length n in time O(n2) [24]. A breakthrough result from
’14 shows a tight lower bound ruling out time O(n2−ε) under OVH [9]. This
result paved the way for tight lower bounds for many other dynamic program-
ming problems (mostly outside of computational geometry, see, e.g., [1,12]). Here
we give a very brief sketch of this result.

Theorem 5 (Lower Bound for Fréchet Distance [9]). For any ε > 0, the
Fréchet distance cannot be computed in time O(n2−ε).

Proof Sketch. Given an OV instance (A,B) on n vectors in dimension d, we
construct two curves π, σ of length N = O(nd) such that dF (π, σ) ≤ 1 if and
only if (A,B) contains an orthogonal pair. It then follows that if the Fréchet
distance can be computed in time O(N2−ε), then OV can be solved in time
O((nd)2−ε) = O(n2−εpoly(d)), contradicting OVH (Hypothesis 2).

To construct the curves π, σ, we start with vector gadgets. These gadgets are
similar to the embedding in Lemma 3, but they are restricted to a much smaller
region in space. Specifically, for each vector a ∈ A we construct a curve V G(a) as
the sequence of points ((−1)iδ, 0.5 − (−1)aiδ2) ∈ R

2 for 1 ≤ i ≤ d, where δ > 0
is a small constant. Similarly, for each vector b ∈ B we construct a curve V G(b)
as the sequence of points ((−1)iδ,−0.5 + (−1)biδ2) for 1 ≤ i ≤ d. Analogously
to Lemma 3, we can show that dF (V G(a), V G(b)) ≤ 1 if and only if 〈a, b〉 = 0.

The final and most complicated step of the reduction is the OR gadget. This
gadget combines the curves V G(a) for all a ∈ A into one curve π, and similarly it
combines the curves V G(b) for all b ∈ B into one curve σ, such that dF (π, σ) ≤ 1
if and only if there exist a ∈ A, b ∈ B with dF (V G(a), V G(b)) ≤ 1. To this end,
we introduce auxiliary points at the following positions:

s = (−0.5, 0), t = (0.5, 0), s∗ = (−0.5,−1), t∗ = (0.5, 1).

The final curve π repeats the pattern (s, V G(a), t) for all a ∈ A. The final curve σ
starts with s and s∗, then walks through all vector gadgets V G(b), and ends with
t∗ and t. One can show that these curves satisfy dF (π, σ) ≤ 1 if and only if (A,B)
contains an orthogonal pair, for details see [9].

3.3 Further Results on Fréchet Distance

– Robustness: For reductions to geometric problems a common concern is the
precision needed to write down the constructed instances. The reductions
shown in this article are very robust: they only require O(log d)-bit coordi-
nates, and some can even be made to work with O(1)-bit coordinates.

– Hardness of Approximation: Inspecting the proof of Lemma3, we see that
it is hard to distinguish Fréchet distance at most 1 or at least 3. Therefore,
Theorems 3 and 4 even hold against multiplicative 2.999-approximation algo-
rithms. For approximation algorithms we refer to [16,21].

68 K. Bringmann

– One-dimensional Curves: We showed hardness for curves in the plane. The
same results hold for one-dimensional curves, of the form π = (π1, . . . , πd)
with πi ∈ R, see [16,19].

– Continuous and Weak Variants: The same lower bounds as in Theorems 3, 4,
and 5 also hold for other standard variants of the Fréchet distance [9,19].

– Realistic Input Curves: In order to avoid the quadratic worst-case complexity,
geometers have studied several models of realistic input curves. For example,
on so-called c-packed curves the Fréchet distance can be (1+ε)-approximated
in time Õ(cn/

√
ε) [13,23], which matches a conditional lower bound [9].

– Logfactor Improvements: Lower bounds under OVH rule out polynomial
improvements of the form O(n2−ε). What about logfactor improvements? An
algorithm running in time O(n2 log log n/ log n) is known [5]. Can we improve
this to time O(n2/ log100 n)? Such an improvement was shown to be unlikely,
as it would imply new circuit lower bounds [2].

4 More Fine-Grained Computational Geometry

In this article we focused on nearest neighbor search and the Fréchet distance.
Further work on fine-grained complexity in computational geometry includes
conditional lower bounds for a variant of Fréchet distance between k curves [18],
the dynamic time warping distance [1,12], the Fréchet distance under trans-
lation [15] and Hausdorff distance under translation [17], curve simplification
under Fréchet distance [11,18], and Maximum Weight Rectangle [8].

References

1. Abboud, A., Backurs, A., Vassilevska Williams, V.: Tight hardness results for LCS
and other sequence similarity measures. In: FOCS, pp. 59–78. IEEE Computer
Society (2015)

2. Abboud, A., Bringmann, K.: Tighter connections between formula-SAT and shav-
ing logs. In: ICALP. LIPIcs, vol. 107, pp. 8:1–8:18 (2018)

3. Abboud, A., Vassilevska Williams, V.: Popular conjectures imply strong lower
bounds for dynamic problems. In: FOCS, pp. 434–443. IEEE Computer Society
(2014)

4. Abboud, A., Williams, R.R., Yu, H.: More applications of the polynomial method
to algorithm design. In: SODA, pp. 218–230. SIAM (2015)

5. Agarwal, P.K., Avraham, R.B., Kaplan, H., Sharir, M.: Computing the discrete
Fréchet distance in subquadratic time. SIAM J. Comput. 43(2), 429–449 (2014)

6. Alman, J., Williams, R.: Probabilistic polynomials and Hamming nearest neigh-
bors. In: FOCS, pp. 136–150. IEEE Computer Society (2015)

7. Alt, H., Godau, M.: Computing the Fréchet distance between two polygonal curves.
Int. J. Comput. Geom. Appl. 5, 75–91 (1995)

8. Backurs, A., Dikkala, N., Tzamos, C.: Tight hardness results for maximum weight
rectangles. In: ICALP. LIPIcs, vol. 55, pp. 81:1–81:13 (2016)

9. Bringmann, K.: Why walking the dog takes time: Frechet distance has no strongly
subquadratic algorithms unless SETH fails. In: FOCS, pp. 661–670. IEEE Com-
puter Society (2014)

Conditional Lower Bounds for Computational Geometry 69

10. Bringmann, K.: Fine-grained complexity theory (tutorial). In: STACS. LIPIcs, vol.
126, pp. 4:1–4:7 (2019)

11. Bringmann, K., Chaudhury, B.R.: Polyline simplification has cubic complexity. In:
Symposium on Computational Geometry. LIPIcs, vol. 129, pp. 18:1–18:16 (2019)

12. Bringmann, K., Künnemann, M.: Quadratic conditional lower bounds for string
problems and dynamic time warping. In: FOCS, pp. 79–97. IEEE Computer Society
(2015)

13. Bringmann, K., Künnemann, M.: Improved approximation for Fréchet distance on
c-packed curves matching conditional lower bounds. Int. J. Comput. Geom. Appl.
27(1–2), 85–120 (2017)

14. Bringmann, K., Künnemann, M.: Multivariate fine-grained complexity of longest
common subsequence. In: SODA, pp. 1216–1235. SIAM (2018)

15. Bringmann, K., Künnemann, M., Nusser, A.: Fréchet distance under translation:
conditional hardness and an algorithm via offline dynamic grid reachability. In:
SODA, pp. 2902–2921. SIAM (2019)

16. Bringmann, K., Mulzer, W.: Approximability of the discrete Fréchet distance. J.
Comput. Geom. 7(2), 46–76 (2016)

17. Bringmann, K., Nusser, A.: Translating Hausdorff is hard: fine-grained lower
bounds for Hausdorff distance under translation. In: Symposium on Computational
Geometry (2021, to appear)

18. Buchin, K., Buchin, M., Konzack, M., Mulzer, W., Schulz, A.: Fine-grained analysis
of problems on curves. In: EuroCG, Lugano, Switzerland (2016)

19. Buchin, K., Ophelders, T., Speckmann, B.: SETH says: weak Fréchet distance is
faster, but only if it is continuous and in one dimension. In: SODA, pp. 2887–2901.
SIAM (2019)

20. Carmosino, M.L., Gao, J., Impagliazzo, R., Mihajlin, I., Paturi, R., Schneider, S.:
Nondeterministic extensions of the strong exponential time hypothesis and conse-
quences for non-reducibility. In: ITCS, pp. 261–270. ACM (2016)

21. Chan, T.M., Rahmati, Z.: An improved approximation algorithm for the discrete
Fréchet distance. Inf. Process. Lett. 138, 72–74 (2018)

22. Chen, L.: On the hardness of approximate and exact (bichromatic) maximum inner
product. Theor. Comput. 16, 1–50 (2020)

23. Driemel, A., Har-Peled, S., Wenk, C.: Approximating the Fréchet distance for
realistic curves in near linear time. Discret. Comput. Geom. 48(1), 94–127 (2012)

24. Eiter, T., Mannila, H.: Computing Discrete Fréchet Distance. Technical report,
CD-TR 94/64, Christian Doppler Laboratory (1994)

25. Gajentaan, A., Overmars, M.H.: On a class of O(n2) problems in computational
geometry. Comput. Geom. 5, 165–185 (1995)

26. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst. Sci.
62(2), 367–375 (2001)

27. Lee, D.T., Wong, C.K.: Worst-case analysis for region and partial region searches
in multidimensional binary search trees and balanced quad trees. Acta Informatica
9, 23–29 (1977)

28. Rubinstein, A.: Hardness of approximate nearest neighbor search. In: STOC, pp.
1260–1268. ACM (2018)

29. Rubinstein, A., Vassilevska Williams, V.: SETH vs approximation. SIGACT News
50(4), 57–76 (2019)

30. Vassilevska Williams, V.: On some fine-grained questions in algorithms and com-
plexity. In: Proceedings of the ICM, vol. 3, pp. 3431–3472. World Scientific (2018)

70 K. Bringmann

31. Williams, R.: A new algorithm for optimal 2-constraint satisfaction and its impli-
cations. Theor. Comput. Sci. 348(2–3), 357–365 (2005)

32. Williams, R.: On the difference between closest, furthest, and orthogonal pairs:
nearly-linear vs. barely-subquadratic complexity. In: SODA, pp. 1207–1215. SIAM
(2018)

The Lost Melody Theorem for Infinite
Time Blum-Shub-Smale Machines

Merlin Carl(B)

Europa-Universität Flensburg, Auf dem Campus 1b, 24943 Flensburg, Germany
merlin.carl@uni-flensburg.de

https://www.uni-flensburg.de/mathematik/wer-wir-sind/mitarbeiterinnen-

und-mitarbeiter/dr-merlin-carl/

Abstract. We consider recognizability for Infinite Time Blum-Shub-
Smale machines, a model of infinitary computability introduced by
Koepke and Seyfferth. In particular, we show that the lost melody the-
orem (originally proved for ITTMs by Hamkins and Lewis), i.e. the
existence of non-computable, but recognizable real numbers, holds for
ITBMs, that ITBM-recognizable real numbers are hyperarithmetic and
that both ITBM-recognizable and ITBM-unrecognizable real numbers
appear at every level of the constructible hierarchy below LωCK

1
above ωω.

Keywords: Infinite Time Blum-Shub-Smale Machines ·
Recognizability · Ordinal computability · Admissibility

1 Introduction

In ordinal computability, a considerable variety of machine models of infinitary
computability was defined, including Infinite Time Turing Machines (ITTMs),
(weak) Infinite Time Register Machines (ITRMs), Ordinal Turing Machines
(OTMs), Ordinal Register Machines (ORMs) and Infinite Time Blum-Shub-
Smale Machines (ITBMs) etc. For each of these models, a real number (more
generally, a set of ordinals) x is called “recognizable” if and only if there is
a program P such that, when executed on a machine of the type under con-
sideration, P halts on every input y with output 0 or 1 and outputs 1 if and
only if x = y. The term was originally defined for ITTMs in Hamkins and
Lewis [9], where the most prominent statement about ITTM-recognizability was
proved, namely the existence of real numbers that are ITTM-recognizable, but
not ITTM-computable, so called “lost melodies”.

Later on, recognizability was also studied for other machine models. The lost
melody theorem was shown to also hold for ITRMs (see [6]; see [4] and [3] for
a detailed study of ITRM-recognizability) and OTMs with parameters (where
computability amounts to constructibility, while recognizability takes us up to

c© Springer Nature Switzerland AG 2021
L. De Mol et al. (Eds.): CiE 2021, LNCS 12813, pp. 71–81, 2021.
https://doi.org/10.1007/978-3-030-80049-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80049-9_7&domain=pdf
http://orcid.org/0000-0003-0010-2034
https://doi.org/10.1007/978-3-030-80049-9_7

72 M. Carl

M1, the canonical inner model for a Woodin cardinal, see [7]). On the other
hand, it fails for OTMs without parameters and weak ITRMs1, see [5].

Infinite Time Blum-Shub-Smale machines, introduced by Koepke and Seyf-
ferth in [14] are register models of infinitary computability that compute with
real numbers rather than ordinals as their register contents. ITBMs are known to
compute exactly the real numbers in Lωω by Welch [19] and Koepke and Moro-
zov [13]. Moreover, it is known from Koepke and Seyfferth [14] (Theorem 1) that
an ITBM-program with n nodes either halts in < ωn+1 many steps or not at
all. So far, recognizability for ITBMs was not considered. Indeed, as ITBMs are
extremely weak in comparison with the other models mentioned above, many of
the usual methods for studying recognizability are not available in this setting.

In this paper, we close this gap by (i) showing that the lost melody theorem
holds for ITBMs and in particular the ITBM-recognizability of the ITBM-halting
number, (ii) showing LωCK

1
to be the minimal L-level containing all ITBM-

recognizable real numbers and (iii) that both new ITBM-recognizable and new
ITBM-unrecognizable real numbers appear at every level after ωω below ωCK

1 .
Most arguments in this paper are variants of the corresponding arguments

used in the investigation of register models of ordinal computability, specifi-
cally Infinite Time Register Machines (ITRMs, see Koepke and Miller [12]) and
weak Infinite Time Register Machines (now called wITRMs, see Koepke [11]).
However, due to the weakness of ITBMs, considerable adaptations are required.
In this respect, ITBMs turn out to be a kind of mixture between these two
machine types with respect to recognizability: Like ITTMs and ITRMs but other
than wITRMs, they have lost melodies, even though they are too weak to check
whether a given real number codes a well-ordering (which is crucial in the con-
structions for ITRMs and ITTMs). The real number coding the ITBM-halting
problem is ITBM-recognizable, which is also true for ITRMs, but fails for ITTMs.
The distribution of the ITBM-recognizable real numbers in Gödel’s constructible
hierarchy L is different for ITBMs than for all other machine types considered so
far: From ωω up to ωCK

1 , new unrecognizable and new recognizable real numbers
occur at every level, while for ITTMs and ITRMs, there are “gaps” in the set of
levels at which new recognizable real numbers are constructed.2

An ordinal α is called an “index” if and only if Lα+1 \ Lα contains a real
number. By standard fine-structure (see, e.g., Jensen [10]), Lα+1 contains a
bijection f : ω → Lα when α is an index. Moreover, by Theorem 1 of Boolos and
Putnam [2], if α is an index, then Lα+1 contains an “arithmetical copy” of Lα,
i.e., a real number coding Lα. It is known – see, e.g., [15] – that every infinite
α below ωCK

1 is an index (in fact, by [15], a non-index level Lα is a model of
ZF−, so that the first non-index level appears way above ωCK

1); we will freely

1 “Weak ITRMs”, also known as “unresetting ITRM”, differ from ITRMs in that a
computation in which the inferior limit of the sequence of contents of some register
is infinite at some limit time, the computation is undefined, while for ITRMs, the
content of such a register is just reset to 0; they were defined by Koepke in [11].

2 For ITRMs, this is proved in [4]; for ITTMs, it is known that there are, e.g., no
recognizable real numbers in LΣ \ Lλ, see, e.g., [8], Theorem 4.2.6.

The Lost Melody Theorem for Infinite Time Blum-Shub-Smale Machines 73

use this fact below. Below, unless indicated otherwise, p will denote Cantor’s
pairing function.

1.1 Infinite Time Blum-Shub-Smale Machines

Infinite Time Blum-Shub-Smale machines were introduced in Koepke and Seyf-
ferth ([14]) and then studied further in Koepke and Morozov [13] and Welch [19].
We briefly recall the definitions and results required for this article.

Like a Blum-Shub-Smale machine (BSSM), an ITBM has finitely many reg-
isters, each of which can store a single real number. An ITBM-program is just
an ordinary Blum-Shub-Smale-machine program, i.e., a finite, numerated list of
commands for applying a rational functions to the contents of some registers and
(i) replacing the content of some register with the result or (ii) jumping to some
other program line, depending on whether the value of the function is positive
or not; this latter kind of command is called a “node”. At successor times, an
ITBM works like a BSSM, while at limit levels, the active program line is the
inferior limit of the sequence of earlier program lines and the content of each
register R is the Cauchy limit of the sequence of earlier contents of R, provided
this sequence converges; if this sequence does not converge for some register, the
computation is undefined.

We fix a natural enumeration (Pi : i ∈ ω) of the ITBM-programs. For an
ITBM-program P and a real number x, we write P x for the computation of P
that starts with x in the first register.

Definition 1. A real number x is ITBM-computable if and only if there is an
ITBM-program P that starts with 0s in all of its registers and halts with x in its
first register.

We say that a real number x is ITBM-recognizable if and only if there is an
ITBM-program P such that, for all real numbers y, P y halts with output 1 if and
only if y = x and otherwise, P y halts with output 0.

We summarize the relevant results about ITBMs in the following theorem.

Theorem 1. (i) (Koepke, Seyfferth, [14]) If P is an ITBM-program using n ∈ ω
many nodes and x is a real number, then P x halts in < ωn+1 many steps or it
does not halt at all. In particular, any ITBM-program P x either halts in < ωω

many steps or not at all. An ordinal α is ITBM-clockable if and only if α < ωω.
(ii) (Koepke, Morozov [13], Welch [19]) A real number x is ITBM-computable

from the real input y if and only if x ∈ Lωω [y]. In particular, x is ITBM-
computable if and only if x ∈ Lωω .

As a consequence of (i), it is possible to decide, for every ITBM-program
P , the set {x ⊆ ω : P x halts} on an ITBM: Namely, if P uses n nodes, simply
run P x for ωn+1 many steps and see whether it has halted up to this point
(clearly, any ITBM-program that does this will use more than n nodes). Thus,
if a partial function f : R → R is ITBM-computable, there is also a total ITBM-
computable function f̂ : R → R such that f̂(x) = f(x) whenever f(x) is defined
and otherwise f̂(x) = 0. These properties of ITBMs will be freely used below.

74 M. Carl

2 The Lost Melody Theorem for ITBMs

In this section, we will show that there is a real number x which is ITBM-
recognizable, but not ITBM-computable.

Let x be a real number with the following properties:

1. There is a bijection f : ω → Lωω such that x = {p(i, j) : f(i) ∈ f(j)} and f
is such that f [{2i : i ∈ ω}] = ωω, so that ordinals are coded exactly by the
even numbers. We fix f from now on.

2. x ∈ Lωω + 1. In particular, x is definable over Lωω , and in fact definable
without parameters (by fine-structure). Let φx be an ∈-formula such that
x = {i ∈ Lωω : Lωω |= φx(i)}.

3. The real number c := {p(i, j) : p(2i, 2j) ∈ x} (which, by definition, is a code
of ωω) is recursive.

Lemma 1. Let c ⊆ ω be such that, for some ordinal α and some bijection
f : ω → α, we have c = {p(i, j) : i, j ∈ ω ∧ f(i) ∈ f(j)}. Then f ∈ Lα+1[c]. In
particular, if c is recursive and α > ω + 2, then f ∈ Lα+1.

Proof. We need to show that f is definable over Lα[c]. First suppose that α is
a limit ordinal. Then f is defined as follows. For i ∈ ω, we have f(i) = β if and
only if there is a sequence (aι : ι ≤ β) of natural numbers with the following
properties:

1. For all k ∈ {aι : ι ≤ β} =: A, and all j ∈ ω, if p(j, k) ∈ c, then j ∈ A
2. for all ι, ξ ≤ β, we have ι < ξ if and only if p(aι, aξ) ∈ c
3. aβ = i

When α is a limit ordinal, these sequences will be contained in Lα, so the
above provides a definition of f over Lα. When α is a successor ordinal, the
above works up to the last limit ordinal before α and then the remaining values
of f can be defined separately explicitly; we skip the details of this case.

The second claim now follows from the first as a recursive real number c is
contained in Lω+1, so that Lα+1[c] = Lα+1 when α > ω + 2.

Lemma 2. There is a real number x satisfying (1)-(3) above.

Proof. It is clear that the Skolem hull of the empty set in Lωω is equal to Lωω .
By standard fine-structure (see [10]), this implies that Lωω+1 contains a bijection
g : ω → Lωω .

Moreover, as ωω < ωCK
1 , there is a recursive code c for ωω. Using Lemma 1,

a function h : ω → ωω such that c = {p(i, j) : h(i) ∈ h(j)} is definable over Lωω .
Now define f : ω → Lωω by letting, for i ∈ ω, f(2i) = h(i) and letting

f(2i + 1) be the g-image of the ith natural number whose g-image is not an
ordinal. Since g is definable over Lωω , so is f .

Now let x := {p(i, j) : i, j ∈ ω ∧ f(i) ∈ f(j)}. Then x is definable over Lωω

and by definition as desired.

The Lost Melody Theorem for Infinite Time Blum-Shub-Smale Machines 75

We now show that x is a lost melody for ITBMs.

Lemma 3. (Truth predicate evaluation) Given a real number y coding the struc-
ture (Y,R) (with Y a set, R ⊆ Y × Y a binary relation on Y , g : ω → Y a
bijection and y = {p(i, j) : (f(i), f(j)) ∈ Y }) there is an ITBM-program Ptruth

that computes the truth predicate over (Y,R) (i.e., for each ∈-formula φ and all
i1, ..., in ∈ ω, Ptruth will decide, on inputs y and (φ, (i1, ..., in)), whether or not
(Y,R) |= φ(g(i1), ..., g(in))).

Proof. By Proposition 2.7 of Koepke and Morozov [13], there is an ITBM-
program P such that, for each input y ⊆ ω, P y computes the (classical) Turing-
jump of y. By the iteration lemma in [12], there is also an ITBM-program H that
computes the ω-th iteration y(ω) of the Turing-jump of y. But it is clear that the
truth predicate for (Y,R) is recursive in y(ω), and a fortiori ITBM-computable.

Corollary 1. (Identification of natural numbers) There is a program that iden-
tifies the natural numbers coding natural numbers in a real code r for a structure
(A,R). Moreover, there is a program Pid that, for each natural number k, iden-
tifies the natural number i that codes k in the sense of r, provided such i exists.

Proof. The first part is an immediate consequence of the last lemma.
For the second part, note that there is a recursive function that maps each

k ∈ ω to an ∈-formula ψk such that ψk(x) holds if and only if x = k.3 But
then, searching for the natural number coding k is an easy application of the
last lemma: Just check successively, for each i ∈ ω, whether ψk(g(i)) holds in
(A,R) and output the first i ∈ ω for which it is true.

Lemma 4. x is not ITBM-computable.

Proof. Since ITBM-halting times are bounded by ωω, Lωω contains all halting
ITBM-computations. Thus, the statement that the ith ITBM-program Pi halts
is Σ1 over Lωω . By bounded truth predicate evaluation, the set H of i ∈ ω for
which Pi halts - i.e., the ITBM halting set - is thus ITBM-computable from
x. By Koepke and Morozov [13] (transitivity lemma), H would thus be ITBM-
computable if x was ITBM-computable. Thus, x is not ITBM-computable.

Lemma 5. x is ITBM-recognizable.

Proof. Let the input y be given. First, use truth predicate evaluation to check
whether y codes a model of the sentence “I am an L-level” from Boolos [1],
Theorem 1′. If not, output 0.

If yes, check whether, in y, i ∈ ω codes an ordinal if and only if i is even.
This can be determined by computing y(ω) in which the set s of natural numbers
coding ordinals in the sense of y is recursive, and then checking whether the
Turing program that (in the oracle s) runs through ω and halts once it has
found an odd number in s or an even number not in s halts.
3 For example, we can take ψ0(x) to be ∀y ∈ x(y �= y) and then let ψk+1(x) be

∀y(y ∈ x ↔ (∃z(ψk(z) ∧ y ∈ z) ∨ ψk(y))).

76 M. Carl

If not, return 0. Otherwise, continue.
Check whether {p(i, j) : p(2i, 2j) ∈ y} = c. This is possible as c is recursive,

so we can simply compute c and compare it to {p(i, j) : p(2i, 2j) ∈ y}. If not,
return 0. Otherwise, we know that y codes Lωω , and we only need to check
whether it is the “right” code. To do this, we continue as follows:

Using bounded truth predicate evaluation and identification of natural num-
bers, compute the set s of natural numbers i such that Lωω |= φx(i). At this
point, we know that s = x. Now simply compare s to y. If they are equal, output
1, otherwise output 0.

We note for later use that the proof of Lemma5 shows more:

Corollary 2. Let α < ωCK
1 , so that α is an index. Then Lα has an ITBM-

recognizable code c. In fact, c can be taken to be contained in Lα+1.

Proof. Since α < ωCK
1 , there is a recursive real number r that codes α. But then,

since Lα+1 contains a bijection f : ω → Lα, there is, as in Lemma 2, a code c for
Lα that is (i) contained in Lα+1, (ii) codes ordinals by even numbers and such
that (iii) {p(i, j) : i, j ∈ ω ∧ p(2i, 2j) ∈ c} = r. Now c is recognizable as in the
proof of Lemma 5.

Thus, we obtain:

Theorem 2. There is a lost melody for Infinite Time Blum-Shub-Smale
machines.

It is known from [3] that the set of indices of halting ITRM-programs is
ITRM-recognizable, while the set of indices of halting ITTM-programs is not
ITTM-recognizable. Here, we show that ITBMs resemble ITRMs in this respect:
Namely, define H to be the set of natural numbers i such that Pi halts. It is
not hard to see, (though a bit cumbersome)4 that a code c for Lωω is ITBM-
computable from H, say by the program P . Now, to identify whether a given
real number x is equal to H, first check, using the bounded halting problem
solver, whether P x will halt. If not, output 0 and halt. If yes, let y be the output
of P x and check, as in the proof of Lemma 5, whether y is a code for Lωω . If
not, output 0 and halt. Otherwise, use y to compute, again as in the proof of
Lemma 5, the set H, (which is Σ1 over Lωω) and compare x to H. Thus, we get:
4 Here is a sketch for the construction: Use p to split ω into ω many disjoint portions of

the form {p(k, i) : i ∈ ω}. For i ∈ ω, let f0 be the <L-minimal bijection f0 : ω → Lω

and, for i > 0, let fi be the <L-minimal bijection fi : ω → Lωi+1 \ Lωi ; for k ∈ ω,
let Fk :=

⋃
i<k fi. Then let ck := {p(i, j) : Fk(i) ∈ Fk(j)} and c :=

⋃
k∈ω ck. Thus,

c is a code for Lωω . To compute c, it suffices to compute fk and ck, uniformly in k.
For this, run through the ITBM-programs and use H to identify the first program Q
that computes a code d for Lωk+1 . Using H, we can actually obtain d by considering,
for each i ∈ ω, the program Q′

i which, for i ∈ ω, halts when Q(i) halts with output 0
and loops otherwise and using H to check whether Q′

i halts (note that Q′
i is recursive

in Q and i). From d, one can compute f0, ..., fk−1, and hence also Fk, using truth
predicate evaluation (since natural numbers are definable without parameters); again
using truth predicate evaluation, one obtains ck.

The Lost Melody Theorem for Infinite Time Blum-Shub-Smale Machines 77

Theorem 3. The real number H coding the halting problem for ITBMs is
ITBM-recognizable.

3 The Distribution of ITBM-Recognizable Real Numbers

Where do ITBM-recognizable real numbers occur in L? This question was stud-
ied in detail in [4] and [3] for the case of ITRMs and in [5] for wITRMs, where
it turned out that the wITRM-recognizable real numbers coincide with the
wITRM-computable real numbers (i.e., there are no lost melodies for wITRMs),
which are known from Koepke [11] to coincide with the hyperarithmetical real
numbers. By an adaptation of the proof in [5], we obtain:

Lemma 6. Let x ⊆ ω be ITBM-recognizable. Then x ∈ LωCK
1

.

Proof. Let x ⊆ ω be ITBM-recognizable, and let P be an ITBM-program that
recognizes x. It follows that there is an ordinal γ < ωω such that P x halts in
exactly γ many steps. As a snapshot of an ITBM can easily be encoded as a real
number, the same holds for a γ-sequence of such snapshots.

Now, the statement “There is a real number g such that g codes an ITBM-
computation of length γ by P in the oracle y that halts with output 1” is Σ1

1 ;
thus, the set of such y is Σ1

1 , and, in particular, {x} is Σ1
1 . By Kreisel’s basis

theorem (see, e.g., [18], Theorem 7.2), it follows that x ∈ LωCK
1

.

Lemma 7. For every α < ωCK
1 , there is an ITBM-recognizable real number x

such that x /∈ Lα. More specifically, if α < ωCK
1 , then Lα+1 \ Lα contains an

ITBM-recognizable real number.

Proof. The first claim clearly follows from the second one. We thus show the
second claim. Let α < ωCK

1 , so that α is an index. If α < ωω, every real number
in Lα+1 \Lα is ITBM-computable and thus ITBM-recognizable. So suppose that
α ≥ ωω.

By Corollary 2, Lα+1 contains an ITBM-recognizable code c for Lα. It thus
suffices to see that c /∈ Lα. But it is clear that, as c codes all real numbers
contained in Lα, we can define by diagonalization from c a real number not
contained in Lα. For c ∈ Lα, that real number would then be contained in Lα

as well (see, e.g., [2], Theorem 2), a contradiction.
Thus x is as desired.

In combination with Lemma 6 above, this shows that new ITBM-recognizable
real numbers appear wherever they can, i.e., at every L-level < ωCK

1 . This is in
contrast both with ITRMs and ITTMs, for which there are “gaps” in the set
of constructible levels at which new recognizable ordinals appear, see, e.g., [4]
or [8].

78 M. Carl

4 Non-recognizability with and Without Resource
Bounds

Given the results of the preceding section that the ITBM-recognizable real num-
bers appear cofinally in LωCK

1
, it becomes natural to ask whether the same hap-

pens for ITBM-nonrecognizability. (Note that, for weak ITRMs, the set of recog-
nizable real numbers coincides with R∩ LωCK

1
.) Moreover, since ITBMs increase

in computational strength the more computational nodes are allowed in the
program (so that, in particular, there is no universal ITBM, see Koepke and
Morozov [13]), one may wonder whether the same happens for their recogniz-
ability strength (which is the case for ITRMs when one increases the number of
registers, see [3]).

In this section, we will show that (i) non-ITBM-recognizable real numbers
appear cofinally often in LωCK

1
and (ii) for every n ∈ ω, there is a real num-

ber x that is ITBM-recognizable (in fact ITBM-computable), but not ITBM-
recognizable by a program with ≤ n many nodes.

The proof idea for both results is to consider real numbers that are Cohen-
generic over sufficiently high L-levels below LωCK

1
.5 However, since we are work-

ing below the first admissible ordinal, the amount of set theory available in the
relevant ground models is very small. Fortunately, forcing over the very weak set
theory PROVI has been worked out by Mathias in [16] and Bowler and Mathias
in [17]. The results from these papers that will be relevant below are summarized
in the following lemma:

Lemma 8. (Mathias and Bowler)
(i) [17] Lα is provident, i.e., a model of PROVI, if and only if α is indecom-

posable. In particular, Lωι is provident for all ordinals ι > 0.
(ii) [16], Theorem 4.17, the forcing theorem for Δ0-formulas over provident

sets] If Lα is provident, then the forcing theorem for Δ0-formulas (and forcings
contained in Lα) holds for Lα. In particular, if G is Cohen-generic over Lα and
φ(ȧ1, ..., ȧk) is Δ0 (where ȧ1, ..., ȧn are names for Cohen forcing in Lα) and G
is a Cohen-generic filter over Lα (i.e., G intersects every dense subset of Cohen
forcing that is contained in Lα) then Lα[G] |= φ(ȧ1

G, ..., ȧk
G) if and only if there

is p ∈ G such that p � φ(ȧ1, ..., ȧk).

Lemma 9. If n ∈ ω and x ⊆ ω is Cohen-generic over Lωn+1 , then x is not
ITBM-recognizable by an ITBM-program using < n many nodes. In particular,
if x is Cohen-generic over Lωω , then x is not ITBM-recognizable.

Proof. Suppose that x is Cohen-generic over Lωn+1 and ITBM-recognizable by
the program P which uses < n nodes. By Theorem 1, since P x halts, P x will
run for less than ωn many steps. Consequently, the halting computation of P x

with output 1 will be contained in Lωn [x]. Thus Lωn+1 [x] believes that Lωn [x]
contains a halting computation of P in the oracle x with output 1, which is a
Δ0-formula. Let Ȧ be a name for Lωn [x] and let ẋ be a name for x. By the
5 The same approach was used in [3] to obtain non-recognizables for ITRMs.

The Lost Melody Theorem for Infinite Time Blum-Shub-Smale Machines 79

forcing theorem for Δ0-formulas over provident sets, there is a condition p ⊆ x
which forces that Ȧ contains a halting computation of P in the oracle ẋ with
output 1. Now let y be a real number that is Cohen-generic over Lωn+1 , extends
p and is different from x. Then p will also force that P y halts with output 1,
contradicting the assumption that P recognizes x.

If x is Cohen-generic over Lωω , it is in particular Cohen-generic over Lωn for
every n ∈ ω, thus not recognizable by an ITBM-program with any number of
nodes, and thus not ITBM-recognizable.

Theorem 4. (i) For each n ∈ ω, there is a real number x that is ITBM-
computable (and thus ITBM-recognizable), but not ITBM-recognizable by a pro-
gram with < n many nodes.

(ii) For each α < ωCK
1 , there is an ITBM-nonrecognizable real number in

LωCK
1

\ Lα. In fact, if α > ωω is an index, then Lα+1 \ Lα contains a non-
ITBM-recognizable real number. Thus, below ωCK

1 , new non-ITBM-recognizable
real numbers appear at every level after ωω.

Proof. (i) For n ∈ ω, let x ∈ Lωn+1+1 be Cohen-generic over Lωn+1 (the existence
of such an x is proved in part (ii) below). By Lemma8, Lωn+1 is provident.
However, as x ∈ Lωω , it is ITBM-computable and thus ITBM-recognizable, but
not by a program with < n many nodes by Lemma 9.

(ii) By Lemma 9, it suffices to show that Lα+1 \Lα contains a Cohen-generic
real number over Lωω whenever α ≥ ωω is an index.

We will show that Lα+1 in fact contains a real number that is Cohen-generic
over Lα, which will in most cases be much more than demanded. By fine-
structure, a surjection from ω to Lα is definable over Lα; a fortiori, there is
a surjection f from ω to the dense subsets of Cohen-forcing in Lα definable over
Lα, say by the formula φf (x, y, q), q a finite tuple of elements of Lα. Now define
x : ω → 2 by letting x(i) = b if and only if there is a finite sequence (pj : j ≤ k)
of Cohen-conditions such that p0 = ∅ and, for all j < k, pj+1 is the <L-minimal
element of f(j) that extends pj and such that pk(i) = b. By definition of x, it is
Cohen-generic and definable over Lα.

Note that the programs used in the proof of Corollary 2 can all be taken to
use the same number of nodes, so that there is a fixed number n such that the
real numbers that are ITBM-recognizable by programs with n nodes are already
cofinal in LωCK

1
.

This leaves us with the question whether, for any n ∈ ω, there is a non-ITBM-
computable real number that is ITBM-recognizable, but not by a program with
n nodes. This is indeed the case.

Theorem 5. Let n ∈ ω. Then there are cofinally in LωCK
1

many real numbers
x that are ITBM-recognizable, but not with ≤ n nodes. In particular, there are
cofinally in LωCK

1
many ITBM-lost melodies that are not ITBM-recognizable with

≤ n nodes.

80 M. Carl

Proof. We will show that there is an ITBM-computable injection f : R → R

that has an ITBM-computable (partial) inverse function g and maps each real
number x to a real number x̃ that is Cohen-generic over Lωn+1 . Once this is done,
the result can be seen as follows: Let Pg be an ITBM-program that computes
g. Given α < ωCK

1 , pick a real number c that is ITBM-recognizable, but not
contained in Lα (the existence of such real numbers was proved above); we can
assume without loss of generality that α > ωω. Let P be an ITBM-program for
recognizing c. We claim that c̃ is ITBM-recognizable, but not with ≤ n nodes.
The latter claim follows since c̃ is by definition Cohen-generic over Lωn+1 . To
recognize c̃, first check whether g(c̃) is defined. Note that this can be done by
clocking P c̃

g for ωm+1 many steps, where m is the number of nodes used in Pg.
If not, halt with output 0. Otherwise, compute g(c̃) and return the output of
P g(c̃). Since g is injective, this will give the right result.

The encoding f works as follows: Let D = (Di : i ∈ ω) be an ITBM-
computable enumeration of the dense subsets of Cohen-forcing contained in
Lωn+1 , encoded in some natural way as a real number d. Define a sequence
(c̃i : i ∈ ω) by letting c̃0 = ∅ and c̃i+1 the lexically minimal element ei of Di

that extends c̃i when i ∈ c and otherwise c̃i+1 is the lexically first element of Di

that properly extends c̃i and is incompatible with ei. Then let c̃ :=
⋃

i∈ω c̃i. It
is now easy to see that there the function h : R× ω → R that maps (x, i) to the
ith bit of x̃ is actually recursive in d.

Similarly, we can recursively reconstruct x from x̃ and d: Namely, given x,
i and d, compute a sufficiently long initial segment of (x̃i : i ∈ ω) such that
the last element fixes the ith bit. To compute x̃i+1 from x̃i, exhaustively search
(in lexicographic order) through all finite partial functions from ω to 2 that
extend x̃i, find the lexically minimal element ei that properly extends x̃i and see
whether x extends ei. If that is the case, then i ∈ x, otherwise, we have i /∈ x.
Now, if we had c̃ ∈ Lα, then d ∈ Lωω ⊆ Lα, combined with c being recursive in
d and c̃, would imply c ∈ Lα, a contradiction; thus, we have c̃ /∈ Lα.

The second claim now follows, as the ITBM-computable real numbers belong
to Lωω .

Acknowledgements. We thank our three anonymous referees for various helpful sug-
gestions for improving the presentation of this paper.

References

1. Boolos, G.: On the semantics of the constructible levels. Math. Logic Q. 16, 139–
148 (1970)

2. Boolos, G., Putnam, H.: Degrees of unsolvability of constructible sets of integers.
J. Symb. Log. 33, 497–513 (1968)

3. Carl, M.: Optimal results on ITRM-recognizability. arXiv: Logic (2013)
4. Carl, M.: The distribution of ITRM-recognizable reals. Ann. Pure Appl. Log. 165,

1403–1417 (2014)
5. Carl, M.: The lost melody phenomenon, pp. 49–70. arXiv: Logic (2014)

http://arxiv.org/abs/Logic
http://arxiv.org/abs/Logic

The Lost Melody Theorem for Infinite Time Blum-Shub-Smale Machines 81

6. Carl, M., Fischbach, T., Koepke, P., Miller, R., Nasfi, M., Weckbecker, G.: The
basic theory of infinite time register machines. Arch. Math. Logic 49, 249–273
(2010)

7. Carl, M., Schlicht, P., Welch, P.: Recognizable sets and woodin cardinals: com-
putation beyond the constructible universe. Ann. Pure Appl. Log. 169, 312–332
(2018)

8. Carl, M.: Ordinal Computability. An Introduction to Infinitary Machines. De
Gruyter, Berlin, Boston (2019). https://doi.org/10.1515/9783110496154

9. Hamkins, J., Lewis, A.: Infinite time turing machines. J. Symb. Logic 65, 567–604
(2000)

10. Jensen, R.: The fine structure of the constructible hierarchy. Ann. Math. Logic 4,
229–308 (1972)

11. Koepke, P.: Infinite time register machines. In: Beckmann, A., Berger, U., Löwe, B.,
Tucker, J.V. (eds.) CiE 2006. LNCS, vol. 3988, pp. 257–266. Springer, Heidelberg
(2006). https://doi.org/10.1007/11780342 27

12. Koepke, P., Miller, R.: An Enhanced Theory of Infinite Time Register Machines.
In: Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds.) CiE 2008. LNCS, vol.
5028, pp. 306–315. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-69407-6 34

13. Koepke, P., Morozov, A.: The computational power of infinite time blum-shub-
smale machines. Algebra Logic 56, 37–62 (2017). https://doi.org/10.1007/s10469-
017-9425-x

14. Koepke, P., Seyfferth, B.: Towards a theory of infinite time blum-shub-smale
machines. In: Cooper, S.B., Dawar, A., Löwe, B. (eds.) CiE 2012. LNCS, vol.
7318, pp. 405–415. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-30870-3 41

15. Marek, W., Srebrny, M.: Gaps in the constructible universe. Ann. Math. Logic 6,
359–394 (1974)

16. Mathias, A.: Provident sets and rudimentary set forcing. Fundamenta Mathemat-
icae 230, 99–148 (2015)

17. Mathias, A.R.D., Bowler, N.J.: Rudimentary recursion, gentle functions and prov-
ident sets. Notre Dame J. Formal Logic 56(1), 3–60 (2015)

18. Sacks, G.E.: Higher Recursion Theory. Perspectives in Logic. Cambridge University
Press, Cambridge (2017). https://doi.org/10.1017/9781316717301

19. Welch, P.D.: Discrete transfinite computation. In: Sommaruga, G., Strahm, T.
(eds.) Turing’s Revolution, pp. 161–185. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-22156-4 6

https://doi.org/10.1515/9783110496154
https://doi.org/10.1007/11780342_27
https://doi.org/10.1007/978-3-540-69407-6_34
https://doi.org/10.1007/978-3-540-69407-6_34
https://doi.org/10.1007/s10469-017-9425-x
https://doi.org/10.1007/s10469-017-9425-x
https://doi.org/10.1007/978-3-642-30870-3_41
https://doi.org/10.1007/978-3-642-30870-3_41
https://doi.org/10.1017/9781316717301
https://doi.org/10.1007/978-3-319-22156-4_6
https://doi.org/10.1007/978-3-319-22156-4_6

Randomising Realizability

Merlin Carl1, Lorenzo Galeotti2(B), and Robert Passmann3,4

1 Europa-Universität Flensburg, 24943 Flensburg, Germany
2 Amsterdam University College, Postbus 94160,

1090 GD Amsterdam, The Netherlands
l.galeotti@uva.nl

3 Institute for Logic, Language and Computation, Faculty of Science, University
of Amsterdam, P.O. Box 94242, 1090 GE Amsterdam, The Netherlands

4 St John’s College, University of Cambridge, Cambridge CB2 1TP, England

Abstract. We consider a randomised version of Kleene’s realizabil-
ity interpretation of intuitionistic arithmetic in which computability is
replaced with randomised computability with positive probability. In
particular, we show that (i) the set of randomly realizable statements
is closed under intuitionistic first-order logic, but (ii) different from the
set of realizable statements, that (iii) “realizability with probability 1”
is the same as realizability and (iv) that the axioms of bounded Heyt-
ing’s arithmetic are randomly realizable, but some instances of the full
induction scheme fail to be randomly realizable.

1 Introduction

Have you met skeptical Steve? Being even more skeptical than most mathemati-
cians, he only believes what he actually sees. To convince him that there is an
x such that A, you have to give him an example, together with evidence that
A holds for that example. To convince him that A → B, you have to show him
a method for turning evidence of A into evidence of B, and so on. Given that
Steve is “a man provided with paper, pencil, and rubber, and subject to strict
discipline” [9], we can read “method” as “Turing program”, which leads us to
Kleene’s realizability interpretation of intuitionistic logic [4].

Steve has a younger brother, pragmatical Per. Like Steve, Per is equipped
with paper and pencil; however, he also has a coin on his desk, which he is allowed
to throw from time to time while performing computations. By his pragmatical
nature, he does not require being successful at obtaining evidence for a given
proposition A every time he gives it a try; he is quite happy when it works with
probability (1 − 1

10100) or so, which makes it highly unlikely to ever fail in his
lifetime.

The authors would like to thank Rosalie Iemhoff and Jaap van Oosten for discussions
about the material included in this paper.

c© Springer Nature Switzerland AG 2021
L. De Mol et al. (Eds.): CiE 2021, LNCS 12813, pp. 82–93, 2021.
https://doi.org/10.1007/978-3-030-80049-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80049-9_8&domain=pdf
https://doi.org/10.1007/978-3-030-80049-9_8

Randomising Realizability 83

Per wonders whether his pragmatism is more powerful than Steve’s method.
After all, he knows about Sacks’s theorem1 [1, Corollary 8.12.2] that every func-
tion f : ω → ω that is computable using coin throws with positive probability is
recursive. Can he find evidence for some claims where Steve fails? He also notices
that turning such “probabilistic evidence” for A into “probabilistic evidence” for
B is a job considerably different (and potentially harder) than turning evidence
for A into evidence for B. Could it be that there are propositions whose truth
Steve can see, but Per cannot? Although Per is skeptical, e.g., of the law of
the excluded middle just like Steve, he is quite fond of the deduction rules of
intuitionistic logic; thus, he wonders whether the set of statements for which he
can obtain his “highly probable evidence” is closed under these.

Steve is unhappy with his brother’s sloppiness. After all, even probability
(1− 1

10100) leaves a nonzero, albeit small, chance of getting things wrong. He might
consider changing his mind if that chance was brought down to 0 by strength-
ening Per’s definition, demanding that the “probabilistic evidence” works with
probability 1. However, he is only willing to give up absolute security if that
leads to evidence for more statements. Thus, he asks whether “probability 1
evidence” is the same as “evidence”.

These and other questions will be considered in this paper. To begin with, we
will model Per’s attitude formally, which gives us the concepts of μ-realizability
and almost sure realizability. We will then show the following: There are state-
ments that are μ-realizable, but not realizable (Theorem 13). The set of μ-
realizable statements are closed under deduction in intuitionistic predicate cal-
culus (Theorem 15); in a certain sense to be specified below, the law or excluded
middle fails for μ-realizability (Lemma 14). The axioms of Heyting arithmetic
except for the induction schema are μ-realized (Theorem 16); and there are
instances of the induction schema that are not μ-realized (Theorem 17). Almost
sure realizability is the same as realizability (Theorem 22).

2 Preliminaries

Realizability is one of the most common semantic tools for the study of con-
structive theories and was introduced by Kleene in his seminal 1945 paper [4].
In this work, Kleene connected intuitionistic arithmetic—nowadays called Heyt-
ing arithmetic—and recursive functions. The essential idea is that a statement
is true if and only if there is a recursive function witnessing its truth. For more
details on realizability, see also Troelstra’s 344 [8], and see van Oosten’s paper
[7] for an excellent historical survey of realizability. In particular, see [8, Defini-
tion 3.2.2] for a definition of realizability in terms of recursive functions. In what
follows, we denote this realizability relation by “�”, and we will call it “Kleene
realizability.”

As mentioned in the introduction, we want to give pragmatic Per the ability
to throw coins while he tries to prove the truth of a statement. We will imple-
1 Sacks’s theorem is the corollary of an earlier result by de Leeuw, Moore, Shannon,

and Shapiro, see, e.g., [1, Theorem 8.12.1].

84 M. Carl et al.

ment this coin throwing by allowing Per to access an infinite binary sequence.
Therefore, we will make use of the Lebesgue measure on Cantor space 2ω. For
a full definition, see Kanamori’s section on ‘Measure and Category’ [2, Chapter
0]. We denote the Lebesgue measure by μ. Recall that a set A is Lebesgue mea-
surable if and only if there is a Borel set B such that the symmetric difference
of A and B is null. Given an element u of Cantor space we will denote by Nu�n
the basic clopen set {v ∈ 2ω ; u � n ⊂ v} where as usual u � n is the prefix of u
of length n, and u � n ⊂ v if u � n is a prefix of v. We recall that given a binary
sequence s of length n, we have that Ns is measurable and μ(Ns) = 1

2n .
We fix a computable enumeration (pn)n∈N of programs. Given a program

p that uses an oracle and an element u ∈ 2ω of Cantor space we will denote
by pu the program p where the oracle tape contains u at the beginning of the
computation. Moreover, given n ∈ N we will denote by p(n) the program that
for every oracle u ∈ 2ω returns pu(n).

A sentence in the language of arithmetic is said to be Δ0 if it does not contain
unbounded quantifiers. We will say that a sentence is pretty Σ1 if it is Δ0 or of
the form Q0Q1 . . . Qnψ where ψ is Δ0 and Qi is either an existential quantifier
or a bounded universal quantifier for every 0 ≤ i ≤ n. Similarly, we will say that
a sentence is universal Π1 if it is Δ0 or of the form Q0Q1 . . . Qnψ where ψ is Δ0

and Qi is a universal quantifier for every 0 ≤ i ≤ n.
Throughout this paper, we fix codings for formulas and programs. In order

to simplify notation, we will use ϕ to refer to both the formula and its code,
and similar for programs p. We end this section with some lemmas on Kleene
realizability of pretty Σ1 and universal Π1 formulas.

Lemma 1. There is a program p that for every pretty Σ1 sentence ϕ does the
following: If ϕ is true then p(ϕ) halts and outputs a realizer of ϕ and otherwise
it diverges.

Lemma 2. There is a program p that for every universal Π1 sentence ϕ does
the following: If ϕ is true then p(ϕ) halts and outputs a realizer of ϕ (we do not
specify a behaviour otherwise).

Lemma 3. A pretty Σ1 sentence in the language of arithmetic is realized if and
only if it is true. The same result holds for universal Π1 sentences.

3 Random Realizability

In this section we will introduce the notion of μ-realizability and prove its basic
properties. As mentioned before, we will modify realizability in order to use
realizers that can access an element of Cantor space. Then we will say that a
sentence is randomly realized if for a non-null set of oracles in Cantor space the
program does realize the sentence. Formally we define μ-realizability as follows:

Definition 4 (μ-realizability). We define two realizability relations by mutual
recursion: �O whose domain consists of pairs (u, p) of an oracle tape u ∈ 2ω and

Randomising Realizability 85

a program p (potentially appealing to an oracle tape); and �μ whose domain
consists of programs p (potentially appealing to an oracle tape). The range of
both relations are sentences ϕ in the language of arithmetic. We define:

1. (p, u) ��O ⊥,
2. (p, u) �O n = m if and only if n = m,
3. (p, u) �O ϕ ∧ ψ if and only if (pu(0), u) �O ϕ and (pu(1), u) �O ψ,
4. (p, u) �O ϕ ∨ ψ if and only if we have pu(0) = 0 and (pu(1), u) �O ϕ or

pu(0) = 1 and (pu(1), u) �O ψ,
5. (p, u) �O ϕ → ψ if and only if for all s such that s �μ ϕ, we have that

pu(s) �μ ψ,
6. (p, u) �O ∃xϕ if and only if (pu(0), u) �O ϕ(pu(1)),
7. (p, u) �O ∀xϕ if and only if for all n ∈ ω we have (pu(n), u) �O ϕ(n).

For every program p that uses an oracle and every sentence ϕ in the language
of arithmetic, we will denote by Cp,ϕ the set: {u ∈ 2ω ; (p, u) �O ϕ}. Let ϕ be
a sentence in the language of arithmetic, r be a positive real number, and p be
a program using an oracle. We define p �μ ϕ ≥ r as follows: p �μ ϕ ≥ r if
and only if μ(Cp,ϕ) ≥ r. In this case we will say that p randomly realizes (or
μ-realizes) ϕ with probability at least r.

We will say that ϕ is randomly realizable (or μ-realizable) with probability at
least r if and only if there is p such that p �μ ϕ ≥ r. Moreover, we write p �μ ϕ
and say that p randomly realizes (or μ-realizes) ϕ if and only if p �μ ϕ ≥ r for
some r > 0. Finally, we will say that ϕ is randomly realizable (or μ-realizable)
if sup{μ(Cp,ϕ) ; p �μ ϕ} = 1.

Note that �μ is well-defined in virtue of the following lemma.

Lemma 5. For all programs p and sentences ϕ the set Cp,ϕ is Borel. In partic-
ular Cp,ϕ is measurable.

Proof. The proof is an induction on the complexity of ϕ. All the cases except
implication follow directly from the closure properties of the pointclass of Borel
sets, see, e.g., [5, Theorem 1C.2]. Let us just prove the implication case. Let
ϕ ≡ ψ0 → ψ1 and p be a program. For every program s let As be 2ω if s ��μ ψ0

and Cp(s),ψ1 , otherwise. Then Cp,ϕ =
⋂

s∈N
As. By inductive hypothesis we have

that As is Borel for every s so Cp,ϕ is a countable intersection of Borel sets,
which is Borel. ��

Why does the definition of μ-realizability have to be so complicated? A sim-
pler, natural attempt would be the following: Consider the notion of Oracle-
realizability �Or which is defined just like Kleene realizability but allowing the
realizers to access a fixed oracle, i.e., �Or is defined like �O except for case 5.,
which would be modified as follows:

5’. (p, u) �Or ϕ → ψ if and only if for all s such that (s, u) �Or ϕ, we have that
pu(s) �Or ψ.

86 M. Carl et al.

On the basis of �Or, we could then define an alternative notion of μ-realizability
as follows:

p �′
μ ϕ ≥ r ⇔ μ({u ; (p, u) �Or ϕ}) ≥ r

Unfortunately, it turns out that this relation is not closed under modus ponens
and the ∀-GEN rule of predicate logic, i.e., the rule that asserts that if x is not
free in ψ then from ψ → ϕ we can infer ψ → (∀x ϕ). We will discuss some other
natural approaches in Sect. 6. For now, we begin our study of μ-realizability by
showing that the set of μ-realized sentences of arithmetic is consistent.

Lemma 6. Let ϕ be a sentence in the language of arithmetic. Then ϕ is μ-
realized if and only if ¬ϕ is not μ-realized.

Proof. Assume that both p �μ ϕ and q �μ ¬ϕ. Suppose that u ∈ Cq,¬ϕ. Then
qu(p) is a realizer of ⊥, a contradiction. ��

The following lemma has a crucial role in the theory of μ-realizability.

Lemma 7 (Push Up Lemma). Let ϕ be a sentence in the language of first
order arithmetic and 0 < r ≤ r′ < 1 be positive real numbers. Then ϕ is randomly
realizable with probability at least r if and only if ϕ is randomly realizable with
probability at least r′.

Proof. The right-to-left direction is trivial. For the left-to-right direction, let ϕ be
randomly realizable with probability at least r. We will show that ϕ is randomly
realized with probability at least r′. Let p be a program such that μ(Cp,ϕ) ≥
r > 0. By the Lebesgue Density Theorem [3, Exercise 17.9] there are u ∈ 2ω

and n ∈ ω such that μ(Cp,ϕ∩Nu�n)
μ(Nu�n) > r′. Now, let p′ be the program that given

an oracle runs p with oracle (u � n) ◦ u. Note that μ(Cp′,ϕ) = μ(Cp,ϕ∩Nu�n)
μ(Nu�n) > r′.

Finally, it follows trivially by the definition that p′ randomly realizable with
probability at least r′ as desired. ��

The Push Up Lemma allows to simplify the definition of μ-realizability as
follows.

Corollary 8. A sentence ϕ in the language of arithmetic is μ-realizable if and
only if there is a non-zero r ≤ 1 such that ϕ is μ-realizable with probability at
least r.

We conclude this section with some basic interactions between μ-realizability
and the logical operators.

Corollary 9. Let ψ0 and ψ1 be sentences and let ϕ be a formula. Then for every
p the following hold:

1. p �μ ψ0 ∧ ψ1 if and only if there are s and q such that s �μ ψ0 and q �μ ψ1.
2. p �μ ψ0 ∨ ψ1 if and only if there is q such that q �μ ψ0 or q �μ ψ1.
3. If p �μ ψ0 → ψ1 then p(s) �μ ψ1 for all s such that s �μ ψ0.
4. If p �μ ∃xϕ then there is n ∈ N such that p(0) �μ ϕ(n).

Randomising Realizability 87

5. If p �μ ∀xϕ then for all n ∈ N we have p(n) �μ ϕ(n).

Corollary 10. Let ψ0 and ψ1 be sentences and let ϕ be a formula. Then for
every p the following hold:

1. p �μ ψ0 ∧ ψ1 ≥ 1 if and only if p(0) �μ ψ0 ≥ 1 and p(1) �μ ψ1 ≥ 1.
2. If p(1) �μ ψ0 ≥ 1 or p(1) �μ ψ1 ≥ 1 then p �μ ψ0 ∨ ψ1 ≥ 1.
3. If p(s) �μ ψ1 ≥ 1 for all s such that s �μ ψ0 then p �μ ψ0 → ψ1 ≥ 1.
4. If there is n ∈ N such that p(n) �μ ϕ(n) ≥ 1 then p �μ ∃xϕ ≥ 1.
5. If all n ∈ N we have p(n) �μ ϕ(n) ≥ 1 then p �μ ∀xϕ ≥ 1.

4 Kleene Realizability and Random Realizability

In this section, we will study the relationship between Kleene and random real-
izability. In particular we will show that the two notion do not coincide.

We start by proving that Kleene realizability and μ-realizability agree on
pretty Σ1 sentences and that therefore μ-realizability for pretty Σ1 sentences
coincides with arithmetic truth.

Theorem 11. Let ϕ be a pretty Σ1 sentence in the language of arithmetic.
Then, there are two computable functions Pμ and P−1

μ such that for every p,
(i) p � ϕ implies Pμ(p, ϕ) �μ ϕ ≥ 1, and (ii) p �μ ϕ implies P−1

μ (p, ϕ) � ϕ.
Therefore a pretty Σ1 formula is true if and only if it is μ-realized. The same
result holds for universal Π1 sentences.

Proof. The case for Δ0 formulas is straightforward. We show how to extend to
(1) pretty Σ1 formulas, and (2) universal Π1 formulas.

(1) Let ϕ ≡ ∃xψ, where ψ is pretty Σ1. First assume that p �μ ∃xψ. Then,
by Corollary 9 there must be n ∈ N such that p(0) �μ ψ(n). Therefore, by
inductive hypothesis ψ(n) is realized. Let P−1

μ (p, ϕ) be the program that does
the following: run in parallel all the instances of the program of Lemma1 with
input ψ(n) with n ∈ N. By inductive hypothesis, one of these instances must
halt. Let i ∈ N be the first for which the ψ(i) instance halts. Then on input 0, the
program returns P−1

μ (p(0), ψ(i)) and for 1, the program returns i. By inductive
hypothesis, the program halts and returns a realizer of ϕ, as desired.

Now assume that p � ∃xψ. Then p(0) � ψ(p(1)). Let f(p, ϕ) be the program
that returns Pμ(p(0), ψ(p(1))) if the input is 0 and p(1) if the input is 1. By
inductive hypothesis Pμ(p(0), ψ(p(1))) �μ ψ(p(1)) ≥ 1. But then by Corollary 10
since for all u we have Pμ(p, ϕ)u(0) = f(p(0), ψ(p(1))) and Pμ(p, ϕ)u(0) = p(1),
we have that Pμ(p, ϕ) �μ ∃xψ ≥ 1 as desired.

(2) Let ϕ ≡ ∀xψ where ψ is universal Π1. First assume that p �μ ∀xψ. Let
P−1

μ (p, ϕ) be the program that for all n runs Pμ(P−1
μ (p(n), ψ(n))). By Corollary 9

and the inductive hypothesis P−1
μ (p(n), ψ(n)) is a realizer of ψ(n). Therefore

P−1
μ (p, ϕ) is a realizer of ∀xψ as desired.

Now assume that p � ∀xψ. Let Pμ(p, ϕ) be the program that for every n
and for every oracle returns Pμ(p(n), ψ(n)). Once more by inductive hypothesis

88 M. Carl et al.

for all n μ(CPμ(p(n),ψ(n)),ψ(n)) = 1 but then μ(
⋂

n∈N
CPμ(p(n),ψ(n)),ψ(n)) = 1 and

Pμ(p, ϕ) �μ ϕ ≥ 1 as desired.
The second part of the statement follows from Lemma 3. ��

Corollary 12. Let ϕ be any false pretty Σ1 sentence in the language of arith-
metic. Then (p, u) �O ϕ → ⊥ and p �μ ϕ → ⊥ ≥ 1 for every p and u. The same
holds for universal Π1 formulas.

We are now ready to prove the main result of this section, namely that
μ-realizability and Kleene realizability do not coincide. This result is surprising
given that by Sacks’s theorem [1, Corollary 8.12.2] functions that are computable
with a non-null set of oracles are computable by a classical Turing machine.

Theorem 13. There is a sentence ϕ in the language of arithmetic that is ran-
domly realizable but not realizable.

Proof. Let ψ(k) be the sentence “There is n such that for all � the execution of
pk(k) does not stop in at most � steps or pk(k) �= n”, and ϕ be the sentence “For
all k, ψ(k) or pk(k) �= n”. We will show that ϕ is not Kleene realizable but that
it is μ-realizable.

A Kleene realizer for ϕ would be a program that computes a total function
that, for every code k of a program, returns a natural number which is not the
output of pk(k). By diagonalization, such a program cannot exists: If pk was a
code for such a program, then for every n ∈ ω we would have that pk(k) = n ⇔
pk(k) �= n.

Now we want to show that ϕ is randomly realizable. Fix any realizer s. Let p
be the program that given an oracle u ∈ 2ω, a natural number k, and i ∈ {0, 1}
does the following:2 Let pu(k)(0) = u�(k + 1) and pu(k)(1) = p′ where p′ is the
program that ignores the oracle and does the following:

On input �, p′ checks whether pk(k) stops in � steps. If not, then p′(�) is the
code of a program that returns 0 on input 0 and s on input 1. Otherwise p′(�)
is the code of a program that returns 1 on input 0 and on input 1 looks for an
μ-realizer of the Δ0 formula expressing the fact that “pk(k) �= u�(k + 1)” by
running the algorithms in Lemma3 and Theorem 11.

Now, for every k ∈ ω and u ∈ 2ω we have that pu(k)(1) = u�(k + 1) and
pu(k)(0) = p′. There are two cases.

If pk(k) does not halt, then p′(�)(0) = 0 and p′(�)(1) = s for every �. More-
over, by Corollary 12 (s, u) �O “pk(k) does not halt in � steps” and therefore
(pu(k), u) �O ψ(k).

If pk(k) halts, then let � be such that pk(k) halts in at most � steps. Then,
p′(�)(0) = 1. Moreover, note that if the output of pk(k) is not the same as the
first k bits of the oracle then (p′(�)u(1), u) �O u�(k + 1) �= pk(k).

We only need to show that μ(Cp,ϕ) > 0. To see this, it is enough to note that
the set of u such that pk(k) �= u�(k + 1) has measure ≥ 1 − 1

2(k+1) . Therefore,
μ(Cp,ϕ) =

∏
k∈N

(1 − 1
2(k+1)) > 0 as desired. ��

2 Here, we do not distinguish between the finite sequence u�(k + 1) and the natural
number coding it.

Randomising Realizability 89

5 Soundness and Arithmetic

In this section, we study the logic and arithmetic of μ-realizability. We first
observe that some instances of the Law of Excluded Middle are not μ-realizable.

Lemma 14. There is ϕ such that ∀x(ϕ(x) ∨ ¬ϕ(x)) is not μ-realizable.

Proof. Let ϕ(x) be the formula expressing the fact that the program px(x) halts.
Assume that ∀x(ϕ(x) ∨ ¬ϕ(x)) is randomly realized. Then, there is a program
p such that p �μ ∀x(ϕ(x) ∨ ¬ϕ(x)). Therefore, p computes the halting problem
for a set of oracles of measure > 0. But this directly contradicts Sacks’s theorem
[1, Corollary 8.12.2]. ��
Theorem 15 (Soundness). The set of μ-realizable statements is closed under
the rules of intuitionistic first-order calculus.

It is a classical result that the axioms of Heyting Aritmetic are realizable,
see [6, Theorem 1]. However, only a fragment of HA is μ-realizable. Let HA−

denote the axioms of Peano arithmetic without the induction schema. As usual,
Heyting arithmetic HA is the theory obtained from adding the induction schema
to HA−. We say that a set of formulas Γ is μ-realized if ϕ is μ-realized for all
ϕ ∈ Γ .

Since all the axioms except for the induction schema are universal Π1 state-
ments, it follows by Theorem 11 that the axioms of HA− are all μ-realized.

Theorem 16. The set HA− is μ-realized.

Contrary to Kleene realizability, the induction schema is not μ-realizable. A
consequence of the following theorem is that the negation of some instances of
the induction schema are μ-realized.

Theorem 17. Some instances of the induction schema are not μ-realized.

Proof. Let ϕ(x) be the formula expressing the fact that “Every program with
code i < x halts or does not halt”. By the proof of Lemma14, ϕ is not μ-
realizable.

On the other hand, a μ-realizer p(n) for ϕ(n) is given by a program that does
the following: for every i < n, p returns a program that if the ith element of the
oracle is 1 returns 1 on input 0 and any number on input 1. While if the ith
element of the oracle is 0 the program returns 0 on input 0 and on input 1 starts
building a realizer of “the program i halts” using the algorithm in Lemma1; if it
finds one, it runs the algorithm in Theorem11 to compute the desired μ-realizer.

It is not hard to see that the algorithm works with probability 1
2n . Thus, to

realize the implication ϕ(n) → ϕ(n + 1), we can ignore the μ-realizer for ϕ(n)
and just output p(n). So the premise of the instance of the induction schema is
μ-realized, while the conclusion is not. ��

90 M. Carl et al.

Note that the proof of Theorem 17 heavily relies on the fact that the definition
of μ-realizability does not require any relationship between the measures of the
set of oracles realizing the antecedent of an implication and the set of oracles
realizing the consequent. We think that a modification of this definition could
lead to a notion of probabilistic realizability that realizes the induction schema.

Even though the axiom schema of induction is not μ-realizable, one can prove
that all Δ0-instances of the schema are realizable. Indeed, by Theorem 11 and
the fact that if ϕ is a Δ0 formula then ∀xϕ(x, ȳ) is a universal Π1 formula, we
have the following:

Corollary 18. The set HA− together with the induction schema restricted to
Δ0 formulas is μ-realizable.

6 Big Realizability

When we defined μ-realizability in Sect. 3, we explained that a prima facie more
natural definition would not work because it is not sound for intuitionistic logic.
There are yet some other potential definitions that we will consider in this
section. These notions of realizability arise from notions of big sets of oracles on
Cantor space. The idea is that a statement is realised whenever it is realised with
a ‘big’ set of oracles. More specifically, we will consider “almost sure realizabil-
ity,” “comeagre realizability,” “interval-free realizability,” and “positive measure
realizability.” It will turn out, however, that these notions are not so interest-
ing: The first three are equivalent to Kleene realizability, and the fourth notion
coincides with arithmetic truth. We begin with the following general definition.

Definition 19. Let F be a family of subsets of Cantor space 2ω. We then define
F-realizability recursively as follows:

1. p �F ⊥ never,
2. p �F n = m if and only if n = m,
3. p �F ψ0 ∧ ψ1 if and only if p(i) �F ψi for i < 2,
4. p �F ψ0 ∨ ψ1 if and only if there is some O ∈ F and some i < 2 such that

for every u ∈ O, we have pu(0) = i and pu(1) �F ψi,
5. p �F ϕ → ψ if and only if there is a set O ∈ F , such that for every u ∈ O

and s �F ϕ, we have pu(s) �F ψ,
6. p �F ∃xϕ if and only if there is some O ∈ F and n ∈ ω such that for all

u ∈ O we have pu(0) = n and pu(1) � ϕ(n),
7. p �F ∀xϕ if and only if there is a set O ∈ F , such that for every u ∈ O and

n ∈ N we have pu(n) �F ϕ(n).

From this definition, we derive the following notions of realizability: Let Fif

be the family of co-interval-free subsets of the Cantor space, i.e. X ∈ Fcif if and
only if X ∈ 2ω and there is no open interval I such that I ⊆ 2ω \ X, and �cif

denotes Fcif -realizability. Let C be the family of comeagre subsets of the Cantor
space, then let �C denote C-realizability. Let F=1 be the family of subsets of the

Randomising Realizability 91

Cantor space that are of measure 1, and let �=1 denote F=1-realizability. Let
F>0 be the family of subsets of the Cantor space of positive measure, and �>0

denotes F>0-realizability. As before, we will write �F ϕ if and only if there is
some realizer p such that p �F ϕ.

In what follows we will make use of the bounded exhaustive search with p(n),
i.e., the following procedure. Given a program p (and possibly some input n),
do the following successively for all k ∈ ω. Enumerate all 0-1-strings of length k.
For each of these strings s, do the following: Run ps(n) for k many steps. If the
computation does not halt within that time (which implies in particular that at
most the first k many bits of the oracle were requested), continue with the next
s (if there is one, otherwise with (k + 1)). If the computation halts with output
x within that time, then the search terminates with output x.

A similar procedure is used in [1, Theorem 8.12.1, Corollary 8.12.2] and its
crucial property is the following:

Lemma 20. Let G ⊆ ω, n ∈ ω and let p be a program. Suppose that there is a
set S ⊆ 2ω such that 2ω \ S is interval-free and pu(n) terminates for all u ∈ S
with output k ∈ G. Then the bounded exhaustive search with p(n) will terminate
with output k ∈ G.

Proof. Note that for every n and u ∈ S we have that pu(n) terminates with
output in G. So, there is a finite initial segment s of u such that ps(n) terminates
with output pu(n). So, the bounded exhaustive search will halt.

Now, note that if the search halts on the string s with output k ∈ ω, but
k /∈ G, then px(n) ↓ k for all u ∈ Ns. But then, Ns ⊆ 2ω \ S which contradicts
the fact that 2ω \ S is interval free. ��
Lemma 21. Let X ⊆ 2ω be a subset of Cantor space. If μ(X) = 0 or X is
meagre, then X is interval-free.

Theorem 22. Let F be a family of subsets of Cantor space such that every X ∈
F is co-interval-free. There are programs PF , “realisability to F-realisability,”
and P−1

F , “F-realisability to realisability,” such that the following hold for all
statements ϕ:

1. If r � ϕ, then PF (r, ϕ) �F ϕ.
2. If r �F ϕ, then P−1

F (r, ϕ) � ϕ.

Consequently, ϕ is realisable if and only if it is F-realisable.

Proof. Only the cases for ∃, ∀ and ∨ make use of bounded exhaustive search.
The other cases are straightforward. The case for ∨ is essentially a special case
of the ∃-case.

(1) ϕ is ∃xψ(x). Let p � ∃xψ(x). Then p(0) = n and p(1) � ψ(n). By induc-
tion hypothesis, it follows that PF (p(1), ψ) �F ψ(n). So let PF (p, ϕ) be the pro-
gram that output n on input 0, and PF (p(1), ψ) on input 1. Then, PF (p, ϕ) �F ϕ.

Conversely, let p �F ∃xψ(x). Then there is some O ∈ F and n ∈ ω such that
pu(0) = n and pu(1) �F ψ(n). By induction hypothesis, P−1

F (pu(1), ψ) � ψ(n).

92 M. Carl et al.

Define P−1
F (p, ϕ) to be the following program: First, start a bounded exhaustive

search with p(0). By Lemma 20 this search must terminate with output n. Return
n on input 0, and return P−1

F (pu(1), ψ) on input 1. Then P−1
F (p, ϕ) � ∃xψ(x).

(2) ϕ is ∀xψ(x). Let p � ∀xψ(x). Then p(n) � ψ(n) for every n ∈ ω. Let
PF (p, ϕ) be the program that, given n ∈ ω, returns PF (p(n), ψ). With the induc-
tion hypothesis, it follows that PF (p, ϕ) �F ϕ.

Conversely, let p �F ∀xψ(x). Then there is some O ∈ F such that for every
u ∈ O and n ∈ N we have that pu(n) � ψ(n). Define P−1

F (p, ϕ) to be the
following program: Start a bounded exhaustive search with p(n). By Lemma 20,
this search will terminate with p′ �F ψ(n). Then return P−1

F (p′, ψ), which, by
induction hypothesis, is a realizer of ψ(n). Hence, P−1

F (p, ϕ) � ψ. ��
As a consequence, we derive the corollary that realisability, co-interval-free

realisability, comeagre realisability and measure-1 realisability coincide.

Corollary 23. We have that � = �cif = �C = �=1.

On the other hand, positive-measure-realizability coincides with arithmetical
truth.

Theorem 24. Let ϕ be a formula. Then �>0 ϕ if and only if ϕ is an arithmetic
truth.

Proof. This is shown by induction on ϕ. ��
The following corollary is an immediate consequence.

Corollary 25. Every instance of the law of excluded middle is F>0-realised.
Also, the halting problem is F>0-realised. Hence, �>0 and � are not the same.

References

1. Downey, R., Hirschfeldt, D.: Algorithmic Randomness and Complexity. Theory and
Applications of Computability. Springer, New York (2010). https://doi.org/10.1007/
978-0-387-68441-3

2. Kanamori, A.: The Higher Infinite: Large Cardinals in Set Theory from Their Begin-
nings. Springer Monographs in Mathematics. Springer, Berlin (2008). https://doi.
org/10.1007/978-3-540-88867-3

3. Kechris, A.: Classical Descriptive Set Theory. Graduate Texts in Mathematics, vol.
156. Springer, New York (2012). https://doi.org/10.1007/978-1-4612-4190-4

4. Kleene, S.C.: On the interpretation of intuitionistic number theory. J. Symb. Logic
10, 109–124 (1945)

5. Moschovakis, Y.: Descriptive Set Theory. Studies in Logic and the Foundations of
Mathematics, vol. 100. Elsevier, Amsterdam (1987)

6. Nelson, D.: Recursive functions and intuitionistic number theory. Trans. Am. Math.
Soc. 61(2), 307–368 (1947)

7. van Oosten, J.: Realizability: a historical essay. Math. Struct. Comput. Sci. 12(3),
239–263 (2002)

https://doi.org/10.1007/978-0-387-68441-3
https://doi.org/10.1007/978-0-387-68441-3
https://doi.org/10.1007/978-3-540-88867-3
https://doi.org/10.1007/978-3-540-88867-3
https://doi.org/10.1007/978-1-4612-4190-4

Randomising Realizability 93

8. Troelstra, A.S. (ed.): Metamathematical Investigation of Intuitionistic Arithmetic
and Analysis. Lecture Notes in Mathematics, Vol. 344. Springer-Verlag, Berlin, New
York (1973). https://doi.org/10.1007/BFb0066739

9. Turing, A.M.: ‘Intelligent machinery’, national physical laboratory report. In:
Meltzer, B., Michie, D. (eds.) Machine Intelligence 5 (1969). Edinburgh University
Press, Edinburgh (1948)

https://doi.org/10.1007/BFb0066739

Restrictions of Hindman’s Theorem:
An Overview

Lorenzo Carlucci(B)

Department of Computer Science, Sapienza University, Rome, Italy
carlucci@di.uniroma1.it

Abstract. I give a short overview on bounds on the logical strength
and effective content of restrictions of Hindman’s Theorem based on the
family of sums for which monochromaticity is required, highlighting a
number of questions I find interesting.

1 Introduction

The Finite Sums Theorem by Neil Hindman [14] (HT) is a celebrated result in
Ramsey Theory stating that for every finite coloring of the positive integers there
exists an infinite set such that all the finite non-empty sums of distinct elements
from it have the same color. Thirty years ago Blass, Hirst and Simpson [3]
proved that all X-computable instances of HT have some solutions computable
in X(ω+1) and that for some X-computable instance of HT all solutions compute
X ′. In terms of Reverse Mathematics: ACA+

0 proves HT and HT proves ACA0

over RCA0. For the latter implication two colors are sufficient. Closing the gap
between the upper and lower bound is one of the major open problems in Reverse
Mathematics (see, e.g., [19]).

Hindman, Leader and Strauss posed the following question some twenty years
ago: Is there a proof that whenever N is finitely coloured there is a sequence
x1, x2, . . . such that all xi and all xi +xj (i �= j) have the same colour, that does
not also prove the Finite Sums Theorem? (Question 12 in [15]). This question can
be profitably translated and made precise in the setting of Reverse Mathematics:
does HT restricted to sums of at most two terms imply the full version over, say,
RCA0? Around the same years, Blass [2] advocated the study of restrictions of
HT in which a bound is put on the length (i.e., number of distinct terms) of
sums for which monochromaticity is required, asking whether the complexity of
HT grows as a function of the length of sums.

The above questions stirred some research attention in recent years [4–7,9,
12,16]. Although no major advance has been achieved regarding the strength
of HT, some interesting results concerning the logical and effective strength of
many natural restrictions have been obtained. The insights obtained might be
of help for solving the main problem and also suggest interesting new problems.

The general picture is the following: any choice of a family F of finite sums
of distinct elements gives rise to a restriction of Hindmans’ Theorem, in which
the monochromaticity is only required for sums specified by F . How does the
c© Springer Nature Switzerland AG 2021
L. De Mol et al. (Eds.): CiE 2021, LNCS 12813, pp. 94–105, 2021.
https://doi.org/10.1007/978-3-030-80049-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80049-9_9&domain=pdf
https://doi.org/10.1007/978-3-030-80049-9_9

Restrictions of Hindman’s Theorem: An Overview 95

choice of F impact on the logical and effective strength of the corresponding
restriction of Hindman’s Theorem?

Implications from Ramsey-type theorems to Hindman-type theorems and
viceversa are of crucial interest in the perspective of improving upper and lower
bounds on HT. In particular this is true if the implications can be witnessed by
natural combinatorial reductions, or, more formally, by one of the many notions
of effective reduction that have been defined and investigated intensively in recent
years, such as Weirauch, (strong) computable reductions etc. (see [10]).

This paper is a short, non exhaustive, overview of some of these develop-
ments. I focus on results obtained by reasonably simple proofs, basically of two
types: coding of the Halting Set and reduction proofs using simple functionals
for transforming instances/solutions of one problem to instances/solutions of
another problem. Despite the simplicity of the constructions, these techniques
gives most of what we know about the relations between Hindman- and Ramsey-
type theorems, probably indicating that only the surface of the combinatorics of
Hindman’s Theorem has been scratched.

2 Hindman’s Theorem(s) and the Apartness Condition

Below I introduce a notation for restrictions of Hindman’s Theorem based on
the type of sums for which monochromaticity is required. Let us use N to denote
the positive integers. Let F be a family of finite subsets of N. If X ⊆ N is an
infinite set and x1 < x2 < x3 < . . . are its elements, we denote by FSF (X) the
set of all sums of the form

∑
i∈F xi for F ∈ F . For F = [N]<ω we just write

FS(H).

Definition 1 (Hindman’s Theorem for sums in F). Let F be a family of
finite subsets of N, and k a positive integer. HTF

k is the following principle: For
every coloring f : N → k there exists an infinite set H ⊆ N such that FSF (H)
is monochromatic for f .

In this notation Hindman’s Theorem is HT
[N]<ω

k , which we denote HTk. For
any Hindman-type principle Pk indexed by the number of colors, we denote ∀kPk

by P. The best bounds on the strength of HT have been proved by Blass, Hirst
and Simpson some thirty years ago.

Theorem 1 (Blass, Hirst, Simpson, [3]). HT is provable in ACA+
0 and HT2

implies ACA0 over RCA0.

The upper bound comes from an analysis of Hindman’s original proof, while the
lower bound is based on a clever coloring allowing coding of the Turing Jump.

The following restrictions of HT received some attention in recent years. Let
n ≥ 1. HT[N]n is Hindman’s Theorem for sums of exactly n terms, commonly
denoted by HT=n. For n ≥ 1, HT[N]≤n

is Hindman’s Theorem for sums of at
most n terms, commonly denoted by HT≤n. We will also deal with HTF for
the following choices F : non-empty intervals of N, exactly ω-large subsets of N,
indices of finite rooted branches in the full binary tree, etc.

96 L. Carlucci

We are interested in how the strength of the principles HTF
k varies as a

function of F . An ambitious goal is that of identifying a relation ≺ on families
of subsets of N such that F ≺ G if and only if HTF ≤ HTG , where ≤ denotes
one of the meaningful logico-computational relations between principles, e.g.,
computable reducibility, implication over RCA0, etc.

One background intuition that is put to test in the study of restrictions of
HT is whether the hidden universal quantifier over all (lengths of) finite sums
in HT could behave similarly to the quantifier over all dimensions in Ramsey’s
Theorem, possibly yielding an ACA′

0 lower bound for HT. In this respect, uni-
form implications from Hindman restrictions to Ramsey’s Theorem are of great
interest.

Hindman’s Finite Sums Theorem has a well-known equivalent formulation in
terms of unions, which we state in its general form.

Definition 2 (Hindman’s Finite Unions Theorem for unions in F).
FUTF

k is the following assertion: For every coloring f : [N]<ω → k there exists
an infinite sequence (Si)i∈N of finite subsets of N such that

1. f is constant on all finite unions
⋃

i∈F Si for F ∈ F , and
2. For all i < j, max(Si) < min(Sj).

The second condition is called the block condition. Hirst [16] showed that
dropping it yields a principle equivalent to BΣ0

2 . A corresponding property –
called apartness in [5] – is crucial in Hindman’s original proof of the Finite Sums
Theorem and in all proofs of strong lower bounds on HTF s in [3,5,12]. Fix b ≥ 2.
For n ∈ N we denote by λb(n) the least exponent of n written in base b and by
μb(n) the largest exponent of n written in base b. We drop the subscript when
clear from context. As we will see, the choice of the base is mostly irrelevant.

Definition 3 (Apartness Condition). Fix b ≥ 2. A set X ⊆ N satisfies
the b-apartness condition (or is b-apart) if for all x, x′ ∈ X, if x < x′ then
μb(x) < λb(x′).

For a Hindman-type principle P, let “P with b-apartness” denote the correspond-
ing version in which the solution has to satisfy the b-apartness condition. We
state the following Proposition in a somewhat vague form.

Proposition 1 (Folklore, see [6]). For many choices of F , for all b ≥ 2,
FUTF

k is equivalent to HTF
k with b-apartness over RCA0.

Proof. The direction from the union version to the sum version is given by the
following simple functional Φ from functions of type [N]<ω → k to functions of
type N → k:

Φ(c)(be1 + · · · + be�) := c({e1, . . . , e�}).

For the other implication we use the following simple functional Φ from func-
tions of type N → k to functions of type [N]<ω → k:

Φ(d){s1, . . . , sp} := d(bs1 + · · · + bsp).

�

Restrictions of Hindman’s Theorem: An Overview 97

In Hindman’s original proof 2-apartness is ensured by a simple counting argu-
ment and computable thinning out process, under the assumption that we have
a solution to the full Finite Sums Theorem (Lemma 2.2 in [14]).

Proposition 2. Over RCA0, HT is equivalent to HT with apartness.

Hindman’s proof for this equivalence strongly relies on monochromaticity of
arbitrary finite sums and therefore cannot be immediately adapted to generic
restrictions HTF . As we observe below, it is significantly easier to prove lower
bounds on P with b-apartness than on P in all the cases we consider.

3 Sums of at Most n Elements

The principles HT≤n
k , Hindman’s Theorem for sums of at most n terms, are

arguably the most natural restrictions of HT.
By Proposition 1 the HT≤n

k s with apartness should be considered as the nat-
ural restrictions of HT to sums of at most n terms, in that they are strongly
equivalent to FUT≤n

k , i.e. FUTk restricted to unions of at most n terms.
As the next lemma shows, apartness can be ensured for HT≤n

k s at the cost
of doubling the colors. The idea of the proof is from the first part of the proof
of Theorem 3.1 in [12], with some needed adjustments.

Lemma 1. For all n ≥ 2, for all d ≥ 1, HT≤n
2d implies HT≤n

d with apartness
over RCA0.

Proof. We show 3-apartness for technical convenience. Let f : N → d be given.
Define g : N → 2d as follows. g(n) := f(n) if i(n) = 1, and d + f(n) if i(n) = 2.
where i(n) is the coefficient of the smallest term in the base-3 representation of
n. Let H be an infinite set such that FS≤n(H) is homogeneous for g of color k.
For h, h′ ∈ FS≤n(H) we have i(h) = i(h′). Then we claim that for each m ≥ 0
there is at most one h ∈ H such that λ(h) = m. Suppose otherwise, by way of
contradiction, as witnessed by h, h′ ∈ H. Then i(h) = i(h′) and λ(h) = λ(h′).
Therefore i(h + h′) �= i(h), but h + h′ ∈ FS≤n(H). Contradiction. Therefore we
can computably obtain a 3-apart infinite subset of H.
�

The above is not known to be optimal. My former student Daniele Tavernelli
obtained the following slight refinement in his MSc. Thesis.

Lemma 2 (D. Tavernelli [21]). For all k, n ≥ 2 such that 2k + 1 is prime,
HT

≤max(n,k)
k implies HT≤n

k−1 with apartness over RCA0.

Question 1. For which values of n, k, p, q, HT≤n
k implies HT≤p

q with apartness by
an effective reduction?

The recent interest in restrictions of Hindman’s Theorem was first revived, to
my best knowledge, by Dzhafarov et al. [12]. The authors establish the interesting
result that the ACA0 lower bound on HT is already true of HT≤3.

98 L. Carlucci

Theorem 2 (Dzhafarov, Jockusch, Solomon and Westrick, [12]). Over
RCA0, HT

≤3
3 implies ACA0.

Essentially the proof first shows the bound for HT3
2 with 3-apartness, then

invokes Lemma 1 and finally manages to get rid of one more color. The same
coloring as in Blass-Hirst-Simpsons’ proof [3] is used.

Blass [2] states that inspection of the proof of the ACA0-lower bound for
HT in [3] shows that this bound is true for the restriction of the Finite Unions
Theorem to unions of at most two sets, yet he observes that things might be
different for restrictions of the Finite Sums Theorem, as HT≤n

k (Remark 12
of [2]). The proofs of Theorem 1 and of Theorem 2 require sums of length three.
However, Blass’ claim is vindicated by the next Theorem, whose proof requires
a different coloring from [3].

Theorem 3 (C., Ko�lodziejczyk, Lepore, Zdanowski [6]). Over RCA0,
HT≤2

4 implies ACA0.

Theorem 3 is better explained by isolating the role of apartness in the proof:
by Lemma 1 the following result is sufficient.

Theorem 4 (C., Ko�lodziejczyk, Lepore, Zdanowski, [6]). For any fixed
b ≥ 2, HT≤2

2 with b-apartness implies ACA0 over RCA0.

Proof. We write the proof for b = 2. Assume HT≤2
2 with 2-apartness and consider

f : N → N. We have to prove that the range of f exists.
For a number n, written as 2n0 + · · · + 2nr in base 2, with n0 < · · · < nr, we

call j ∈ {0, . . . , r} important in n if some value of f�[nj−1, nj) is below n0 (here
n−1 = 0). The coloring cimp : N → 2 is defined as the parity the cardinality of
the set of numbers important in n. Let H be a solution to HT≤2

2 with 2-apartness
for cimp. We claim that for each n ∈ H and each x < λ(n), x ∈ rg(f) if and only
if x ∈ rg(f�μ(n)); which gives an algorithm for rg(f).

To prove the claim, consider n ∈ H and assume that there is some element
below n0 = λ(n) in rg(f) \ rg(f�μ(n)). By the consequence of Σ0

1 -induction
known as strong Σ0

1 -collection (see Exercise II.3.14 in [20], Thm I.2.23), there is
a number � such that for any x < λ(n), x ∈ rg(f) if and only if x ∈ rg(f��).
By 2-apartness, there is m ∈ H with λ(m) ≥ � > μ(n). Write n + m in base 2
notation,

n + m = 2n0 + · · · + 2nr + 2nr+1 + · · · + 2ns ,

where n0 = λ(n) = λ(n + m), nr = μ(n), and nr+1 = λ(m). Clearly, j ≤ s
is important in n + m if and only if either j ≤ r and j is important in n or
j = r+1. Hence cimp(n) �= cimp(n+m), a contradiction to the monochromaticity
of FS≤2(H).
�

Anglès-D’Auriac, Monin and Patey studied the limits of the coloring cimp and
of the coloring used in [3,12] (based on the notion of very short gap) showing
that they cannot be used to improve the lower bound on HT.

Restrictions of Hindman’s Theorem: An Overview 99

Proposition 3 (Anglès-D’Auriac, Monin, Patey, [1]). The coloring cimp

admits an arithmetical monochromatic solution.

Theorem 3 improves on Theorem 2 with respect to length of sums (≤2 vs
≤3), although it uses 4 rather than 3 colours. The impact of colours on Hindman
Theorem(s) has not been studied yet (a few results are in [21]).

Question 2. Does HT≤2
2 with apartness imply ACA0? More generally, what is

the impact of the number of colors on HTF
k ?

It is easy to observe that, for Hindman-type theorems, one color can be used to
rule out a single (definable) infinite sum-free set from the solution space.

4 Sums of Exactly n Elements

By analogy with HT≤n
k , Dzhafarov et al. [12] considered restrictions of HTk to

sums of exactly n distinct terms, denoted HT=n
k .

As for the HT≤n
k s, we have that FUT=n

k and HT=n
k with b-apartness are

equivalent, for any t ≥ 2 by Proposition 1; thus we consider the principles HT=n
k

with apartness as the natural restrictions of Hindman’s Theorem to sums of
exactly n elements.

In striking contrast to the HT≤n
k s, the HT=n

k s have an easy proof in ACA0:
the following functional Φ from functions of type N → k to functions of type
[N]n → k reduces HT=n

k to RTn
k :

Φ(c)(x1, . . . , xn) := c(x1 + · · · + xn).

An application of RTn
k relativized to an apart set also guarantees HT=n

k with
apartness. The following is the strongest lower bound known on these principles.

Theorem 5 (C., Ko�lodziejczyk, Lepore, Zdanowski, [6]). Over RCA0,
HT=3

2 with apartness (eq., FUT=3
2) implies ACA0.

The proof is an extension of the proof of Theorem3 using important numbers.

Question 3. Does HT=3
2 with apartness imply RT3

2 by an effective reduction?

The principle HT=2
2 has an interesting strict connection with a Ramsey-type

Principle, the so-called Increasing Polarized Ramsey’s Theorem IPT2
2 introduced

by Dzhafarov and Hirst in [11]. IPT2
2 can be pictured as Ramsey’s Theorem for

pairs (RT2
2) in which one asks for a monochromatic bipartite “skew” graph (i.e.,

with only forward edges) rather than for a monochromatic clique: a solution to
an instance c : [N]2 → 2 of IPT2

2 is a pair of infinite sets (H1,H2) such that all
pairs (x, y) ∈ H1 × H2 with x < y have the same colour. It turns out that HT=2

2

with apartness implies IPT2
2 by a computable reduction. The simple functional

from functions of type [N]2 → 2 to functions of type N → 2 used in the proof is
essentially the following Φ:

Φ(f)(n) := f(λ(n), μ(n)),

100 L. Carlucci

which can be used to reduce IPT2
k to a number of other Hindman-type theorems

(see infra; it was originally applied by the author to HT≤2
4).

Theorem 6 (C., Ko�lodziejczyk, Lepore, Zdanowski, [6]). Over RCA0,
HT=2

2 with 2-apartness implies IPT2
2. The implication is witnessed by a com-

putable reduction.

Proof. Let f : [N]2 → 2 be given. Define g : N → 2 as follows. g(n) := 0 if n =
2m, f(λ(n), μ(n)) if n �= 2m. Note that g is well-defined since λ(n) < μ(n) if n is
not a power of 2. Let H = {h1, h2, . . . }< witness HT=2

2 with 2-apartness for g. Let
the color be k < 2. Let H1 := {λ(h2i−1) : i ∈ N} and H2 := {μ(h2i) : i ∈ N}.
We claim that (H1,H2) is increasing p-homogeneous for f . First observe that
λ(h1) < λ(h3) < λ(h5) < . . . and μ(h2) < μ(h4) < μ(h6) < . . . by 2-apartness.
Then we claim that f(x1, x2) = k for every increasing pair (x1, x2) ∈ H1 × H2.
Note that (x1, x2) = (λ(hi), μ(hj)) for some i < j (the case i = j is impossible
by construction of H1 and H2). Then we have

k = g(hi + hj) = f(λ(hi + hj), μ(hi + hj)) = f(λ(hi), μ(hj)) = f(x1, x2),

since FS=2(H) is monochromatic for g with color k.
�
It is natural to ask for a reversal (the analogue is open for RT2

2 vs IPT2
2).

Question 4. Does IPT2
2 imply HT=2

2 (with apartness)?

The relation between Hindman Theorems and Increasing Polarized Theorems
is intriguing. The natural version of an “Increasing Polarized” HT=2

2 , IPHT2
2 is

the only known restriction of HT known to be equivalent to a Ramsey-type
principle: IPT2

2 and IPHT2
2 are strongly computably interreducible (see [6]).

We know that HT=3
2 with apartness (as well as HT≤3

3 and HT≤2
4) implies

IPT3
2 over RCA0, and similarly for all dimensions n ≥ 3. Contrary to the proof

of Theorem 4, one can hope to lift the proof of Theorem6 to higher dimensions.
The answer might imply playing around with adequate additive representations
of the integers. A uniform reduction would show a ACA′

0-lower bound on HT.

Question 5. Can the implication from HT=n
k (or HT≤n

k) to IPTm
� be witnessed

by an effective reduction for some n ≥ m ≥ 3, �, k ≥ 1?

HT=2
2 and Lovász’ Local Lemma Csima et al. [9] recently investigated lower

bound on HT=2
2 without apartness. They obtained the following interesting

result, where RRT2
2 denotes the Rainbow Ramsey Theorem for pairs.

Theorem 7 (Csima et al., [9]). Over RCA0, HT=2
2 implies RRT2

2.

The proof of Theorem7 inaugurates the use of tools from the Probabilistic
Method from Combinatorics to the study of the logical and effective content
of combinatorial theorems: the lower bound on HT=2

2 is obtained by applying
an effective version of the famous Lovász’ Local Lemma, which allows to give

Restrictions of Hindman’s Theorem: An Overview 101

a computable instance of HT=2
2 with no computable solutions. The argument

can be strengthened to obtain an implication between HT=2
2 and 2 − DNC over

RCA0. A result of Miller gives the missing link to RRT2
2.

Inspection of the proof shows that the same bound works for other restrictions
of HT, such as IPHT2

2 defined infra.
Interestingly, the lower bound on HT=2

2 without apartness is significantly
weaker than the corresponding IPT2

2-lower bound on HT=2
2 with apartness from

Theorem 4.

Question 6. Does HT=2
2 imply HT=2

2 with apartness?

5 Weak Yet Strong Hindman Theorems

An important obstacle in the study of Hindman’s Theorem(s) is that no other
proof of HT≤2

2 is known except for the proof(s) of full HT. This makes the
following question natural: are there restrictions of HT that admit a better upper
bound than HT while still preserving non-trivial lower bounds?

Results presented above show that, for example, HT=3
2 with apartness is

equivalent to ACA0; similarly, HT=2
2 with apartness is between RT2

2 and IPT2
2.

The HT=n principles, however, might not tell the whole story: after all, one of
the distinctive features of Hindman’s Theorem is that it guarantees simultaneous
monochromaticity of sums of different length and structure.

In the perspective of understanding the limits of provability of restrictions of
Hindman’s Theorem in various systems of arithmetic it is interesting to inves-
tigate other versions with similar properties. While the HT=ns are interesting
for isolating the weakest/simplest form of a restriction of HT that satisfies some
upper and lower bound, it is of interest to test the limits of provability of restric-
tions of HTF by looking for the strongest/most complex restriction that admits
a proof in a given system while retaining a strong lower bound. Restrictions of
this kind, dubbed “weak yet strong principles” in [5], are known at the level of
ACA0, RT2

2, BΣ0
2 and IΣ0

2 . Interestingly, their study pre-dated the previously
shown results on HT=ns.

Equivalents of ACA0. In [5], an infinite family of natural restrictions of Hind-
man’s Theorem each equivalent to ACA0 is isolated, The following definition
collects some examples based, respectively, on well-known theorems of Schur,
Brauer and Van Der Waerden from finite combinatorics.

Definition 4 (C., [5]).

1. Schur type: Let HTSch
k denote the following statement: Whenever N is colored

in k colors there is an infinite set H and there exist positive integers a, b such
that FS{a,b,a+b}(H) is monochromatic.

2. Brauer type: Let HT
Bra(�)
k denote the following statement: Whenever N is

2-colored there is an infinite set H and there exist positive integers a, b such
that FS{a,b,a+b,a+2b,...,a+�b}(H) is monochromatic.

102 L. Carlucci

3. Van Der Waerden type: Let HTV dW (�)
k denote the following statement: When-

ever N is colored in k colors there is an infinite set H and positive integers
a, b such that FS{a,a+b,a+2b,...,a+(�−1)b}(H) is monochromatic.

All these versions can be proved in ACA0 using the same simple scheme.

Theorem 8 (C., [5]). For each k, � in N, HTSch
k , HTBr(�)

k and HT
WdV (�)
k with

apartness are equivalent to ACA0 over RCA0.

Proof. We detail the proof for HTSch
2 . Let c : N → 2. Let k = 6 = R2(3),

i.e., the Ramsey number ensuring a monochromatic triangle in any coloring
of [1, R2(3)] with 2 colors. Let H0 be an infinite (computable) set satisfying
the Apartness Condition. Let H1 ⊆ H0 be an infinite homogeneous set for c,
witnessing RT1

2 relative to H0. Let f2 : [N]2 → 2 be defined as f(x, y) = c(x+y).
Let H2 ⊆ H1 be an infinite homogeneous set for f2, witnessing RT2

2 relative to
H1. Let f3 : [N]2 → 2 be defined as f(x, y, z) = c(x + y + z). Let H3 ⊆ H2 be
an infinite homogeneous set for f3, witnessing RT3

2 relative to H2.
We continue in this fashion for k steps. This determines a finite chain of

infinite sets H0 ⊇ H1 ⊇ H2 ⊇ · · · ⊇ Hk. Each Hi satisfies the Apartness
Condition. Furthermore, for each i ∈ [1, k], FS=i(Hj) is monochromatic under c
for all j ∈ [i, k]. Also, FS=i(Hk) is monochromatic for each i ∈ [1, k]. Let ci be
the color of FS=i(Hk) under c. The construction induces a coloring C : [1, k] → 2,
setting C(i) = ci. In general, if k is large enough, C will enjoy some regularity.
Since k = R3(2), by Schur’s Theorem there exists a, b > 0 in [1, k] such that
{a, b, a + b} ⊆ [1, k] is monochromatic for C. Let i < 2 be the color. Then
FS{a,b,a+b}(Hk) is monochromatic of color i for the original coloring c.

The lower bound is obtained by a straightforward adaptation of the proof of
Theorem 4.

�
Question 7. Can the equivalences between HTSch

k , HT
Bra(�)
k , HT

V dW (�)
k with

apartness and RTn
k with n ≥ 3 be witnessed by effective reductions?

Adjacent Hindman Theorem. All restrictions discussed so far differ from HT in
that they only require monochromaticity for sums of bounded length. Can we
isolate a family F of finite subsets of N such that F contains arbitrary length
sums and HTF has some interesting upper and lower bounds? The family Fint

of finite intervals of N answers the question in the positive. We call HTFint
k

the Adjacent Hindman Theorem, denoted by AHTk. The Adjacent Hindman
Principles guarantee joint monochromaticity for sums of arbitrary length yet
severely constrain the way the terms of these sums are chosen.

Perhaps surprisingly, it is easy to establish an upper bound on AHT with
apartness. This should be contrasted with the case of HT≤2, for which no upper
bound other than ACA+

0 is currently known.
In fact, the Adjacent Hindman’s Theorem was inspired by the proof below:

it is obtained by applying RT2
2 to the output of the functional Φ from functions

of type N → 2 to functions of type [N]2 → 2:

Φ(c)(i, j) := c(2i+1 + · · · + 2j−1 + 2j).

Restrictions of Hindman’s Theorem: An Overview 103

Proposition 4 (C., [4]). Over RCA0, RT2
2 implies AHT2 with apartness and the

latter implies IPT2
2. Both implications are witnessed by computable reductions.

Proof. Fix a coloring c : N → 2. This induces a coloring f of [N]2 in 2 colors by
setting f(i, j) := c(2i+1 + · · · + 2j−1 + 2j). By RT2

2 let J = {j1 < j2 < . . . }< be
an infinite homogeneous set for f , of color i < 2. Consider the set

H = {(2j1+1 + · · · + 2j2), (2j2+1 + · · · + 2j3), . . . , (2jn+1 + · · · + 2jn+1), . . . }.

It is easy to verify that H satisfies AHT for c.
The implication from AHT2 to IPT2

2 is an easy adaptation of Theorem4.
�
The above proof is uniform in k (thus RT2 → AHT with apartness → IPT2).

Question 8. Does AHT2 imply RT2
2? Does IPT2

2 imply AHT2?

Hindman on Branches of the Binary Tree and Σ0
2 -Induction. Inspired by a proof

in Hirst [17] showing that Hindman’s Theorem implies the so-called Pigeonhole
Principle for Trees (TT1), my former student Daniele Tavernelli and I recently
investigated a restriction of HT in which monochromaticity is required only for
sums whose terms correspond to finite rooted branches of the full binary tree [7].
Let btnodes denote the family of finite subsets of N that corresponds to labelings
of the full binary tree in a breadth-first left-to-right visit, i.e.,

btnodes = {{1}, {1, 2}, {1, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 6}, {1, 3, 7}, ...}.

HTbtnodes
k is the corresponding restriction of HTk. When apartness is imposed,

this principle turns out to be equivalent to Σ0
2 -induction over RCA0. Interestingly

the lower bound proof is analogous to the ACA0-lower bound proof of Theorem4
using “important numbers”.

Theorem 9 (C., Tavernelli, [7]). HTbtnodes with apartness is equivalent to Σ0
2 -

induction over RCA0.

The study of this principle goes through an IΣ0
2 -equivalent version of the

Pigeonhole Principle for Trees (TT1) with an added condition on the solution
tree inherited from the apartness condition.

Hindman’s Theorem for Exactly Large Sums. A finite set S ⊆ N is exactly large,
or !ω-large, if |S| = min(S) + 1. Let [X]!ω denote the set of exactly large
subsets of X ⊆ N. Ramsey’s Theorem for exactly large sets (RT!ω

2) asserts that
every 2-coloring f of the exactly large subsets of an infinite set X ⊆ N admits
an infinite set H ⊆ X such that f is constant on [H]!ω. It was studied in [8] and
there proved equivalent to ACA+

0 . Thus, by Theorem 1, RT!ω
2 implies HT, and

the following question is of interest.

Question 9. Does RT!ω
2 imply HT by an effective reduction?

104 L. Carlucci

As any Ramsey-type theorem, RT!ω
2 naturally implies some restriction of HT:

the functional Φ from functions of type N → 2 to functions of type [N]!ω → 2
given by Φ(c)(S) := c (

∑
S), yields the principle HT

[N]!ω

2 , Hindman’s Theorem
for exactly large sums, also with apartness. For lower bounds we have the fol-
lowing Proposition.

Proposition 5 (C., Ko�lodziejczyk, Lepore, Zdanowski, [6]). HT[N]!ω

2 with
apartness implies ACA0 over RCA0 and computably reduces IPT2

2.

Question 10. Does HT
[N]!ω

2 imply RT3
2 by an effective reduction?

First-Order Versions and Iterated Largeness Analysis. It is natural to investigate
first-order consequences of Hindman’s Theorem in the style of Paris-Harrington
as well as to inquire into an ordinal or iterated-largeness analysis of Hindman’s
Theorem in the hope of getting unprovability in Peano Arithmetic or subsystems
thereof. An ordinal/iterated-largeness analysis has been attempted in [1] and,
within a different framework, in [22]; yet no improvement on the upper bound
on HT has been obtained so far. It might be interesting to look at what this
approach can say about restrictions of HT, e.g., HT≤2. Regarding first-order
miniaturizations of HT, a recent result by Mohsenipour and Shelah [18] shows
that the finite form of Hindman’s Theorem with a largeness condition on the
solution yields a principle with primitive recursive upper bounds. This does not
rule out the possibility of extracting stronger finitary principles from HT.

Question 11. Is there a miniaturization of HT unprovable in Peano Arithmetic?

Other Types of Restrictions. Restricting the type of monochromatic sums is
only one of the possible restrictions of HT we can consider. Other natural forms
restrict the type of colorings or put further constraints on where the solution set
lies. Both types of restrictions have not been investigated so far in the context of
Reverse Mathematics. The second type has to be handled with care. It is easy to
come up with Hindman-type theorems with an ACA′

0-lower bound. For example,
let’s call a positive integer n exactly-large if the set of its exponents in base 2
is exactly large. Let Ak be the following principle: For every coloring c of the
positive integers N in 2 colors there exists an infinite H ⊆ N such that each
n ∈ H is exactly large, H is apart, and FS=k(H) is monochromatic. It is not
hard to show that RCA0 proves: For all k, Ak with apartness is equivalent to
RTk

2 . Yet ∀kAk might not be a consequence of HT.

References

1. Anglès-D’Auriac, P.E.: Infinite Computations in Algorithmic Randomness and
Reverse Mathematics. Université Paris-Est. Ph.D. Thesis (2020)

2. Blass, A.: Some questions arising from Hindman’s theorem. Scientiae Mathemati-
cae Japonicae 62, 331–334 (2005)

Restrictions of Hindman’s Theorem: An Overview 105

3. Blass, A.R., Hirst, J.L., Simpson, S.G.: Logical analysis of some theorems of com-
binatorics and topological dynamics. In: Logic and Combinatorics. Contemporary
Mathematics, vol. 65, pp. 125–156. American Mathematical Society, Providence,
RI (1987)

4. Carlucci, L.: A weak variant of Hindman’s theorem stronger than Hilbert’s theo-
rem. Arch. Math. Logic 57, 381–389 (2018)

5. Carlucci, L.: Weak yet strong restrictions of Hindman’s finite sums theorem. Proc.
Am. Math. Soc. 146, 819–829 (2018)

6. Carlucci, L., Ko�lodziejczyk, L.A., Lepore, F., Zdanowski, K.: New bounds on the
strength of some restrictions of Hindman’s theorem. Computability 9, 139–153
(2020)

7. Carlucci, L., Tavernelli, D.: Hindman’s theorem for sums along the full binary tree,
Σ0

2 -induction and the Pigeonhole Principle for trees. Accepted for publication in
Archive for Mathematical Logic

8. Carlucci, L., Zdanowski, K.: The strength of Ramsey’s theorem for coloring rela-
tively large sets. J. Symb. Logic 79(1), 89–102 (2014)

9. Csima, B.F., Dzhafarov, D.D., Hirschfeldt, D.R., Jockusch, C.G., Jr., Solomon, R.,
Westrick, L.B.: The reverse mathematics of Hindman’s theorem for sums of exactly
two elements. Computability 8, 253–263 (2019)

10. Dorais, F.G., Dzhafarov, D., Hirst, J.L., Mileti, J.P., Paul, P.S.: On uniform rela-
tionships between combinatorial problems. Trans. Am. Math. Soc. 368(2), 1321–
1359 (2016)

11. Dzhafarov, D.D., Hirst, J.L.: The polarized Ramsey’s theorem. Arch. Math. Logic
48(2), 141–157 (2011)

12. Dzhafarov, D.D., Jockusch, C.G., Solomon, R., Westrick, L.B.: Effectiveness of
Hindman’s theorem for bounded sums. In: Day, A., Fellows, M., Greenberg, N.,
Khoussainov, B., Melnikov, A., Rosamond, F. (eds.) Computability and Complex-
ity. LNCS, vol. 10010, pp. 134–142. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-50062-1 11

13. Hindman, N.: The existence of certain ultrafilters on N and a conjecture of Graham
and Rothschild. Proc. Am. Math. Soc. 36(2), 341–346 (1972)

14. Hindman, N.: Finite sums from sequences within cells of a partition of N. J. Comb.
Theor. Ser. A 17, 1–11 (1974)

15. Hindman, N., Leader, I., Strauss, D.: Open problems in partition regularity. Comb.
Probab. Comput. 12, 571–583 (2003)

16. Hirst, J.: Hilbert vs Hindman. Arch. Math. Logic 51(1–2), 123–125 (2012)
17. Hirst, J.L.: Disguising induction: proofs of the pigeonhole principle for trees. Found.

Adventures Tribut. 22, 113–123 (2014). College Publications, London
18. Mohsenipour, S., Shelah, S.: On finitary Hindman numbers. Combinatorica 39(5),

1185–1189 (2019). https://doi.org/10.1007/s00493-019-4002-7
19. Montalbán, A.: Open questions in reverse mathematics. Bull. Symb. Logic 17(3),

431–454 (2011)
20. Simpson, S.: Subsystems of Second Order Arithmetic, 2nd edn. Cambridge Uni-

versity Press, Cambridge. Association for Symbolic Logic, New York (2009)
21. Tavernelli, D.: On the strength of restrictions of Hindman’s theorem. MSc. Thesis,

Sapienza University of Roma (2018)
22. Beiglböck, M., Towsner, H.: Transfinite approximation of Hindman’s theorem. Isr.

J. Math. 191, 41–59 (2012)

https://doi.org/10.1007/978-3-319-50062-1_11
https://doi.org/10.1007/978-3-319-50062-1_11
https://doi.org/10.1007/s00493-019-4002-7

Complexity and Categoricity of Injection
Structures Induced by Finite State

Transducers

Richard Krogman and Douglas Cenzer(B)

University of Florida, Gainesville, FL 32611, USA
{richard.krogman,cenzer}@ufl.edu

Abstract. An injection structure A = (A, f) is a set A together with a
one-place one-to-one function f . A is a Finite State Transducer (abbrevi-
ated FST) injection structure if A is a regular set, that is, the set of words
accepted by some finite automaton, and f is realized by a deterministic
finite-state transducer. We study the complexity of the character of an
FST injection structure. We also examine the effective categoricity of
such structures.

Keywords: Computability theory · Injection structures · Automatic
structures · Finite state automata · Finite state transducers

1 Introduction and Preliminaries

The main goal of this paper is to study the complexity and categoricity of auto-
matic injection structures. An injection structure A = (A, f) is a set A together
with a one-place one-to-one function f . A is a Finite State Transducer (abbre-
viated FST) injection structure if A is a regular set, that is, the set of words
accepted by some finite automaton, and f is realized by a finite-state trans-
ducer. In a recent paper [4], Buss, Cenzer, Minnes and Remmel developed the
study of FST injection structures. It was shown that the model checking problem
for FST injection structures is undecidable, contrasting with the fact that the
model checking problem for automatic relational structures is decidable. They
also explored which isomorphisms types of injection structures can be realized
by FST injections, in particular characterizing the isomorphism types that can
be realized by FST injection structures over a unary alphabet. They showed that
any FST injection structure is isomorphic to an FST injection structure over a
binary alphabet, and gave a number of results about the possible isomorphism
types of FST injection structures over an arbitrary alphabet.

There has been considerable work on automatic structures for languages that
contain only relation symbols. A structure, A = (A;R0, . . . , Rm), is automatic
if its domain A and all its basic relations R0, . . . , Rm are recognized by finite
automata. Independently, Hodgson [9] and later Khoussainov and Nerode [12]
proved that for any given automatic structure there is an algorithm that solves
c© Springer Nature Switzerland AG 2021
L. De Mol et al. (Eds.): CiE 2021, LNCS 12813, pp. 106–119, 2021.
https://doi.org/10.1007/978-3-030-80049-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80049-9_10&domain=pdf
https://doi.org/10.1007/978-3-030-80049-9_10

Complexity and Categoricity of Injection Structures Induced by FST 107

the model checking problem for the first-order logic in the language of the struc-
ture. In particular, the first-order theory of the structure is decidable. The fol-
lowing result will be needed.

Theorem 1. There is an algorithm that take an automatic structure A and a
formula φ(x) in the language of A, and produces an automaton which recognizes
{a : A |= φ(a)}.

For some classes of automatic structures, there are characterization theorems
that have direct algorithmic implications. For example, in [8], Delhommé proved
that automatic well-ordered sets all have order type strictly less than ωω. Using
this characterization, [14] gives an algorithm which decides the isomorphism
problem for automatic well-ordered sets. Another characterization theorem of
this ilk is that automatic Boolean algebras are exactly those that are finite
products of the Boolean algebra of finite and co-finite subsets of ω [13]. Again,
this result can be used to show that the isomorphism problem for automatic
Boolean algebras is decidable.

Another body of work is devoted to the interaction between the representa-
tion of an automatic structure and the complexity of the model checking problem.
In particular, every automatic structure has a presentation over a binary alpha-
bet but there are automatic structures which do not have presentations over a
unary (one letter) alphabet. Moreover, for automatic structures with unary pre-
sentations, the monadic second-order theory (not just the first-order theory) is
decidable. There are also feasible time bounds on deciding the first-order theories
of automatic structures over the unary alphabet [3,10].

Automatic equivalence structures were studied in a recent paper [7] by Cen-
zer et al. They compared and contrasted these automatic structures with com-
putable equivalence structures. Equivalence structures A may be characterized
by their characters χA which encodes the number of equivalence classes of any
given size. The characters of computably categorical, Δ0

2 categorical but not
computably categorical, or Δ0

3 categorical but not Δ0
2 categorical have been

determined. It was shown in [7] that every computably categorical equivalence
structure has an automatic copy, but not every Δ0

2 categorical structure has an
automatic copy. They constructed an automatic equivalence structure which is
Δ0

2 categorical but not computably categorical and another automatic equiva-
lence structure which is not Δ0

2 categorical. It was observed that the theory of
an automatic equivalence structure is decidable and hence the character of any
automatic equivalence structure is computable. On the other hand, there is a
computable character which is not the character of any automatic equivalence
structure. It was shown that any two automatic equivalence structures which are
isomorphic are in fact computably isomorphic. Moreover, for certain characters,
there is always a double exponential time isomorphism between two automatic
equivalence structures with that character.

In this paper, we restrict our attention to injection structures. We begin
by fixing notation and terminology. Let N = {0, 1, 2, . . .} denote the natural
numbers and Z = {0,±1,±2, . . .} denote the integers. Let ω denote the order

108 R. Krogman and D. Cenzer

type of N under the usual ordering and ζ denote the order type of Z under the
usual ordering. Let ε denote the empty word and for any word w = w1 . . . wn,
let |w| = n denote the length of w. For any finite nonempty set Σ, let Σ∗ denote
the set of all words over the alphabet Σ, let Σ+ = Σ∗ \ {ε}. For any n ∈ N, let
Σn = {w ∈ Σ∗ : |w| = n} and let Σ≤n = {w ∈ Σ∗ : |w| ≤ n}.

An injection is a one-place one-to-one function and an injection structure
A = (A, f) consists of a set A and an injection f : A → A. Given a ∈ A, the
orbit Of (a) of a under f is

Of (a) = {b ∈ A : (∃n ∈ N)(fn(a) = b ∨ fn(b) = a)}.

We define the character χ(A) of an injection structure A = (A, f) by

χ(A) = {(n, k) : A has at least n orbits of size k}
An orbit of finite size k ∈ N will be a k-cycle of the form Of (a) = {f i(a) : 0 ≤
i ≤ k − 1} where fk(a) = a. Infinite orbits can have two forms. One is of type
ζ, which are of the form Of (a) = {fn(a) : n ∈ Z} in which every element is in
the range of f and f−n(a) for n > 0 refers to the unique element b ∈ A with
fn(b) = a. The other is of type ω, which have the form Of (a) = {fn(a) : n ∈ N}
for some a /∈ ran(f) which serves as the initial element. It is easy to see that
the character of an injection structure plus the information about the number
of ζ-orbits and ω-orbits completely characterizes its isomorphism type.

The algorithmic properties of injection structures were studied by Cenzer,
Harizanov and Remmel [5] and [6]. They characterized computably categorical
injection structures, and showed that they are all relatively computably cate-
gorical. Among other things, they proved that a computable injection structure
A is computably categorical if and only if it has finitely many infinite orbits.
They also characterized Δ0

2-categorical injection structures as those with finitely
many orbits of type ω, or with finitely many orbits of type ζ. They showed that
they coincide with the relatively Δ0

2-categorical structures. Finally, they proved
that every computable injection structure is relatively Δ0

3-categorical. They also
showed that the character of any computable injection structure is a c.e. set and
that any c.e. character may be realized by a computable injection structure.

A deterministic finite automaton (DFA) is specified by the tuple M =
(Q, ι,Σ, δ, F) where Q is the finite set of states, ι is the initial state, Σ is the input
alphabet, δ : Q×Σ → Q is the (possibly partial) transition function, and F ⊆ Q
is the set of final, or accepting states. The transition function may be extended
to δ : Q×Σ∗ → Σ∗ by recursion on the length of a word. For q ∈ Q, δ(q, ε) = q,
and for w ∈ Σ∗ and a letter a ∈ Σ, δ(q, wa) = δ(δ(q, w), a). Then δ(ι, w) rep-
resents the final state M reaches when scanning through w while transitioning
states according to δ, starting at ι. A DFA M accepts a string w if δ(ι, w) ∈ F .
The set L(M) ⊆ Σ∗ of strings accepted by M is the language recognized by M .
A language L ⊆ Σ∗ is said to be regular or automatic if it is accepted by some
DFA. To recognize a relation R ⊆ Σ∗ ×Σ∗, we use a two-tape synchronous DFA,
where the transition function δ : Q × Σ ∪ {�} × Σ ∪ {�} → Q and � denotes
a blank square. The blank square is needed in the case that one input is longer

Complexity and Categoricity of Injection Structures Induced by FST 109

than the other. Then M halts after reaching the end of the longer word. Auto-
matic relations and structures have been studied by Khoussainov, Liu, Minnes,
Nies, Rubin, Stephan and others [10–16].

A deterministic finite-state transducer (DFST) is specified by the tuple M =
(Q, ι,Σ, Γ, δ, τ) where Q is the finite set of states, ι is the initial state, Σ is the
input alphabet, Γ is the output alphabet, δ : Q×Σ → Q is the (possibly partial)
transition function, and τ : Q×Σ → Γ ∗ is the (possibly partial) output function.
Here δ extends as with an automata, and τ is extended to τ : Q × Σ∗ → Γ ∗

as follows: for q ∈ Q, τ(q, ε) = ε, and τ(q, wa) = τ(q, w)τ(δ(q, w), a) for word
w ∈ Σ∗ and letter a ∈ Σ. A DFST M defines a (possibly partial) function,
fM : Σ∗ → Γ ∗ with fM (w) = τ(ι, w). We say that the DFST M realizes,
computes, or generates a function f on a set U ⊆ Σ∗ if fM �U = f . We will
exclusively work with deterministic automata and transducers so we will drop
the moniker of determinism in the succeeding discussion. We occasionally use⊕

to denote concatenation in operator notation when convenient.

Definition 2. An injection structure A = (A, f) consists of a set A together
with a one-to-one mapping f : A → A. A is an FST injection structure if A is
a regular set of words in a language Σ∗ and f is realized by a DFST.

It is possible to combine the underlying automaton that accepts the domain,
and the transducer that computes the function as shown in [4]. Hence, we
suppose from here on, without loss of generality, that (A, f) is computed by
T = (Q, ι, δ, τ, F) where (Q, ι, δ, F) accepts A, and (Q, ι, δ, τ) computes f .

Since the isomorphism class of an injection structure is determined by its
character, and the number of orbits of type ω and ζ, we seek to characterize
those types which have presentations using transducers.

The main goal of this paper is explore the complexity of automatic injection
structures and isomorphisms between two such structures. Results will some-
times depend on factors such as (i) the underlying alphabet Σ, (ii) the number
of states in of the underlying transducer T = (Q, ι,Σ, Γ, δ, τ) for f , and (iii) the
nature of the output function τ of the transducer T . For example, we say that a
transducer T = (Q, ι,Σ, Γ, δ, τ) has ε-outputs if there is state q ∈ Q and a ∈ Σ
such that τ(q, a) = ε. We say T is length preserving if τ(q, a) ∈ Γ for all q ∈ Q
and a ∈ Σ. Thus when a length preserving transducer reads a symbol a ∈ Σ in
any state q, it outputs a single letter in Γ . (A, f) has bounded growth if there is
a constant c such that, for all w ∈ A, |w| − c ≤ |f(w)| ≤ |w| + c. We say that
(A, f) has full domain if Σ+ ⊆ A. Recall that the length-lexicographic order on
Σ∗ is defined by u <lex v if and only if |u| < |v| or |u| = |v| = n and u <n v,
where <n is the lexicographic order on Σn.

The outline of this paper is as follows. In Sect. 2, we construct some additional
FST injection structures not found in the previous paper [4]. We characterize
those FST injection structures (A, f) for which the graph Gf is automatic, in
terms of the notion of bounded growth. In Sect. 3, we examine the complexity
of the character of a FST injection structure. In particular, it is shown that
the character of a graph relational FST injection structure is decidable in expo-
nential time and for unary structures, in linear time. In Sect. 4, we show that

110 R. Krogman and D. Cenzer

isomorphic unary FST injection structures are exponential time isomorphic, and
furthermore, for graph relational structures, they are quadratic time isomorphic.
It is shown that not all isomorphic pairs of FST injection structures are com-
putably isomorphic. It is shown that two isomorphic graph relational injection
structures with full universe {0, 1}∗ are double exponential time isomorphic.

For the analysis of relational injection structures, we will need to consider the
problem of counting the number of elements of a regular language of a certain
bounded length. The following well-known lemma provides an upper bound on
the search space for the first few elements of a regular set. The proof will be in
the full paper.

Lemma 1. Let M = (Q, ι, δ, F) be a Σ-DFA with s states.

1. L(M) 	= ∅ if and only if L(M) contains a string of length ≤ s.
2. L(M) is infinite if and only if L(M) contains a string of length > s.
3. If L(M) = {u0 <lex u1 <lex · · · }, then |u0| ≤ s and for each i, |ui+1| ≤

|ui| + s.
4. For any n, |L(M)| ≥ n if and only if either L(M) is infinite or card(L(M)∩

Σ≤s) ≥ n.

Using this lemma, we can see how many steps it takes to decide whether
card(L(M)) ≥ n.

Proposition 1. For any DFA M with s states, {(n,m) : card(L(M) ∩ Σm) ≥
n} can be decided in time ≤ ms3n, we can decide {(n,m) : card(L(M)∩Σ≤m) ≥
n} in ≤ ms3n steps, and we can decide whether {n : card(L(M)) ≥ n} in ≤ 2s4n
steps.

Proof. This proof is relegated to the full paper.

2 FST Injection Structures

A variety of FST injection structures were constructed in [4]. For example, there
are FST injection structures consisting of any number of orbits of type ζ. There
is a FST injection structure consisting of exactly one cycle of length k for each
finite k. For each finite > 1, there is an FST injection structure with exactly
one cycle of length i for all finite i.

Proposition 2. For any two FST injection structures A = (A, f) and B =
(B, g), there is an injection structure C consisting of a copy of A together with
a copy of B.
Proof. Let A be given by the FST TA and B by the FST TB . Then the structure
C = (C, h) consisting of the join of A and B may be defined by letting h(0x) =
0f(x) and h(1x) = 1g(x) for each x ∈ {0, 1}∗, and letting C = {0x : x ∈
A} ∪ {1x : x ∈ B}. The injection structure C may be defined by the FST TC as
follows. On initial input 0, TC outputs 0 and hands over the control to TA, and
on initial input 1, TC outputs 1 and hands control to TB . Then φ(a) = 0a and
ψ(b) = 1b are injective homomorphisms that map A and B to their respective
copies in C.

Complexity and Categoricity of Injection Structures Induced by FST 111

Corollary 1. For each m,n ∈ N, not both equal to 0, there is an FST injection
structure consisting of exactly m orbits of type ω and n orbits of type ζ.

Proposition 3. For any FST injection structure A, there is an FST injection
structure Aω which consists of infinitely many copies of A.

Proof. Let the structure A = (A, f) be given by the FST T with initial state
q0. Then the structure Aω = (B, g) consisting of infinitely many copies of A
may be defined by letting g(0m1x) = 0m1f(x) for each m ∈ N and x ∈ {0, 1}∗,
and letting B = {0m1x : m ∈ ω, x ∈ A}. The injection structure Aω may
be realized by the FST Tω, with initial state qω, as follows. In state qω, there
are two possibilities. Upon reading a 0, Tω outputs 0 and remains in state qω;
upon reading a 1, Tω outputs a 1 and transitions to state q0. Having reached
state q0, Tω simply follows the transitions and outputs of T . For each m, Am =
{0m1x : x ∈ A} is a distinct sub injection structure isomorphic to A through
φm(a) = 0m1a.

Theorem 3.(a) There is an FST injection structure consisting of infinitely
many orbits of size k, for each k ∈ N.

(b) There is an FST injection structure consisting of infinitely many orbits of
types ζ.

(c) There is an FST injection structure consisting of infinitely many orbits of
each finite size, as well as any predetermined amount (finite or infinite) of
orbits of types ω and of type ζ.

Proof. (a) It was shown in Theorem 8 from [4] that there is an FST injection
structure consisting of exactly one class of size k for each finite k. Then the
desired FST may be obtained by applying Proposition 3.

(b) This may be shown by applying Proposition 3 to the FST from [4] with
one orbit of type ζ.

(c) This now follows by applying Proposition 2 to the structures obtained in
the above results.

Now we can improve a result from [4], as follows.

Theorem 4. There is a computable injection structure A such that InfA =
{a ∈ A : card(Of (a)) = ω} is Σ0

1 complete. Furthermore, A has infinitely many
infinite orbits and may be assumed to have infinitely many finite orbits of all
sizes.

Proof. The first part is proved in [4]. For the second part simply use Proposition 2
to adjoin the FST structure consisting of infinitely many classes of size k for
each finite k.

Graph Relational FST Injection Structures
It is natural to ask whether there is a difference between FST injection structures
and automatic structures A = (A,Gf) where Gf is the graph of the function
f , i.e., the set of all pairs (a, f(a)) for a ∈ f . Since an automatic structure

112 R. Krogman and D. Cenzer

A = (A,Gf) has a decidable theory, it would follow that if Gf is recognizable
by a DFA, then (A, f) would also have a decidable theory. However, it was
observed in [4] that there are simple FST’s with no ε-outputs whose graph is
not recognizable by a 2-tape synchronous automaton, for example where the
injection maps 1i to 12i. Thus we have the following.

Proposition 4. There exists an FST computable injection structure which is
not graph automatic.

Proposition 5. There exists a graph automatic injection structure which is not
FST computable.

Proof. Observe that an FST injection structure must satisfy f(u) f(v) for
u v where denotes the prefix/initial segment relation. Consider (1∗, f) where
f = {(12n+1, 12n−2) : n ∈ N} ∪ {(12n, 12n+1) : n ∈ N}. Then Gf is automatic,
but we have 12n 12n+1 and yet f(12n) = 12n+1 	 12n−2 = f(12n+1).

On the other hand, it is easy to see that if T = (Q, ι,Σ, Γ, δ, τ) is length
preserving, i.e. τ(q, a) ∈ Γ for all q ∈ Q and a ∈ Σ, then we can use the
transition diagram for δ and τ to construct of DFA which accepts the graph
(w, τ(w)) for all w accepted by the DFA (Q, ι,Σ, δ). There is a stronger result.

Some definitions are needed. For any state q and any string y, we can
extend the transition function δ and the output function τ to strings by let-
ting δ(q, y) and τ(q, y) be the state and output obtained by starting in state
q at the beginning of y and applying the FST T to the string y. For a string
w = a0a1 . . . ak 	= ε, we will let w− = a1a2 . . . ak.

Definition 1. Let T be a FST which generates the injection structure (A, f).

1. A state cycle is a pair (q, y) ∈ Q × Σ∗ such that |y| > 0 and δ(q, y) = q. A
word w ∈ Σ∗ is said to contain a state cycle if w = xyz with (δ(ι, x), y) a
state cycle.

2. T has bounded growth if there is a constant c such that for any w ∈ A,
|w|−c ≤ |f(w)| ≤ |w|+c; T has strongly bounded growth if there is a constant
c such that for any state q and any w ∈ Σ∗, |w| − c ≤ |τ(q, w)| ≤ |w| + c,
provided that there is a computation of T on a string w ∈ A in which T reads
the input w starting in state q.

3. T length-preserves state cycles from A if for any w ∈ A with w = xyz and
(δ(ι, x), y) a state cycle, then we have |τ(δ(ι, x), y)| = |y|.

4. (A, f) is graph relational if Gf is recognized by a two tape DFA.

Complexity and Categoricity of Injection Structures Induced by FST 113

Proposition 6. If T is an FST with s states that generates (A, f), then the
following are equivalent:

1. T length-preserves state cycles from A;
2. T has strongly bounded growth;
3. (A, f) is graph relational and, furthermore, if T has s states, and |T (x)| ≤

|x| + c for all inputs x, then there is a DFA M with ≤ 2s|Σ|c+1 states which
recognizes Gf ;

4. The function f has bounded growth.

Proof. A DFA to recognize the graph will read both words and verify if the
second coordinate comprises of the images of the symbols in the first coordinate
under τ . It would have to remember what it has seen in the first coordinate,
though the condition of bounded growth means that the DFA need only remem-
ber a bounded amount of information using its states. Details are left to the full
paper.

Note that in a unary alphabet, we may identify the string 1n with the num-
ber n, and accordingly identify the isomorphic prefix relation and the usual
ordering on N, ≤. The possible types of FST injection structures over a unary
alphabet were characterized in [4] as follows.

Theorem 5. (BCMR2017) An FST injection structure over {1}∗ is either
finite in which case it consists of cycles of length 1, or infinite, in which case it
may have any of the following types:

1. A structure consisting of infinitely many cycles of length 1;
2. For each finite m ≥ 0 and each n ≥ 1, a structure with m orbits of length 1

and n orbits of type ω;
3. For each finite m, a structure with m orbits of length 1 and infinitely many

orbits of type ω;

Here is an improvement for graph relational structures.

Proposition 7. Unary graph relational FST injection structures have exactly
the following two types:

1. A structure consisting of infinitely many cycles of length 1;
2. For each finite m and each n ≥ 1, a structure with m orbits of length 1 and

n orbits of type ω

Proof. Examples of these types constructed in [4] have bounded growth. Now
suppose by way of contradiction that (A, f) has bounded growth and has
infinitely many orbits of type ω. For simplicity we may assume that there are
no orbits of type 1. Let us identify 1n with n and fix b so that f(n) ≤ n + b for
all n. Consider b + 1 distinct orbits with initial elements a0, a1, . . . , ab and let
a ≥ max{a0, a1, . . . , ab}. Since the distance between x and f(x) is always ≤ b,
it follows that each infinite orbit must have an element in the interval [a, a + b].
But this interval contains only b elements, contradicting the assumption that
the orbits are distinct.

Corollary 2. The first-order theory of each unary injection structure is decid-
able.

114 R. Krogman and D. Cenzer

3 The Character of FST Injection Structures

In the previous section, a condition was proven to indicate when a particular
FST injection structure is graph relational.

Proposition 8. The character of a graph relational FST injection structure is
computable.

Proof. By Theorem 1, the theory of an automatic structure is decidable. Fix
(n, k) ∈ N

2. Let

αk(x) = (fk(x) = x) ∧ (
∧

1≤i≤k−1

f i(x) 	= x)

so that |Of (a)| = k if and only if αk(a) holds. Similarly, consider

βk(x, y) =
∧

0≤i≤k−1

f i(x) 	= y

so that Of (a) ∩ Of (b) = ∅ if and only if βk(a, b) holds. Then for

φn,k = ∃nx [
∧

0≤i≤n−1

αk(xi)] ∧ [
∧

0≤i<j≤n−1

βk(xi, xj)],

we have χ(A) = {(n, k) : A |= φn,k}. Hence, χ(A) is decidable. It follows from
[5] that the theory is also decidable.

For automatic structures, the character is less complicated. The study of
these characters makes use of the sets Ik := {a : card(Of (a)) = k}, for each
fixed k ∈ N. The next result follows from Theorem 1, together with the proof of
Proposition 8.

Proposition 9. If A is FST and graph relational, then for each k ∈ N, Ik is
computable.

Since every automatic set is decidable in linear time, we have the following.

Corollary 3. For each k ∈ N, Ik ⊆ A is decidable in linear time. If χ(A) is
bounded, then there is an algorithm that computes, given a ∈ A, the size of
Of (a).

Some of these results can be improved.

Proposition 10. Let (A, f) be an FST injection structure.

1. There is a constant c such that {(a, k) ∈ A × N : card(Of (a)) = k} is com-
putable in time O(ck · |a|).

2. If (A, f) is graph relational, then there is a constant c such that {(a, k) ∈
A × N : card(Of (a)) = k} is computable in time O(�k2�c + k|a|).

Complexity and Categoricity of Injection Structures Induced by FST 115

Proof. 1. Let T = (Q, ι,Σ, Γ, δ, τ) be a FST which computes the injection f and
let c = max{|τ(q, a)| : (q, a) ∈ Q×Σ}, say that c ≥ 2. For qi = δ(ι, a�a) It follows
that |f(a)| = |⊕i∈|a| τ(qi, ai)| ≤ c · |a| and thus by induction |f i(a)| ≤ ci · |a|
for each i. Then for each i < k, the computation of f (i)(a) takes ≤ ci · |a| steps
in the computation by the FST . Given (a, k) ∈ A × N , in order to verify if
card(Of (a)) = k or not we must compute f i(a). To check whether f (k)(a) = a
takes an additional |a| + 1 steps. It follows that the overall time required to see
whether card(Of (a)) = k is ≤ ck · |a|, we must compute each f i(a) for 1 ≤ i ≤ k
and verify that f i(a) 	= a if i 	= k and fk(a) = a. The computation of f i(a)
takes ≤ ci|a| and at each i, the comparison of f i(a) and a takes ≤ |a|+1. Hence,
the entire procedure takes ≤ ck|a| + ck−1|a| + · · · + |a| + k|a| + k steps, which is
O(ck|a|).

2. Now suppose that Gf is automatic. Then by Proposition 6, there is a
constant c such that |f(a)| ≤ |a| + c for all inputs a. Note then that for all
1 ≤ i ≤ k, we have that |f(a)| ≤ |a| + ic. To compute each of f i(a) then takes
≤ |a|+ic steps. Following the same process used in 1, we have that card(Of (a)) =
k can be determined in ≤ (|a| + c) + (|a| + 2c) + · · · + (|a| + kc) + k|a| + k =
2k|a| + k + (1/2)k(k + 1)c steps, which is O(�k2�c + k|a|).
Corollary 4. For any FST injection structure (A, f) and any fixed k, {a :
card(Of (a)) = k} is computable in linear time.

Analysis of the size of the orbit of x under an injection computed by a FST
requires looking at the iterated composition f (k) of f . So the following result
from [1] is needed.

Theorem 6. Let T and U be finite state transducers that compute f : Σ∗ → Γ ∗

and g : Γ ∗ → Δ∗, respectively. Let T have m states and let U have n states.
Then there is a finite state transducer V that computes g ◦ f : Σ∗ → Δ∗ which
has m · n states.

Proof. Say that T = (Q, ι, δ, τ) and U = (R, κ, ζ, ξ). Consider V = (S, σ, μ, λ) as
follows. In practice, to compute the composition g ◦ f , we would like a scratch
tape to write down T (u) and then compute V (T (u)). Here when T outputs a
string rather than a bit, we will let λ perform several steps in the computation
of U . Take S = Q × R and σ = (ι, κ). Here is how to determine μ((q, r), a)
and λ((q, r), a). First let w = τ(q, a) = b0b1 . . . bk. In the case that w = ε,
let μ((q, r), a) = (δ(q, a), r) and let λ((q, r), a) = ε. Otherwise the definition
proceeds in stages. Let r1 = ζ(r, b0) and let w1 = ξ(r, b0) and for each i ≤
k, let ri+1 = ζ(ri, bi) and let wi+1 = ξ(ri, bi). Then μ((q, r), a) = rk+1 and
λ((q, r), a)) = w1w2 . . . wk+1. We note that all of these calculations are simply
to define the FST V and are being done during a computation V (w).

The following corollary follows by induction from the preceding theorem.

Corollary 5. If (A, f) is an FST structure computed by T with s states and
k ∈ N, then there exists an FST that computes (A, fk) with sk states.

116 R. Krogman and D. Cenzer

Finally we look at the complexity of the character χ(A).

Theorem 7. Let A = (A,E) be a graph relational FST injection structure.
Then there is an algorithm which decides whether (n, k) ∈ χ(A) in time expo-
nential in max{n, k}. If A is a unary structure, then χ(A) is decidable in linear
time.

Proof. Let A be a relational FST injection structure. Given finite n and k > 0,
we need to decide whether A has at least n distinct orbits of size k. It follows
from Corollary 5 that there is an FST that computes f (k) with sk states. Then
by Proposition 6, there is a DFA M with ≤ 2sk|Σ|c+1 states which recognizes
the graph Gfk . This is easily modified to a DFA Mk which recognizes {x :
f (k)(x) = x} with ≤ 2sk|Σ|c+1 states. Now A has at least n distinct orbits of
size k if and only if there are at least kn elements belonging to orbits of size k
and thus accepted by Mk. It now follows from Proposition 1 that this may be
decided in time ≤ 2(2sk|Σ|c+1)4n steps, which is of order s4k|n|, and thus in
exponential time in max{k, n}.

Unary injection structures are trivial and hence have linear time characters.

4 Isomorphisms Between FST Injection Structures

In this section, we analyze the complexity of isomorphisms between FST injection
structures.

Definition 8. A Scott family for a structure A is a countable family Φ of Lω1ω

formulas, possibly with finitely many fixed parameters from A, such that (i) Each
finite tuple in A satisfies some ψ ∈ Φ;
and (ii) If −→a ,

−→
b are tuples in A, of the same length, satisfying the same formula

in Φ, then there is an automorphism of A that maps −→a to
−→
b .

Scott families were used by Ash, Knight, Manasse, and Slaman [2] to charac-
terize the relatively Δ0

n-categorical structures. The following result for automatic
relational structures was obtained in [4].

Theorem 9. (BCMR2017) Let A be an automatic structure for which there is
a c.e. set of formulas Φ with fixed parameters d such that (i) For any tuple a in
A, there is some φ ∈ Φ such that A |= φ(d,a);
and (ii) if a and b are tuples satisfying the same formula φ ∈ Φ, then (A,d,a) ∼=
(B,d, b).

Then any two automatic copies of A are computably isomorphic.

This result can be applied to graph relational FST injection structures as
follows.

Theorem 10. If two graph relational FST injection structures with bounded
character are isomorphic, then they are computably isomorphic.

Complexity and Categoricity of Injection Structures Induced by FST 117

Proof. The desired formulas Φ(x) for a tuple a simply give the size of the orbit
of ai for each i and state whether f (t)(ai) = aj for each i, j, t. We have seen
above in Proposition 9 that, for each finite k, there is a formula Φk(x) so that
(A, f) |= Φk(x) if and only if |O(x)| = k. To define elements belonging to an
infinite orbit, just let k be the maximum size of any finite orbit. Then Of (a) is
infinite if and only if ∀i ≤ k(¬f (i)(a) = a).

The remainder of the section is devoted to improving this result.

Lemma 2. For any unary FST injection structure (A, f) with domain A =
{a0 < a1 < · · · }, the function f is monotone strictly increasing. Furthermore,
for all i, f(ai) ≥ i.

Proof. Let a, b ∈ A with a < b. Then as noted before, f(a) ≤ f(b) since f is FST
computable. However, f(a) 	= f(b) since f is an injection. Hence, f(a) < f(b).

For the second part, let A = {a0 < a1 < · · · }. We proceed by induction on i.
Since f(a0) ∈ A, we have a0 ≤ f(a0). Suppose by induction that ai ≤ f(ai). By
monotonicity, f(ai) ≤ f(ai+1) and in fact f(ai) < f(ai+1) since f is one-to-one.
It follows that ai+1 ≤ f(ai+1).

Here is the general result for the complexity of isomorphisms of unary FST
injection structures.

Theorem 11. Let A and B be two isomorphic FST injection structures with
universe a subset of {1}∗.

1. If A and B are graph relational, then A and B are quadratic time isomorphic.
2. In general, A and B are exponential time isomorphic.

Proof. The core of the argument is for the infinite orbits. Given specific orbits
{a, f(a), f(f(a)), . . . } from A and {b, f(b), f(f(b)), . . . } from B, and an element
x ∈ Of (a), we can compute j such that x = f (j)(a) and then compute g(j)(b) all
in quadratic time. When there are infinitely many orbits with initial elements
{a0, a1, . . . } and {b0, b1, . . . }, additional effort is required to compute from x the
value i so that x ∈ Of (ai).

Details are left to the full paper.

The case of FST injection structures with binary universes is rather more
complicated.

Proposition 11. There are two isomorphic FST injection structures which are
not computably isomorphic.

Proof. First recall from Theorem 4 the FST injection structure A with infinitely
many orbits of type ω together with infinitely many orbits of each finite size,
such that InfA is c.e. complete. Then consider the copy B of this structure
obtained by using Proposition 2 to join one FST structure consisting of infinitely
many orbits of each finite size to another FST structure consisting of infinitely
many orbits of type ω. It follows from the proof of Proposition 2 that InfB will
be a regular set and therefore computable. Hence there can be no computable
isomorphism between A and B.

118 R. Krogman and D. Cenzer

Thus we shall have only partial success in trying to show that two isomorphic
FST structures must be computably isomorphic. In particular, we will restrict
the discussion to structures with full domain {0, 1}∗.

Lemma 3. For any binary FST injection structure (A, f), the function f is
monotone strictly increasing. Furthermore, if A = {0, 1}∗, then for all w,
|f(w)| ≥ |w|.
Proof. Let (A, f) be a FST injection structure. Suppose u � v. It is immediate
from the definition of a finite state transducer that f(u) � f(v). Now suppose
that A = {0, 1}∗. Since f is an injection, f(x�i) 	= f(x) so that |f(x�i)| > f(x)
and it follows by induction that |f(x)| ≥ |x| for all x. Note that this means that
there are no ε-outputs from any reachable state.

This leads to two results about full domain structures.

Proposition 12. Let A = ({0, 1}∗, f) be an FST injection structure.

1. A has no orbits of type ζ.
2. If Of (a) is finite, then for all i, |f (i)(a)| = |a|.

Lemma 3 and Proposition 12 may be used to prove the following result with
an argument similar to Theorem 11. Details are left to the full paper.

Theorem 12. Let A and B be two isomorphic FST injection structures with
full universe A = {0, 1}∗ = B, with bounded character, and with finitely many
infinite orbits. If A and B are graph relational, then A and B are isomorphic in
double exponential time.

5 Conclusions and Further Research

Results of this paper extend the known family of FST injection structures from
[4]. FST injection structures (A, f), for which the graph Gf is automatic, are
characterized in terms of the notion of bounded growth. The character of a graph
relational FST injection structure is decidable in exponential time and for unary
structures, in linear time. Isomorphic unary FST injection structures are expo-
nential time isomorphic, and furthermore, for graph relational structures, they
are quadratic time isomorphic. Not all isomorphic pairs of FST injection struc-
tures are computably isomorphic. Any two isomorphic graph relational injection
structures with full universe {0, 1}∗ are double exponential time isomorphic.

Ongoing research continues on characterizing the FST injection structures.
We have obtained partial results on the Isomorphism Problem for unary FST
injection structures and will continue to study this. An important question
remains whether every FST injection structure (A, f) have a decidable theory.

Complexity and Categoricity of Injection Structures Induced by FST 119

References

1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: A general theory of translation. Math.
Syst. Theor. 3, 193–221 (1969)

2. Ash, C., Knight, J., Manasse, M., Slaman, T.: Generic copies of countable struc-
tures. Ann. Pure Appl. Logic 42, 195–205 (1989)

3. Blumensath, A.: Automatic structures. Diploma Thesis, RWTH Aachen (1999)
4. Buss, S., Cenzer, D., Minnes, M., Remmel, J.B.: Injection structures specified by

finite state transducers. In: Day, A., Fellows, M., Greenberg, N., Khoussainov, B.,
Melnikov, A., Rosamond, F. (eds.) Computability and Complexity. LNCS, vol.
10010, pp. 394–417. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
50062-1 24

5. Cenzer, D., Harizanov, V., Remmel, J.B.: Σ0
1 and Π0

1 structures. Ann. Pure Appl.
Logic 162, 490–503 (2011)

6. Cenzer, D., Harizanov, V., Remmel, J.B.: Computability theoretic properties of
injection structures. Algebra Logic 53, 39–69 (2014)

7. Cenzer, D., Remmel, J.B., Carson, J.: Effective categoricity of automatic equiv-
alence and nested equivalence structures. Theor. Comput. Syst. 64, 1110–1139
(2020)

8. Delhommé, C.: Automaticité des ordinaux et des graphes homogènes. C. R. Math.
Acad. Sci. Paris 339(1), 5–10 (2004)

9. Hodgson, B.R.: On direct products of automaton decidable theories. Theoret. Com-
put. Sci. 19(3), 331–335 (1982)

10. Khoussainov, B., Liu, J., Minnes, M.: Unary automatic graphs: an algorithmic
perspective. Math. Struct. Comput. Sci. 19(1), 133–152 (2009)

11. Khoussainov, B., Minnes, M.: Model-theoretic complexity of automatic structures.
Ann. Pure Appl. Logic 161(3), 416–426 (2009)

12. Khoussainov, B., Nerode, A.: Automatic presentations of structures. In: Leivant,
D. (ed.) LCC 1994. LNCS, vol. 960, pp. 367–392. Springer, Heidelberg (1995).
https://doi.org/10.1007/3-540-60178-3 93

13. Khoussainov, B., Nies, A., Rubin, S., Stephan, F.: Automatic structures: richness
and limitations. In: Logic Methods in Computer Science (Special issue: Conference
“Logic in Computer Science 2004”) 2:2, 18 (2004)

14. Khoussainov, B., Rubin, S., Stephan, F.: On automatic partial orders. In: Proceed-
ings of the LICS 2003, pp. 168–177 (2003)

15. Liu, J., Minnes, M.: Deciding the isomorphism problem in classes of unary auto-
matic structures. Theoret. Comput. Sci. 412(18), 1705–1717 (2011)

16. Liu, J., Minnes, M.: Analysing complexity in classes of unary automatic structures.
In: Dediu, A.H., Ionescu, A.M., Mart́ın-Vide, C. (eds.) LATA 2009. LNCS, vol.
5457, pp. 518–529. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-00982-2 44

https://doi.org/10.1007/978-3-319-50062-1_24
https://doi.org/10.1007/978-3-319-50062-1_24
https://doi.org/10.1007/3-540-60178-3_93
https://doi.org/10.1007/978-3-642-00982-2_44
https://doi.org/10.1007/978-3-642-00982-2_44

A Tale of Optimizing the Space Taken
by de Bruijn Graphs

Rayan Chikhi(B)

Institut Pasteur, CNRS, Paris, France
rayan.chikhi@pasteur.fr

Abstract. In the last decade in bioinformatics, many computational
works have studied a graph data structure used to represent genomic
data, the de Bruijn graph. It is closely tied to the problem of genome
assembly, i.e. the reconstruction of an organism’s chromosomes using a
large collection of overlapping short fragments. We start by highlighting
this connection, noting that assembling genomes is a computationnally
intensive task, and then focus our attention on the reduction of the space
taken by de Bruijn graph data structures. This extended abstract is a
retrospective centered around my own previous work in this area. It
complements a recent review [10] by providing a less technical and more
introductory exposition of a selection of concepts.

Keywords: Bioinformatics · Data structures · de Bruijn graphs

1 Context

Let us travel back in time in 2008, when the problem of reconstructing genomes
using DNA sequencing, termed de novo genome assembly, had a rebirth as an
active area of research within many computational research groups. Back when
I started a PhD in bioinformatics in 2008, my advisor Dominique Lavenier told
me about a relatively new problem consisting in reconstructing genomes using
DNA sequencing, termed de novo genome assembly. It was a somewhat “fresh”
problem at the time: many genomes were already assembled, e.g. the Human
Genome Project completed at the beginning of the 2000s, yet performing the
assembly of any organism was just starting to be within reach for most biological
labs. The vast majority of organisms did not have their genomes assembled (and
as of today: they still do not). So the challenge was to create software that
any individual lab could use, not just large organizations. The main type of
data at the time were short reads, i.e. fragments of around 100 nucleotides,
meaning that only a tiny fraction of a genome could be read contiguously at
a time. (Genomes of viruses are in the order of thousands of nucleotides, but
for most other organisms they range from millions to billions.) By repeatedly
sequencing fragments from random locations, reads would significantly overlap
which makes genome reconstruction possible. Short reads were produced mainly

c© Springer Nature Switzerland AG 2021
L. De Mol et al. (Eds.): CiE 2021, LNCS 12813, pp. 120–134, 2021.
https://doi.org/10.1007/978-3-030-80049-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80049-9_11&domain=pdf
https://doi.org/10.1007/978-3-030-80049-9_11

A Tale of Optimizing the Space Taken by de Bruijn Graphs 121

from the company Illumina, still a market leader on DNA sequencing today;
some of the previous technologies (e.g. 454) were on their way out.

The EULER-SR assembler was one of the first specialized genome assembly
software for short reads, and it came out in 2008. It achieved an assembly of
a bacterium (E. coli) in 199 pieces [9]. This means that the genome was near-
completely reconstructed, yet in a fragmented way to due ambiguities. This may
seem unremarkable by current standards, as nowadays we can reconstruct nearly
all bacteria in a single piece per chromosome. Yet the task was fundamentally
hindered by the length of the short reads. Still, at the time it was clear that the
next frontier would be to assemble larger genomes, e.g. animals or plants, even
if the final assembly would still be largely fragmented.

The widely-used Velvet [43], ABySS [41] and SOAPdenovo [24] assemblers
appared in the following two years. And indeed, the first two were able to assem-
ble a human genome using a cluster or a large-memory single machine. These
assemblers were all based on a certain representation of the input data (de Bruijn
graph), that we will explain in the next section. These graphs come from mathe-
matics and had not yet been widely used outside of some networking applications.
This was before the era of more advanced assemblers (IDBA/SPAdes [3,37]);
early assemblers only constructed a single graph, as opposed to iterating over
multiple graphs with different parameters.

Even so, the construction of a large de Bruijn graph was the most
computation-intensive step of genome assembly at the time. This should come
as no surprise, as 1) this was the first period in history when one had to con-
struct large de Bruijn graphs in any domain; there existed no previous litterature
describing how to do it efficiently, and no software library. 2) It did not matter
so much if construction was slow or memory-intensive, as long as some large-
memory machine managed to run it. 3) The volume of input data was really
large by historical standards: in the order of a hundred of gigabytes in com-
pressed form. Yet, as genome assembly later became a routine task, along with
the advent of huge instances such as metagenomics (the analysis of multiple
genomes at once), the efficient construction de Bruijn graphs naturally became
a critical aspect of genome assembly. It also turns out that de Bruijn graphs
would be useful for other biological sequence analysis tasks, such as the sequenc-
ing of RNA [35], the compression of genomic data [20], and the detection or
representation of variations across a single or multiple genomes [16].

The goal of this extended abstract is to retrace some of the steps that the
community and I took towards achieving space-efficient representations of de
Bruijn graphs, starting from the initial attempts in the first assemblers, making
a detour through theoretical lower bounds, and finishing with current advances
and some perspectives.

2 Problem Formulation

Let us introduce some of the concepts. A DNA sequence is seen as a string over
four possible characters (A,C,T,G). A k-mer is a portion of DNA sequence of

122 R. Chikhi

length k, e.g. ACT is a 3-mer. The de Bruijn graph is a directed graph where
nodes are k-mers, and edges are the exact suffix-prefix overlaps of length k − 1
between two nodes; e.g. ACT→CTA or AAA→AAT, but ACT and AAA are not
connected by an edge. See Fig. 1 for another example. Note that in practice, k is
typically greater than 20. A de Bruijn graph is constructed by inserting all the
possible k-mers present in an input dataset. If the same k-mer is seen multiple
times, all of its occurrences are associated to the same node.

Sequenced
reads

Reference
genome

k-mers

de Bruijn
graph

Fig. 1. Left panel: example of a toy reference genome sequence, a set of 3 sequenced
reads, and the corresponding 4-mers extracted from the reads. Right panel: the de
Bruijn graph constructed these reads with k = 4 and drawn using a circular layout.

The scientific question we will be interested in can be informally stated as
follows: given a set of nodes of the de Bruijn graph, stored on disk, construct an
in-memory representation1 that supports a reasonable subset of standard graph
operations, e.g. determine all the neighbors of a node, determine if some putative
node is present or absent, etc. The representation should take as little memory
as possible, and answer queries reasonably fast, although as we will see next, the
main limiting factor here is typically not the query time but the representation
size.

Note that prior to circa 2012, the problem as stated above was not recog-
nized as its own area of investigation within bioinformatics nor computer science.
Arguably it became one when several data structures were published as stand-
alone articles [5,13,14].

3 Caveats

We will focus here on only a selection of major milestones, where space usage was
reduced, ignoring other features such as query times. The presentation will also

1 Such a representation is also often called a data structure, and the abstract model
that encompasses all the data structures supporting the same operations is called
an abstract data type.

A Tale of Optimizing the Space Taken by de Bruijn Graphs 123

sacrifice some technical accuracy in favor of accessibility. For a more complete
and technical exposition, please refer to this review [10].

Note that genome assembly cannot be reduced to the representation of the
de Bruijn graph. In fact, many older tools even used different paradigms [32].
Among those which do use a de Bruijn graph, they implement many steps before
(e.g. error correction) and after (e.g. graph cleaning) the construction of the
graph that crucially affect results quality. However, for the sake of keeping the
story coherent, we will set aside this broader environment to focus solely on the
efficiency of graph representation.

4 The Early Days

The early assembly programs from the 2008–2010 era did not particularly aim
to optimize the space usage of de Bruijn graphs. Therefore, their memory usage
may be seen as wasteful by current standards, yet they laid the bases for future
progress.

The EULER-SR assembler reported building the graph using what they
describe as “an efficient hashing structure” which was then transformed into
a sorted list of vertices, queried using binary search. Notably, k-mers were rep-
resented explicitly as strings.2

Similarly the Velvet assembler, published the same year, used a hash table to
record for each k-mer “the ID of the first read encountered containing that k-mer
and the position of its occurrence within that read”. It is natural to want to keep
track of where each k-mer is coming from, however as we will see next, storing
this information in the graph is prohibitively expensive. The authors note: “The
main bottleneck, in terms of time and memory, is the graph construction. The
initial graph of the Streptococcus reads needs 2.0 [gigabytes] of RAM.” Given
that the Streptococcus genome is 2 million nucleotides in length, and under the
assumption that there were roughly 10x more erroneous k-mers than correct
ones, we infer that the de Bruijn graph representation of Velvet required in the
order of 100 bytes per k-mer.

The SOAPdenovo assembler followed the Velvet assembler strategy, except
that its authors realized that one could achieve the nearly identical (or even
better) results quality despite discarding a lot of space-intensive information
in the hash table (read locations and paired-end information). Its graph repre-
sentation required 120 GB of memory for storing 5 billion nodes of a human
genome [32], i.e. around 24 bytes per k-mer. This prowess demonstrated that
the quality of genome assembly was not sacrified when trimming down the de
Bruijn graph data structure. There existed some minimal set of supported oper-
ations that would make a de Bruijn graph fit for purpose, although this set was
not described at the time. As long as a data structure would support all these

2 The total space usage of the graph was reported to be O(L) ∗ (v+ k) bytes, where L
is the genome size, k is the k-mer length and v is the memory allocated per vertex,
reported to be 40 bytes.

124 R. Chikhi

features, then computer scientists would be free to optimize it as much as they
could.

The Meraculous assembler, published in 2011, took a radically different app-
roach by storing the de Bruijn graph using collision-free hashing. Its represen-
tation only supports the lookup of the next nucleotide following a k-mer (i.e.
the out-neighbor of a node), where k-mers having multiple out-neighbors were
previously discarded during a pre-processing step. As in other assemblers, there
are further steps taken to attempt to “fill the gaps” between the discarded k-
mers and to orient the assembled fragments, yet these are outside our current
scope. The Meraculous de Bruijn graph structure does not support enumeration
of vertices. Despite the apparent minimality in terms of supported operations,
it appeared to be sufficient for enabling genome assembly. While this technique
was not further re-used by other assembly tools, we revisited it 6 years later to
develop the general-purpose minimal perfect hashing library BBHash [25].

5 The Birth of a Line of Research

The years 2011–2012 saw a remarkable amount of independent contributions
proposing new ways to represent the de Bruijn graph in a space-efficient man-
ner. In retrospect, the field was ripe for such contributions as there was an
important problem to be solved (genome assembly of human genomes was tak-
ing a prohibitive amount of memory), which was well-defined computationally3,
and there were no previous “clever” solutions apart from using off-the-shelf data
structures.

To my knowledge, the first article on this topic was published in 2011 by T.
Conway and A. Bromage [14]. They describe an encoding of the de Bruijn graph
using an existing state-of-the-art efficient encoding of bit arrays. Furthermore,
they also show that their representation is ‘optimal’, in the following sense:
information theory dictates that any other exact de Bruijn graph representation
will have to use as many bits per k-mer in the worst case. The key words of
the previouse sentence are “exact” and “worst case”, and we will revisit this
statement later in this document. But for now, it is sufficient to note that to this
date, the Conway-Bromage data structure is provably optimal. Then, does this
mark the end of the line of research on the representation of de Bruijn graphs?

Not quite, despite the lower bound argument being convincing. We will briefly
expose it here. Observe that to represent a de Bruijn graph, one only needs to
represent its vertices4. The edges are indeed implicit in the representation, as

3 At least implicitly, as to my knowledge, it has not been explicitly formulated as an
open question in an article.

4 We omit a technicality here that will only be of interest to specialists. We only
consider node-centric de Bruijn graphs. For edge-centric de Bruijn graphs, the argu-
ment stated in this paragraph does not apply. Yet, edge-centric graphs are tightly
related to node-centric ones and in practice, using one definition or the other does
not matter.

A Tale of Optimizing the Space Taken by de Bruijn Graphs 125

one could determine all the neighbors of a certain k-mer by querying for the
presence of all the potential k-mers shifted to the left or to the right.

Then, a bijection is established between the set of all possible sets of n
vertices, and the set of all possible binary vectors having n ones and 4k − n
zeros. The bijection is actually rather straightforward: each k-mer is directly
encoded as an integer in base 4 (see Fig. 2 middle panel), and a bit vector has a
1 at position i if and only if i is the encoding of a k-mer that belongs to the set
of graph vertices. Since the number of possible bit vectors is classically known,
one deduces that to represent a de Bruijn graph for a certain parameter k having
n vertices, one must uses in the worst case as many bits as the logarithm of the
number of possible bit vectors of size 4k that have n ones.

6 Beating the Lower Bound (by Inexactness)

As it turns out, this lower bound did not discourage researchers from proposing
data structures that exhibited even lower space usages in practice than those
dictated by the bound. One such data structure is the encoding of a de Bruijn
graph using a Bloom filter by Pell et al. [36] (Fig. 2). By inserting all the vertices
of the graph inside a probabilitic membership data structure (here, the Bloom
filter), it is possible to represent a set of k-mers approximatively. The trade-
off is then that the graph is not exactly represented, yet the space usage is an
order of magnitude lower than the one dictated by the Conway-Bromage lower
bound: around 4 bits per k-mer. Pell et al. showed that despite having many
false positive nodes resulting from the approximate representation, it was still
possible to perform useful analysis on the graph – not quite genome assembly,
but another related task (read partitioning).

Following this, G. Rizk and I proposed to extend this representation to make
it exact within a certain setting, and perform genome assembly [13]. Due to the
lower bound, any attempt at removing all the false positives of the Bloom filter
would result in a data structure that would necessarily be at least as large as the
one from Conway-Bromage. The key insight was to realize that only a fraction
of the false positives of the Bloom filter mattered: those which were neighbors of
a true positive vertex. By explicitly storing them in a “blacklist” hash table, our
data structure managed to represent a graph in typically ≈13 bits per k-mer5,
and the neighbor query operation would be exact. This “beats” the Conway-
Bromage bound by a factor of roughly 2x. The caveat is that the representation
is not exact everywhere, but as long as a user traverses the graph from a true
positive vertex, then the representation would act identically to the exact one.
We implemented this data structure inside a genome assembler, Minia [13].

Another instance of an inexact de Bruijn graph representation is the sparse
de Bruijn graph [42], which is a de Bruijn graph that skips g intermediate k-mers,
providing roughly a 1/g space saving, where g was set to 16. Finally, along the
same line of thought the A-Bruijn graph formalism [26] selects an arbitrary set
5 Which would later be improved by Sahlikov & Kucherov to ≈8.5 bits per k-mer,

using cascading Bloom filters [40].

126 R. Chikhi

de Bruijn graph

Bloom filter

Approximate encoding of the de Bruijn graph using a Bloom filter

Exact encoding of the de Bruijn graph using a bit vector

Exact encoding of the de Bruijn graph using a hash table

Hash table

16 bits

4 x 4

~0.6
= 28 bits

load factor

nodes bits/node

9 bits

Fig. 2. Example of a de Bruijn graph (top left panel) and three possible encodings.
Top right panel: hash table, each node is inserted at a position given by a random hash
function. The collision between TG and AC is resolved using linear probing, i.e. by
inserting AC at the next free slot in the table. The load factor is number of occupied
cells over total cells. Middle panel: bit vector, storing each node converted into an
integer using the classical binary encoding of characters A,C,G,T=00b,01b,10b,11b,
where b indicates that the number is written in binary. Bottom panel: Bloom filter,
where each node is inserted at a position given by a random hash function. Two false
positives nodes (CC, AG) are shown in red. They arise because the hash function causes
collisions between any possibly existing node and true nodes. (Color figure online)

of strings, and creates an edge when two strings appear consecutively in at least
one read. This concepts generalizes de Bruijn graphs; yet A-Bruijn graphs may
contain one or several orders of magnitude less nodes than de Bruijn graphs.
There are some potentially interesting parallels between A-Bruijn graphs and
sparse de Bruijn graphs, yet to the best of my knowledge they have not been
explored (Fig. 3).

A Tale of Optimizing the Space Taken by de Bruijn Graphs 127

space usage in bits/node

3.25 6 8.5 22 192

SO
AP

den
ovo

(20
09)

Vel
vet

(20
08)

Con
way

-Br
om

age
(20

11)

Minia
(20

12,
201

4)

BO
SS

(20
12,

201
5)

Na
v. l

owe
r b

oun
d (20

14)

Fig. 3. Space taken by various representations of de Bruijn graphs, in bits per node.
“Conway-Bromage” is both the Conway-Bromage exact lower bound and its matching
upper bound. “Nav. lower bound” is the navigational lower bound for general de Bruijn
graphs from [11]. BOSS is the flavor of [23].

7 Beating the Lower Bound (by Instance Specificity)

Independently of Minia, and presented at the same session of the WABI confer-
ence in 2012, the BOSS data structure proposes a completely different yet exact
de Bruijn graph representation [5]. It uses a variant of the Burrows-Wheeler
transform specifically tailored for k-mers. A complete description of the BOSS
structure, or even the Burrows-Wheeler transform, would be beyond the tech-
nical level of this document, and can be found in [1]. Intuitively, the Burrows-
Wheeler transform [7] is a permutation of the characters of a string that facili-
tates substring search and compression. BOSS extends this concept by storing a
permutation of the last characters of each k-mer6 together with a bit array. The
result is a data structure that supports efficient membership queries and neigh-
borhood traversal of the graph, all in around 6 bits per k-mer in practice. While
in the first few years the construction of this structure was relatively impractical,
recent improvements lifted those limitations, allowing to process even terabases
of input data [22].

Taking a step back, BOSS is an exact representation that appears to somehow
beat the Conway-Bromage lower bound. How is this even possible? While this
aspect was not discussed in nearly all of the publications related to BOSS, it
turns out that BOSS has been mainly applied to k-mer sets that have a so-
called spectrum-like property [10], i.e. where all the k-mers originate from some
underlying long strings. Should BOSS be applied to an arbitrary set of k-mers,
its space usage would mechanically be raised to match or exceed the Conway-
Bromage lower bound; yet, this fact has to my knowledge never been properly
tested in practice.

Regardless, the spectrum-like property and the effectiveness of BOSS are
important insights: a data structure may do better than the worst-case lower
bound while still remaining exact, when it is restricted to a certain class of
inputs that matter in practice. Then, a natural next question arises: what would
be a more realistic lower bound for representing ‘practical’ de Bruijn graphs, i.e.
those having spectrum-like property?
6 along with some additional artificial k-mers to “pad” those which do not have a large

enough neighborhood.

128 R. Chikhi

Several collaborators and I addressed this question in [11], where we formu-
lated several concepts. First, we defined a navigational data structure as one
that enables navigation in the graph but does not necessarily support member-
ship queries. We showed that navigational data structures for general de Bruijn
graphs require at least 3.24 bits per k-mer in the worst case. When restricted to
the family of linear de Bruijn graphs (i.e. graphs where all nodes have a single in-
neighbor and/or single out-neighbor), then a lower bound for navigational data
structures is 2 bits per k-mer. This last lower bound is tight, as representing the
linear de Bruijn graph using the Burrows-Wheeler transform (or its optimized
flavor, FM-index [17]) yields also a data structure that is asymptotically close
to 2 bits per k-mer. In [11], we also proposed a new data structure for de Bruijn
graphs having the spectrum-like property, using the Burrows-Wheeler transform,
and showed that it takes 2+(k+2)c/n bits per k-mer, where c is essentially the
maximal number of k-mer-disjoint strings the k-mers could have been generated
from7.

Lastly, one may also wonder how a de Bruijn graph could be further com-
pressed, e.g. to be stored on disk. Supposedly such a compressed representation
would be even smaller than the previously mentioned data structures. The trade-
off is the inability to perform fast queries. Two independent works [6,38], one on
simplitigs and the other on spectrum-preserving string sets which I was associ-
ated with, proposed to store non-overlapping paths of the compacted de Bruijn
graph as sequences, and store them in compressed form on disk. Despite the
representation apparently storing an incorrect representation of the graph, due
to paths being constructed by choosing edges arbitrarily, one may observe that
the original graph can be reconstructed losslessly from its path representation.
Such a disk representation achieved a space very close to the 2 bits per k-mer
lower bound: 4.1 bits per k-mer for a whole human genome read dataset, and
2.7 bits per k-mer for a human metagenome.

8 Construction Algorithms

An apparté will be made in this section, where we will briefly mention the data
structure construction algorithms. One typical pre-processing step commonly
done prior to creating a de Bruijn graph data structure is k-mer counting. This
step takes the input sequencing data and yields the set of distinct k-mers present
in the input along with their abundances. It essentially constructs the nodes of
the de Bruijn graph.

During the development of Minia, we had ran into an issue. The graph repre-
sentation was so succinct that other steps of the genome assembly pipeline acted
as bottlenecks, including k-mer counting. At the time, the most efficient k-mer
counter was Jellyfish [28], which used a custom thread-safe hash table optimized
specifically to store k-mers. Yet, Jellyfish would have used much more memory
than Minia. We therefore set out to design a low-memory k-mer counting tool

7 For specialists, c is the number of unitigs.

A Tale of Optimizing the Space Taken by de Bruijn Graphs 129

that would use the disk to alleviate memory usage (DSK [39]). This strategy
was also used by other popular k-mer counting tools, e.g. KMC [15].

The problem of k-mer counting is fascinating in its simplicity but also difficult
to engineer correctly, given that large volumes of input sequences need to be
processed with high CPU utilization, low memory usage, and bandwidth-limited
disk accesses. A relatively current review is [27]. After k-mer counting, nearly all
of the data structures presented above have their own, customized construction
algorithms. As such, there does not exist an ‘universal’ construction algorithm
for de Bruijn graph that would then be slightly adapted to derive a particular
data structure.

However, several recent data structures (the one presented in [11], Puffer-
fish [2], BLight [30]) require as input a common object: the compacted de Bruijn
graph. It is obtained from a classical de Bruijn graph by transforming each non-
branching path into a single node, similarly to suffix tries are transformed into
suffix trees by collapsing paths of vertices having one child. However, this is a cir-
cular situation: in order to construct an efficient representation of the classical de
Bruijn graph, one must have already constructed a compacted de Bruijn graph,
which itself is obtained from the classical de Bruijn graph. In order to break this
circularity, My colleagues and I proposed an efficient construction algorithm for
the compacted de Bruijn graph [11], which uses a constant amount of memory.
It was further extended to make use of multiple threads efficiently [12].

9 Current State of the Art

Since the influx of de Bruijn graph data structures in 2012, several more have
been published in the recent years. As it turns out, many of them are based
on minimal perfect hashing. It is a variation of a hash table which does not
store its keys, yet still manages to resolves collisions. Minimal perfect hashing
is unable to confirm if an arbitrary key is present or absent in the structure,
however for any key that was inserted during its construction, it returns an exact
answer. This makes the structure highly space-efficient. Along with colleagues,
we proposed a fast parallel C++ library for constructing minimal perfect hashes
(BBHash [25]) which has been engineered to scale significantly better than other
existing implementations at the time.

Among current de Bruijn graph data structures, I will briefly highlight Puffer-
fish [2] and Blight [30] which are both based on the compacted de Bruijn graph,
and queries are supported by an additional minimal perfect hashing structure
that quickly locates positions within nodes of the compacted graph. The Bloom
Filter trie [19] and Bifrost [18] structures both use Bloom filters in addition with
other auxiliary data structures to keep the representation exact, yet even brush-
ing their algorithmic details would be too technical for this survey. Counting
quotient filters [34] improve upon Bloom filters by also storing the number of
occurrences of each node in the input data. Belazzougui et al. proposed a navi-
gational data structure based on minimal perfect hashing, with a clever addition
of a tree data structure to restore membership queries. For more details on all
of these data structures, see [10].

130 R. Chikhi

In a way, one might acknowledge that “the dust has settled” in the landscape
of de Bruijn graph data structures. The bioinformatics algorithms community
has attempted for several years to come up with solutions that combine low
space usage, fast query speed and a reasonable set of features. The outcome is
a set of current data structures that achieve reasonable trade-offs, with space
close to the known lower bounds. As a result, de Bruijn graphs are no longer a
bottleneck in genome assembly, partly also due to decreasing RAM costs (Fig. 4).

Fig. 4. Consumer RAM costs from the 2007–2021 period. Each dot is a retail DIMM
product sold on the current year. Source: https://jcmit.net/memoryprice.htm

Then, is this the end of this line of research? Not quite, as the natural next
frontier is the representation of multiple genomes within a generalization of the
de Bruijn graph.

10 Colored de Bruijn Graphs

As a coincidence of dates (or perhaps not), 2012 was not only the year where
many seminal data structures for de Bruijn graphs were proposed, but also the
year when the term colored de Bruijn graph was coined (in [21]), which will pave
the way to the next type of contributions that we will mention here. Colored de
Bruijn graphs generalize de Bruijn graphs to multiple samples. When faced with
multiple samples, a classical de Bruijn graph would bundle them together and
consider the union of all samples as a single “mega-sample”. Colored de Bruijn
graph also do that, but they add additional information associated to the nodes
so that one can tell the origin of each node across samples. Naturally, speaking in
terms of lower bounds, storing such a graph for multiple samples should require
strictly more space than storing the graph of any subset of samples.

https://jcmit.net/memoryprice.htm

A Tale of Optimizing the Space Taken by de Bruijn Graphs 131

Several data structures have been proposed to store colored de Bruijn graph,
the first of which was based on an efficient hash table [21], then later using the
Burrows-Wheeler transform [33]. More recently my colleagues and I proposed
the REINDEER structure, based on compacted de Bruijn graphs and minimal
perfect hashing [29], with the distinctive feature of not only storing the pres-
ence/absence of nodes, but also the approximate frequency of each node within
each sample.

To the best of my knowledge, there has been no attempt made at formulating
space lower bounds for colored de Bruijn graphs. One may obtain one through an
immediate application of existing lower bounds to the union graph disregarding
color information. However, this would be a loose bound as much of the difficulty
of storing colored graphs lies in the color information.

11 Wrap-Up and Open Questions

As we reviewed above, many data structures have been proposed to store de
Bruijn graphs, achieving several order of magnitudes improvement in space usage
compared to using off-the-shelf data structures for graph storage. From this
perspective, the theoretical study of data structures along with their practical
implementations has been successful at providing performance gains for widely-
used software tools (e.g. [3,23]). Looking back, the improvements have mainly
be due to two realizations. 1) Data structure exactness can be sacrified yet
still provide exact results in a certain frame of operations. 2) The theoretical
worst-case analysis of data structures inadequately applies to practical instances.
The latter realization is the topic of an upcoming article from Medvedev [31],
critically reflecting on the analysis of bioinformatics algorithms more broadly.

Several topics were not covered in this document, to keep it simple. One
is double-strandedness, which forces all the data structures mentioned above to
consider that a k-mer and its reverse-complement should be the same object; this
adds theoretical and especially practical complications, yet does not fundamen-
tally change the exposition of the data structures. An additional one is the use
of multiple k values. Nowadays genome assembly tools on short reads typically
construct multiple de Bruijn graphs iteratively. This is a somewhat orthogonal
matter as presented here, given that each individual graph is represented using
one of the techniques above. We note however that some works have attempted
to unify multiple graphs into one [4,8]. Another consideration is how to store
the number of times each k-mer is seen in the input. All these considerations are
discussed in more details in [10].

We summarize here a few open questions:

1. Can compressed representations e.g. spectrum-preserving string sets be made
efficiently queryable? This would lead to even more compressed de Bruijn
graphs.

2. What would be a space lower bound for exactly representing a colored de
Bruijn graph of n samples, each sample i having Di distinct k-mers?

3. A matching upper bound of the above.

132 R. Chikhi

4. How to efficiently represent not only the presence/absence of a node but also
its abundance in colored de Bruijn graphs (improving upon REINDEER [29]).

References

1. Alipanahi, B., Kuhnle, A., Puglisi, S.J., Salmela, L., Boucher, C.: Succinct
Dynamic de Bruijn Graphs. Bioinformatics (2020). https://academic.oup.com/
bioinformatics/advance-article/doi/10.1093/bioinformatics/btaa546/5848003

2. Almodaresi, F., Sarkar, H., Srivastava, A., Patro, R.: A space and time-efficient
index for the compacted colored de Bruijn graph. Bioinformatics 34(13), i169–i177
(2018)

3. Bankevich, A., et al.: SPAdes: a new genome assembly algorithm and its applica-
tions to single-cell sequencing. J. Comput. Biol. 19(5), 455–477 (2012)

4. Boucher, C., Bowe, A., Gagie, T., Puglisi, S.J., Sadakane, K.: Variable-Order de
Bruijn graphs. In: 2015 Data Compression Conference, pp. 383–392 (2015)

5. Bowe, A., Onodera, T., Sadakane, K., Shibuya, T.: Succinct de Bruijn graphs. In:
Raphael, B., Tang, J. (eds.) WABI 2012. LNCS, vol. 7534, pp. 225–235. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-33122-0 18

6. Břinda, K., Baym, M., Kucherov, G.: Simplitigs as an efficient and scalable rep-
resentation of de Bruijn graphs. Genome. Biol. 22, 96 (2021). https://doi.org/10.
1186/s13059-021-02297-z

7. Burrows, M., Wheeler, D.: A block-sorting lossless data compression algorithm.
Report 124, Digital Systems Research Center, Palo Alto, CA, USA (May 1994)

8. Cazaux, B., Rivals, E.: Hierarchical overlap graph. Inf. Proc. Lett. 155, 105862
(2020)

9. Chaisson, M.J., Pevzner, P.A.: Short read fragment assembly of bacterial genomes.
Genome Res. 18(2), 324–330 (2008)

10. Chikhi, R., Holub, J., Medvedev, P.: Data structures to represent sets of k-long
DNA sequences. arXiv preprint arXiv:1903.12312 (2019)

11. Chikhi, R., Limasset, A., Jackman, S., Simpson, J.T., Medvedev, P.: On the rep-
resentation of de Bruijn graphs. In: Sharan, R. (ed.) RECOMB 2014. LNCS,
vol. 8394, pp. 35–55. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
05269-4 4

12. Chikhi, R., Limasset, A., Medvedev, P.: Compacting de Bruijn graphs from
sequencing data quickly and in low memory. Bioinformatics 32(12), i201–i208
(2016)

13. Chikhi, R., Rizk, G.: Space-efficient and exact de Bruijn graph representation based
on a bloom filter. Algorithms Mol. Biol. 8(1), 1–9 (2013)

14. Conway, T.C., Bromage, A.J.: Succinct data structures for assembling large
genomes. Bioinformatics 27(4), 479–486 (2011)

15. Deorowicz, S., Debudaj-Grabysz, A., Grabowski, S.: Disk-based k-mer counting on
a PC. BMC Bioinf. 14(1), 1–12 (2013)

16. Eizenga, J.M., et al.: Pangenome graphs. Ann. Rev. Genomics Hum. Genet. 21(1),
139–162 (2020). PMID: 32453966

17. Ferragina, P., Manzini, G.: Opportunistic data structures with applications. In:
Proceedings 41st Annual Symposium on Foundations of Computer Science, pp.
390–398. IEEE (2000)

18. Holley, G., Melsted, P.: Bifrost: highly parallel construction and indexing of colored
and compacted de Bruijn graphs. Genome Biol. 21(1), 1–20 (2020)

https://academic.oup.com/bioinformatics/advance-article/doi/10.1093/bioinformatics/btaa546/5848003
https://academic.oup.com/bioinformatics/advance-article/doi/10.1093/bioinformatics/btaa546/5848003
https://doi.org/10.1007/978-3-642-33122-0_18
https://doi.org/10.1186/s13059-021-02297-z
https://doi.org/10.1186/s13059-021-02297-z
http://arxiv.org/abs/1903.12312
https://doi.org/10.1007/978-3-319-05269-4_4
https://doi.org/10.1007/978-3-319-05269-4_4

A Tale of Optimizing the Space Taken by de Bruijn Graphs 133

19. Holley, G., Wittler, R., Stoye, J.: Bloom filter trie: an alignment-free and reference-
free data structure for pan-genome storage. Algorithms Mol. Biol. 11(1), 1–9 (2016)

20. Holley, G., Wittler, R., Stoye, J., Hach, F.: Dynamic alignment-free and reference-
free read compression. In: Sahinalp, S.C. (ed.) RECOMB 2017. LNCS, vol. 10229,
pp. 50–65. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56970-3 4

21. Iqbal, Z., Caccamo, M., Turner, I., Flicek, P., McVean, G.: De novo assembly
and genotyping of variants using colored de Bruijn graphs. Nature Genet. 44(2),
226–232 (2012)

22. Karasikov, M.: Indexing and analysing nucleotide archives at petabase-scale.
bioRxiv (2020)

23. Li, D., Liu, C.-M., Luo, R., Sadakane, K., Lam, T.-W.: MEGAHIT: an ultra-fast
single-node solution for large and complex metagenomics assembly via succinct de
Bruijn graph. Bioinformatics 31(10), 1674–1676 (2015)

24. Li, R., et al.: De novo assembly of human genomes with massively parallel short
read sequencing. Genome Res. 20(2), 265–272 (2010)

25. Limasset, A., Rizk, G., Chikhi, R., Peterlongo, P.: Fast and scalable minimal perfect
hashing for massive key sets. arXiv preprint arXiv:1702.03154 (2017)

26. Lin, Y., Yuan, J., Kolmogorov, M., Shen, M.W., Chaisson, M., Pevzner, P.A.:
Assembly of long error-prone reads using de bruijn graphs. Proc. Natl. Acad. Sci.
113(52), E8396–E8405 (2016)

27. Manekar, S.C., Sathe, S.R.: A benchmark study of k-mer counting methods for
high-throughput sequencing. GigaScience 7(12), 125 (2018)

28. Marçais, G., Kingsford, C.: A fast, lock-free approach for efficient parallel counting
of occurrences of k-mers. Bioinformatics 27(6), 764–770 (2011)

29. Marchet, C., Iqbal, Z., Gautheret, D., Salson, M., Chikhi, R.: REINDEER: efficient
indexing of k-mer presence and abundance in sequencing datasets. Bioinformatics
36(Supplement 1):i177–i185 (2020)

30. Marchet, C., Kerbiriou, M., Limasset, A.: Blight: Efficient exact associative struc-
ture for k-mers. bioRxiv (2020)

31. Medvedev, P.: The theoretical analysis of sequencing bioinformatic algorithms. in
preparation (2020)

32. Miller, J.R., Koren, S., Sutton, G.: Assembly algorithms for next-generation
sequencing data. Genomics 95(6), 315–327 (2010)

33. Muggli, M.D.: Succinct colored de Bruijn graphs. Bioinformatics 33(20), 3181–3187
(2017)

34. Pandey, P., Bender, M.A., Johnson, R., Patro, R.: A general-purpose counting
filter: Making every bit count. In: Proceedings of the 2017 ACM International
Conference on Management of Data, pp. 775–787 (2017)

35. Patro, R., Duggal, G., Love, M.I., Irizarry, R.A., Kingsford, C.: Salmon provides
fast and bias-aware quantification of transcript expression. Nat. Methods 14(4),
417–419 (2017)

36. Pell, J.: Scaling metagenome sequence assembly with probabilistic de Bruijn
graphs. Proc. Natl. Acad. Sci. 109(33), 13272–13277 (2012)

37. Peng, Yu., Leung, H.C.M., Yiu, S.M., Chin, F.Y.L.: IDBA – a practical iterative
de Bruijn graph de novo assembler. In: Berger, B. (ed.) RECOMB 2010. LNCS,
vol. 6044, pp. 426–440. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-12683-3 28

38. Rahman, A., Chikhi, R., Medvedev, P.: Disk Compression of k-mer Sets. In: 20th
International Workshop on Algorithms in Bioinformatics (WABI 2020). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik (2020)

https://doi.org/10.1007/978-3-319-56970-3_4
http://arxiv.org/abs/1702.03154
https://doi.org/10.1007/978-3-642-12683-3_28
https://doi.org/10.1007/978-3-642-12683-3_28

134 R. Chikhi

39. Rizk, G., Lavenier, D., Chikhi, R.: DSK: k-mer counting with very low memory
usage. Bioinformatics 29(5), 652–653 (2013)

40. Salikhov, K., Sacomoto, G., Kucherov, G.: Using cascading Bloom filters to improve
the memory usage for de Brujin graphs. Algorithms Mol. Biol. 9(1), 1–10 (2014)

41. Simpson, J.T., Wong, K., Jackman, S.D., Schein, J.E., Jones, S.J., Birol, I.: ABySS:
a parallel assembler for short read sequence data. Genome Res. 19(6), 1117–1123
(2009)

42. Ye, C., Ma, Z.S., Cannon, C.H., Pop, M., Douglas, W.Y.: Exploiting sparseness in
de novo genome assembly. In: BMC bioinformatics, vol. 13, pp. 1–8 (2012) BioMed
Central

43. Zerbino, D.R., Birney, E.: Velvet: algorithms for de novo short read assembly using
de Bruijn graphs. Genome Res. 18(5), 821–829 (2008)

Formally Computing with
the Non-computable

Liron Cohen(B)

Department of Computer Science, Ben-Gurion University, Be’er Sheva, Israel
cliron@bgu.ac.il

Abstract. Church–Turing computability, which is the standard notion
of computation, is based on functions for which there is an effective
method for constructing their values. However, intuitionistic mathemat-
ics, as conceived by Brouwer, extends the notion of effective algorithmic
constructions by also admitting constructions corresponding to human
experiences of mathematical truths, which are based on temporal intu-
itions. In particular, the key notion of infinitely proceeding sequences
of freely chosen objects, known as free choice sequences, regards func-
tions as being constructed over time. This paper describes how free
choice sequences can be embedded in an implemented formal frame-
work, namely the constructive type theory of the Nuprl proof assistant.
Some broader implications of supporting such an extended notion of
computability in a formal system are then discussed, focusing on formal
verification and constructive mathematics.

1 Introduction

Church–Turing computability is the standard notion of computation. It defines
the computable functions as those for which there is an effective method for
obtaining the values of the function. Turing used the term ‘purely mechanical’,
whereas Church used ‘effectively calculable’:

“define the notion ... of an effectively calculable function of positive integers
by identifying it with the notion of a recursive function of positive integers
(or of a λ-definable function of positive integers).” [13]

Intuitionistic mathematics, which originated in the ideas of L.E.J. Brouwer,
extends the Church–Turing notion of computability by putting forward novel
forms of computation, namely the bar induction principle and the continuity
principle. Bar induction is a strong intuitionistic induction principle which is
equivalent to the classical principle of transfinite induction [34]1, while the con-
tinuity principle for numbers states that all functions from N → N to N are
continuous. Brouwer used the bar induction principle to derive the fan theo-
rem, which was used in turn, together with the continuity principle for numbers,
1 Variants of bar induction were shown to be compatible with constructive type theory,

and used to enhance the logical functionality implemented by proof assistants [29,32].

c© Springer Nature Switzerland AG 2021
L. De Mol et al. (Eds.): CiE 2021, LNCS 12813, pp. 135–145, 2021.
https://doi.org/10.1007/978-3-030-80049-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80049-9_12&domain=pdf
https://doi.org/10.1007/978-3-030-80049-9_12

136 L. Cohen

to derive the uniform continuity principle [12, Thm 3]. The uniform continu-
ity principle states that every continuous function on a closed interval of the
reals into the reals is uniformly continuous and has a supremum. Historians of
mathematics consider that “in just ten lines a revolution was launched” [40].

But to obtain these foundational principles, the standard function space had
to be expanded to include non-recursive functions. For this, Brouwer proposed
accepting non-lawlike computations, and thus he introduced the bold notion of
choice sequences. Choice sequences are fundamental objects that are at the core
of intuitionistic mathematics. They are never-finished sequences of objects cre-
ated over time by continuously picking elements from a previously well-defined
collection, e.g., the natural numbers.2 Choice sequences can be lawlike, in the
sense that they are determined by an algorithm (i.e., standard computable func-
tions), or lawless (i.e., free), in the sense that they are not subject to any
law (e.g., generated by throwing dice), or a combination of both. Free choice
sequences are described as

“new mathematical entities ... in the form of infinitely proceeding
sequences, whose terms are chosen more or less freely from mathemati-
cal entities previously acquired...” [11]

While this notion clearly steps out of the realm of sequences constructed
by an algorithm, there is a mental conception of how to create such sequences:
the ideal mathematician, or creative subject , can simply pick elements as time
proceeds. Brouwer used the concept of choice sequences to develop a novel theory
of the continuum, defining real numbers as choice sequences of nested rational
intervals.

The foundations of Brouwer’s intuitionistic mathematics have been widely
studied [21,26,34,35,38,41]. These works have examined Brouwer’s ideas from
a theoretical, foundational point of view. However, the focus of this paper is
the study of intuitionistic mathematics and its extended notion of computabil-
ity in a formal setting, namely that of a proof assistant. We show that while
choice sequences, and in particular free choice sequences, are considered non-
computable in the traditional sense, they can be integrated into a mechanized
system and used in computations. This will not only extend the standard notion
of computation in theory, but will in practice provide us with a mechanized
system in which such forms of computation are supported and utilized, which,
in turn, will enable the exploration of the wider implications of the resulting
computational theory.

Currently, the standard Church–Turing notion of computability is the one
that underlies the computational theories invoked by standard constructive type
theories, which in turn are the basis of extant proof assistants such as Nuprl [2,
14], Coq [17], and Agda [1].3 Thus, for example, the elements of the function
2 For simplicity, throughout this paper we focus on choice sequences of natural num-

bers.
3 For a survey of the status of Church Thesis in type-theory-based proof assistants

see [20].

Formally Computing with the Non-computable 137

type N → T are taken to be the effective (computable) functions from the type
of the natural numbers, N, to the type T . The integration of the notion of
choice sequences into the constructive type theory would entail, among other
things, that choice sequences whose elements are chosen from T become first-
class citizens of the function type N → T .

While many of Brouwer’s intuitionistic principles and theorems have already
been implemented in the Nuprl proof assistant [28–30], the constructive type
theory underlying Nuprl has only recently been extended to fully integrate the
notion of choice sequences. This extension required major modifications to the
type theory, starting from the structure of the underlying library of definitions
and lemmas, and working up to the semantics of the type system. The current
paper presents the main components of that extension, with full details available
in [6,7]. We further discuss the wider implications of the resulting mechanized
theory, especially with respect to formal verification and constructive mathe-
matics.

2 Integrating Choice Sequences into a Proof Assistant

The Nuprl proof assistant [2,14] implements a type theory called constructive
type theory, which is a dependent type theory in the spirit of Martin-Löf’s exten-
sional theory [25], based on an untyped functional programming language. It has
a rich type theory including equality types, W-types, quotient types, set types,
union and (dependent) intersection types, partial equivalence relation (PER)
types, approximation and computational equivalence types, and partial types.
This section demonstrates how the constructive type theory implemented by
the Nuprl proof assistant can be consistently extended to an intuitionistic type
theory, that is, a type theory that supports Brouwer’s intuitionistic principles.
In particular, we focus on the integration of Brouwer’s broader sense of com-
putability through an embedding of choice sequences [6,7]. This extended theory
provides a formal account of the notion of choice sequences driven by the design
constraints of their implementation in a theorem prover.4

The Nuprl proof assistant can be (very roughly) described as consisting of
the following components. Underlying the whole system is the library, which
stores all the definitions and proofs the system currently holds. The compu-
tation system encapsulates the operational semantics of the system. The type
system defines the type constructors, the behaviors of types and their associ-
ated equalities, based on the semantics of types employed. Then there is a set of
axioms and inference rules for manipulating the terms and types of the system.5

Fully integrating choice sequences into Nuprl required a major overhaul to all of
the aforementioned components, as we will describe below.

4 The extended framework described was formalized in Coq’s formalization of Nuprl’s
constructive type theory [3,27].

5 This simplified description omits many components of the system which are not
relevant to the current paper.

138 L. Cohen

2.1 Storing Choice Sequences in the Library

Choice sequences are implemented as a new type of entry in the digital library of
facts and definitions underlying Nuprl, which holds a (finite) list of terms. Thus,
the library is used as a state in which we store the choices of values that have
been made for a particular choice sequence at a given point in time ([31] provides
details on the treatment of choice sequences in the library). We utilize the library
to perform what is known as memoization, a programming language method
originally designed to improve efficiency. In this scheme, we allow the values of a
choice sequence to be chosen freely, but once the fifth element of the sequence has
been chosen to be 7, say, we store that in the library, and from that point on we
return it whenever the input is 5. Thus, the Nuprl library can be extended in two
orthogonal directions: by adding more entries to the library, or by adding more
values to a specific choice sequence entry. The fact that the library can always be
extended allows choice sequences to be represented as finite at any given point
in time (i.e., the state of the library), but as infinitely proceeding as the library
extends over time. This corresponds to Brouwer’s notion of a choice sequence
progressing over time, as implemented by progressing over library extensions.

Concretely, each choice sequence entry in the library has a name, taken from
a nominal set of atoms, and it also comes equipped with a restriction6, in the
form of a predicate, which specifies which sequence extensions are valid (e.g., the
restriction ‘λn, t. if n < 10 then true else 2 ≤ t’ forces the choices starting
from position 10 to be greater than or equal to 2). The restriction constitutes
a proof obligation that has to be enforced when adding more values to a choice
sequence. Using the restriction mechanism we can also define the lawlike choice
sequences, by simply posing their generating rule as the restriction.

Since choice sequences are open-ended objects, it may be the case that, to
prove a theorem or carry out a computation, the value of a choice sequence at a
certain point may need to be known, but at that stage it has yet to be defined.
There are different implementation approaches in such cases. In the intuitionistic
theory of choice sequences, a reasonable answer is to ‘wait until the creative
subject picks enough values in the sequence’ (consistent with thinking about
a choice sequence as the advancement of knowledge over time). This suggests
one possible implementation: the system can print out a message to the user
asking for more values until there is sufficient data. Another possibility is to have
the system automatically fill in values up to the desired place in the sequence,
using some number generator. The generator could be random or not, or even
probabilistic. The current implementation in Nuprl takes the first approach, but
can be combined with the second approach if needed.

2.2 Extending the Computation System

Nuprl’s programming language is an untyped (à la Curry), lazy λ-calculus with
pairs, injections, a fixpoint operator, etc. For efficiency, integers are primitive and

6 See, e.g., [35,37,38] for discussions on the various types of restrictions.

Formally Computing with the Non-computable 139

T ∈ Type ::= N | Ui | Πx:t.t | Σx:t.t | {x : t | t} | t = t ∈ t | t+t | . . .
| Free (choice sequence type)

v ∈ Value ::= T | � | n | λx .t | 〈t , t〉 | inl(t) | inr(t) | . . .
| η (choice sequence name)

t ∈ Term ::= x | v | t t | fix(t) | let x := t in t | case t of inl(x) ⇒ t | inr(y) ⇒ t
| if t=t then t else t | . . .

(λx.t1) t2 →−� lib t1[x\t2]
fix(v) →−� lib v fix(v)
η(i) lib η[i] , if η[i] is defined in lib

let x1, x2 = 〈t1, t2〉 in t →−� lib t[x1\t1;x2\t2]
. . .

Fig. 1. Extended syntax (top) and operational semantics (bottom) (Color figure online)

Nuprl provides operations on integers as well as comparison operators. Nuprl’s
computation system also had to be revised to support choice sequences and, in
particular, to make explicit the tight dependency on the library. Figure 1 presents
a subset of Nuprl’s extended syntax and small-step operational semantics, where
the additional components related to choice sequences are highlighted in blue.

Choice sequences are incorporated as values of the form η, and the new
type Free is the type of choice sequences. The operational semantics is then
extended so that all small-step reduction rules are parameterized by a library,
lib. In particular, an application of the form η(i) reduces to η[i] if 0 ≤ i and the
ith value in the choice sequence named η is available in the current library, in
which case η[i] returns that value; otherwise it is left undefined.

2.3 Possible Library Semantics

The introduction of choice sequences entails a radical shift in our understanding
of mathematical truth. The meaning of proposition P (η) mentioning a choice
sequence η may not be determined by our current knowledge of η, and so math-
ematical truth is no longer a timeless concept. Instead, truth now depends on
current knowledge of η and the possible ways that η may be extended in the
future. To support this, the semantics of the Nuprl system was turned into a
possible-world-style semantics [18,24], in which the possible worlds correspond
to extensions of the library (thus providing a computational interpretation of
the possible-world semantics in terms of libraries). In any particular state of the
library the semantics is induced by Nuprl’s standard realizability semantics.

Nonetheless, the standard Kripke semantics, in which a statement is true
in a library only if it is true in all possible extensions of the current library, is
insufficient to support choice sequences. To demonstrate the problem, consider
the claim “there is some value in a given place of a choice sequence” (e.g.,
formally, ∃x.η(100) = x). This should be a valid statement in the theory of
choice sequences, based on their “infinitely proceeding” nature. However, if in
the current stage of the library the choice sequence a has only three values,
this will be false under the Kripke-like semantics, since there are extensions of
the library in which the 100th value is yet to be filled in. Thus, to support the

140 L. Cohen

evolving nature of choice sequences the possible-world semantics has to be more
subtle in its treatment of possible extensions.

Two different possible-world semantics that depend on the current Nuprl
library lib and its possible extensions, lib �→ lib′, have been considered [6,7].
The two semantics are especially well-suited to model choice sequences because
in both, expressions only need to “eventually” compute to values, which is com-
patible with the “eventual” nature of choice sequences that are only partially
available at a given time, with the promise that they can always be extended in
the future. The first semantics is a Beth-style semantics [5,18], where P (η) is
true in library lib when, roughly speaking, there is a bar for lib (i.e., a collec-
tion of libraries such that each path in the tree of library extensions that goes
through lib intersects it) in which P (η) is true [6]. This is equivalent to saying
that there is a proof of P (η) by bar induction on the tree of possible extensions
of lib. Another semantics is a variant of the Beth-style semantics called open
bar semantics [7]. In the open bar semantics, P (η) is true in library lib when,
for each extension lib′ of lib, P holds for some extension of lib′. The open bar
semantics enables a more general bar induction argument and hence validates
some classical principles (see Sect. 3).

2.4 Extending the Type System

These new semantics entail new interpretations of Nuprl’s type system, in which
types are interpreted as PERs on closed terms. The resulting type systems sat-
isfy all the standard properties (e.g., transitivity and symmetry), but also two
additional properties that are unique to such a possible-world interpretation:
monotonicity and locality. Monotonicity ensures that true facts remain true in
the future, and locality allows one to deduce a fact about the current library
if it is true in a bar of that library. While monotonicity is a general feature of
possible-world semantics (including Kripke semantics), locality is a distinctive
feature of Beth-like models.

3 The Resulting Theories of Choice Sequences

The two semantics induce two theories: the one based on the Beth-style semantics
is called BITT, for ‘Brouwerian Intuitionistic Type Theory’, and the one based
on the open bar semantics is called OTT. Both theories fully embed choice
sequences as first-class citizens, in the sense that choice sequences inhabit the
extended function type N → N (also called the Baire space, B). That is, in both
BITT and OTT the following holds: η ∈ Free → η ∈ B.

3.1 Axioms for Choice Sequences

Both BITT and OTT validate (variants) of the following key properties govern-
ing choice sequences that have been suggested in the literature (see, e.g., [23,39]).
In what follows we write Bn for Nn → N, where Nn = {k : N | k < n}.

Formally Computing with the Non-computable 141

Density Axiom Πn:N.Πf :Bn.Σα:Free.f = α ∈ Bn

Discreteness Axiom Πα, β:Free.(α=β ∈ B)+(¬α=β ∈ B)
Open Data Axiom Πα:Free.P(α) → Σn:N.Πβ:Free.(α=β ∈ Bn → P(β))

The Density Axiom intuitively states that, for any finite list of values, there
is a choice sequence that extends it. In BITT, proving its validity required an
additional machinery of name spaces for choice sequences (see [6] for full details).
In OTT, however, such machinery is not necessary for validating the variant of
the statement in which the existential quantifier is ‘squashed’. The squashing
mechanism erases the evidence that a type is inhabited by squashing it down
to a single constant inhabitant using set types: ↓T = {x : True | T} [14, p. 60].
Intuitively, a squashed existential quantifier asserts the existence of an object
without specifying how it can be computed. The Discreteness Axiom states that
intensional equality over choice sequences is decidable, and it is easily validated
since choice sequences are identified by their names in the library, which are
unique.

The Open Data Axiom, roughly speaking, states that if a property (with
certain side-conditions essentially ensuring that α is the only free choice sequence
in P (α)) holds for a free choice sequence, then there is a finite initial segment
of that sequence such that this property holds for all free choice sequences with
the same initial segment. Since the axiom does not provide information on a
specific choice sequence, but rather on the collection of all sequences determined
by an initial segment, it constitutes a continuity principle in a sense. The non-
squashed continuity principle is, however, incompatible with Nuprl (following
similar arguments to those in [19,22,33]). Nonetheless, in OTT two squashed
variants of the Open Data Axiom have been validated. The key observation is
that when the Σ type is ↓-squashed, there is no need to provide a witness for
the modulus of continuity of P at α. Instead, one can simply find a suitable
meta-theoretical number in the proof of its validity, without having to provide
an expression from the object theory that computes that number.

3.2 Classical Axioms

One main difference between BITT and OTT relates to compatibility with clas-
sical logic. BITT is incompatible with classical logic in the sense that it validates
the negation of many classically valid principles. In particular, it proves the nega-
tion of the ↓-squashed law of excluded middle, ¬ΠP.↓(P+¬P), the negation of
Markov’s principle (a principle of constructive recursive mathematics [9, ch. 3]),
and the negation of the independence of premise axiom (a controversial axiom
which is classically true but generally not accepted by constructivists, which
was used by Gödel in his famous Dialectica interpretation [4]). Proofs of these
negated properties follow similar arguments such as in [15,16]. For example,
notice that in order to prove the validity of the ↓-squashed law of excluded mid-
dle, we would have to prove in the metatheory that for all propositions, there
exists a bar of the current library such that either the proposition is true at
the bar, or that it is false in all extensions of the bar. To prove its negation we

142 L. Cohen

show that neither option is valid anymore because choice sequences can always
evolve differently when multiple choices are possible. The open bar semantics
invoked by OTT, on the other hand, is based on a more relaxed notion of time
that is flexible enough to be compatible with classical reasoning. In particular,
it enables the validation of the ↓-squashed law of excluded middle.

4 Implications of the Formalization of Choice Sequences

The integration of Brouwer’s ex ed notion of computation into a mechanized
proof assistant is not only important from a foundational standpoint, but also has
interesting consequences and practical applications. This section informally and
briefly discusses such implications in two main fields, namely formal verification
and constructive mathematics.

4.1 Formal Verification

Leveraging the foundational, novel computational capabilities that go beyond
the Church–Turing notion of computation has the potential to facilitate signif-
icant advances in the internal verification of complex systems, e.g., distributed
protocols. The dominant approach in verification of such systems is external ;
that is, one develops a model of the system and then proves that the system
behaves correctly according to its desired specification, assuming this model is
correct. While this strategy is extremely flexible (a model can describe any kind
of computational system), it has the major disadvantage that the model may be
incorrect. Extending the computation system with Brouwer’s broader notion of
computation enables an internal approach in such verifications. This is because
the embedding of the notion of choice sequences within the computational sys-
tem provides a means to internally formalize non-deterministic behaviors. In
large distributed systems, a lot of information is, de facto, ‘lawless’, in the sense
that it is unpredictable. It is far too expansive (source and money-wise) to keep
track of all the computation steps, and the environment cannot be controlled,
and so in practice there is no way to determine, e.g., the order of messages
sent. Therefore, one can use standard computable functions to model the pro-
cesses of a distributed system, and free choice sequences to model sensors (or
unpredictable environmental inputs).

4.2 Intuitionistic Mathematics

Standard mathematical discourse is based on classical mathematics, and thus
standard textbooks in mathematics contain, e.g., proofs by contradiction or by
cases, as well as impredicative structures. Constructive mathematics (e.g., [8]),
on the other hand, does not allow “non-constructive” methods of formal proof,
and in particular rejects the law of excluded middle. Because of this restric-
tion, the practice of constructive mathematics is often quite remote from the
(classical) standard practice of mathematics, and proofs tend to require more

Formally Computing with the Non-computable 143

elaborate arguments. For example, without some version of the compactness
theorem (which, classically, requires the axiom of choice), point-wise versions of
continuity and the derivative are of no use and the more complicated notions of
uniform continuity and a uniform version of the derivative must be used.

Most works in constructive mathematics adopt E. Bishop’s approach [8,10]
and remain agnostic towards the fundamental intuitionistic principles such as
choice sequences, bar induction and the uniform continuity principle.7 But these
intuitionistic principles, which go beyond constructive mathematics, have the
potential to simplify the practice of mathematical theories. For one, the uniform
continuity principle obviates the need for the compactness theorem, thus making
intuitionistic calculus more elegant than constructive calculus, because restric-
tions on key theorems can be eliminated. For example, in intuitionistic mathe-
matics we can again use the point-wise versions of continuity and the derivative
in a manner similar to the way they are employed in classical mathematics. Thus,
Brouwer’s intuitionistic mathematics has the computational advantages of con-
structive mathematics, while at the same time enabling proofs that resemble
those of classical mathematics to a greater extent than constructive ones.

The computational account of choice sequences in Nuprl also provides a nat-
ural framework for the formalization of the Brouwerian, choice-sequence-based
constructive real numbers, and, in turn, the development of the corresponding
real analysis, and the exploration of its computational benefits. Brouwer used
choice sequences to define the constructive real numbers as sequences of nested
rational intervals. The standard formalization of the reals, even in classical or
constructive mathematics, is also achieved via converging sequences. Nonethe-
less, there are two major differences between the standard formalizations and
the intuitionistic (Brouwerian) formalization. First, in the intuitionistic formal-
ization, a real number is the choice sequence itself, as opposed to it being the
limit point (i.e., equivalence class). Second, the notion of what these sequences
can be incorporates, in the intuitionistic setting, the free choice sequences.

Acknowledgments. The author thanks Vincent Rahli, Robert Constable and Mark
Bickford as the framework described in the paper is based on a joint ongoing work with
them.

References

1. Agda wiki. http://wiki.portal.chalmers.se/agda/pmwiki.php
2. Allen, S.F., et al.: Innovations in Computational Type Theory using Nuprl. J.

Appl. Logic 4(4), 428–469 (2006)
3. Anand, A., Rahli, V.: Towards a formally verified proof assistant. In: Klein, G.,

Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 27–44. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-08970-6 3

4. Avigad, J., Feferman, S.: Gödel’s functional (“Dialectica”) interpretation. Handb.
Proof Theor. 137, 337–405 (1998)

7 Notable exceptions include, e.g., [36,42].

http://wiki.portal.chalmers.se/agda/pmwiki.php
https://doi.org/10.1007/978-3-319-08970-6_3

144 L. Cohen

5. Beth, E.W.: Semantic construction of intuitionistic logic. J. Symbolic Logic 22(4),
363–365 (1957)

6. Bickford, M., Cohen, L., Constable, R.L., Rahli, V.: Computability beyond church-
turing via choice sequences. In: Proceedings of the 33rd Annual ACM/IEEE Sym-
posium on Logic in Computer Science, LICS 2018, pp. 245–254 (2018)

7. Bickford, M., Cohen, L., Constable, R.L., Rahli, V.: Open Bar - a Brouwerian intu-
itionistic logic with a pinch of excluded middle. In: Baier, C., Goubault-Larrecq,
J., (eds.), 29th EACSL Annual Conference on Computer Science Logic (CSL), vol.
183, LIPIcs, pp. 11:1–11:23 (2021)

8. Bishop, E., Bridges, D.: Constructive Analysis. GW, vol. 279. Springer, Heidelberg
(1985). https://doi.org/10.1007/978-3-642-61667-9

9. Bridges, D., Richman, F.: Varieties of Constructive Mathematics. London Mathe-
matical Society Lecture Notes Series, Cambridge University Press (1987)

10. Bridges, D., Richman, F.: Varieties of Constructive Mathematics. Cambridge Uni-
versity Press, Cambridge (1988)

11. Brouwer, L.E.J.: Begründung der mengenlehre unabhängig vom logischen satz vom
ausgeschlossen dritten. zweiter teil: Theorie der punkmengen. Koninklijke Ned-
erlandse Akademie van Wetenschappen te Amsterdam 12(7), (1919). Reprinted
in Brouwer, L.E.J., Collected Works, Volume I: Philosophy and Foundations of
Mathematics, edited by Heyting, A., North-Holland Publishing Co., Amsterdam,
pp. 191–221 (1975)

12. Brouwer, L.E.J.: From frege to Gödel: A Source Book in Mathematical Logic,
1879–1931, chapter On the Domains of Definition of Functions (1927)

13. Church, A.: An unsolvable problem of elementary number theory. Am. J. Math.
58(2), 345–363 (1936)

14. Constable, R.L. et al.: Implementing Mathematics with the Nuprl Proof Develop-
ment System. Prentice-Hall Inc, Hoboken (1986)

15. Coquand, T., Mannaa, B.: The independence of markov’s principle in type theory.
In: Kesner, D., Pientka, B., (eds.) FSCD 2016, vol. 52 of LIPIcs, pp. 17:1–17:18.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)

16. Coquand, T., Mannaa, B., Ruch, F.: Stack semantics of type theory. In: 2017 32nd
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pp. 1–11
(2017)

17. The Coq Proof Assistant. http://coq.inria.fr/
18. Dyson, V.H., Kreisel, G.: Analysis of Beth’s Semantic Construction of Intuitionistic

Logic. Stanford University (1961)
19. Escardó, M.H., Xu, C.: The inconsistency of a Brouwerian continuity principle

with the curry-howard interpretation. In: 13th International Conference on Typed
Lambda Calculi and Applications (TLCA), pp. 153–164 (2015)

20. Forster, Y.: Church’s thesis and related axioms in Coq’s type theory. In: Baier, C.,
Goubault-Larrecq, J., (eds.) 29th EACSL Annual Conference on Computer Science
Logic (CSL 2021), vol. 183 of Leibniz International Proceedings in Informatics
(LIPIcs), pp. 21:1–21:19, Dagstuhl, Germany (2021). Schloss Dagstuhl-Leibniz-
Zentrum für Informatik

21. Kleene, S.C., Vesley, R.E.: The Foundations of Intuitionistic Mathematics, Espe-
cially in Relation to Recursive Functions. North-Holland Publishing Company,
Amsterdam (1965)

22. Kreisel, G.: On weak completeness of intuitionistic predicate logic. J. Symb. Log.
27(2), 139–158 (1962)

23. Kreisel, G.: Lawless sequences of natural numbers. Compositio Mathematica 20,
222–248 (1968)

https://doi.org/10.1007/978-3-642-61667-9
http://coq.inria.fr/

Formally Computing with the Non-computable 145

24. Kripke, S.A.: Semantical considerations on modal logic. Acta Philosophica Fennica
16(1963), 83–94 (1963)

25. Martin-Löf, P.: Constructive mathematics and computer programming. In: Pro-
ceedings of the Sixth International Congress for Logic, Methodology, and Philoso-
phy of Science, pp. 153–175. Amsterdam, North Holland (1982)

26. Moschovakis, J.R.: An intuitionistic theory of lawlike, choice and lawless sequences.
In: Logic Colloquium’90: ASL Summer Meeting in Helsinki, pp. 191–209. Associ-
ation for Symbolic Logic (1993)

27. Rahli, V., Bickford, M.: A nominal exploration of intuitionism. In: Proceedings of
the 5th ACM SIGPLAN Conference on Certified Programs and Proofs, CPP, pp.
130–141, p. 2016. New York (2016)

28. Rahli, V., Bickford, M.: Validating Brouwer’s continuity principle for numbers
using named exceptions. Math. Struct. Comput. Sci. 28(6), 942–990 (2018)

29. Rahli, V., Bickford, M., Cohen, L., Constable, R.L.: Bar induction is compatible
with constructive type theory. J. ACM 66(2), 13:1–13:35 (2019)

30. Rahli, V., Bickford, M., Constable, R. L.: Bar induction: The Good, the Bad, and
the Ugly. In: 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS), pp. 1–12 (2017)

31. Rahli, V., Cohen, L., Bickford, M.: A verified theorem prover backend supported
by a monotonic library. In: Barthe, G., Sutcliffe, G., Veanes, M., (eds.) LPAR-22.
22nd International Conference on Logic for Programming, Artificial Intelligence
and Reasoning, vol. 57 of EPiC Series in Computing, pp. 564–582 (2018)

32. Rathjen, M.: A note on bar induction in constructive set theory. Math. Logic Q.
52(3), 253–258 (2006)

33. Troelstra, A.S.: A note on non-extensional operations in connection with continuity
and Recursiveness. Indagationes Mathematicae 39(5), 455–462 (1977)

34. Troelstra, A.S.: Choice Sequences: a Chapter of Intuitionistic Mathematics. Claren-
don Press, Oxford (1977)

35. Troelstra, A.S.: Choice sequences and informal rigour. Synthese 62(2), 217–227
(1985)

36. Troelstra, A.S., van Dalen, D.: Constructivism in Mathematics, An Introduction,
vol. I. II. North-Holland, Amsterdam (1988)

37. van Atten, M.: On Brouwer. Cengage Learning, Wadsworth Philosophers (2004)
38. van Atten, M., van Dalen, D.: Arguments for the continuity principle. Bull. Sym-

bolic Logic 8(3), 329–347 (2002)
39. van Dalen, D.: An interpretation of intuitionistic analysis. Ann. Math. Logic 13(1),

1–43 (1978)
40. van Dalen, D.: L.E.J. Brouwer: Topologist, Intuitionist, Philosopher: How Mathe-

matics is Rooted in Life. Springer, New York (2013) https://doi.org/10.1007/978-
1-4471-4616-2

41. Veldman, W.: Understanding and using brouwer’s continuity principle. In: Schus-
ter, P., Berger, U., Osswald, H. (eds.) Reuniting the Antipodes - Constructive and
Nonstandard Views of the Continuum. Synthese Library (Studies in Epistemology,
Logic, Methodology, and Philosophy of Science), vol. 306, pp. 285–302. Springer,
Dordrecht (2001). https://doi.org/10.1007/978-94-015-9757-9 24

42. Veldman, W.: Some applications of brouwer’s thesis on bars. In: Atten, M., Boldini,
P., Bourdeau, M., Heinzmann, G. (eds.) One Hundred Years of Intuitionism (1907–
2007). Publications of the Henri Poincaré Archives, pp. 326–340. Berkhäuser, Berlin
(2008) https://doi.org/10.1007/978-3-7643-8653-5 20

https://doi.org/10.1007/978-1-4471-4616-2
https://doi.org/10.1007/978-1-4471-4616-2
https://doi.org/10.1007/978-94-015-9757-9_24
https://doi.org/10.1007/978-3-7643-8653-5_20

Mapping Monotonic Restrictions in Inductive
Inference

Vanja Doskoč(B) and Timo Kötzing

Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
{vanja.doskoc,timo.koetzing}@hpi.de

Abstract. In inductive inference we investigate computable devices (learners)
learning formal languages. In this work, we focus on monotonic learners which,
despite their natural motivation, exhibit peculiar behaviour. A recent study anal-
ysed the learning capabilities of strongly monotone learners in various settings.
The therein unveiled differences between explanatory (syntactically converging)
and behaviourally correct (semantically converging) such learners motivate our
studies of monotone learners in the same settings.

While the structure of the pairwise relations for monotone explanatory learn-
ing is similar to the strongly monotone case (and for similar reasons), for
behaviourally correct learning a very different picture emerges. In the latter setup,
we provide a self-learning class of languages showing that monotone learners,
as opposed to their strongly monotone counterpart, do heavily rely on the order
in which the information is given, an unusual result for behaviourally correct
learners.

1 Introduction

Algorithmically learning a formal language from a growing but finite amount of its
positive information is referred to as inductive inference or language learning in the
limit. For example, a learner h (a computable device) might be presented more and more
data from a formal language (a computably enumerable subset of the natural numbers),
say, the set of all odd prime numbers Po. With each new element presented, h outputs
a description for a formal language as its guess. As such, the learner may decide to
conjecture a code for the set of all odd numbers No. With more data given, the learner
may infer some structure and finally decide to output a program for the set Po. If h does
not change its mind any more, we say that h learned the language Po correctly.

Originally introduced by Gold [9], such learning is referred to as explanatory learn-
ing, as the learner eventually provides a syntactically fixed explanation of the language.
We denote such learning by TxtGEx, where Txt indicates that the information is
given from text, G stands for Gold-style or full-information learning and, lastly, Ex
refers to explanatory learning. Since a single language can be learned by a learner which
always guesses one and the same code for this language, we study classes of languages
which can beTxtGEx-learned by a single learner and denote the set of all such classes
with [TxtGEx]. We refer to this set as the learning power of TxtGEx-learners.

This work was supported by DFG Grant Number KO 4635/1-1.

c© Springer Nature Switzerland AG 2021
L. De Mol et al. (Eds.): CiE 2021, LNCS 12813, pp. 146–157, 2021.
https://doi.org/10.1007/978-3-030-80049-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80049-9_13&domain=pdf
https://doi.org/10.1007/978-3-030-80049-9_13

Mapping Monotonic Restrictions in Inductive Inference 147

Picking up the initial example, we observe that the learner h outputs a code for
No overgeneralizing the target language Po before outputting a correct code. The ques-
tion arises whether such overgeneralizations are necessary in order to obtain full learn-
ing power? Various restrictions mimicking overgeneralizations have been investigated
in the literature and show such a behaviour to be crucial. A prominent example are
monotonic learners [11,23], where the hypotheses must show a monotone behaviour. In
the strongest from, the hypotheses of strongly monotone (SMon) learners must form
ascending chains. In a less restrictive form, only the correctly inferred elements, that
is, elements that belong to the target language, in the hypotheses of monotone learners
(Mon) need to form ascending chains.

A recent study of strongly monotone learners under various additional restrictions
provided a full overview of the pairwise relations between these [13]. The studied
restrictions affect the data given to the learners as well as the learners themselves. In
particular, the learners may be given solely the set of elements to infer their hypothe-
ses from, referred to as set-driven (Sd, [22]) learning, or may additionally be given
an iteration-counter, called partially set-driven or rearrangement-independent (Psd,
[2,21]) learning. When learning indexed families of recursive languages [1] rather than
classes of recursively enumerable languages, monotonic learners have been studied
under similar restrictions [16–18]. Directly affecting the learner are requirements such
as them being total (denoted using the prefix R) or them being monotone on arbitrary
information (denoted by the prefix τ(Mon)).

Comparing all the possible pairwise combinations, Kötzing and Schirneck [13]
show that Gold-style strongly monotone learners may be assumed so on arbitrary infor-
mation. Besides that, they provide self-learning classes of languages [4] to show that all
other combinations separate from each other. Contrasting this are their findings when
studying behaviourally correct learners (Bc, [5,19]), which need to provide a seman-
tic explanation (rather than a syntactic one) in the limit. Behaviourally correct strongly
monotone learners turn out to be equally powerful, regardless the considered restric-
tion on the given data (that is, whether the learner has full information, is partially
set-driven or set-driven) or learner itself (that is, whether it is partial, total or required
to be strongly monotone on arbitrary input).

These interesting findings motivate the present study. In Sect. 3.1, we study mono-
tonic explanatory learners. In particular, we observe that the overall behaviour of mono-
tone learners resembles the one of strongly monotone learners. This similarity culmi-
nates in Theorem 3, where we prove learners which are monotone on arbitrary input,
so called globally monotone learners, to be equal to globally strongly monotone ones.
We additionally observe that most proof strategies used to separate the diverse strongly
monotone learning paradigms [13] can be carried over to fit monotone learners. While
these transitions are often non-trivial, they do indicate a deep similarity between these
two restrictions. We provide all the necessary comparisons in Sect. 3.1 and depict the
overall picture in a lucid map, see Fig. 1(a). Please consider the full version [6] for the
proofs.

In Sect. 3.2, we transfer the problem of finding the pairwise relations to
behaviourally correct monotonic learners and discover an unexpected result. In The-
orem 7, we provide a self-learning class of languages [4] using the Operator Recur-
sion Theorem [3] showing that Gold-style monotone learners are strictly more

148 V. Doskoč and T. Kötzing

GMon

PsdMon

SdMon

RGMon

RPsdMon

RSdMon

τ(Mon)G

τ(Mon)Psd

τ(Mon)Sd

GSMon

PsdSMon

SdSMon

RGSMon

RPsdSMon

RSdSMon

τ(SMon)G

τ(SMon)Psd

τ(SMon)Sd

Ex

(a)

GSMon
PsdSMon
SdSMon

RGSMon
RPsdSMon
RSdSMon

τ(SMon)G
τ(SMon)Psd
τ(SMon)Sd

τ(Mon)G
τ(Mon)Psd
τ(Mon)Sd

SdMon

PsdMon

GMon

RSdMon

RPsdMon

RGMon

Bc

(b)

Fig. 1. Relation of various monotonic learning restrictions in the (a) explanatory (Ex) and (b)
behaviourally correct (Bc) case. We omit mentioningTxt to favour readability. Solid lines imply
trivial inclusions (bottom-to-top, left-to-right). Greyly edged areas illustrate a collapse of the
enclosed learning criteria. There are no further collapses.

powerful than their partially set-driven counterpart. This is particularly surprising as
usually behaviourally correct learners cope rather well with such memory restrictions
[7,13]. This marks the most important and surprising insight of this work. We provide
the necessary results in Sect. 3.2 and collect our findings in the lucid Fig. 1(b).

2 Preliminaries

2.1 Language Learning in the Limit

In this section, we discuss the notation used and the system for learning criteria which
we follow [15]. Notation which is not introduced follows the textbook [20].

Starting with the mathematical notation, we use � and⊆ to denote the proper subset
and subset relation between sets, respectively. We denote with N = {0, 1, 2, . . . } the
set of all natural numbers. With ∅ and ε we denote the empty set and empty string,
respectively. Furthermore, we let P and R be the set of all partial and total computable
functions p : N → N, respectively. We fix an effective numbering {ϕe}e∈N of P and
denote withWe = dom(ϕe) the e-th computably enumerable set. This way, we interpret
the natural number e as an index or hypothesis for the set We. Regarding important
computable functions, we fix with 〈., .〉 a computable coding function. We use π1 and π2

to recover the first and second component, respectively. Furthermore, we write pad for
an injective computable function such that, for all e, k ∈ N, we have We = Wpad(e,k).
We use unpad1 and unpad2 to compute the first and second component of pad(., .),
respectively. Note that both functions can be extended iteratively to more coordinates.
Lastly, we let ind compute an index for any given finite set.

We aim to learn languages, that is, recursively enumerable sets L ⊆ N. These will
be learned by learners which are partial computable functions. By # we denote the

Mapping Monotonic Restrictions in Inductive Inference 149

pause symbol and for any set S we denote S# := S ∪ {#}. Furthermore, a text is a
total function T : N → N ∪ {#}, the collection of all texts we denote with Txt. For
any text or sequence T , we let content(T) := range(T) \ {#} be the content of T . A
text of a language L is such that content(T) = L, the collection of all texts of L we
denote with Txt(L). For n ∈ N, we denote by T [n] the initial sequence of T of length
n, that is, T [0] := ε and T [n] := (T (0), T (1), . . . , T (n − 1)). For a set S, we call
the text where all elements of S are presented in strictly increasing order (followed by
infinitely many pause symbols if S is finite) the canonical text of S. Furthermore, we
call the sequence of all elements of S presented in strictly ascending order the canonical
sequences of S. On finite sequences we use ⊆ to denote the extension relation and ≤ to
denote the order on sequences interpreted as natural numbers. Furthermore, for tuples
of finite sets and numbers (D, t) and (D′, t′), we define the order
 such that (D, t)

(D′, t′) if and only if t ≤ t′ and there exists a text T such that D = content(T [t])
and D′ = content(T [t′]). In addition, given two sequences σ and τ we write σ�τ to
denote the concatenation of these. Occasionally, we omit writing � for readability.

We formalise learning criteria using the following system [15]. An interaction oper-
ator β is given a learner h ∈ P and a text T ∈ Txt and outputs a (partial) function
p. Intuitively, β provides the information for the learner to make its guesses. We con-
sider the interaction operators G for Gold-style or full-information learning [9], Psd
for partially set-driven or rearrangement-independent learning [2,21] and Sd for set-
driven learning [22]. Define, for any i ∈ N,

G(h, T)(i) := h(T [i]),
Psd(h, T)(i) := h(content(T [i]), i),
Sd(h, T)(i) := h(content(T [i])).

Intuitively, Gold-style learners have full information on the elements presented to them.
Partially set-driven learners, however, base their guesses on the total amount of elements
presented and the content thereof. Lastly, set-driven learners only base their conjectures
on the content given to them. Furthermore, for any β-learner h, we write h∗ for its
starred learner, that is, theG-learner which simulates h. For example, if β = Sd, then,
for any sequence σ, h∗(σ) = h(content(σ)).

When it comes to learning, we can distinguish between various criteria for success-
ful learning. The first such criterion is explanatory learning (Ex, [9]). Here, a learner is
expected to converge to a single, correct hypothesis in order to learn a language. This
can be loosened to require the learner to converge semantically, that is, from some point
onwards it must output correct hypotheses which may change syntactically [5,19]. This
is referred to as behaviourally correct learning (Bc). Formally, a learning restriction δ
is a predicate on a total learning sequence p, that is, a total function, and a text T ∈ Txt.
For the mentioned criteria we have

Ex(p, T) :⇔ ∃n0∀n ≥ n0 : p(n) = p(n0) ∧ Wp(n0) = content(T),
Bc(p, T) :⇔ ∃n0∀n ≥ n0 : Wp(n) = content(T).

These success criteria can be expanded in order to model natural learning restrictions.
Our focus lies on monotonic learners [11,23]. Strongly monotone learning (SMon)

150 V. Doskoč and T. Kötzing

forms the basis. Here, the learner may never discard elements which were once present
in its previous hypotheses. This restrictive criterion can be loosened to hold only on the
elements of the target language, that is, the learner may never discard such elements
from the language which it already proposed in previous hypotheses. This is referred to
as monotone learning (Mon). This is formalized as

SMon(p, T) :⇔ ∀n,m : n ≤ m ⇒ Wp(n) ⊆ Wp(m),

Mon(p, T) :⇔ ∀n,m : n ≤ m ⇒ Wp(n) ∩ content(T) ⊆ Wp(m) ∩ content(T).

Given two restrictions δ and δ′, we denote their combination, that is, their intersec-
tion, with δδ′. Finally,T, the always true predicate, denotes the absence of a restriction.

Now, a learning criterion is a tuple (α, C, β, δ), where C is a set of admissible learn-
ers, typically P or R, β is an interaction operator and α and δ are learning restrictions.
We denote this learning criterion as τ(α)CTxtβδ. In the case of C = P , α = T or
δ = T we omit writing the respective symbol. Now, an admissible learner h ∈ C
τ(α)CTxtβδ-learns a language L if and only if on arbitrary text T ∈ Txt we have
α(β(h, T), T) and on texts of the target language T ∈ Txt(L) we have δ(β(h, T), T).
With τ(α)CTxtβδ(h) we denote the class of languages τ(α)CTxtβδ-learned by h
and with [τ(α)CTxtβδ] we denote the set containing, for all h′ ∈ C, all classes
τ(α)CTxtβδ(h′). Note that restrictions which hold globally (that is, on arbitrary text)
are denoted using τ(.).

2.2 Normal Forms in Inductive Inference

The introduced learning restrictions all fall into the scope of delayable restrictions.
Informally, the hypotheses of a delayable restriction may be postponed arbitrarily but
not indefinitely. Formally, we call a learning restriction δ delayable if and only if for
all texts T and T ′ with content(T) = content(T ′), all learning sequences p and all
total, unbounded non-decreasing functions r, we have that if δ(p, T) and, for all n,
content(T [r(n)]) ⊆ content(T ′[n]), then δ(p ◦ r, T ′). Furthermore, we call a restric-
tion semantic if and only if for any learning sequences p and p′ and any text T , we have
that if δ(p, T) and, for all n, Wp(n) = Wp′(n), then δ(p′, T). Intuitively, a restriction
is semantic if any hypothesis could be replaced by a semantically equivalent one with-
out violating the learning restriction. Note that all mentioned restrictions are delayable
and all except for Ex are semantic. In particular, one can provide general results when
talking about delayable or semantic restrictions.

Theorem 1. ([12,14]). For any interaction operator β, delayable restriction δ and
semantic restriction δ′, we have [RTxtGδ] = [TxtGδ] and [RTxtβδ′] = [Txtβδ′].

3 Studying Monotone Learning Restrictions

We investigate monotone learners imposed with various restrictions and compare them
to their strongly monotone counterpart. We split this study into two parts, first studying
explanatory learners in Sect. 3.1 and then behaviourally correct ones in Sect. 3.2.

Mapping Monotonic Restrictions in Inductive Inference 151

Before we dive into the respective part, we note that it is a well-established fact that
strongly monotone learners are significantly weaker than their monotone counterpart.
In particular, the class L = {2N} ∪ {{0, 2, 4, . . . , 2k, 2k + 1} | k ∈ N} is learnable by
a TxtSdMonEx-learner, however, any TxtGSMonBc-learner fails to do so. We
remark that the separating class can also be learned by a total monotone learner.

Theorem 2. We have [RTxtSdMonEx] \ [TxtGSMonBc] �= ∅.
Despite this fundamental separation, we observe similarities between monotone and

strongly monotone explanatory learners. These similarities are not only reflected by the
overall pairwise relation of the different settings, but also by the techniques used to
obtain these relations. The main difficulty thereby is to reason why the elements used
to contradict strongly monotone learning suddenly are part of a learnable language and,
thus, also contradict monotone learning. Furthermore, in order to show strong results,
all of these adaptations have to be done while maintaining the original learnability by
some strongly monotone learner.

These similarities culminate in Theorem 3, where we show globally monotone
learners to be equally powerful as globally strongly monotone ones. This result also
holds true when requiring semantic convergence. However, as monotone learners may
discard elements from their guesses, the strategy of keeping all once suggested ele-
ments regardless of the order (as for strongly monotone learners [13]) is not fruitful for
monotone learners. On the contrary, we show that such an equality cannot be obtained.
In particular, in Theorem 7 we show that partially set-driven learners are strictly less
powerful than their Gold-style counterpart, an unusual result as we discuss in Sect. 3.2.

3.1 Explanatory Monotone Learning

In this section, we investigate monotone learners when requiring syntactic convergence
and also compare them to their strongly monotone counterpart. Building on the thor-
ough discussion of strongly monotone learners [13], we show that the general behaviour
of both types of learners is alike. This can be seen, firstly, in the resulting overall picture
of the pairwise relations and, secondly, in the way these results are obtained.

Our first result is already a good indication towards how similar these restrictions
are. We show that requiring both restrictions to hold globally results in equal learning
power. To motivate the idea, note that monotone learners exhibit a strongly monotone
behaviour on target languages. If now the learner is required to be monotone on any
possible set, as required by global restrictions, it is already globally strongly monotone.
Note that this equality, in fact, holds on the level of the restrictions itself.

Theorem 3. For all restrictions δ and all interaction operators β we have

[τ(SMon)Txtβδ] = [τ(Mon)Txtβδ].

Proof. The inclusion [τ(SMon)Txtβδ] ⊆ [τ(Mon)Txtβδ] is immediate. For the
other inclusion, let h∗ be a τ(Mon)Txtβδ-learner in its starred form. Assume that h∗

152 V. Doskoč and T. Kötzing

is not τ(SMon). Then, there exists some text T , i < j and x such that x ∈ Wh∗(T [i]) \
Wh∗(T [j]). Considering the text T ′ := T [j]�x�T (j)�T (j + 1)� · · · , we have

x ∈ Wh∗(T [i]) ∩ content(T ′) \ Wh∗(T [j]) ∩ content(T ′).

Thus, h∗ is not τ(Mon) on text T ′, a contradiction. ��
In particular, this implies that all separations and equalities known for globally

strongly monotone learners also hold for globally monotone ones. Most notably, Gold-
style globally monotone learners are strictly less powerful than their total counterpart.

Gold-style monotone learners, being delayable, can be assumed totalwithout loss of
learning power [12]. We show that these learners are more powerful than their partially
set-driven counterpart. In particular, we show that even strongly monotone Gold-style
learners are more powerful than any partially set-driven monotone learner. We do so
by learning a class of languages on which the learner, in order to discard certain ele-
ments, needs to know the order the information appeared in. This, no partially set-driven
monotone learner can do.

Theorem 4. We have [TxtGSMonEx] \ [TxtPsdMonEx] �= ∅.
Next, we show that a partial learner, even sustaining a severe memory restriction and

expected to be strongly monotone, is still more powerful than any total monotone par-
tially set-driven learner. When constructing a separating class of languages, the partial
learner simply awaits the guess of the total learner to, then, learn a different language.

Theorem 5. We have [TxtSdSMonEx] \ [RTxtPsdMonEx] �= ∅.
Proof. We adapt the proof of the separation from total SMon-learners [13, Thm. 11]
as follows. Let h ∈ P be the following learner. With p0 being such that Wp0 = ∅, let
for each finite set D ⊆ N

h(D) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p0, if D = ∅,

ind(D), else, if |D| = 1,
↑, else, if ∃x ∈ D : ϕx(0)↑ ∨ unpad2(ϕx(0)) /∈ {1, 2},

e, else, if ∀x ∈ D : unpad1(ϕx(0)) = e,

e′, else, if
(∃y∀x ∈ D : unpad2(ϕx(0)) = 1 ⇒ unpad1(ϕx(0)) = y

)∧
∧ (∀x ∈ D : unpad2(ϕx(0)) = 2 ⇒ unpad1(ϕx(0)) = e′),

↑, otherwise.

The intuition is the following. While no elements are presented, h conjectures (a code
for) the empty set. Once, a single element is presented, h suggests (a code for) that
singleton. Thus, h learns all singletons. Given more elements, h either outputs the first
coordinate of the elements (if they all coincide), or another code if there are different
second coordinates. In case of equal second coordinates but different first coordinates,
h is undefined.

Mapping Monotonic Restrictions in Inductive Inference 153

Let L = TxtSdSMonEx(h). Assume there exists a RTxtPsdMonEx-learner
h′ which learns L, that is, L ⊆ RTxtPsdMonEx(h′). Since h learns all singletons,
so does h′. Thus, there is a total, strictly monotone function t ∈ R such that t(0) > 0
and for each x

x ∈ Wh′({x},t(x)). (1)

With ORT ([3]), we get a total recursive predicate P ∈ R, a strictly monotone increas-
ing a ∈ R and indices e, e′ ∈ N such that for all i ∈ N, using t̃(i) :=

∑i
j=0 t(a(j))+ j

as abbreviation,

P (i) ⇔ h′(content(a[i]), t̃(i)) �= h′(content(a[i + 1]), t̃(i) + 1),
We = {a(i) | ∀j ≤ i : P (j)},

We′ = {a(i) | ∀j < i : P (j)},

ϕa(i)(0) =

{
pad(e, 1), if P (i),
pad(e′, 2), otherwise.

We show that We and We′ are in L.
1. Case: We is infinite. This means for all i we have P (i). Thus, We = We′ . Thus, it

suffices to show We ∈ L. Let T ∈ Txt(We). For n > 0, let Dn := content(T [n]).
As long as Dn = ∅, we have h(Dn) = p0, i.e. a code for the empty set. When
|Dn| = 1, we have h(Dn) = ind(Dn), a code for the singleton Dn. Once Dn

contains more than one element, h(Dn) starts unpadding. As, for all i, ϕa(i)(0) =
pad(e, 1), we have unpad1({ϕx(0) | x ∈ Dn}) = {e}. Thus, h is strongly mono-
tone and will output e correctly.

2. Case: We is finite. Let k be such that We = {a(j) | j < k} and We′ = {a(j) |
j < k + 1}. Again, as long as no elements or only one element is shown, h
will output a code for the empty, respectively singleton set. As We ⊆ We′ and
unpad1({ϕx(0) | x ∈ We}) = {e}, h will output e as long as it sees only ele-
ments from We. Once it sees a(k) ∈ We′ , it correctly changes its mind to e′. This
maintains strong monotonicity and is the correct behaviour.

Thus, We,We′ ∈ L. We show that h′ cannot learn both simultaneously.

1. Case: We is infinite. On the text a(0)t(a(0))a(1)t(a(1))+1a(2)t(a(2))+2 . . . of We,
the learner h′ makes infinitely many mind changes. Thus, it cannot learn We, a
contradiction.

2. Case: We is finite. Let k be minimal such that ¬P (k), and thus We = content(a[k])
and We′ = content(a[k + 1]). By Condition (1) and monotonicity of h′ on We′

we have a(k) ∈ Wh′(content(a[k+1]),t̃(k)+1), as a(k)t̃(k)
�

a[k] is a sequence of ele-
ments in We′ and a(k) ∈ We′ . Since ¬P (k), we get h′(content(a[k]), t̃(k)) =
h′(content(a[k + 1]), t̃(k) + 1) and, thus, a(k) ∈ Wh′(content(a[k]),t(a(k))+k). For
each t ≥ t̃(k), we have that (content(a[k]), t) is an initial sequence for some text
of We′ , and thus, by monotonicity of h′ we get a(k) ∈ Wh′(content(a[k]),t). As
a(k) /∈ We = content(a[k]), h′ cannot identify We, a contradiction. ��

154 V. Doskoč and T. Kötzing

To complete Fig. 1(a), it remains to be shown that globally strongly monotone
partially set-driven learners are more powerful than their monotone set-driven coun-
terpart. The separation from strongly monotone set-driven learners has already been
shown [13]. We provide a self-learning class [4] to show that globally strongly mono-
tone partially set-driven learners outperform unrestricted set-driven learners. This result
emphasises the weakness of set-driven learners which results from a lack of “learning
time” [8].

We note that, when studying learners which may be undefined even on input belong-
ing to a target language, a similar class is used to separate strongly monotone Gold-style
learners from total set-driven learners [10].

Theorem 6. We have [τ(SMon)TxtPsdEx] \ [TxtSdEx] �= ∅.

3.2 Behaviourally Correct Monotone Learning

In this section we consider an analogous question: How do monotone and strongly
monotone learners interact when requiring semantic convergence? By Theorem 3 and
the findings of Kötzing and Schirneck [13], we already have that globally monotone
set-driven (and even Gold-style) learners are as powerful as strongly monotone Gold-
style learners. The mentioned learners are, due to Theorem 2, less powerful than total
set-driven monotone ones. This, in particular, implies that a “complete collapse” of the
learning considered criteria as for strongly monotone learners [13] is impossible. As
partially set-driven monotone (explanatory) learners are more powerful than set-driven
behaviourally correct ones [14], only one question remains, namely, whether Gold-
styleMon-learners may be separated from partially set-drivenMon-learners? Studies
of various other restrictions [7,13], show that behaviourally correct partially set-driven
learners are often as powerful as their respective Gold-style counterpart.

Surprisingly, for monotone behaviourally correct learners, such an equality does
not hold, as we show with the next result. The idea is to construct a class of languages
where the learner must keep track of the order the elements were presented in, in order
to safely discard them at a later point in learning-time. To obtain this result, we apply the
technique of self-learning classes [4] using the Operator Recursion Theorem [3]. Note
that this result already completes Fig. 1(b), as monotone Bc-learners may be assumed
total [14].

Theorem 7. We have [TxtGMonEx] \ [TxtPsdMonBc] �= ∅.
Proof. We provide a class witnessing the separation using self-learning classes [4,
Thm. 3.6]. Consider the learner which for a finite sequence σ is defined as

h(σ) =

{
ind(∅), if content(σ) = ∅,

ϕmax(content(σ))(σ), otherwise.

LetL = TxtGMonEx(h). Assume there exists aTxtPsdMonBc-learner h′ which
learns L, that is, L ⊆ TxtPsdMonBc(h′). By the Operator Recursion Theorem
(ORT, [3]), there exists a family of strictly monotone increasing, total computable func-
tions (aj)j∈N with pairwise disjoint range, a total computable function f ∈ R, an index

Mapping Monotonic Restrictions in Inductive Inference 155

We0 We1 We2

We

Wê1 Wê2

a0(f(0)) a1(f(1)) a2(f(2))

Fig. 2. A depiction of the class L′. Given j, the dashed line depicts the set Wêj and the cross
indicates the element aj(f(j)).

e ∈ N and two families of indices (ej)j∈N, (êk)k∈N such that for all finite sequences σ,
where first(σ) is the first non-pause element in the sequence σ, we have

ϕaj(i)(σ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ej , if content(σ) ⊆ range(aj),
êk, else, if ∃k : ak(f(k)) ∈ content(σ) ∨

∃k : first(σ) ∈ range(ak)∧
∧ max{j | content(σ) ∩ range(aj) �= ∅} = k,

e, otherwise.

f(j) = first i found such that aj(i) ∈ Wh′(content(aj [i]),i),

Wej
= range(aj),

Wêk
=

⋃

j′≤k

content(aj′ [f(j′)]) ∪ {ak(f(k))},

We =
⋃

j

content(aj [f(j)]).

Let L′ = {Wej
| j ∈ N} ∪ {Wêk

| k > 0} ∪ {We}. Figure 2 shows a depiction of
the class L′. We show that L′ can be learned by h, but not by h′. The intuition is the
following. For some j, as long as only elements from Wej

are presented, h will suggest
ej as its hypothesis. Thus, h′ needs to learn Wej

as well and eventually overgeneralize,
that is, at some point i we have content(aj [i]) � Wh′(content(aj [i]),i). The function
f(j) finds such i. Once the overgeneralization happens, the text presents, for j′ �= j,
elements from range(aj′). Knowing the order in which the elements were presented,
the learner h now either keeps or discards the element aj(f(j)) in its next hypothesis
depending whether j′ < j or j < j′, respectively. If j′ < j, h needs to keep aj(f(j))
in its hypothesis as it still may be presented the set Wêj

. Otherwise, it suggests the set
We, only changing its mind if it sees, for appropriate i ∈ N, an element of the form
ai(f(i)). Then, h is certain to be presented Wêi

. So the full-information learner h can
deal with this new information and preserve monotonicity, while h′ cannot, as it does
not know which information came first.

We proceed with the formal proof that h TxtGMonEx-learns L′. Let L′ ∈ L′ and
T ′ ∈ Txt(L′). We first show theEx-convergence and the monotonicity afterwards. For
the former, we distinguish the following cases.

156 V. Doskoč and T. Kötzing

1. Case: For some j, we have L′ = Wej
. Let n0 be such that content(T ′[n]) �= ∅.

Then, for n ≥ n0, there exists some i such that aj(i) = max(content(T ′[n])).
Thus,

h(T ′[n]) = ϕmax(content(T ′[n]))(T ′[n]) = ϕaj(i)(T
′[n]) = ej .

Hence, h learns Wej
correctly.

2. Case: We have L′ = We. Let n0 ∈ N be the minimal and let k0 ∈ N be such that
content(T ′[n0]) �= ∅ and first(T ′[n0]) ∈ range(ak0). Let n1 ≥ n0 be minimal
such that there exists k > k0 such that content(T ′[n1]) also contains elements from
content(ak). Then, for n > n1 we have that h(T ′[n]) = e, as there exists no j with
aj(f(j)) ∈ content(T ′) and alsomax{j | content(T ′[n])∩ range(aj) �= ∅} �= k0.
Thus, h learns We correctly.

3. Case: For some k > 0 we have L′ = Wêk
. In this case, there exists n0 such that, for

some k′ < k, range(ak′) ∩ content(T ′[n0]) �= ∅ and ak(f(k)) ∈ content(T ′[n0]).
Then, for n ≥ n0, we have h(T ′[n]) = êk. Therefore, h learns Wêk

correctly.

We show that the learning is monotone. Let n ∈ N. As long as content(T ′[n]) is
empty, h returns ind(∅). Once content(T ′[n]) is not empty anymore and as long as
content(T ′[n]) only contains elements from, for some j, range(aj), the learner h out-
puts (a code for) the set Wej

. Note that j is the index of the element first(T ′[n]), that
is, first(T ′[n]) ∈ range(aj). If ever, for some later n, content(T ′[n]) \ range(aj) �= ∅,
then h only changes its mind if there exists k > j such that content(T ′[n]) ∩
range(ak) �= ∅ (note that in case j < k, h does not change its mind). Depending
on whether ak(f(k)) ∈ content(T ′[n]) or not, h changes its mind to (a code of)
either Wêk

or We, respectively. In the former case, the learner h is surely presented
the set Wêk

, making this mind change monotone. In the latter case, no element of
Wej

\ content(aj [f(j)]) is contained the target language. These are exactly the ele-
ments h discards from its hypothesis, keeping a monotone behaviour. The learner only
changes its mind again if it witnesses, for some k′ ≥ k, the element ak′(f(k′)). It will
then output (a code of) the set Wêk′ . This is, again, monotonic behaviour, as h is sure
to be presented the set Wêk′ . Altogether, h is monotone on any text of L′.

Thus, h identifies all languages in L′ correctly. Now, we show that h′ cannot do so
too. We do so by providing a text of We where h′ makes infinitely many wrong guesses.
To that end, consider the text T of We given as a0[f(0)]a1[f(1)]a2[f(2)] . . . For j > 0,
since aj(f(j)) ∈ Wh′(content(aj [f(j)]),f(j)), we have

aj(f(j)) ∈ Wh′(content(T [
∑

m≤j f(m)]),
∑

m≤j f(m)),

as T [
∑

m≤j f(m)] is an initial sequence for a text for Wêj
. But, since aj(f(j)) /∈ We,

h′ makes infinitely many incorrect conjectures and thus does not identify We on the
text T correctly, a contradiction. ��

Acknowledgements. We would like to thank the anonymous reviewers for their helpful sugges-
tions and comments. We believe that their feedback helped improve this work.

Mapping Monotonic Restrictions in Inductive Inference 157

References

1. Angluin, D.: Inductive inference of formal languages from positive data. Inf. Control 45,
117–135 (1980)

2. Blum, L., Blum, M.: Toward a mathematical theory of inductive inference. Inf. Control 28,
125–155 (1975)

3. Case, J.: Periodicity in generations of automata. Math. Syst. Theor. 8, 15–32 (1974)
4. Case, J., Kötzing, T.: Strongly non-U-shaped language learning results by general tech-

niques. Inf. Comput. 251, 1–15 (2016)
5. Case, J., Lynes, C.: Machine inductive inference and language identification. In: Nielsen,

M., Schmidt, E.M. (eds.) ICALP 1982. LNCS, vol. 140, pp. 107–115. Springer, Heidelberg
(1982). https://doi.org/10.1007/BFb0012761

6. Doskoč, V., Kötzing, T.: Mapping monotonic restrictions in inductive inference. CoRR
(2020)

7. Doskoč, V., Kötzing, T.: Cautious limit learning. In: Proceedings of the International Con-
ference on Algorithmic Learning Theory (ALT) (2020)

8. Fulk, M.A.: Prudence and other conditions on formal language learning. Inf. Comput. 85,
1–11 (1990)

9. Gold, E.M.: Language identification in the limit. Inf. Control 10, 447–474 (1967)
10. Jain, S.: Strong monotonic and set-driven inductive inference. J. Exp. Theor. Artif. Intell. 9,

137–143 (1997)
11. Jantke, K.: Monotonic and non-monotonic inductive inference. New Gener. Comput. 8, 349–

360 (1991)
12. Kötzing, T., Palenta, R.: A map of update constraints in inductive inference. Theor. Comput.

Sci. 650, 4–24 (2016)
13. Kötzing, T., Schirneck, M.: Towards an atlas of computational learning theory. In: Proceed-

ings of the Symposium on Theoretical Aspects of Computer Science (STACS), pp. 47:1–
47:13 (2016)

14. Kötzing, T., Schirneck, M., Seidel, K.: Normal forms in semantic language identification.
In: Proceedings of the International Conference on Algorithmic Learning Theory (ALT), pp.
76:493–76:516 (2017)

15. Kötzing, T.: Abstraction and Complexity in Computational Learning in the Limit. Ph.D.
thesis, University of Delaware (2009)

16. Lange, S., Zeugmann, T.: Monotonic versus non-monotonic language learning. In: Non-
monotonic and Inductive Logic, pp. 254–269 (1993)

17. Lange, S., Zeugmann, T.: Set-driven and rearrangement-independent learning of recursive
languages. Math. Syst. Theor. 29, 599–634 (1996)

18. Lange, S., Zeugmann, T., Kapur, S.: Monotonic and dual monotonic language learning.
Theor. Comput. Sci. 155, 365–410 (1996)

19. Osherson, D.N., Weinstein, S.: Criteria of language learning. Inf. Control 52, 123–138 (1982)
20. Rogers Jr., H.: Theory of Recursive Functions and Effective Computability. Reprinted by

MIT Press, Cambridge (MA) (1987)
21. Schäfer-Richter, G.: Über Eingabeabhängigkeit und Komplexität von Inferenzstrategien.

Ph.D. thesis, RWTH Aachen University, Germany (1984)
22. Wexler, K., Culicover, P.W.: Formal Principles of Language Acquisition. MIT Press,

Cambridge (MA) (1980)
23. Wiehagen, R.: A thesis in inductive inference. In: Nonmonotonic and Inductive Logic, pp.

184–207 (1991)

https://doi.org/10.1007/BFb0012761

Normal Forms for Semantically Witness-Based
Learners in Inductive Inference

Vanja Doskoč(B) and Timo Kötzing

Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
{vanja.doskoc,timo.koetzing}@hpi.de

Abstract. In inductive inference, we study learners (computable devices) infer-
ring formal languages. In particular, we consider semantically witness-based
learners, that is, learners which are required to justify each of their semantic mind
changes. This natural requirement deserves special attention as it is a specializa-
tion of various important learning paradigms. As such, it has already proven to
be fruitful for gaining knowledge about other types of restrictions.

In this paper, we provide a thorough analysis of semantically converging,
semantically witness-based learners, obtaining normal forms for them. Most
notably, we show that set-driven globally semantically witness-based learners are
equally powerful as their Gold-style semantically conservative counterpart. Such
results are key to understanding the, yet undiscovered, mutual relation between
various important learning paradigms of semantically converging learners.

1 Introduction

Computably learning formal languages from a growing but finite amount of informa-
tion thereof is referred to as inductive inference or language learning in the limit [5],
a branch of (algorithmic) learning theory. Here, a learner h (a computable device) is
successively presented all and only the information from a formal language L (a com-
putably enumerable subset of the natural numbers). We call such a list of elements of L
a text of L. With every new datum, the learner h makes a guess (a description for a c.e.
set) about which language it believes to be presented. Once these guesses converge to a
single, correct hypothesis explaining the language, the learner successfully learned the
language L on this text. We say that h learns L if it learns L on every text of L.

We refer to this as explanatory learning as the learner, in the limit, provides an
explanation of the presented language. If we drop the requirement to converge to a
single correct hypothesis and allow the learner to oscillate between arbitrarily many
correct ones, we refer to this as behaviourally correct learning [3,13] and denote it as1

TxtGBc. Since a learner which always guesses the same language can learn this very
language, we study classes of languages which can be TxtGBc-learned by a single

1 Here, Txt indicates that the information is given from text, G stands for Gold-style learning,
where the learner has full information on the elements presented to make its guess, and, lastly,
Bc refers to behaviourally correct learning.

This work was supported by DFG Grant Number KO 4635/1-1.

c© Springer Nature Switzerland AG 2021
L. De Mol et al. (Eds.): CiE 2021, LNCS 12813, pp. 158–168, 2021.
https://doi.org/10.1007/978-3-030-80049-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80049-9_14&domain=pdf
https://doi.org/10.1007/978-3-030-80049-9_14

Normal Forms for Semantically Witness-Based Learners 159

learner. We denote the set of all such classes with [TxtGBc], which we refer to as the
learning power of TxtGBc-learners.

Additional restrictions, modelling various learning strategies, may be imposed on
the learner. By studying these we discover how seemingly intuitive strategies affect the
learning power. For example, it may seem evident to only make semantic mind changes
when seeing a new datum justifying this mind change. However, it is known that fol-
lowing such a strategy, referred to as semantically witness-based learning (SemWb,
[9,10]), severely lessens the obtainable learning power.

Besides being intuitive yet restrictive, this restriction proved to be important in the
literature. Together with target-cautious learning [8], where learners may not overgener-
alize the target language, this paradigm encloses various important learning restrictions.
Exemplary for explanatory learning, in settings where (syntactically) witness-based
learning, as specialization or lower bound, and target-cautious learning, as generaliza-
tion or upper bound, permit equivalent learning power, the three enclosed but seemingly
incomparable restrictions, namely conservativeness [1], weak monotonicity [7,17] and
cautiousness [12], are equivalent as well [9].

The still undiscovered mutual relation between the mentioned restrictions in the
behaviourally correct setting makes it worthwhile to study semantically witness-based
learning in this setting as well. The previous literature indicates analogous equali-
ties to be possible. Particularly, semantically witness-based learners and, a generaliza-
tion thereof, semantically conservative learners (SemConv, [10]), which keep their
guesses while they are consistent with the data given, are shown to be equally power-
ful [10]. This equality holds true regardless of the amount of information given, partic-
ularly, it holds true for both Gold-style and set-driven learners (Sd, [16]), which base
their hypotheses solely on the set of elements given. We enhance the analogy by show-
ing that the learners perform equally well regardless of the amount of information given,
drawing parallels to target-cautious learning, where Gold-style and set-driven learners
are also equally powerful [4].

The latter result already provides a powerful normal form. It states that semanti-
cally witness-based learners do not need to know the order and amount of the infor-
mation given. This significantly extends the result [10] that such set-driven learners are
as powerful as partially set-driven ones [2,15]. Note that the latter learners base their
hypotheses on the content and amount of information given, but have no access to the
order in which the information came. Another normal form shows that witness-based
learners display such behaviour also globally, that is, on arbitrary text. This means that
the learners always display a “decent” behaviour regardless whether the information
given belongs to a language they actually learn. Lastly, semantically witness-based and
semantically conservative learning is interchangeable also when required globally.

This paper is structured as follows. In Sect. 2 we introduce all necessary notation
and preliminary results. In Sect. 3, we show that three normal forms can be assumed
simultaneously. Our main result (Theorem 1) states that semantically conservative G-
learners may be assumed (a) globally (b) semantically witness-based and (c) set-driven.

2 Language Learning in the Limit

In this section we introduce notation and preliminary results used throughout this
paper. Thereby, we consider basic computability theory as known [14]. We start with

160 V. Doskoč and T. Kötzing

the mathematical notation and use � and ⊆ to denote the proper subset and sub-
set relation between sets, respectively. We denote the set of all natural numbers as
N = {0, 1, 2, . . . } and the empty set as ∅. Furthermore, we let P and R be the set
of all partial and total computable functions p : N → N. Next, we fix an effective num-
bering {ϕe}e∈N of all partial computable functions and denote the e-th computably
enumerable set as We = dom(ϕe) and interpret the number e as an index or hypothesis
thereof.

We learn recursively enumerable sets L ⊆ N, called languages, using learners, that
is, partial computable functions. By # we denote the pause symbol and for any set
S we denote S# := S ∪ {#}. Then, a text is a total function T : N → N ∪ {#}
and the collection of all texts is denoted as Txt. For any text (or sequence) T we
define the content of T as content(T) := range(T) \ {#}. Here, range denotes the
image of a function. A text of a language L is such that content(T) = L. We denote
the collection of all texts of L as Txt(L). Additionally, for n ∈ N, we denote by
T [n] the initial sequence of T of length n, that is, T [0] := ε (the empty string) and
T [n] := (T (0), T (1), . . . , T (n − 1)). For a set S, we call the sequence (text) where all
elements of S are presented in strictly increasing order without interruptions (followed
by infinitely many pause symbols if S is finite) the canonical sequence (text) of S. On
finite sequences we use ⊆ to denote the extension relation. Given two sequences σ and
τ we write σ�τ or (if readability permits) στ to denote the concatenation of these.

We use the following system to formalize learning criteria [11]. An interaction oper-
ator β takes a learner h ∈ P and a text T ∈ Txt as argument and outputs a possi-
bly partial function p. Intuitively, β provides the information for the learner to make
its guesses. We consider the interaction operators G for Gold-style or full-information
learning [5] and Sd for set-driven learning [16]. Define, for any i ∈ N,

G(h, T)(i) := h(T [i]),
Sd(h, T)(i) := h(content(T [i])).

Intuitively, a Gold-style learner has full information on the elements presented, while a
set-driven learner bases its guesses solely on the content, that is, set of elements, given.

Given a learning task, we can distinguish between various criteria for successful
learning. A first such criterion is explanatory learning (Ex, [5]), where the learner is
expected to converge to a single, correct hypothesis in order to learn a language. Allow-
ing the learner to oscillate between arbitrarily many semantically correct, but possibly
syntactically different hypotheses we get behaviourally correct learning (Bc, [3,13]).
Formally, a learning restriction δ is a predicate on a total learning sequence p, that is, a
total function, and a text T ∈ Txt. For the mentioned criteria we have

Ex(p, T) :⇔ ∃n0∀n ≥ n0 : p(n) = p(n0) ∧ Wp(n0) = content(T),
Bc(p, T) :⇔ ∃n0∀n ≥ n0 : Wp(n) = content(T).

We impose restrictions on the learners. In particular, we focus on semantically witness-
based learning (SemWb, [9,10]), where the learners need to justify each of their
semantic mind changes. A generalization thereof is semantically conservative learning
(SemConv, [1]). Here, the learners may not change their mind while their hypotheses

Normal Forms for Semantically Witness-Based Learners 161

are consistent with the information given. A hypothesis is consistent if it contains all the
information it is based on and if we require the learners to output consistent hypotheses
we speak of consistent learning (Cons, [1]). Formally, we define the restrictions as

SemWb(p, T) :⇔ ∀n,m : (∃k : n ≤ k ≤ m ∧ Wp(n) = Wp(k)) ⇒
⇒ (content(T [m]) ∩ Wp(m))\Wp(n) = ∅,

Cons(p, T) :⇔ ∀n : content(T [n]) ⊆ Wh(T [n]),

SemConv(p, T) :⇔ ∀n,m :
(
n < m ∧ content(T [m]) ⊆ Wp(n)

) ⇒
⇒ Wp(n) = Wp(m).

Given two restrictions δ and δ′, the juxtaposition δδ′ denotes their combination, that is,
intersection. Finally, the always true predicate T denotes the absence of a restriction.

Now, a learning criterion is a tuple (α, C, β, δ), where C is a set of admissible learn-
ers, typically P or R, β is an interaction operator and α and δ are learning restrictions.
We denote this learning criterion as τ(α)CTxtβδ. In the case of C = P , α = T or
δ = T we omit writing the respective symbol. For an admissible learner h ∈ C we say
that h τ(α)CTxtβδ-learns a language L if and only if on arbitrary text T ∈ Txt
we have α(β(h, T), T) and on texts of the target language T ∈ Txt(L) we have
δ(β(h, T), T). With τ(α)CTxtβδ(h) we denote the class of languages τ(α)CTxtβδ-
learned by h and the set of all such classes we denote with [τ(α)CTxtβδ].

Lastly, we discuss Bc-locking sequences, the semantic counterpart to locking
sequences [2]. Intuitively, a Bc-locking sequence is a sequence where the learner cor-
rectly identifies the target language and does not make a semantic mind change anymore
regardless what information of the language it is presented. Formally, given a language
L and a G-learner h, a sequence σ ∈ L∗

is called a Bc-locking sequence for h on L
if and only if for every sequence τ ∈ L∗

we have that Wh(στ) = L [6]. When talking
about Sd-learners, we call a finite set D a Bc-locking set of L if and only if for all D′,
with D ⊆ D′ ⊆ L, we have Wh(D′) = L.

While for each G-learner h there exists a Bc-locking sequence on every language
it learns [2], not every text may contain an initial segment which is a Bc-locking
sequence. Learners which do have a Bc-locking sequence on every text of a language
they learn are called stronglyBc-locking [8]. Formally, a learner is stronglyBc-locking
if on every language L it learns and on every text T ∈ Txt(L) there exists n such that
T [n] is aBc-locking sequence for h on L. The transition to set-driven learners is imme-
diate.

3 Semantic Witness-Based Learning

In this section, we provide a normal form for semantically witness-based learners,
namely that τ(SemWb)TxtSdBc-learners are as powerful as TxtGSemConvBc
ones (Theorem 1). We prove this normal form stepwise. We start by showing that each
TxtGSemConvBc-learner may be assumed semantically conservative on arbitrary
text (Theorem 2). Afterwards, we prove that such learners base their guesses solely on
the content given (Theorem 3). Lastly, we observe that they remain equally powerful
when being globally semantically witness-based (Theorem 4).

162 V. Doskoč and T. Kötzing

Theorem 1. We have that [τ(SemWb)TxtSdBc] = [TxtGSemConvBc].

Wemake aTxtGSemConvBc-learner h globally semantically conservative first.

Theorem 2. We have that [τ(SemConv)TxtGBc] = [TxtGSemConvBc].

Proof. The inclusion [τ(SemConv)TxtGBc] ⊆ [TxtGSemConvBc] is immedi-
ate. For the other, let h be a consistent learner [10] and L = TxtGSemConvBc(h).
We provide a learner h′ which τ(SemConv)TxtGBc-learns L.

We do so with the help of an auxiliary τ(SemConv)TxtGBc-learner ĥ, which
only operates on sequences without repetitions or pause symbols. For convenience, we
subsume these using the term duplicates. When h′ is given a sequence with duplicates,
say (7, 1, 5, 1, 4,#, 3, 1), it mimics ĥ given the same sequence without duplicates, that
is, h′(7, 1, 5, 1, 4,#, 3, 4) = ĥ(7, 1, 5, 4, 3). First, note that this mapping of sequences
preserves the ⊆-relation on sequences, thus making h′ also a τ(SemConv)-learner.
Furthermore, it suffices to focus on sequences without duplicates since consistent,
semantically conservative learners cannot change their mind when presented a datum
they have already witnessed (or a pause symbol). Thus, ĥ will be presented sufficient
information for the learning task, which then again is transferred to h′. With this in
mind, we only consider sequences without duplicates, that is, without repetitions or
pause symbols, for the entirety of this proof. Sequences where duplicates may poten-
tially still occur (for example when looking at the initial sequence of a text) are also
replaced as described above. To ease notation, given a set A, we write S(A) for the sub-
set of A∗ where the sequences do not contain duplicates. Now, we define the auxiliary
learner ĥ.

Algorithm 1: The auxiliary τ(SemConv)-learner ĥ.
Parameter: TxtGSemConv-learner h.
Input: Finite sequence σ ∈ S(N).
Semantic Output: Wĥ(σ) =

⋃
t∈N

Et.
Initialization: t′ ← 0, E0 ← content(σ) and, for all t > 0, Et ← ∅.

1 for t = 0 to ∞ do
2 if ∃σ′

� σ : content(σ) ⊆ W t
ĥ(σ′) then

3 Σ′
t ← {σ′

� σ | content(σ) ⊆ W t
ĥ(σ′)}

4 Et+1 ← Et ∪ ⋃
σ′∈Σ′

t
W t

ĥ(σ′)
5 else if ∀σ′

� σ : content(σ)
⊆ W t
h(σ′) then

6 S(σ, t′) ← S

(
W t′

h(σ) \ content(σ)
)

7 if ∀τ ∈ S(σ, t′) :
⋃

τ ′∈S(σ,t′) W t′
h(στ ′) ⊆ W t

h(στ) then

8 Et+1 ← Et ∪ W t′
h(σ)

9 t′ ← t′ + 1

10 else
11 Et+1 ← Et

Consider the learner ĥ as in Algorithm 1 with parameter h. Given some input σ, the
intuition is the following. Once ĥ, on any previous sequence σ′, is consistent with the

Normal Forms for Semantically Witness-Based Learners 163

currently given information content(σ), the learner only enumerates the same as such
hypotheses (lines 2 to 4). While no such hypothesis is found, ĥ does a forward search
(lines 5 to 9) and only enumerates elements if all visible future hypotheses also witness
these elements. As already discussed, ĥ operates only on sequences without repetitions
or pause symbols, thus making it possible to check all necessary future hypotheses.

First we show that for any L ∈ L and any T ∈ Txt(L) we have, for n ∈ N,

Wĥ(T [n]) ⊆ Wh(T [n]). (1)

Note that, while the (infinite) text T may contain duplicates, the (finite) sequence
T [n] does not by our assumption. Now, we show Eq. (1) by induction on n. The case
n = 0 follows immediately. Assume Eq. (1) holds up to n. As content(T [n + 1]) ⊆
Wh(T [n+1]) by consistency of h and as, for n′ ≤ n, Wh(T [n′]) = Wh(T [n+1]) whenever
content(T [n + 1]) ⊆ Wh(T [n′]), we get

Wĥ(T [n+1]) ⊆
⋃

n′≤n,
content(T [n+1])⊆Wĥ(T [n′])

Wĥ(T [n′]) ∪ Wh(T [n+1]) ⊆ Wh(T [n+1]).

The first inclusion follows as the big union contains all previous hypotheses found
in the first if-clause (lines 2 to 4) and as Wh(T [n+1]) contains all elements possibly
enumerated by the second if-clause (lines 5 to 9). Note that the latter also contains
content(T [n+1]), thus covering the initialization. The second inclusion follows by the
induction hypothesis and semantic conservativeness of h.

We continue by showing that ĥ TxtGBc-learns L. To that end, let L ∈ L and
T ∈ Txt(L). We distinguish the following two cases.

1. Case: L is finite. Then there exists n0 with content(T [n0]) = L. Let n ≥ n0. By
SemConv and consistency of h, we have L = Wh(T [n]). By Eq. (1), we have

Wh(T [n]) ⊇ Wĥ(T [n]) and, by consistency of ĥ, Wĥ(T [n]) ⊇ content(T [n]) = L.
Altogether we have Wĥ(T [n]) = L as required.

2. Case: L is infinite. Let n0 be minimal such that Wh(T [n0]) = L. Then, as h is
semantically conservative, T [n0] is a Bc-locking sequence for h on L and we have

∀i < n0 : content(T [n0]) ⊆ Wh(T [i]).

Thus, elements enumerated by Wĥ(T [n0])
cannot be enumerated by the first if-clause

(lines 2 to 4) but only by the second one (lines 5 to 9). We show Wĥ(T [n0])
= L.

The ⊆-direction follows immediately from Eq. (1). For the other direction, let t′ be
the current step of enumeration. As T [n0] is a Bc-locking sequence, we have, for

all τ ∈ S(T [n0], t′) = S

(
W t′

h(T [n0])
\ content(T [n0])

)
,

⋃

τ ′∈S(T [n0],t′)

W t′
h(T [n0])�τ ′ ⊆ Wh(T [n0]�τ) = L.

Thus, at some step t, Et+1 ← W t′
h(T [n0])

and, then, the enumeration continues with
t′ ← t′ + 1. In the end we have L ⊆ Wĥ(T [n0])

and, altogether, L = Wĥ(T [n0])
.

164 V. Doskoč and T. Kötzing

We now show that, for any n > n0, L = Wĥ(T [n]) holds. Note that at some point
content(T [n]) ⊆ Wĥ(T [n0])

will be witnessed. Thus, Wĥ(T [n]) will enumerate the
same as Wĥ(T [n0])

= L, and it follows that L ⊆ Wĥ(T [n]). By Eq. (1), Wĥ(T [n])
will not enumerate more than Wh(T [n]) = L, that is, Wĥ(T [n]) ⊆ Wh(T [n]) = L,
concluding this part of the proof.

It remains to be shown that ĥ is SemConv on arbitrary text T ∈ Txt. The problem
is that when a previous hypothesis becomes consistent with information currently given,
the learner may have already enumerated incomparable data in its current hypothesis.
This is prevented by closely monitoring the time of enumeration, namely by waiting
until the enumerated data will certainly not cause such problems. We prove that ĥ is
τ(SemConv) formally. Let n < n′ be such that content(T [n′]) ⊆ Wĥ(T [n]). We
show that Wĥ(T [n]) = Wĥ(T [n′]) by separately looking at each inclusion.

⊆: The inclusion Wĥ(T [n]) ⊆ Wĥ(T [n′]) follows immediately since by assumption
content(T [n′]) ⊆ Wĥ(T [n]), meaning that at some point the first if-clause (lines 2
and 4) will find T [n] as a candidate and then Wĥ(T [n′]) will enumerate Wĥ(T [n]).

⊇: Assume there exists x ∈ Wĥ(T [n′]) \ Wĥ(T [n]). Let x be the first such enu-
merated and let tx be the step of enumeration with respect to h(T [n′]), that is,
x ∈ W tx

h(T [n′]) but x /∈ W tx−1
h(T [n′]). Furthermore, let tcontent be the step where

content(T [n′]) ⊆ Wĥ(T [n]) is witnessed for the first time. Now, by the definition

of ĥ, we have
Wĥ(T [n′]) ⊆ W tcontent−1

h(T [n′]) ∪ Wĥ(T [n]),

as Wĥ(T [n′]) enumerates at most W tcontent−1
h(T [n′]) until it sees the consistent prior

hypothesis, namely ĥ(T [n]). This happens exactly at step tcontent − 1, at which
Wĥ(T [n′]) stops enumerating elements from W tcontent−1

h(T [n′]) and continues to follow
Wĥ(T [n]). Now, observe that tx < tcontent since x ∈ Wĥ(T [n′]) but x /∈ Wĥ(T [n]).

But then, with S(T [n], tcontent) = S

(
W tcontent

h(T [n]) \ content(T [n])
)
,

x ∈
⋃

τ ′∈S(T [n],tcontent)

W tcontent
h(T [n]�τ ′) ⊆ Wĥ(T [n]),

which must be witnessed in order for Wĥ(T [n]) to enumerate content(T [n′]) via
the second if-clause (lines 5 to 9), that is, to get content(T [n′]) ⊆ Wĥ(T [n]). This
contradicts x /∈ Wĥ(T [n]), concluding the proof. ��
This result proves that h may be assumed semantically conservative on arbitrary

text. Next, we show that h does not rely on the order or amount of information given.

Theorem 3. We have that [τ(SemConv)TxtSdBc] = [τ(SemConv)TxtGBc].

Proof. Let h be a learner and L = τ(SemConv)TxtGBc(h). We may assume h to
be globally consistent [10]. We provide a learner h′ which τ(SemConv)TxtSdBc-
learns L. To that end, we introduce the following auxiliary notation used throughout

Normal Forms for Semantically Witness-Based Learners 165

this proof. For each finite set D ⊆ N and each x ∈ N, let d := max(D), σD be the
canonical sequence of D and D<x := {y ∈ D | y < x}. Note that the definition of
D<x can be extended to ≤, > and Geq as well as infinite sets in a natural way. Now,
let h′ be such that, for each finite set D,

Wh′(D) = D ∪ (
Wh(σD)

)
>d

∪
{

x ∈ (
Wh(σD)

)
<d

: D ∪ {x} ⊆ Wh(σ(D<x))

}
.

Intuitively, h′(D) simulates h assuming it got the information in the canonical order,
that is, h′(D) simulates h(σD). All elements x ∈ Wh(σD) such that x > d can be
enumerated, as any later, consistent hypothesis will do so as well. If x < d, then we
check whether the learner h given the canonical sequence up to x is consistent with
D ∪ {x}, that is, whether D ∪ {x} ⊆ Wh(σ(D<x)). If so, we enumerate x as it will be
done by the previous hypotheses as well. Note that, for each finite D ⊆ N, we have

Wh′(D) ⊆ Wh(σD). (2)

We proceed by proving that h′ τ(SemConv)TxtSdBc-learns L. First, we show
the TxtSdBc-convergence. The idea here is to find a Bc-locking sequence of the
canonical text. Doing so ensures that even if elements are shown out of order they will
be enumerated as h will not make a mind change and thus the consistency condition
will be observed. To that end, let L ∈ L. We distinguish whether L is finite or not.

1. Case: L is finite. We show that Wh′(L) = L. By definition of h′, we have
L ⊆ Wh′(L). For the other inclusion, note that as h is consistent and semanti-
cally conservative (which in particular implies it being target-cautious), we have
that Wh(σL) = L. Then, by Eq. (2), we have Wh′(L) ⊆ Wh(σL) = L, concluding
this case.

2. Case: L is infinite. Let Tc be the canonical text of L, and let σ0 be a Bc-locking
sequence for h on Tc. Such a Bc-locking sequence exists, as h is strongly Bc-
locking [10, Thm. 7]. Let D0 := content(σ0). For any input D ⊆ L such that
D ⊇ D0, we show that Wh′(D) = L. By Eq. (2), we get Wh′(D) ⊆ Wh(σD) = L.
To show L ⊆ Wh′(D), let x ∈ L. We distinguish the relative position of x and d.

x > d: In this case we have x ∈ Wh′(D) by definition of h′.
x ≤ d: In this case either x ∈ D and we immediately get x ∈ Wh′(D), or we have

to check whether D ∪ {x} ⊆ Wh(σ(D<x)). Since σ0 is an initial segment of
the canonical text of L, it holds that x > max(content(σ0)) and, thus, we get
σ0 ⊆ σ(D<x). Now Wh(σ(D<x)) = L, meaning that D ∪ {x} ⊆ Wh(σ(D<x))

will be observed at some point in the computation. Thus, x ∈ Wh′(D).

Altogether, we get Wh′(D) = L and thus TxtSdBc-convergence. It remains to be
shown that h′ is τ(SemConv). Let D′ ⊆ D′′ and D′′ ⊆ Wh′(D′). The trick here is
that upon checking for consistency with elements shown out of order, the learner has
to check the same, minimal sequence regardless whether the input is D′ or D′′. We
proceed with the formal proof. Therefore, we expand the initially introduced notation
of this proof. For any x ∈ N define σ′ := σD′ , d′ := max(D′) and σ′

<x := σ(D′
<x)

.
Analogously, we use σ′′, d′′ and σ′′

<x when D′′ is the underlying set. First, we show that

166 V. Doskoč and T. Kötzing

Wh(σ′) = Wh(σ′′). Since Wh′(D′) enumerates D′′, that is, D′′ ⊆ Wh′(D′), we have for
all y ∈ (D′′ \ D′)<d′ that D′ ∪ {y} ⊆ Wh(σ′

<y)
by definition of h′. Thus, we have

Wh(σ′
<y)

= Wh(σ′). (3)

Note that, if (D′′ \ D′)<d′ = ∅, then σ′
<d′+1 = σ′. Thus, Eq. (3) also holds for

m :=

{
min(D′′

<d′ \ D′), if D′′
<d′ \ D′ = ∅,

d′ + 1, otherwise.

Furthermore, it holds true that for any x ≤ m we have

σ′
<x = σ′′

<x. (4)

By Eqs. (2) and (3), we have D′′ ⊆ Wh′(D′) ⊆ Wh(σ′) = Wh(σ′
<m). As, by Eq. (4),

σ′
<m = σ′′

<m ⊆ σ′′ and h is τ(SemConv), we get

Wh(σ′) = Wh(σ′′). (5)

We conclude the proof by showing that Wh′(D′) = Wh′(D′′). We check each direc-
tion separately by checking every possible position of an element, which is a candidate
for enumeration, relative to the given information D′ and D′′.

⊇: Let x ∈ Wh′(D′′). For x ∈ D′′ we have x ∈ Wh′(D′) by assumption. Otherwise, by
Eqs. (2) and (5), we get x ∈ Wh(σ′). Thus, x will be considered in the enumeration
of Wh′(D′). We distinguish the relation between x and d′.

x>d′: In this case x ∈ (Wh(σ′))>d′ ⊆ Wh′(D′).
x<d′: As d′ ≤ d′′ and since x is enumerated into Wh′(D′′), we have D′′ ∪ {x} ⊆

Wh(σ′′
<x)

. We, again, distinguish the relative position of x and m and get

x < m : D′ ∪ {x} ⊆ D′′ ∪ {x} ⊆ Wh(σ′′
<x)

(5)
= Wh(σ′

<x)
,

m < x < d′ : D′ ∪ {x} ⊆ D′′ ∪ {x} ⊆ Wh(σ′′
<x)

(∗)
= Wh(σ′′)

(3)
= Wh(σ′)

(3)
=

(3)= Wh(σ′
<m)

(∗)
= Wh(σ′

<x)
.

We use h being τ(SemConv) in the steps marked by (∗). Thus, x ∈ Wh′(D′).
⊆: Let x ∈ Wh′(D′). For x ∈ D′′ we have x ∈ Wh′(D′′) by definition of h′. Otherwise,

x ∈ D′′ ∪ {x} ⊆ Wh′(D′) ⊆ Wh(σ′)
(5)
= Wh(σ′′).

Thus, x will be considered in the enumeration of Wh′(D′′). We now distinguish
between the possible relation of x and d′′.

x>d′′: In this case x ∈ Wh′(D′′) by definition of h′.

Normal Forms for Semantically Witness-Based Learners 167

x<d′′: We show that D′′ ∪ {x} ⊆ Wh(σ′′
<x)

and, thus, x is enumerated by Wh′(D′′).

x < m : D′′ ∪ {x} ⊆ Wh(σ′
<x)

(4)
= Wh(σ′′

<x)
,

m < x < d′ : D′′ ∪ {x} ⊆ Wh(σ′
<x)

(∗)
= Wh(σ′

<m)
(4)
= Wh(σ′′

<m)
(∗)
= Wh(σ′′

<x)
,

d′ < x < d′′ : D′′ ∪ {x} ⊆ Wh(σ′) = Wh(σ′
<m) = Wh(σ′′

<m)
(4)
= Wh(σ′′

<x)
.

We use h being τ(SemConv) in the steps marked by (∗). In the end, x ∈
Wh′(D′′). ��

Hence, we may assume h to be τ(SemConv)TxtSdBc. Lastly, we observe that
h may even be assumed globally semantically witness-based. This concludes the proof
of Theorem 1 and, thus, also this section.

Theorem 4. We have that [τ(SemWb)TxtSdBc] = [τ(SemConv)TxtSdBc].

Proof. Let δ ∈ {SemWb,SemConv}. Since δ-learners may be assumed to be con-
sistent [10, Thm. 8], which also holds true when the restrictions are required glob-
ally, we have [τ(Consδ)TxtSdBc] = [τ(δ)TxtSdBc]. Since Cons ∩ SemWb =
Cons ∩ SemConv [10, Lem. 11], the theorem holds. ��

References

1. Angluin, D.: Inductive inference of formal languages from positive data. Inf. Control 45,
117–135 (1980)

2. Blum, L., Blum, M.: Toward a mathematical theory of inductive inference. Inf. Control 28,
125–155 (1975)

3. Case, J., Lynes, C.: Machine inductive inference and language identification. In: Nielsen,
M., Schmidt, E.M. (eds.) ICALP 1982. LNCS, vol. 140, pp. 107–115. Springer, Heidelberg
(1982). https://doi.org/10.1007/BFb0012761

4. Doskoč, V., Kötzing, T.: Cautious limit learning. In: Proceedings of the International Con-
ference on Algorithmic Learning Theory (ALT) (2020)

5. Gold, E.M.: Language identification in the limit. Inf. Control 10, 447–474 (1967)
6. Jain, S., Osherson, D., Royer, J.S., Sharma, A.: Systems that Learn: An Introduction to

Learning Theory, 2nd edn. MIT Press, Cambridge (1999)
7. Jantke, K.: Monotonic and non-monotonic inductive inference. New Gener. Comput. 8, 349–

360 (1991)
8. Kötzing, T., Palenta, R.: A map of update constraints in inductive inference. Theor. Comput.

Sci. 650, 4–24 (2016)
9. Kötzing, T., Schirneck, M.: Towards an atlas of computational learning theory. In: Proceed-

ings of the Symposium on Theoretical Aspects of Computer Science (STACS), pp. 47:1–
47:13 (2016)

10. Kötzing, T., Schirneck, M., Seidel, K.: Normal forms in semantic language identification.
In: Proceedings of the International Conference on Algorithmic Learning Theory (ALT), pp.
76:493–76:516 (2017)

11. Kötzing, T.: Abstraction and Complexity in Computational Learning in the Limit. Ph.D.
thesis, University of Delaware (2009)

12. Osherson, D.N., Stob, M., Weinstein, S.: Learning strategies. Inf. Control 53, 32–51 (1982)

https://doi.org/10.1007/BFb0012761

168 V. Doskoč and T. Kötzing

13. Osherson, D.N., Weinstein, S.: Criteria of language learning. Inf. Control 52, 123–138 (1982)
14. Rogers Jr., H.: Theory of Recursive Functions and Effective Computability. Reprinted by

MIT Press, Cambridge (1987)
15. Schäfer-Richter, G.: Über Eingabeabhängigkeit und Komplexität von Inferenzstrategien.

Ph.D. thesis, RWTH Aachen University, Germany (1984)
16. Wexler, K., Culicover, P.W.: Formal Principles of Language Acquisition. MIT Press, Cam-

bridge (1980)
17. Wiehagen, R.: A thesis in inductive inference. In: Nonmonotonic and Inductive Logic, pp.

184–207 (1991)

Walk-Preserving Transformation
of Overlapped Sequence Graphs into

Blunt Sequence Graphs with GetBlunted

Jordan M. Eizenga , Ryan Lorig-Roach , Melissa M. Meredith ,
and Benedict Paten(B)

University of California Santa Cruz Genomics Institute, 1156 High Street,
Santa Cruz, CA 95064, USA

bpaten@ucsc.edu

Abstract. Sequence graphs have emerged as an important tool in
two distinct areas of computational genomics: genome assembly and
pangenomics. However, despite this shared basis, subtly different graph
formalisms have hindered the flow of methodological advances from
pangenomics into genome assembly. In genome assembly, edges typi-
cally indicate overlaps between sequences, with the overlapping sequence
expressed redundantly on both nodes. In pangenomics, edges indicate
adjacency between sequences with no overlap—often called blunt adja-
cencies. Algorithms and software developed for blunt sequence graphs
often do not generalize to overlapped sequence graphs. This effectively
silos pangenomics methods that could otherwise benefit genome assem-
bly. In this paper, we attempt to dismantle this silo. We have developed
an algorithm that transforms an overlapped sequence graph into a blunt
sequence graph that preserves walks from the original graph. Moreover,
the algorithm accomplishes this while also eliminating most of the redun-
dant representation of sequence in the overlap graph. The algorithm is
available as a software tool, GetBlunted, which uses little enough time
and memory to virtually guarantee that it will not be a bottleneck in
any genome assembly pipeline.

Keywords: Genome assembly · Graph genome · Pangenomics

1 Introduction

Genome assembly is the process of determining a sample’s full genome sequence
from the error-prone, fragmentary sequences produced by DNA sequencing tech-
nologies. Sequence graphs have a long history of use in this field [16,17,20]. In
these graphs, nodes are labeled with sequences derived from sequencing data,
and edges indicate overlaps between observed sequences, which may in turn
indicate adjacency in the sample’s genome (Fig. 1A). The sample genome then

J. M. Eizenga and R. Lorig-Roach—Contributed equally.

c© Springer Nature Switzerland AG 2021
L. De Mol et al. (Eds.): CiE 2021, LNCS 12813, pp. 169–177, 2021.
https://doi.org/10.1007/978-3-030-80049-9_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80049-9_15&domain=pdf
http://orcid.org/0000-0001-8345-8356
http://orcid.org/0000-0002-8183-9611
http://orcid.org/0000-0001-5736-3193
http://orcid.org/0000-0001-8863-3539
https://doi.org/10.1007/978-3-030-80049-9_15

170 J. M. Eizenga et al.

corresponds to some walk through graph. There are several specific sequence
graph articulations in wide use, including de Bruijn graphs, overlap graphs, and
string graphs. They each present computational and informational trade-offs that
make them better suited to certain configurations of sequencing technologies and
genome complexity.

The common topological features of genome assembly graphs are driven pri-
marily by the repetitiveness of the underlying genomes. In many species, a large
fraction of the genome consists of repeats (for instance, more than 50% of the
human genome [11]). Because all copies of a repeat are highly similar to each
other, the corresponding nodes in the sequence graph frequently overlap each
other. In contrast, the unique regions of the genome have few erroneous over-
laps. These two factors tend to create graphs that consist of long non-branching
paths (corresponding to the unique regions), which meet in a densely tangled
core with a complicated topology (corresponding to the repeats).

Recently, sequence graphs have also emerged into prominence in the growing
field of pangenomics, which seeks to analyze the full genomes of many individuals
from the same species [4]. In pangenomics, sequence graphs are used to represent
genomic variation between individual haplotypes. Sequences in the graph furcate
and rejoin around sites of variation so that each individual genome corresponds to
a walk through the graph (Fig. 1B). The growth of pangenomics has fueled major
advances in both formal algorithms research [12,21] and practical genomics tools
[10,22].

Pangenome graphs have much simpler topologies than genome assembly
graphs. Having fuller knowledge of the constituent genomes makes it possible
to distinguish different copies of a repeat. Thus, pangenome graphs tend to be
mostly non-branching, much like the portions of assembly graphs that corre-
spond to unique sequences in the genome. Moreover, most of the branching in
pangenome graphs consists of localized bubble-like motifs. In contrast to assem-
bly graphs, pangenome graphs have few if any cycles.

A

B

Fig. 1. A: An overlapped sequence graph. B: A blunt sequence graph.

Intuitively, the shared basis in sequence graphs should permit the advances in
pangenomics to spill over into genome assembly. However, such cross-pollination

GetBlunted 171

is stymied by a small difference in the graph formalisms. The edges in assembly
graphs indicate sequence overlaps, which are necessary because of the uncertain
adjacencies in the underlying genome. In pangenome graphs, the underlying
genomes are known, and the edges are blunt in that they indicate direct adja-
cency with no overlap. Blunt sequence graphs can be trivially converted into
overlap graphs (with overlaps of length 0), but the reverse requires nontriv-
ial merging operations between the overlapping sequences. As a result, meth-
ods have remained siloed within pangenomics despite potential uses in genome
assembly.

In this work, we present a method to transform an overlapped sequence graph
into a blunt sequence graph. We state the formal guarantees of our formulation
and discuss their computational complexity. We then present an algorithm and
compare its results to similar methods.

2 Problem Statement

In transforming an overlapped sequence graph to a blunt one, we seek to provide
two guarantees:

1. All walks in the overlapped graph are preserved in the blunt graph.
2. Every walk in the blunt graph corresponds to some walk in the overlapped

graph.

These two properties prohibit the intuitive solution of transitively merging all
overlapped sequences. Doing so can result in walks that are not present in the
overlapped graph, because walks can transition between nodes that are not con-
nected by an edge via the transitively merged sequences (Fig. 2). Because over-
lapped sequences cannot be fully merged, it is necessary to retain multiple copies
of some sequences in the blunt graph. However, excessive duplication can create
problems for downstream analysis, for instance by increasing alignment uncer-
tainty. Thus, we add one further criterion to the above formulation:

3. Minimize the amount of duplicated sequence.

3 Notation

An overlapped sequence graph consists of a set of sequences S and a set of
overlaps O ⊂ (S × {+,−} ×S × {+,−}). In this notation, the symbols + and −
indicate whether the overlap involves a prefix or suffix (collectively affix) of the
sequence. This makes the overlapped graph a bidirected graph.

In a bidirected graph, a walk consists of a sequence of nodes s1s2 . . . sN ,
si ∈ S such that 1) each pair of subsequent nodes is connected by an overlap
and 2) if si−1 and si are connected by an overlap on si’s prefix, then si and si+1

are a connected by an overlap on si’s suffix (or vice versa). In the case that a
walk traverses a node s ∈ S from suffix to prefix, we interpret the sequence as

172 J. M. Eizenga et al.

A B

Fig. 2. A: An overlapped sequence graph, and B: the blunt sequence graph that results
from transitively merging its overlaps. The highlighted walk in the blunt graph does
not correspond to any walk in the original overlapped graph.

its reverse complement, which is the sequence of the antiparallel strand of the
DNA molecule.

Finally, an adjacency component is a collection of affixes (in S × {+,−})
that can reach each other via a sequence of adjacent overlaps in O (Fig. 3). This
sequence need not form a valid bidirected walk.

Fig. 3. An adjacency component in a larger sequence graph. Each of the indicated
affixes can reach the others by a sequence of overlaps.

4 Methods

To minimize the amount of duplicated sequence, overlapped sequences must be
merged. However, we have already mentioned that our criteria prohibit transi-
tively merging all overlaps. We must then minimize the total number of groups
within which overlaps are merged transitively, which coincides with the number
of times the sequences need to be duplicated.

Consider a group of overlaps that contains (s1, s2,+,−) and (t1, t2,+,−). For
merging to not introduce any walks that are not in the overlapped graph, the
overlaps (s1, t2,+,−) and (t1, s2,+,−) must also be overlaps in O. Extending
this logic, the entire group of overlaps must be contained within a biclique sub-
graph of the adjacency component: two sets of affixes B1 and B2 such that every
affix in B1 is connected to every affix in B2 by an overlap. Thus, we can mini-
mize the number of duplicated sequences by minimizing the number of bicliques
needed to cover every overlap edge.

GetBlunted 173

The problem of covering edges with the minimum number of bicliques is
known as biclique cover (Fig. 4), and it is known to be NP-hard [19]. However,
there are domain-specific features of overlapped sequence graphs that often make
it tractable to solve large portions of the graph optimally.

Fig. 4. A biclique cover of an adjacency component with three bicliques. A biclique
cover of an adjacency component with three bicliques.

First, many adjacency components are bipartite. Consider the case that an
adjacency component is not bipartite, in which case there is cycle of overlaps
between affixes with odd parity. Each overlap indicates high sequence similarity,
so an odd cycle means that each sequence is similar to itself, reverse comple-
mented an odd number of times. Such sequences are called DNA palindromes,
and they do exist in nature. However, they comprise a small fraction of most
real genomes.

Second, most adjacency components are domino-free. This property refers to
the absence of a particular induced subgraph, the domino (Fig. 5). A sufficient
condition to prohibit dominoes is for overlapping to be a transitive property.
That is, whenever sequence s1 overlaps sequences t1 and t2, and sequence s2
overlaps t1, then s2 also overlaps t2. In reality, this is not always the case.
However, it is very often the case, since overlaps indicate sequence similarity,
and similarity is approximately transitive.

These features guided the design of the following algorithm. If an adjacency
component is bipartite and domino-free, we compute the biclique cover in poly-
nomial time with the algorithm of Amilhastre, Vilaren, and Janssen [1]. When
an adjacency component is bipartite but not domino-free, we instead use the
dual graph reduction algorithm of Ene, et al. [7], followed by their lattice-based

Fig. 5. The domino graph. If either of the dotted edges are present, the induced sub-
graph is not a domino.

174 J. M. Eizenga et al.

post-processing if the algorithm does not identify the optimal solution. Finally,
if an adjacency component is not bipartite, we first reduce it to the bipartite
case by computing an approximate solution to the maximum bipartite subgraph
problem using the algorithm of Bylka, Idzik, and Tuza [3]. The maximum bipar-
tite subgraph problem is equivalent to max cut, which is also NP-hard [13]. This
process is repeated recursively on the edges that are not included in the bipartite
subgraph.

The amount of duplicated sequence is also affected by the manner in which
sequences are merged among the overlaps of a biclique. To minimize duplicated
sequence, we must maximize matches in the alignment between the overlapped
sequences. This is the multiple sequence alignment problem, which is NP-hard.
We use the partial order alignment algorithm to approximate the optimal mul-
tiple sequence alignment [14]. Partial order alignment also has the advantage
that the alignment is expressed as a blunt sequence graph, which can be directly
incorporated in the full blunt graph.

5 Implementation

We have implemented the algorithm described here as a genomics tool called Get-
Blunted. GetBlunted takes as input a GFA file (a common interchange format
for sequence graphs [15]) and outputs a GFA containing a blunt graph. In addi-
tion, it provides a translation table from sequences in the output to sequences in
the input, which can be used to translate analyses performed on the blunt graph
into analyses on the overlapped graph. The implementation is written entirely in
C++, and it use several auxiliary libraries: GFAKludge is used for manipulating
GFA files [5], libbdsg is used to represent sequence graphs [6], and SPOA is used
for partial order alignment [24].

6 Results

We compared the performance of GetBlunted to two other tools that trans-
form overlapped sequence graphs into blunt graphs: the gimbricate/seqwish [8,9]
pipeline and Stark [18]. These are, to our knowledge, the only other such tools
besides GetBlunted. However, they are not completely comparable. Neither tool
provides the guarantees that GetBlunted does for preserving the walk space of
the graph. In addition, Stark only works with de Bruijn graphs, a restricted
subset of overlap graphs in which all overlaps are exact matches of a uniform
length.

We profiled speed and memory usage on three assembly graphs. The first
two are assembly graphs produced by the Shasta assembler [23] for the haploid
human cell line CHM13 and for human sample HG002. Both of these were built
using Oxford Nanopore reads1. The last graph is a de Bruijn graph of Pacific

1 Publicly available at https://s3-us-west-2.amazonaws.com/miten-hg002/index.
html?prefix=guppy 3.6.0/.

https://s3-us-west-2.amazonaws.com/miten-hg002/index.html?prefix=guppy_3.6.0/
https://s3-us-west-2.amazonaws.com/miten-hg002/index.html?prefix=guppy_3.6.0/

GetBlunted 175

Biosciences HiFi reads of an Escherichia coli strain (SRR10382245), which was
constructed using jumboDB [2].

All of the bluntifying tools were run on a single core of a c5.9xlarge AWS
instance with an Intel Xeon Scalable Processor. Memory usage and compute
time were measured with the Unix time tool. The results of the profiling are
presented in Table 1. GetBlunted is over 1000 times faster than and compara-
bly memory-intensive to the gimbricate/seqwish pipeline. For de Bruijn graphs,
Stark is faster than either tool, although this performance comes at the cost of
limited generality.

Table 1. Table of speed and memory usage of bluntifing tools run on a single core of
an AWS server.

Assembly Bluntification tool Run time (min) RAM (GB)

HG002 Shasta GetBlunted 0.35 9

Gimbricate/seqwish 917.5 6

CHM13 Shasta GetBlunted 0.38 4

Gimbricate/seqwish 314.6 6

E. coli de Bruijn GetBlunted 8.36 26

Gimbricate/seqwish 10.74 4

Stark 0.65 3

7 Discussion

In this work, we described an algorithm and software tool, GetBlunted, which
transforms overlapped sequence graphs into blunt sequence graphs. This provides
a route for sequence graph methods developed for pangenomics to be applied to
sequence graphs in genome assembly. In both fields, walks through the sequence
graph are of primary importance. In genome assembly, some walk through the
graph corresponds to the sample genome. In pangenomics, the genomes used
to construct the pangenome each correspond to a walk through the graph. Get-
Blunted provides attractive guarantees that it faithfully preserves the walk space
of the input while also producing parsimonious output. Other comparable meth-
ods either do not provide these guarantees or only provide them in limited cases.
In addition, GetBlunted is (except in the case of de Bruijn graphs) faster than
alternatives that do not provide these guarantees, and it has resource require-
ments that are easily achievable in any computational environment that is used
for genome assembly. In the future, GetBlunted could serve as an step in genome
assembly pipelines to improve the quality of their overlap graphs. It could also
facilitate direct analyses of assembly graphs in metagenomics applications.

176 J. M. Eizenga et al.

References

1. Amilhastre, J., Vilarem, M.C., Janssen, P.: Complexity of minimum biclique cover
and minimum biclique decomposition for bipartite domino-free graphs. Discret.
Appl. Math. 86(2–3), 125–144 (1998)

2. Bankevich, A., Bzikadze, A., Kolmogorov, M., Pevzner, P.A.: Assembling Long
Accurate Reads Using de Bruijn Graphs. bioRxiv p. 2020.12.10.420448 (Decem-
ber 2020). https://doi.org/10.1101/2020.12.10.420448, https://www.biorxiv.org/
content/10.1101/2020.12.10.420448v1, publisher: Cold Spring Harbor Laboratory
Section: New Results

3. Bylka, S., Idzik, A., Tuza, Z.: Maximum cuts: improvements and local algorithmic
analogues of the Edwards-Erdos inequality. Discret. Math. 194(1–3), 39–58 (1999)

4. Computational Pan-Genomics Consortium: Computational pan-genomics: status,
promises and challenges. Brief. Bioinform. 19(1), 118–135 (2018)

5. Dawson, E.T., Durbin, R.: GFAKluge: A C++ library and command line utilities
for the graphical fragment assembly formats. J. Open Source Softw. 4(33), 1083
(2019)

6. Eizenga, J.M., et al.: Efficient dynamic variation graphs. Bioinformatics 36(21),
5139–5144 (2020)

7. Ene, A., Horne, W., Milosavljevic, N., Rao, P., Schreiber, R., Tarjan, R.E.: Fast
exact and heuristic methods for role minimization problems. In: Proceedings of
the 13th ACM Symposium on Access Control Models and Technologies, pp. 1–10
(2008)

8. Garrison, E.: ekg/gimbricate. https://github.com/ekg/gimbricate (October 2020)
9. Garrison, E.: ekg/seqwish. https://github.com/ekg/seqwish (February 2021)

10. Garrison, E., et al.: Variation graph toolkit improves read mapping by representing
genetic variation in the reference. Nat. Biotechnol. 36(9), 875–879 (2018)

11. Haubold, B., Wiehe, T.: How repetitive are genomes? BMC Bioinform. 7(1), 1–10
(2006)

12. Jain, C., Zhang, H., Gao, Y., Aluru, S.: On the complexity of sequence to graph
alignment. bioRxiv (January 2019). https://doi.org/10.1101/522912

13. Karp, R.M.: Reducibility among combinatorial problems. In: Miller R.E., Thatcher
J.W., Bohlinger J.D. (eds.) Complexity of Computer Computations, pp. 85–103.
Springer, Boston (1972) https://doi.org/10.1007/978-1-4684-2001-2 9

14. Lee, C., Grasso, C., Sharlow, M.F.: Multiple sequence alignment using partial order
graphs. Bioinformatics 18(3), 452–464 (2002)

15. Li, H., et al.: GFA specification (2013). https://github.com/GFA-spec/GFA-spec
16. Myers, E.W.: Toward simplifying and accurately formulating fragment assembly.

J. Comput. Biol. 2(2), 275–290 (1995)
17. Myers, E.W.: The fragment assembly string graph. Bioinformatics 21(suppl 2),

ii79–ii85 (2005)
18. Nikaein, H.: hnikaein/stark (January 2021). https://github.com/hnikaein/stark
19. Orlin, J., et al.: Contentment in graph theory: covering graphs with cliques. In:

Indagationes Mathematicae (Proceedings), vol. 80, pp. 406–424. North-Holland
(1977)

20. Pevzner, P.A., Tang, H., Waterman, M.S.: An Eulerian path approach to DNA
fragment assembly. Proc. Natl. Acad. Sci. 98(17), 9748–9753 (2001)

21. Rautiainen, M., Marschall, T.: Aligning sequences to general graphs in O(V+ mE)
time. bioRxiv p. 216127 (2017)

https://doi.org/10.1101/2020.12.10.420448
https://www.biorxiv.org/content/10.1101/2020.12.10.420448v1
https://www.biorxiv.org/content/10.1101/2020.12.10.420448v1
https://github.com/ekg/gimbricate
https://github.com/ekg/seqwish
https://doi.org/10.1101/522912
https://doi.org/10.1007/978-1-4684-2001-2_9
https://github.com/GFA-spec/GFA-spec
https://github.com/hnikaein/stark

GetBlunted 177

22. Rautiainen, M., Marschall, T.: GraphAligner: rapid and versatile sequence-to-
graph alignment. Genome Biol. 21(1), 1–28 (2020)

23. Shafin, K., et al.: Nanopore sequencing and the Shasta toolkit enable efficient
de novo assembly of eleven human genomes. Nature Biotechnology 38(9), 1044–
1053 (2020). https://doi.org/10.1038/s41587-020-0503-6, https://www.nature.
com/articles/s41587-020-0503-6. number: 9 Publisher: Nature Publishing Group

24. Vaser, R., Sović, I., Nagarajan, N., Šikić, M.: Fast and accurate de novo genome
assembly from long uncorrected reads. Genome Res. 27(5), 737–746 (2017)

https://doi.org/10.1038/s41587-020-0503-6
https://www.nature.com/articles/s41587-020-0503-6
https://www.nature.com/articles/s41587-020-0503-6

On 3SUM-hard Problems in the Decision
Tree Model

Esther Ezra(B)

School of Computer Science, Bar Ilan University, Ramat Gan, Israel
ezraest@cs.biu.ac.il

Abstract. We describe subquadratic algorithms, in the algebraic
decision-tree model of computation, for detecting whether there exists a
triple of points, belonging to three respective sets A, B, and C of points
in the plane, that satisfy a pair of polynomial equations. In particular,
this has an application to detect collinearity among three sets A, B, C
of n points each, in the complex plane, when each of the sets A, B, C
lies on some constant-degree algebraic curve. In another development, we
present a subquadratic algorithm, in the algebraic decision-tree model,
for the following problem: Given a pair of sets A, B each consisting of
n pairwise disjoint line segments in the plane, and a third set C of arbi-
trary line segments in the plane, determine whether A×B ×C contains
a triple of concurrent segments. This is one of four 3sum-hard geometric
problems recently studied by Chan (2020). The results reported in this
extended abstract are based on the recent studies of the author with
Aronov and Sharir (2020, 2021).

Keywords: 3SUM-hard problems · Algebraic decision tree model ·
Collinearity testing · Segment concurrency

1 Introduction

In theoretical computer science, analysis of algorithms in non-uniform models is
often applied when one is interested in optimizing the number of certain opera-
tions, while the remaining operations performed by the algorithm are disregarded
in the complexity analysis.

A central problem, which received considerable attention due to its relation to
conditional lower bounds on the complexity of fundamental geometric questions,
is 3sum, namely, given a set of n real numbers, decide whether there is a triple of
them that sums to 0. We sometimes refer to the trichromatic version of 3SUM,
where we are given three sets A, B, C of n real numbers each, and the question
is to determine whether there is a triple (a, b, c) ∈ A × B × C with a + b + c = 0.

There is a large family of geometric problems that are known to be 3sum-
hard, in the sense that 3sum can be reduced to them. In fact, Gajentaan and

Work partially supported by NSF CAREER under grant CCF:AF-1553354 and by
Grant 824/17 from the Israel Science Foundation.

c© Springer Nature Switzerland AG 2021
L. De Mol et al. (Eds.): CiE 2021, LNCS 12813, pp. 178–188, 2021.
https://doi.org/10.1007/978-3-030-80049-9_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80049-9_16&domain=pdf
http://orcid.org/0000-0001-8133-1335
https://doi.org/10.1007/978-3-030-80049-9_16

On 3SUM-hard Problems in the Decision Tree Model 179

Overmars [15], who introduced this concept, initially coined these problems
“n2-hard,” as it was strongly believed that 3sum cannot be solved in sub-
quadratic time (it can easily be solved in O(n2) time). Moreover, Erickson [11]
showed a matching quadratic lower bound in the 3-linear decision-tree model (see
also [4]),namely, in the linear decision-tree model the only operation allowed to
directly access the input data is a sign test of a linear function of the input
numbers; these are the operations counted by the model, while all the remaining
operations are free. In the 3-linear model, the linear functions are restricted to
three parameters, in particular, Erickson [11] used comparisons of the form: “Is
a + b greater/smaller/equal to c?”

As a consequence, it was conjectured that there is no subquadratic solution.
However, this prevailing conjecture was refuted by Grønlund and Pettie [16],
who showed an upper bound close to O(n3/2) in the 4-linear decision-tree model
(using the so-called Fredman’s trick - see Sect. 2 for this notion in geometric prob-
lems), and a slightly subquadratic algorithm in the RAM model. This pioneering
work raised the interest of researchers from the entire theoretical computer sci-
ence community. Soon afterwards, the more general question of k-SUM (deciding
whether there is a k-tuple of the input numbers which sum to 0) was studied by
Cardinal et al. [8], Kane et al. [19] and by the author and collaborators [13,14].
The main idea is to reduce the problem to point location in high-dimensional
“hyperplane arrangements,” where the challenge is to bring down the query time,
so that its dependence on the dimension d is polynomial rather than exponen-
tial (see also [20,21]). In fact, the work of the author in [13] presents a point-
location mechanism for arbitrary hyperplanes in the RAM model (whereas the
work in [14] considered this problem only in the linear decision-tree model). Very
recently Hopkins et al. [18] showed an improvement for such a mechanism, yield-
ing an almost optimal bound in the linear decision-tree model. The approach in
[18,19] uses the concept of inference adapted from active learning. Inference
dimension refers to the situation where one considers linear comparisons on a
set of items, and the quantity to be measured is, roughly speaking, what is the
smallest number of comparisons from which one can deduce the result of another
comparison. A key property in the analysis in [19], which eventually led to the
near-linear bound for the k-SUM problem, is that the inference dimension is only
linear in n in this case.

The seminal work of Gajentaan and Overmars [15] presents a fairly long list
of geometric 3sum-hard problems in two and three dimensions (they all have a
simple reduction from 3sum), such as: (i) Collinearity testing : Given a set of
points in R

2, do they contain a collinear triple? (ii) Covering by strips: Given
strips in the plane, does their union cover the unit square? (iii) Separator prob-
lems: Given a set of non-intersecting axis-parallel line segments in R

2, is there
a line separating them into two non-empty sets? Among geometric 3sum-hard
problems, collinearity testing is perhaps the most fundamental one, since many
such problems are intrinsically “collinearity-hard”. In this extended abstract we
refer to the trichromatic version of collinearity testing, which is described next.

180 E. Ezra

In the sequel we focus on two main developments concerning collinearity
testing in the algebraic decision tree model, that is, each comparison is a sign
test of some constant-degree polynomial in the coordinates of a constant number
of input points. In the first we consider the trichromatic problem in the complex
plane, where the input consists of three sets of points A, B, C, each lying on some
constant-degree algebraic (complex) curve. We in fact present a more general
scheme, for detecting whether there exists a triple of points, belonging to three
respective sets A, B, and C of points in the plane, that satisfy two polynomial
equations, and show a subquadratic bound in the algebraic decision tree model.
These results are briefly described in Sect. 2; we refer the reader to [5] for further
details.1

In the second development we study the segment concurrency problem in
the algebraic decision tree model: Given a pair of sets A, B each consisting of
n pairwise disjoint line segments in the plane, and a third set C of arbitrary
line segments in the plane, determine whether A × B × C contains a triple of
concurrent segments. When A, B, C are three sets of lines in the plane (rather
than line segments as above), the problem is exactly the dual to collinearity
testing, which is 3sum-hard. In fact, our restricted setting is still 3sum-hard, and
is among four such problems studied by Chan [9], all of which can be reduced to
the problem of triangle intersection counting : That is, given two sets A and B,
each consisting of n pairwise disjoint line segments in the plane, and a set C of n
triangles in the plane, count, for each triangle Δ ∈ C, the number of intersection
points between the segments of A and those of B that lie inside Δ. The other
two problems are: (i) Intersection of three polygons: Given three simple n-gons
A, B, C in the plane, determine whether A ∩ B ∩ C is nonempty.(ii) Coverage
by three polygons: Given three simple n-gons A, B, C in the plane, determine
whether A∪B ∪C covers a given triangle Δ0. The property that these problems
are 3SUM-hard, as well as the reduction to the problem of triangle intersection
counting, are described in [9].

In Sect. 3 we briefly describe a subquadratic solution to the segment concur-
rency problem in the algebraic decision tree model. This is part of the work in
progress of the author with Aronov and Sharir [6] where they presented a sub-
quadratic solution to the triangle intersection counting problem in the algebraic
decision tree model.

2 Testing a Pair of Polynomial Equations and Collinearity
Testing in the Complex Plane

For simplicity of presentation, we present a solution sketch for the following
problem: We are given three sets A, B, and C, each consisting of n points in the
plane, and we seek a triple (a, b, c) ∈ A × B × C that satisfies two polynomial
1 The work in [5] also shows how to detect whether A, B, C satisfy a single polyno-

mial equation under the condition that two of the sets lie on two respective one-
dimensional curves and the third is placed arbitrarily in the plane. We do not report
this particular development in this extended abstract.

On 3SUM-hard Problems in the Decision Tree Model 181

equations. We assume that they are of the form c1 = F (a, b), c2 = G(a, b),
for c = (c1, c2), where F and G are constant-degree 4-variate polynomials with
good fibers, in the following sense: For any pair of real numbers κ1, κ2, the two-
dimensional surface π(κ1,κ2) := {(a, b) ∈ R

4 | F (a, b) = κ1, G(a, b) = κ2} has
good fibers2.

Polynomial Partitioning. Our analysis relies on planar polynomial partitioning
and on properties of Cartesian products of pairs of them. For a polynomial
f : Rd → R, for any d ≥ 2, the zero set of f is Z(f) := {x ∈ R

d | f(x) = 0}.
We refer to an open connected component of Rd \Z(f) as a cell. A fundamental
result of Guth and Katz [17] is:

Proposition 1 (Polynomial partitioning [17]). Let P be a finite set of
points in R

d, for any d ≥ 2. For any real parameter D with 1 ≤ D ≤ |P |1/d,
there exists a real d-variate polynomial f of degree O(D) such that Rd \Z(f) has
O(Dd) cells, each containing at most |P |/Dd points of P .

Agarwal et al. [3] presented an algorithm that computes a polynomial parti-
tioning in expected O(npoly(D)) time, whose degree is within a constant factor
of that stated in Proposition 1.

We now proceed as follows. We apply a “block” partitioning for the points in
A and in B, using Cartesian products of pairs polynomial partitions, based on
the analysis of Solymosi and de Zeeuw [22]. Roughly speaking, we fix a parameter
g � n (whose value will be set later), and use Proposition 1 in order to form a
polynomial partitioning of degree D = O(

√
n/g) for each of the sets A, B. Each

connected component in the partition of A (resp., B) contains at most g point of
A (resp.,., B). We then form the Cartesian product of the partitioning of A and
B. Let ζ denote a cell in this partition, this cell is the Cartesian product τ × τ ′

of a cell τ from the partition of A and a cell τ ′ from the partition of B. Since
|A ∩ τ |, |B ∩ τ ′| ≤ g, we have that ζ contains at most g2 points of A × B, and
the overall number of cells in this partition is O((n/g)2+ε), for any prescribed
ε > 0.3

Put Aτ := A ∩ τ and Bτ ′ := B ∩ τ ′. The high-level idea of the algorithm
is to sort lexicographically each of the sets Hτ,τ ′ := {(F (a, b), G(a, b)) | (a, b) ∈
Aτ ×Bτ ′}, over all pairs of cells (τ, τ ′). We then search with each c = (c1, c2) ∈ C
through the sorted lists of those sets Hτ,τ ′ that might contain (c1, c2). We show
that each c ∈ C has to be searched for in only a small number of sets. Typically
to this kind of problems [16], sorting the sets explicitly is too expensive. We
overcome this issue by considering the problem in the algebraic decision-tree
model, and by using an algebraic variant of Fredman’s trick (extending those
used in [7,16]).

2 A two-dimensional algebraic surface S in R
4 has good fibers if, for every point p ∈ R

2,
the fibers ({p} × R

2) ∩ S and (R2 × {p}) ∩ S are finite.
3 The number of cells is in fact O(n/g)2), but the analysis in [5] uses hierarchical
polynomial partitioning in order to speed up computation, which slightly increases
the number of cells to O((n/g)2+ε). We skip this variant in this extended abstract.

182 E. Ezra

Implicit Sorting and Batched Point Location. Consider the step of sorting
{F (a, b) | (a, b) ∈ Aτ × Bτ ′} (the sorting of the values G(a, b) is done in a
secondary round and is treated analogously). It has to perform various com-
parisons of pairs of values F (a, b) and F (a′, b′), for a, a′ ∈ Aτ , b, b′ ∈ Bτ ′ .
We consider Aτ × Aτ as a set of g2 points in R

4, and associate, with each
pair (b, b′) ∈ Bτ ′ × Bτ ′ , the 3-surface σb,b′ = {(a, a′) ∈ R

4 | F (a, b) = F (a′, b′)}.
Let Στ ′ denote the set of these surfaces. The arrangement A(Στ ′) has the
property that each of its cells ζ has a fixed sign pattern with respect to all
these surfaces. That is, each comparison of F (a, b) with F (a′, b′), for any (a, b),
(a′, b′) ∈ Aτ × Bτ ′ , has a fixed outcome for all points (a, a′) ∈ ζ (for a fixed
pair b, b′). In other words, if we locate the points of Aτ × Aτ in A(Στ ′),
we have available the outcome of all the comparisons needed to sort the set
{F (a, b) | (a, b) ∈ Aτ × Bτ ′}

Following the above steps is still too expensive, and takes Ω(n2) steps (in the
algebraic decision-tree model) if implemented näıvely. We circumvent this issue,
in the algebraic decision-tree model, by forming the unions P :=

⋃
τ Aτ ×Aτ , and

Σ :=
⋃

τ ′ Στ ′ ; we have |P |, |Σ| = O(g2 · (n/g)1+ε) = O(n1+εg1−ε). By locating
each point of P in A(Σ), we get all the signs that are needed to sort all the sets
{F (a, b) | (a, b) ∈ Aτ × Bτ ′}, over all pairs τ , τ ′ of cells, and then the actual
sorting costs nothing in algebraic decision tree model. In a main step in [5] we
show:

Lemma 1. One can complete the above sorting step, in the algebraic decision
tree model, in O

(
(ng)8/5+ε

)
randomized expected time, for any prescribed ε > 0,

where the constant of proportionality depends on ε and the degree of F and G.

Searching with the Points of C. We next search the structure with every
c = (c1, c2) ∈ C. We only want to visit subproblems (τ, τ ′) where there might
exist a ∈ τ and b ∈ τ ′, such that F (a, b) = c1 and G(a, b) = c2. To find
these cells, and to bound their number, we consider the two-dimensional surface
πc=(c1,c2) := {(a, b) ∈ R

4 | F (a, b) = c1, G(a, b) = c2}, and our goal is to enumer-
ate the cells τ ×τ ′ in the polynomial partition of A×B crossed by πc. By assump-
tion, πc has good fibers, so, by [5, Theorem 3.2], it crosses only O((n/g)1+ε) cells
τ × τ ′, and we can compute them in time O((n/g)1+ε), for any ε > 0 (see [5] for
these details).

Summing over all the n possible values of c, the number of crossings between
the surfaces πc and the cells τ × τ ′ is O(n2+ε/g1+ε), for any ε > 0. Thus com-
puting all such surface-cell crossings, over all c ∈ C, costs O(n2+ε/g1+ε) time.
The cost of searching with any specific c, in the structure of a cell τ × τ ′ crossed
by πc, is O(log g) (it is simply a binary search over the sorted lists). Hence the
overall cost of searching with the elements of C through the structure is (with a

slightly larger ε) O

(
n2+ε

g1+ε

)
.

The Overall Algorithm. Combining the above costs we get total expected run-

ning time of O

(
(ng)8/5+ε +

n2+ε

g1+ε

)
. We now choose g = n2/13, and obtain

On 3SUM-hard Problems in the Decision Tree Model 183

expected running time of O
(
n24/13+ε

)
, where the implied constant of propor-

tionality depends on the degrees of F and G and on ε. In summary, we have
shown:

Theorem 1 (Aronov et al. [5]). Let A, B, C be three n-point sets in the
plane, and let F , G be a pair of constant-degree 4-variate polynomials with good
fibers (in the sense defined at the beginning of this section). Then one can test,
in the algebraic decision-tree model, whether there exists a triple a ∈ A, b ∈ B,
c = (c1, c2) ∈ C, such that c1 = F (a, b) and c2 = G(a, b), using only O

(
n24/13+ε

)

polynomial sign tests (in expectation), for any ε > 0.

Collinearity Testing in the Complex Plane. In a further development in the
Arxiv version of [5], the author with Aronov and Sharir extend Theorem 1 and
show that one can test in the same asymptotic time bound (in the algebraic
decision tree model) whether there exists a triple a ∈ A, b ∈ B, c ∈ C, such
that F (a, b, c) = 0, G(a, b, c) = 0, where now F,G are algebraic functions that
satisfy some mild assumptions. Generally speaking, this involves a non-trivial
and technical procedure for sorting roots of polynomials in the algebraic decision
tree model.

We next apply this property to the problem of collinearity testing in the
complex plane, for the following setup. The sets A, B, C are now sets of points
in the complex plane C

2, each consisting of n points and lying on a constant-
degree algebraic curve, and we wish to determine whether A × B × C contains
a collinear triple. For simplicity of exposition, we assume that the curves γA,
γB , and γC that contain, respectively, A, B, and C are represented parameter-
ically by equations of the form (w, z) = (fA(t), gA(t)), (w, z) = (fB(t), gB(t)),
and (w, z) = (fC(t), gC(t)), where t is a complex parameter and fA, gA, fB , gB,
fC , and gC are constant-degree univariate (complex) polynomials.

With this parameterization the points of A, B, C can be represented as points
in the real plane (representing the complex numbers t), and the complex poly-
nomial whose vanishing (that is, once it is compared to zero) asserts collinearity
of a triple a = (za, wa), b = (zb, wb), c = (zc, wc), is

H(ta, tb, tc) :=

∣∣∣∣
∣∣

1 fA(ta) gA(ta)
1 fB(tb) gB(tb)
1 fC(tc) gC(tc)

∣∣∣∣
∣∣
, (1)

where ta, tb, tc are the parameters that specify a, b, c, respectively, so its real
and imaginary components form a pair of real polynomial equations. This is the
role assignment of the above polynomials F and G. In summary this shows (once
again, refer to the Arxiv version of [5]):

Corollary 1 (Aronov et al. [5]). Let A, B, C be n-point sets in the com-
plex zw-plane, so that A (resp., B, C) lies on a curve γA (resp., γB, γC)
represented by parametric equations of the form (z, w) = (fA(t), gA(t)) (resp.,
(z, w) = (fB(t), gB(t)), (z, w) = (fC(t), gC(t))), where fA, gA, fB, gB, fC ,

184 E. Ezra

gC are constant-degree univariate complex polynomials. Then one can deter-
mine, in the algebraic decision-tree model, whether there exists a collinear triple
(a, b, c) ∈ A×B×C, with O

(
n24/13+ε

)
real polynomial sign tests, in expectation,

for any ε > 0.

3 Segment Concurrency

We now sketch a subquadratic algorithm, in the algebraic decision tree model,
for the segment concurrency problem. We use the notation of Sect. 1.

The Decomposition. Fix a parameter g � n, put r := n/g. We construct a (1/r)-
cutting ΞA for the segments of A, that is, a partition of the plane into interior-
disjoint simplices, the interior of each of which meets at most n/r = g segments
of A. Since the segments are pairwise disjoint, we can construct ΞA so that it
consists of only O(r) trapezoids, each of which is crossed by at most g segments
of A. The construction time, in the real-RAM model, is O(n log r) = O(n log n);
see [10, Theorem 1] for these details. We apply a similar construction for B, and
let ΞB denote the resulting cutting, with similar properties.

We next overlay ΞA with ΞB, to obtain a decomposition Ξ of the plane into
O(r2) convex polygons of constant complexity. Each cell σ of Ξ is identified by
a pair (τ, τ ′), where τ and τ ′ are the respective cells (simplices) of ΞA and ΞB

whose intersection is σ. Each cell σ of Ξ is crossed by at most n/r = g segments
of A and by at most n/r = g segments of B.

Classifying the Segments in a Cell. Let σ = (τ, τ ′) be a cell of Ξ. Call a segment
e of A long (resp., short) within σ if e crosses σ and neither of its endpoints lies
in σ (resp., at least one endpoint lies in σ). We apply analogous definitions to
the segments of B and to the segments of C.

The high-level structure of the algorithm proceeds as follows. We construct
ΞA and ΞB. For each simplex τ of ΞA (resp., τ ′ of ΞB), we compute its conflict
list Aτ (resp., Bτ ′), which is the set of all segments of A that cross τ (resp.,
segments of B that cross τ ′). We then form the overlay Ξ, and for each of its
cells σ = (τ, τ ′), we compute the set Aσ of the segments of Aτ that cross σ, and
the set Bσ of the segments of Bτ ′ that cross σ. We partition Aσ into the subsets
of long and short segments (within σ), respectively, and apply an analogous
partition to Bσ. We also trace each segment c ∈ C through the cells of Ξ that it
crosses, and form, for each cell σ of the overlay, the list Cσ of segments of C that
cross σ, partitioned into the subsets of long and short segments. Using standard
properties of (1/r)-cuttings, the overall complexity of these sets (of both long
and short segments), over all cells σ, is O(r2 · n/r) = O(nr) = O(n2/g), and the
additional overall cost of constructing them is O(n2 log n/g).

In this extended abstract we only present the main steps of the analysis for
triples in A×B×C all of whose segments are long in a cell σ, the remaining cases
(that is, when at least one of these segments is short in σ) are fairly standard and
can be handled by the theory of range search [1]; these steps are presented [6].

On 3SUM-hard Problems in the Decision Tree Model 185

Point Location in Planar Arrangements. Passing to the dual plane, the segments
of A (resp., B, C), or rather the lines containing them, are mapped to points.
We denote the set of points dual to the segments of A (resp., B, C) as A∗

(resp., B∗, C∗). Our goal is to determine whether there exists a collinear triple
(a∗, b∗, c∗) ∈ A∗ × B∗ × C∗, so that the corresponding primal segments a, b, c
intersect each other (necessarily at the same common point).

We follow the scheme of Sect. 2, let F (ξ, η, ζ) be the quadratic 6-variate
polynomial whose vanishing expresses collinearity of the three points ξ, η, ζ ∈ R

2.
Ignoring C for the time being, we preprocess A and B into a data structure that
we will then search with the points dual to the (lines containing the) segments
of C. For each a ∈ A, b ∈ B, we define the line

γa,b = {ζ ∈ R
2 | F (a∗, b∗, ζ) = 0},

which is the line passing through a∗ and b∗. Let Γ0 denote the set of these
O(n2) lines. Our goal is to determine whether any point c∗ ∈ C∗ lies on any of
the lines γa,b, and then also make sure that the corresponding primal segments
a, b, c intersect each other (it is possible that a, b, c are long in a cell σ but
intersect outside σ; this scenario is handled using range search, as shown in [6]).
This requires to preprocess the arrangement A(Γ0) into a point-location data
structure, and then search that structure with each c∗ ∈ C∗.

Fredman’s Trick and Batched Point Location. As above, a näıve implementation
of this approach would be way too expensive. Instead, we return to the partitions
ΞA, ΞB and Ξ, and iterate over all cells σ = (τ, τ ′) of Ξ, defining

Γσ = {γa,b | (a, b) ∈ Aσ × Bσ}.

In principle, we want to construct the separate arrangements A(Γσ), over the
cells σ, preprocess each of them into a point-location structure, and search with
each c∗ ∈ C∗ in the structures that correspond to the cells of Ξ that c crosses.
This is also too expensive if implemented näıvely. We circumvent it, using Fred-
man’s trick, as follows.

Consider the step of constructing A(Γσ) for some fixed cell σ. We observe
that it suffices to construct and sort the vertices of A(Γσ) in the x-direction,
and also to sort the lines of Γσ at x = −∞ (see [5,6] for details). The rest of the
construction, including the preprocessing of the arrangement into an efficient
point-location data structure, costs nothing in the algebraic decision-tree model,
as it is based on a sweeping procedure on the lines of Γσ, and all the input-
dependent data that the sweep requires has already been computed by the steps
just mentioned, so the sweep does not have to access A or B explicitly; Searching
the structure with any c∗ ∈ C∗

σ (that is, applying a point location query) takes
O(log g) time, since Γσ consists of only g2 lines.

Consider then the step of sorting the vertices of A(Γσ). In this step we
need to compare the x-coordinates of pairs of these vertices. In general, such a
comparison involves four pairs (ai, bi) ∈ Aσ × Bσ, i = 1, . . . , 4, where γa1,b1 and
γa2,b2 intersect at one of the vertices and γa3,b3 and γa4,b4 intersect at the other

186 E. Ezra

vertex. Roughly speaking, such a comparison can be expressed as testing the
sign of some constant-degree 16-variate polynomial G(a1, a2, a3, a4; b1, b2, b3, b4).

We now apply Fredman’s trick. We fix a cell τ of ΞA. For each quadruple
(a1, a2, a3, a4) ∈ A4

τ , we define the surface

ψa1,a2,a3,a4 = {(b1, b2, b3, b4) ∈ R
8 | G(a1, a2, a3, a4; b1, b2, b3, b4) = 0},

and denote by Ψ the collection of these surfaces, over all cells τ . We have |Ψ | =
O((n/g) · g4) = O(ng3). Similarly, we let P denote the set of all quadruples
(b1, b2, b3, b4), for b1, b2, b3, b4 ∈ B4

τ ′ , over all cells τ ′ of ΞB . We have |P | =
O(ng3).

We apply a batched point location procedure to the points of P and
the surfaces of Ψ . The output of this procedure tells us the sign of
G(a1, a2, a3, a4; b1, b2, b3, b4), for every pair of quadruples (a1, a2, a3, a4) ∈ A4

τ ,
(b1, b2, b3, b4) ∈ B4

τ ′ , over all pairs of cells (τ, τ ′) ∈ ΞA × ΞB , and these signs
allow us to sort the vertices of the arrangements A(Γσ), for all cells σ of Ξ, at
no extra cost in our model. In a main technical step in [6], based on the recent
multilevel polynomial partitioning technique of Agarwal et al. [2, Corollary 4.8],
we show:

Lemma 2. One can complete the above sorting step, in the algebraic decision
tree model, in O

(
(ng3)16/9+ε

)
randomized expected time, for any prescribed ε >

0, where the constant of proportionality depends on ε.

Searching with the Elements of C and Wrapping Up. We now need to search the
structures computed at the preceding phase with the dual points of C∗. Each
such point c∗ comes from a segment c ∈ C, which crosses only O(r) = O(n/g)
cells of Ξ (once again, this follows from standard properties of (1/r)-cuttings).
For each of these cells σ, we need to locate c∗ in the arrangement A(Γσ). There
are O(nr) = O(n2/g) such segment-cell crossings, and each resulting search
takes O(log g) time, using a suitable point-location data structure for each such

arrangement, for a total of O

(
n2 log g

g

)
time. The cost of the overall algorithm

is thus

O

(
(ng3)16/9+ε +

n2 log g

g

)
.

We (nearly) balance this bound by taking g = n2/57, and conclude that the cost
of this procedure, in the algebraic decision-tree model, is O(n112/57+ε), for any
ε > 0. In summary, we have shown:

Theorem 2. Given three sets A, B, C, each consisting of n line segments in
the plane, where the segments of A, B are pairwise disjoint, one can determine
whether there exists a concurrent triple of segments (a, b, c) ∈ A × B × C, in
the algebraic decision-tree model, with O(n112/57+ε) polynomial sign tests (in
expectation), for any ε > 0.

On 3SUM-hard Problems in the Decision Tree Model 187

Discussion and Open Problems. In spite of the progress in the study of collinear-
ity testing in the algebraic decision tree model [5–7], as well as in the RAM
model [7,9], the unrestricted setting of collinearity testing (that is, where A,B,C
are collections of arbitrary points in the plane) has still remained elusive in both
models of computation. Moreover, we are not aware of subquadratic solutions
in either model even for the case where one set of points is one-dimensional and
the other two are unrestricted.

Given the subquadratic solutions for 3sum [16,18] in both models of compu-
tation, one may hope that this should also be the case for collinearity testing, as
well as other geometric 3SUM-hard problems (see problems (i)–(iii) in Sect. 1).
Unfortunately, we are still facing a gap between 3sum and its geometric coun-
terparts. Perhaps, this is because the sign test required for 3sum is a linear
function of the input, whereas other geometric 3sum-hard problems do not have
this property. In particular, for collinearity testing, the basic operation one needs
to apply is orientation testing, which corresponds to a quadratic inequality in
the input point coordinates, and thus does not benefit from the linear structural
properties of 3sum.

References

1. Agarwal, P.K.: Simplex range searching and its variants: a review. In: Loebl, M.,
Nešetřil, J., Thomas, R. (eds.) A Journey Through Discrete Mathematics, pp. 1–30.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-44479-6 1

2. Agarwal, P.K., Aronov, B., Ezra, E., Zahl, J.: An efficient algorithm for generalized
polynomial partitioning and its applications. In: Proceedings of 35th Symposium
on Computational Geometry, pp. 5:1–5:14 (2020). arXiv:1812.10269

3. Agarwal, P.K., Matoušek, J., Sharir, M.: On range searching with semialgebraic
sets II. SIAM J. Comput. 42, 2039–2062 (2013)

4. Ailon, N., Chazelle, B.: Lower bounds for linear degeneracy testing. J. ACM 52(2),
157–171 (2005)

5. Aronov, B., Ezra, E., Sharir, M.: Testing polynomials for vanishing on Cartesian
products of planar point sets, In: Proceedings of 36th Symposium on Computa-
tional Geometry, pp. 8:1–8:14 (2020). arXiv:2003.09533

6. Aronov, B., Ezra, E., Sharir, M.: Subquadratic algorithms for some 3SUM-Hard
geometric problems in the algebraic decision-tree model, Manuscript (2021)

7. Barba, L., Cardinal, J., Iacono, J., Langerman, S., Ooms, A., Solomon, N.: Sub-
quadratic algorithms for algebraic 3SUM, Discrete Comput. Geom. 61, 698–734
(2019). Also in Proceedings 33rd International Symposium on Computational
Geometry, pp. 13:1–13:15 (2017)

8. Cardinal, J., Iacono, J., Ooms, A.: Solving k-SUM using few linear queries, In:
Proceedings of 24th European Symposium on Algorithms, pp. 25:1–25:17 (2016)

9. Chan, T.M.: More logarithmic-factor speedups for 3SUM, (median,+)-convolution,
and some geometric 3SUM-hard problems, ACM Trans. Algorithms 16, 7:1–7:23
(2020)

10. de Berg, M., Schwarzkopf, O.: Cuttings and applications. Int. J. Comput. Geometry
Appl. 5, 343–355 (1995)

11. Erickson, J.: Lower bounds for linear satisfiability problems. Chicago. J. Theoret.
Comput. Sci. 8, 388–395 (1997)

https://doi.org/10.1007/978-3-319-44479-6_1
http://arxiv.org/abs/1812.10269
http://arxiv.org/abs/2003.09533

188 E. Ezra

12. Erickson, J., Seidel, R.: Better lower bounds on detecting affine and spherical
degeneracies. Discrete Comput. Geom. 13(1), 41–57 (1995). https://doi.org/10.
1007/BF02574027

13. Ezra, E., Har-Peled, S., Kaplan, H., Sharir, M.: Decomposing arrangements of
hyperplanes: VC-dimension, combinatorial dimension, and point location. Discrete
Comput. Geom 64(1), 109–173 (2020)

14. Ezra, E., Sharir, M.: A nearly quadratic bound for point-location in hyperplane
arrangements, in the linear decision tree model. Discrete Comput. Geom. 61(4),
735–755 (2018). https://doi.org/10.1007/s00454-018-0043-8

15. Gajentaan, A., Overmars, M.H.: On a class of O(n2) problems in computational
geometry. Comput. Geom. Theory Appl. 5, 165–185 (1995)

16. Grønlund, A., Pettie, S.: Threesomes, degenerates, and love triangles, J. ACM 65
22:1–22:25 (2018). Also in Proceedings of 55th Annul Symposium on Foundations
of of Computer Science, pp. 621–630 (2014)

17. Guth, L., Katz, N.H.: On the Erdős distinct distances problem in the plane, Annals
Math. 181, 155–190 (2015). arXiv:1011.4105

18. Hopkins, M., Kane, D.M., Lovett, S., Mahajan, G.: Point location and active learn-
ing: learning halfspaces almost optimally. In: Proceedings of 61st IEEE Annual
Symposium on Foundations of Computer Science, (FOCS) (2020)

19. Kane, D.M., Lovett, S., Moran, S.: Near-optimal linear decision trees for k-SUM
and related problems, J. ACM 66, 16:1–16:18 (2019). Also in Proceedings of
50th Annul ACM Symposium on Theory Computational, pp. 554–563 (2018).
arXiv:1705.01720

20. Meiser, S.: Point location in arrangements of hyperplanes. Inf. Comput. 106(2),
286–303 (1993)

21. Meyer auf der Heide, F.: A polynomial linear search algorithm for the n-
dimensional knapsack problem. J. ACM 31, 668–676 (1984)

22. Solymosi, J., de Zeeuw, F.: Incidence bounds for complex algebraic curves on carte-
sian products. In: Ambrus, G., Bárány, I., Böröczky, K.J., Fejes Tóth, G., Pach,
J. (eds.) New Trends in Intuitive Geometry. BSMS, vol. 27, pp. 385–405. Springer,
Heidelberg (2018). https://doi.org/10.1007/978-3-662-57413-3 16

https://doi.org/10.1007/BF02574027
https://doi.org/10.1007/BF02574027
https://doi.org/10.1007/s00454-018-0043-8
http://arxiv.org/abs/1011.4105
http://arxiv.org/abs/1705.01720
https://doi.org/10.1007/978-3-662-57413-3_16

Limitwise Monotonic Spectra and Their
Generalizations

Marat Faizrahmanov(B)

Kazan (Volga Region) Federal University, Volga Region Scientific-Educational Centre

of Mathematics, 18 Kremlyovskaya Street, Kazan 420008, Russian Federation

Abstract. The current work studies the limitwise monotonic spectra
introduced by Downey, Kach and Turetsky [6]. In the first part of the
paper, we study the limitwise monotonic spectra of subsets and sequences
of subsets of N. In particular, we study their measure-theoretical and
topological properties. Then we generalize them to the spectra of subsets
and sequences of subsets of R and provide some new degree spectra of
structures.

Keywords: Limitwise monotonic function · Limitwise monotonic set ·
Limitwise monotonic spectrum · Degree spectrum

1 Introduction

This paper is motivated by research on spectra of structures from various classes
given by algebraic or model-theoretic properties. Examples of such classes of
structures include abelian groups, equivalence structures and graphs coding
countable families. Let us recall how to construct a graph from a given count-
able family of subsets of N. To code a particular set A ⊆ N, we let H(A) be the
“daisy graph” starting with a central vertex v and adding a loop from v to itself
of length n + 3 for each n ∈ A. The “bouquet graph” H(F) of a family of sets
F consists of infinitely many disjoint copies of the daisy graph H(A) for each
A ∈ F (see [1,17]). Then it is easy to see that a Turing degree a can enumerate
a family F if and only if it computes a copy of H(F).

Given a countable structure A, we define the degree spectrum of A to be

Spec(A) = {X ⊆ N : ∃B ∼= A [B �T X]},

where we identify B with its atomic diagram. Since Spec(A) is degree-invariant,
we often replace Spec(A) by the collection of Turing degrees of elements of
Spec(A). The notion of degree spectrum was introduced by Richter [24]. It is
motivated, in particular, by the fact that intuitively, the isomorphism type of a

The work is supported by the Russian Science Foundation (grant no. 18-11-00028)
and performed under the development program of Volga Region Mathematical Center
(agreement no. 075-02-2020-1478).

c© Springer Nature Switzerland AG 2021
L. De Mol et al. (Eds.): CiE 2021, LNCS 12813, pp. 189–198, 2021.
https://doi.org/10.1007/978-3-030-80049-9_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80049-9_17&domain=pdf
http://orcid.org/0000-0002-4519-9696
https://doi.org/10.1007/978-3-030-80049-9_17

190 M. Faizrahmanov

structure A captures the computability-theoretic properties of Spec(A). In this
way, classes of degrees which cannot be captured by any single countable set (as
they may not have least elements), are nonetheless captured by a single countable
structure. For example, Slaman [25] and Wehner [29] showed that the collection
of nonzero Turing degrees is a degree spectrum, and so there is a structure which
captures the property of being non-computable.

There are many examples of classes of Turing degrees that are spectra of
graphs of the form H(F), where F is a countable family. For instance, the pre-
vious collection of nonzero [25,29] degrees, the collections of hyperimmune [3],
non-superlow [12], non-jump traceable [4] degrees form spectra of such graphs.
Much less is known about the spectra of natural algebras and models, such as
abelian groups, boolean algebras, linear orders, etc. For example, by the well-
known result of Downey and Jockush [5] each boolean algebra B such that
Spec(B) contains some low degree (see Knight and Stob [19] for the case of
low4 degree) has a computable copy. For the case of linear orders, it is known,
for example, that for each integer n � 2 there is an order Ln with Spec(Ln)
consisting of all non-lown degrees (see [8]). Now consider the case of spectra of
abelian groups. So, Melnikov found some specific examples of degree spectra of
torsion-free abelian groups. Namely, in [20] he proved that for every computable
ordinal β of the form δ + 2n + 1 > 1, where δ is zero or is a limit ordinal
and n ∈ N, there exists a torsion-free abelian group with the degree spectrum
consisting of all non-lowβ degrees. Kalimullin, Khoussainov and Melnikov [15]
showed that there is an abelian p-group (and equivalence structure) A such that
Spec(A) contains a Δ0

2-degree a if and only if a > 0. They also constructed a
torsion abelian group G such that (a) G has no computable copy and (b) G has
an a-computable copy for every hyperimmune degree a. The proofs of the last
two results essentially use the concept of limitwise monotonic sets and functions.
The goal of this paper is to further study their spectral capabilities. So, using a
generalization of the notion of limitwise monotonicity, it was possible to obtain
a series of new examples of degree spectra (see Theorem 8).

It should be noted that algebraic structures constructed using limitwise
monotonic tools as in Corollary 1 and Theorem 3 are not universal in the sense
of the paper of Hirschfeldt, Khoussainov, Shore, and Slinko [10] as, for example,
graphs, rings (with zero-divisors), 2-step nilpotent groups, etc. Therefore, their
degree spectra should be studied using specific techniques.

2 Limitwise Monotonic Sets and Sequences of Integers

We begin by introducing some requisite terminology. The following definition
was introduced by Khisamiev.

Definition 1. A function F : N → N is limitwise (X-limitwise) monotonic if
there is a total computable (X-computable) function f : N × N → N satisfying
f(x, s) � f(x, s + 1) such that F (x) = lims f(x, s) exists for all x.

Limitwise Monotonic Spectra and Their Generalizations 191

A set S is limitwise (X-limitwise) monotonic if there is a limitwise (X-limitwise)
monotonic function F whose range is S. The study of limitwise monotonic sets
is motivated mainly by our desire to investigate the degree spectra of specific
structures, such as torsion abelian groups, equivalence structures, and graphs
coding countable families. It is not hard to see that a set S is limitwise monotonic
if and only if the family

I(S) = {{y � x} : x ∈ S}

is c.e. For abelian groups and equivalence structures, we recall the following two
well-known theorems.

Theorem 1 (Khisamiev [16]). For an infinite set S (0 �∈ S) and prime p the
group Ap(S) =

⊕
n∈S Zpn has a computable copy iff S is limitwise monotonic.

Theorem 2 (Calvert, Cenzer, Harizanov, Morozov [2]). For an infinite
set S = {c0, c1, . . . } ⊆ N the equivalence structure E(S) in which all equivalence
classes are finite and have distinct cardinalities c0, c1, . . . has a computable copy
iff S is limitwise monotonic.

Definition 2 (Downey, Kach, Turetsky [6]). If S is any nonempty set,
define the limitwise monotonic spectrum of S to be the set

LmSp(S) = {X : S is X-limitwise monotonic}.

By relativization of the Theorems 1 and 2 we have the following corollary.

Corollary 1. Let S (0 �∈ S) be an infinite set. Then we have the following
statements.

1. Spec(Ap(S)) = LmSp(S).
2. Spec(E(S)) = LmSp(S).
3. Spec(H(I(S))) = LmSp(S).

Definition 3 (Kalimullin, Khoussainov, Melnikov [15]). A sequence of
sets S = {Sn}n∈N is limitwise (X-limitwise) monotonic if there is a total com-
putable (X-computable) function f : N3 → N such that

– f(n, x, s) � f(n, x, s + 1) for all n, x, s;
– lims f(n, x, s) exists for all n, x;
– Sn is range of the function x �→ lims f(n, x, s) for every n.

As in the case of sets, we define the limitwise monotonic spectrum of a sequence
S = {Sn}n∈N by letting LmSp(S) = {X : S is X-limitwise monotonic}.

Let p0, p1, . . . be the sequence of prime numbers listed in increasing order.

Theorem 3 (Kalimullin, Khoussainov, Melnikov [15]). A sequence S =
{Sn}n∈N (0 �∈ ⋃

n Sn) is limitwise monotonic iff the abelian group G(S) =⊕
n Apn

(Sn) has a computable copy.

192 M. Faizrahmanov

It was shown in [15] that the Slaman-Wehner Theorem [25,29] is not true for
the limitwise monotonic spectra of sequences of sets. Moreover, the complement
of LmSp(S) of any non-limitwise monotonic sequence S has continuum cardi-
nality. In contrast, Wallbaum [28] had shown that there is a Δ0

2-set which is
not limitwise monotonic but is limitwise monotonic relative to each member of
a co-null class (class of measure one) in the Cantor space. Now we provide a
natural co-null class that can be contained in non-trivial limitwise monotonic
spectra. Recall that a set A is said to be 1-random (see [23]) if there is no uni-
formly c.e. sequence {Gm}m∈N of open sets in the Cantor space 2N such that
∀m [λGm � 2−m] and A ∈ ⋂

m Gm, where λ is the uniform probability measure
on the Cantor space. A set a is called 2-random if A is 1-random relative to ∅′.

Theorem 4 (Kalimullin, Faizrahmanov [13]). There is a Δ0
2-set which is

not limitwise monotonic but is limitwise monotonic relative to each 2-random
set.

Since there exist Π0
1 -classes that contain only 1-random members, we can not

replace 2-random sets by 1-random ones in Theorem 4 due to the following
theorem.

Theorem 5 (Kalimullin, Faizrahmanov [13]). Let P be a nonempty Π0
1 -

class. Then there is no set S such that S is not limitwise monotonic and P ⊆
LmSp(S).

Among classes which are not cocountable, in addition to the notion of measure,
we can appeal to the notion of category to obtain notion of largeness, namely
being co-meagre. The largeness notions given by category and measure are not
compatible: there is a meagre co-null class, and also a null co-meagre class.
Greenberg, Montalbán and Slaman have shown [9] that this incompatibility is
reflected in degree spectra; namely that there is a null and co-meagre degree
spectrum, and a meagre and co-null spectrum. Let us show that one of these
incompatibilities can also be obtained for the limitwise monotonic spectra.

Theorem 6 (Kalimullin, Faizrahmanov [13]). (a) If S ∈ Σ0
2 then LmSp(S)

is co-meagre. (b) There is a set S ∈ Δ0
2 such that LmSp(S) is null.

Sketch of Proof. (a) Let S ∈ Σ0
2 . As it was shown in [13], there is an increas-

ing function f �T ∅′ such that each X which computes some function g not
dominated by f is an element of LmSp(S). For any integer i let Li be the class
consisting of all infinite sets X = {x0 < x1 < . . . } such that xk � f(k) for each
k � i. It is not hard to show that the class L =

⋃
i Li ∪ {F ⊆ N : F is finite} is

meagre and S is X-limitwise monotonic for each X �∈ L. Therefore, LmSp(S) is
co-meagre.

(b) Let {Ξn}n∈N be a Gödel enumeration of all Turing functionals Ξ : 2N×N
2 →

N such that

– Ξ(X � s;x, s) ↓;
– Ξ(X;x, s) � min{s,Ξ(X;x, s + 1)},

Limitwise Monotonic Spectra and Their Generalizations 193

for all X,x, s. Let

Ξ∗
n(X,x) =

{
lims Ξn(X;x, s), if lims Ξn(X;x, s) < ∞,

undefined, otherwise.

Then any infinite set S ∈ Σ0
2(X) is X-limitwise monotonic iff there is an n such

that

– the function Ξ∗
n(X) is total and its range is a subset of S;

– Ξ∗
n(X;x) > x for each x.

Now we define the following predicates on N
3 × Q

+:

P (n, x, y, δ) ⇔ λ{X : ∃s [Ξn(X;x, s) � y]} > δ,

Q(n, x, y, δ) ⇔ λ{X : Ξ∗
n(X;x) = y} > δ.

It has been shown in [13] that P ∈ Σ0
1 and Q ∈ Σ0

2 . Using this bounds we can
construct a set S ∈ Δ0

2 satisfying the requirements

Re : λ{X : Ξ∗
e (X) is total &∀x [Ξ∗

e (X;x) > x] & rng Ξ∗
e (X) ⊆ S} � 1

2

for each e. By the Lebesgue Density Theorem we will have that λLmSp(S) =
0. The strategy for meeting the requirements Re is similar to the standard
strategy for meeting the requirements of non-limitwise monotonicity (for details,
see Khoussainov, Nies, Shore [18]).

It should be noted that if LmSp(S) is co-null then it is also co-meagre. Indeed,
in this case the class {X : S ∈ Σ0

2(X)} is co-null. Then, by Stillwell’s result [27]
we have S ∈ Σ0

2 . Therefore, LmSp(S) is co-meagre.

3 Limitwise Monotonic Sets and Sequences of Reals

The notions of limitwise monotonic sets and sequences can be extended to subsets
and sequences of subsets of reals.

Definition 4. A countable set S ⊆ R is limitwise (X-limitwise) monotonic [7]
if there exists a computable (X-computable) function f : N2 → Q satisfying the
following conditions:

– f(x, s) � f(x, s + 1) for all x, s;
– lims f(x, s) exists for all x;
– S is range of the function x �→ lims f(x, s).

Definition 5. A sequence S = {Sn}n∈N of countable subsets of reals is said to be
limitwise (X-limitwise) monotonic if there exists a computable (X-computable)
function f : N3 → Q such that:

194 M. Faizrahmanov

– f(n, x, s) � f(n, x, s + 1) for all n, x, s;
– lims f(n, x, s) exists for all n, x;
– Sn is range of the function x �→ lims f(n, x, s) for every n.

If S = {Sn}n∈N is any sequence of nonempty countable subsets of reals, define
the limitwise monotonic spectrum of S to be the set

LmSp(S) = {X : S is X-limitwise monotonic}.

It is not hard to see that

LmSp(S) = Spec(H(I(S))),

where I(S) = {{n} ⊕ {q ∈ Q : q < α} : n ∈ N, α ∈ Sn}.
Using the concept of limitwise monotonicity on reals, we can establish the

existence of Slaman-Wehner family that has no uniform enumeration in every
non-computable set.

Theorem 7 (Faizrahmanov, Kalimullin [7]). There is a set S ⊆ Q such
that S is X-limitwise monotonic iff X is non-computable. Moreover, there is no
uniform limitwise monotonic approximation of S for all non-computable X, i.e.,
there is no Turing functional Φ such that for every non-computable X we have

1. ΦX(x, s) � ΦX(x, s + 1);
2. lims ΦX(x, s) < ∞;
3. S is range of the function x �→ lims ΦX(x, s).

Let us provide some other degree spectra using the concept of limitwise mono-
tonicity. For this purpose, we recall the definitions of c.e. traces and jump trace-
able sets.

Definition 6. A uniformly c.e. sequence of nonempty sets R = {Tn}n∈N is a
c.e. trace (see Ishmukhametov [11]) if there exists a computable function h such
that |Tn| � h(n) for each n. We say that R is a trace for the partial function ψ
if ψ(n) ↓⇒ ψ(n) ∈ Tn for each n. A set A is jump traceable (see Nies [23]) if
there is a c.e. trace for the partial function JA(e) = ΦA

e (e).

We also need the following propositions.

Proposition 1. Let {Sn}n∈N be a uniformly Σ0
2 -sequence of subsets of Q. If

there exists a limitwise monotonic sequence {Ln}n∈N of subsets of Q such that
Ln ⊆ Sn and supLn = supSn for every n, then the sequence {Sn}n∈N is limit-
wise monotonic.

Proof. The proof follows from the uniformity of the similar Proposition 1.4 [7]
for the subsets of Q.

Let {Un}n∈N and {Θn}n∈N be Gödel enumerations of all c.e. operators from
2N to 2Q and all Turing functionals from 2N × N to Q, respectively. The use-
function of the functional Θn is denoted by θn.

Limitwise Monotonic Spectra and Their Generalizations 195

Proposition 2. Let C ⊆ 2N be a class of sets such that for all Y0, Y1 ∈ C there
is a Z ∈ C such that Y0, Y1 �T Z, and let X ��T Y for every Y ∈ C. Then
there exists a computable function g such that for all rationals a < b we have
a < supUX

g(a,b) < b and the real supUX
g(a,b) is not left Y -c.e. for every Y ∈ C.

Proof. Let α0 =
∑

x∈X 2−x and α1 =
∑

x�∈X 2−x. It is not hard to see that each
of α0 and α1 it Turing equivalent to X. If there exist Y0, Y1 ∈ C such that αi is
left Yi-c.e., i = 0, 1, then X �T Z for some Z ∈ C with Y0, Y1 �T Z. This is a
contradiction. So one of α ∈ {α0, α1} is not left Y -c.e. for every Y ∈ C. It remains
to fix a computable function g such that UX

g(a,b) = {q ∈ Q : q < a + (b−a)·α
2 } for

all rationals a and b.

Theorem 8. Let {Am}m∈N be a uniformly c.e. sequence of jump traceable sets
such that for all m0,m1 there is an n with Am0 , Am1 �T An. Then there exists
a sequence of subsets of rationals J = {Ji}i∈N such that

LmSp(J) = {X : ∀m [X ��T Am]}.

Proof. Let us fix a uniformly c.e. double sequence {Tn
x }n,x∈N satisfying the fol-

lowing conditions:

– for every n the sequence Rn = {Tn
x }x∈N is a c.e. trace;

– for every c.e. trace R there is an n with Rn = R.

For example, the double sequence {Tn
x }n,x∈N can be defined as following:

Tn
x,0 = ∅, n, x ∈ N,

T
c(e,b)
x,s+1 =

{
Wϕe,s(x),s, if ∀y � x [ϕe,s(y) ↓ &ϕb,s(y) ↓ & |Wϕe(y),s| � ϕb(y)],
T

c(e,b)
x,s , otherwise,

where e, b, x, s ∈ N and c is the Cantor pairing function. Then let Tn
x =

⋃
s Tn

x,s,
n, x ∈ N.

Now we define an auxiliary Turing functional Γ . For all integers m, s, k, z let
ΓAm,0 be nowhere defined and

ΓAm,s+1(c(k, z)) =

{
s, if θ

Am,s+1
k (z) �= θ

Am,s

k (z),
ΓAm,s(c(k, z)), otherwise.

Using the functional Γ , we define the following modifications of the functionals
{Θk}k∈N:

Θ̂
Am,s

k,n (z) =

{
Θ

Am,s

k (z), if ΓAm,s(c(k, z)) ↓∈ Tn
c(e,z),s,

undefined, otherwise,

for all m, s, k, n, z ∈ N. Note that if Θ̂Am

k,n (z) ↑ then there exists an s such that

Θ̂
Am,t

k,n (z) ↑ for every t � s. Moreover, if Rn is a trace for ΓAm,s then

Θ̂Am

k,n = ΘAm

k .

196 M. Faizrahmanov

Now we define the required sequence J by letting

Jc(m,n) = Q \ {k + sup
z

Θ̂Am

k,n (z) : k ∈ N}

for all m,n, where

sup
z

Θ̂Am

k,n (z) def= sup{Θ̂Am

k,n (z) : z ∈ N and ∀y � z [Θ̂Am

k,n (z) ↓]}.

Let us show that J is X-limitwise monotonic iff X ��T Am for every m. Fix an
arbitrary set X with ∀m [X ��T Am]. By Proposition 1, it is suffice to define an
X-computable function f : N4 → Q such that

max
s

f(m,n, k, s) ∈ Jc(m,n) and max
s

f(m,n, k, s) � k

for all m,n, k. Let g be the computable function from Proposition 2 with
C = {Am : m ∈ N}. Choose arbitrary integers m, k and n. Since supUX

g(k,k+1) is
not left Am-c.e., there exists an s0 such that for all s � s0 and l � k one of the
following inequalities hold:

max UX
g(k,k+1),s < l + lim

t
sup

z
Θ̂

Am,t

l,n (z) − 1
s
,

l + lim
t

sup
z

Θ̂
Am,t

l,n (z) < max UX
g(k,k+1),s − 1

s
.

So we can define f(m,n, k, 0) = k and

f(m,n, k, s+1) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max UX
g(k,k+1),s, if there exists an l � k such that,

(f(m,n, k, s) � l + supz Θ̂
Am,s

l,n (z) − 1
s)&,

(l + supz Θ̂
Am,s

l,n (z) � f(m,n, k, s) − 1
s),

f(m,n, k, s), otherwise,

for all m,n, k, s.
Conversely, assume that J is Am-limitwise monotonic for some m. Choose

an n such that Rn is a trace for ΓAm . Since the set Jc(m,n) is also Am-limitwise
monotonic, there exists an Am-computable function h : N × N → Q such that
h(k, 0) > k and supz h(k, z) ∈ Jc(m,n) for every k. Fix a computable function r
such that

ΘAm

r(k)(z) = h(k, z) − k.

Let p be a fixed point of the function r. Then

sup
z

h(p, z) = p + sup
z

ΘAm

r(p)(z) = p + sup
z

ΘAm
p (z) = p + sup

z
Θ̂Am

p,n (z) ∈ Jc(m,n).

This contradiction completes the proof of the theorem.

Recall that a set A is K-trivial if there is a constant b such that K(A � n) �
K(n) + b for each n, where K is the prefix-free Kolmogorov complexity.

Limitwise Monotonic Spectra and Their Generalizations 197

Corollary 2. There exists a sequence of countable sets of rationals K = {Ki}i∈N

with LmSp(K) = {X : X is not K-trivial}.
Proof. Since the index set of all K-trivial c.e. sets is Σ0

3 (see [23]) and each
finite set is K-trivial, by [30] (see also Theorem 3.2 [26]) there is a uniformly c.e.
sequence {Am}m∈N of all K-trivial c.e. sets. By [22], each K-trivial set is super-
low and hence [21], each K-trivial c.e. set is jump traceable. Note that the K-
trivial Turing degrees form the ideal generated by the K-trivial c.e. degrees [23].
Thus, it remains to apply Theorem 8 to the sequence {Am}m∈N.

Note that a structure whose spectrum consists of all non-K-trivial degrees
has also been constructed in [14].

Acknowledgments. I am very grateful to the referees for the careful reading of the
paper and for their comments and detailed suggestions, which helped me to improve
the manuscript considerably.

References

1. Ash, C.J., Knight, J.F.: Computable structures and the hyperarithmetical hierar-
chy, volume 144 of Studies in Logic and the Foundations of Mathematics. North-
Holland Publishing Co., Amsterdam (2000)

2. Calvert, W., Cenzer, D., Harizanov, V., Morozov, A.: Effective categoricity of
equivalence structures. Ann. Pure Appl. Logic 141, 61–78 (2006)

3. Csima, B., Kalimullin, I.: Degree spectra and immunity properties. Math. Logic
Q. 56(1), 67–77 (2010)

4. Diamondstone, D., Greenberg, N., Turetsky, D.: Natural large degree spectra. Com-
putability 2(1), 1–8 (2013)

5. Downey, R., Jockusch, C.G.: Every low boolean algebra is isomorphic to a recursive
one. Proc. Am. Math. Soc. 122(3), 871–880 (1994)

6. Downey, R., Kach, A., Turetsky, D.: Limitwise monotonic functions and their appli-
cations. In: Proceedings of the Eleventh Annual Asian Logic Conference, World
Scientific, Hackensack, pp. 59–85, NJ (2012)

7. Faizrahmanov, M., Kalimullin, I.: Limitwise monotonic sets of reals. Math. Logic
Q. 61(3), 224–229 (2015)

8. Frolov, A., Kalimullin, I., Harizanov, V., Kudinov, O., Miller, R.: Spectra of highn

and non-lown degrees. J. Logic Comput. 22(4), 755–777 (2012)
9. Greenberg, N., Montalbán, A., Slaman, T.: Relative to any non-hyperarithmetic

set. J. Math. Logic 13, 1250007 (2013)
10. Hirschfeldt, D.R., Khoussainov, B.M., Shore, R.A., Slinko, A.M.: Degree spectra

and computable dimensions in algebraic structures. Ann. Pure Appl. Logic 115(1–
3), 71–113 (2002)

11. Ishmukhametov, S.: Weak recursive degrees and a problem of Spector. Recursion
Theor. Complexity (Kazan, 1997) 2, 81–87 (1999)

12. Kalimullin, I.: Spectra of degrees of some structures. Algebra Logic 46, 399–408
(2007)

13. Kalimullin, I., Faizrakhmanov, M.: Limitwise monotonic spectra of Σ0
2 -sets.

Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki
(Russian) 154(2), 107–116 (2012)

198 M. Faizrahmanov

14. Kalimullin, I., Faizrakhmanov, M.: Degrees of enumerations of countable Wehner-
like families. In: Proceedings of the Seminar on Algebra and Mathematical Logic of
the Kazan (Volga Region) Federal University, Itogi Nauki i Tekhniki. Ser. Sovrem.
Mat. Pril. Temat. Obz. (Russian), vol. 157, pp. 59–69, VINITI, Moscow (2018)

15. Kalimullin, I., Khoussainov, B., Melnikov, A.: Limitwise monotonic sequences and
degree spectra of structures. Proc. Am. Math. Soc. 141(9), 3275–3289 (2013)

16. Khisamiev, N.: Constructive abelian groups. In: Handbook of Recursive Mathemat-
ics, Vol. 2, volume 139 of Studies in Logic and the Foundations of Mathematics,
pp. 1177–1231, North-Holland, Amsterdam (1998)

17. Khoussainov, B.: Strongly effective unars and nonautoequivalent constructiviza-
tions. In: Some problems in differential equations and discrete mathematics (Rus-
sian), pp. 33–44. Novosibirsk. Gos. Univ., Novosibirsk (1986)

18. Khoussainov, B., Nies, A., Shore, R.: Computable models of theories with few
models. Notre Dame J. Formal Logic 38(2), 165–178 (1997)

19. Knight, J.F., Stob, M.: Computable boolean algebras. J. Symbolic Logic 65(4),
1605–1623 (2000)

20. Melnikov, A.G.: New degree spectra of abelian groups. Notre Dame J. Formal Logic
58(4), 507–525 (2017)

21. Nies, A.: Reals which compute little. In: Chatzidakis, Z, Koepke, P., Pohlers, W.,
(eds.) Proceedings of Logic Colloquium 2002, Lecture Notes in Logic, vol. 27, pp.
261–275 (2002)

22. Nies, A.: Lowness properties and randomness. Adv. Math. 197(1), 274–305 (2005)
23. Nies, A.: Computability and randomness. Oxford Logic Guides, vol. 51. Oxford

University Press, Oxford (2009)
24. Richter, L.J.: Degrees of unsolvability of models, Ph.D. Thesis, University of Illinois

at Urbana-Champaign (1977)
25. Slaman, T.: Relative to any nonrecursive set. Proc. Am. Math. Soc. 126(7), 2117–

2122 (1998)
26. Soare, R.I.: Recursively Enumerable Sets and Degrees. A Study of Computable

Functions and Computably Generated Sets. Perspectives in Mathematical Logic.
Springer, Berlin (1987)

27. Stillwell, J.: Decidability of the almost all theory of degrees. J. Symbolic Logic
37(3), 501–506 (1972)

28. Wallbaum, J.: Computability of algebraic structures. Ph.D. Thesis, University of
Notre Dame (2010)

29. Wehner, S.: Enumerations, countable structures and Turing degrees. Proc. Am.
Math. Soc. 126(7), 2131–2139 (1998)

30. Yates, C.E.M.: On the degrees of index sets. II. Trans. Am. Math. Soc. 35, 249–266
(1969)

On False Heine/Borel Compactness
Principles in Proof Mining

Fernando Ferreira(B)

Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
fjferreira@fc.ul.pt

Abstract. The use of certain false Heine/Borel compactness principles
is justified in source theories of proof mining. The justification rests
on the metatheorems of the theory of proof mining. Ulrich Kohlenbach
recently produced a counterexample showing that the metatheorems do
not apply unrestrictedly to Heine-Borel compactness principles. In this
short note, we present a simpler counterexample than Kohlenbach’s,
showing that the metatheorems can fail because the source theory is
already inconsistent.

Keywords: Proof mining · Heine/Borel compactness · Bounded
collection · Uniform boundedness · Bounded functional interpretation

1

Ten years ago, the strong convergence theorem [1] of Felix Browder was analyzed
using proof mining methods by Ulrich Kohlenbach in [6]. Browder’s proof uses
a sequential weak compactness argument. Surprisingly, the last part of Kohlen-
bach’s analysis discloses that what is left of sequential weak compactness to
analyze is trivial. Recently, [4] proposed an explanation for this phenomenon.
It argued that the proof being analyzed can be seen as using a (countable)
Heine/Borel compactness argument, instead of the sequential weak compact-
ness argument. This modified argument is explicitly given in Section 2 of [4] and
applies a Heine/Borel compactness principle to open sets of the form{

y ∈ X : ‖U(y) − y‖ >
1

m + 1

}
or

{
y ∈ X : 〈w, x − y〉 <

1
k + 1

}
,

where X is a real Hilbert space with inner product 〈· , ·〉, U is a nonexpansive
mapping of X into itself, x and w are elements of X, and k and m are natural
numbers. If a countable collection of open sets of this form covers a bounded
closed convex subset of X, then it has a finite subcover. This is a consequence
of the countable Heine/Borel covering principle CHBC:

∀x ∈ C ∃n ∈ N (x ∈ Ωn) → ∃n ∈ N∀x ∈ C ∃m ≤ n (x ∈ Ωm),

We acknowledge the support of Fundação para a Ciência e Tecnologia by way of the
grant UIDB/04561/2020 given to the research center CMAFcIO.

c© Springer Nature Switzerland AG 2021
L. De Mol et al. (Eds.): CiE 2021, LNCS 12813, pp. 199–203, 2021.
https://doi.org/10.1007/978-3-030-80049-9_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80049-9_18&domain=pdf
http://orcid.org/0000-0002-8693-7210
https://doi.org/10.1007/978-3-030-80049-9_18

200 F. Ferreira

where C is a bounded closed set of the Hilbert space X and (Ωn)n∈N is a family
of open sets (for the norm topology). As it is well-known, in infinite dimensional
Hilbert spaces, CHBC fails (even for convex C).

The concrete use of CHBC in Browder’s modified proof is justified because
of certain metatheorems of proof mining: see, for instance, the Main Theorem
of [2] (the original, but different, metatheorems are due to Kohlenbach and are
discussed in the book referred below). The justification rests on the fact that the
Heine/Borel principles used are forms of bounded collection. Truth be told, the
natural statement of the Main Theorem would be in the form of a conservation
result, but the formulation given in [2] is good enough for applications. The
monotone functional interpretation of Kohlenbach can also justify the concrete
use of CHBC in Browder’s result, with so-called uniform boundedness principles
∃−UBX in place of the bounded collection principles (see Sections 7 and 8 of
Chapter 17 of the book [5] for a reference on these matters).

The crux of the matter lies in the fact that it is not enough that the open
sets Ωn used in CHBC be merely topologically open: they must also be logi-
cally open. They must be defined by Σ-formulas. These formulas are of the form
∃r B(r), with B a bounded formula (possibly with parameters) and ∃r a string
of existential quantifiers. A particular (and familiar) case is when the string
of existential quantifiers of the Σ-formulas consists of number quantifiers. The
bounded formulas here at play include the usual bounded formulas of first-order
arithmetic but go beyond these (since they allow so-called bounded quantifica-
tions in finite types). Of course, the open sets of the first paragraph above are
given by Σ-formulas and are, therefore, logically open.

It is important to delineate the scope of central theorems (in this case, of
proof mining). Very recently, Kohlenbach presented in [7] an example showing
that things can go wrong when the open sets are not logically open. In the next
section, we give an elementary example of this phenomenon and show that not
only the metatheorem is no longer true in this case, but that the theory itself,
with CHBC, is contradictory.

In Reverse Mathematics, membership in open sets is defined by Σ-formulas
with existential number quantifiers (see Definition II.5.6 of the book [9], but also
the recent [8] for a discussion and critique). The theory is indeed much smoother
with the open sets being, by fiat, logically open. It is true that, in the real world,
every open set of the real line (in general, every open set of a separable metric
space) is open in the sense of Reverse Mathematics provided that we accept
a suitable second-order parameter in the Σ-definition. Formally, this second-
order parameter is obtained using comprehension. The catch is that, from the
point of view of a weak subsystem of arithmetic with restricted comprehension,
topologically open sets need not be logically open.

2

We work with the theory of real inner product spaces (a.k.a. real pre-Hilbert
spaces). It is a classical finite type theory with an abstract type X for a real

On False Heine/Borel Compactness Principles in Proof Mining 201

pre-Hilbert space. The theory can be set up with a universal axiomatization of
the real pre-Hilbert space as in Section 3 of Chapter 17 of [5] – indirectly, via
an axiomatization of normed spaces with the parallelogram law – or directly as
hinted in Sect. 5.4 of [2]. We add to our language an infinite number of constants
en of type X (indexed by natural numbers n) axiomatized by the universal
sentences 〈ei, ej〉 = 0, for i
= j, and ‖ei‖ = 1. We show that adding the CHBC
principle to this theory is contradictory.

Fix x ∈ X such that ‖x‖ ≤ 1. Our theory shows that

∀n ∈ N

⎛
⎝ n∑

j=0

|〈x, ej〉|2 ≤ 1

⎞
⎠ .

It is now easy to see, by contradiction, that there is m0 ∈ N such that

n∑
j=m0+1

|〈x, ej〉|2 ≤ 1
16

,

for all n > m0. In particular, |〈x, en〉| ≤ 1
4 , for all n > m0.

Let S(w) be the formula ∀n ∈ N (|〈w, en〉| ≤ 1
4). We claim that the point

p := x − ∑m0
j=0〈x, ej〉ej is such that S(p). To see this, take a natural num-

ber n. Of course, 〈p, en〉 = 〈x, en〉 − ∑m0
j=0〈x, ej〉〈ej , en〉. If n ≤ m0, we get

〈p, en〉 = 〈x, en〉 − 〈x, en〉 = 0. If n > m0, we have 〈p, en〉 = 〈x, en〉 and, there-
fore, |〈p, en〉| ≤ 1

4 .
Let B := {x ∈ X : ‖x‖ ≤ 1}. We have showed the following

∀x ∈ B ∃w ∈ X ∃n ∈ N

⎛
⎝S(w) ∧ ‖(x − w) −

n∑
j=0

〈x, ej〉ej‖ = 0

⎞
⎠ .

A fortiori, we have ∀x ∈ B ∃n ∈ N (x ∈ Ωn), where

Ωn =

⎧⎨
⎩x ∈ X : ∃w ∈ X

⎛
⎝S(w) ∧ ‖(x − w) −

n∑
j=0

〈x, ej〉ej‖ <
1
2

⎞
⎠

⎫⎬
⎭ .

It is not difficult to argue that each Ωn is open for the norm topology. There-
fore, if we apply the CHBC principle, we conclude that there is n0 such that

∀x ∈ B ∃m ≤ n0 ∃w ∈ X

⎛
⎝S(w) ∧ ‖(x − w) −

m∑
j=0

〈x, ej〉ej‖ <
1
2

⎞
⎠ .

In particular, for x := en0+1,

∃m ≤ n0 ∃w ∈ X

⎛
⎝S(w) ∧ ‖(en0+1 − w) −

m∑
j=0

〈en0+1, ej〉ej‖ <
1
2

⎞
⎠ .

202 F. Ferreira

Therefore, for a certain w̃ ∈ X with S(w̃), one has ‖en0+1 − w̃‖ < 1
2 . Hence,

1 − 2〈w̃, en0+1〉 + ‖w̃‖2 <
1
4
,

and we get the following contradiction:

1 ≤ 1 + ‖w̃‖2 < 2〈w̃, en0+1〉 +
1
4

≤ 2
4

+
1
4

=
3
4
.

3

The problem with the definition of the Ωns in the above section is not the
existential quantifier ∃w ∈ X but rather the condition S(w). This problem would
disappear had we enough comprehension to form the set S := {w ∈ X : S(w)}
internally (i.e., the theory shows that there is an element of type X → 0 which
is the characteristic function of S). In this case, we could bring the sets Ωn into
syntactic Σ-form. Therefore, the example of this section shows that the kind of
comprehension needed to obtain S is contradictory (in the presence of bounded
collection). Note that the logical form of the formula S(w) is relatively simple: it
is a universal statement with respect to numbers. So, it is contradictory to have
comprehension for the elements w of the abstract space even for relatively simple
conditions. This kind of failure of comprehension is already implicit in a very
elementary counterexample of Kohlenbach given in remark 17.103 of [5]. There is
an analogous failure of comprehension for type 1 objects: this is kind of folklore,
but was explicitly discussed in Section 8 of [3]. It is nevertheless a consequence
of deep work of Clifford Spector in [10] that unrestricted comprehension for
numbers is admissible in proof mining studies.

That a condition can be put into syntactic Σ-form depends on how much
comprehension one has in the theory. The notion of logically open set is not
a semantic notion, it is rather proof-theoretic. However, some conditions are
unmistakably in Σ-form. For instance, conditions (on w) of the form ‖w − a‖ <
1

k+1 , where a is an element of the Hilbert space and k ∈ N. It could perhaps
cross the mind of the reader that, with open sets given by conditions of this
sort, then CHBC is true in every Hilbert space. This is obviously not the case.
We can recycle an example of Kohlenbach in Section 8.2 of Chapter 17 of [5]
to show this. Take X a separable infinite dimensional (real) Hilbert space. Let
(an)n∈N be an enumeration of a dense subset of X. Fix a natural number k. It
is clear that X (and, hence, the closed unit ball B) is covered by the open sets
Ωn := {w ∈ X : ‖w − an‖ < 1

k+1}. By CHBC applied to this covering, B has a
finite subcovering. We have therefore shown that the unit closed ball is totally
bounded (and, hence, compact). As it is well known, this is only true in finite
dimensional spaces.

4

The contradiction of Sect. 2 shows – in particular – the main result of [7], namely
that the metatheorems of proof mining do not apply to the CHBC principle

On False Heine/Borel Compactness Principles in Proof Mining 203

(as opposed to the bounded collection principles or to ∃−UBX). Our theory
above was necessarily of an infinite dimensional space, given that the CHBC
principle is true in finite dimensional Hilbert spaces. If we do not impose infinite
dimensionality, we cannot get a contradiction but, with CHBC in place, we still
get the failure of the proof mining metatheorems. Actually, the example of Sect. 2
can be slightly modified to show just this. As before, we work in our theory of real
pre-Hilbert real spaces with a language that has an infinite number of constants
en. Our new axiomatization has now just the universal sentences 〈ei, ej〉 = 0, for
i
= j. Of course, this theory T has finite dimensional models.

The argument of Sect. 2 shows that ∀n (‖en‖ = 1) leads to absurdity in
the presence of the principle CHBC. So, in the presence of this principle, the
theory T proves ∃n (‖en‖
= 1). This sentence has the right logical form for
the application of the proof mining metatheorems. Therefore, there would be
an absolute constant n0 such that, in every (real) Hilbert space satisfying T,
∃n ≤ n0 (‖en‖
= 1). This is false in many models of T (both of finite and infinite
dimension).

References

1. Browder, F.E.: Convergence of approximants to fixed points of nonexpansive non-
linear mappings in Banach spaces. Arch. Rational Mech. Anal. 24, 82–90 (1967)

2. Engrácia, P., Ferreira, F.: Bounded functional interpretation with an abstract type.
In: Rezuş, A. (ed.) Contemporary Logic and Computing. Landscapes in Logic, vol.
1, pp. 87–112. College Publications, London (2020)

3. Ferreira, F.: A most artistic package of a jumble of ideas. Dialectica 62, 205–
222 (2008). Special Issue: Gödel’s dialectica interpretation. Guest editor: Thomas
Strahm

4. Ferreira, F., Leustean, L., Pinto, P.: On the removal of weak compactness argu-
ments in proof mining. Adv. Math. 354, 106728 (2019)

5. Kohlenbach, U.: Applied Proof Theory: Proof Interpretations and their Use in
Mathematics. Springer Monographs in Mathematics, Springer, Berlin (2008).
https://doi.org/10.1007/978-3-540-77533-1

6. Kohlenbach, U.: On quantitative versions of theorems due to F. E. Browder and
R. Wittmann. Adv. Math. 226, 2764–2795 (2011)

7. Kohlenbach, U.: Proof-theoretic uniform boundedness and bounded collection prin-
ciples and countable Heine-Borel compactness. Arch. Math. Logic. https://doi.org/
10.1007/s00153-021-00771-w

8. Normann, D., Sanders, S.: Open sets in computability theory and reverse mathe-
matics. J. Logic Comput. 30(8), 1639–1679 (2020)

9. Simpson, S.G.: Subsystems of Second Order Arithmetic. Perspectives in Mathe-
matical Logic, Springer, Heidelberg (1999)

10. Spector, C.: Provably recursive functionals of analysis: a consistency proof of anal-
ysis by an extension of principles in current intuitionistic mathematics. In: Dekker,
F.D.E. (ed.) Recursive Function Theory: Proceedings of Symposia in Pure Math-
ematics, vol. 5, pP. 1–27. American Mathematical Society, Providence (1962)

https://doi.org/10.1007/978-3-540-77533-1
https://doi.org/10.1007/s00153-021-00771-w
https://doi.org/10.1007/s00153-021-00771-w

Placing Green Bridges Optimally,
with a Multivariate Analysis

Till Fluschnik and Leon Kellerhals(B)

Faculty IV, Algorithmics and Computational Complexity,
Technische Universität Berlin, Berlin, Germany

{till.fluschnik,leon.kellerhals}@tu-berlin.de

Abstract. We study the problem of placing wildlife crossings, such as
green bridges, over human-made obstacles to challenge habitat fragmen-
tation. The main task herein is, given a graph describing habitats or
routes of wildlife animals and possibilities of building green bridges, to
find a low-cost placement of green bridges that connects the habitats. We
develop three problem models for this task, which model different ways
of how animals roam their habitats. We settle the classical complexity
and parameterized complexity (regarding the number of green bridges
and the number of habitats) of the three problems.

Keywords: Wildlife crossings · Computational complexity ·
Computational sustainability · Parameterized algorithmics · Connected
subgraphs

1 Introduction

Sustainability is an enormous concern impacting today’s politics, economy, and
industry. Accordingly, sustainability sciences are well-established by now. Yet,
the interdisciplinary scientific field “computational sustainability” [8], which
connects practical and theoretical computer science with sustainability sciences,
is quite young. For instance, the Institute for Computational Sustainability at
Cornell University was founded in 2008, the 1st International Conference on
Computational Sustainability (CompSust ’09) took place in 2009, and special
tracks on computational sustainability and AI were established in 2011 (AAAI)
and 2013 (IJCAI). This work contributes to computational sustainability: We
model problems of elaborately placing wildlife crossings and give complexity-
theoretical and algorithmic analyses for each. Wildlife crossings are constructions
(mostly bridges or tunnels) that allow wildlife animals to safely cross human-
made transportation lines (mostly roads). We will refer to wildlife crossings
as green bridges.

Huijser et al. [10] give an extensive report on wildlife-vehicle collisions. They
identify several endangered animal species suffering from high road mortality

T. Fluschnik—Supported by DFG, project TORE (NI 369/18).

c© Springer Nature Switzerland AG 2021
L. De Mol et al. (Eds.): CiE 2021, LNCS 12813, pp. 204–216, 2021.
https://doi.org/10.1007/978-3-030-80049-9_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80049-9_19&domain=pdf
http://orcid.org/0000-0003-2203-4386
http://orcid.org/0000-0001-6565-3983
https://doi.org/10.1007/978-3-030-80049-9_19

Placing Green Bridges Optimally 205

Connect GBP
Reach GBP Closed GBP≥P ≤P

1-Reach GBP 1-Closed GBP
≤P

≥
P

Diam GBP
1-Diam GBP≤P ≥P ≡P

Fig. 1. Polynomial-time many-one reducibility directly derived from problem defini-
tions.

and estimate the annual cost associated with wildlife-vehicle collisions to be
about 8 billion US dollars. Wildlife fencing with wildlife crossings can reduce
collisions by over 80% [10], enables populations to sustain [17], and is therewith
among the most cost-effective [9]. The implementation, though, is an important
problem: “The location, type, and dimensions of wildlife crossing structures must
be carefully planned with regard to the species and surrounding landscape. [...]
In addition, different species use different habitats, influencing their movements
and where they want to cross the road.” [10, p. 16] It is further pointed out
that data about wildlife habitats is basic for mitigation plans, yet challenging
to obtain [18]. In this work, our main problem is placing green bridges at low
cost and under several variants of habitat-connectivity requirements, thereby
inherently modeling different availabilities of data on habitats. The problem is
hence the following: Given a graph describing habitats of wildlife animals and
possibilities of building green bridges, find a low-cost placement of green bridges
that sufficiently connects habitats. In particular, we comparatively study in
terms of computational complexity and parameterized algorithmics the following
three different (families of) decision problems.

Π Green Bridges Placement (Π GBP)

Input: An undirected graph G = (V,E), a set H = {V1, . . . , Vr} of habitats
where Vi ⊆ V for all i ∈ {1, . . . , r}, and k ∈ N0.

Question: Is there an edge set F ⊆ E with |F | ≤ k such that for every i ∈
{1, . . . , r}, it holds that

Π ≡ d-Reach: G[F]d[Vi] is connected? (Problem 2) (Sect. 2)
Π ≡ d-Closed: G[F]d[Vi] is a clique? (Problem 3) (Sect. 3)

Π ≡ d-Diam(eter): diam(G[F][Vi]) ≤ d? (Problem 4) (Sect. 4)

In words: d-Reach GBP seeks to connect each habitat such that every patch has
some other patch at short distance. d-Closed GBP seeks to connect each habi-
tat such that any two habitat’s patches are at short distance. Finally, d-Diam

GBP seeks to connect each habitat such that the habitat forms a connected com-
ponent of low diameter. Figure 1 depicts a relationship between the problems in
terms of Karp reductions.

Our Contributions. Our results are summarized in Table 1. We settle the classi-
cal complexity and parameterized complexity (regarding the number k of green
bridges and the number r of habitats) of the three problems. While d-Reach

GBP is (surprisingly) already NP-hard for d = 1 on planar graphs or graphs of
maximum degree Δ = 4, d-Closed GBP and d-Diam GBP become NP-hard
for d ≥ 2, but admit an (r+Δ)O(1)-sized problem kernel and thus are linear-time

206 T. Fluschnik and L. Kellerhals

Table 1. Overview of our results. NP-c., P, and K stand for NP-complete, “polynomial-
size”, and “problem kernel”, respectively. a(even on planar graphs or if Δ = 4) b(even
on bipartite graphs with Δ = 4 or graphs of diameter four.) c(even if r = 1 or if r = 2
and Δ = 4) d(even on bipartite graphs of diameter three and r = 1, but linear-
time solvable when r + Δ is constant) e(admits a linear-size problem kernel if Δ is
constant) f(linear-time solvable when r+Δ is constant) †(no polynomial problem kernel
unless NP ⊆ coNP / poly, but an O(k3)-vertex kernel on planar graphs)

Problem (Π GBP) Comput. Parameterized Algorithmics Ref.

Complex. k r k + r

d-Reach (Sect.2) d = 1 NP-c. a O(k4k) K Open O(rk + k2) PK (Sect.2.1)

d = 2 NP-c.b O(24k) K† p-NP-h. c FPT† (Sect.2.2)

d ≥ 3 NP-c XP, W[1]-h p-NP-h XP, W[1]-h (Sect.2.3)

d-Closed (Sect.3) d = 1 Lin. time — — — (Sect.3)

d = 2 NP-c. d O(24k) K† p-NP-h.e FPT† (Sect.3.1)

d ≥ 3 NP-c XP, W[1]-h p-NP-h.e XP, W[1]-h (Sect.3.2)

d-Diam (Sect.4) d = 1 Lin. time — — — (Sect.4)

d = 2 NP-c. f 2k-vertex K p-NP-h O(rk + k2) PK (Sect.4.1)

d ≥ 3 NP-c 2k-vertex K p-NP-h O(rk + k2) PK (Sect.4.1)

solvable if r + Δ is constant. Except for 1-Reach GBP, we proved all variants
to be para-NP-hard regarding r. d-Reach GBP and d-Closed GBP are fixed-
parameter tractable regarding k when d ≤ 2, but become W[1]-hard (yet XP)
regarding k and k + r when d > 2. Additionally, we prove that d-Reach GBP

admits an rd-approximation in O(mn + rnd) time.

Further Related Work. Our problems deal with finding (small) spanning con-
nected subgraphs obeying some (connectivity) constraints, and thus can be seen
as network design problems [11]. Most related to our problems are Steiner multi-
graph problems [16] with an algorithmic study [7,12] (also in the context of
wildlife corridor construction). Requiring small diameter appears also in the con-
text of spanning trees [15] and Steiner forests [4]. A weighted version of 4-Diam

GBP is proven to be NP-hard with two different weights [14]. As to wildlife
crossing placement, models and approaches different to ours are studied [5,13].

Connecting Habitats Arbitrarily. The following obvious model just requires that
each habitat is connected.

Problem 1. Connected Green Bridges Placement (Connect GBP)

Input: An undirected graph G = (V,E), a set H = {V1, . . . , Vr} of habitats
where Vi ⊆ V for all i ∈ {1, . . . , r}, and an integer k ∈ N0.

Question: Is there a subset F ⊆ E with |F | ≤ k such that for every i ∈
{1, . . . , r} it holds that in G[F] exists a connected component containing Vi?

Connect GBP with edge costs is also known as Steiner Forest [7] and
generalizes the well-known NP-hard Steiner Tree problem. Gassner [7] proved

Placing Green Bridges Optimally 207

Steiner Forest to be NP-hard even if every so-called terminal net contains
two vertices, if the graph is planar and has treewidth three, and if there are two
different edge costs, each being upper-bounded linearly in the instance size. It
follows that Connect GBP is also NP-hard in this case. Bateni et al. [1] proved
that Steiner Forest is polynomial-time solvable on treewidth-two graphs and
admits approximation schemes on planar and bounded-treewidth graphs.

From a modeling perspective, Connect GBP allows for solutions in which
habitats are arbitrarily scattered and the habitat’s patches are far away from
another; thus animals may need to take long walks through areas outside of their
habitats. With our models we avoid solutions with this property.

Preliminaries. Let N (N0) be the natural numbers without (with) zero. Let G =
(V,E) be an undirected graph with vertex set V and edge set E ⊆ (

V
2

)
. We also

denote by V (G) and E(G) the vertices and edges of G, respectively. For F ⊆ E
let V (F) := {v ∈ V | ∃e ∈ F : v ∈ e} and G[F] := (V (F), F). A path P is a graph
with V (P) := {v1, . . . , vn} and E(P) := {{vi, vi+1} | 1 ≤ i < n}. The length of
the path P is |E(P)|. The distance distG(v, w) between vertices v, w ∈ V (G) is
the length of the shortest path between v and w in G. The diameter diam(G)
is the greatest distance between any two vertices in G. For p ∈ N, the graph Gp

is the p-th power of G containing the vertex set V and edge set {{v, w} ∈ (
V
2

) |
distG(v, w) ≤ p}. We remark that the graph operations introduced above can be
stacked. For example, let F ⊆ E, let d ∈ N and let V ′ ⊆ V . Then G[F]d[V ′] =
((G[F])d)[V ′]. Let NG(v) := {w ∈ V | {v, w} ∈ E} be the (open) neighborhood
of v, and NG[v] := NG(v) ∪ {v} be the closed neighborhood of v. For p ∈ N,
let Np

G(v) := {w ∈ V | {v, w} ∈ E(Gp)} be the (open) p-neighborhood of v, and
Np

G[v] := Np
G(v) ∪ {v} be the closed p-neighborhood of v. Two vertices v, w ∈ V

are called twins if NG(v) = NG(w). The (vertex) degree degG(v) := |NG(v)| of v
is the number if its neighbors. The maximum degree Δ(G) := maxv∈V degG(v)
is the maximum over all (vertex) degrees.

We use basic definitions from parameterized algorithmics [2].

2 Connecting Habitats with a Patch at Short Reach

The following problem ensures that any habitat patch can reach the other
patches via patches of the same habitat and short strolls over “foreign” ground.

Problem 2. d-Reach Green Bridges Placement (d-Reach GBP)

Input: An undirected graph G = (V,E), a set H = {V1, . . . , Vr} of habitats
where Vi ⊆ V for all i ∈ {1, . . . , r}, and an integer k ∈ N0.

Question: Is there a subset F ⊆ E with |F | ≤ k such that for every i ∈
{1, . . . , r} it holds that G[F]d[Vi] is connected?

Theorem 1. d-Reach GBP is (i) if d = 1, NP-hard even on planar graphs
or graphs with maximum degree four; (ii) if d = 2, NP-hard even on graphs

208 T. Fluschnik and L. Kellerhals

· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

e1 es et em
· · ·
· · ·

· · ·
· · ·

· · ·
· · ·1 i j n

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

∈ V1, Vi, Zt

∈ W1,Wi, Zt

∈ Vi, Vj , Zs

∈ Wi,Wj , Zs

∈ Vi, Zs, Zt

∈ Wi, Zs, Zt

∈ Vj , Zs

∈ Wj , Zs

Fig. 2. Illustration to Construction 1 for 1-Reach GBP. Here, e.g., es = {i, j} and et =
{1, i}. Every solution (if existent) contains all red-colored edges. (Color figure online)

with maximum degree four and r = 2 or graphs with diameter four and r = 1,
and in FPT regarding k; (iii) if d ≥ 3, NP-hard and W[1]-hard regarding k + r.
Moreover, d-Reach GBP admits an rd-approximation of the minimum number
of green bridges in O(mn + rnd) time.

The approximation algorithm computes for every habitat Vi a spanning tree
in Gd[Vi], and adds the edges of the corresponding paths to the solution F . Each
of the spanning trees then is a d-approximation for just the one habitat, hence
the union of the spanning trees is an rd-approximation for all habitats.1

2.1 When a Next Habitat Is Directly Reachable (d = 1)

Setting d = 1 may reflect perfect knowledge about the habitats. In this case, we
want that in G[F], each habitat Vi forms a connected component.

Proposition 1. 1-Reach GBP is NP-hard even on graphs of maximum degree
four and on series-parallel graphs.

We remark that series-parallel graphs are also planar. We present the construc-
tion for showing hardness for graphs of degree at most four. To this end, we
reduce from the NP-hard [6] 3-Regular Vertex Cover problem, where given
a 3-regular (all vertices are of degree 3) graph G = (V,E) and an integer k ∈ N,
the question is whether there is a subset V ′ ⊆ V with |V ′| ≤ k such that G[V \V ′]
contains no edge.

Construction 1. For an instance I = (G, k) of 3-Regular Vertex Cover

with G = (V,E), V = {1, . . . , n}, and E = {e1, . . . , em}, construct an
instance I ′ := (G′,H, k′) where H := V ∪ W ∪ Z, V := {V1, . . . , Vn}, W :=
{W1, . . . ,Wn}, Z := {Z1, . . . , Zm}, and k′ := 4m + k, as follows (see Fig. 2
for an illustration). Construct vertex sets VE := {xi, yi | ei ∈ E} and VG :=
{vi, wi | i ∈ V }. Next, construct edge sets E∗ :=

⋃
i∈V {{vi, xj}, {wi, yj} |

i ∈ ej} and E′ := {{vi, wi} | i ∈ V } ∪ E∗. Finally, construct habi-
tats Vi := {vi}∪⋃

i∈ej
{xj} and Wi := {wi}∪⋃

i∈ej
{yj} for every i ∈ {1, . . . , n},

and Zj := {xj , yj} ∪ ⋃
i∈ej

{vi, wi} for every j ∈ {1, . . . , m}. 	
To obtain NP-hardness for series-parallel graphs, replace E∗ by two stars.
1 All omitted proofs can be found in the full version of this paper, available on arXiv:

https://arxiv.org/abs/2102.04539.

https://arxiv.org/abs/2102.04539

Placing Green Bridges Optimally 209

2.2 One Hop Between Habitat Patches (d = 2)

We prove that 2-Reach GBP is already NP-complete even if there are two
habitats and the graph has maximum degree four, or if there is only one habitat.

Proposition 2. d-Reach GBP with d ≥ 2 is NP-complete even if (i) r = 2
and Δ ≤ 4 or (ii) r = 1 and the input graph has diameter 2d.

Proposition 2 leaves k unbounded. This leads to the following.

Parameterizing with k. We show that 2-Reach GBP admits a problem
kernel of size exponential in k.

Proposition 3. 2-Reach GBP admits a problem kernel with at most 2k+
(
2k
k

)

vertices, at most
(
2k
2

)
+ k

(
2k
k

)
edges, and at most 22k habitats.

Let V̄ := V \ ⋃
V ′∈H V ′ for graph G = (V,E) and habitat set H = {V1, . . . , Vr}.

The following reduction rules are immediate.

Reduction Rule 1. (i) If |Vi| = 1 for some i, delete Vi. (ii) If a vertex in V̄ is
of degree at most one, delete it. (iii) If there is an i ∈ {1, . . . , r} with |Vi| > 1 and
an v ∈ Vi of degree zero, return a trivial no-instance. (iv) If there is v ∈ V \ V̄
of degree at most one, delete it (also from V1, . . . , Vr), and set k := k − 1.

Clearly, k edges can connect at most 2k vertices; thus we obtain the following.

Reduction Rule 2. If |V \ V̄ | > 2k, then return a trivial no-instance.

So we have at most 2k vertices in habitats. Next, we upper-bound the number of
non-habitat vertices. No minimal solution has edges between two such vertices.

Reduction Rule 3. If there is an edge e ∈ E with e ⊆ V̄ , then delete e.

Moreover, no minimum solution connects through non-habitat twins.

Reduction Rule 4. If N(v) ⊆ N(w) for distinct v, w ∈ V̄ , then delete v.

We still need to bound the number of vertices in V̄ . For a 2n-element set S
let F ⊆ 2S be a family of subsets such that for every A,B ∈ F we have A
⊆ B.
Then |F| ≤ (

2n
n

)
by Sperner’s Theorem. Hence, after applying the reduction

rules, we get an instance with at most 2k+
(
2k
k

)
vertices and

(
2k
2

)
+2k

(
2k
k

)
edges.

Reduction Rule 5. If Vi = Vj for distinct i, j ∈ {1, . . . , r}, then delete Vj .

It follows that we can safely assume that r ≤ 22k. Thus, Proposition 3 follows.
Unfortunately, improving the problem kernel to polynomial-size appears unlikely,
which can be shown by a linear parametric transformation from Set Cover.

Proposition 4. Unless NP ⊆ coNP /poly, d-Reach GBP for d ≥ 2 admits
no problem kernel of size kO(1), even if r ≥ 1 is constant.

Proposition 4 holds for general graphs. In fact, for planar graphs, the above
reduction rules allow for an O(k3)-vertex kernel.

Proposition 5. 2-Reach GBP on planar graphs admits a problem kernel with
O(k3) vertices and edges and at most 22k habitats.

210 T. Fluschnik and L. Kellerhals

· · ·

· · ·

U i∈ V if i ∈ g−1()

···

···
U j

V if j g−1()

···

···

U j V if j g−1()

· · ·

· · ·
U i

∈ V if i ∈ g−1()

· · ·

· · ·

(d−
1)/2

se
g

de

Fig. 3. Illustration to Construction 2 for d-Reach GBP for d ≥ 3.

2.3 At Least Two Hops Between Habitat Patches (d ≥ 3)

If the data is more sparse, that is, the observed habitat patches are scattered,
then the problem becomes significantly harder to solve.

Proposition 6. d-Reach GBP with d ≥ 3 is NP-complete and W[1]-hard when
parameterized by k + r.

We give the construction for odd d. Adapting it for even d is straightforward.

Construction 2. Let G with G = (U1, . . . , Uk, E) be an instance of Multi-

colored Clique where G[U i] forms an independent set for every i ∈ {1, . . . , k}.
Assume without loss of generality that U i = {ui

1, . . . , u
i
|Ui|}. Construct the

instance (G′, {V1, . . . , V(k2)}, k′) with k := (d−1)
2 k +

(
k
2

)
as follows (see Fig. 3).

Let g :
({1,...,k}

2

) → {1, . . . ,
(
k
2

)} be a bijective function. Let G′ be initially G.
For each i ∈ {1, . . . , k}, add a vertex vi to G′, add vi to each habitat V� with i ∈
g−1(�), and connect vi with ui

j for each j ∈ {1, . . . , |U i|} via a path with d−1
2

edges, where vi and ui
j are the endpoints of the path. 	

3 Connecting Habitats at Short Pairwise Distance

In the next problem, we require short pairwise reachability.
Problem 3. d-Closed Green Bridges Placement (d-Closed GBP)

Input: An undirected graph G = (V,E), a set H = {V1, . . . , Vr} of habitats
where Vi ⊆ V for all i ∈ {1, . . . , r}, and k ∈ N0.

Question: Is there a subset F ⊆ E with |F | ≤ k such that for every i ∈
{1, . . . , r} it holds that G[F]d[Vi] is a clique?

Placing Green Bridges Optimally 211

· · · · · · · · · · · ·

· · · · · · · · ·
...

...

y

∈ V1

e = {i, j}

∈ V1

e = {i, j }

∈ V1

e = {i , j}

∈ V1

vi vj

x

V1

z

Fig. 4. Illustration to Construction 3 for 2-Closed GBP.

If G[F]d[Vi] is a clique, then distG[F](v, w) ≤ d for all v, w ∈ Vi. Note that 2-

Closed GBP is an unweighted variant of the 2NET problem [3].

Theorem 2. d-Closed GBP is, (i) if d = 1, solvable in time linear to the
input size; (ii) if d = 2, NP-hard even on bipartite graphs of diameter three
and r = 1, in FPT regarding k, and in FPT regarding r + Δ; (iii) if d ≥ 3,
NP-hard and W[1]-hard regarding k even if r = 1.

For d = 1, the problem is solvable in linear time: Check whether each habitat
induces a clique. If so, check if the union of the cliques is small enough.

Observation 1. 1-Closed GBP is solvable in linear time.

3.1 When Each Part Is Just Two Steps Away (d = 2)

For d = 2, d-Closed GBP becomes NP-hard already on quite restrictive inputs.

Proposition 7. 2-Closed GBP is NP-complete, even if r = 1 and the input
graph is bipartite and of diameter three.

Construction 3. Let I = (G, k) with G = (V,E) be an instance of Vertex

Cover, and assume without loss of generality that V = {1, . . . , n}. Construct
an instance of 2-Closed GBP with graph G′ = (V ′, E′), habitat V1, and inte-
ger k′ := 2|E| + k + 3 as follows (see Fig. 4 for an illustration). To construct G′

and V1, add the vertex set VE := {ve | e ∈ E}, add two vertices y′ and y, and
make y′ adjacent with y and all vertices in VE . Add a vertex x and introduce a
path of length two from x to y. Add the vertex set VG := {vi | i ∈ V } and add
the edge set EG :=

⋃
i∈V {{vi, ve} | i ∈ e}. Finally, set V1 := VE ∪ {x, y}. 	

Graphs of Constant Maximum Degree. 2-Reach GBP is NP-hard if the
number r of habitats and the maximum degree Δ are constant (Proposition 2).
2-Closed GBP is linear-time solvable in this case:

212 T. Fluschnik and L. Kellerhals

Proposition 8. d-Closed GBP admits an O(rΔ(Δ − 1)3d/2)-sized problem
kernel computable in O(r(n + m)) time.

Proof. Let I = (G,H, k) be an instance of d-Closed GBP. For every i ∈
{1, . . . , r}, fix a vertex ui ∈ Vi. We assume that we have Vi ⊆ Nd

G[ui] for all i ∈
{1, . . . , r}, otherwise I is a no-instance. Now let Wi = N

�3d/2�
G [ui] and let G′ :=

G[
⋃r

i=1 Wi]. Note that G′ contains at most rΔ(Δ − 1)�3d/2� vertices and can be
computed by r breadth-first searches. We claim that G′ contains every path of
length at most d between every two vertices v, w ∈ Vi, for every i ∈ {1, . . . , r}.
Recall that an edge set F ⊆ E is a solution if and only if for every i ∈ {1, . . . , r}
and for every v, w ∈ Vi, G[F] contains a path of length at most d from v to w.
As by our claim G′ contains any such path, that I is a yes-instance if and only
if I ′ := (G′,H, k) is a yes-instance (since Vi ⊆ V (G′) for every i ∈ {1, . . . , r}).

Assuming that Vi ⊆ Nd
G[ui], G[Wi] contains all paths of length at most d

between ui and any v ∈ Vi. So let v, w ∈ Vi be two vertices, both distinct
from ui. As v, w ∈ Nd

G[ui] and Wi = N
�3d/2�
G [ui], the subgraph G[Wi] contains

all vertices in N
�d/2�
G [v] and N

�d/2�
G [w]. Consider now a path of length at most d

between v and w. Suppose it contains a vertex x ∈ V (G)\(N�d/2�
G [v]∪N

�d/2�
G [w]).

Then distG(v, x) + distG(w, x) > 2�d/2 ≥ d, a contradiction to x being on a
path from v to w of length at most d. The claim follows.

Parameterizing with k. All the reduction rules that worked for 2-Reach

GBP also work for 2-Closed GBP. It thus follows that 2-Closed GBP admits
a problem kernel of size exponential in k, and hence, 2-Closed GBP is FPT. As
with 2-Reach GBP, the problem kernel presumably cannot be much improved.
For this, we combine the constructions for Propositions 4 & 7.

Corollary 1. 2-Closed GBP admits a problem kernel of size exponential in k
and, unless NP ⊆ coNP /poly, none of size polynomial in k, even if r = 1.

3.2 When Reaching Each Part Is a Voyage (d ≥ 3)

For d ≥ 3, the problem is W[1]-hard regarding the number k of green bridges,
even for one habitat. The reduction is similar to the one for Proposition 6.

Proposition 9. d-Closed GBP with d ≥ 3 is NP-complete and W[1]-hard
when parameterized by k, even if r = 1.

4 Connecting Habitats at Small Diameter

Lastly, we consider requiring short pairwise reachability in 1-Reach GBP.
Problem 4. d-Diamater Green Bridges Placement (d-Diam GBP)

Input: An undirected graph G = (V,E), a set H = {V1, . . . , Vr} of habitats
where Vi ⊆ V for all i ∈ {1, . . . , r}, and an integer k ∈ N0.

Question: Is there a subset F ⊆ E with |F | ≤ k such that for every i ∈
{1, . . . , r} it holds that G[F][Vi] has diameter d?

Placing Green Bridges Optimally 213

· · · · · · · · · · · ·

· · · · · · · · ·

...
...

e = {i, j}

∈ V1, V2

e = {i, j }

∈ V1, V2

e = {i , j}

∈ V1, V2

x

V1, V3

y

∈ V1, V3

z

∈ V1, V2, V3

y

∈ V3

z

∈ V2vi

∈ V1, V2, V3

vj

∈ V1, V2, V3

Fig. 5. Illustration for 2-Diam GBP with r = 3. (k′ = 2m + 2n + k + 4)

In particular, G[F][Vi] is connected. Note that 1-Reach GBP reduces to Diam

GBP (where d is part of the input and then set to the number of vertices in the
input instance’s graph). We have the following.

Theorem 3. d-Diam GBP is (i) if d = 1, solvable in linear time; (ii) if d = 2,
NP-hard even if r = 3; (iii) if d = 3, NP-hard even if r = 2. Moreover, d-Diam

GBP admits a problem kernel with at most 2k vertices and at most 22k habitats.

1-Diam GBP is equivalent to 1-Closed GBP, which is linear-time solvable by
Observation 1. Thus, Theorem 3(i) follows. Applying Reduction Rules 2 & 5 and
deleting all non-habitat vertices yields the problem kernel.

4.1 Via at Most One (d = 2) or Two (d ≥ 3) Patches to Every
Other

2-Diam GBP and 3-Diam GBP turn out to be NP-hard even for three habitats
and two habitats, respectively.

Proposition 10. 2-Diam GBP is NP-hard even if r = 3.

Construction 4. Let I = (G, k) with G = (V,E) be an instance of Vertex

Cover and assume without loss of generality that V = {1, . . . , n} and E =
{e1, . . . , em}. Construct an instance I ′ := (G′, {V1, V2, V3}, k′) with k′ = 2m +
2n + k + 4 as follows (see Fig. 5 for an illustration). Add the vertex sets VE :=
{ve | e ∈ E} and VG = {vi | i ∈ V }, as well as the vertices x, y, y′, z, z′.
Add all vertices except for y′ and z′ to V1. Let V2 := VE ∪ VG ∪ {z, z′} and
V3 := VG ∪ {x, z, y, y′}. Next, for each e = {i, j} ∈ E, connect ve with vi,
vj , and z. For each i ∈ V , connect vi with x, y, and z. Lastly, add the edge
set E∗ := {{x, y}, {y, y′}, {z, z′}, {z, y}} to E′. Let Ey := {{y, vi} | i ∈ V },
EE := {{ve, z} | e ∈ E}, and EV := {{vi, z} | i ∈ V }. 	

Proposition 11. 3-Diam GBP is NP-hard even if r = 2.

214 T. Fluschnik and L. Kellerhals

5 Conclusion, Discussion, and Outlook

We modeled the problem of placing wildlife crossings with three different problem
(families): d-Reach GBP, d-Closed GBP, and d-Diam GBP. We studied the
practically desired cases d = 1 and d = 2, as well as the cases d ≥ 3. For all
three problems, we settled the classical as well as the parameterized complexity
(regarding the number k of wildlife crossings and the number r of habitats),
except for the parameterized complexity of d-Reach GBP regarding r.

Discussion. We derived an intriguing interrelation of connection requirements,
data quality, and computational and parameterized complexity. While each prob-
lem admits its individual complexity fingerprint, each of them depends highly
on the value of d, the level of the respective connectivity constraint. This value
can reflect the quality of the given data, since naturally we assume that habitats
are connected. The worse the data, the stronger are the relaxations according
to the connectivity of habitats, and thus the larger is the value of d. Our results
show that having very small (d = 2) data gaps already leads to the problems
becoming NP-hard, and that even larger gaps (d ≥ 3) yield W[1]-hardness (when
parameterized by k). Hence, knowledge about habitats, connections, and data
quality decide which problem models can be applied, thus influencing the compu-
tation power required to determine an optimal placement of wildlife crossings.
For instance, for larger networks, we recommend to ensure data quality such
that one of our proposed problems for d ≤ 2 becomes applicable. This in turn
emphasizes the importance of careful habitat recognition.

In our models, we neglected that different positions possibly lead to different
costs of building bridges (i.e., edge costs). This neglect is justified when differ-
entiating between types of bridges (and thus their costs) is not necessary (e.g.,
if the habitat’s species share preferred types of green bridges, and the under-
lying human-made transportation lines are homogeneous). In other scenarios,
additionally considering these costs may be beneficial for decision-making.

Outlook and Open Problems. For a final version, we plan to continue our study
with approximation and (refined) data reduction for our three problems, as well
as planar input graphs, and to settle 1-Reach GBP’s complexity regarding r.
Note that we obtained an O(rd)-approximation for d-Reach GBP, which does
not directly transfer to the other two problems. FPT approximations may be
lucrative. For small d ≥ 2, all problems allow for problems kernels where the
number of vertices only depends on k. If more effective preprocessing is possible,
then data reduction on the habitats is required. If the underlying street network
is planar, then the input graphs to our problems can be seen as their planar
dual. Thus, input graphs may be planar in the applications.

Moreover, interesting directions for future work are, for instance, distinguish-
ing types of green bridges to place, taking into account possible movement direc-
tions within habitats (connectivity in directed graphs), identifying real-world
driven problem parameters leading to tractability, or the problem of maintain-

Placing Green Bridges Optimally 215

ing and servicing green bridges over time under a possible seasonal change of
wildlife habitats (temporal graph modeling could fit well).

References

1. Bateni, M., Hajiaghayi, M.T., Marx, D.: Approximation schemes for Steiner forest
on planar graphs and graphs of bounded treewidth. J. ACM 58(5), 21:1–21:37
(2011). https://doi.org/10.1145/2027216.2027219

2. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

3. Dahl, G., Johannessen, B.: The 2-path network problem. Networks 43(3), 190–199
(2004). https://doi.org/10.1002/net.20003

4. Ding, W., Qiu, K.: A 2-approximation algorithm and beyond for the minimum
diameter k-Steiner forest problem. Theor. Comput. Sci. 840, 1–15 (2020). https://
doi.org/10.1016/j.tcs.2019.12.012

5. Downs, J.A., Horner, M.W., Loraamm, R.W., Anderson, J., Kim, H., Onorato,
D.: Strategically locating wildlife crossing structures for Florida panthers using
maximal covering approaches. Trans. GIS 18(1), 46–65 (2014). https://doi.org/10.
1111/tgis.12005

6. Garey, M.R., Johnson, D.S., Stockmeyer, L.J.: Some simplified NP-complete graph
problems. Theor. Comput. Sci. 1(3), 237–267 (1976). https://doi.org/10.1016/
0304-3975(76)90059-1

7. Gassner, E.: The Steiner forest problem revisited. J. Discrete Algorithms 8(2),
154–163 (2010). https://doi.org/10.1016/j.jda.2009.05.002

8. Gomes, C.P.: Computational sustainability: computational methods for a sustain-
able environment, economy, and society. Bridge 39(4), 5–13 (2009)

9. Huijser, M.P., Duffield, J.W., Clevenger, A.P., Ament, R.J., McGowen, P.T.: Cost–
benefit analyses of mitigation measures aimed at reducing collisions with large
ungulates in the United States and Canada: a decision support tool. Ecol. Soc.
14(2) (2009). http://www.jstor.org/stable/26268301

10. Huijser, M.P., et al.: Wildlife-vehicle collision reduction study: report to congress.
(2008). https://www.fhwa.dot.gov/publications/research/safety/08034/08034.pdf

11. Kerivin, H., Mahjoub, A.R.: Design of survivable networks: a survey. Networks
46(1), 1–21 (2005). https://doi.org/10.1002/net.20072

12. Lai, K.J., Gomes, C.P., Schwartz, M.K., McKelvey, K.S., Calkin, D.E.,
Montgomery, C.A.: The Steiner multigraph problem: wildlife corridor design for
multiple species. In: Proceedings of 25th AAAI. AAAI Press (2011). http://www.
aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3768

13. Loraamm, R.W., Downs, J.A.: A wildlife movement approach to optimally locate
wildlife crossing structures. Int. J. Geogr. Inf. Sci. 30(1), 74–88 (2016). https://
doi.org/10.1080/13658816.2015.1083995

14. Plesńık, J.: The complexity of designing a network with minimum diameter. Net-
works 11(1), 77–85 (1981). https://doi.org/10.1002/net.3230110110

15. Ravi, R., Sundaram, R., Marathe, M.V., Rosenkrantz, D.J., Ravi, S.S.: Spanning
trees - short or small. SIAM J. Discret. Math. 9(2), 178–200 (1996). https://doi.
org/10.1137/S0895480194266331

16. Richey, M.B., Parker, R.G.: On multiple Steiner subgraph problems. Networks
16(4), 423–438 (1986). https://doi.org/10.1002/net.3230160408

https://doi.org/10.1145/2027216.2027219
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1002/net.20003
https://doi.org/10.1016/j.tcs.2019.12.012
https://doi.org/10.1016/j.tcs.2019.12.012
https://doi.org/10.1111/tgis.12005
https://doi.org/10.1111/tgis.12005
https://doi.org/10.1016/0304-3975(76)90059-1
https://doi.org/10.1016/0304-3975(76)90059-1
https://doi.org/10.1016/j.jda.2009.05.002
http://www.jstor.org/stable/26268301
https://www.fhwa.dot.gov/publications/research/safety/08034/08034.pdf
https://doi.org/10.1002/net.20072
http://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3768
http://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3768
https://doi.org/10.1080/13658816.2015.1083995
https://doi.org/10.1080/13658816.2015.1083995
https://doi.org/10.1002/net.3230110110
https://doi.org/10.1137/S0895480194266331
https://doi.org/10.1137/S0895480194266331
https://doi.org/10.1002/net.3230160408

216 T. Fluschnik and L. Kellerhals

17. Sawaya, M.A., Kalinowski, S.T., Clevenger, A.P.: Genetic connectivity for two
bear species at wildlife crossing structures in Banff national park. Proc. Royal
Soc. B: Biol. Sci. 281(1780), 20131705 (2014). https://www.ncbi.nlm.nih.gov/
pmc/articles/PMC4027379/

18. Zheng, R., Luo, Z., Yan, B.: Exploiting time-series image-to-image translation to
expand the range of wildlife habitat analysis. In: Proceedings of 33rd AAAI, pp.
825–832. AAAI Press (2019). https://doi.org/10.1609/aaai.v33i01.3301825

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4027379/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4027379/
https://doi.org/10.1609/aaai.v33i01.3301825

A Church-Turing Thesis for Randomness?

Johanna N.Y. Franklin(B)

Hofstra University, Hempstead, NY 11590, USA
johanna.n.franklin@hofstra.edu

http://www.johannafranklin.net

Abstract. We discuss the difficulties in stating an analogue of the
Church-Turing thesis for algorithmic randomness. We present one pos-
sibility and argue that it cannot occupy the same position in the study
of algorithmic randomness that the Church-Turing thesis does in com-
putability theory. We begin by observing that some evidence compara-
ble to that for the Church-Turing thesis does exist for this statement:
in particular, there are other reasonable formalizations of the intuitive
concept of randomness that lead to the same class of random sequences
(the Martin-Löf random sequences). However, we consider three proper-
ties that we would like a random sequence to satisfy and find that the
Martin-Löf random sequences do not necessarily possess these proper-
ties to a greater degree than other types of random sequences, and we
further argue that there is no more appropriate version of the Church-
Turing thesis for algorithmic randomness. This suggests that consensus
around a version of the Church-Turing thesis in this context is unlikely.

Keywords: Church-Turing thesis · Algorithmic randomness ·
Computability theory

1 A Potential Parallel

In 1948, Turing wrote that “[I]t is found in practice that [Turing machines] can
do anything that could be described as ‘rule of thumb’ or ‘purely mechanical.’
This is sufficiently well established that it is now agreed amongst logicians that
‘calculable by means of a [Turing machine]’ is the correct accurate rendering of
such phrases” ([30], p. 4). We take this as our formulation of the Church-Turing
thesis and discuss the prospects for identifying an analogous statement in the
context of algorithmic randomness.

Algorithmic randomness is the study of the formalization of the intuitive
concept of randomness using concepts from computability theory. We begin by
considering elements of the Cantor space (the space of infinite binary sequences,
or 2ω). Therefore, a statement of the following form would be a direct parallel
to Church’s thesis:

Supported in part by Simons Foundation Collaboration Grant #420806.

c© Springer Nature Switzerland AG 2021
L. De Mol et al. (Eds.): CiE 2021, LNCS 12813, pp. 217–226, 2021.
https://doi.org/10.1007/978-3-030-80049-9_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80049-9_20&domain=pdf
http://orcid.org/0000-0002-7216-1562
https://doi.org/10.1007/978-3-030-80049-9_20

218 J. N. Y. Franklin

S : If an infinite binary sequence can be described as random, then it
.

The question, of course, is which mathematical property should be used to
complete this statement. Is there one that occupies the same space in the uni-
verse of randomness as calculability by a Turing machine does in the universe
of functions? We argue that, while there seems to be such a characterization at
first glance, it appears inappropriate on further consideration, as do all other
reasonable possibilities.

1.1 An Initial Characterization of Randomness

The first formal definitions of randomness were provided in the mid-1960s and
early 1970s. We review these definitions briefly below. First, though, we explain
our notation. We will typically denote finite binary strings by lowercase Greek
letters and infinite binary sequences by uppercase Roman letters. The length
of a finite binary string τ is denoted by |τ |, and the measure of a class C in
Cantor space, μ(C), is given by the Lebesgue measure in which the basic open
set [σ] consisting of all infinite binary sequences extending the finite string σ has
measure 2−|σ| (in other words, the “coin-flip” measure).

The first approach to be fully defined is due to Martin-Löf and is based on
effectivized statistical tests [19]. We recall that a Σ0

1 class in Cantor space is one
that is definable as {A | (∃n)R(A�n)} for a computable relation R.

Definition 1. A Martin-Löf test is a sequence 〈Vi〉 of uniformly Σ0
1 classes

of Cantor space such that μ(Vi) ≤ 2−i. An infinite sequence A is said to be
Martin-Löf random if for any Martin-Löf test 〈Vi〉, A �∈ ∩Vi. We say that such
a sequence is not captured by any Martin-Löf test and thus passes all of them.

This is the candidate I propose to complete S : “passes a Martin-Löf test.”
The second approach is based on Kolmogorov complexity, initially defined

by Kolmogorov in 1965. The prefix-free variant is due to Levin and Chaitin.

Definition 2. [4,16,17] The prefix-free Kolmogorov complexity of a finite
binary string σ is defined as K(σ) = min{|τ | |U(τ) = σ}, where U is a uni-
versal prefix-free machine.

The third approach is probabilistic and is based on Lévy’s definition of a
martingale [18]:

Definition 3. A c.e. function d : 2<ω → R
≥0 is a c.e. martingale if it obeys the

fairness condition

d(σ) =
d(σ0) + d(σ1)

2
for all σ.

Martin-Löf randomness can be defined using all of these approaches.

A Church-Turing Thesis for Randomness? 219

Theorem 1 ([4,27,28]). The three following properties are equivalent for an
infinite binary sequence A:

1. A is Martin-Löf random.
2. There is a constant c such that for all n ∈ ω, K(A�n) ≥ n−c: the Kolmogorov

complexity of each initial segment of A is never much smaller than its length.
3. For any c.e. martingale d, lim supn d(A�n) is finite: it is not possible to win

arbitrarily large amounts of capital by betting on A using a c.e. martingale,
and thus no such d succeeds on A.

We note that there is not only a universal prefix-free machine but also a
universal Martin-Löf test and a universal c.e. martingale.

This suggests that we can justify completing S with “passes a Martin-Löf
test” with evidence similar to that given for Church’s thesis: these very different
approaches to formalizing the intuitive notion of randomness result in the same
class of sequences being considered random just as Turing machines, register
machines, general recursive functions, and the λ-calculus do for partial com-
putable functions; Porter refers to this as an equivalence-as-evidence-of-capturing
(EEC) claim [23]. However, we find, as Porter did, that the existence of other
“loci of definitional equivalence” greatly weakens the value of this fact.

2 Other Randomness Notions

It was recognized in the early 1970s that the three characterizations of Martin-
Löf randomness given above could be modified slightly to obtain other classes
of sequences that could also reasonably be called random. For instance, we can
define Schnorr randomness in each of these three ways by making each compo-
nent of the definition computable rather than merely approximable from below:

– Rather than consider all Martin-Löf tests, we consider only Schnorr tests:
those whose components have measure exactly 2−i for the appropriate i rather
than no larger than 2−i [28].

– Rather than consider all prefix-free machines, we consider only prefix-free
machines whose domains have computable measure [5].

– Rather than consider all c.e. martingales, we consider only computable mar-
tingales, and our success condition changes slightly: a martingale d h-succeeds
on A if lim supn

d(A�n)
h(n) = ∞. Here, h is taken to be an order function: a com-

putable, nondecreasing, unbounded function on ω [27,28].

The resulting characterizations of randomness are, at worst, only slightly
more complicated than the characterizations of Martin-Löf randomness we have
already seen. Any increased complexity of the definitions results from the fol-
lowing facts: (1) there is no universal prefix-free computable measure machine,
Schnorr test, or computable martingale, and (2) we have modified the definition
of a martingale’s success to reflect the idea that it may be possible for a mar-
tingale’s values to increase unboundedly but so slowly that we cannot recognize
this increase computably.

220 J. N. Y. Franklin

Schnorr randomness is certainly no stronger than Martin-Löf randomness: if
we consider the test definitions, we can see that a sequence has to pass fewer
tests in order to be Schnorr random than to be Martin-Löf random. In fact, it
is a strictly weaker notion [28].

There is also a well-studied randomness notion strictly between Martin-Löf
and Schnorr randomness: computable randomness, first described by Schnorr in
[27,28]. Its characterizations in terms of Kolmogorov complexity and tests are far
more complicated than those of either Martin-Löf or Schnorr randomness (see
Sects. 7.1.4 and 7.1.5 of [6]), but its martingale characterization is as simple as
that of Martin-Löf randomness: one simply substitutes “computable martingale”
for “c.e. martingale.”

The existence of these other notions of randomness would not necessarily
preclude the analogy to Church’s thesis given above. After all, computability
theorists routinely investigate weak truth table reducibility and truth table
reducibility in addition to Turing reducibility and don’t consider this to con-
traindicate Church’s thesis. We may ask whether the same sort of relationship
holds between Turing, weak truth table, and truth table functionals as between
Martin-Löf, computable, and Schnorr randomness.

At first, this analogy seems reasonable. Turing reducibility places no require-
ments on the convergence of the functional; weak truth table reducibility requires
convergence within a computable bound, if such exists; and truth table reducibil-
ity requires convergence for all inputs. We can see that the characterizations of
Martin-Löf randomness involve c.e. martingales and tests with components and
prefix-free machines with domains that need only have lower semicomputable
measures. This degree of approximability is precisely that which can be obtained
from a Turing functional. The characterizations of computable randomness and
Schnorr randomness, on the other hand, require computable martingales, and
the components of Schnorr tests have computable measures, which better corre-
sponds to weak truth table or truth table functionals.

While this suggests that Martin-Löf randomness is analogous to Turing
reducibility and thus that “passing a Martin-Löf test” seems analogous to “being
calculable by a Turing machine,” we should investigate further and determine
how far this analogy extends. While there are rich structural results for the
Turing, weak truth table, and truth table degrees, it is the Turing degrees that
have found the widest applicability to branches of computability beyond degree
theory. The author knows of no results concerning truth table degrees and com-
putable structure theory or weak truth table degrees and computable analysis,
for instance. This could be a further sort of evidence for Church’s thesis: that
the degree structure generated by Turing functionals is the most generally appli-
cable to other aspects of computability theory. This leads us to ask whether a
similar statement can be made about Martin-Löf randomness.

3 Three Desiderata

In this section, we will consider the question of applicability discussed above as
well as the question of whether Martin-Löf randomness most aptly captures our

A Church-Turing Thesis for Randomness? 221

intuitions about random sequences. It has certainly been argued that Martin-
Löf randomness does not capture these intuitions, most notably (and earliest)
by Schnorr in [28]. We discuss some of these considerations here.

3.1 Decompositions and Combinations of Random Sequences

We begin by considering what happens if we computably decompose a random
sequence: must this result in random sequences? Or, if we interleave two random
sequences, under what circumstances will the resulting sequence be random?
These questions were answered for Martin-Löf randomness by van Lambalgen
[15] and are closely related to the role of relativization in computability.

Theorem 2 (van Lambalgen’s Theorem). The following are equivalent for
any two Martin-Löf random sequences A and B:

1. A ⊕ B is Martin-Löf random.
2. A is Martin-Löf random relative to B and B is Martin-Löf random relative

to A.

In short, a sequence is Martin-Löf random if, when you decompose it into its
“even” and “odd” bits, each half is not only Martin-Löf random but Martin-Löf
random relative to the other. This result is frequently mentioned as a desidera-
tum for a randomness notion (see, for instance, Sect. 7.1.2 in [6]) and is thus a
reasonable place for us to begin. We should now ask if computable and Schnorr
randomness have this property as well.

The answer is complicated. It is straightforward to see that the forward
direction of the theorem does not hold for computable or Schnorr randomness
(see, for instance, Kjos-Hanssen’s argument in [22]). However, it becomes more
complicated when we consider the backward direction. This direction was long
claimed to hold for both computable and Schnorr randomness with “essentially
the same proof” as for Martin-Löf randomness ([6], p. 276). However, no proof
was provided until Franklin and Stephan gave one for Schnorr randomness [10],
and a few years later, Bauwens proved that this direction does not actually hold
for computable randomness [1].

However, in keeping with the analogy between stronger reductions and weaker
forms of randomness described in Sect. 2, it turns out that this theorem holds
for all three of these randomness notions if we apply a different relativization
[20,21]. This suggests that while Martin-Löf randomness initially seems to satisfy
one of our intuitions about randomness in a way that computable and Schnorr
randomness simply don’t, it seems that our intuition is satisfied for the latter
two as well when we use a more appropriate framework. Whether this more
appropriate framework is as natural, though, is not apparent.

3.2 Computational Strength

Now we consider the computational strength of random sequences. It is fair to
say that no random sequence should be computable: if it were, then we could

222 J. N. Y. Franklin

predict it perfectly. Thus, random sequences should possess some noncomputable
information. However, we can also argue that no random sequence should be very
powerful computationally: if a sequence is random, then we should not be able
to make any practical use of the information it possesses, and therefore it should
not be contained in a powerful Turing degree.

However, Kučera proved that every Turing degree computing 0′ contains a
Martin-Löf random sequence [14]. Furthermore, Stephan proved that the Martin-
Löf random sequences that cannot compute 0′ are computationally weaker in
another way: they are precisely the Martin-Löf random sequences that cannot
compute a complete extension of Peano Arithmetic [29]. These results led to
Hirschfeldt’s argument that there are two types of Martin-Löf random sequences:
those that are computationally weak and thus truly random, and those that are
computationally strong and therefore “know enough” to pretend to be random
(see [6], pp. 228–229).

If we take a measure of computational uselessness as a desideratum for a
randomness notion, it is clear that not only does Martin-Löf randomness not
meet this criterion, but neither do Schnorr and computable randomness since
every Martin-Löf random sequence is Schnorr random and computably random.
However, there are other randomness notions, and one of these satisfies this
intuition perfectly.

Difference randomness was introduced by Franklin and Ng in [9]. This notion
is most naturally defined using the test approach: while each component of a
Martin-Löf test is a Σ0

1 class, each component of a difference test is a difference
of two Σ0

1 classes. This means that, rather than creating a component by simply
adding open neighborhoods [σ] to the class, we create a component by adding
such neighborhoods and then perhaps removing them or their subneighborhoods.
Franklin and Ng further proved that the difference random sequences are pre-
cisely the Martin-Löf random sequences that cannot compute 0′ and thus that
difference randomness satisfies this intuition in a way no other notion does [9].1

However, difference randomness does not satisfy many of the other criteria we
have discussed so far: while its test definition is straightforward to state, its mar-
tingale definition is rather complicated, and no Kolmogorov complexity-based
definition of it is known at this point.

3.3 Applications

Finally, we turn our attention to the last desideratum: we would like our notion
of randomness to appear naturally in other branches of computability theory.
We consider the case of computable analysis, the subfield that is most closely
connected to algorithmic randomness as of this writing. Since many theorems
in analysis hold on a conull set and all but measure 0 many points in a space

1 We note that there are other randomness notions that also exhibit computational
weakness, e.g., weak 2-randomness. However, we discuss difference randomness here
because the difference random sequences can be identified as the Martin-Löf random
sequences that are computationally weak in these two standard senses.

A Church-Turing Thesis for Randomness? 223

are random by any reasonable definition of randomness, it is natural to try to
characterize the points in a computable probability space for which a certain
theorem holds as the points in that space that are random under a certain
definition.2

We consider several theorems as case studies, beginning with Birkhoff’s
ergodic theorem; this theorem states that for any measurable subset of a prob-
ability space, an ergodic transformation will map almost every point into that
subset with a frequency proportional to the measure of the subset.

Theorem 3 (Birkhoff’s ergodic theorem). Let (X,μ) be a probability space,
let T : X → X be ergodic, and let E be a measurable subset of X. Then for almost
all x ∈ X,

lim
n→∞

|{i | i < n and T i(x) ∈ E}|
n

= μ(E).

To connect this theorem to algorithmic randomness, we must first frame it
as a statement about individual points in the space. While the definition of a
Birkhoff point arises naturally from Birkhoff’s ergodic theorem, weak Birkhoff
points are appropriate for a generalization of Birkhoff’s ergodic theorem for
measure-preserving functions.

Definition 4. A point x ∈ X is a Birkhoff point for T with respect to a class
of sets C if for all E ∈ C,

lim
n→∞

|{i | i < n and T i(x) ∈ E}|
n

= μ(E).

A point x ∈ X is a weak Birkhoff point for T with respect to a class of sets C if
for all E ∈ C, the above limit simply exists.

We can now consider a theorem template; note that in order to state such a
theorem precisely, we must include the type of transformation under consider-
ation (ergodic or measure preserving) and the class of sets under consideration
(computable or lower semicomputable).

Theorem template 1. A point is a (weak) Birkhoff point for computable
T with respect to sets if and only if it is random.

We synthesize the known results in Table 1.
We now turn our attention to differentiability and convergence of Fourier

series; differentiability is considered in more depth in this context by Porter in
[24]. We again have a theorem template, and in these cases, we only need to
know what sort of functions we are considering the differentiability of or the
Fourier series of.
2 The reader may have noted that we are working in a general computable probability

space rather than the Cantor space. This is possible because any computable proba-
bility space is isomorphic to the Cantor space in every relevant way and our notions
of randomness transfer naturally [13].

224 J. N. Y. Franklin

Table 1. Birkhoff’s ergodic theorem and randomness

Transformation

Ergodic Measure-preserving

Computable Schnorr [12] Martin-Löf [11,31]

Lower semicomputable Martin-Löf [2,7] ?

Theorem template 2. Every computable function f is differentiable at
z ∈ [0, 1] if and only if z is random.

Theorem template 3. Every computable function f ’s Fourier series
converges at t0 if and only if t0 is random.

Brattka, J. Miller, and Nies proved that each computable nondecreasing func-
tion f : [0, 1] → R is differentiable at a point z if and only if z is computably
random and that each computable function f : [0, 1] → R of bounded variation
is differentiable at a point z if and only if z is Martin-Löf random [3]; Rute has
a similar result for Schnorr randomness that is more complicated to state [25].
Later, Franklin, McNicholl, and Rute proved that the convergence of a Fourier
series for a computable function f in Lp[−π, π] at a point t0 is essentially equiv-
alent to the Schnorr randomness of t0 [8].3

Both Schnorr randomness and Martin-Löf randomness make repeated appear-
ances in this area; computable randomness has appeared less often. It does not
appear that Martin-Löf randomness is primary in this context, and in fact Rute
has argued that Schnorr randomness “stands out” as having “very strong connec-
tions to constructive and computable measure theory” ([26], p. 60).

4 Conclusion

It seems clear that Martin-Löf randomness does not hold the primacy of place in
the context of algorithmic randomness that Turing functionals do in the context
of basic computability. While Turing functionals are by far the most useful kind
in classical computability theory, it seems that the same is not true for Martin-
Löf random sequences in algorithmic randomness. While Martin-Löf randomness
is straightforwardly defined in all the frameworks we consider and Martin-Löf
random sequences can be decomposed or combined into other Martin-Löf random
sequences as expected, it lacks the desired computational weakness and certainly
does not stand out in the context of applications to computable analysis.

This suggests that giving a formal definition of Martin-Löf randomness is not
the correct way to complete our statement S. It does not seem, though, that a for-
mal definition of any other randomness notion would be correct, either: there is

3 There is a subtlety in this result in that an incomputable function may be computable
as a vector, hence the “essentially.”

A Church-Turing Thesis for Randomness? 225

no more consistent evidence for any of the other notions we’ve discussed. There-
fore, one of the most important forms of evidence for the Church-Turing thesis
is missing in the context of algorithmic randomness, and we cannot reasonably
provide an equivalent version for this context.

I suggest that this failure is due to the fact that randomness is a higher-order
property than computability. To define a randomness notion formally, we need
to state the level of computability of the measures of the test components, the
measures of the prefix-free machines, or the martingales and we may need to
consider the martingale’s rate of growth. Porter presents an excellent analysis of
the ingredients of a formal definition of a randomness notion in [23]: each defi-
nition must have a hallmark of randomness, a collection of underlying resources,
and an implementation of these resources. With so many factors in play, it seems
unlikely that we will ever have consensus around a version of the Church-Turing
thesis for algorithmic randomness.

References

1. Bauwens, B.: Uniform van Lambalgen’s theorem fails for computable randomness.
ArXiv e-prints (2015)

2. Bienvenu, L., Day, A., Mezhirov, I., Shen, A.: Ergodic-type characterizations of
algorithmic randomness. In: Ferreira, F., Löwe, B., Mayordomo, E., Mendes Gomes,
L. (eds.) CiE 2010. LNCS, vol. 6158, pp. 49–58. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-13962-8 6

3. Brattka, V., Miller, J.S., Nies, A.: Randomness and differentiability. Trans. Amer.
Math. Soc. 368(1), 581–605 (2016)

4. Chaitin, G.J.: A theory of program size formally identical to information theory.
J. Assoc. Comput. Mach. 22, 329–340 (1975)

5. Downey, R.G., Griffiths, E.J.: Schnorr randomness. J. Symbolic Logic 69(2), 533–
554 (2004)

6. Downey, R.G., Hirschfeldt, D.R.: Algorithmic Randomness and Complexity.
Springer, New York (2010)

7. Franklin, J.N., Greenberg, N., Miller, J.S., Ng, K.M.: Martin-Löf random points
satisfy Birkhoff’s ergodic theorem for effectively closed sets. In: Proceedings of the
American Mathematical Society, vol. 140, no. 10, pp. 3623–3628 (2012)

8. Franklin, J.N., McNicholl, T.H., Rute, J.: Algorithmic randomness and Fourier
analysis. Theory Comput. Syst. 63(3), 567–586 (2019)

9. Franklin, J.N., Ng, K.M.: Difference randomness. In: Proceedings of the American
Mathematical Society, vol. 139, no. 1, pp. 345–360 (2011)

10. Franklin, J.N., Stephan, F.: Van Lambalgen’s theorem and high degrees. Notre
Dame J. Formal Logic 52(2), 173–185 (2011)

11. Franklin, J.N., Towsner, H.: Randomness and non-ergodic systems. Mosc. Math.
J. 14(4), 711–744 (2014)

12. Gács, P., Hoyrup, M., Rojas, C.: Randomness on computable probability spaces–a
dynamical point of view. Theory Comput. Syst. 48(3), 465–485 (2011). https://doi.
org/10.1007/s00224-010-9263-x. http://dx.doi.org/10.1007/s00224-010-9263-x

13. Hoyrup, M., Rojas, C.: Computability of probability measures and Martin-Löf
randomness over metric spaces. Inform. Comput. 207(7), 830–847 (2009). https://
doi.org/10.1016/j.ic.2008.12.009. http://dx.doi.org/10.1016/j.ic.2008.12.009

https://doi.org/10.1007/978-3-642-13962-8_6
https://doi.org/10.1007/s00224-010-9263-x
https://doi.org/10.1007/s00224-010-9263-x
http://dx.doi.org/10.1007/s00224-010-9263-x
https://doi.org/10.1016/j.ic.2008.12.009
https://doi.org/10.1016/j.ic.2008.12.009
http://dx.doi.org/10.1016/j.ic.2008.12.009

226 J. N. Y. Franklin

14. Kučera, A.: Measure, π0
1 , -classes and complete extensions of PA. In: Ebbinghaus,

H.-D., Müller, G.H., Sacks, G.E. (eds.) Recursion Theory Week. LNM, vol. 1141,
pp. 245–259. Springer, Heidelberg (1985). https://doi.org/10.1007/BFb0076224

15. van Lambalgen, M.: The axiomatization of randomness. J. Symbolic Logic 55(3),
1143–1167 (1990)

16. Levin, L.A.: Some Theorems on the Algorithmic Approach to Probability Theory
and Information Theory. Ph.D. thesis, Moscow University (1971)

17. Levin, L.A.: Laws on the conservation (zero increase) of information, and questions
on the foundations of probability theory. Problemy Peredači Informacii 10(3), 30–
35 (1974)

18. Lévy, P.: Téorie de l’Addition des Variables Aléatoires. Gauthier-Villars, Paris
(1937)

19. Martin-Löf, P.: The definition of random sequences. Inf. Control 9, 602–619 (1966)
20. Miyabe, K.: Truth-table Schnorr randomness and truth-table reducible random-

ness. MLQ Math. Log. Q. 57(3), 323–338 (2011). https://doi.org/10.1002/malq.
200910128. http://dx.doi.org/10.1002/malq.200910128

21. Miyabe, K., Rute, J.: van Lambalgen’s theorem for uniformly relative Schnorr and
computable randomness. In: Downey, R., et al. (eds.) Proceedings of the Twelfth
Asian Logic Conference, pp. 251–270. World Scientific (2013)

22. Nies, A.: Computability and Randomness. Clarendon Press, Oxford (2009)
23. Porter, C.P.: The equivalence of definitions of algorithmic randomness. Philosophia

Mathematica To appear
24. Porter, C.P.: On analogues of the Church-Turing thesis in algorithmic ran-

domness. Rev. Symb. Log. 9(3), 456–479 (2016). https://doi.org/10.1017/
S1755020316000113. https://doi.org.ezproxy.hofstra.edu/10.1017/S175502031600
0113

25. Rute, J.: Topics in Algorithmic Randomness and Computable Analysis. Ph.D.
thesis, Carnegie Mellon University (2013)

26. Rute, J.: Algorithmic randomness and computable measure theory. In: Franklin,
J.N., Porter, C.P. (eds.) Algorithmic Randomness: Progress and Prospects, pp.
58–114. Cambridge University Press, New York, NY (2020)

27. Schnorr, C.: A unified approach to the definition of random sequences. Math. Syst.
Theory 5, 246–258 (1971)

28. Schnorr, C.P.: Invarianzeigenschaften von Zufallsfolgen. Zufälligkeit und
Wahrscheinlichkeit. LNM, vol. 218, pp. 83–88. Springer, Heidelberg (1971).
https://doi.org/10.1007/BFb0112470

29. Stephan, F.: Martin-Löf Random and PA-complete Sets. Tech. Rep. 58, Matema-
tisches Institut, Universität Heidelberg, Heidelberg (2002)

30. Turing, A.M.: Intelligent machinery. Tech. rep, National Physical Laboratory
(1948)

31. V′yugin, V.V.: Effective convergence in probability, and an ergodic theorem
for individual random sequences. Teor. Veroyatnost. i Primenen. 42(1), 35–50
(1997). https://doi.org/10.1137/S0040585X97975915. http://dx.doi.org/10.1137/
S0040585X97975915

https://doi.org/10.1007/BFb0076224
https://doi.org/10.1002/malq.200910128
https://doi.org/10.1002/malq.200910128
http://dx.doi.org/10.1002/malq.200910128
https://doi.org/10.1017/S1755020316000113
https://doi.org/10.1017/S1755020316000113
https://doi.org.ezproxy.hofstra.edu/10.1017/S1755020316000113
https://doi.org.ezproxy.hofstra.edu/10.1017/S1755020316000113
https://doi.org/10.1007/BFb0112470
https://doi.org/10.1137/S0040585X97975915
http://dx.doi.org/10.1137/S0040585X97975915
http://dx.doi.org/10.1137/S0040585X97975915

Probabilistic Models of k-mer Frequencies
(Extended Abstract)

Askar Gafurov, Tomáš Vinař, and Broňa Brejová(B)

Faculty of Mathematics, Physics, and Informatics, Comenius University,
Mlynská dolina, 842 48 Bratislava, Slovakia

{askar.gafurov,tomas.vinar,bronislava.brejova}@fmph.uniba.sk

Abstract. In this article, we review existing probabilistic models for
modeling abundance of fixed-length strings (k-mers) in DNA sequenc-
ing data. These models capture dependence of the abundance on various
phenomena, such as the size and repeat content of the genome, heterozy-
gosity levels, and sequencing error rate. This in turn allows to estimate
these properties from k-mer abundance histograms observed in real data.
We also briefly discuss the issue of comparing k-mer abundance between
related sequencing samples and meaningfully summarizing the results.

Keywords: k-mer abundance · DNA sequencing · Genome size

1 Introduction

Rapid growth of the volume and complexity of available DNA sequencing data
encourages research into efficient algorithms and data structures. A very fruitful
approach is to represent individual sequences (usually sequencing reads) as sets
of their subwords of a fixed length k called k-mers.

Many efficient methods, both exact and approximate, were developed for
counting the occurrences of all k-mers in large sequencing datasets [9]. However,
the focus has lately shifted to representing the sets of constituent k-mers without
the abundance counts [3]. This leads to reduced memory requirements, allowing
representation of large collections of data sets [11]. This capability is important
in the field of pangemomics, with its focus on replacing a single reference genome
with a collection of individual genomes, often represented in the form of a graph
built from k-mers occurring in these genomes [25].

In this paper, however, we focus on k-mer abundance. Abundances are clearly
essential for studying transcript abundance in RNA-seq data or large-scale copy
number variation [12,18]. However, usefulness of k-mer abundance information
is not limited to these applications, but can also be used to assess fundamental
properties of newly sequenced genomes.

To demonstrate this point, we review existing probabilistic models of k-mer
abundance, which can be used to estimate genome size and other properties
based on a very succinct summary of the data set—the histogram of k-mer abun-
dance. In Sect. 2, we define k-mer abundance and its spectrum. In Sect. 3, we
c© Springer Nature Switzerland AG 2021
L. De Mol et al. (Eds.): CiE 2021, LNCS 12813, pp. 227–236, 2021.
https://doi.org/10.1007/978-3-030-80049-9_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80049-9_21&domain=pdf
https://doi.org/10.1007/978-3-030-80049-9_21

228 A. Gafurov et al.

outline probabilistic models for capturing various genome and read set proper-
ties, including genome size, repeat content, heterozygosity, and sequencing error
rate. Finally, in Sect. 4, we concentrate on comparing k-mer abundances in two
different datasets and summarizing the results in a meaningful way.

2 Preliminaries

A k-mer is a string of a length k over a given finite alphabet Σ; in this paper we
consider the DNA alphabet Σ = {A,C,G, T}. We say that a k-mer w matches a
sequence S at position �, if w is equal to the substring of S of length k starting
at position �. The number of matching positions of the k-mer w in the sequence
S is called the abundance of w in S.

Given a sequence S, we define an absolute k-mer spectrum of S as the func-
tion hS,k : N → N, where hS,k(j) is the number of k-mers that have absolute
abundance in S equal to j. If we normalize the absolute k-mer spectrum so that
the sum of all values is one, we obtain the relative k-mer spectrum of S, which
we denote hrS,k. These definitions can be easily extended from a single string S
to (multi)sets of strings, such as the set of chromosomes in a known genome or
a set of sequencing reads.

For example, string S = ACTACGCG contains dimers CT , TA, and GC
once, and dimers AC and CG twice. Therefore, the absolute dimer spectrum
has values hS,2(1) = 3, hS,2(2) = 2; the relative dimer spectrum has values
hrS,2(1) = 3/5, hrS,2(2) = 2/5. For j > 2, we have hS,2(j) = hrS,2(j) = 0.

Several variations of k-mers and their abundances were considered in the lit-
erature. For example, the quality-adjusted version of k-mer abundance takes into
account the probabilities of sequencing errors occurring at individual positions
in the sequencing reads, which are typically available in the form of base quality
scores. Each occurrence of a k-mer thus can be weighted by the probability that
this occurrence is indeed correct [5,7].

The notion of canonical k-mers helps to handle the double-stranded struc-
ture of DNA molecules. Both strands are usually sequenced with roughly equal
probability, and therefore, it is not necessary to distinguish between a k-mer and
its reverse complement. The canonical representation of a k-mer w is the lexi-
cographically smaller string among w and its reverse complement. The absolute
abundance of a canonical k-mer is defined as the sum of the absolute abundances
of the k-mers it represents. While most canonical k-mers represent two k-mers,
for even k there are 4k/2 palindromic canonical k-mers that represent only one
k-mer. To avoid this unevenness, it is common to use only odd values of k for
canonical representations.

Finally, spaced k-mers are motifs over an extended DNA alphabet Σ =
{A,C,G, T,N}, where N stands for a “blank” or “don’t care” nucleotide
[1,15,22]. We say that a spaced k-mer w matches sequence S at position �,
if the substring of S of length k starting at position � agrees with w at all non-
blank positions. We can consider abundances of all spaced k-mers that have
blank symbols at predefined locations. The main advantage of spaced k-mers

Probabilistic Models of k-mer Frequencies 229

is a smaller dependence between k-mer occurrences at adjacent positions of a
sequence, resulting in a smaller variance of statistics used in phylogeny [15].

3 Models of k-mer Spectra

Spectra of k-mer abundance represent a very compact summary of large sequenc-
ing data sets. Assuming that genome sequencing can be modeled as a stochastic
process, the corresponding k-mer spectrum will reflect important properties of
the genome, such as its size, repeat content, the level of heterozygosity in diploid
genomes, and will also depend on the parameters of the sequencing process, such
as the length of sequencing reads, error rate, or sequencing biases.

All of these factors make modeling k-mer spectra an interesting problem.
In particular, given basic parameters of the genome and the sequencing pro-
cess, collectively denoted as θ, we would like to predict the corresponding k-mer
spectrum hrθ.

Such a model can then be used to interpret observed spectrum hr. In partic-
ular, our goal is to find parameters θ, for which the predicted k-mer spectrum
hrθ will be as close as possible to the observed k-mer spectrum hr. This is typi-
cally done by searching for θ∗ minimizing a loss function, such as cross-entropy
−∑

i hr(i) log hrθ∗(i) or L2-norm
∑

i(hr(i)−hrθ∗(i))2. Both criteria can be opti-
mized by general-purpose optimization algorithms supporting box constraints on
parameter values, such as L-BFGS-B [29], and this process is typically very effi-
cient due to the compact data representation.

In this way, just based on the observed k-mer spectrum, one can estimate key
parameters of an unknown genome, such as the genome size, without attempt-
ing a complex process of genome assembly. Figure 1 shows 21-mer spectra for
Illumina reads produced from E. coli genome at 10× coverage and 2× coverage.
The model used to analyze this data set contained parameters for genome size,
sequencing errors, and a simple model of genome repeat content [6]. For high-
coverage data sets, low-abundance k-mers originating from sequencing errors are
clearly separable from correct k-mers, and thus an estimate of read coverage can
be obtained from the mode of the error-free k-mers (Fig. 1 left). For low-coverage
data sets such a task is no longer easy (Fig. 1 right).

In the rest of this section, we discuss models of k-mer spectra, incorporat-
ing a variety of parameters representing properties of genome sequences or the
sequencing process itself.

A simple model. In the simplest model, we assume that the target genome is
a single circular chromosome of length L with no repeating k-mers, starting
positions of N reads are sampled uniformly independently, the reads contain no
errors, and have the same length r. Under these assumptions, the probability that
a given read will cover a given k-mer from the genome is p = (r − k + 1)/L, and
thus the absolute abundance of each of the L k-mers from the genome is a random
variable from the binomial distribution with parameters N and p. A genome with
linear chromosomes behaves similarly, only k-mers near chromosome ends will

230 A. Gafurov et al.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
k-mer coverage

0

1e+06

2e+06

3e+06

k-
m

er
 c

ou
nt

1 2 3 4 5 6 7 8
k-mer coverage

0

500000

1e+06

1.5e+06

2e+06

k-
m

er
 c

ou
nt 0 1 >1

errors

1

>1

re
pe

at
s

Fig. 1. Absolute 21-mer spectrum of Illumina reads for the E. coli genome at coverage
10 (left) and 2 (right) shown in black, and the fit of a model including sequence repeats
and sequencing errors in colors. Data and model are taken from Hozza et al. [6]. (Color
figure online)

have a smaller probability of being covered by a read. If the read length is much
smaller than the chromosome lengths, this effect is negligible.

Given an observed k-mer spectrum (and assuming values N , k, and r are
known), we may therefore seek parameter p of the binomial distribution that
would well match the spectrum and then estimate the genome size L using the
value that corresponds to this value of p. Note that the binomial distribution
gives a non-zero probability to the event that a k-mer in a genome will be covered
by zero reads, but such k-mers are not included in our observed spectra. For low-
coverage data sets, we may need to account for this observation bias by using
a truncated binomial distribution. More precisely, let X be a variable from the
binomial distribution, and Y from the truncated distribution, where 0 cannot
be observed, then P (Y = k) = P (X = k)/P (X > 0).

In practice, the binomial distribution can be approximated by the Poisson
distribution [6,24] or replaced by more complex distributions to compensate
for unmodelled biases. These include the Gaussian distribution [4,7] and the
negative binomial distribution [26,27]. In the rest of this section, we discuss
extensions of this basic model that take into account important phenomena
influencing the observed spectra.

Modeling Genomic Repeats. A significant fraction of k-mers in real genomes
occurs in the genome more than once, due to the presence of transposons, simple
tandem repeats, and segmental duplications. Thus we have to consider the k-
mer spectrum of the genome itself, which is usually unknown. The absolute
abundance of a k-mer in a genome is usually referred to as its copy number. Under
the assumption of uniform sequencing, k-mers with higher copy numbers should
appear proportionally more frequently in sequencing data. The k-mer spectrum
of a read set can be thus represented as a mixture of simple distributions. Each
component of the mixture corresponds to a certain copy number and its weight is
defined by the relative genome spectrum. Therefore, a relative read set spectrum
model can be written as

hrR(j) =
∞∑

i=1

hrS(i) · φ(j; i, θ),

Probabilistic Models of k-mer Frequencies 231

Fig. 2. A theoretical spectrum of a genome with repeats. A genome with equal propor-
tions of 21-mers with copy numbers 1, . . . , 5 is modeled as a mixture of binomial dis-
tributions. Individual distributions scaled by their weights and the mixture are shown
as lines. The relative spectrum sampled from the mixture is shown as a light blue his-
togram. Single-copy regions of the genome have expected coverage 50 (a) and 5 (b).
(Color figure online)

where hrR is the relative read set spectrum, hrS is the relative genome spec-
trum, and φ(j; i, θ) is the probability of a k-mer with copy-number i and some
shared parameters θ having exactly j occurrences in the read set. The distribu-
tion φ(j; i, θ) can be modeled by one of the distributions discussed for modeling
genomes without repeats. For example, when using the (truncated) Poisson dis-
tribution, parameter λi for copy number i will have form λi = ic, where c is
a free parameter representing coverage of single-copy k-mers. At high coverage,
individual components of the mixture create clearly visible peaks in the relative
spectrum, but at lower coverage levels, these peaks get closer together and are
more difficult to identify (Fig. 2).

It remains to model the k-mer spectrum of an unknown genome. The simplest
option is to let the whole genome spectrum up to some maximum value be free
parameters estimated from the data [24,26,27]. However, this approach has a
high number of parameters, including some configurations that are not plausible.
For example, a fit of similar quality can be obtained by using copy numbers 1,
2, 3,. . . , or by lowering the baseline coverage and using copy numbers 2, 4,
6,. . . (assigning very low weights to odd copy numbers).

Another approach is to model copy numbers by a distribution, reducing
the number of free parameters. A popular choice is the Zeta (ζ) distribution,
which has only one free parameter, governing the shape [4,7]. It is also possible
to employ a hybrid technique, where the lowest copy-numbers are left as free
parameters and the rest is modeled as a simple parametric distribution [6].

Modeling Sequencing Errors. Sequencing errors heavily influence k-mer spectra
of a read set by lowering the coverage of the true genomic k-mers and creating
spurious k-mers, which typically have a low abundance (Fig. 1). One way to han-
dle this problem is to discard the lowest abundances from the spectrum and to
assume that higher abundances correspond to true k-mers [21,26,27]. Another
option is to include spurious k-mers explicitly in the model of the spectrum

232 A. Gafurov et al.

by a mixture model with two components corresponding to true and spurious
k-mers, respectively.

The distribution of spurious k-mers can be modeled as a parametric distribu-
tion without any interpretation and its weight can be also left as a free parameter
[4,7,24]. Another option is to use a simple substitution error model [6,13], which
assumes that every base has a probability ε to be sequenced incorrectly. Under
these assumptions, the probability of observing k-mer y when reading k-mer x is
equal to εs(1 − ε)k−s3−s, where s is the Hamming distance of x and y. If k-mer
x is read c times, the expected number of times we observe k-mer y is equal to
λs := cεs(1 − ε)k−s3−s. The resulting distribution is then a mixture of k + 1
distributions with means λs, where s goes from 0 to k.

Modeling Polyploid Genomes. Many organisms, including humans, are diploid,
meaning that they have two sets of homologous chromosomes. The heterozygous
sites in a diploid organism have two different alleles, producing two different
k-mers instead of one. Therefore, homozygous k-mers should have on average
twice the coverage of the heterozygous ones. This can be again represented as a
mixture model, in which the homozygous component has the coverage parameter
fixed as twice the coverage parameter of the heterozygous [4,26]. The weights of
these components are governed by a free parameter related to the heterozygosity
of the genome. The situation is more complex in organisms with higher ploidy,
where a single position occurs in more than two homologous chromosomes and
may contain more than two alleles [21].

4 Comparison of k-mer Frequencies Between Samples

The problem of differential analysis of sequencing samples arises in many areas:
identifying differences between two individuals [23], comparing cancer samples
with healthy tissues from the same individual [16], identification of differentially
expressed transcripts in RNA-seq samples [2,18], or comparing a control sam-
ple with the sample biochemically treated to enrich or deplete particular func-
tional elements (such as chromatin immunoprecipitation [14,28] or a treatment
by enzymes depleting telomeric sequences [19]).

Typically, one first aligns the reads from two or more samples to an assembled
genome or transcriptome reference and then identifies regions (genes, transcripts,
or sequence windows) with significant differences in read coverage between sam-
ples. Such alignment-first approaches work well assuming that we have a reli-
able reference sequence and that we are able to map the reads to the reference
uniquely. However, in cases where these conditions are violated, such approach
may fail. This may be because there is a structural difference between the refer-
ence and both sequenced samples or the reference may be improperly assembled
in some regions (such as highly repetitive regions).

In this section, we concentrate on a different approach that can at least par-
tially overcome these limitations by comparing abundances of individual k-mers
between two sequencing experiments instead of mapping the sequencing reads to

Probabilistic Models of k-mer Frequencies 233

the reference. Such approaches avoid potentially time-consuming alignment step,
but more importantly, they can handle repetitive regions where reads cannot be
reliably mapped and where even the assembly quality can be lower.

For example, if we sequence samples from two individuals, which share the
same expansion of a particular locus, but the number of repeats is different from
the reference sequence, the traditional reference-based methods would still iden-
tify this region and report a false positive, since both samples differ from the
reference. On the other hand, the alignment-free approach would correctly iden-
tify that there is no significant difference in the k-mer abundances corresponding
to that locus, and thus there is no reason to highlight this repeat.

In methods based on k-mer abundances, we first compare the abundances of
k-mers in the two sets and identify k-mers which are significantly underrepre-
sented in one of the read sets [2]. Only then the results are interpreted in the
context of the reference sequence, for example by mapping k-mers back to the
reference genome and identifying windows of the sequence that are significantly
enriched for the underrepresented k-mers.

The window-based interpretation of the results helps us to relate found win-
dows to annotated genome features, such as genes, and thus to assign them a
biological meaning, which would be difficult for individual unmapped k-mers.
Second, by requiring multiple underrepresented k-mers near each other, we filter
out many false positives, that is, individual k-mers that appear underrepresented
purely by chance. Conversely, considering whole windows allows us to avoid
potential problems with local assembly errors which introduce incorrect k-mers
to a window. If a window is sufficiently long, these will be compensated by the
remaining correct k-mers. Note that this approach is not completely alignment-
free, but the alignment to the reference is only used to interpret the results.
Therefore we call this an alignment-last approach. Note that this window-based
method is unsuitable when searching for very short differences, such as single
nucleotide polymorphisms.

To illustrate the advantages of alignment-last methods, we demonstrate their
simple application to a simulated dataset using chromosome IV of the yeast Sac-
charomyces cerevisiae as a starting point. We simulated two sequencing data sets
by selecting random substrings of length 100 and adding substitution errors with
probability 0.1% at each position. The control read set used the reference chro-
mosome as an underlying string, while the second, depleted set, was generated
from an underlying string featuring several large-scale deletions.

To simulate inaccuracies typical for draft genomes of newly sequenced species,
we used a draft assembly produced from simulated nanopore sequencing reads
by standard methods. This draft assembly has a single contig covering 99.8% of
the original chromosome IV and has 0.5% error rate.

In the baseline alignment-first method, we have mapped both read sets to
the draft assembly using Bowtie [8] and assigned the ratio between depleted
and control coverages to each base pair. Base pairs having this ratio lower than
a user-selected threshold are marked as depleted regions. In the k-mer based
alignment-last method, k-mer abundances were counted using Jellyfish [10].

234 A. Gafurov et al.

For each k-mer in the genome, ratio of abundance between the depleted and
control set was computed. The draft assembly was split into non-overlapping
100bp windows, and the score of each window was computed as the median
ratio of k-mers starting in this window. Windows having the score below a user-
selected threshold are then marked as depleted regions. The accuracy of each
method is summarized by using the area under curve (AUC) statistics.

Figure 3 (left) shows the results for depletion of a 6 kbp long unique sequence.
For such long unique sequences both methods can reliably identify the depleted
region even at small coverages. In Fig. 3 (right) we show the results for a more
complex case, where two retrotransposons and one duplicated region of lengths
between 6–7 Kbp were depleted. Here, alignment-last k-mer method shows clear
advantage over the baseline alignment-first method.

Fig. 3. Comparison of searching for depleted regions either by the alignment-first base-
line method or by k-mer abundance in windows of size 100 bp on simulated data sets.
On the left, the depleted region is a 6 kb long single-copy sequence, on the right, two
retrotransposons and one duplicated region of lengths 6–7 were depleted. We report
the AUC measure for different k-mer coverage levels averaged over five data sets.

5 Conclusion

In this paper, we summarized techniques used in various published models of
k-mer spectra. Although the models cover many phenomena influencing k-mer
abundance, some issues still remain to be explored. One example is the influence
of GC content on read coverage, which is taken into account in RNA-seq studies
[17]. More complex errors models, taking into account indels and context biases
would also be appropriate, particularly for third-generation sequencing data.

An important practical issue involves DNA molecules that are present in cells
in high copy numbers, leading to increased read coverage in sequencing. Exam-
ples include mitochondrial genomes in eukaryotes and plasmids in prokaryotes.
Repeat-aware models consider such molecules as repeats present in many copies
and thus inflate the estimated genome size. Pflug et al. filter out mitochondrial
reads before applying k-mer models for genome size estimation [20], but perhaps
a simple model of these short chromosomes could be incorporated instead.

Probabilistic Models of k-mer Frequencies 235

Finally, it would be worthwhile to apply abundance models developed for
k-mer spectra to the task of read set comparison.

Acknowledgments. Our research was supported by grants from the Slovak Research
and Development Agency APVV-18-0239, the Scientific Grant Agency VEGA
1/0463/20 to BB and VEGA 1/0458/18 to TV, the European Union’s Horizon 2020
research and innovation program (PANGAIA project #872539 and ALPACA project
#956229) and Comenius University Grant UK/278/2020 to AG.

References

1. Břinda, K., Sykulski, M., Kucherov, G.: Spaced seeds improve k-mer-based metage-
nomic classification. Bioinformatics 31(22), 3584–3592 (2015)

2. Chan, C.K.K., et al.: A differential k-mer analysis pipeline for comparing RNA-seq
transcriptome and meta-transcriptome datasets without a reference. Funct. Integr.
Genomics 19(2), 363–371 (2019)

3. Chikhi, R., Holub, J., Medvedev, P.: Data structures to represent sets of k-long
DNA sequences. arXiv preprint arXiv:1903.12312 (2019)

4. Chikhi, R., Medvedev, P.: Informed and automated k-mer size selection for genome
assembly. Bioinformatics 30(1), 31–37 (2014)

5. Comin, M., Leoni, A., Schimd, M.: Clustering of reads with alignment-free mea-
sures and quality values. Algorithms Mol. Biol. 10(1), 4 (2015)

6. Hozza, M., Vinař, T., Brejová, B.: How big is that genome? Estimating genome
size and coverage from k -mer abundance spectra. In: Iliopoulos, C., Puglisi, S.,
Yilmaz, E. (eds.) SPIRE 2015. LNCS, vol. 9309, pp. 199–209. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-23826-5 20

7. Kelley, D.R., Schatz, M.C., Salzberg, S.L.: Quake: quality-aware detection and
correction of sequencing errors. Genome Biol. 11(11), R116 (2010)

8. Langmead, B., Trapnell, C., Pop, M., Salzberg, S.L.: Ultrafast and memory-efficient
alignment of short DNA sequences to the human genome. Genome Biol. 10(3), 1–10
(2009)

9. Manekar, S.C., Sathe, S.R.: Estimating the k-mer coverage frequencies in genomic
datasets: a comparative assessment of the state-of-the-art. Curr. Genomics 20(1),
2–15 (2019)

10. Marçais, G., Kingsford, C.: A fast, lock-free approach for efficient parallel counting
of occurrences of k-mers. Bioinformatics 27(6), 764–770 (2011)

11. Marchet, C., Boucher, C., Puglisi, S.J., Medvedev, P., Salson, M., Chikhi, R.: Data
structures based on k-mers for querying large collections of sequencing data sets.
Genome Res. 31(1), 1–12 (2021)

12. Marchet, C., Iqbal, Z., Gautheret, D., Salson, M., Chikhi, R.: REINDEER: efficient
indexing of k-mer presence and abundance in sequencing datasets. Bioinformatics
36(Supplement 1), i177–i185 (2020)

13. Melsted, P., Halldórsson, B.V.: KmerStream: streaming algorithms for k-mer abun-
dance estimation. Bioinformatics 30(24), 3541–3547 (2014)

14. Menzel, M., Hurka, S., Glasenhardt, S., Gogol-Döring, A.: NoPeak: k-mer-based
motif discovery in ChIP-Seq data without peak calling. Bioinformatics 37(5), 596–
602 (2020)

15. Morgenstern, B., Zhu, B., Horwege, S., Leimeister, A.A.: Estimating evolutionary
distances between genomic sequences from spaced-word matches. Algorithms Mol.
Biol. 10(1), 5 (2015)

http://arxiv.org/abs/1903.12312
https://doi.org/10.1007/978-3-319-23826-5_20

236 A. Gafurov et al.

16. Narzisi, G., et al.: Genome-wide somatic variant calling using localized colored de
Bruijn graphs. Commun. Biol. 1(1), 1–9 (2018)

17. Patro, R., Duggal, G., Love, M.I., Irizarry, R.A., Kingsford, C.: Salmon provides
fast and bias-aware quantification of transcript expression. Nature Methods 14(4),
417–419 (2017)

18. Patro, R., Mount, S.M., Kingsford, C.: Sailfish enables alignment-free isoform quan-
tification from RNA-seq reads using lightweight algorithms. Nature Biotechnol.
32(5), 462–464 (2014)

19. Peška, V., Fajkus, P., Fojtová, M., et al.: Characterisation of an unusual telomere
motif (TTTTTTAGGG)n in the plant Cestrum elegans (Solanaceae), a species
with a large genome. Plant J. 82(4), 644–654 (2015)

20. Pflug, J.M., Holmes, V.R., Burrus, C., Johnston, J.S., Maddison, D.R.: Measur-
ing genome sizes using read-depth, k-mers, and flow cytometry: methodological
comparisons in beetles (Coleoptera). G3: Genes Genomes Genet. 10(9), 3047–3060
(2020)

21. Ranallo-Benavidez, T.R., Jaron, K.S., Schatz, M.C.: GenomeScope 2.0 and
Smudgeplot for reference-free profiling of polyploid genomes. Nature Commun.
11(1), 1–10 (2020)

22. Röhling, S., Linne, A., Schellhorn, J., Hosseini, M., Dencker, T., Morgenstern, B.:
The number of k-mer matches between two DNA sequences as a function of k and
applications to estimate phylogenetic distances. Plos One 15(2), e0228070 (2020)

23. Shajii, A., Yorukoglu, D., William, Yu, Y., Berger, B.: Fast genotyping of known
SNPs through approximate k-mer matching. Bioinformatics 32(17), i538–i544
(2016)

24. Simpson, J.T.: Exploring genome characteristics and sequence quality without a
reference. Bioinformatics 30(9), 1228–1235 (2014)

25. The Computational Pan-Genomics Consortium: Computational pan-genomics: sta-
tus, promises and challenges. Briefings Bioinform. 19(1), 118–135 (2018)

26. Vurture, G.W., et al.: GenomeScope: fast reference-free genome profiling from short
reads. Bioinformatics 33(14), 2202–2204 (2017)

27. Williams, D., Trimble, W.L., Shilts, M., Meyer, F., Ochman, H.: Rapid quantifi-
cation of sequence repeats to resolve the size, structure and contents of bacterial
genomes. BMC Genomics 14(1), 537 (2013)

28. Zhang, Y., et al.: Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9(9),
1–9 (2008)

29. Zhu, C., Byrd, R.H., Lu, P., Nocedal, J.: Algorithm 778: L-BFGS-B: fortran sub-
routines for large-scale bound-constrained optimization. ACM Trans. Math. Softw.
23(4), 550–560 (1997)

Defining Formal Explanation in Classical
Logic by Substructural Derivability

Francesco A. Genco and Francesca Poggiolesi(B)

IHPST Université Paris 1 Panthéon-Sorbonne and CNRS,

13 Rue du Four, 75006 Paris, France

Abstract. Precisely framing a formal notion of explanation is a hard
problem of great relevance for several areas of scientific investigation such
as computer science, philosophy and mathematics. We study a notion of
formal explanation according to which an explanation of a formula F
must contain all and only the true formulae that concur in determin-
ing the truth of F . Even though this notion of formal explanation is
defined by reference to derivability in classical logic, the relation that
holds between the explained formula and the formulae explaining it has
a distinct substructural flavour, due to the fact that no redundancy is
admitted among the explaining formulae. We formalise this intuition and
prove that this notion of formal explanation is essentially connected, in
a very specific sense, to derivability in a substructural calculus.

Keywords: Formal explanation · Substructural logics · Proof theory

1 Introduction

Precisely framing a notion of explanation in formal contexts is a hard problem
of great relevance for several areas of scientific investigation, as, for instance,
computer science [10,12], philosophy [1,3], mathematics [9,19], and the natural
sciences [8,17]. A research line essentially concerned with the formal definition
and study of explanation relations is the one investigating the relation of log-
ical grounding. According to this approach, a multiset of formulae Δ formally
explains a complex formula F if Δ is a logical ground of F , that is, if F is true in
virtue of the truth of the elements of Δ. Several endeavours along these lines have
appeared in the contemporary literature, see, for instance, [4,5,13,14,16,18].

According to the strictest, and hence most informative, of these technical
notions of formal explanation [13,14], a formal explanation of a true statement
F must mention all and only the true statements that concur in determining
the truth of F . This characterisation is captured by two formal conditions on
the multiset Δ of explaining formulae. First, truth of the formulae in Δ must
determine the truth of F . Second, the multiset Δ of explaining formulae must
be a maximal multiset of, possibly negated, disjoint occurrences of subformulae

Supported by project IBS (ANR-18-CE27-0012-01).

c© Springer Nature Switzerland AG 2021
L. De Mol et al. (Eds.): CiE 2021, LNCS 12813, pp. 237–247, 2021.
https://doi.org/10.1007/978-3-030-80049-9_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80049-9_22&domain=pdf
https://doi.org/10.1007/978-3-030-80049-9_22

238 F. A. Genco and F. Poggiolesi

of the explained formula F . Even though this notion of formal explanation is
defined by reference to derivability in classical logic [13,15], the relation that
holds between the explained formula and the multiset of formulae explaining it
has a distinct substructural flavour, as discussed in [15]. In the present work we
present a study of the formal connection between derivability in substructural
logics and this notion of formal explanation.

Intuitively, the complexity constraints required to define this notion—which
now on we will simply call formal explanation—impose a strict correspondence
between the formulae occurring in the explanation and the syntactical parts of
the formula explained. A formal explanation, indeed, is supposed to mention
exactly those parts of the explained formula in virtue of which it is true, and no
redundancy is admitted. Since the substructural logics in which the rules of weak-
ening and contraction are not admissible can be seen as resource-aware reasoning
systems in which the usage of redundant or duplicated hypotheses is limited, this
feature of explanation raises the question whether there exists a substructural
logic for which it is possible to spell out a rigorous connection with the relation
of formal explanation. In the present work, we positively answer this question
by defining a suitable substructural calculus and formally proving its connection
with formal explanation. In order to do so, we define the substructural calculus
SL which can be either seen as a fragment of FLe (Full Lambek Calculus with
the Exchange rule) [6], or as a fragment of Linear Logic [7] extended by an axiom
for the lattice bottom ⊥.1 We then show that the relation of formal explanation
is essentially connected, in a very specific and formal sense, to derivability in SL.

The article is structured as follows. In Sect. 2, we define the notion of formal
explanation in the traditional way, that is, by employing derivability classical
logic. In Sect. 3, we present the substructural calculus SL that we will employ to
show the relationship between formal explanation and substructural derivability.
In Sect. 4, we show that formal explanation can be characterised by employing
derivability conditions formulated in the calculus SL. In Sect. 5, we conclude
with some remarks and a discussion of future work directions.

2 Formal Explanation

We present now the relation of formal explanation for classical logic formulae
as introduced in [13]. The language that we will employ for classical logic is the
following:

ϕ :: = ψ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ → ϕ | ¬ϕ

ψ :: = p1 | p2 | p3 . . .

where p1, p2, p3 . . . is a list of all the propositional variables of the language. In
the following, we will employ capital Latin letters as metavariables for formulae
and capital Greek letters as metavariables for multisets of formulae.
1 The symbol ⊥ is used in [7] for a weaker falsity constant which is often denoted by

0 in other works, see [11, p. 42] for a comparison table of different notations used
for linear logic. In SL, no constant corresponds to Girard’s constant 0.

Formal Explanation and Substructural Derivability 239

In order to introduce the relation of formal explanation, we have to define
some technical notions. We start from the converse of a formula.

Definition 1. For any natural number n, we indicate by ¬nA the formula
¬ . . . ¬A where A does not have ¬ as outermost connective and is preceded by a
sequence of n negations ¬.

For any formula A, the notation A∗ represents the converse of A:

– if A = ¬2nB then A∗ = ¬A
– if A = ¬2n+1B then A∗ = ¬2nB

For any multiset of formulae Γ , we denote by Γ ∗ the multiset {A∗ | A ∈ Γ}.
Notice in particular that, for any formula A, (A∗)∗ = A since ((¬2nB)∗)∗ =
(¬2n+1B)∗ = ¬2nB and ((¬2n+1B)∗)∗ = (¬2nB)∗ = ¬2n+1B.

We can now define the notion of explanatory subformulae of a formula (exp-
subformulae, for short). Intuitively, a set of exp-subformulae of a formula A
contains either a positive occurrence or a negative occurrence (formalised by the
notion of converse) of each maximal proper subformula of A the truth of which
determines the truth of A.2

Definition 2. The set of sets of exp-subformulae es(A) of a classical formula
A is defined as follows:

– es(B ∧ C) = es(B ∨ C) = es(B → C) = es(¬(B ∧ C)) = es(¬(B ∨ C)) =
es(¬(B → C)) = {{B,C}, {B,C∗}, {B∗, C}, {B∗, C∗}}

– es(p) = es(¬p) = ∅
– es(¬¬B) = {{B}, {B∗}}

We can finally define our notion of formal explanation for classical logic
formulae. In order to do so, we first introduce the relation of immediate formal
explanation, an instance of which intuitively corresponds to a basic step of expla-
nation which displays the immediate reasons why a formula is true. Then, we
introduce the relation of mediate formal explanation. This relation generalises
that of immediate formal explanation and captures the idea that the process
of explaining a statement can be iterated in order to find simpler and simpler
reasons for our original statement.

Definition 3. For any consistent multiset {C} ∪ Γ where C is a formula of
classical logic and Γ is a multiset of formulae of classical logic, we say that,
under the robust condition C (which might not occur), Γ is an immediate formal
explanation of A, in symbols [C]Γ � A, if and only if:

2 For the philosophical motivation behind the definition of exp-subformulae, see the
notion of g-subformulae in [13]. Notice also that the notion of g-subformula is closed
under commutativity and associativity of conjunction and disjunction. In the present
work, for the sake of simplicity, we omit this requirement. This, nevertheless, does
not imply a loss of generality since also the corresponding substructural connectives
⊗ and � of SL are commutative and associative.

240 F. A. Genco and F. Poggiolesi

– Γ 	 A (positive derivability),
– C,Γ ∗ 	 A∗ (negative derivability),
– {C} ∪ Γ is a set of exp-subformulae of A, see Definition 2.

where 	 indicates derivability in any system for classical logic.

The notion of mediate formal explanation can be defined as follows via the
notion of immediate formal explanation.

Definition 4. For any consistent multiset of classical formulae Γ ∪Δ and clas-
sical formula A, [Γ]Δ �m A if, and only if, one of the following conditions is
satisfied:

– [Γ]Δ � A
– [G]Δ′ � B and [Γ ′]Δ′′, B �m A where

• Δ = Δ′ ∪ Δ′′

• Γ = Γ ′ ∪ {G}.
As shown in [15, pp. 14–16], positive and negative derivability characterize

mediate formal explanation as well.

Proposition 1. For any classical formula A and pair of multisets of classical
formulae Γ and Δ, we have that if [Γ]Δ �m A holds, then Δ 	 A and Γ,Δ∗ 	 A∗.

Given Definition 3, it is possible to list all potential immediate formal expla-
nations for the complex formulae of classical logic.3 A complete enumeration of
all valid schemata of explanations of this kind is the following:

A, B � A ∧ B

A, B � A ∨ B [A∗]B � A ∨ B [B∗]A � A ∨ B

A∗, B � A → B [A]B � A → B [B∗]A∗ � A → B

A � ¬¬A

A∗, B∗ � ¬(A ∧ B) [A]B∗ � ¬(A ∧ B) [B]A∗ � ¬(A ∧ B)

A∗, B∗ � ¬(A ∨ B)

A, B∗ � ¬(A → B)

3 The Substructural Calculus

We introduce now the substructural calculus SL which will be used to show that
the derivability conditions defining formal explanations in classical logic can be
expressed in a substructural calculus.
3 We talk here of potential explanations because, in order to have an actual expla-

nation, we must also guarantee that all formulae occurring in the explanation are
true.

Formal Explanation and Substructural Derivability 241

The language that we will employ for the substructural calculus SL is the
following:

ϕ :: = ψ | ⊥ | ϕ ⊗ ϕ | ϕ � ϕ | ϕ � ϕ

ψ :: = p1 | p2 | p3 . . .

where p1, p2, p3 . . . is a list of all the propositional variables of the language.
The constant ⊥ for falsity corresponds to the lattice bottom, see [6, p. 83]

and [11, p. 42]; the connective ⊗ is the multiplicative conjunction;4 � is the
additive disjunction;5 and � is the multiplicative implication.

Rules and axioms of the substructural calculus SL are shown in Table 1.

Table 1. The substructural calculus SL

A ⇒ A Γ, ⊥ ⇒ C
Γ ⇒ AΔ, A ⇒ B

Γ, Δ ⇒ B
cut

Γ ⇒ AΔ ⇒ B
Γ, Δ ⇒ A ⊗ B

⊗r
Γ, A, B ⇒ C

Γ, A ⊗ B ⇒ C
⊗l

Γ ⇒ A
Γ ⇒ A � B

�r
Γ ⇒ B

Γ ⇒ A � B
�r

Γ, A ⇒ CΓ, B ⇒ C

Γ, A � B ⇒ C
�l

Γ, A ⇒ B

Γ ⇒ A � B
� r

Γ ⇒ AΔ, B ⇒ C

Γ, Δ, A � B ⇒ C
� l

The calculus SL can be directly seen as a fragment of FLe (Full Lambek
Calculus with the Exchange rule)—see, for instance, [6]. Otherwise, it is possible
to consider SL as a fragment of Linear Logic—see, for instance, [11]—to which
we add the axiom for the lattice bottom ⊥.

Definition 5. We define ∼ A as A � ⊥, and we introduce the following two
rules for ∼ by simplifying the rules for �:

Γ,A ⇒ ⊥
Γ ⇒∼ A

∼ r Γ ⇒ A
Γ,Δ,∼ A ⇒ C

∼ l

Notice that we omitted a premise of the form Δ,⊥ ⇒ C from the ∼ r rule since
this premise is always an axiom of the calculus.

We extend the definition of converse formula also for the language of SL.

Definition 6. For any formula A in the language of SL, the converse A∗ of A
is defined according to Definition 1 where instead of the classical negation ¬ we
use the substructural negation ∼.
4 The multiplicative conjunction is sometimes also called group-theoretical conjunction

[11].
5 The additive disjunction is sometimes also called lattice-theoretical disjunction [11].

This connective is often denoted by ∨, but here we reserve the symbol ∨ for the
disjunction of classical logic.

242 F. A. Genco and F. Poggiolesi

4 Formal Explanation by Substructural Proofs

We show that the positive and negative derivability conditions used to define the
formal explanation relation for classical logic can be expressed as derivability con-
ditions in SL. In order to do this, we interpret classical formulae as substructural
formulae according to the following recursive translation t:

t(A ∧ B) = t(A) ⊗ t(B)
t(A ∨ B) = t(A) � t(B) � (t(A) ⊗ t(B))

t(A → B) = t(¬A ∨ B) = ∼ t(A) � t(B) � (∼ t(A) ⊗ t(B))
t(¬A) = ∼ t(A)

For any multiset Γ of classical formulae, we denote by t(Γ) the multiset {t(A) |
A ∈ Γ} of substructural formulae.

The translations of conjunction and negation are self-explanatory. The case of
disjunction requires a clarification. Indeed, it is not enough to translate classical
disjunction ∨ by the substructural � because, while the multiset of formulae
{A,B} is a legitimate immediate formal explanation of A∨B, the substructural
sequent A,B ⇒ A � B is not derivable. This is due to the fact that the calculus
SL enables us to prove a complex formula only if we have the exact amount of
hypotheses required to introduce the outermost connective of the formula, and
not one hypothesis more. For A � B, in particular, we have that A ⇒ A � B
and B ⇒ A � B are derivable, but A,B ⇒ A � B is not, because, in the
latter sequent, one formula between A and B is redundant. In more conceptual
terms, if A and B are true, both formulae have to be mentioned in order to
provide the complete reason why A ∨ B is true, and hence both of them have
to be in the formal explanation of A ∨ B; from a substructural perspective, on
the other hand, using both A and B to obtain A � B is a waste of resources
and hence is not allowed. Therefore, in order to faithfully encode the behavior
of classical disjunction with respect to formal explanation in our substructural
calculus SL, we need to translate classical disjunction by a weakened version
of the substructural disjunction �. For similar reasons, we translate a classical
implication A → B via its traditional encoding as the classical formula ¬A ∨ B.

Before showing that the translation t enables us to formulate positive and
negative derivability as derivability in SL, we need to prove two propositions
concerning the converse relation.

Proposition 2. For any formula A and multiset Γ , the sequent Γ,A,A∗ ⇒ ⊥
is derivable.

Proof. By Definition 6, we have two cases: (i) A =∼2n B where B does not have
∼ as outermost connective, and (ii) A =∼2n+1 B, where B does not have ∼ as
outermost connective.

If (i), A∗ =∼ A and Γ,A,A∗ ⇒ ⊥ can be derived as shown below on the left.
If (ii), A∗ = (∼2n+1 B)∗ =∼2n B and Γ,A,A∗ ⇒ ⊥ can be derived as shown
below on the right.

Formal Explanation and Substructural Derivability 243

A ⇒ A
Γ,A,∼ A ⇒ ⊥ ∼ l

∼2n B ⇒∼2n B

Γ,∼2n+1 B,∼2n B ⇒ ⊥ ∼ l

Proposition 3. For any formula A, the sequent A∗ ⇒∼ A is derivable.

Proof. By Definition 6, we have two cases: (i) A =∼2n B where B does not have
∼ as outermost connective, and (ii) A =∼2n+1 B, where B does not have ∼ as
outermost connective.

If (i), A∗ =∼ A and A∗ ⇒∼ A is an axiom and hence derivable.
If (ii), A∗ = (∼2n+1 B)∗ =∼2n B and A∗ ⇒∼ A can be derived as follows:

∼2n B ⇒∼2n B

∼2n B,∼2n+1 B ⇒ ⊥ ∼ l

∼2n B ⇒∼2n+2 B
∼ r

Theorem 1. The positive and negative derivability conditions for formal expla-
nation in classical logic can be expressed as derivability conditions in SL.

Proof. Since the rules of SL are clearly sound with respect to classical logic, we
have that, if the conditions of positive and negative derivability are met with
respect to SL through the translation t, then they are also met with respect to
classical logic. Which means that if a suitably partitioned multiset of formulae
C,Γ,D verifies the complexity conditions of Definition 3 and its translation
enjoys positive and negative derivability in SL, then [C]Γ � D holds. Therefore,
in order to prove the statement it is enough to show that, if [C]Γ � D holds,
then the conditions of positive and negative derivability are met in SL for the
translation of the formulae C,D and of the multiset Γ . Hence, we consider all
valid instances of the formal explanation relation [C]Γ � D, we reason by cases
on the logical structure of the classical formula D, and we show in each case
that t(Γ) ⇒ t(D) and t(C), t(Γ)∗ ⇒ t(D)∗ are derivable sequents. We only show
some interesting cases.

– A,B � A ∨ B

Positive derivability:
A ⇒ A B ⇒ B
A,B ⇒ A ⊗ B

A,B ⇒ (A � B) � (A ⊗ B)
�r

Negative derivability:

A∗, B∗, A ⇒ ⊥ A∗, B∗, B ⇒ ⊥
A∗, B∗, A � B ⇒ ⊥ �l

A∗, B∗, A,B ⇒ ⊥
A∗, B∗, A ⊗ B ⇒ ⊥ ⊗l

A∗, B∗, (A � B) � (A ⊗ B) ⇒ ⊥ �l

A∗, B∗ ⇒∼ ((A � B) � (A ⊗ B))
∼ r

where, by Proposition 2, the sequents A∗, B∗, A ⇒ ⊥ and A∗, B∗, B ⇒ ⊥,
and the sequent A∗, B∗, A,B ⇒ ⊥ are derivable.

– [B∗]A � A ∨ B

Positive derivability:
A ⇒ A

A ⇒ A � B
�r

A ⇒ (A � B) � (A ⊗ B)
�r

244 F. A. Genco and F. Poggiolesi

Negative derivability:

B∗, A∗, A ⇒ ⊥ B∗, A∗, B ⇒ ⊥
B∗, A∗, A � B ⇒ ⊥ �l

B∗, A∗, A,B ⇒ ⊥
B∗, A∗, A ⊗ B ⇒ ⊥ ⊗l

B∗, A∗, (A � B) � (A ⊗ B) ⇒ ⊥ �l

B∗, A∗ ⇒∼ ((A � B) � (A ⊗ B))
∼ r

where, by Proposition 2, the sequents B∗, A∗, A ⇒ ⊥ and B∗, A∗, B ⇒ ⊥,
and the sequent B∗, A∗, A,B ⇒ ⊥ are all derivable.

– A � ¬¬A

Positive derivability:
A ⇒ A

A,∼ A ⇒ ⊥ ∼ l

A ⇒∼∼ A
∼ r

Negative derivability: we have to derive the sequent A∗ ⇒ (∼∼ A)∗. By
Definition 6, we have two cases: either A∗ = (∼2n B)∗ =∼ A and hence
(∼∼ A)∗ =∼∼∼ A; or A∗ = (∼2n+1 B)∗ =∼2n B and hence (∼∼ A)∗ =∼ A.
If A∗ =∼ A and (∼∼ A)∗ =∼∼∼ A, we have the derivation below on the left.
If A∗ = (∼2n+1 B)∗ =∼2n B and hence (∼∼ A)∗ =∼ A =∼2n+2 B, we have
the derivation below on the right.

∼ A ⇒∼ A
∼ A,∼∼ A ⇒ ⊥ ∼ l

∼ A ⇒∼∼∼ A
∼ r

∼2n B ⇒∼2n B

∼2n B,∼2n+1 B ⇒ ⊥ ∼ l

∼2n B ⇒∼2n+2 B
∼ r

– A∗, B∗ � ¬(A ∧ B)
Positive derivability: derivation below on the left. Negative derivability:
derivation below on the right.

A∗, B∗, A,B ⇒ ⊥
A∗, B∗, A ⊗ B ⇒ ⊥ ⊗l

A∗, B∗ ⇒∼ (A ⊗ B)
∼ r

(A∗)∗ ⇒ A (B∗)∗ ⇒ B

(A∗)∗, (B∗)∗ ⇒ A ⊗ B
⊗r

where, by Proposition 2, A∗, B∗, A,B ⇒ ⊥ is a derivable sequent; and, since
by Definition 6 we have that (A∗)∗ = A and (B∗)∗ = B, both sequents
(A∗)∗ ⇒ A and (B∗)∗ ⇒ B are derivable.

– A∗, B∗ � ¬(A ∨ B)

Positive derivability:

A∗, B∗, A ⇒ ⊥ A∗, B∗, B ⇒ ⊥
A∗, B∗, A � B ⇒ ⊥ �l

A∗, B∗, A,B ⇒ ⊥
A∗, B∗, A ⊗ B ⇒ ⊥ ⊗l

A∗, B∗, (A � B) � (A ⊗ B) ⇒ ⊥ �l

A∗, B∗ ⇒∼ ((A � B) � (A ⊗ B))
∼ r

where, by Proposition 2, the sequents A∗, B∗, A ⇒ ⊥ and A∗, B∗, B ⇒ ⊥,
and the sequent A∗, B∗, A,B ⇒ ⊥ are derivable.

Negative derivability:
(A∗)∗ ⇒ A (B∗)∗ ⇒ B

(A∗)∗, (B∗)∗ ⇒ A ⊗ B
⊗r

(A∗)∗, (B∗)∗ ⇒ (A � B) � (A ⊗ B)
�r

Formal Explanation and Substructural Derivability 245

where, since by Definition 6 we have that (A∗)∗ = A and (B∗)∗ = B , the
sequents (A∗)∗ ⇒ A and (B∗)∗ ⇒ B are derivable.

The previous proof also indicates that the other obvious choices of substructural
connectives would not be suitable to characterise immediate formal explanation.
Indeed, for additive conjunction � and multiplicative disjunction ⊕, positive
derivability does not hold since the leaves of the following derivations are not
derivable:

A,B ⇒ A A,B ⇒ B

A,B ⇒ A � B

A ⇒ A,B

A ⇒ A ⊕ B

Moreover, if we used the weaker falsity constant 0 instead of the lattice bottom
⊥, Proposition 2 would fail, because Γ, 0 ⇒ 0 with Γ �= ∅ is not derivable, and
thus the rule ∼ l would not be strong enough to prove what is required.

We show that the generalisation of immediate formal explanation into medi-
ate formal explanation preserves the embeddability of formal explanations in SL.

Theorem 2. The construction of mediate formal explanations in classical logic
preserves positive and negative derivability in the calculus SL.

Proof. Consider any valid instance [Γ]Δ �m A of the mediate formal expla-
nation relation. We show that the substructural sequents t(Δ) ⇒ t(A) and
t(Γ), t(Δ)∗ ⇒ t(A)∗ are derivable in SL.

According to Definition 4, the instance [Γ]Δ �m A is valid if, and only
if, it can be justified by a finite number of instances of the immediate formal
explanation relation. The proof is by induction on the number of instances of
the immediate formal explanation relation used to justify [Γ]Δ �m A.

In the base case, [Γ]Δ �m A itself is a valid instance [Γ]Δ � A of imme-
diate formal explanation and, by Theorem 1, we have that t(Δ) ⇒ t(A) and
t(Γ), t(Δ)∗ ⇒ t(A)∗ are derivable in SL.

Suppose now that [Γ]Δ �m A is justified by n > 1 instances of the immedi-
ate formal explanation relation. Suppose, moreover, that all instances of mediate
formal explanation that are justified by less than n instances of immediate for-
mal explanation correspond to sequents derivable in SL. We show that the SL
sequents t(Δ) ⇒ t(A) and t(Γ), t(Δ)∗ ⇒ t(A)∗ are derivable as well.

If [Γ]Δ �m A is justified by n instances of the immediate formal explanation
relation, then, by Definition 4, we have that there is a valid immediate formal
explanation [G]Δ′ � B and a valid mediate formal explanation [Γ ′]Δ′′, B �m A
which is justified by less than n instances of the immediate formal explanation
relation. Moreover, it holds that Δ = Δ′ ∪ Δ′′ and Γ = Γ ′ ∪ {G}. By induction
hypothesis, we have that the pair of sequents t(Δ′) ⇒ t(B) and t(Δ′′), t(B) ⇒
t(A), and the pair of sequents t(G), t(Δ′)∗ ⇒ t(B)∗ and t(Γ ′), t(Δ′′)∗, t(B)∗ ⇒
t(A)∗ are derivable in SL. By applying the cut rule, we can obtain the desired
derivation of t(Γ), t(Δ) ⇒ t(A):

t(Δ′) ⇒ t(B) t(Δ′′), t(B) ⇒ t(A)
t(Δ′), t(Δ′′) ⇒ t(A)

cut

246 F. A. Genco and F. Poggiolesi

since t(Δ) = t(Δ′) ∪ t(Δ′′); and the desired derivation of t(Γ), t(Δ)∗ ⇒ t(A)∗:

t(G), t(Δ′)∗ ⇒ t(B)∗ t(Γ ′), t(Δ′′)∗, t(B)∗ ⇒ t(A)∗

t(G), t(Γ ′), t(Δ′)∗, t(Δ′′)∗ ⇒ t(A)∗
cut

since t(Δ)∗ = t(Δ′)∗ ∪ t(Δ′′)∗ and t(Γ) = t(Γ ′) ∪ t(G).

Since formal explanations are often associated with analytic proofs [16], we
also prove that formal explanations in classical logic can always be represented
as analytic SL derivations.

Corollary 1. Formal explanations in classical logic can be represented as cut-
free SL derivations.

Proof. Since cut-elimination holds for SL, see, for instance, [2, p. 213], we have
that for each SL derivation used in Theorem 2, there is a cut-free SL derivation
with the same end-sequent.

5 Conclusions

We have fully characterised the notion of immediate formal explanation for clas-
sical logic by the substructural calculus SL, which is both a fragment of FLe
(Full Lambek Calculus with the Exchange rule) and a fragment of Linear Logic
extended by an axiom for the lattice bottom. Moreover, we have proved that the
notion of mediate formal explanation—that is, the transitive closure of imme-
diate formal explanation—preserves all relevant derivability conditions in SL
without the cut rule. Thus, we have showed that formal explanation, in general,
can be fully characterised by complexity constraints and by analytic derivabil-
ity in SL, without any reference to derivability in classical logic. This notion of
explanation, as a consequence, does not only have a substructural flavour, but is
actually rigorously connected in an essential way to substructural derivability.

A further question remains open, though. Indeed, we conjecture that instead
of defining mediate formal explanation as the transitive closure of immediate
formal explanation, it should be possible to define it in a direct way by deriv-
ability conditions formulated in SL and suitably adapted complexity conditions.
In order to prove this, since we already proved that mediate formal explanation
preserves positive and negative derivability in cut-free SL, it is enough to prove
that, if positive and negative derivability in SL hold for the translation of a suit-
able multiset of formulae Γ,Δ,A, then [Γ]Δ �m A holds as well. Even though
we conjecture that this is true, a formal proof of the result seems to require a
rather lengthy argument. We leave it, therefore, for future work.

References

1. Barnes, J. (ed.): The Complete Works of Aristotle. Princeton University Press,
Princeton (1984)

Formal Explanation and Substructural Derivability 247

2. Belardinelli, F., Jipsen, P., Ono, H.: Algebraic aspects of cut elimination. Studia
Logica Int. J. Symbolic Logic 77(2), 209–240 (2004)

3. Bolzano, B.: Theory of Science. Oxford University Press, Oxford(2014), translated
by Rolf George and Paul Rusnok

4. Correia, F.: Logical grounds. The review of symbolic logic 7(1), 31–59 (2014)
5. Fine, K.: Guide to Ground, pp. 37–80. Cambridge University Press, Cambridge

(2012)
6. Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated lattices: an algebraic

glimpse at substructural logics. Elsevier (2007)
7. Girard, J.Y.: Linear logic. Theor. Comput. Sci. 50(1), 1–101 (1987)
8. Hempel, C.G., Oppenheim, P.: Studies in the logic of explanation. Philos. Sci.

15(2), 135–175 (1948)
9. Mancosu, P.: Mathematical explanation: problems and prospects. Topoi 20(1), 97–

117 (2001)
10. Miller, T.: Explanation in artificial intelligence: insights from the social sciences.

Artif. Intell. 267, 1–38 (2019)
11. Paoli, F.: Substructural Logics: A Primer, vol. 13. Springer Science & Business

Media (2013). https://doi.org/10.1007/978-94-017-3179-9
12. Pearl, J., Mackenzie, D.: The book of why: the new science of cause and effect.

Basic Books, New York (2018)
13. Poggiolesi, F.: On defining the notion of complete and immediate formal grounding.

Synthese 193(10), 3147–3167 (2015). https://doi.org/10.1007/s11229-015-0923-x
14. Poggiolesi, F.: On constructing a logic for the notion of complete and immediate

formal grounding. Synthese 195(3), 1231–1254 (2016). https://doi.org/10.1007/
s11229-016-1265-z

15. Poggiolesi, F.: A proof-based framework for several types of grounding. Logique et
Analyse (2020)

16. Rumberg, A.: Bolzano’s concept of grounding (Abfolge) against the background of
normal proofs. Rev. Symbolic Logic 6(3), 424–459 (2013)

17. Salmon, W.C.: Four Decades of Scientific Explanation. University of Pittsburgh
Press, Pittsburgh (2006)

18. Schnieder, B.: A logic for because. Rev. Symbolic Logic 4(3), 445–465 (2011)
19. Steiner, M.: Mathematical explanation. Philos. Stud. Int. J. Philos. Analytic Tradit.

34(2), 135–151 (1978)

https://doi.org/10.1007/978-94-017-3179-9
https://doi.org/10.1007/s11229-015-0923-x
https://doi.org/10.1007/s11229-016-1265-z
https://doi.org/10.1007/s11229-016-1265-z

Dedekind Cuts and Long Strings of Zeros
in Base Expansions

Ivan Georgiev(B)

Department of Mathematics and Physics, Faculty of Natural Sciences,
University “Prof. D-r Asen Zlatarov”, 8010 Burgas, Bulgaria

ivandg@btu.bg

Abstract. In this paper, we study the complexity of irrational numbers
under different representations. It is well-known that they can be com-
putably transformed from one into another, but in general not subrecur-
sively (with respect to many natural subrecursive classes). Our present
focus is mainly on Dedekind cuts and base-b expansions in some base
b. There exists a simple algorithm, which converts the Dedekind cut of
an irrational number into its base-b expansion, but the opposite conver-
sion is not subrecursively possible. This is why we want to enforce some
natural conditions on the distribution of digits in the base-b expansion,
under which we can obtain low complexity of the Dedekind cut. Our
first theorem states that, for a subrecursive class S with natural closure
properties, the Dedekind cut of an irrational number will belong to S,
whenever its base-b expansion has only very small chunks of non-zero
digits, which can be generated by means of the class S. But much more
interesting is the case, when long strings of zero digits alternate with
long strings of non-zero digits. We give such an example, in which the
Dedekind cut does not belong to S, but after properly inserting zeros, its
complexity lowers to belong to S. We also give a construction of a real
number, which has similar long stretches of zeros, but whose Dedekind
cut can be made arbitrarily complex.

Keywords: Computable analysis · Irrational number representations ·
Dedekind cuts · Base expansions · Subrecursive classes

1 Introduction

One of the first directions in the development of computable analysis is the
study of different representations of the real numbers. Among them are the more
popular ones, such as Cauchy sequences, Dedekind cuts or base-b expansions, but
there are also many others, not so well-known, such as Hurwitz characteristics
or general sum approximations. From the point of view of computability, each of
these representations defines one and the same class of computable real numbers.
Moreover, restricted to irrational numbers, any two of them can be uniformly
transformed into one another. Our research is concerned with the complexity

c© Springer Nature Switzerland AG 2021
L. De Mol et al. (Eds.): CiE 2021, LNCS 12813, pp. 248–259, 2021.
https://doi.org/10.1007/978-3-030-80049-9_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80049-9_23&domain=pdf
http://orcid.org/0000-0002-2475-6086
https://doi.org/10.1007/978-3-030-80049-9_23

Dedekind Cuts and Long Strings of Zeros in Base Expansions 249

of these conversions. Our main question is: which conversions remain possible
if we disallow unbounded search? More formally, we study the computational
complexity of the representations of irrational numbers with respect to natural
subrecursive classes.

Among the pioneering papers in the area are Specker [13], Mostowski [10],
Lehman [9], Lachlan [8], which consider the class of primitive recursive functions.
Later the focus shifted to the class of functions computable in polynomial time,
for example, in Ko [2,3] and Labhalla and Lombardi [7]. More recently, ques-
tions about subclasses of the second Grzegorczyk class are studied by Skordev,
Weiermann and Georgiev [12] and Georgiev [1].

The present paper is a continuation of an extensive research, initiated by
Kristiansen [4,5], which aims to investigate all known representations of irra-
tional numbers and introduce many new ones in the complexity framework of
honest functions. More concretely, we focus on the interplay between Dedekind
cuts and base-b expansions in a fixed base b. Our first aim is to generalize some
positive results from [4,5] on Dedekind cuts of irrational numbers with sparse
non-zero base-b digits. Our next more ambitious aim is to better understand
the connections between the complexity of the Dedekind cut and the presence
of zeros in the base-b expansion. To our knowledge, these connections have not
been studied profoundly from the perspective of complexity theory. Our work
may be seen as providing tools for a more comprehensive treatment of the mat-
ter. We pose some concrete questions whose answers are far from obvious and
require technically involved arguments.

In more detail, for every irrational number α, we define the number α′ by
inserting infinitely many regular long strings of zeros in the base-b expansion of
α. For a subrecursive class S, we denote by SD the set of irrational numbers
with Dedekind cut in S. We prove that the implication α′ ∈ SD =⇒ α ∈ SD

does not hold by using a number α, constructed in [5]. Our conjecture is that
the converse implication α ∈ SD =⇒ α′ ∈ SD is also false, but here we only
construct a real number in support of the conjecture.

2 Preliminaries

Without loss of generality all irrational numbers we consider will be in (0, 1).
Any natural number b ≥ 2 will be called a base and the numbers in the set

{0, 1, . . . , b − 1} will be called base-b digits. For any base-b digit D we define the
complement digit D = b − 1 − D. For any finite sequence D1, D2, . . . , Dn of base-b
digits, we denote by (0.D1D2 . . . Dn)b the rational number

∑n
i=1 Dib

−i.

Definition 1. For an infinite sequence D1, D2, . . . of base-b digits, we will say
that (0.D1D2 . . .)b is the base-b expansion of the real number α if for all n ≥ 1

(0.D1D2 . . . Dn)b ≤ α < (0.D1D2 . . . Dn)b + b−n.

We identify the base-b expansion with the function Eα
b : N → {0, 1, . . . , b − 1},

such that

Eα
b (0) = 0, Eα

b (n) = Dn (for n ≥ 1).

250 I. Georgiev

Since the second inequality is strict, every real number α ∈ [0, 1) has a unique
base-b expansion and Eα

b is well defined.
If for some n we have α = (0.D1D2 . . . Dn)b with Dn �= 0, then α has a finite

base-b expansion and the number n is called the base-b length of α. If such an
n does not exist, then α has an infinite base-b expansion. It is well known that
if α is rational, then its base-b expansion is either finite or periodic (where the
period contains at least one non-zero digit).

Definition 2. For a real number α, the function Dα : Q → {0, 1} will be called
the Dedekind cut of α if Dα(q) = 0 for q < α and Dα(q) = 1 for q ≥ α.

For two functions φ, ψ we denote φ ≤E ψ (φ is elementary in ψ), if φ can
be generated from ψ and the initial elementary functions (constant 0, succes-
sor and projections) by composition and bounded primitive recursion. We say
that φ is elementary, if φ is elementary in the constant 0. Usually φ and ψ are
total functions of several arguments in N, but we also allow the integers Z and
the rationals Q under some fixed natural codings into N. As an example, we
can define an elementary ternary function digit : N × Q × N → Z, such that
digit0(q, b) is the integer part of q and for n ≥ 1, digitn(q, b) = Eq′

b (n), where
q′ is the fractional part of q.

For the purposes of this paper, a subrecursive class S is an efficiently enumer-
able class of total computable functions, which contains the elementary functions
and is closed under composition and bounded primitive recursion. A function f
is honest, if f(x) ≥ 2x, f(x + 1) ≥ f(x) for all x ∈ N and the graph of f
is elementary (more precisely, the characteristic function of the binary relation
f(x) = y is elementary). For any honest function f we define the jump f ′ of f
by iteration: f ′(x) = f(f(. . . f(x) . . .)) (x + 1 times) for all x ∈ N. It is not hard
to show that the jump f ′ is also honest and that if φ ≤E f , then φ(x) < f ′(x)
for all sufficiently large x.

For any subrecursive class S there exists an honest function f , such that
φ ≤E f for all φ ∈ S. Therefore, the jump f ′ /∈ S.

For full proofs of the above results see Sects. 2, 8 in [4]. See also [6] for more
details on honest functions and [11] on subrecursive classes. The reader interested
in computable real numbers and real functions should consult the introductory
textbook [14] on computable analysis.

For a subrecursive class S, we denote

SbE = { α ∈ (0, 1) \ Q | Eα
b ∈ S }, SD = { α ∈ (0, 1) \ Q | Dα ∈ S }.

A simple algorithm, which computes the base-b digits of α successively using less
than b calls to Dα for each digit, shows that Eα

b ≤E Dα (even uniformly in b)
and therefore SD ⊆ SbE . But as proven in Sect. 6 in [5], the inclusion is strict.

Lemma 1. Let q = m
n be a rational number, such that q ∈ (0, 1). Let b be a base

and (0.D1D2 . . .)b be the base-b expansion of q. Assume also that s ∈ N satisfies
bs ≥ n. If for some x the consecutive digits Dx+1, Dx+2, . . . , Dx+s are all equal to
0, then q has a finite base-b expansion of length ≤x. If they are all equal to 0,
then x = 0, m = bs − 1, n = bs.

Dedekind Cuts and Long Strings of Zeros in Base Expansions 251

The lemma gives an upper bound on the number of consecutive 0-s or 0-s
in case we know q has an infinite base-b expansion. Note that x = 0 is the only
possibility in the last case, because x > 0 implies n > bs.

3 Dedekind Cuts of Numbers with Sparse Non-zero
Digits

Our first theorem generalizes parts of Theorem 7.6 in [5] (and also Theorem 5.2
in [4] as a special case), where an irrational number with very sparse non-zero
base-b digits is shown to have an elementary Dedekind cut.

Let us fix a subrecursive class S and as in the previous section, let f be an
honest function, such that φ ∈ S implies φ ≤E f . Then the jump f ′ of f grows
faster than any function in S.

Theorem 1. Let b be any base and let the functions a, e, h : N → N satisfy the
following conditions: the graph of e is an S-relation, h ∈ S and for all i ∈ N:

0 < a(i + 1) = h(e(i)), e(i + 1) ≥ f ′(e(i)).

Let α =
∑∞

k=0 a(k)b−e(k) and assume α ∈ (0, 1). Then α ∈ SD.

Proof. Observe that e grows very fast so that e /∈ S, but the graph of e is an
S-relation. Note also that the assumption α ∈ (0, 1) is not essential, it is made
to be in agreement with the definition of SD. Let us take g(x) =

∑x
y=0 h(y).

Obviously, h(x) ≤ g(x) for all x ∈ N and g is non-decreasing. We also have
g ∈ S, because h ∈ S, thus we may choose i0, such that

e(i + 1) ≥ f ′(e(i)) > g(e(i)) + 2e(i) (1)

holds for all i ≥ i0. Using (1) we obtain

a(k + 1)b−e(k+1) = h(e(k))b−e(k+1) < bg(e(k))b−e(k+1) ≤ b−2e(k)−1

for all k ≥ i0 and this easily implies
∑∞

k=i+1 a(k)b−e(k) < b−e(i) for all i ≥ i0.
It follows that the series is indeed convergent. Moreover, by the same token

∞∑

k=i+1

a(k)b−e(k) < a(i + 1)b−e(i+1) + b−e(i+1)

= (h(e(i)) + 1) b−e(i+1) ≤ b−e(i+1)+g(e(i))

for all i ≥ i0. Note that the rational number qi =
∑i

k=0 a(k)b−e(k) has a finite
base-b expansion of length ≤ e(i) and we have

qi < α < qi + b−e(i+1)+g(e(i)).

Therefore the first e(i) base-b digits of α and qi coincide and then a long stretch
of zeros follows, more precisely, for all i ≥ i0

e(i) + 1 ≤ x ≤ e(i + 1) − g(e(i)) =⇒ Eα
b (x) = 0. (2)

252 I. Georgiev

Clearly its length grows very fast (indeed, for any function s ∈ S we have
e(i+1)−g(e(i))−e(i) ≥ s(e(i)) for all sufficiently large i). Since a(i+1) > 0, the
stretch of zeros is followed by at least one non-zero digit in the base-b expansion
of α. In particular, α is irrational and now we will describe an algorithm for the
Dedekind cut of α, which shows that α ∈ SD.

The input is a rational number q.

Step 1. Compute m,n such that q = mn−1 and n ≥ e(i0).
Step 2. Search for the unique i ≥ i0, such that e(i) ≤ g(n) + 2n < e(i + 1).
Step 3. Compute qi =

∑i
k=0 a(k)b−e(k).

Step 4. If q ≤ qi give output 0, otherwise give output 1. End of algorithm.

All the steps are formalizable in S. In Step 1 e(i0) is a fixed number and
can be used as a constant. In Step 2 the search for i is bounded as i < e(i).
Furthermore, g ∈ S and the graph of e is an S-relation, which allows to check
the two inequalities. In Step 3 we have e(k) ≤ g(n)+2n for all k ≤ i, thus we can
compute e(0), e(1), . . . , e(i) using the graph of e and also a(0), a(1), . . . , a(i),
since h ∈ S and a(k) = h(e(k −1)) for all non-zero k (think of a(0) as constant).
Therefore, we can also compute qi. Step 4 is obviously elementary in q and qi.

It remains to prove that the algorithm correctly computes the Dedekind cut
Dα of α. The easy case is when q ≤ qi, because obviously q ≤ qi < α and
Dα(q) = 0, which coincides with the output 0. Suppose now that qi < q. Then
the algorithm outputs 1 and we must prove that Dα(q) = 1. Assume by way
of a contradiction that Dα(q) = 0, so we have qi < q < α. We will prove the
inequality

e(i) + n ≤ e(i + 1) − g(e(i)).

Indeed, if n ≤ e(i) it follows easily from (1) and if n > e(i) we have

e(i) + g(e(i)) + n < g(n) + 2n < e(i + 1),

due to the choice of i and the fact that g is non-decreasing. Now using (2) we
obtain that the base-b digits of α in positions e(i)+1, e(i)+2, . . . , e(i)+n are all
equal to 0 and thus the same is true for q. But by Lemma 1 this is only possible
if q has a finite base-b expansion of length ≤e(i), because q has denominator n.
This clearly contradicts the strict inequalities qi < q < α and the fact that the
first e(i) base-b digits of qi and α coincide (thus qi ≤ q ≤ α implies q = qi). 	

Observe that intuitively (the base-b length of) a(k+1) = h(e(k)) is very small
compared to e(k+1) ≥ f ′(e(k)), because f ′ grows faster than any function in S.
For all sufficiently large k the base-b expansion of α is a concatenation of strings
of the following kind:

000000.............000000

a(k+1)
︷ ︸︸ ︷
∗ ∗ . . . ∗

↑ De(k)+1 De(k+1) ↑

Dedekind Cuts and Long Strings of Zeros in Base Expansions 253

and this is the reason why long stretches of zeros are followed by (relatively)
small chunks of non-zero digits. The examples from [5] are with h a constant,
but we can obtain many others, one for each choice of the function h ∈ S.

Now what happens if we allow longer parts of non-zero digits? The starting
point for our motivation will be the number α, defined in the last example on
page 22 in [5]. Besides long stretches of 0-s in positions [d2i, d2i+1) for all i, α
also has long stretches of 0-s in the remaining positions [d2i+1, d2i+2). Moreover,
the base-b expansion of α is elementary and Kristiansen gives a simple algorithm
to prove that the Dedekind cut of α is also elementary.

Our question is: is it possible to modify Theorem 1 in a proper way, so that
we could prove α ∈ SD by only assuming that Eα

b ∈ S and Eα
b (x) = 0 for all

x ∈ [d2i, d2i+1) and all i? In other words, can we prove α ∈ SD by only assuming
we have access to the base-b expansion of α and that α has consecutive long
strings of zeros? It turns out that the answer is negative (see Theorem 3 below).

In the example from [5], all digits of α in the remaining positions [d2i+1, d2i+2)
are equal to 0 and this is crucial to deduce that α ∈ SD. On the other hand, we
shall see in the next section that the remaining digits may constitute a number
of high complexity, but still we may have elementary Dedekind cut.

4 Dedekind Cuts of Numbers with Alternating Long
Strings of Zero and Non-zero Digits

Let again S be a subrecursive class and f be an honest functions, such that f ′

grows faster than any function in S. Below we will use a sequence d, such that
di+1 = f ′(di) for all i. We consider the intervals [di, di+1) as long, because one
cannot reach di+1 when having di by means of a function from S for sufficiently
large i. However, an easy modification of Lemma 4.7 in [5] shows that the graph
of d is elementary (since f ′ is honest).

Definition 3. For an arbitrary irrational number α we define α′ in the following
way:

Eα′
b (x) =

⎧
⎪⎨

⎪⎩

Eα
b (x), if x < d0,

0, if d2i ≤ x < d2i+1,

Eα
b (x′), if d2i+1 ≤ x < d2i+2,

where x′ = x −
∑

j≤i (d2j+1 − d2j).

In other words, a string of 0-s is inserted in the base-b expansion of α in positions
[d2i, d2i+1) for all i and the other base-b digits of α are properly shifted to the
right (the sum gives the number of added 0-s preceding the position x). Observe
that α′ is irrational, because its base-b expansion is neither finite, nor periodic.
Note also that Eα′

b ≤E Eα
b , which follows easily from the fact that the graph of d

is elementary. We can compute x′ elementarily in the last case, since x ≥ d2i+1.

254 I. Georgiev

Our aim is to explore the connection between the Dedekind cuts of α and α′.
In the next theorem we will show that the implication α′ ∈ SD =⇒ α ∈ SD is
not true.

In order to do that we turn to the construction from Theorem 5.3 in [5]. The
reader is invited to study the proof in [5] for better understanding of the rest of
the paper. We have two bases a, b and a prime factor p of a, such that p does
not divide b. An irrational number α = limi→∞ qi is constructed, where:

1. q2i = q2i+1 = p−1 + m1p
−bk1 + m2p

−bk2 + . . . + mip
−bki

with mi ∈ {−1, 1} and ki a very fast increasing sequence;
2. q2i can be computed elementarily in d2i;
3. the base-b expansions of q2i and α coincide in all positions less than d2i+2;
4. Eα

b is elementary and α /∈ SaE , so that α /∈ SD.

Theorem 2. The Dedekind cut of α′ is elementary, where α is the irrational
number, constructed in Theorem 5.3 in [5].

Proof. We will describe an algorithm to compute the Dedekind cut of α′, prove
its correctness and leave the reader to check that it is elementary (note that Eα′

b

is elementary, because so is Eα
b).

The input is a rational number q. We may assume q ∈ (0, 1).

Step 0. If q has an infinite base-b expansion proceed with Step 1. Otherwise,
compute the base-b length s of q and q̃ =

∑
j≤s Eα′

b (j)b−j . If q ≤ q̃ give output
0 and if q > q̃ give output 1.

Step 1. Compute m,n, such that q = mn−1 and n ≥ d0. Search for the unique
i, such that d2i ≤ n < d2i+2. Go to Step 2.

Step 2. Search for the least k < d2i, such that digitk(q, b) �= Eα′
b (k). If the

search is successful, return output 0 if digitk(q, b) < Eα′
b (k) and output 1 if

digitk(q, b) > Eα′
b (k). If the search is not successful proceed with Step 3.

Step 3. Check whether the following relation holds: d2i + n < d2i+1. If it is
true give output 1, otherwise go to Step 4.

Step 4. Compute d2i+1 and q2i (the sequence from [5]). Insert 0-s in the
base-b expansion of q2i in positions [d2j , d2j+1) for all j ≤ i to obtain q′

2i. Let
s = |q − q′

2i|. If s = 0 give output 1, otherwise: Search for the least y < s−1, such
that y = d2i+2 & by−1 < s−1. If the search is successful go to Step 5, if it is
not proceed with Step 6.

Step 5. Search for the least k < d2i+2, such that digitk(q, b) �= Eα′
b (k). If

the search is successful, give output 0 if digitk(q, b) < Eα′
b (k) and output 1 if

digitk(q, b) > Eα′
b (k). If the search is not successful give output 1.

Step 6. If q < q′
2i output 0, otherwise output 1. End of algorithm.

In Step 0 if q has a finite base-b expansion of length s, then clearly we need
to check only the first s base-b digits of α′. The output in Step 2 is obviously
correct when the search is successful.

Let us assume that d2i + n < d2i+1 in Step 3. On one hand by Lemma 1 at
least one base-b digit of q in positions d2i, . . . , d2i +n is different from 0. On the

Dedekind Cuts and Long Strings of Zeros in Base Expansions 255

other hand, α′ has base-b digit 0 in all positions in [d2i, d2i +n]. Thus q > α′ and
the output 1 is correct (after Step 2 the base-b expansions of q and α′ coincide
on all positions less than d2i).

In Step 4 we know that the first d2i+2 base-b digits of α and q2i coincide.
The same is true for α′ and q′

2i, because they are obtained by inserting 0-s in
the same positions (and of course in α′ more 0-s are inserted, but from position
d2i+2 onwards). Now s = 0 means q = q′

2i and therefore q and α′ coincide in
base b in all positions less than d2i+2. But d2i+2 + n < 2d2i+2 < d2i+3, thus
by Lemma 1 at least one base-b digit of q in positions [d2i+2, d2i+3) is not 0,
whereas α′ has only 0-s in the same positions. We conclude that q > α′ and the
output 1 is correct.

In Step 5, the search for y from Step 4 is successful, so we have computed
d2i+2. If the search for k is successful, the output is obviously correct. If it is
not, we can reason as in the case s = 0 to see that the output 1 is correct.

In Step 6, the search for y from Step 4 is unsuccessful and s ≥ b−d2i+2+1.
Indeed, if s < b−d2i+2+1 then d2i+2 ≤ bd2i+2−1 < s−1 and the search for y would
be successful. So we have s = |q − q′

2i| ≥ b−d2i+2+1, but this can only happen
when there is a position k < d2i+2 with digitk(q, b) �= digitk(q′

2i, b). Since q′
2i

and α′ coincide in all positions less than d2i+2 the output is correct. 	

Now we turn to the converse implication α ∈ SD =⇒ α′ ∈ SD, which
seems somewhat easier at first sight. Our conjecture is that it is also false, but
we do not have a proof yet. In the last theorem we will construct a number
α′

Q, such that α′
Q ∈ SbE , α′

Q /∈ SD and the base-b expansion of α′
Q has 0-s in

positions [d2i, d2i+1) for all i. Observe that if such a number α′
Q did not exist,

the implication would hold. Indeed, if α ∈ SD, then α ∈ SbE and therefore
α′ ∈ SbE and α′ by definition has 0-s in positions [d2i, d2i+1) for all i. So if the
real number in question did not exist, we would conclude α′ ∈ SD. We regard
this observation as evidence in support of the conjecture. We will again exploit
the sequence qi and its limit α from Theorem 5.3 in [5].

Theorem 3. There exists a number α′
Q, such that α′

Q ∈ SbE, α′
Q /∈ SD and

E
α′

Q

b (s) = 0 for all s ∈ [d2i, d2i+1) and all i.

Proof. The idea is the following: construct α′
N from the base-b expansion of α

by simultaneously inserting 0-s in all positions [d2i, d2i+1) with q2i < q2i .−2 and
0-s in all positions [d2i, d2i+1) with q2i ≥ q2i .−2. A diagonalization argument will
show that α′

N /∈ SD. Now to obtain α′
Q we add 1 to the last digit in each string

of 0-s in positions [d2i, d2i+1) with q2i ≥ q2i .−2. Clearly, each of these strings is
transformed into a string of 0-s and only a small portion of digits before the
string is altered. Moreover, we will see that the complexity of the Dedekind cut
does not change, because the added 1-s are sparse enough.

256 I. Georgiev

We begin by defining α′
N :

E
α′

N

b (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Eα
b (x), if x < d0,

0, if d2i ≤ x < d2i+1 & q2i < q2i .−2,

0, if d2i ≤ x < d2i+1 & q2i ≥ q2i .−2,

Eα
b (x′), if d2i+1 ≤ x < d2i+2,

where x′ = x −
∑

j≤i (d2j+1 − d2j). First of all E
α′

N

b is elementary: the graph
of d and Eα

b are elementary, q2i, q2i .−2 are elementary in x in the case d2i ≤ x.
Suppose now that Dα′

N ≤E f . Then it is rather straightforward to define a unary
function γ, such that γ ≤E f and for all i

γ(d2i+1) ≥ q2i ⇐⇒ q′
2i < α′

N , (3)

where q′
2i is obtained from q2i by inserting 0-s if q2j < q2j .−2 and 0-s if q2j ≥ q2j .−2

in positions [d2j , d2j+1) for all j ≤ i. Now the argument proceeds as in the proof
of clause (ii) in Theorem 5.3 in [5]. Since γ ≤E f , we can choose e, k, such that

γ(n) = U
(
μt ≤ fk(n)[T1(e, n, t)]

)

for all n. We also pick i, j, such that i = 〈e, j〉 and d2i+1 ≥ k, therefore by the
definition of q2i we have

q2i+2 < q2i ⇐⇒ γ(d2i+1) ≥ q2i+1 = q2i. (4)

Combining (3) and (4) gives:

q2i+2 < q2i ⇐⇒ q′
2i < α′

N .

Now if q2i+2 < q2i, then α′
N has 0-s in positions [d2i+2, d2i+3), but q′

2i duplicates
digits of q2i in the same positions and thus one of them is non-zero by an appli-
cation of Lemma 1. Since α′

N and q′
2i coincide in all positions less than d2i+2 we

obtain α′
N < q′

2i, which is a contradiction. The other case q2i+2 > q2i is handled
similarly. We conclude that the Dedekind cut of α′

N is not elementary in f and
thus α′

N /∈ SD. There are missing details here which are not hard to fill in.
We are ready to define α′

Q by the equality

α′
Q = α′

N +
∞∑

j=0

χ(j)b−d2j+1+1,

where χ(j) = 0 if q2j < q2j .−2 and χ(j) = 1 if q2j ≥ q2j .−2.

Firstly we give a sketch for an elementary algorithm to compute E
α′

Q

b (n):
given input n, compute i, such that d2i ≤ n < d2i+2. If n < d2i+1, output

E
α′

Q

b (n) = 0. Now let n ≥ d2i+1. If n is not “close” to d2i+2, E
α′

Q

b (n) = E
α′

N

b (n)

and if n is “close” to d2i+2, we can compute d2i+2 and E
α′

Q

b (n) is obtained

Dedekind Cuts and Long Strings of Zeros in Base Expansions 257

from E
α′

N

b (after adding b−d2i+2+1 if χ(i + 1) = 1). The formalization of this is
relatively easy. Lemma 1 gives a precise bound how “close” n must be.

Secondly we prove that the Dedekind cut of α′
Q does not belong to S. In

order to do this we will describe an algorithm, which shows that Dα′
N ≤E Dα′

Q .
Since we know that α′

N /∈ SD, this will imply α′
Q /∈ SD, which is what we need.

We only prove the correctness of the algorithm and again leave the reader to
check it is elementary.

Let us denote q′′
i =

∑
j<i χ(j)b−d2j+1+1 for i ∈ N.

The input of the algorithm is a rational number q. We assume q ∈ (0, 1).

Step 0. If q has an infinite base-b expansion proceed with Step 1. Otherwise,
compute q′ =

∑
j≤s E

α′
N

b (j)b−j , where s is the base-b length of q. If q ≤ q′ give
output 0 and if q > q′ give output 1.

Step 1. Find m,n, such that q = mn−1 and n ≥ d0. Go to Step 2.
Step 2. Compute the unique i, such that d2i ≤ n < d2i+2. Then compute

q̃i = q + q′′
i . Go to Step 3.

Step 3. Use the Dedekind cut of α′
Q to check if q̃i < α′

Q. If it is false, give
output 1. If it is true, go to Step 4.

Step 4. Check the inequality d2i + 2nbn < d2i+1. If it holds, give output 0.
Otherwise, go to Step 5.

Step 5. Compute d2i+1 and q̃i+1 = q + q′′
i+1. Use the Dedekind cut of α′

Q to
check q̃i+1 < α′

Q. If it is false, output 1. If it is true, output 0. End of algorithm.

The output in Step 0 is clearly correct in case q has a finite base-b expansion
of length s, because α′

N is irrational.
Note that both q̃i (in Step 2) and q̃i+1 (in Step 5) have infinite base-b expan-

sion, because so does q after Step 0.
In Step 3, case α′

Q ≤ q̃i, we have α′
Q ≤ q + q′′

i ≤ q +
∑∞

j=0 χ(j)b−d2j+1+1,
therefore α′

N ≤ q and the output 1 is correct.
Suppose the inequality in Step 4 holds and that the output 0 is wrong, that

is α′
N ≤ q. We also have q̃i < α′

Q after Step 3, hence

q̃i < α′
Q ≤ q +

∞
∑

j=0

χ(j)b−d2j+1+1 = q̃i +

∞
∑

j=i

χ(j)b−d2j+1+1 < q̃i + b−d2i+1+2.

Let us denote by n′ the denominator of q̃i. Clearly we have n′ ≤ nbd2i ≤ nbn.
By Lemma 1 we can choose j, such that j ∈ [d2i+1 − n′ − 1, d2i+1 − 2] and
digitj(q̃i, b) �= 0. It follows that for all s

s < d2i+1 − n′ − 1 =⇒ digits(q̃i, b) = digits(q̃i + b−d2i+1+2, b) = E
α′

Q

b (s).

On one hand, we know that the base-b expansion of α′
Q has only 0-s in positions

[d2i, d2i+1). Therefore, the same is true for q̃i in positions [d2i, d2i+1−n′ −2]. On
the other hand, we have [d2i, d2i + n′ − 1] ⊆ [d2i, d2i+1 − n′ − 2], according to
the inequalities d2i + 2n′ ≤ d2i + 2nbn < d2i+1 assumed in Step 4. Applying

258 I. Georgiev

again Lemma 1 we infer that q̃i has a finite base-b expansion, which contradicts
the assumption on q in Step 0. We conclude that the output 0 is correct.

If q̃i+1 ≥ α′
Q in Step 5, we have α′

Q ≤ q + q′′
i+1 ≤ q +

∑∞
j=0 χ(j)b−d2j+1+1,

therefore α′
N ≤ q and the output 1 is correct. Now let q̃i+1 < α′

Q and assume
the output 0 is wrong, that is α′

N ≤ q. Similarly to Step 4 we have

q̃i+1 < α′
Q ≤ q +

∞∑

j=0

χ(j)b−d2j+1+1 < q̃i+1 + b−d2i+3+2.

Let us denote by n′′ the denominator of q̃i+1. By applying Lemma 1 in the same
way as in Step 4, we obtain that for all s

s < d2i+3 − n′′ − 1 =⇒ digits(q̃i+1, b) = digits(q̃i+1 + b−d2i+3+2, b) = E
α′
Q

b (s).

Since α′
Q has 0-s in positions [d2i+2, d2i+3) in its base-b expansion, q̃i+1 also has

0-s in positions [d2i+2, d2i+3−n′′−2]. Now n′′ is the product of the denominators
of q and q′′

i+1 and n < d2i+2, therefore:

d2i+2 + 2n′′ + 1 < d2i+2 + 2n · bd2i+1 + 1
< d2i+2 + 2d2i+2 · f(f(d2i+1)) + 1

< d2i+2 + 2d2i+2 · f ′(d2i+1) + 1 = 2d2i+2
2 + d2i+2 + 1

< 3d2i+2
2 ≤ f(f(d2i+2)) < f ′(d2i+2) = d2i+3.

So we have [d2i+2, d2i+2 + n′′ − 1] ⊆ [d2i+2, d2i+3 − n′′ − 2] and q̃i+1 has
0-s in these positions. By Lemma 1, q̃i+1 has a finite base-b expansion, which
contradicts the assumption on q in Step 0. Therefore, the output 0 is correct. 	

Acknowledgements. This work was partially supported by Sofia University Science
Fund, contract 80-10-136/26.03.2021.

References

1. Georgiev, I.: Continued fractions of primitive recursive real numbers. Math. Log.
Q. 61, 288–306 (2015)

2. Ko, K.: On the definitions of some complexity classes of real numbers. Math. Syst.
Theory 16, 95–109 (1983)

3. Ko, K.: On the continued fraction representation of computable real numbers.
Theor. Comput. Sci. 47, 299–313 (1986)

4. Kristiansen, L.: On subrecursive representability of irrational numbers. Com-
putability 6, 249–276 (2017)

5. Kristiansen, L.: On subrecursive representability of irrational numbers, part II.
Computability 8, 43–65 (2019)

6. Kristiansen, L., Schlage-Puchta, J.-C., Weiermann, A.: Streamlined subrecursive
degree theory. Ann. Pure Appl. Log. 163, 698–716 (2012)

7. Labhalla, S., Lombardi, H.: Real numbers, continued fractions and complexity
classes. Ann. Pure Appl. Log. 50, 1–28 (1990)

Dedekind Cuts and Long Strings of Zeros in Base Expansions 259

8. Lachlan, A.H.: Recursive real numbers. J. Symb. Log. 28(1), 1–16 (1963)
9. Lehman, R.S.: On primitive recursive real numbers. Fundam. Math. 49(2), 105–118

(1961)
10. Mostowski, A.: On computable sequences. Fundam. Math. 44, 37–51 (1957)
11. Rose, H.E.: Subrecursion. Functions and hierarchies. Clarendon Press, Oxford

(1984)
12. Skordev, D., Weiermann, A., Georgiev, I.: M2-computable real numbers. J. Log.

Comput. 22(4), 899–925 (2008)
13. Specker, E.: Nicht konstruktiv beweisbare Satze der analysis. J. Symbol. Log. 14,

145–158 (1949)
14. Weihrauch, K.: Computable Analysis. Springer, Berlin (2000)

On the Impact of Treewidth in the
Computational Complexity of Freezing

Dynamics

Eric Goles1, Pedro Montealegre1, Mart́ın Ŕıos Wilson2,3(B),
and Guillaume Theyssier4

1 Facultad de Ingenieŕıa y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
{eric.chacc,p.montealegre}@uai.cl

2 Departamento de Ingenieŕıa Matemática, Universidad de Chile, Santiago, Chile
mrios@dim.uchile.cl

3 Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France
4 Aix-Marseille Université, CNRS, I2M (UMR 7373), Marseille, France

guillaume.theyssier@cnrs.fr

Abstract. An automata network is a network of entities, each holding
a state from a finite set and evolving according to a local update rule
which depends only on its neighbors in the network’s graph. It is freezing
if there is an order on states such that the state evolution of any node is
non-decreasing in any orbit. They are commonly used to model epidemic
propagation, diffusion phenomena like bootstrap percolation or cristal
growth. In this paper we establish how alphabet size, treewidth and
maximum degree of the underlying graph are key parameters which influ-
ence the overall computational complexity of finite freezing automata
networks. First, we define a general specification checking problem that
captures many classical decision problems such as prediction, nilpotency,
predecessor, asynchronous reachability. Then, we present a fast-parallel
algorithm that solves the general problem when the three parameters are
bounded, hence showing that the problem is in NC. Finally, we show
that these problems are hard from two different perspectives. First, the
general problem is W[2]-hard when taking either treewidth or alphabet
as single parameter and fixing the others. Second, the classical problems
are hard in their respective classes when restricted to families of graphs
with sufficiently large treewidth.

Keywords: Freezing automata networks · Treewidth · Fast parallel
algorithm · Prediction · Nilpotency · Asynchronous reachability ·
Predecessor problem

This reasearch was partially supported by French ANR project FANs ANR-18-CE40-
0002 (G.T., M.R.W.) and ECOS project C19E02 (G.T., M.R.W.), ANID via PAI
+ Convocatoria Nacional Subvención a la Incorporación en la Academia Año 2017
+ PAI77170068 (P.M.), FONDECYT 11190482 (P.M.), FONDECYT 1200006 (E.G.,
P.M.), STIC- AmSud CoDANet project 88881.197456/2018-01 (E.G., P.M.), ANID via
PFCHA/DOCTORADO NACIONAL/2018 – 21180910 + PIA AFB 170001 (M.R.W).

c© Springer Nature Switzerland AG 2021
L. De Mol et al. (Eds.): CiE 2021, LNCS 12813, pp. 260–272, 2021.
https://doi.org/10.1007/978-3-030-80049-9_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80049-9_24&domain=pdf
https://doi.org/10.1007/978-3-030-80049-9_24

The Impact of Treewidth in Freezing Dynamics 261

1 Introduction

An automata network is a network of n entities, each holding a state from a
finite set Q and evolving according to a local update rule which depends only
on its neighbors in the network’s graph. More concisely, it can be seen as a
dynamical system (deterministic or not) acting on the set Qn. The model can
be seen as a non-uniform generalization of (finite) cellular automata. Automata
networks have been used as modelization tools in many areas [17] and they can
also be considered as a distributed computational model with various special-
ized definitions like in [33]. An automata network is freezing if there is an order
on states such that the state evolution of any node is non-decreasing in any
orbit. Several models that received a lot of attention in the literature are actu-
ally freezing automata networks, for instance: bootstrap percolation which has
been studied on various graphs [1], epidemic [12] or forest fire [3] propagation
models, cristal growth models [31] and more recently self-assembly tilings [32].
On the other hand, their complexity as computational models has been stud-
ied from various point of view: as language recognizers where they correspond to
bounded change or bounded communication models [25], for their computational
universality [4,15], as well as for various associated decision problems [19].

A major topic of interest in automata networks theory is to determine how
the network graph affects dynamical or computational properties [13,19]. In the
freezing case, it was for instance established that one-dimensional freezing cellu-
lar automata, while being Turing universal via Minsky machine simulation, have
striking computational limitations when compared to bi-dimensional ones: they
areNL-predictable (instead of P-complete) [21,27], can only produce computable
limit fixed points starting from computable initial configurations (instead of non-
computable ones starting from finite configurations) [27], and have a polynomial
time decidable nilpotency problem (instead of uncomputable) [27].

The present paper aims at understanding what are the key parameters which
influence the overall computational complexity of finite freezing automata net-
works. A natural first parameter is the alphabet size, as automata networks are
usually considered as simple machines having a number of states that is indepen-
dent of the size of the network. For the same reasons, a second parameter that
we consider is the maximum degree of the network, as a simple machine might
not be able to handle the information incoming from a large number of neigh-
bors. Finally the results mentioned earlier show a gap between bi-dimensional
grids and one-dimensional grids (i.e. paths or rings). Since Courcelle’s theorem
on MSO properties [7], graph parameters like treewidth [29] are used to measure
a sort of distance to a grid. Indeed, it is known that paths or rings have constant
treewidth, and the treewidth of a graph is polynomially related to the size of its
largest grid minor [6]. Therefore treewidth is a natural parameter for our study.

2 Preliminaries

Given a graph G = (V,E) and a vertex v we will call N(v) to the neighborhood
of v and δv to the degree of v. In addition, we define the closed neighborhood of

262 E. Goles et al.

v as the set N [v] = N(v)∪{v} and we use the following notation Δ(G) = max
v∈V

δv

for the maximum degree of G. We will use the letter n to denote the order of G,
i.e. n = |V |. Also, if G is a graph and the set of vertices and edges is not specified
we use the notation V (G) and E(G) for the set of vertices and the set of edges
of G respectively. In addition, we will assume that if G = (V,E) is a graph then,
there exist an ordering of the vertices in V from 1 to n. During the rest of the
text, every graph G will be assumed to be connected and undirected. We define
a class or a family of graphs as a set G = {Gn}n≥1 such that Gn = (Vn, En) is
a graph and |Vn| = n.

Non-deterministic Freezing Automata Networks. Let Q be a finite set that we will
call an alphabet. We define a non-deterministic automata network in the alphabet
Q as a tuple (G = (V,E),F = {Fv : QN(v) → P(Q)|v ∈ V })) where P(Q) is the
power set of Q. To every non-deterministic automata network we can associate
a non-deterministic dynamics given by the global function F : Qn → P(Qn)
defined by F (x) = {x ∈ Qn|xv ∈ Fv(x),∀v}.

Definition 1. Given a a non-deterministic automata network (G,F) we define
an orbit of a configuration x ∈ Qn at time t as a sequence (xs)0≤s≤t such that
x0 = x and xs ∈ F (xs−1). In addition, we call the set of all possible orbits at
time t for a configuration x as O(x, t). Finally, we also define the set of all
possible orbits at time t as O(A, t) =

⋃

x∈Qn

O(x, t).

A non-deterministic automata network (G,F) defined in the alphabet Q is
freezing if there exists a partial order ≤ in Q such that for every t ∈ N and for
every orbit y = (xs)0≤s≤t ∈ O(A, t) we have that xs

v ≤ xs+1
v for every 0 ≤ s ≤ t

and for every 0 ≤ v ≤ n. Let y = (xs)0≤s≤t be an orbit of a non-deterministic
automata network (G,F) and S ⊆ V we define the restriction of y to S as
the sequence y|S ∈ (Qt)|S| such that (y|S)v = xs

v for every v ∈ V. In the case
in which S = {v} we write yv in order to denote the restriction of y to the
singleton {v}. Finally, if A = (G,F) is a non-deterministic freezing automata
network such that for every v ∈ V (G), Fv ∈ F is such that |Fv(x)| = 1, for all
x ∈ QN(v) then, we say that A is deterministic and we consider local rules as
maps Fv : QN(v) → Q.

Tree Decompositions and Treewidth. Let G = (V,E) be a connected graph. We
say that G is a tree-graph or simply a tree if it does not have cycles as subgraphs.
Usually, we will distinguish certain node in r ∈ V (G) that we will call the root
of G. Whenever G is a tree and there is a fixed vertex r ∈ V (G) we will call G
a rooted tree-graph. In addition, we will say that v ∈ V (G) is a leaf if δv = 1.
The choice of r induces a partial order in the vertices of G given by the distance
(length of the unique path) between a node v ∈ V (G) and the root r. We define
the height of G (and we write it as h(G)) as the longest path between a leaf
and r. We say that a node v is in the (h(G) − k)-th level of a tree-graph G if
the distance between v and r is k and we write v ∈ Lh(G)−k. We will call the
children of a node v ∈ Lk to all w ∈ N(v) such that w is in level k − 1.

The Impact of Treewidth in Freezing Dynamics 263

Definition 2. Given a graph G = (V,E) a tree decomposition is pair D = (T,Λ)
such that T is a tree graph and Λ is a family of subsets of nodes Λ = {Xt ⊆
V | t ∈ V (T)}, called bags, such that:

– Every node in G is in some Xt, i.e.:
⋃

t∈V (T)

Xt = V

– For every e = uv ∈ E there exists t ∈ V (T) such that u, v ∈ Xt

– For every u, v ∈ V (T) if w ∈ V (T) is in the v-y path in T , then Xu∩Xv ⊆ Xw

We define the width of a tree decompostion D as the amount width(D) =
max

t∈V (T)
|Xt|− 1. Given a graph G = (V,E), we define its treewidth as the param-

eter tr(G) = min
D

width(D). In other words, the treewidth is the minimum width

of a tree decomposition of G. Note that, if G is a connected graph such that
|E(G)| ≥ 2 then, G is a tree if and only if tw(G) = 1.

It is well known that, given an arbitrary graph G, and k ∈ N, the problem of
deciding if tw(G) ≤ k is NP-complete [2]. Nevertheless, if k is fixed, that is to
say, it is not part of the input of the problem then, there exist efficient algorithms
that allow us to compute a tree-decomposition of G. More precisely, it is shown
that for every constant k ∈ N and a graph G such that tw(G) ≤ k, there exist a
log-space algorithm that computes a tree-decomposition of G [11]. In addition,
in Lemma 2.2 of [5] it is shown that given any tree decomposition of a graph
G, there exist a fast parallel algorithm that computes a slightly bigger width
binary tree decomposition of G. More precisely, given a tree decomposition of
width k, the latter algorithm computes a binary tree decomposition of width at
most 3k + 2. We outline these results in the following proposition:

Proposition 1. Let n ≥ 2, k ≥ 1 and let G = (V,E) with |V | = n be a graph
such that tw(G) ≤ k. There exists a CREW PRAM algorithm using O(log2 n)
time, nO(1) processors and O(n) space that computes a binary treewidth decom-
position of width at most 3k + 2 for G.

Parametrized Complexity. A parameterized language is defined by L ⊆ {0, 1}∗ ×
N. Whenever we take an instance (x, k) of a parameterized problem we will call k
a parameter. The objective behind parameterized complexity is to identify which
are the key parameters in an intractable problem that make it hard. We say that
a parameterized language L is slice-wise polynomial if (x, k) ∈ L is decidable in
polynomial time for every fixed k ∈ N. More precisely, when (x, k) ∈ L can
be decided in time |x|f(k) for some arbitrary function f depending only on k.
The class of slice-wise polynomial parameterized languages is called XP. An
important subclass of XP is the set of parameterized languages L that are
fixed-parameter tractable, denoted FPT. A parameterized language L is in FPT
if there exist an algorithm deciding if (x, k) ∈ L in time f(k)|x|O(1) where f
an arbitrary function depending only in k. It is known that XP is not equal to
FPT, however showing that some problem in XP is not in FPT seems currently
out of reach for many natural examples (see [10] for more details and context).

264 E. Goles et al.

3 Localized Trace Properties

In this section we formalize a general decision problem on our dynamical systems.
Finally, we define the set of all possible orbits at time t as O(A, t). Freezing
automata network have temporally sparse orbits, however the set of possible
configurations is still exponential. Our formalism takes this into account by
considering properties that are spatially localized but without restriction in their
temporal expressive power. It is based on the following concept of specification.

Definition 3. Consider t ∈ N and A = (G = (V,E),F) a non-deterministic
freezing automata network in some partially-ordered alphabet Q. A (Q, t,A)-
specification (or simply a t-specification when the context is clear) is a function
Et : V → P(Qt) such that, for every v ∈ V , the sequences in Et(v) are non-
decreasing.

The following lemma shows that for all freezing automata networks the set
of orbits of any length restricted to a set of nodes is determined by the set of
orbits of fixed (polynomial) length restricted to these nodes. Moreover, if the set
of considered nodes is finite, then the fixed length can be chosen linear.

Lemma 1. Let Q be an alphabet, V a set of nodes with |V | = n and U ⊆ V .
Let L = |U ||Q|(|Q|n+ 1). Then if two non-deterministic freezing automata have
the same set of orbits restricted to U of length L then they have the same set of
orbits restricted to U of any length.

Note that, as a consequence of the above lemma, for any freezing non-
deterministic automata network it suffices to consider t-specifications with t
being linear in the size of the interaction graph defining the network.

Specification Checking Problem. We observe also that the number of possible
t-specifications can be represented in polynomial space (as a Boolean vector
indicating the allowed t-specifications). Also, in the absence of explicit mention,
all the considered graphs will have bounded degree Δ by default, so a freezing
automata network rule can be represented as the list of local update rules for
each node which are maps of the form QΔ → P(Q) whose representation as
transition table is of size O

(|Q|Δ+1
)
. The specification checking problem we

consider asks whether a given freezing automata network verifies a given localized
trace property on the set of orbits whose restriction on each node adheres to a
given t-specification. In order to do that, we introduce the concept of a satisfiable
t-specification

Definition 4. Let A = (G,F) be a non-deterministic automata network and
let Et a t-specification. We say that Et is satisfiable by A if there exists an orbit
O ∈ O(A, t) such that Ov ∈ Et(v) for every v ∈ V.

If Et is a satisfiable t-specification for some automata network A we write A |= Et.
We present now the Specification checking problem as the problem of verifying
whether a given t-specification is satisfiable by some automata network A.

The Impact of Treewidth in Freezing Dynamics 265

Problem 1 (Specification checking problem (SPEC))

Parameters: Alphabet Q, family of graphs G of max degree Δ.
Input:

1. a non-deterministic freezing automata network A = (G,F) on alphabet
Q, with set of nodes V and G ∈ G;

2. a time t ∈ N.
3. a t-specification Et

Question: A |= Et

Four Canonical Problems. When studying a dynamical system, one is often
interested in determining properties of the future state of the system given its
initial state. In the context of automata networks, various decision problems
have been studied where a question about the evolution of the dynamics at a
given node is asked. Usually, the computational complexity of such problems is
compared to the complexity of simulating the automata network. Roughly, one
can observe that some systems are complex in some way if the complexity of
latter problems are “as much as hard” as simply simulating the system.

Note that prediction problem (see full version [18]) is clearly a subproblem
of SPEC. Also, observe that a specification allows us to ask various questions
considered in the literature: what will be the state of the node at a given time
[15,21], will the node change its state during the evolution [16], or, thanks to
Lemma 1, what will be state of the node once a fixed point is reached [27,
section 5]. Note that the classical circuit value problem for Boolean circuits
easily reduces to the prediction problem above when we take G to be the DAG
of the Boolean circuit and choose local rules at each node that implement circuit
gates. Theorem 35 in [18] gives a much stronger result using such a reduction
where the graph and the rule are independent of the circuit.

We now turn to the classical problem of finding predecessors back in time to
a given configuration [20,23]. Detailed definition is available in the full version
[18]. Note that, analogously to the previous case, the final configuration in the
input can be given through a particular t-specification Et, such that for all y ∈
Et(v) : yt = c for any v ∈ V . Thus, by considering Et we can see predecessor
problem as a subproblem of SPEC.

Deterministic automata networks have ultimately periodic orbits. When they
are freezing, any configuration reaches a fixed point. Nilpotency asks whether
their is a unique fixed point whose basin of attraction is the set of all configu-
rations. It is a fundamental problem in finite automata networks theory [14,28]
as well as in cellular automata theory where the problem is undecidable for any
space dimension [22], but whose decidability depends on the space dimension in
the freezing case [27]. Detailed definition can be found in the full version [18].

In this case, it is not clear that Nilpotency is actually a subproblem of SPEC.
However, we will show that we can solve Nilpotency by solving a polynomial
amount of instances (linear on the size of the interaction graph of the net-
work |G|) for SPEC in parallel. More precisely, we show that there exist a NC
Turing reduction. In order to do that note first that we can use Lemma 1 to

266 E. Goles et al.

fix t = λ(n), where λ(n) is an appropriate polynomial. Then, we express that
F t(QV) is a singleton as the following formula, which intuitively says that for
each node there is a state such that all orbits terminate in that state at this node:∧

s∈V

∨
q0∈Q A |= Eq0,s

t , where Eq0,s
t are t-specifications satisfying Eq0,s

t) (v) = Qt,

for every v
= s and Eq0,s
t (s) is the set of orbits y such that yt = q0. The reduction

holds.
It is straightforward to reduce coloring problems (does the graph admit a

proper coloring with colors in Q) and more generally tilings problems to nilpo-
tency using an error state that spread across the network when a local condition
is not satisfied (note that tiling problem are known to be tightly related to
nilpotency in cellular automata [22]). Using the same idea one can reduce SAT
to nilpotency by choosing G to be the DAG of a circuit computing the given
SAT formula (see Theorem 2 below for a stronger reduction that works on any
family of graphs with polynomial treewidth).

Given a deterministic freezing automata network of global rule
F : QV → QV , we define the associated non-deterministic global rule F ∗

where each node can at each step apply F or stay unchanged, formally:
F ∗

v (c) = {Fv(c), cv}. It represents the system F under totally asynchronous
update mode.

In this context, asynchronous reachability problem is defined (see full ver-
sion [18]). Latter problem consists in decide if a particular configuration can be
reached by the dynamics starting from a fixed initial condition. Note that no
bound is given in the problem for the time needed to reach the target configu-
ration. However, Lemma 1 ensures that c1 can be reached from c0 if and only if
it can be reach in a polynomial number of steps (in n). Thus this problem can
again be seen as a sub-problem of our SPEC by defining a λ(n)-specification
Eλ(n) such that for any y ∈ Eλ(n) : y0 = c0 ∧ yλ(n) = c1. This bound on the
maximum time needed to reach the target ensures that the problem is NP (a
witness of reachability is an orbit of polynomial length). Note that the problem
is PSPACE-complete for general automata networks: in fact it is PSPACE-
complete even when the networks considered are one-dimensional (network is a
ring) cellular automata (same local rule everywhere) [8].

4 A Fast-Parallel Algorithm for the Specification
Checking Problem

In this section we present a fast-parallel algorithm for solving the Specification
Checking Problem when the input graph is restricted to the family of graphs with
bounded degree and treewidth. More precisely, we show that the problem can
be solved by a CREW PRAM that runs in the time O(log2(n)) where n is the
amount of nodes of the network. Thus, restricted to graphs of bounded degree
and bounded treewidth, Specification Checking Problem belongs to the class NC.

We define a locally-valid trace of a vertex v as a sequence of state-transitions
of all the vertices in N [v] which are consistent with local rule of v, but not

The Impact of Treewidth in Freezing Dynamics 267

necessarily consistent with the local-rules of the vertices in N(v). We also ask
that the state-transitions of v satisfy the t-specification Et.

In addition, we define a partially-valid trace for a set U as a sequence of
state-transition of all the vertices in N [U], which are consistent with the local
rules of all vertices in U , but not necessarily consistent with the local-rules of the
vertices in N(U). We call the set of all partially-valid traces of U as PV T (U)

Let (W,F, {Xw : w ∈ W}) be a rooted binary-tree-decomposition of graph G
with root r, that we assume that has width at most (3tw(G) + 2). For w ∈ W ,
we call Tw the set of all the descendants of w, including w.

Our algorithm consists in a dynamic programming scheme over the bags of
the tree. For each bag w ∈ T and βw ∈ PV T (Xw) we call Solw(βw) the partial
answer of the problem on the vertices contained bags in Tw, when the locally-
valid traces of the vertices in Xw are induced by βw. We say that Solw(βw) =
accept when it is possible to extend βw into a partially-valid trace of all the
vertices in bags of Tw, and reject otherwise. More precisely, if w is a leaf of
T , we define Solw(βw) = accept for all βw ∈ PV T (Xw). For the other bags,
Solw(βw) = accept if and only if exists a β ∈ PV T (

⋃
z∈Tw

Xz) such that
β(u) = βw(u), for all u ∈ Xw. Observe that the instance of the Specification
Checking problem is accepted when there exists a βr ∈ PV T (Xr) such that
Solr(βr) = accept.

In order to solve our problem efficiently in parallel, we define a data structure
that allows us efficiently encode locally-valid traces and partially-valid traces.
More precisely, in N [v] there are at most |Q|Δ possible state transitions. There-
fore, when t is comparable to n, most of the time the vertices in N [v] remain in
the same state. Then, in order to efficiently encode a trace, it is enough to keep
track only of the time-steps on which some state-transition occurs. We are now
ready to present the main result of present section. Full algorithm is available
in the full version [18].

Theorem 1. Specification Checking problem can be solved by an CREW PRAM
algorithm running in time O(log2 n) and using nO(1) processors on graphs of
bounded treewidth.

The proof of previous Theorem 1 shows that SPEC can be solved in time
f(|Q| + Δ(G) + tw(G)) log n using nf(|Q|+Δ(G)+tw(G)) processors in a PRAM
machine, hence in time ng(|Q|+Δ(G)+tw(G)) on a sequential machine, for some
computable functions f and g. In other words, when the alphabet, the maximum
degree and the tree-width of the input automata network are parameters, our
result shows that SPEC is in XP. In the next section, we show that SPEC is
not in FPT, unless FPT=W[2].

Constraint Satisfaction Problem. We remark that problem SPEC can be inter-
preted as a specific instance of the Constraint Satisfaction Problem (CSP).
The problem CSP is a sort of generalization of SAT into a set of more ver-
satile variable constraint. It is formally defined as a triple (X,D,C), where
X = {X1, . . . , Xn} is a set of variables, D = {D1, . . . , Dn} is a set of domains

268 E. Goles et al.

where are picked each variable, and a set C = {C1, . . . , Cm} of constraints, which
are k-ary relations of some set of k variables. The question is whether exists a
set of values of each variables in their corresponding domains, in order to satisfy
each one of the constraints. As we mentioned, SPEC can be seen as a partic-
ular instance of CSP, where we choose one variable for each node of the input
graph. The domain of each variable is the set of all locally valid traces of the
corresponding node. Finally, we define one constraint for each node, where the
variable involved are all the vertices in the close-neighborhood of the correspond-
ing node, and the relation corresponds to the consistency in the information of
the locally-valid traces involved.

Now consider an instance of SPEC with constant tree-width, maximum
degree and size of the alphabet, and construct the instance of CSP with the
reduction described in the previous paragraph. Then, the obtained instance of
CSP has polynomially-bounded domains and constant tree-width, where the
tree-width of a CSP instance is defined as the tree-width of the graph where
each variable is a node, and two nodes are adjacent if the corresponding vari-
ables appear in some restriction. Interestingly, it is already known that in these
conditions CSP can be solved in polynomial time [26,30] . This implies that,
subject to the given restrictions, SPEC is solvable in polynomial time using the
given algorithm for CSP as a blackbox.

The algorithm given in the proof of Theorem 1 is better than the use of the
CSP blackbox in two senses. First, we obtain explicit dependencies on the size of
the alphabet, maximum degree and tree-width. Second, the Prediction Problem
is trivially solvable in polynomial time, and then the use of the CSP blackbox
gives no new information for this problem. Moreover our algorithm does not
decides SPEC, but also can be used to obtain a coding of the orbit satisfying
the given specification, and moreover, the possibility to test any NC-property
on deterministic freezing automata networks.

5 W[2]-Hardness Results

The goal of this section is to show that, even when alphabet and degree are fixed
and treewidth is considered as the only parameter, then the SPEC problem
is W[2]-hard (see [10] for an introduction to the W hierarchy) and thus not
believed to be fixed parameter tractable. This is in contrast with classical results
of Courcelle establishing that model-checking of MSO formulas parametrized by
treewidth is fixed-parameter tractable [7].

Lemma 2. There is a fixed alphabet Q and an algorithm which, given k ∈ N

and a graph G of size n, produces in time O(k · nO(1)):

– a deterministic freezing automata network A = (G′,F) with alphabet Q and
where G′ has treewidth O(k) and degree 4

– a O(n2)-specification E
such that G admits a dominating set of size k if and only if A |= E.

The Impact of Treewidth in Freezing Dynamics 269

The construction of the lemma works by producing a freezing automata net-
work on a O(k) × n2-grid together with a specification which intuitively work as
follows. A row of the grid is forced (by the specification) to contain the adjacency
matrix of the graph, k rows serve as selection of a subset of k nodes of G, and
another row is used to check domination of the candidate subset. The key of the
construction is to use the dynamics of the network to test that the information
in each row is encoded coherently as intended, and raise an error if not. The
specification serves both as a partial initialization (graph adjacency matrix and
tests launching are forced, but the choice in selection rows is free) and a check
that no error are raised by the tests.

From Lemma 2 and W[2]-hardness of the k-Dominating-Set problem [9], we
immediately get the following corollary.

Corollary 1. The SPEC problem with fixed degree and fixed alphabet and with
treewidth as unique parameter is W[2]-hard.

A freezing automata network on a O(k) × n2-grid with alphabet Q can be
seen as a freezing automata network on a line of length n2 with alphabet QO(k).
One might therefore want to adapt the above result to show W[2]-hardness in
the case where treewidth and degree are fixed while alphabet is the parame-
ter. However, the specification which is part of the input, has an exponential
dependence on the alphabet (a t-specification is of size O(n · t|Q|)). Therefore
FPT reductions are not possible when the alphabet is the parameter. We can
circumvent this problem by considering a new variant of the SPEC problem
where specification are given in a more succinct way through regular expres-
sions. A regular (Q,V)-specification is a map from V to regular expressions over
alphabet Q. We therefore consider the problem REGSPEC which is the same
as SPEC except that the specification must be a regular specification. With this
modified settings, the construction of Lemma 2 can be adapted to deal with the
alphabet as parameter.

Corollary 2. The REGSPEC problem with fixed degree and fixed treewidth and
with alphabet as unique parameter is W[2]-hard.

6 Hardness Results for Polynomial Treewidth Networks

We say a family of graphs G has polynomial treewidth if the graphs of the
family are of size at most polynomial in their treewidth, precisely: if there is a
non-constant polynomial map pG (with rational exponents in (0, 1)) such that
for any G = (V,E) ∈ G it holds tw(G) ≥ pG(|V |). Moreover, we say the family
is constructible if there is a polynomial time algorithm that given n produces a
connex graph Gn ∈ G with n nodes. The following results are based on a polyno-
mial time algorithm to find large perfect brambles in graphs [24]. This structure
allows to embed any digraph in an input graph with sufficiently large treewidth
via path routing while controlling the maximum number of intersections per
node of the set of paths.

270 E. Goles et al.

Theorem 2. For any family G of constructible graphs of polynomial treewidth,
the problem nilpotency is coNP-complete.

When giving an automata network as input, the description of the local
functions depends on the underlying graph (and in particular the degree of each
node). However, some local functions are completely isotropic and blind to the
number of neighbors and therefore can be described once for all graphs. This is
the case of local functions that only depends on the set of states present in the
neighborhood. Indeed, given a map ρ : Q × 2Q → Q and any graph G = (V,E),
we define the automata network on G with local functions Fv : QN(v) → Q such
that Fv(c) = ρ

(
c(v), {c(v1), . . . , c(vk)})

where N(v) = {v1, . . . , vk} is the neigh-
borhood of v which includes v. We then say that the automata network is set
defined by ρ.

Theorem 3. There exists a map ρ : Q × 2Q → Q such that for any family G
of constructible graphs of polynomial treewidth and bounded degree, the problems
predecessor and asynchronous reachability are both NP-complete when restricted
to G and automata networks set-defined by ρ.

References

1. Amini, H., Fountoulakis, N.: Bootstrap percolation in power-law random graphs.
J. Stat. Phys. 155(1), 72–92 (2014)

2. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings
in a k-tree. SIAM J. Algebraic Disc. Methods 8(2), 277–284 (1987)

3. Bak, P., Chen, K., Tang, C.: A forest-fire model and some thoughts on turbulence.
Phys. Lett. A 147(5), 297–300 (1990)

4. Becker, F., Maldonado, D., Ollinger, N., Theyssier, G.: Universality in freezing
cellular automata. In: Manea, F., Miller, R.G., Nowotka, D. (eds.) CiE 2018. LNCS,
vol. 10936, pp. 50–59. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
94418-0 5

5. Bodlaender, H.L., Hagerup, T.: Parallel algorithms with optimal speedup for
bounded treewidth. SIAM J. Comput. 27(6), 1725–1746 (1998)

6. Chekuri, C., Chuzhoy, J.: Polynomial bounds for the grid-minor theorem. J. ACM
63(5), 1–65 (2016)

7. Courcelle, B.: The monadic second-order logic of graphs. i. recognizable sets of
finite graphs. Inf. Comput. 85(1), 12–75 (1990)

8. Dennunzio, A., Formenti, E., Manzoni, L., Mauri, G., Porreca, A.E.: Computa-
tional complexity of finite asynchronous cellular automata. Theor. Comput. Sci.
664, 131–143 (2017)

9. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness i:
basic results. SIAM J. Comput. 24(4), 873–921 (1995)

10. Downey, R.G., Fellows, M.R.: Appendix 2: Menger’s theorems. Fundamentals of
Parameterized Complexity. TCS, pp. 705–707. Springer, London (2013). https://
doi.org/10.1007/978-1-4471-5559-1 35

https://doi.org/10.1007/978-3-319-94418-0_5
https://doi.org/10.1007/978-3-319-94418-0_5
https://doi.org/10.1007/978-1-4471-5559-1_35
https://doi.org/10.1007/978-1-4471-5559-1_35

The Impact of Treewidth in Freezing Dynamics 271

11. Elberfeld, M., Jakoby, A., Tantau, T.: Logspace versions of the theorems of bod-
laender and courcelle. In: 2010 IEEE 51st Annual Symposium on Foundations of
Computer Science. IEEE (2010)

12. Fuentes, M., Kuperman, M.: Cellular automata and epidemiological models with
spatial dependence. Physica A Stat. Mech. Appl. 267(3–4), 471–486 (1999)

13. Gadouleau, M.: On the influence of the interaction graph on a finite dynamical
system. Natural Computing (to appear)

14. Gadouleau, M., Richard, A.: Simple dynamics on graphs. Theor. Comput. Sci. 628,
62–77 (2016)

15. Goles, E., Ollinger, N., Theyssier, G.: Introducing freezing cellular automata.
In: Exploratory Papers of Cellular Automata and Discrete Complex Systems
(AUTOMATA 2015), pp. 65–73 (2015)

16. Goles, E., Maldonado, D., Montealegre-Barba, P., Ollinger, N.: Fast-parallel algo-
rithms for freezing totalistic asynchronous cellular automata. In: Mauri, G., El
Yacoubi, S., Dennunzio, A., Nishinari, K., Manzoni, L. (eds.) ACRI 2018. LNCS,
vol. 11115, pp. 406–415. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-99813-8 37

17. Goles, E., Mart́ınez, S.: Neural and Automata Networks: Dynamical Behavior and
Applications. Kluwer Academic Publishers, Norwell (1990)

18. Goles, E., Montealegre, P., Ŕıos-Wilson, M., Theyssier, G.: On the impact of
treewidth in the computational complexity of freezing dynamics. arXiv preprint
arXiv:2005.11758 (2020)

19. Goles, E., Montealegre-Barba, P., Todinca, I.: The complexity of the bootstraping
percolation and other problems. Theor. Comput. Sci. 504, 73–82 (2013)

20. Green, F.: NP-complete problems in cellular automata. Complex Syst. 1 (1987)
21. Griffeath, D., Moore, C.: Life without death is P-complete. Complex Syst. 10

(1996)
22. Kari, J.: The nilpotency problem of one-dimensional cellular automata. SIAM J.

Comput. 21, 571–586 (1992)
23. Kawachi, A., Ogihara, M., Uchizawa, K.: Generalized predecessor existence prob-

lems for boolean finite dynamical systems on directed graphs. Theor. Comput. Sci.
762, 25–40 (2019)

24. Kreutzer, S., Tazari, S.: On brambles, grid-like minors, and parameterized
intractability of monadic second-order logic. In: SODA 2010, pp. 354–364. SIAM
(2010)

25. Kutrib, M., Malcher, A.: Cellular automata with sparse communication. Theor.
Comput. Sci. 411(38–39), 3516–3526 (2010)

26. Marx, D.: Can you beat treewidth? In: 48th Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS 2007), pp. 169–179. IEEE (2007)

27. Ollinger, N., Theyssier, G.: Freezing, bounded-change and convergent cellular
automata. CoRR abs/1908.06751 (2019)

28. Richard, A.: Nilpotent dynamics on signed interaction graphs and weak converses
of thomas’ rules. Disc. Appl. Math. 267, 160–175 (2019)

29. Robertson, N., Seymour, P.: Graph minors. v. excluding a planar graph. J. Comb.
Theory Series B 41(1), 92–114 (1986)

30. Samer, M., Szeider, S.: Constraint satisfaction with bounded treewidth revisited.
J. Comput. Syst. Sci. 76(2), 103–114 (2010)

31. Ulam, S.M.: On some mathematical problems connected with patterns of growth
of figures. In: Bukrs, A.W. (ed.) Essays on Cellular Automata, pp. 219–231. U. of
Illinois Press (1970)

https://doi.org/10.1007/978-3-319-99813-8_37
https://doi.org/10.1007/978-3-319-99813-8_37
http://arxiv.org/abs/2005.11758

272 E. Goles et al.

32. Winslow, A.: A brief tour of theoretical tile self-assembly. In: Cook, M., Neary,
T. (eds.) AUTOMATA 2016. LNCS, vol. 9664, pp. 26–31. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-39300-1 3

33. Wu, A., Rosenfeld, A.: Cellular graph automata. i. basic concepts, graph property
measurement, closure properties. Inf. Control 42(3), 305–329 (1979)

https://doi.org/10.1007/978-3-319-39300-1_3

Towards a Map for Incremental Learning
in the Limit from Positive and Negative

Information

Ardalan Khazraei1, Timo Kötzing2, and Karen Seidel2(B)

1 University of Potsdam, Potsdam, Germany
2 Hasso-Plattner-Institute, Potsdam, Germany

karen.seidel@hpi.de

Abstract. In order to model an efficient learning paradigm, iterative
learning algorithms access data one by one, updating the current hypoth-
esis without regress to past data. Prior research investigating the impact
of additional requirements on iterative learners left many questions open,
especially in learning from informant, where the input is binary labeled.

We first compare learning from positive information (text) with learn-
ing from informant. We provide different concept classes learnable from
text but not by an iterative learner from informant. Further, we show
that totality restricts iterative learning from informant.

Towards a map of iterative learning from informant, we prove that
strongly non-U-shaped learning is restrictive and that iterative learn-
ers from informant can be assumed canny for a wide range of learning
criteria.

Finally, we compare two syntactic learning requirements.

Keywords: Learning in the limit · Map for iterative learners from
informant · (Strongly) Non-U-shaped learning

1 Introduction

We are interested in the problem of algorithmically learning a description for
a formal language (a computably enumerable subset of the set of natural num-
bers) when presented successively all information about that language; this is
sometimes called inductive inference, a branch of (algorithmic) learning theory.

Many criteria for deciding whether a learner M is successful on a language L
have been proposed in the literature. Gold, in his seminal paper [Gol67], gave
a first, simple learning criterion, Ex-learning1, where a learner is successful iff,
on every complete information about L it eventually stops changing its conjec-
tures, and its final conjecture is a correct description for the input sequence.
Trivially, each single, describable language L has a suitable constant function as
a Ex-learner (this learner constantly outputs a description for L). As we want

1 Ex stands for explanatory.

c© Springer Nature Switzerland AG 2021
L. De Mol et al. (Eds.): CiE 2021, LNCS 12813, pp. 273–284, 2021.
https://doi.org/10.1007/978-3-030-80049-9_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80049-9_25&domain=pdf
https://doi.org/10.1007/978-3-030-80049-9_25

274 A. Khazraei et al.

algorithms for more than a single learning task, we are interested in analyzing
for which classes of languages L there is a single learner M learning each mem-
ber of L. This framework is also sometimes known as language learning in the
limit and has been studied using a wide range of learning criteria in the flavor
of Ex-learning (see, for example, the textbook [JORS99]).

One major criticism of the model suggested by Gold, see for example [CM08],
is its excessive use of memory: for each new hypothesis the entire history of
past data is available. Iterative learning [Wie76], is the most common variant
of learning in the limit which addresses memory constraints: the memory of the
learner on past data is just its current hypothesis. Due to the padding lemma,
this memory is still not void, but finitely many data can be memorized in the
hypothesis.

Prior work on iterative learning [CK10,CM08,JKMS16,JMZ13,JORS99]
focused on learning from text, that is, from positive data only. Hence, in TxtEx-
learning the complete information is a listing of all and only the elements of L.
In this paper we are mainly interested in the paradigm of learning from both
positive and negative information. For example, when learning half-spaces, one
could see data declaring that 〈1, 1〉 is in the target half-space, further is 〈3, 2〉,
but 〈1, 7〉 is not, and so on. This setting is called learning from informant (in
contrast to learning from text) (Fig. 1).

1 1
1

1
1

0

1
1

0

1

1
1

0

10

Fig. 1. Example Learning Process with binary labeled data and half-spaces as
hypotheses.

Iterative learning from informant was analyzed by [JLZ07], where various
natural restrictions have been considered and the authors focused on the case of
learning indexable families (classes of languages which are uniformly decidable).
In this paper we are looking at other established restrictions and also consider
learning of arbitrary classes of computably enumerable languages.

In Sect. 3 we consider the two aforementioned restrictions on learning from
informant: learning from text and learning iteratively. Both restrictions render
fewer classes of languages learnable; in fact, the two restrictions yield two incom-
parable sets of language classes being learnable, which also shows that learning
iteratively from text is weaker than supposing just one of the two restrictions.

Towards a better understanding of iterative learners we analyze which normal
forms can be assumed in Sect. 4. First we show that, analogously to the case of
learning from text (as analyzed in [CM09]), we cannot assume learners to be
total (i.e. always giving an output).

Iterative Learning from Informant 275

However, from [CM08] we know that we can assume iterative text learners
to be canny (also defined in Sect. 4); we adapt this normal form for the case of
iterative learning from informant and show that it can be assumed to hold for
iterative learners generally.

Many works in inductive inference, see for example [JKMS16,KP16,KS16,
KSS17], focus on relating different additional learning requirements for a fixed
learning model. In particular, [JKMS16] mapped out all pairwise relations for
an established choice of learning restrictions for iterative learning from text.
The complete map of all pairwise relations between for full-information learners
from informant can be found in [AKS18]. A similar map for the case of iterative
learning from informant is not known. Canniness is central in investigating the
learning power of iterative learning from texts. Hence, it is an important step-
ping stone to understand iterative learners better and determine such pairwise
relations. We argue in Lemma 3 that the normal form of canniness still can be
assumed in case we pose additional semantic learning requirements.

In Sect. 5 we collect all previously known results for such a map, see
[LZ92,JLZ07]. We observe that it decreases learning power to require the learner
to never change its hypothesis, once it is correct. The proof for separating this
notion, called strong non-U-shapedness, relies on the ORT recursion theorem
[Cas74]. We close this section by comparing two syntactic learning requirements
for iterative learners from informant that proved important to derive the equiv-
alence of all syntactic requirements for iterative learners from text.

We continue this paper with some mathematical preliminaries in Sect. 2
before discussing our results in more detail.

2 Iterative Learning from Informant

Notation and terminology on the learning theoretic side follow [OSW86,JORS99]
and [LZZ08], whereas on the computability theoretic side we refer to [Odi99] and
[Rog67]. For both we also recommend [Köt09].

A language L is a recursively enumerable subset of N. We denote the char-
acteristic function for L Ď N by fL : N → {0, 1}.

Gold in his seminal paper [Gol67], distinguished two major different kinds
of information presentation. A function I : N → N ˆ {0, 1} is an informant for
language L, if there is a surjection n : N → N such that I(t) “ (n(t), fL(n(t)))
holds for every t P N. Moreover, for an informant I let

pos(I) :“ {y P N | Dx P N : pr1(I(x)) “ y ^ pr2(I(x)) “ 1} and
neg(I) :“ {y P N | Dx P N : pr1(I(x)) “ y ^ pr2(I(x)) “ 0}

denote the sets of all natural numbers, about which I gives some positive or
negative information, respectively. A text for language L is a function T : N →
N Y {#} with range L after removing #. The symbol # is interpreted as pause
symbol.

276 A. Khazraei et al.

Therefore, when learning from informant, the set of admissible inputs to the
learning algorithm S is the set of all finite sequences

σ “ ((n0, y0), . . . , (n|σ|´1, y|σ|´1))

of consistently binary labeled natural numbers. When learning from text (posi-
tive data only), we encounter inputs to the learning algorithm from the set T of
finite sequences τ “ (n0, . . . , n|τ |´1) of natural numbers and the pause symbol
#. The initial subsequence relation is denoted by �.

A set L “ {Li | i P N} of languages is called indexable family if there is a
computer program that on input (i, n) P N

2 returns 1 if n P Li and 0 otherwise.
Examples are Fin and CoFin, the set of all finite subsets of N and the set of all
complements of finite subsets of N, respectively.

Let L be a collection of languages we seek a provably correct learning algo-
rithm for. We will refer to L as the concept class which will often be an indexable
family. Further, let H “ {Li | i P N} with L Ď H be a collection of languages
called the hypothesis space. In general we do not assume that for every L P L
there is a unique index i P N with Li “ L. Indeed, ambiguity in the hypothesis
space helps memory-resticted learners to remember data.

A learner M from informant (text) is a computable function

M : S → N Y {?} (M : T → N Y {?})

with the output i interpreted with respect to H “ {Li | i P N}, a prefixed
hypothesis space. The output ? often serves as initial hypothesis or is inter-
preted as no new hypothesis. Often H is an indexable class or the established
W -hypothesis space defined in Subsect. 4.

Let I be an informant (T be a text) for L and H “ {Li | i P N} a hypothesis
space. A learner M : S → N Y {?} (M : T → N Y {?}) is successful on I (on T)
if it eventually settles on i P N with Li “ L. This means that when receiving
increasingly long finite initial segments of I (of T) as inputs, it will from some
time on be correct and not change the output on longer initial segments of I
(of T). M learns L wrt H if it is successful on every informant I (on every
text T) for L. M learns L if there is a hypothesis space H such that M learns
every L P L wrt H. We denote the collection of all L learnable from informant
(text) by [InfEx] ([TxtEx]). If we fix the hypothesis space, we denote this by
a subscript for Ex.

According to [Wie76,LZ96,CJLZ99] a learner M is iterative if its output on
σ P S (τ P T) only depends on the last input last(σ) and the hypothesis M(σ´)
after observing σ without its last element last(σ). The collection of all concept
classes L learnable by an iterative learner from informant (text) is denoted by
[ItInfEx] ([ItTxtEx]).

The s-m-n theorem gives finite and infinite recursion theorems, see [Cas94,
Odi99]. We will refer to Case’s Operator Recursion Theorem ORT in its 1-1-form,
see [Cas74,JORS99,Köt09].

Iterative Learning from Informant 277

3 Comparison with Learning from Text

By ignoring negative information every informant incorporates a text for the
language presented and we gain [ItTxtEx] Ď [ItInfEx].

It has been observed in [OSW86] that the superfinite language class FinY{N}
is in [InfEx] \ [ItInfEx]. With Lk “ 2N Y {2k ` 1} and L′

k “ Lk \ {2k} the
indexable family L “ {2N} Y {Lk, L′

k | k P N} lies in [TxtEx] ∩ [ItInfEx] but
not in [ItTxtEx]. In [JORS99] the separations are witnessed by the indexable
family {N \ {0}} Y {D Y {0} : D P Fin}.

It can easily be verified that CoFin P [ItInfEx] \ [TxtEx] and with the
next result [ItInfEx] and [TxtEx] are incomparable by inclusion.

Lemma 1. There is an indexable family in [TxtEx] \ [ItInfEx].

Summing up, we know [ItTxtEx] Ĺ [TxtEx] K [ItInfEx] Ĺ [InfEx], where
K stands for incomparability with respect to set inclusion, meaning (1) there is a
concept class learnable from text but not by an iterative learner from informant
and (2) there is a concept class learnable by an iterative learner from informant
but not from text.

Moreover, with a Boolean function we can show that every concept class
separating [ItInfEx] and [InfEx] yields a separating class for [ItInfEx] and
[TxtEx]. We generalize this further in the full version.

4 Total and Canny Learners

For the rest of the paper, without further notation, all results are understood
with respect to the W -hypothesis space defined in the following. We fix a pro-
gramming system ϕ as introduced in [RC94]. Briefly, in the ϕ-system, for a nat-
ural number p, we denote by ϕp the partial computable function with program
code p. We also call p an index for Wp defined as dom(ϕp).

We show that totality, denoted by R, restricts iterative learning from infor-
mant. The proof uses an easy ORT argument.

Theorem 1. [ItInfEx] \ [RItInfEx] �“ ∅.

Proof. Let o be an index for ∅ and define the iterative learner M for all ξ P
Nˆ{0, 1} by

M(∅) “ o;

hM (h, ξ) “
{

ϕpr1(ξ)
(0), else if pr2(ξ) “ 1 and h /P ran(ind);

h, otherwise.

We argue that L :“ {L Ď N | L P ItInfEx(M) } is not learnable by a total
learner from informants. Assume towards a contradiction M ′ is such a learner.
For a finite informant sequence σ we denote by σ the corresponding canonical
finite informant sequence, ending with σ’s datum with highest first coordinate.

278 A. Khazraei et al.

Then by padded ORT there are e P N and a strictly increasing computable
function a : N

ăω → N, such that for all σ P N
ăω and all i P N

σ0 “ ∅;

σi`1 “ σi
�

{
(a(σi), 1), if M ′(σi

�(a(σi), 1)) �“ M ′(σi);
∅, otherwise;

(1)

We “
⋃
iPN

pos(σi);

ϕa(σ)(x) “
{

e, if M ′(σ�(a(σ), 1)) �“ M ′(σ);
indpos(σ)Y{a(σ)}, otherwise;

Clearly, we have We P L and thus M ′ also InfEx-learns We. By the Ex-
convergence there are e′, t0 P N, where t0 is minimal, such that We′ “ We

and for all t ě t0 we have M ′(
⋃

iPN σi[t]) “ e′ and hence by (1) for all i with
|σi| ě t0

M ′(σi
�(a(σi), 1)) “ M ′(σi) “ M ′(σi

�(a(σi), 0)).

It is easy to see, that We “ pos(σi) and We Y {a(σi)} P L. Moreover, M ′ is
iterative and hence does not learn We and We Y {a(σi)}. �	

We transfer the notion of canny learners to learning from informant.

Definition 1. A learner M from informant is called canny in case for every
finite informant sequence σ holds

1. if M(σ) is defined then M(σ) P N;
2. for every x P N\(pos(σ)Yneg(σ)) and i P {0, 1} a mind change M(σ�(x, i)) �“

M(σ) implies for all finite informant sequences τ with σ�(x, i) � τ that
M(τ�(x, i)) “ M(τ).

Hence, the learner is canny in case it always outputs a hypotheses and no
datum twice causes a mind change of the learner. Also for learning from infor-
mant the learner can be assumed canny by a simulation argument.

Lemma 2. For every iterative learner M , there exists a canny iterative learner
N such that InfEx(M) Ď InfEx(N).

Proof. Let f be a computable 1-1 function mapping every finite informant
sequence σ to a natural number encoding a program with Wf(σ) “ WM(σ) if
M(σ) P N and Wf(σ) “ ∅ otherwise. Clearly, σ can be reconstructed from f(σ).
We define the canny learner M ′ by letting

M ′(∅) “ f(∅)

hM ′(f(σ), (x, i)) “

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f(σ�(x, i)), if x /P pos(σ) Y neg(σ)^
M(σ�(x, i))↓ �“ M(σ)↓;

f(σ), if M(σ�(x, i))↓ “ M(σ)↓ ∨
x P content(σ);

↑, otherwise.

Iterative Learning from Informant 279

M ′ mimics M via f on a possibly finite informant subsequence of the originally
presented informant with ignoring data not causing mind changes of M or that
has already caused a mind change.

Let L P InfEx(M) and I ′ P Inf(L). As M has to learn L from every infor-
mant for it, M ′ will always be defined. Further, let σ0 “ ∅ and

σt`1 “
{

σt
�I ′(t), if I ′(t) /P ran(σt) ^ M(σt

�I ′(t))↓ �“ M(σt)↓;
σt, otherwise.

Then by induction for all t P N holds M ′(I ′[t]) “ f(σt).
The following function translates between the two settings

r(0) “ 0;
r(t ` 1) “ min{r ą r(t) | I ′(r ´ 1) /P ran(σr(t))}.

Intuitively, the infinite range of r captures all points in time r at which a datum
that has not caused a mind change so far, is seen and a mind-change of M ′ is
possible. Thus the mind change condition is of interest in order to decide whether
σr(t`1) �“ σr(t). Note that σr “ σr(t) for all r with r(t) ď r ă r(t ` 1).

Let I(t) “ I ′(r(t ` 1) ´ 1) for all t P N. Since only already observed data is
ommited, I is an informant for L.

We next argue that M(I[t]) “ M(σr(t)) for all t P N. As I[0] “ ∅ “ σ0,
the claim holds for t “ 0. Now we assume M(I[t]) “ M(σr(t)) and obtain
M(I[t ` 1]) “ M(I[t]�I(t)) “ M(σr(t)

�I(t)) “ M(σr(t`1)).
As by the definitions of I and r we have I(t) “ I ′(r(t ` 1) ´ 1) /P ran(σr(t))

there are two cases:

1. If M(σr(t)
�I(t)) “ M(σr(t)), then from σr(t`1)´1 “ σr(t) and the definition

of M ′ we obtain σr(t`1) “ σr(t). Putting both together the claimed equality
M(σr(t)

�I(t)) “ M(σr(t`1)) follows.
2. If M(σr(t)

�I(t)) �“ M(σr(t)), the definition of M ′ yields σr(t`1) “ σr(t)
�I(t).

Hence the claimed equality also holds in this case.

We now argue that M ′ explanatory learns L from I ′. In order to see this,
first observe σr(t`1) “ σr(t) if and only if M(I ′[t ` 1]) “ M(I ′[t]) for every t P N.
This is because

σr(t`1) “ σr(t) ⇔ M(σr(t)
�I(t)) “ M(σr(t))

⇔ M(I[t]�I(t)) “ M(I[t])
⇔ M(I[t ` 1]) “ M(I[t]).

As I is an informant for L, the learner M explanatory learns L from I.
Hence there exists some t0 such that WM(I[t0]) “ L and for all t ě t0 holds
M(I[t]) “ M(I[t0]). With this follows σr(t) “ σr(t0) for all t ě t0. As for every
r there exists some t with r(t) ď r and σr “ σr(t), we obtain σr “ σr(t0) for all
r ě r(t0). We conclude M ′(I ′[t]) “ f(σt) “ f(σr(t0)) for all t ě r(t0) and by the
definition of f finally Wf(σr(t0)) “ WM(σr(t0)) “ WM(I[t0]) “ L. �	

280 A. Khazraei et al.

5 Additional Requirements

In the following we review additional properties one might require the learn-
ing process to have in order to consider it successful. For this, we employ the
following notion of consistency when learning from informant.

As in [LZZ08] according to [BB75] and [Bār77] for A Ď N we define

Cons(f,A) :⇔ pos(f) Ď A ^ neg(f) Ď N \ A

and say f is consistent with A or f is compatible with A.
Learning restrictions incorporate certain desired properties of the learners’

behavior relative to the information being presented. We state the definitions
for learning from informant here.

Definition 2. Let M be a learner and I an informant. We denote by ht “
M(I[t]) the hypothesis of M after observing I[t] and write

1. Conv(M, I) ([Ang80]), if M is conservative on I, i.e., for all s, t with s ď t
holds Cons(I[t],Whs

) ⇒ hs “ ht.
2. Dec(M, I) ([OSW82]), if M is decisive on I, i.e., for all r, s, t with r ď s ď t

holds Whr
“ Wht

⇒ Whr
“ Whs

.
3. Caut(M, I) ([OSW86]), if M is cautious on I, i.e., for all s, t with s ď t

holds �Wht
Ĺ Whs

.
4. WMon(M, I) ([Jan91,Wie91]), if M is weakly monotonic on I, i.e., for all

s, t with s ď t holds Cons(I[t],Whs
) ⇒ Whs

Ď Wht
.

5. Mon(M, I) ([Jan91,Wie91]), if M is monotonic on I, i.e., for all s, t with
s ď t holds Whs

∩ pos(I) Ď Wht
∩ pos(I).

6. SMon(M, I) ([Jan91,Wie91]), if M is strongly monotonic on I, i.e., for all
s, t with s ď t holds Whs

Ď Wht
.

7. NU(M, I) ([BCM+08]), if M is non-U-shaped on I, i.e., for all r, s, t with
r ď s ď t holds Whr

“ Wht
“ pos(I) ⇒ Whr

“ Whs
.

8. SNU(M, I) ([CM11]), if M is strongly non-U-shaped on I, i.e., for all r, s, t
with r ď s ď t holds Whr

“ Wht
“ pos(I) ⇒ hr “ hs.

9. SDec(M, I) ([KP16]), if M is strongly decisive on I, i.e., for all r, s, t with
r ď s ď t holds Whr

“ Wht
⇒ hr “ hs.

When additional requirements apply to the definition of learning suc-
cess, we write them between Inf and Ex. For example, Theorem 1 proves
[ItInfConvSDecSMonEx] \ [RItInfEx] �“ ∅ because the non-total learner
acts conservatively, strongly decisively and strongly monotonically when learn-
ing L.

The text variants can be found in [JKMS16] where all pairwise relations “,
Ĺ or K between the sets [ItTxtδEx] (iterative learners from text) for δ P Δ,
where Δ “ {Conv,Dec,Caut,WMon,Mon,SMon, NU,SNU,SDec}, are
depicted. We sum up the current status regarding the map for iterative learning
from informant in the following.

For all δ P Δ \ {SMon} with a locking sequence argument we can observe
[ItInfSMonEx] Ĺ [ItInfδEx]. If we denote by Inf can the set of all informants

Iterative Learning from Informant 281

labelling the natural numbers according to their canonical order, which cor-
responds to the characterisic function of the respective language, we obtain
Fin Y {N} P [RItInf canConsConvSDecMonEx] and thus it holds in con-
trast to full-information learning from informant [ItInf canEx] �“ [ItInfEx],
see [AKS18]. [LZ92] observed that requiring a monotonic behavior of the
learner is restrictive, i.e. there exists an indexable family in [ItInfMonEx] Ĺ
[ItInfEx]. The indexable family {N} Y {N \ {x} | x P N} is clearly not
cautiously learnable but conservatively, strongly decisively and monotonically
learnable by a total iterative learner from informant. Hence, [ItInfCautEx] K
[ItInfMonEx]. Moreover, [JLZ07] observed that requiring a conservative learn-
ing behavior is also restrictive. Indeed, they provide an indexable family in
[ItInfCautWMonNUDecEx]\ [ItInfConvEx] and another indexable family
in [RItTxtCautConvSDecEx] \ [ItInfMonEx].

Hence, the map on iterative learning from informant differs from the map
on iterative learning from text in [JKMS16] as Caut is restrictive and also
from the map of full-information learning in [AKS18] from informant as Conv
is restrictive too. It has been open how WMon, Dec, NU, SDec and SNU
relate to each other and the other requirements. We show that also SNU restricts
ItInfEx with an intricate ORT-argument.

Theorem 2. [ItInfSNUEx] Ĺ [ItInfEx]

In the following we provide a lemma that might help to investigate WMon,
Dec and NU.

Definition 3. Denote the set of all unbounded and non-decreasing functions by
S, i.e.,

S :“ { s : N → N | ∀x P N Dt P N : s(t) ě x and ∀t P N : s(t ` 1) ě s(t) }.

Then every s P S is a so called admissible simulating function.
A predicate β Ď P ˆ I, where P stands for the set of all learners, is seman-

tically delayable, if for all s P S, all I, I ′ P I and all learners M,M ′ P P
holds: Whenever we have pos(I ′[t]) Ě pos(I[s(t)]), neg(I ′[t]) Ě neg(I[s(t)]) and
WM ′(I′[t]) “ WM(I[s(t)]) for all t P N, from β(M, I) we can conclude β(M ′, I ′).

It is easy to see that every δ P {Caut,Dec,WMon,Mon,SMon,NU} is
semantically delayable and Lemma 2 can be restated as follows.

Lemma 3. For every iterative learner M and every semantically delayable
learning restriction δ, there exists a canny iterative learner N such that
InfδEx(M) Ď InfδEx(N).

Proof. Add any semantically delayable δ in front of Ex in the proof of Lemma 2.
We define a simulating function (Definition 3) by s(t) “ max{s P N | r(s) ď t}.
It is easy to check that s is unbounded and clearly it is non-decreasing. Then
by the definitions of I and s we have pos(I[s(t)]) Ď pos(I ′[r(s(t))]) Ď pos(I ′[t])
and similarly neg(I[s(t)]) Ď neg(I ′[t]) for all t P N. As M ′(I ′[t]) “ f(σt) and

282 A. Khazraei et al.

M(σr(s(t))) “ M(I[s(t)]) for all t P N, in order to obtain WM ′(I′[t]) “ WM(I[s(t)])

it suffices to show Wf(σt) “ WM(σr(s(t))). Since Wf(σt) “ WM(σt) for all t P
N, this can be concluded from σt “ σr(s(t)). But this obviously holds because
r(s(t)) ď t ă r(s(t) ` 1) follows from the definition of s.

Finally, from δ(M, I) we conclude δ(M ′, I ′). �	
Two other learning restrictions that might be helpful to understand the syn-

tactic learning criteria SNU, SDec and Conv better are the following.

Definition 4. Let M be a learner and I an informant. We denote by ht “
M(I[t]) the hypothesis of M after observing I[t] and write

1. LocConv(M, I) ([JLZ07]), if M is locally conservative on I, i.e., for all t
holds ht �“ ht`1 ⇒ �Cons(I(t),Wht

).
2. Wb(M, I) ([KS16]), if M is witness-based on I, i.e., for all r, s, t with r ă

s ď t the mind-change hr �“ hs implies pos(I[s])∩Wht
\Whr

�“ ∅ ∨neg(I[s])∩
Whr

\ Wht
�“ ∅.

Hence, in a locally conservative learning process every mind-change is jus-
tified by the datum just seen. Moreover, a in witness-based learning process
each mind-change is witnessed by some false negative or false positive datum.
Obviously, LocConv ⇒ Conv and Wb ⇒ Conv.

As for learning from text, see [JKMS16], we gain that every concept class
locally conservatively learnable by an iterative learner from informant is also
learnable in a witness-based fashion by an iterative learner.

Theorem 3. [ItInfLocConvEx] Ď [ItInfWbEx]

Proof. Let L be a concept class learned by the iterative learner M in a locally
conservative manner. As we are interested in a witness-based learner N , we
always enlarge the guess of M by all data witnessing a mind-change in the past.
As we want N to be iterative, this is done via padding the set of witnesses to
the hypothesis and a total computable function g adding this information to the
hypothesis of M as follows:

Wg(pad(h,〈MC〉)) “ (Wh Y pos[MC]) \ neg[MC];
N(∅) “ g(pad(M(∅), 〈∅〉));

hN (g(pad(h, 〈MC〉)), ξ) “

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g(pad(h, 〈MC〉)), if hM (h, ξ) “ h∨
ξ P MC;

g(pad(hM (h, ξ),
〈MC Y {ξ}〉)), otherwise.

Clearly, N is iterative. Further, whenever M is locked on h and Wh “ L, since
MC is consistent with L, we also have Wg(pad(f(h),〈MC〉)) “ L. As N simulates M
on an informant omitting all data that already caused a mind-change beforehand,
N does explanatory learn L. As M learns locally conservatively and by employing
g, the learner N acts witness-based. �	

Iterative Learning from Informant 283

6 Suggestions for Future Research

Future work should address the complete map for iterative learners from infor-
mant. In particular, WMon, Dec and NU seem to be challenging as the proofs
in related settings fail without an obvious fix. We hope that Lemma 3 is a help-
ing hand in this endeavour. Also the equivalence of the syntactic criteria SNU,
SDec and Conv does not trivially hold. Theorem 3 might be helpful regarding
the latter.

Maps for other models of memory-limited learning, such as BMS, see
[CCJS07], or Bem, see [FJO94,LZ96] and [CJLZ99], would help to rate models.

Last but not least we encourage to investigate the learnability of indexable
classes motivated by grammatical inference or machine learning research. The
pattern languages often serve as a helpful example to refer to and we hope for
even more examples of this kind. As a starting point, in the full version, we prove
the learnability of half-spaces.

Acknowledgements. This work was supported by DFG Grant Number KO 4635/1-1.
We are grateful to the people supporting us.

References

[AKS18] Aschenbach, M., Kötzing, T., Seidel, K.: Learning from informants:
Relations between learning success criteria (2018). arXiv preprint
arXiv:1801.10502

[Ang80] Angluin, D.: Inductive inference of formal languages from positive data.
Inf. Control 45(2), 117–135 (1980)

[Bār77] Bān, rzdinš, J.: Inductive inference of automata, functions and programs.
Amer. Math. Soc. Transl., 107–122 (1977)

[BB75] Blum, L., Blum, M.: Toward a mathematical theory of inductive inference.
Inf. Control 28, 125–155 (1975)

[BCM+08] Baliga, G., Case, J., Merkle, W., Stephan, F., Wiehagen, R.: When unlearn-
ing helps. Inf. Comput. 206, 694–709 (2008)

[Cas74] Case, J.: Periodicity in generations of automata. Math. Syst. Theory. 8(1),
15–32 (1974)

[Cas94] Case, J.: Infinitary self-reference in learning theory. J. Exp. Theor. Artif.
Intell. 6, 3–16 (1994)

[CCJS07] Carlucci, L., Case, J., Jain, S., Stephan, F.: Results on memory-limited
U-shaped learning. Inf. Comput. 205, 1551–1573 (2007)

[CJLZ99] Case, J., Jain, S., Lange, S., Zeugmann, T.: Incremental concept learning
for bounded data mining. Inf. Comput. 152, 74–110 (1999)

[CK10] Case, J., Kötzing, T.: Strongly non-U-shaped learning results by general
techniques. COLT 2010, 181–193 (2010)

[CM08] Case, J., Moelius, S.E.: U-shaped, iterative, and iterative-with-counter
learning. Mach. Learn. 72, 63–88 (2008)

[CM09] Case, J., Moelius, S.: Parallelism increases iterative learning power. Theor.
Comput. Sci. 410(19), 1863–1875 (2009)

[CM11] Case, J., Moelius, S.: Optimal language learning from positive data. Inf.
Comput. 209, 1293–1311 (2011)

http://arxiv.org/abs/1801.10502

284 A. Khazraei et al.

[FJO94] Fulk, M., Jain, S., Osherson, D.: Open problems in systems that learn. J.
Comput. Syst. Sci. 49(3), 589–604 (1994)

[Gol67] Gold, E.: Language identification in the limit. Inf. Control 10, 447–474
(1967)

[Jan91] Jantke, K.P.: Monotonic and nonmonotonic inductive inference of func-
tions and patterns. In: 1st International Workshop on Nonmonotonic and
Inductive Logic, Proceedings, pp. 161–177 (1991)

[JKMS16] Jain, S., Kötzing, T., Ma, J., Stephan, F.: On the role of update constraints
and text-types in iterative learning. Inf. Comput. 247, 152–168 (2016)

[JLZ07] Jain, S., Lange, S., Zilles, S.: Some natural conditions on incremental learn-
ing. Inf. Comput. 205, 1671–1684 (2007)

[JMZ13] Jain, S., Moelius, S., Zilles, S.: Learning without coding. Theor. Comput.
Sci. 473, 124–148 (2013)

[JORS99] Jain, S., Osherson, D., Royer, J., Sharma, A.: Systems that Learn: An
Introduction to Learning Theory, 2nd edn. MIT Press, Cambridge (1999)

[Köt09] Kötzing, T.: Abstraction and Complexity in Computational Learning in
the Limit. PhD thesis, University of Delaware (2009)

[KP16] Kötzing, T., Palenta, R.: A map of update constraints in inductive infer-
ence. Theor. Comput. Sci. 650, 4–24 (2016)

[KS16] Kötzing, T., Schirneck, M.: Towards an atlas of computational learning
theory. In: 33rd Symposium on Theoretical Aspects of Computer Science
(2016)

[KSS17] Kötzing, T., Schirneck, M., Seidel, K.: Normal forms in semantic language
identification. In: Proceedings of Algorithmic Learning Theory, pp. 493–
516. PMLR (2017)

[LZ92] Lange, S., Zeugmann, T.: Types of monotonic language learning and their
characterization. In: Proceedings 5th Annual ACM Workshop on Comput-
ing Learning Theory, New York, NY, pp. 377–390 (1992)

[LZ96] Lange, S., Zeugmann, T.: Incremental learning from positive data. J. Com-
put. Syst. Sci. 53, 88–103 (1996)

[LZZ08] Lange, S., Zeugmann, T., Zilles, S.: Learning indexed families of recursive
languages from positive data: a survey. Theor. Comput. Sci. 397(1), 194–
232 (2008)

[Odi99] Odifreddi, P.: Classical Recursion Theory, vol. II. Elesivier, Amsterdam
(1999)

[OSW82] Osherson, D., Stob, M., Weinstein, S.: Learning strategies. Inf. Control 53,
32–51 (1982)

[OSW86] Osherson, D., Stob, M., Weinstein, S.: Systems that Learn: An Introduction
to Learning Theory for Cognitive and Computer Scientists. MIT Press,
Cambridge (1986)

[RC94] Royer, J., Case, J.: Subrecursive Programming Systems: Complexity and
Succinctness. Research monograph in Progress in Theoretical Computer
Science, Birkhäuser Boston (1994)

[Rog67] Rogers, H.: Theory of Recursive Functions and Effective Computability.
McGraw Hill, New York (1967). Reprinted, MIT Press (1987)

[Wie76] Wiehagen, R.: Limes-erkennung rekursiver funktionen durch spezielle
strategien. J. Inf. Process. Cybern. 12(1–2), 93–99 (1976)

[Wie91] Wiehagen, R.: A thesis in inductive inference. In: 1st International Work-
shop on Nonmonotonic and Inductive Logic, Proceedings, pp. 184–207
(1991)

On Preserving the Computational
Content of Mathematical Proofs: Toy
Examples for a Formalising Strategy

Angeliki Koutsoukou-Argyraki(B)

Department of Computer Science and Technology (Computer Laboratory),
University of Cambridge, Cambridge, UK

ak2110@cam.ac.uk

Abstract. Instead of using program extraction mechanisms in various
theorem provers, I suggest that users opt to create a database of for-
mal proofs whose computational content is made explicit; this would
be an alternative approach which, as libraries of formal mathematical
proofs are constantly growing, would rely on future advances in automa-
tion and machine learning tools, so that as blocks of (sub)proofs get
generated automatically, the preserved computational content would get
recycled, recombined and would eventually manifest itself in different
contexts. To this end, I do not suggest restricting to only constructive
proofs, but I suggest that proof mined, possibly also non-constructive
proofs with some explicit computational content should be preferable, if
possible. To illustrate what kind of computational content in mathemat-
ical proofs may be of interest I give several very elementary examples (to
be regarded as building blocks of proofs) and some samples of formali-
sations in Isabelle/HOL. Given the state of the art in automation and
machine learning tools currently available for proof assistants, my sug-
gestion is rather speculative, yet starting to build a database of formal
proofs with explicit computational content would be a potentially useful
first step.

Keywords: Proof assistants · Computational content · Proof mining ·
Isabelle/HOL · Proof theory · Interactive theorem provers ·
Formalisation · Machine learning

1 Motivation

A very active and significant area of modern proof theory is devoted to the
specification of the computational content of mathematical methods, both from
a foundational and a structural point of view, and the extraction of computa-
tional content from mathematical proofs. Avigad’s survey [1] summarises various
such methods in classical first order arithmetic. In applied proof theory, within
the past couple of decades, Kohlenbach’s proof mining school, originating from
Kreisel’s program of “unwinding of proofs” from the 1950’s [22–24], has suc-
ceeded in obtaining computational content from mathematical proofs in a vast
c© Springer Nature Switzerland AG 2021
L. De Mol et al. (Eds.): CiE 2021, LNCS 12813, pp. 285–296, 2021.
https://doi.org/10.1007/978-3-030-80049-9_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80049-9_26&domain=pdf
https://doi.org/10.1007/978-3-030-80049-9_26

286 A. Koutsoukou-Argyraki

number of applications, mainly within nonlinear analysis (fixed point theory,
ergodic theory, topological dynamics, convex optimisation, Cauchy problems,
nonlinear semigroup theory in Banach spaces and more). The main reference is
Kohlenbach’s monograph from 2008 [12] while the recent reviews [13,14] give a
general overview of the main recent results since 2008 and discuss how proof-
theoretic methods can be applied for extracting explicit bounds in each family
of applications. The proof-theoretic tools applied for the pen-and-paper extrac-
tion of computational content are variations and/or combinations of certain so-
called proof interpretations, such as Gödel’s functional “Dialectica” (monotone)
interpretation, the Gödel–Gentzen double-negation translation and Friedman’s
A-translation. Within proof mining, certain logical metatheorems guarantee the
extractability of effective information (computational content) in specific con-
texts even for classical (i.e. non-constructive) proofs, as long as the statement
proved is of a certain logical form.

So far we have referred to pen-and-paper extraction of computational con-
tent. On a parallel note, in the world of interactive theorem provers (proof
assistants), computational content, in the sense of algorithms contained in con-
structive proofs, can be obtained by various program extraction mechanisms
that implement the aforementioned proof interpretations. These are available
for instance in Nuprl and Coq, which are based on dependent type theories.
Constable and Murthy have studied the effectiveness of proof transformations
which reveal the computational content of even classical proofs using the A-
translation and discuss their implementation in Nuprl [9]. A program extraction
mechanism based on A-translation and modified realizability is also available in
Schwichtenberg’s system MINLOG1 which is based on minimal first order logic
[27]. Berghofer developed the foundations for a program extraction mechanism in
Isabelle2 in his PhD thesis [5] given that Isabelle, as a generic theorem prover, is
based on simply-typed minimal higher order logic, which is purely constructive.

Meanwhile, the popularity of proof assistants among working mathematicians
in recent years has been rapidly increasing. An important milestone reflecting
this is the inclusion of the new class 68VXX referring to formalisation of math-
ematics and proof assistants in mathematical practice in the 2020 Mathematics
Subject Classification. The field has come a long way since the significant first
attempt of the formal language AUTOMATH by de Bruijn in the late 1960’s
[8]3 but we are still very far from achieving the goals outlined in the QED Man-
ifesto from the 1990’s [7] or the vision of an interactive assistant that would
“converse” with human mathematicians and assist them in the discovery of new
theorems by giving ideas and providing counterexamples, as described e.g. by
Timothy Gowers [10]. However, the body of formalised mathematical material
in various proof assistants is growing very rapidly thanks to contributions by

1 http://www.mathematik.uni-muenchen.de/∼logik/minlog/.
2 http://www.cl.cam.ac.uk/research/hvg/Isabelle/index.html.
3 L. S. van Benthem Jutting, as part of his PhD thesis in the late 1970s translated

Edmund Landau’s Foundations of Analysis into AUTOMATH and checked its cor-
rectness [4].

http://www.mathematik.uni-muenchen.de/~logik/minlog/
http://www.cl.cam.ac.uk/research/hvg/Isabelle/index.html

Toy Examples: Computational Content of Proofs and Formalisation 287

an international community of users and developers. For instance, the Archive
of Formal Proofs (AFP)4 that contains material formalised in Isabelle based on
the Isabelle Libraries5 as of 25 April 2021 includes 594 articles by 379 authors.

On a different note, machine learning technology is considered promising
when it comes to providing tools complementary to these of the axiomatic app-
roach in many areas in computer science, thanks to work towards the integration
of deep neural networks with logic and symbolic computation. The communi-
ties of machine learning and formal verification in particular have been growing
increasingly close during the past few years, e.g. note the very successful “Arti-
ficial Intelligence and Theorem Proving” (AITP)6 and “Intelligent Computer
Mathematics”(CICM)7 conference series, as well as the upcoming MATH-AI
workshop8. Pattern recognition tools from machine learning could find applica-
tions not only in searching the libraries of formal proofs, but also in recognising
proof patterns and providing proof recommendation methods. Recent efforts in
machine learning (e.g. by Li et al. [25], Bansal et al. [3], Polu and Sutskever
[26]) are very promising first steps towards the long-term goal of having proof
assistants generate human-readable proofs automatically.

2 My Suggestion

Given the promising prospects of applications of machine learning in theorem
proving, I suggest9 that extracting computational content from mathematical
proofs could be another area where machine learning could help.

To this end, a database of proofs whose computational content is made
explicit, whenever possible, would be necessary to have. It would be therefore
meaningful for users to opt to formalise proofs with explicit computational con-
tent10. Enriching the (extensive and fast-growing) libraries of formal proofs with
such proofs would not only help preserve their computational content so that
the mathematician user could “manually” make use of it, but also it would pro-
vide a body of data to be used for machine learning: detecting computational
content thanks to pattern matching and as automation improves and blocks of
(sub)proofs get generated automatically, the preserved computational content
would get recycled, recombined and would eventually manifest itself in different
contexts. To create this database of formal proofs I do not suggest restricting to
only strictly constructive proofs; proofs with some explicit computational content

4 https://www.isa-afp.org/index.html.
5 http://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/library/HOL/index.html

http://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/library/ZF/index.html.
6 http://aitp-conference.org.
7 https://easychair.org/smart-program/CICM-13/.
8 https://mathai-iclr.github.io.
9 I have very briefly mentioned this suggestion as a comment in a number of talks

since [21] including in CICM 2018, AITP 2019, Big Proof 2019 as well as in [17].
10 A recent work in this direction is the formalisation of several results from computable

analysis in Coq by Steinberg, Théry and Thies [28].

https://www.isa-afp.org/index.html
http://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/library/HOL/index.html
http://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/library/ZF/index.html
http://aitp-conference.org
https://easychair.org/smart-program/CICM-13/
https://mathai-iclr.github.io

288 A. Koutsoukou-Argyraki

(in the sense of quantitative information expressed as computable functionals)
would be appropriate too even if they are not done within some fully construc-
tive system (see Remark 1). This would constitute a way of “automating” proof
mining without using program extraction mechanisms as in MINLOG or Nuprl.

The manually constructed dataset of formal proofs would include the general
definitions of various aspects of computational content in mathematical appli-
cations, plus as many as possible examples. It could be potentially helpful for
the AI tools if the users make the qualitative information explicit as well; e.g.
in the case of Theorem 1 in Sect. 3, the user could prove the explicit qualita-
tive statement “

√
2 is irrational” in addition to proving the bound implying

the irrationality of
√

2. While the future human mathematician users would be
in the process of writing a new proof, an AI interactive assistant would notify
them of related proofs carrying explicit computational content (recommended
via pattern matching on mathematical formulas) so that these could be man-
ually used. Another useful feature to implement would be an AI “diagnostic”
tool to automatically check whether the statement proved fits the requirements
for the application of a general proof mining metatheorem (thus guaranteeing
the extractability of computational content from a proof, regardless of whether
it is constructive or not, as long as the mathematical statement at hand can be
reduced to a certain logical form and the input data fulfill certain conditions
[12]). At a later, much more advanced stage, where proof blocks would be gener-
ated automatically thanks to sophisticated code generation mechanisms, (some
of) the quantitative information would be computed automatically too, using the
available material from the library that would be detected via machine learning.

A prerequisite for the realisation of this idea is having achieved the stage
of an interactive proof assistant that could automatically generate intermediate
small lemmas and results “at the level of a capable graduate student”, assisting
working mathematicians in their daily research work. To this end, the main two
areas requiring a great deal of work are (1) automation and (2) search features,
both for proof patterns and algorithms and names of required facts. The state
of the art is still far from this goal; Avigad in [2] writes on this: “we are not
there yet, but such technology seems to be within reach. There are no apparent
conceptual hurdles that need to be overcome, though getting to that point will
require a good deal of careful thought, clever engineering, experimentation, and
hard work”. My plan sketched here is thus purely speculative, and I do not have
more specific technical details to offer about how this highly non-trivial goal
could be achieved, except from suggesting that two different communities come
together: (a) experts who formalise mathematics who could opt for formalising
proofs with explicit computational content contributing to the creation of a large
body of data and (b) machine learning experts who could build the tools for the
automated “identification” of this explicit computational content and the proof
recommendation tools that would make use of it in an appropriate way.

Toy Examples: Computational Content of Proofs and Formalisation 289

Clearly, my suggestion could not be applicable for all proofs as not every
mathematical proof carries meaningful computational content. At the same time,
even pen-and-paper proof mining works only for statements of the logical form
∀∃ so one cannot expect that any mathematical proof could by “automatically”
proof-mined either. But I suggest that it would be meaningful to at least capture
the computational content of some proofs wherever possible. At this point it
is important to stress that different proofs of the same statement give different
computational content. For example, regarding the infinitude of primes, in [12] in
addition to the proof presented later in this paper, two other, different proofs, by
Euclid and Euler respectively, are given; these proofs are all proof mined in [12]
and each of them gives a different bound. Another instance of this phenomenon
I have encountered in my work on approximate common fixed points of one-
parameter nonexpansive semigroups on subsets of a Banach space [16,18,20].
Usually it is unclear how to evaluate which proof gives “better” computational
content. “Better” computational content might mean a numerically more precise
bound, or a bound of lower complexity (e.g. polynomial instead of exponential),
or a bound that is more “elegant”, or a bound with fewer parameters– and there
is no reason why the aforementioned properties would coincide, nor is there any
a priori relationship between them clear.

3 Toy Examples

In proof mining, the quantitative versions of properties like conver-
gence/metastability/asymptotic regularity [12,15,19,20] convey the related com-
putational information through the respective rates. Similarly, the quantitative
versions of properties such as uniform continuity, uniqueness, uniform convex-
ity [12,20] convey the computational information through the respective mod-
uli, and irrationality conveys the computational information through the irra-
tionality measure (see e.g. next section or [16,18,20]). In a similar spirit, other
interesting notions (referring to certain operators in Banach spaces) are the
modulus of accretivity/modulus of accretivity at zero introduced by Kohlen-
bach and the author [15,20], and the modulus of φ-accretivity/modulus of φ-
accretivity at zero introduced by the author [19,20]. Other such notions are
the moduli of total boundedness (for compactness), uniform closedness, uniform
Fejér monotonicity, approximate fixed points bound [13]. All these various mod-
uli/rates/measures/bounds can be seen as “black box information” entering the
assumptions (and can be computed by choosing values for their parameters as
they are number-theoretic functionals). The final bound referring to the con-
clusion of the theorem which may be obtained via proof mining on the original
proof will take the functionals of the moduli/rates/measures/bounds originating
from the assumptions as inputs.

290 A. Koutsoukou-Argyraki

I now proceed to give a few very elementary examples to illustrate aspects of
computational content in mathematical proofs that we may be interested in. The
proofs are trivial and they are omitted for the sake of brevity (except from the
proof of Theorem 1). For Theorem 1, Lemmas 1 and 2 we give formalisations
in Isabelle/HOL. Such elementary proofs could be included as ingredients of
building blocks of more elaborate proofs. The examples presented here are as
simple as possible; for the general underlying logical form of the statements
in each family of mathematical applications as well as the statements in full
generality (e.g. in general metric spaces etc.) we refer to [12–14]. In the following,
N denotes the set of natural numbers {1, 2, 3...}, Z, Z+, Z∗, Q, R denote the sets
of integers, positive integers without zero, integers without zero, rationals and
reals respectively.

3.1
√
2 Is Irrational

The following proof of the irrationality of
√

2 due to Bishop [6] does not make
any use of the law of the excluded middle and moreover provides quantitative
information showing that

√
2 is “constructively” irrational.

Theorem 1. (Bishop [6])
√

2 ∈ R \ Q. In particular:

∀a, b ∈ Z
+ (a/b ∈ (0, 2] → |

√
2 − a

b
| ≥ 1

4b2
).

Proof (Bishop [6]). The first step is to show that, for all a, b ∈ Z
+, a2 �= 2b2

(e.g. by using the argument that as the highest power of 2 dividing 2b2 is odd,
while the highest power of 2 dividing a2 is even, they must be distinct integers).
Therefore, for all a, b ∈ Z

+, |a2 − 2b2| ≥ 1. Then have that |a
b − √

2||a
b +

√
2| =

|a2

b2 − 2| = 1
b2 |a2 − 2b2| ≥ 1

b2 . Finally notice that, assuming a/b ∈ (0, 2] we have
|a
b − √

2| ≥ 1
| ab +

√
2|

1
b2 ≥ 1

4
1
b2 .

A formal proof in Isabelle/HOL (due to Wenda Li and the author) is given
below:

Toy Examples: Computational Content of Proofs and Formalisation 291

292 A. Koutsoukou-Argyraki

Remark 1. Here we are not concerned with the use of the label “constructive”
but with the computational information that emerges together with the property
of irrationality. Taking a case distinction and assuming that a/b > 2, it is easy
to estimate that ∀a, b ∈ Z

+ (a/b > 2 → |√2 − a
b | ≥ 1/4 ≥ 1/4b2) so in any

case ∀a, b ∈ Z
+ (|√2 − a

b | ≥ 1/4b2). To characterise a proof as “constructive”
according to Bishop it should not make use of the trichotomy (a/b > 2)∨ (a/b =
2)∨(a/b < 2), while the proof given here where it is a priori assumed a/b ∈ (0, 2]
is constructive as it is. But we could have alternatively assumed a, b ∈ Z

+ (or
a ∈ Z, b ∈ Z

∗) and written the proof using non-constructive trichotomy case
distinctions while still obtaining computational content. Thus, for our database
we do not need to restrict to proofs that are constructive (performed within a
constructive calculus); proofs giving some explicit computational content (i.e.
quantitative information expressed as computable functionals) even if not fully
constructive, could be appropriate too. In fact, in actual mathematical practice
most proofs make heavy use of non-constructive principles, like the law of the
excluded middle (proof by contradiction, case distinctions) and the axiom of
choice, so excluding such proofs would be very impractical. Isabelle/HOL in
particular is a proof assistant that allows for such non-constructive proofs.

3.2 There Exist Infinitely Many Prime Numbers

The following statement not only attests the infinitude of primes [12] but more-
over gives quantitative information on the value of a prime P as a function of
the number of primes that are smaller than P . For the proof see [12].

Theorem 2 (Kohlenbach [12]). There exist infinitely many prime numbers. In
particular, given the first r many prime numbers, there exists a prime number
P > pr and moreover P ≤ 4r + 1.

3.3 Uniform Continuity

Lemma 1. The function f : R → R defined as f(x) := x is uniformly continu-
ous. In particular,

∀k ∈ N ∀x, y ∈ R (|x − y| < 2−ω(k) → |f(x) − f(y)| < 2−k)

where a bound (depending on k) on ω : N → N is a modulus of continuity for f
and here we may trivially take ω(k) := k.

3.4 Uniqueness

Lemma 2. The function f : R → R defined as f(x) := x has a unique zero. In
particular, given z1, z2 ∈ R

∀k ∈ N (|f(z1)| < 2−ω(k) ∧ |f(z2)| < 2−ω(k) → |z1 − z2| < 2−k)

where a bound (depending on k) on ω : N → N is a modulus of uniqueness11 for
the zero of f and here we may trivially take ω(k) := k + 1.
11 see [11,12,14] for the general logical form.

Toy Examples: Computational Content of Proofs and Formalisation 293

Formal proofs of Lemma 1 and Lemma 2 in Isabelle/HOL are given below:

3.5 Inclusions Between Sets of Solutions

See [14] for a discussion on the general form. The following is a trivial example:

Lemma 3. Let f, g : R → R defined as f(x) := x and g(x) := 4x. Then z ∈ R

is a zero of f if and only if it is a zero of g. In particular:12

∀k ∈ N (|f(z)| ≤ 2−ω(k) → |g(z)| < 2−k)

∀k ∈ N, k > 2 (|g(z)| ≤ 2−ω̃(k) → |f(z)| < 2−k)

where we may take ω(k) := k + 2 and ω̃(k) := k − 2.

4 Propagation of Computational Information: More Toy
Examples

Thanks to the modularity of the bounds, the computational content “propa-
gates”. We illustrate how this may happen, and what kind of computational
information we may be looking for, in the following elementary examples.

4.1 The Product and Ratio of an Irrational and a Rational Are
Irrationals

Given γ ∈ R \ Q, as definition of irrationality we consider the following:

∀a ∈ Z, b ∈ Z
∗ ∃z ∈ N |γ − a

b
| ≥ 1

z
.

Skolemizing, ∃z ∈ Z × Z
∗ → N ∀a ∈ Z, b ∈ Z

∗ |γ − a
b | ≥ 1

z(a,b)

and the Skolem function z plays the role of the irrationality measure.

12 in this totally trivial example the set of zeros for both f and g is of course the
one-element set {0}.

294 A. Koutsoukou-Argyraki

Lemma 4. Let δ ∈ Q with δ > 0. Then
√

2δ ∈ R \ Q. In particular, assuming
δ = c

d for c, d ∈ Z
+

∀a ∈ Z, b ∈ Z
∗ (|

√
2δ − a

b
| ≥ 1

4dcb2
).

More generally:

Lemma 5. Let γ ∈ R\Q and δ ∈ Q with δ �= 0 . Then γδ ∈ R\Q and γ
δ ∈ R\Q.

In particular, assuming

∃z ∈ Z × Z
∗ → N ∀a ∈ Z, b ∈ Z

∗ |γ − a

b
| ≥ 1

z(a, b)

and δ = c
d for some c, d ∈ Z

∗, we have

∃z̃ ∈ Z × Z
∗ → N ∀a ∈ Z, b ∈ Z

∗ |γδ − a

b
| ≥ 1

z̃(a, b)
,

∃z ∈ Z × Z
∗ → N ∀a ∈ Z, b ∈ Z

∗ |γ
δ

− a

b
| ≥ 1

z(a, b)

and we may take z̃(a, b) := |d|z(ad, bc) and z(a, b) := |c|z(ac, bd).

4.2 Example on Uniformly Continuous Bounded Functions

Lemma 6. Let f : R → R be a uniformly continuous function with a modulus
of continuity ω : N → N i.e.

∀k ∈ N ∀x, y ∈ R (|x − y| < 2−ω(k) → |f(x) − f(y)| < 2−k)

and let ∀x ∈ R (0 < f(x) < 2B) for some B ∈ N. Let g : R → R defined as
g(x) := (f(x))2. Then g is uniformly continuous and in particular as a modulus
of continuity for g we can take ω̃(k) := ω(k + 1 + B) i.e. :

∀k ∈ N ∀x, y ∈ R (|x − y| < 2−ω(k+1+B) → |g(x) − g(y)| < 2−k).

4.3 Rates of Convergence

Lemma 7. Let f1, f2 : R → R converging to zero with rates of convergence Φ, Ψ
respectively, i.e.:

∀k ∈ N ∃n ≤ Φ(k) ∀m ≥ n |f1(m)| ≤ 2−k

and
∀k ∈ N ∃n ≤ Ψ(k) ∀m ≥ n |f2(m)| ≤ 2−k.

Then, the function g : R → R defined as g := f1 + f2, converges to zero and in
particular as a rate of convergence for g we can take Θ such as

∀k ∈ N ∃n ≤ Θ(k + 1) ∀m ≥ n |g(m)| ≤ 2−k

where, for given k ∈ N, Θ(k) := max{Φ(k), Ψ(k)}.

Toy Examples: Computational Content of Proofs and Formalisation 295

4.4 Asymptotic Regularity

See [14] for a discussion on the general form.

Lemma 8. Let T : R → R, S : R → R with Snx := 1
4Tnx and tn := Tnx,

sn := Snx. Then if T is asymptotically regular (i.e. if |tn − Ttn| → 0) and in a
nonincreasing way, S is asymptotically regular. In particular, by

∀k ∈ N ∃n ≤ Φ(k) (|tn − Ttn| < 2−k)

it follows that
∀k ∈ N ∃n ≤ Φ̃(k) (|sn − Ssn| < 2−k)

where for the rate of asymptotic regularity we may take Φ̃(k) := Φ(k − 2).

Ackowledgements. The author was supported by the ERC Advanced Grant
ALEXANDRIA (Project 742178) led by Professor Lawrence C. Paulson FRS. I thank
Wenda Li, Yiannos Stathopoulos and Lawrence Paulson for their very useful comments
on a previous draft of this paper and Tobias Nipkow for informing me of reference [5].

References

1. Avigad, J.: The computational content of classical arithmetic. In: Feferman, S.,
Sieg, W. (eds.) Proofs, Categories, and Computations: Essays in Honor of Grigori
Mints, pp. 15–30. College Publications (2010)

2. Avigad, J.: The mechanization of Mathematics 65(6) (2018). https://www.ams.
org/journals/notices/201806/rnoti-p681.pdf

3. Bansal, K., Loos, S., Rabe, M., Szegedy, C., Wilcox, S.: HOList: an environment
for machine learning of higher order logic theorem proving. In: Proceedings of the
36th International Conference on Machine Learning, vol. 97, pp. 454–463. PMLR
(2019)

4. van Benthem Jutting, L.S.: Checking Landau’s “Grundlagen” in the Automath
system. PhD thesis, Eindhoven University of Technology, 1977. Published as Math-
ematical Centre Tracts nr. 83 (1979)

5. Berghofer, S.: Proofs, Programs and Executable Specifications in Higher Order
Logic. PhD thesis, Technische Universität München, Institut für Informatik (2003)

6. Bishop, E.: Schizophrenia in contemporary mathematics. Am. Math. Soc. (1973)
7. Boyer, R., et al.: The QED manifesto. In: Bundy, A. (ed.) Automated Deduction

- CADE 12, LNAI, vol. 814, pp. 238–251. Springer-Verlag (1994)
8. de Bruijn, N.G.: AUTOMATH, a language for mathematics. Technical Report 68-

WSK-05, T.H.-Reports, Eindhoven University of Technology (1968)
9. Constable, R., Murthy, C.: Finding computational content in classical proofs. In:

Huet, G., Plotkin, G. (eds.) Logical Frameworks, pp. 341–362. Cambridge Univer-
sity Press, Cambridge (1991)

10. Gowers, W.T.: Rough structure and classification. In: Alon, N., Bourgain, J.,
Connes, A., Gromov, M., Milman, V. (eds.) Visions in Mathematics. Modern
Birkhäuser Classics. Birkhäuser Basel (2010)

11. Kohlenbach, U.: Effective moduli from ineffective uniqueness proofs. An unwinding
of de La Vallée Poussin’s proof for Chebycheff approximation. Ann. Pure Appl.
Logic 64, 27–94 (1993). https://doi.org/10.1016/0168-0072(93)90213-W

https://www.ams.org/journals/notices/201806/rnoti-p681.pdf
https://www.ams.org/journals/notices/201806/rnoti-p681.pdf
https://doi.org/10.1016/0168-0072(93)90213-W

296 A. Koutsoukou-Argyraki

12. Kohlenbach, U.: Applied Proof Theory: Proof Interpretations and their use in
Mathematics. Springer Monographs in Mathematics. Springer-Verlag, Berlin Hei-
delberg (2008)

13. Kohlenbach, U.: Recent progress in proof mining in nonlinear analysis. IFCoLog
J. Logics Appl. 10(4), 3357–3406 (2017)

14. Kohlenbach, U.: Proof-theoretic methods in nonlinear analysis. In: Sirakov, B.,
Ney de Souza, P., Viana, M. (eds.) Proceedings of the International Congress of
Mathematicians -2018, Rio de Janeiro, vol. 2, pp. 61–82. World Scientific (2019)

15. Kohlenbach, U., Koutsoukou-Argyraki, A.: Rates of convergence and metastability
for abstract Cauchy problems generated by accretive operators. J. Math. Anal.
Appl. 423(2), 1089–1112 (2015)

16. Kohlenbach, U., Koutsoukou-Argyraki, A.: Effective asymptotic regularity for one-
parameter nonexpansive semigroups. J. Math. Anal. Appl. 433(2), 1883–1903
(2016)

17. Koutsoukou-Argyraki, A.: Formalising mathematics-in praxis: a mathematician’s
first experiences with Isabelle/HOL and the why and how of getting started. Jahres-
bericht der Deutschen Mathematiker-Vereinigung 123, 3–26 (2021)

18. Koutsoukou-Argyraki, A.: New effective bounds for the approximate common fixed
points and asymptotic regularity of nonexpansive semigroups. J. Log. Anal. 10(7),
1–30 (2018)

19. Koutsoukou-Argyraki, A.: Effective rates of convergence for the resolvents of accre-
tive operators. Numer. Funct. Anal. Optim. 38(12), 1601–1613 (2017)

20. Koutsoukou-Argyraki, A.: Proof Mining for Nonlinear Operator Theory: Four Case
Studies on Accretive Operators, the Cauchy Problem and Nonexpansive Semi-
groups. PhD thesis, TU Darmstadt (2017). URN:urn:nbn:de:tuda-tuprints-61015

21. Koutsoukou-Argyraki, A.: Proof mining mathematics, formalizing mathematics.
In: Proceedings of the North American Annual Meeting of the Association for
Symbolic Logic, University of Western Illinois, Macomb, Illinois, USA, 16–19 May
2018, the Bulletin of Symbolic Logic, vol. 24, no. 4 (2018)

22. Kreisel, G.: On the interpretation of non-finitist proofs. I. J. Symb. Log. 16, 241–
267 (1951)

23. Kreisel, G.: On the interpretation of non-finitist proofs. II. Interpretation of number
theory. Applications. J. Symb. Log. 17, 43–58 (1952)

24. Kreisel, G.: Interpretation of analysis by means of constructive functionals of finite
types. In: Heyting, A. (ed.) Constructivity in Mathematics: Proceedings of the
Colloquium held at Amsterdam, 1957. Studies in Logic and the Foundations of
Mathematics, pp. 101–128. North-Holland Publishing Co., Amsterdam (1959)

25. Li, W., Yu, L., Wu, Y., Paulson, L.C.: IsarStep: a benchmark for high-level
mathematical reasoning. In: International Conference on Learning Representations
(2021). https://openreview.net/forum?id=Pzj6fzU6wkj

26. Polu, S., Sutskever, I.: Generative Language Modeling for Automated Theorem
Proving. arXiv:2009.03393v1 (2020)

27. Schwichtenberg, H., Wainer, S.S.: Proofs and Computations, Perspectives in Logic,
Association for Symbolic Logic and Cambridge University Press (2012)

28. Steinberg, F., Théry, L., Thies, H.: Computable analysis and notions of continuity
in Coq. Log. Methods Comput. Sci. 17(2), 16:1–16:43 (2021)

https://openreview.net/forum?id=Pzj6fzU6wkj
http://arxiv.org/abs/2009.03393v1

In Search of the First-Order Part
of Ramsey’s Theorem for Pairs

Leszek Aleksander Ko�lodziejczyk1 and Keita Yokoyama2(B)

1 Institute of Mathematics, University of Warsaw, Warsaw, Poland
lak@mimuw.edu.pl

2 School of Information Science, Japan Advanced Institute of Science
and Technology, Nomi, Japan

y-keita@jaist.ac.jp

Abstract. In reverse mathematics, determining the first-order conse-
quences of Ramsey’s theorem for pairs and two colors is a long-standing
open problem. In this paper, we give an overview of some recent devel-
opments related to this problem.

Keywords: Reverse mathematics · Ramey’s theorem · First-order
strength

1 Introduction

Given n, k ≥ 1, Ramsey’s theorem for n-tuples and k colours can be formalized
in the language of second-order arithmetic as the following Π1

2 statement:

RTn
k : for any c : [N]n → k, there exists an infinite set H ⊆ N such that c is

constant on [H]n,

where [X]n = {F ⊆ X : |F | = n}. We also let RTn be ∀k RTn
k . Ramsey’s

theorem and its variants have been a major topic of interest in the research
programme known as reverse mathematics, which tries to determine the strength
of mathematical theorems by comparing them with some prominent fragments of
second-order arithmetic axiomatized by set existence principles. (For background
on second-order arithmetic and reverse mathematics, refer to [25] or [10].)

It is not difficult to check that the implications RTn
k → RTn

k+1 and RTn+1
2 →

RTn are provable in RCA0 (be aware that the former does not imply RTn
2 → RTn

This paper surveys some material that forms a common background for the first
author’s special session talk ‘Reverse mathematics of combinatorial principles over a
weak base theory’ and the second author’s plenary talk ‘Reverse mathematics and proof
and model theory of arithmetic’. The authors thank Marta Fiori-Carones, Katarzyna
Kowalik, Ludovic Patey, and Tin Lok Wong for helpful discussions and comments
related to various results described here. The first author was partially supported by
grant no. 2017/27/B/ST1/01951 of the National Science Centre, Poland. The second
author was partially supported by JSPS KAKENHI grant no. 19K03601.

c© Springer Nature Switzerland AG 2021
L. De Mol et al. (Eds.): CiE 2021, LNCS 12813, pp. 297–307, 2021.
https://doi.org/10.1007/978-3-030-80049-9_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80049-9_27&domain=pdf
http://orcid.org/0000-0002-8516-800X
http://orcid.org/0000-0001-5329-3298
https://doi.org/10.1007/978-3-030-80049-9_27

298 L. A. Ko�lodziejczyk and K. Yokoyama

in the absence of sufficiently strong induction). So, we obtain a hierarchy of
principles of increasing logical strength: RT1

2 ≤ RT1 ≤ RT2
2 ≤ RT2 ≤ RT3

2 ≤
By formalizing work of Jockusch [13], Simpson [25] showed that RTn

2 is in fact
equivalent to ACA0 over RCA0 for each n ≥ 3. On the other hand, Hirst [12]
showed that RT1 is equivalent to BΣ0

2 over RCA0, hence it is essentially a first-
order statement. Determining the strength of Ramsey’s theorem for pairs, that
is, of RT2

2 and RT2, is a much more complicated matter.
Various computability-theoretic arguments have clarified the relationship of

Ramsey’s theorem for pairs to the usual set existence principles appearing in
reverse mathematics. By the counterexample to Ramsey’s theorem in com-
putable mathematics provided by Specker [27], RT2

2 is not provable in RCA0,
and by Jockusch [13] it is also unprovable in WKL0, even in the presence of
the full mathematical induction scheme. In [24], Seetapun showed by means of
a cone avoidance theorem that RCA0 + RT2 does not imply ACA0. Finally, the
unprovability of WKL0 in RCA0 + RT2 was shown by Liu [21].

What about consequences of Ramsey’s theorem for pairs expressible in the
language of first-order arithmetic? Recall that Peano Arithmetic is the union
of a chain of weaker theories BΣ1 < IΣ1 < BΣ2 < IΣ2 < . . ., where IΣn is
axiomatized by induction for Σn formulas, and BΣn is axiomatized by the col-
lection (or bounding) principle for Σn formulas. RCA0 is a conservative extension
of IΣ1, and ACA0 is a conservative extension of full PA, so the first-order con-
sequences of RT2

2 and RT2 must lie somewhere in between. Where exactly? A
very closely related problem concerns Π1

1 consequences, which are intuitively
“first-order consequences with a set parameter”. If we write Σ0

n for the class
of formulas defined like Σn but allowing set parameters, and we let IΣ0

n stand
for the universal closure of the induction scheme for Σ0

n formulas, where in the
interval between IΣ0

1 and
⋃

n IΣ0
n do the Π1

1 consequences of RT2
(2) lie?

The first significant result about the first-order consequences of Ramsey’s
theorem for pairs was obtained by Hirst [12], who showed the following.

Theorem 1 ([12]). RCA0 + RT2
2 implies BΣ0

2 , and RCA0 + RT2 implies BΣ0
3 .

This paper provides an overview of recent work aimed at characterizing the first-
order (and Π1

1 -) strength of Ramsey’s theorem for pairs. Theorem 1 will be our
starting point. In other words, the main question is: “Does RT2

(2) imply sentences
stronger than the Σ0

2 (resp. Σ0
3) collection principle?”

Notational convention. The symbol ω stands for the set of standard natural num-
bers, while N stands for the set of natural numbers as formalized in arithmetic
theories (which will have nonstandard models). To refer to the smallest infinite
ordinal as formalized in arithmetic, we use the symbol .

2 Π1
1 -Conservation via -Extensions

In the study of first-order consequences of fragments of second-order arithmetic,
results stating that one theory is Π1

1 -conservative over another play a major

In Search of the First-Order Part of Ramsey’s Theorem for Pairs 299

role. A standard approach to showing Π1
1 -conservation is based on the following

simple model-theoretic criterion.

Proposition 1. Let T, T ′ be Π1
2 -axiomatized theories such that T ⊆ T ′. Then

the following are equivalent.

(1) T ′ is a Π1
1 -conservative extension of T .

(2) For every countable recursively saturated model (M,S) |= T and every set
A ∈ S, there exists S ′ ⊆ P(M) such that A ∈ S ′ and (M,S ′) |= T ′.

In particular, (2) is satisfied if each countable (M,S) |= T can be extended to
(M,S ′) |= T ′ with S ⊆ S ′. In such a case, we say that (M,S ′) is an -extension
of (M,S), to emphasize that the first-order universes of the two structures coin-
cide. (Usually one would write simply “ω-extension”, but this conflicts with our
convention that ω stands for the standard natural numbers.)

2.1 Extending Models via Second-Jump Control

In [3], Cholak, Jockusch, and Slaman proved a low2-basis theorem for Ramsey’s
theorem for pairs: for any computable coloring c : [ω]2 → k, there exists an
infinite c-homogenous set H ⊆ ω such that H ′′ ≡T 0′′. They gave two proofs
of this result, and converted the one based on “second-jump control” (directly
controlling the Σ2 theory of H) to a forcing construction, thus obtaining the
following -extension theorem for RT2

2 and RT2.

Theorem 2 (Cholak/Jockusch/Slaman [3]).

(i) For any countable model (M,S) |= RCA0 + IΣ0
2 , there exists S̃ ⊇ S such

that (M, S̃) |= RCA0 + IΣ0
2 + RT2

2.
(ii) For any countable model (M,S) |= RCA0 + IΣ0

3 , there exists S̃ ⊇ S such
that (M, S̃) |= RCA0 + IΣ0

3 + RT2.

Corollary 1 ([3]). RCA0 + IΣ0
2 + RT2

2 is a Π1
1 -conservative extension of IΣ0

2 ,
and RCA0 + IΣ0

3 + RT2 is a Π1
1 -conservative extension of IΣ0

3 .

Combining this with Theorem 1, we can conclude that the Π1
1 -part of RT2

2 lies
between BΣ0

2 and IΣ0
2 , and that of RT2 lies between BΣ0

3 and IΣ0
3 . Correspond-

ing results for the purely first-order parts follow.
In [26], it was shown that the second-jump control argument for the low2-

basis theorem for RT2 can be formalized within BΣ0
3 by adapting a technique

known as Shore’s blocking argument. Note that given sets X,Y , the relation
“X is Σn relative to Y ” can be expressed using a Σ0

n-universal formula, and
“X is lown relative to Y ” (i.e., (X ⊕ Y)(n) ≡T Y (n)) can be formalized as “any
ΣX⊕Y

n+1 -set is ΣY
n+1”. (For a set Z and a number m, a set is ΣZ

m if it is Σ0
m-

definable with Z as the only set parameter.)

Theorem 3 (Slaman/Yokoyama [26]). RCA0 + BΣ0
3 proves the following

statement.

300 L. A. Ko�lodziejczyk and K. Yokoyama

For every k ∈ N, every set X, and every X-computable coloring c : [N]2 → k,
there exists (an index of) a ΣX

3 -set H such that H is an infinite homogeneous
set for c and (X ⊕ H)′′ ≡T X ′′.

Given a countable model (M,S) |= RCA0 +BΣ0
3 and X ∈ S, one may apply this

theorem repeatedly, since adding a low2 set to a model of BΣ0
3 preserves BΣ0

3 .
This produces a model of RT2 in which the second–order part consists of low2

sets relative to X. Thus, by Proposition 1, we have the following.

Corollary 2 ([26]). RCA0 + RT2 is a Π1
1 -conservative extension of BΣ0

3 .

In other words, the Π1
1 -part of RCA0 + RT2 is exactly the same as BΣ0

3 .

2.2 Extending Models via First-Jump Control

It seems likely that the ideas developed in order to prove the low2-basis theorem
of [3] will also be useful in the search for the Π1

1 -part of RCA0 + RT2
2. In that

context, however, we have to deal with structures that might not satisfy IΣ0
2 .

For this reason, it makes more sense to focus on the “first-jump control” proof,
which leads to the following result: for any computable coloring c : [ω]2 → 2 and
any set Z such that 0′ � Z ′, there exists an infinite c-homogenous set H ⊆ ω
such that H ′ � Z ′. Here X � Y stands for “Y has PA-degree relative to X”,
that is, Y computes a path in any X-computable infinite 0–1 tree.

Using a jump inversion argument due to Belanger [1], and an appropriate
formalization of the � relation in RCA0 + BΣ0

2 , we get the following.

Proposition 2. Let θ ≡ ∀X ∃Y θ0(X,Y) be a Π1
2 sentence. Let n ≥ 1. Assume

that RCA0 + BΣ0
n+1 (resp. RCA0 + IΣ0

n+1) proves

for any sets X,Z such that X(n) � Z(n), there exists (an index of) a ΣZ
n+1-set

Y such that θ0(X,Y) and (X ⊕ Y)(n) � Z(n).

then θ is Π1
1 -conservative over RCA0 + BΣ0

n+1 (resp. RCA0 + IΣ0
n+1).

Thus, the following question is highly relevant to the problem of characterizing
the Π1

1 -part of RCA0 + RT2
2.

Question 1. Does RCA0 + BΣ0
2 prove the following?

(†) For any sets X,Z such that X ′ � Z ′ and any coloring c : [N]2 → 2 satisfying
c ≤T X, there exists (an index of) a ΣZ

2 -set H such that H is an infinite
homogeneous set for c and (X ⊕ H)′ � Z ′.

Unfortunately, it is not clear whether RCA0 +BΣ0
2 is strong enough to formalize

the first-jump control argument of [3] for RT2
2. However, it is sufficient to formal-

ize the argument in restricted cases, such as that of the ascending-descending
sequence principle ADS, which states that every infinite linear order contains
either an infinite ascending sequence or an infinite descending sequence. ADS is
equivalent to the restriction of RT2

2 to so-called transitive colourings [11].

In Search of the First-Order Part of Ramsey’s Theorem for Pairs 301

Theorem 4 (Chong/Slaman/Yang [5]). RCA0 + BΣ0
2 proves the following

statement.

For any sets X,Z such that X ′ � Z ′ and any transitive coloring c : [N]2 → 2
satisfying X ′ � Z ′, there exists (an index of) a ΣZ

2 -set H such that H is an
infinite homogeneous set for c and (X ⊕ H)′ � Z ′.

Corollary 3 ([5]). RCA0 + ADS is a Π1
1 -conservative extension of BΣ0

2 .

A similar conservation result was also proved in [5] for the somewhat stronger
chain-antichain principle CAC, which says that any infinite partial order contains
an infinite chain or an infinite antichain.

On the other hand, IΣ0
2 is enough to prove (†) (this is possibly a folklore

result). To show this, one may combine Theorem 4 with a natural adaptation of
the first-jump control construction for the so-called stable Erdös-Moser principle,
which formalizes within IΣ0

2 without any extra tricks. This argument provides
a low-like solution for RT2

2 witnessing (†).
Theorem 5. RCA0 + IΣ0

2 proves (†).
We say more about (†) in Sect. 5.

An interesting variation of single-jump control was introduced by Chong,
Slaman and Yang [6], who showed that in a very special model of BΣ2 + ¬IΣ2

it is possible to construct a low infinite homogeneous set for any computable
c : [N]2 → 2 that is stable, which means that for any given x the colour c(x, y)
is the same for all but finitely many y. This result has no counterpart over the
standard model, because there exists a computable stable c : [ω]2 → 2 with no
low homogeneous set. In [7], the argument of [6] was combined with an additional
technical construction to prove:

Theorem 6 ([7]). RCA0 + RT2
2 does not prove IΣ2.

It is possible to carry out the constructions behind Theorems 3, 4, 5 effec-
tively enough to obtain theorems on lack of proof speedup corresponding to the
conservation results. For theories T, T ′ and a class of formulas Γ, let us say that
T polynomially simulates T ′ with respect to consequences from Γ if there is a
polytime procedure which, given a proof of a formula from Γ in T ′, outputs a
proof of that formula in T . In particular this means that any formula from Γ
with a proof in T ′ also has a proof in T that is at most polynomially longer.

Theorem 7. With respect to Π1
1 consequences:

(i) RCA0 + BΣ0
3 polynomially simulates RCA0 + RT2,

(ii) RCA0 + IΣ0
2 polynomially simulates RCA0 + RT2

2,
(iii) RCA0 + BΣ0

2 polynomially simulates RCA0 + ADS.

The details will appear in a forthcoming paper.

302 L. A. Ko�lodziejczyk and K. Yokoyama

3 Partial-Conservation and Indicator Arguments

In the study of first-order arithmetic, indicator arguments, developed by Paris,
Kirby and many others (see e.g. [14, Chapter 14]), are a well-understood tool for
constructing interesting initial segments of models. Among other things, indica-
tors were used to prove the unprovability in Peano Arithmetic of combinatorial
statements such as the Paris-Harrington principle and its variants, including one
of the earliest examples by Paris [22]. In [2], Bovykin and Weiermann proved
some results witnessing the usefulness of an indicator-based approach in the
study of the first-order part of Ramsey’s theorem for pairs.

Here, we adopt a definition of indicators in the spirit of [23]. We formulate
the definition over the base theory RCA∗

0 , which is weaker than RCA0 in that
the Σ0

1 -induction axiom of RCA0 is replaced by Σ0
0 -induction and the axiom

exp which states that the exponential function is total. The Π1
1 -part of RCA∗

0 is
BΣ0

1 + exp.

Definition 1. Let (M,S) |= RCA∗
0, and let T be a set of L2-sentences possibly

with parameters from (M,S). A Σ0
0 -definable function Y : [N]<N → N is said to

be an indicator for T in (M,S) if

– Y (F ′) ≤ Y (F) ≤ max F if F ⊆ F ′,
– Y (F) is nonstandard if and only if there exists a cut I ⊆e M with min F ∈

I < max F such that F ∩ I is unbounded in I and (I,Cod(M/I)) |= T .

Proposition 3. Let T be a set of L2-sentences, and let a Σ0-definable function
Y : [N]<N → N be an indicator for T in each (M,S) |= RCA∗

0. Then the theory
WKL∗

0 + T is a Π0
3 -conservative extension of

RCA∗
0 + {∀X ⊆inf N∃F ⊆fin X (Y (F) ≥ n) : n ∈ ω}.

Indicators are often provided by finite combinatorial statements related to the
Paris-Harrington principle, as in [22], and they are closely connected to ordinal
analysis. In an important early paper of Ketonen and Solovay [16], the unprov-
ability of the Paris-Harrington principle in PA was tied to a quantitative analysis
of finite Ramsey’s theorem in which the “largeness” of finite subsets of N is mea-
sured in terms of ordinals. For instance, a set X is -large if |X| > min X, and
it is n+1-large if X \ min X can be written as X1 � . . . � Xk, where k ≥ min X
and for each i, the set Xi is n-large and max Xi < min Xi+1. It turns out that
such amounts of largeness are enough to define an indicator for RT2

2.

Theorem 8 (Patey/Yokoyama [23]). The function Y defined by Y (F) =
max({m : F is m-large}) is an indicator for RCA0 + RT2

2.

For each n ∈ ω, RCA0 proves ∀X ⊆inf N∃F ⊆fin X (F is n-large). This gives:

Corollary 4 ([23]). RCA0 + RT2
2 is a Π0

3 -conservative extension of RCA0.

In Search of the First-Order Part of Ramsey’s Theorem for Pairs 303

Corollary 4 gives a new proof that RCA0 + RT2
2 does not imply IΣ0

2 (cf.
Theorem 6). Additionally, a nontrivial refinement of Theorem 8 provided in [19],
together with a reformulation of the general conservation criterion from Proposi-
tion 3 as a formalized forcing construction, shows that in fact RCA0 polynomially
simulates RCA0 + RT2

2 with respect to Π0
3 consequences [18].

Indicator arguments can be used to describe consequences of RCA0 + RT2
2 of

higher first-order quantifier complexity. For example, the Π0
5 -part of RCA0+RT2

2

can be described as follows. Within RCA0, for a given double sequence of sets
X = 〈Xij〉i,j∈N such that ∀i∃j (Xij is infinite), a finite set F is said to be
(n,X)-dense if

– n = 0 and |F | > min F , or
– n = m + 1 and

• for any i < min F , there exists H ⊆ F and j < min H such that H ⊆ Xij

and H is (m,X)-dense,
• for any c : [F]2 → 2, there exists H ⊆ F such that H is c-homogeneous

and H is (m,X)-dense.

Then, in any model (M,S) |= RCA∗
0 and any X = 〈Xij〉i,j∈N ∈ S, the function

YX (F) = max({m : F is (m,X)-dense}) is an indicator for the theory RCA0 +
RT2

2 + ∀i∃j (Xij is infinite). Since any Π0
4 statement is equivalent over RCA0 to

“∀i∃j (Xij is infinite)” for an appropriate family 〈Xij〉i,j∈N, this indicator can
preserve any Π0

4 statements. From this, we obtain the following characterization.

Theorem 9. For each n ∈ ω, let γn be the sentence

∀X = 〈Xij〉i,j∈N (∀i∃j (Xij is infinite) → ∃F (YX (F) > n)).

Then RCA0 + RT2
2 is Π0

5 -conservative over RCA0 + {γn : n ∈ ω}.
The Π0

5 -part of RCA0 + RT2
2 seems particularly important, for reasons that will

be explained in Sect. 5.
One other application of an indicator-style analysis is to show that the model

construction of [7] also corresponds to a partial conservation result. Let BME
stand for the bounded enumeration scheme of [7], a set of sentences that is
now known to be equivalent to the well-orderedness of ,, . . . [20]. Building
an appropriate initial segment by means of an indicator-style argument, one can
show that any Σ0

4 statement consistent with RCA0+BΣ0
2 +BME can be satisfied

in a model satisfying the special conditions described in [7, Proposition 2.5]. This
leads to the following conservation theorem.

Theorem 10. RCA0 + RT2
2 + BME is a Π0

4 -conservative extension of RCA0 +
BΣ0

2 + BME.

4 The Strength of Ramsey’s Theorem over RCA∗
0

We now turn to a discussion of the first-order strength of Ramsey’s theorem for
pairs over the weaker base theory RCA∗

0 . A novel phenomenon in this setting

304 L. A. Ko�lodziejczyk and K. Yokoyama

is that within RCA∗
0 , it can happen that an infinite subset of N has cardinality

strictly smaller than N. More precisely, it follows from RCA∗
0 + ¬IΣ0

1 that there
exists a set X ⊆ N such that X is unbounded in N, but for some number k ∈ N
the set X does not contain a k-element finite subset.

It remains provable in RCA∗
0 that RT1 is equivalent to BΣ0

2 , and RT2 trivially
implies RT1. Thus, RCA∗

0 +RT2 is simply the same as RCA0+RT2. On the other
hand, RT2

2 no longer implies RT1 within RCA∗
0 , and in fact it does not imply IΣ0

1

either. Actually, by slightly reformulating the indicator argument used in [28] to
prove Π2-conservation of RCA∗

0 + RT2
2 over IΔ0 + exp, we get the following.

Theorem 11. Let Y (F) = max({|F ′| : F ′ ⊆ F ∧∀x, y ∈ F ′(x < y → 2x < y)}).
Then the function Y is an indicator for RCA∗

0 + RT2
2.

Corollary 5 ([17,28]). RCA∗
0 + RT2

2 is a Π0
3 -conservative extension of RCA∗

0.

The next question is whether RT2
2 is Π1

1 -conservative over RCA∗
0 . The answer

is “no”, and there are many interesting Π1
1 and first-order consequences of RT2

2

over RCA∗
0 . We give two examples.

Theorem 12 ([17]). RCA∗
0 + RT2

2 proves the following:

(i) rec-RT2
2: for any X and c : [N]2 → 2, if IΣX

1 fails, then there exists (an
index of) a ΔX

1 -set which is infinite and homogeneous for c.
(ii) CΣ0

2 : for every set X and every k ∈ N, there is no ΣX
2 -definable one-to-one

function from N into {0, . . . , k}.
Let us discuss these two consequences of RCA∗

0+RT2
2, neither of which is provable

in RCA∗
0 alone.

The first statement, rec-RT2
2, can be regarded as a first-order version of RT2

2.
In the absence of IΣ0

1 , computability-theoretic notions can behave in a strange
way. For instance, one can use a coding lemma due to Chong and Mourad [4] to
prove the following within RCA∗

0 :

(‡) if IΣX
1 fails, then there exists an infinite set Z ⊆ N such that every set

Y ⊆ Z is X-computable.

Given (‡), it is not hard to show that RT2
2 implies rec-RT2

2: it suffices to check
within RCA∗

0 +RT2
2 that any 2-colouring of pairs from an infinite subset of N has

an infinite homogeneous set. On the other hand, it is also the case that rec-RT2
2

implies RT2
2 assuming the negation of IΣ0

1 . In other words, RT2
2 is equivalent to

a Π1
1 statement over RCA∗

0 + ¬IΣ0
1 .

The second consequence, CΣ0
2 , was also one of the earliest known Π1

1 conse-
quences of RCA0 +RT2

2: the fact that CΣ0
2 follows from RCA0 +RT2

2 was pointed
out in [24], independently of the result of [12] on BΣ0

2 . However, the proof of
CΣ0

2 from RT2
2 over RCA∗

0 is very different from the one in [24]. One first observes
that, by [12], RT2

2 proves the implication IΣ0
1 → BΣ0

2 (note that this statement
is not Π1

1 , it is an implication between two Π1
1 sentences). Then, one can use a

model-theoretic argument to show that this implication actually implies CΣ0
2 .

In Search of the First-Order Part of Ramsey’s Theorem for Pairs 305

Interestingly, the consequences of the purely first-order implication IΣn →
BΣn+1 are studied by Kaye [15] with the aim of understanding the theory of
cardinal-like models of arithmetic. The following question is still open.

Question 2. Does RCA∗
0 + RT2

2 prove IΣ1 → BΣ2?

Note that both of rec-RT2
2 and CΣ0

2 are Π0
4 statements, which means that

Corollary 5 is tight in the following sense.

Corollary 6. RCA∗
0 + RT2

2 is not Π0
4 -conservative over RCA∗

0.

It may be worth pointing out that the versions of rec-RT2
2 and CΣ0

2 obtained
by replacing universal quantification over sets by quantification over (indices of)
computable sets remain unprovable in RCA∗

0 . Thus, Corollary 6 also holds for
purely first-order (“lightface”) Π4 sentences.

Corollary 6 should not be viewed as a clear indication that RT2
2 is unlikely to

be Π1
1 -conservative over BΣ0

2 . Indeed, it was shown in [8] that various weakenings
of RT2

2 known to be Π1
1 -conservative over BΣ0

2 , such as ADS and CAC, or even
over IΣ0

1 , as the cohesive Ramsey’s theorem CRT2
2, also fail to be Π1

1 -conservative
over RCA∗

0 .

5 First-Jump Control and an Isomorphism Argument

To conclude our discussion, we return to Question 1 in light of some new model-
theoretic results inspired by the work on RCA∗

0 . A recent argument [9] leads to an
isomorphism theorem for countable models of WKL∗

0 sharing the same first-order
universe and a common witness to ¬IΣ0

1 . That theorem has some consequences
concerning models of BΣ0

n + ¬IΣ0
n for higher n, including the following.

Theorem 13. Let (M,S) |= RCA0 + BΣ0
2 + ¬IΣ2 be countable, and let A ∈ S

be such that (M,S) |= 0′ � A′. Then there exists S̃ ⊆ P(M) such that

(i) for every X ∈ S̃, the set X is ΣA
2 -definable and X ′ � A′ in (M,S),

(ii) (M, S̃) is isomorphic to (M,S).

Note that the isomorphism in (ii) does not fix M pointwise. We can infer from
Theorem 13 that (†) in Question 1 holds in every model of RCA0 + RT2

2 + ¬IΣ2.
Relativizing the argument and combining it with Theorem 5, we can obtain:

Theorem 14. RCA0 + RT2
2 proves (†).

Combining this with Proposition 2, we get the following.

Corollary 7. RCA0+RT2
2 is a Π1

1 -conservative extension of RCA0+BΣ0
2 if and

only if RCA0 + BΣ0
2 proves (†).

Loosely speaking, Corollary 7 says that if the Π1
1 -part of RCA0 + RT2

2 is in fact
BΣ0

2 , then over ¬IΣ0
2 this has to be proved by a single-jump control argument.

A careful analysis shows that (†) can be formulated as a Π0
5 statement. Hence

RCA0 +RT2
2 is Π1

1 -conservative over of RCA0 +BΣ0
2 if it is Π0

5 -conservative over
that theory. In other words, to answer the original question on Π1

1 -conservation,
we only need to check conservation up to the level of Π0

5 .

306 L. A. Ko�lodziejczyk and K. Yokoyama

References

1. Belanger, D.A.: Conservation theorems for the cohesiveness principle (2015).
Preprint

2. Bovykin, A., Weiermann, A.: The strength of infinitary Ramseyan principles can
be accessed by their densities. Ann. Pure Appl. Logic 168(9), 1700–1709 (2017)

3. Cholak, P.A., Jockusch, C.G., Slaman, T.A.: On the strength of Ramsey’s theorem
for pairs. J. Symb. Log 66(1), 1–15 (2001)

4. Chong, C.T., Mourad, K.J.: The degree of a Σn cut. Ann. Pure Appl. Logic 48(3),
227–235 (1990)

5. Chong, C.T., Slaman, T.A., Yang, Y.: Π1
1 -conservation of combinatorial principles

weaker than Ramsey’s theorem for pairs. Adv. Math. 230(3), 1060–1077 (2012)
6. Chong, C.T., Slaman, T.A., Yang, Y.: The metamathematics of stable Ramsey’s

theorem for pairs. J. Amer. Math. Soc. 27(3), 863–892 (2014)
7. Chong, C.T., Slaman, T.A., Yang, Y.: The inductive strength of Ramsey’s theorem

for pairs. Adv. Math. 308, 121–141 (2017)
8. Fiori-Carones, M., Ko�lodziejczyk, L.A., Kowalik, K.W.: Weaker cousins of Ram-

sey’s theorem over a weak base theory (2021). Preprint arxiv.org/abs/2105.11190
9. Fiori-Carones, M., Ko�lodziejczyk, L.A., Wong, T.L., Yokoyama, K.: An isomor-

phism theorem for models of Weak König’s Lemma without primitive recursion.
(in preparation)

10. Hirschfeldt, D.R.: Slicing the Truth. World Scientific Publishing Co. (2015)
11. Hirschfeldt, D.R., Shore, R.A.: Combinatorial principles weaker than Ramsey’s

theorem for pairs. J. Symb. Log. 72(1), 171–206 (2007)
12. Hirst, J.L.: Combinatorics in subsystems of second order arithmetic. Ph.D. thesis.

The Pennsylvania State University, August 1987
13. Jockusch, C.G.: Ramsey’s theorem and recursion theory. J. Symb. Log. 37(2),

268–280 (1972)
14. Kaye, R.: Models of Peano Arithmetic. Oxford University Press, Oxford (1991)
15. Kaye, R.: Constructing κ-like models of arithmetic. J. London Math. Soc. (2) 55(1),

1–10 (1997)
16. Ketonen, J., Solovay, R.: Rapidly growing Ramsey functions. Ann. of Math. 113(2),

267–314 (1981)
17. Ko�lodziejczyk, L.A., Kowalik, K.W., Yokoyama, K.: How strong is Ramsey’s the-

orem if infinity can be weak? Preprint arxiv.org/abs/2011.02550
18. Ko�lodziejczyk, L.A., Wong, T.L., Yokoyama, K.: Ramsey’s theorem for pairs, col-

lection, and proof size. Preprint arxiv.org/abs/2005.06854
19. Ko�lodziejczyk, L.A., Yokoyama, K.: Some upper bounds on ordinal-valued Ramsey

numbers for colourings of pairs. Selecta Mathematica 26(4), 1–18 (2020). https://
doi.org/10.1007/s00029-020-00577-3

20. Kreuzer, A.P., Yokoyama, K.: On principles between Σ1- and Σ2-induction, and
monotone enumerations. J. Math. Log. 16(1), 1650004, 21 pages (2016)

21. Liu, J.: RT 2
2 does not imply WKL0. J. Symbolic Logic 77(2), 609–620 (2012)

22. Paris, J.B.: Some independence results for Peano Arithmetic. J. Symb. Log. 43(4),
725–731 (1978)

23. Patey, L., Yokoyama, K.: The proof-theoretic strength of Ramsey’s theorem for
pairs and two colors. Adv. Math. 330, 1034–1070 (2018)

24. Seetapun, D., Slaman, T.A.: On the strength of Ramsey’s theorem. Notre Dame
J. Form. Log. 36(4), 570–582 (1995)

25. Simpson, S.G.: Subsystems of Second Order Arithmetic. Springer-Verlag (1999)

http://arxiv.org/abs/org/abs/2105.11190
http://arxiv.org/abs/org/abs/2011.02550
http://arxiv.org/abs/org/abs/2005.06854
https://doi.org/10.1007/s00029-020-00577-3
https://doi.org/10.1007/s00029-020-00577-3

In Search of the First-Order Part of Ramsey’s Theorem for Pairs 307

26. Slaman, T.A., Yokoyama, K.: The strength of Ramsey’s theorem for pairs and
arbitrarily many colors. J. Symb. Log. 83(4), 1610–1617 (2018)

27. Specker, E.: Ramsey’s theorem does not hold in recursive set theory. In: Logic
Colloquium 1969, pp. 439–442. North-Holland, Amsterdam (1971)

28. Yokoyama, K.: On the strength of Ramsey’s theorem without Σ1-induction. Math.
Log. Q. 59(1–2), 108–111 (2013)

On Subrecursive Representation
of Irrational Numbers: Contractors

and Baire Sequences

Lars Kristiansen1,2(B)

1 Department of Mathematics, University of Oslo, Oslo, Norway
larsk@math.uio.no

2 Department of Informatics, University of Oslo, Oslo, Norway

Abstract. We study the computational complexity of three represen-
tations of irrational numbers: standard Baire sequences, dual Baire
sequences and contractors. Our main results: Irrationals whose standard
Baire sequences are of low computational complexity might have dual
Baire sequences of arbitrarily high computational complexity, and vice
versa, irrationals whose dual Baire sequences are of low complexity might
have standard Baire sequences of arbitrarily high complexity. Further-
more, for any subrecursive class S closed under primitive recursive oper-
ations, the class of irrationals that have a contractor in S is exactly the
class of irrationals that have both a standard and a dual Baire sequence
in S. Our results implies that a subrecursive class closed under primi-
tive recursive operations contains the continued fraction of an irrational
number α if and only if there is a contractor for α in the class.

Keywords: Computable analysis · Representation of irrationals ·
Subrecursion · Computational complexity · Baire sequences ·
Contraction maps

1 Introduction

The theorems proved below complement the picture drawn in Kristiansen [4,5]
and, particularly, Georgiev et al. [1]. Our investigations are motivated by the
question: Do we need, or do we not need, unbounded search in order to convert
one representation of an irrational number into another representation? A com-
putation that does not apply unbounded search is called a subrecursive computa-
tion. Primitive recursive computations and (Kalmar) elementary computations
are typical examples of subrecursive computations. A representation R1 (of irra-
tional numbers) is subrecursive in a representation R2 if the R1-representation
of α can be subrecursively computed in the R2-representation of α.

The reader that wants to know more about our motivations, or want further
explanations, should consult the first few sections of Georgiev et al. [1]. This is a

c© Springer Nature Switzerland AG 2021
L. De Mol et al. (Eds.): CiE 2021, LNCS 12813, pp. 308–317, 2021.
https://doi.org/10.1007/978-3-030-80049-9_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80049-9_28&domain=pdf
https://doi.org/10.1007/978-3-030-80049-9_28

Contractors and Baire Sequences 309

technical paper where our main concern is to give reasonably full proofs of some
new theorems.1

What we will call a Baire sequence is an infinite sequence of natural numbers.
Such a sequence a0, a1, a2, . . . represents an irrational number α in the interval
(0, 1). We split the interval (0, 1) into infinitely many open subintervals with
rational endpoints. We may, e.g., use the splitting

(0/1 , 1/2) (1/2 , 2/3) (2/3 , 3/4) . . . (n/(n + 1) , (n + 1)/(n + 2))

The first number of the sequence a0 tells us in which of these intervals we find
α. Thus if a0 = 17, we find α in the interval (17/18, 18/19). Then we split the
interval (17/18, 18/19) in a similar way. The second number of the sequence a1

tells us in which of these intervals we find α, and thus we proceed.
In general, in order to split the interval (q, r), we need a strictly increasing

sequence of rationals s0, s1, s2 . . . such that s0 = q and limi si = r. We will use
the splitting si = (a + ic)/(b + id) where a, b are (the unique) relatively prime
natural numbers such that q = a/b and c, d are (the unique) relatively prime
natural numbers such that r = c/d (let 0 = 0/1 and 1 = 1/1). This particular
splitting makes our proof smooth and transparent, but our main results are
invariant over all natural splittings.

We will say that the Baire sequences explained above are standard. The
standard Baire sequence of the irrational number α will lexicographically precede
standard Baire sequence of the irrational number β iff α < β. We will also
work with what we will call dual Baire sequences. The dual sequence of α will
lexicographically precede the dual sequence of β iff α > β. We get the dual
sequences by using decreasing sequences of rationals to split intervals, e.g., the
interval (0, 1) may be split into the intervals

(1/1 , 1/2) (1/2 , 1/3) (1/3 , 1/4) . . . (1/n , 1/(n + 1))

Definition 1. Let f : N → N be any function, and let n ∈ N. We define the
interval Inf by I0f = (0/1, 1/1) and

In+1
f =

(
a + f(n)c
b + f(n)d

,
a + f(n)c + c

b + f(n)d + d

)

if Inf = (a/b, c/d). We define the interval Jn
f by J0

f = (0/1, 1/1) and

Jn+1
f =

(
a + f(n)a + c

b + f(n)b + d
,

f(n)a + c

f(n)b + d

)

if Jn
f = (a/b, c/d). The function B : N → N is the standard Baire representation

of the irrational number α ∈ (0, 1) if we have α ∈ InB for every n. The function
A : N → N is the dual Baire representation of the irrational number α ∈ (0, 1)
if we have α ∈ Jn

A for every n.
1 The author wants to thank Dag Normann for enlightening discussions which lead
up to this paper. The author wants to thank Eyvind Briseid for helpful advice and
for pinpointing weaknesses in an early version of this paper.

310 L. Kristiansen

Before we discuss contractors, we will recall the trace functions introduced
in Kristiansen [4]. A trace function for α is a function that move any rational
number closer to α. The formal definition, which follows, is straightforward.

Definition 2. A function T : [0, 1] ∩Q → (0, 1) ∩Q is a trace function for the
irrational number α if we have |α − q| > |α − T (q)| for any rational q.

We will say that a trace function T moves q to the right (left) if q < T (q)
(T (q) < q). The easiest way to realize that a trace function indeed defines a
unique real number, is probably to observe that a trace function T for α yields
the Dedekind cut of α: if T moves q the right, then we know that q lies below
α; if T moves q the left, then we know that q lies above α. Obviously, T cannot
yield the Dedekind cut for any other number than α. It is proved in [4] that
trace functions are subrecursively equivalent to continued fractions.

Intuitively, a contractor is a function that moves two (rational) numbers
closer to each other. It turns out that also contractors can be used to represent
irrational numbers.

Definition 3. A function F : [0, 1] ∩ Q → (0, 1) ∩ Q is a contractor if we have

F (q) �= q and |F (q1) − F (q2)| < |q1 − q2|
for any rationals q, q1, q2 where q1 �= q2.

Theorem 4. Any contractor is a trace function for some irrational number.

Proof. Let F be a contractor. If F moves q to the right (left), then F also move
any rational less (greater) than q to the right (left); otherwise F would not be
a contractor. We define two sequences q0, q1, q2 . . . and p0, p1, p2 . . . of rationals.
Let q0 = 0 and p0 = 1. Let qi+1 = (qi + pi)/2 if F moves (qi + pi)/2 to the right;
otherwise, let qi+1 = qi. Let pi+1 = (qi + pi)/2 if F moves (qi + pi)/2 to the
left; otherwise, let pi+1 = pi (Definition 3 requires that a contractor moves any
rational number). Obviously, we have limi qi = limi pi, and obviously, this limit
is an irrational number α. It is easy to see that F is a trace function for α. ��
Definition 5. A contractor F is a contractor for the irrational number α if F
is a trace function for α (Theorem 4 shows that this definition makes sense).

Contractors, also known as contraction maps, come in a number of variants.
The variant given by Definition 3 is tailored for our purposes. Computational
aspects of contractors have also been studied in proof mining, see Kohlenbach
and Olivia [3] and Gerhardy and Kohlebach [2].

2 Technical Preliminaries

Definition 6. For any string τ ∈ {L,R}∗, we define the interval addressed by
τ inductively over the structure of τ : The empty sequence addresses the interval
(0/1, 1/1). Furthermore

τL addresses
(

a

b
,

a + c

b + d

)
and τR addresses

(
a + c

b + d
,

c

d

)

if τ addresses (a/b, c/d). We will use I[τ] to denote the interval addressed by τ .

Contractors and Baire Sequences 311

Definition 7. Let α be an irrational number in the interval (0, 1). Let a and b
be relatively prime natural numbers with b > 0. The fraction a/b is a left best
approximant of α if we have c/d ≤ a/b < α or α < c/d for any natural numbers
c, d with 0 < d ≤ b. The fraction a/b is a right best approximant of α if we have
α < a/b ≤ c/d or c/d < α for any natural numbers c, d with 0 < d ≤ b.

Lemma 8. Assume that the interval (a/b, c/d) is addressed by some τ ∈
{L,R}∗. Then, (i) a/b and c/d are, respectively, left and right best approx-
imants of any irrational number in the interval (a/b, c/d), and (ii) we have
c/d − a/b = 1/(db).

Proof. If an interval (a/b, c/d) is addressed by some τ ∈ {L,R}∗, then a/b and
c/d will be a Farey pair, that is, neighbors in the Farey series of order max(b, d).
It is well know that the mediant of the pair, that is, (a + c)/(b + d) will be in
its lowest terms and lie in the interval, moreover, for any other vulgar fraction
m/n that lie in the interval, we have n > b + d, see Richards [8]. It follows
that (i) holds. Moreover, it well know that we have cb − ad = 1, or equivalently
c/d − a/b = 1/(db), for any Farey pair (a/b, c/d), and thus (ii) also holds. ��

The next lemma is the key to the proof of one of our main theorems.

Lemma 9. (i) The string Rf(0)LRf(1)L . . . Rf(n)L addresses the interval In+1
f .

(ii) The string Lf(0)RLf(1)R . . . Lf(n)R addresses the interval Jn+1
f .

Proof. We prove (i). The proof of (ii) is symmetric.
Let τ = Rf(0)LRf(1)L . . . Rf(n−1)L. Observe that we have I[τ] =

(0/1, 1/1) = I0f when τ is the empty sequence.
Assume that I[τ] = Inf = (a/b, c/d). We need to prove that

I[τRf(n)L] = In+1
f . (1)

Let k = f(n). We prove (1) by a secondary induction on k.
Assume k = 0. By Definition 6, we have

I[τRf(n)L] = I[τR0L] = I[τL] = (a/b , (a + c)/(b + d)) .

By Definition 1, we have

In+1
f = ((a+kc)/(b+kd) , (a+kc+c)/(b+kd+d)) = (a/b , (a+c)/(b+d)) .

Thus (1) holds when f(n) = 0. Now, assume by induction hypothesis that

I[τRkL] =
(

a + kc

b + kd
,

a + kc + c

b + kd + d

)
. (2)

Observe that the right hand side of (2) is the definition of In+1
f with k for f(n).

Now, by (2) and Definition 6, we have

I[τRk] =
(

a + kc

b + kd
,

c

d

)
. (3)

312 L. Kristiansen

Furthermore, by (3) and Definition 6, we have

I[τRk+1] =
(

a + kc + c

b + kd + d
,

c

d

)
=

(
a + (k + 1)c
b + (k + 1)d

,
c

d

)
(4)

and by (4) and Definition 6, we have

I[τRk+1L] =
(

a + (k + 1)c
b + (k + 1)d

,
a + (k + 1)c + c

b + (k + 1)d + d

)
. (5)

Observe that the right hand side of (5) is the definition of In+1
f with k + 1 for

f(n). This proves that (1) holds. ��
Note that it follows from the two lemmas above that the endpoints of the

interval Inf (for any n and any f) will be best approximants of every irrational
in the interval. The same goes for and Jn

f .

Lemma 10. For any n and any f , let rn denote the right endpoint of the interval
Inf , and let �n denote the left endpoint of the Jn

f . Then, we have (i) rn − rn+1 >
rn+1 − rn+2 and (ii) �n+1 − �n > �n+2 − �n+1.

Proof. We prove (i). Assume Inf = (a/b, c/d) = I[τ]. By Definition 1 and
Lemma 9, we have

In+1
f =

(
a + f(n)c
b + f(n)d

,
a + f(n)c + c

b + f(n)d + d

)
= I[τRf(n)L] . (6)

Let a = a + f(n)c, let b = b + f(n)d and let k = f(n). We can now rewrite (6)
as

In+1
f =

(
a
b

,
a + c

b + d

)
= I[τRkL] . (7)

By (7) and Definition 6, we have

I[τRk] = (a/b, c/d) and I[τRkR] = ((a + c)/(b + d), c/d) .

This shows that ((a + c)/(b + d), c/d) is addressed by some string in {L,R}∗.
Thus, by Lemma 8 (ii), we have

c

d
− a + c

b + d
=

1
d(b + d)

. (8)

By Lemma 9, we have In+2
f = I[τRkLRmL] where m = f(n+1). We can assume

that m = 0 since m = 0 yields the maximal distance between rn+1 and rn+2.
Thus, by Definition 6, In+2

f = I[τRkLL] = (a/b, (2a + c)/(2b + d)). Moreover,
again by Definition 6, we have

I[τRkL] =
(

a
b

,
a + c

b + d

)
and I[τRkLR] =

(
2a + c

2b + d
,
a + c

b + d

)
.

Contractors and Baire Sequences 313

This shows that ((2a + c)/(2b + d), (a + c)/(b + d) is addressed by a string in
{L,R}∗, and thus, by Lemma 8 (ii), we have

a + c

b + d
− 2a + c

2b + d
=

1
(b + d)(2b + d)

. (9)

Now we can conclude our proof of (i) with

rn − rn+1 =
c

d
− a + c

b + d

(8)
=

1
d(b + d)

>
1

(b + d)(2b + d)
(9)
=

a + c

b + d
− 2a + c

2b + d
= rn+1 − rn+2 .

The proof of (ii) is symmetric. ��
The Hurwitz characteristic of an irrational α ∈ (0, 1) is the (unique) infi-

nite sequence Σ over the alphabet {L,R} such that we have α ∈ I[σ] for any
finite prefix σ of Σ. Hurwitz characteristics, which are subrecursively equiva-
lent to Dedekind cuts, have been studied by Lehman [7] and, more recently, by
Kristiansen and Simonsen [6].

3 Main Results

Theorem 11. Let B and A be, respectively, the standard and the dual Baire
sequence of α, and let F be any contractor for α. (i) We can compute B primitive
recursively in F . (ii) We can compute A primitive recursively in F .

Proof. We will show that the interval In+1
B and the value of B(n) can be

computed primitive recursively in F . It is trivial to compute the interval I0B.
Assume that we have computed the interval InB = (a/b, c/d). First, we compute
c′/d′ = F (c/d). Since F is a contractor for α, we have a/b < α < c′/d′ < c/d.
Next, we find j such that

a + jc

b + jd
<

c′

d′ ≤ a + jc + c

b + jd + d
.

Observe that (a+jc
b+jd , a+jc+c

b+jd+d) is an addressable interval and that c′/d′ either lies
inside, or is the right endpoint of, the interval. Thus, by Lemma 8, we have
d′ ≥ b + jd + d. No unbounded search is needed to determine j. Indeed, j has to
be less than d′. Thus we can primitive recursively compute j such that

a

b
< α <

a + (j + 1)c
b + (j + 1)d

.

Finally, we search for the least i less than or equal to j + 1 such that F moves
(a+ ic+c)/(b+ id+d) to the left, and then we let B(n) equal that i. This shows
that we can compute B(n) primitive recursively in F , and thus (i) holds. The
proof of (ii) is symmetric. Use the contractor at the left endpoint of intervals in
place of the right endpoint. ��

314 L. Kristiansen

Theorem 12. Let B and A be, respectively, the standard and the dual Baire
representation of α. We can compute a contractor for α primitive recursively in
B and A (and we will need both oracles).

Proof. Let ri denote the right endpoint of the interval IiB , and let �i denote the
left endpoint of the interval J i

A. For every rational number x ∈ [0, 1], we define

F (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ri+1 − (ri − x)
ri+1 − ri+2

ri − ri+1
if ri+1 < x ≤ ri

�i+1 + (x − �i)
�i+2 − �i+1

�i+1 − �i
if �i ≤ x < �i+1.

First we will prove that F is contractor, that is, we will prove that we have

|F (x) − F (y)| < |x − y| (10)

for any rationals x, y where x �= y. Once we have established that F is a con-
tractor, it will be clear that F is a contractor for α.

Assume that one of the rationals x and y lies below α and that the other lies
above. It is easy to see that F will move one of the numbers to the right and
the other one to the left, and thus, (10) holds. Assume that both x and y lie at
same side of α. We can w.l.o.g. assume that both lie below and that we have
x < y < α. The proof splits into two cases: (i) �i ≤ x < y < �i+1 for some i, and
(ii) �i ≤ x < �i+1 ≤ �j ≤ y < �j+1 for some i, j where j ≥ i + 1.

Case (i). Let k = (�i+2 − �i+1)/(�i+1 − �i). By Lemma 10, we have k < 1,
and then by the definition of F , we have

F (y) − F (x) = �i+1 + (y − �i)k − (�i+1 + (x − �i)k) = (y − x)k < y − x

and thus (10) holds.
Case (ii). This case is slightly more involved, but in the end everything is

straightforward. We omit the details.
This proves that F is a contractor for α. It remains to argue that F can be

computed primitive recursively in B and A. Let q be an arbitrary rational in the
interval [0, 1], and let m/n be q written in lowest terms.

(Claim) There exists j < n such that �j ≤ q < �j+1 or rj+1 < q ≤ rj .

In order to see that the claim holds, assume that α < q = m/n. It follows from
the lemmas in Sect. 2 that each rj = cj/dj is a right best approximant to α.
Thus we have n ≥ dj whenever m/n ≤ cj/dj . Moreover, as dj > j, we have
j < n such that rj+1 < q = m/n ≤ rj if α < q. If q = m/n < α, a symmetric
argument yields j < n such that �j ≤ q < �j+1. This proves the claim.

The sequence r0, r1, r2, . . . can be computed primitive recursively in B, and
the sequence �0, �1, �2, . . . can be computed primitive recursively in A. Thus,
it follows from the claim that F can be computed primitive recursively in B
and A. ��

Contractors and Baire Sequences 315

It follows from the next theorem that we cannot compute the standard Baire
sequence of an irrational α subrecursively in the dual Baire sequence of α. That
requires unbounded search.

Theorem 13. Let S be any subrecursive class. There exists an irrational num-
ber α such that (i) the standard Baire sequence of α is not in S, and (ii) the
dual Baire sequence of α is (Kalmar) elementary.

Proof. A function f is honest, by definition, if 2x ≤ f(x), f(x) ≤ f(x + 1) and
the relation f(x) = y is elementary. Let B be the an honest function which is
not in S. Such a B exists (a proof can be found in Georgiev et al. [1]). Now, B is
the standard Baire sequence of some irrational number α, and since an irrational
number only has one standard Baire sequence, the standard Baire sequence of α
is not in S. It remains to prove that the dual Baire sequence of α is elementary.

Let an = B(0)+(
∑n

i=1 B(i)+1). Let A(x) = 1 if x = an for some n; otherwise,
let A(x) = 0. Since B is an honest function, we can check by elementary means
if there exists n such that x = an. Hence A is an elementary function. We will
prove that A is the dual Baire sequence of α.

For any natural number n, we define the strings σn and τn by

σn = LA(0)RLA(1)R . . . LA(an−1)RLA(an) and τn = RB(0)LRB(1)L . . . RB(n)L .

We will prove the following claim by induction on n: σn = τn (claim).
Let n = 0. We have a0 = B(0) and thus, by the definition of A, we have

σ0 = LA(0)RLA(1)R . . . LA(a0−1)RLA(a0) = Ra0L = RB(0)L = τ0 .

Let n > 0. By the definition of an, we have an = an−1 + B(n) + 1, and thus
B(n) = an − (an−1 + 1). Furthermore, we have

σn
(1)
= σn−1RLA(an−1+1)RLA(an−1+2) . . . RLA(an−1)RLA(an) (2)

=

σn−1R
an−(an−1+1)L

(3)
= σn−1R

B(n)L
(4)
= τn−1R

B(n)L
(5)
= τn

where (1) holds by the definition of σn; (2) holds by the definition of A; (3) holds
by the definition of an; (4) holds by the induction hypothesis; and (5) holds by
the definition of τn. This proves (claim).

It follows from (claim) and Lemma 9 that the inclusion Jan

A ⊆ InB holds for
all n. This proves that A is the dual Baire sequence of α. ��

Just for the record, the proof of the next theorem is symmetric to the proof
of the preceding theorem.

Theorem 14. Let S be any subrecursive class. There exists an irrational num-
ber α such that (i) the dual Baire sequence of α is not in S, and (ii) the standard
Baire sequence of α is (Kalmar) elementary.

316 L. Kristiansen

4 The Big Picture

Definition 15. For any subrecursive class S, let SF denote the class of irra-
tional numbers that have a contractor in S, let SsB denote the class of irrational
numbers that have a standard Baire sequence in S, and SdB denote the class of
irrational numbers that have a dual Baire sequence in S.
Corollary 16. Let S be any subrecursive class closed under primitive recursive
operations. Then, (i) SsB �⊆ SdB, (ii) SdB �⊆ SsB and (iii) SF = SdB ∩ SsB.

Proof. Theorem 13 entails (i). Theorem 14 entails (ii). Theorem 11 entails SF ⊆
SdB ∩ SsB . Theorem 12 entails SdB ∩ SsB ⊆ SF . Thus, (iii) holds. ��
Definition 17. Let α be an irrational number in the interval (0, 1). A left best
approximation of α is a sequence of fractions {ai/bi}i∈N such that (0/1) =
(a0/b0) < (a1/b1) < (a2/b2) < . . . and each ai/bi is a left best approximant
of α (see Definition 7). A right best approximation of α is a sequence of frac-
tions {ai/bi}i∈N such that (1/1) = (a0/b0) > (a1/b1) > (a2/b2) > . . . and each
ai/bi is a right best approximant of α. Clearly, both sequences converge to α.

Let S< denote the class of irrational numbers that have a left best approx-
imation in the subrecursive class S, and let S> denote the class of irrational
numbers that have a right best approximation in S.
Theorem 18. For any subrecursive class S closed under primitive recursion,
we have S< = SdB and S> = SsB.

Proof. We say that a right best approximation of α is complete if every right
best approximant occurs in the approximation. Note that the complete best
approximation of an irrational α in the interval (0, 1) is unique.

Let B be the standard Baire sequence of α. Consider the interval I addressed
by Rf(0)LRf(1)L . . . Rf(n)L. By Lemma 9, we have I = In+1

B . The right endpoint
of I will be the n’th best approximant in the complete right best approximation
of α. These considerations make it easy to see that the inclusion SsB ⊆ S> holds.

Let {ai/bi}i∈N be a right best approximation of α. We can w.l.o.g. assume
that {ai/bi}i∈N is complete since a complete right best approximation can be
computed primitive recursively in an arbitrary right best approximation. We
can primitive recursively in {ai/bi}i∈N compute a (unique) string of the form
Rk0LRk1L . . . RknL such that the right endpoint of the interval addressed by
Rk0L . . . RkiL equals ai+1/bi+1 (for all i ≤ n). Let B be the standard Baire
sequence of α. By Lemma 9, we have B(i) = ki (for all i ≤ n). These consid-
erations make it easy to see that the inclusion S> ⊆ SsB holds. This proves
S> = SsB . The proof of S< = SdB is of course symmetric. ��

For any subrecursive class S, let Sg↑ denote the class of irrational numbers
that have a general sum approximation from below in S, let Sg↓ denote the class
of irrational numbers that have a general sum approximation from above in S,
furthermore, let S[] denote the class of irrational numbers that have a continued

Contractors and Baire Sequences 317

fraction in S. Definitions of general sum approximations from below and above
can be found in [4] and [1]. It is proved in [4] that we have S[] = Sg↑ ∩Sg↓ for any
S closed under primitive recursive operations. It is proved in [1] that we have
S< = Sg↑ and S> = Sg↓ for any S closed under primitive recursive operations.
Thus, we have the following corollary.

Corollary 19. For any subrecursive class S closed under primitive recursive
operations, we have S[] = SF and S< = Sg↑ = SdB and S> = Sg↓ = SsB.

References

1. Georgiev, I., Kristiansen, L., Stephan, F.:Computable Irrational Numbers with Rep-
resentations of Surprising Complexity. Ann. Pure Appl. Logic 172, 102893 (2021).
https://doi.org/10.1016/j.apal.2020.102893

2. Gerhardy, P., Kohlebach, U.: Strongly uniform bounds from semi-constructive
proofs. Ann. Pure Appl. Logic 141, 89–107 (2006). https://doi.org/10.1016/j.apal.
2005.10.003

3. Kohlebach, U., Olivia, P.: Proof mining: a systematic way of analysing proofs in
mathematics. Proc. Steklov Inst. Math. 242, 136–164 (2003)

4. Kristiansen, L.: On subrecursive representability of irrational numbers. Computabil-
ity 6, 249–276 (2017). https://doi.org/10.3233/COM-160063

5. Kristiansen, L.: On subrecursive representability of irrational numbers, part II. Com-
putability 8, 43–65 (2019). https://doi.org/10.3233/COM-170081

6. Kristiansen, L., Simonsen, J.G.: on the complexity of conversion between classic real
number representations. In: Anselmo, M., Della Vedova, G., Manea, F., Pauly, A.
(eds.) CiE 2020. LNCS, vol. 12098, pp. 75–86. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-51466-2 7

7. Lehman, R.S.: On primitive recursive real numbers. Fundamenta Mathematica
49(2), 105–118 (1961)

8. Richards, I.: Continued fractions without tears. Math. Mag. 54, 163–171 (1981)

https://doi.org/10.1016/j.apal.2020.102893
https://doi.org/10.1016/j.apal.2005.10.003
https://doi.org/10.1016/j.apal.2005.10.003
https://doi.org/10.3233/COM-160063
https://doi.org/10.3233/COM-170081
https://doi.org/10.1007/978-3-030-51466-2_7
https://doi.org/10.1007/978-3-030-51466-2_7

Learning Languages in the Limit from
Positive Information with Finitely Many

Memory Changes

Timo Kötzing and Karen Seidel(B)

Hasso-Plattner-Institute, University of Potsdam, Potsdam, Germany
karen.seidel@hpi.de

Abstract. We investigate learning collections of languages from texts
by an inductive inference machine with access to the current datum and
a bounded memory in form of states. Such a bounded memory states
(BMS) learner is considered successful in case it eventually settles on a
correct hypothesis while exploiting only finitely many different states.

We give the complete map of all pairwise relations for an estab-
lished collection of criteria of successful learning. Most prominently, we
show that non-U-shapedness is not restrictive, while conservativeness
and (strong) monotonicity are. Some results carry over from iterative
learning by a general lemma showing that, for a wealth of restrictions
(the semantic restrictions), iterative and bounded memory states learn-
ing are equivalent. We also give an example of a non-semantic restriction
(strongly non-U-shapedness) where the two settings differ.

Keywords: Memory restricted learning algorithms ·
Map for bounded memory states learners ·
(Strongly) non-U-shaped learning

1 Introduction

We are interested in the problem of algorithmically learning a description for a
formal language (a computably enumerable subset of the set of natural numbers)
when presented successively all and only the elements of that language; this is
sometimes called inductive inference, a branch of (algorithmic) learning theory.
For example, a learner M might be presented more and more even numbers. After
each new number, M outputs a description for a language as its conjecture. The
learner M might decide to output a program for the set of all multiples of 4, as
long as all numbers presented are divisible by 4. Later, when M sees an even
number not divisible by 4, it might change this guess to a program for the set
of all multiples of 2.

Many criteria for deciding whether a learner M is successful on a language L
have been proposed in the literature. Gold, in his seminal paper [Gol67], gave
a first, simple learning criterion, TxtEx-learning1, where a learner is successful

1 Txt stands for learning from a text of positive examples; Ex stands for explanatory.

c© Springer Nature Switzerland AG 2021
L. De Mol et al. (Eds.): CiE 2021, LNCS 12813, pp. 318–329, 2021.
https://doi.org/10.1007/978-3-030-80049-9_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80049-9_29&domain=pdf
https://doi.org/10.1007/978-3-030-80049-9_29

Learning in the Limit from Text with BMS-Learners 319

iff, on every text for L (listing of all and only the elements of L) it eventually
stops changing its conjectures, and its final conjecture is a correct description
for the input sequence. Trivially, each single, describable language L has a suit-
able constant function as an TxtEx-learner (this learner constantly outputs a
description for L). Thus, we are interested in analyzing for which classes of lan-
guages L there is a single learner M learning each member of L. Sometimes,
this framework is called language learning in the limit and has been studied
extensively. For an overview see for example, the textbook [JORS99].

One major criticism of the model suggested by Gold is its excessive use of
memory, see for example [CM08]: for each new hypothesis the entire history of
past data is available. Iterative learning is the most common variant of learning
in the limit which addresses memory constraints: the memory of the learner on
past data is just its current hypothesis. Due to the padding lemma [JORS99], this
memory is not necessarily void, but only finitely many data can be memorized
in the hypothesis. There is a comprehensive body of work on iterative learning,
see, e.g., [CK10,CM08,JKMS16,JMZ13,JORS99].

Another way of modelling restricted memory learning is to grant the learner
access to not their current hypothesis, but a state which can be used in the
computation of the next hypothesis (and next state). This was introduced in
[CCJS07] and called bounded memory states (BMS) learning. It is a reasonable
assumption to have a countable reservoir of states. Assuming a computable enu-
meration of these states, we use natural numbers to refer to them. Note that
allowing arbitrary use of all natural numbers as states would effectively allow a
learner to store all seen data in the state, thus giving the same mode as Gold’s
original setting. Probably the minimal way to restrict the use of states is to
demand for successful learning that a learner must stop using new states even-
tually (but may still traverse among the finitely many states produced so far, and
may use infinitely many states on data for a non-target language). It was claimed
that this setting is equivalent to iterative learning [CCJS07, Remark 38] (this
restriction is called ClassBMS there, we refer to it by TxtBMS∗Ex). However,
this was only remarked for the plain setting of explanatory learning; for further
restrictions, the setting is completely unknown, only for explicit constant state
bounds a few scattered results are known, see [CCJS07,CK13].

In this paper, we consider a wealth of restrictions, described in detail in
Sect. 2 (after an introduction to the general notation of this paper). Following
the approach of giving maps of pairwise relations suggested in [KS16], we give
a complete map. We note that this map is the same as the map for iterative
learning given in [JKMS16], but partially for different reasons.

In Lemma 31 we show that, for many restrictions (the so-called semantic
restrictions, where only the semantics of hypotheses are restricted) the learning
setting with bounded memory states is equivalent to learning iteratively. This
proves and generalizes the aforementioned remark in [CCJS07] to a wide class
of restrictions.

However, if restrictions are not semantic, then iterative and bounded mem-
ory states learning can differ. We show this concretely for strongly non-U-shaped

320 T. Kötzing and K. Seidel

learning in Theorem 45. Inspired by cognitive science research [SS82], [MPU+92]
a semantic version of this requirement was defined in [BCM+08] and later the
syntactic variant was introduced in [CM11]. Both requirements have been exten-
sively studied, see [CC13] for a survey and moreover [CK13], [CK16], [KSS17].
The proof combines the techniques for showing that strong non-U-shapedness
restricts iterative learning, as proved in [CK13, Theorem 5.7], and that not every
class strongly monotonically learnable by an iterative learner is strongly non-U-
shapedly learnable by an iterative learner, see [JKMS16, Theorem 5]. Moreover,
it relies on showing that state decisiveness can be assumed in Lemma 41.

The remainder of Sect. 4 completes the map for the case of syntactic restric-
tions (since these do not carry over from the setting of iterative learning). All
syntactic learning requirements are closely related to strongly locking learners.
The fundamental concept of a locking sequence was introduced by [BB75]. For
a similar purpose than ours [JKMS16] introduced strongly locking learners. We
generalize their construction for certain syntactically restricted iterative learners
from a strongly locking iterative learner. Finally, we obtain that all non-semantic
learning restrictions also coincide for BMS∗-learning.

2 Learners, Success Criteria and Other Terminology

As far as possible, we follow [JORS99] on the learning theoretic side and [Odi99]
for computability theory. We recall the most essential notation and definitions.

We let N denote the natural numbers including 0. For a function f we write
dom(f) for its domain and ran(f) for its range.

Further, X<ω denotes the finite sequences over the set X and Xω stands for
the countably infinite sequences over X. For every σ ∈ X<ω and t ≤ |σ|, t ∈ N,
we let σ[t] := {(s, σ(s)) | s < t} denote the restriction of σ to t. Moreover, for
sequences σ, τ ∈ X<ω their concatenation is denoted by σ�τ . Finally, we write
last(σ) for the last element of σ , σ(|σ| − 1), and σ− for the initial segment of σ
without last(σ), i.e. σ[|σ| − 1]. Clearly, σ = σ−�last(σ).

For a finite set D ⊆ N and a finite sequence σ ∈ X<ω, we denote by 〈D〉 and
〈σ〉 a canonical index for D or σ, respectively. Further, we fix a Gödel pairing
function 〈., .〉 with two arguments.

If we deal with (a subset of) a cartesian product or Gödel pairs, we are going
to refer to the projection functions to the first or second coordinate by pr1 and
pr2, respectively.

Let L ⊆ N. We interpret every n ∈ N as a code for a word. If L is recursively
enumerable, we call L a language.

We fix a programming system ϕ as introduced in [RC94]. Briefly, in the
ϕ-system, for a natural number p, we denote by ϕp the partial computable
function with program code p. We call p an index for Wp defined as dom(ϕp).

In reference to a Blum complexity measure Φp, for all p, t ∈ N, we denote by
W t

p ⊆ Wp the recursive set of all natural numbers less or equal to t, on which the
machine executing p halts in at most t steps, i.e. W t

p = {x | x ≤ t ∧ Φp(x) ≤ t}.

Learning in the Limit from Text with BMS-Learners 321

Moreover, the well-known s-m-n theorem gives finite and infinite recursion theo-
rems, see [Cas94], [Odi99]. We will refer to Case’s Operator Recursion Theorem
ORT in its 1-1-form, [Cas74].

Throughout the paper, we let Σ = N ∪ {#} be the input alphabet with
n ∈ N interpreted as code for a word in the language and # interpreted as pause
symbol, i.e. no new information. Further, let Ω = N∪{?} be the output alphabet
with p ∈ N interpreted as ϕ-index and ? as no hypothesis or repetition of the last
hypothesis, if existent. A function with range Ω is called a hypothesis generating
function.

A learner is a (partial) computable function M : dom(M) ⊆ Σ<ω → Ω. The
set of all total computable functions M : Σ<ω → Ω is denoted by R.

Let f ∈ Σ<ω ∪ Σω, then the content of f , defined as content(f) :=
ran(f)\{#}, is the set of all natural numbers, about which f gives some positive
information. Txt(L) := {T ∈ Σω | content(T) = L} denotes set of all texts for
L.

Definition 21. Let M be a learner. M is an iterative learner or It-learner, for
short M ∈ It, if there is a computable (partial) hypothesis generating function
hM : Ω × Σ → Ω such that M = h‡

M where h‡
M is defined on finite sequences by

h‡
M (ε) = ?; h‡

M (σ�x) = hM (h‡
M (σ), x).

Definition 22. Let M be a learner. M is a bounded memory states learner or
BMS-learner, for short M ∈ BMS, if there are a computable (partial) hypoth-
esis generating function hM : N × Σ → Ω and a computable (partial) state tran-
sition function sM : N × Σ → N such that dom(hM) = dom(sM) and M = h∗

M

where h∗
M and s∗

M are defined on finite sequences by

s∗
M (ε) = 0; h∗

M (σ�x) = hM (s∗
M (σ), x); s∗

M (σ�x) = sM (s∗
M (σ), x).

We now clarify what we mean by successful learning.

Definition 23. Let M be a learner and L a collection of languages.

1. Let L ∈ L be a language and T ∈ Txt(L) a text for L presented to M .
(a) We call h = (ht)t∈N ∈ Ωω, where ht := M(T [t]) for all t ∈ N, the learning

sequence of M on T .
(b) M learns L from T in the limit, for short M Ex-learns L from T or

Ex(M,T), if there exists t0 ∈ N such that Wht0
= content(T) and ∀t ≥

t0 (ht �= ? ⇒ ht = ht0).
2. M learns L in the limit, for short M Ex-learns L, if Ex(M,T) for every

L ∈ L and every T ∈ Txt(L).

Definition 24. Let L be a collection of languages. L is learnable in the limit
or Ex-learnable, if there exists a learner M that Ex-learns L.

In our investigations, the most important additional requirement on a suc-
cessful learning process for a BMS-learner is to use finitely many states only, as
stated in the following definition.

322 T. Kötzing and K. Seidel

Definition 25. Let M be a BMS-learner and T ∈ Txt. We say that M uses
finitely many memory states on T , for short BMS∗(M,T), if { s∗

M (T [t]) | t ∈ N }
is finite.

Let L be a language. M is said to BMS∗Ex-learn L, if BMS∗Ex(M,T) for
every text T ∈ Txt(L).

In [CCJS07, Rem. 38] it is claimed that BMS∗-learners and iterative learners
are equally powerful on texts. This also follows from our more general Lemma 31.

We list the most common additional requirements regarding the learning
sequence, which may tag a learning process just like BMS∗ above. For this we
first recall the notion of consistency of a sequence with a set. For f ∈ Σ<ω ∪Σω

and A ⊆ Σ we say f is consistent with A if and only if content(f) ⊆ A.
The listed properties of the learning sequence have been at the center of

different investigations. Studying how they relate to one another did begin in
[KP16,KS16,JKMS16] and [AKS18].

Definition 26. Let M be a learner, T ∈ Txt and h = (ht)t∈N ∈ Ωω the learning
sequence of M on T , i.e. ht = M(T [t]) for all t ∈ N. We write

1. Cons(T [t],Wht
), if {T (s) | s < t} \ {#} ⊆ Wht

.
2. Cons(M,T) [Ang80], if M is consistent on T , i.e., for all t holds

Cons(T [t],Wht
).

3. Conv(M,T) [Ang80], if M is conservative on T , i.e., for all s, t with s ≤ t
holds Cons(T [t],Whs

) ⇒ hs = ht.
4. Dec(M,T) [OSW82], if M is decisive on T , i.e., for all r, s, t with r ≤ s ≤ t

holds Whr
= Wht

⇒ Whr
= Whs

.
5. Caut(M,T) [OSW86], if M is cautious on T , i.e., for all s, t with s ≤ t

holds ¬Wht
� Whs

.
6. WMon(M,T) [Jan91,Wie91], if M is weakly monotonic on T , i.e., for all

s, t with s ≤ t holds Cons(T [t],Whs
) ⇒ Whs

⊆ Wht
.

7. Mon(M,T) [Jan91,Wie91], if M is monotonic on T , i.e., for all s, t with
s ≤ t holds Whs

∩ content(T) ⊆ Wht
∩ content(T).

8. SMon(M,T) [Jan91,Wie91], if M is strongly monotonic on T , i.e., for all
s, t with s ≤ t holds Whs

⊆ Wht
.

9. NU(M,T) [BCM+08], if M is non-U-shaped on T , i.e., for all r, s, t with
r ≤ s ≤ t holds Whr

= Wht
= content(T) ⇒ Whr

= Whs
.

10. SNU(M,T) [CM11], if M is strongly non-U-shaped on T , i.e., for all r, s, t
with r ≤ s ≤ t holds Whr

= Wht
= content(T) ⇒ hr = hs.

11. SDec(M,T) [KP16], if M is strongly decisive on T , i.e., for all r, s, t with
r ≤ s ≤ t holds Whr

= Wht
⇒ hr = hs.

12. Wb(M,T) [KS16], if M is witness-based on T , i.e., for all r, t such that for
some s with r < s ≤ t holds hr �= hs holds content(T [s])∩ (Wht

\Whr
) �= ∅.

It is easy to see that Conv(M,T) implies SNU(M,T) and WMon(M,T);
SDec(M,T) implies Dec(M,T) and SNU(M,T); SMon(M,T) implies all of
Caut(M,T), Dec(M,T),Mon(M,T), WMon(M,T) and finally Dec(M,T),
WMon(M,T) and SNU(M,T) imply NU(M,T). Further, Wb(M,T) implies
Conv(M,T), SDec(M,T) and Caut(M,T).

Learning in the Limit from Text with BMS-Learners 323

In order to characterize what successful learning means, these predicates
may be combined with the explanatory convergence criterion. For this, we let
Δ := {Caut,Conv,Dec,SDec,WMon,Mon,SMon, NU,SNU,T } denote
the set of admissible learning restrictions, with T standing for no restriction.
Further, a learning success criterion is a predicate being the intersection of the
convergence criterion Ex with arbitrarily many admissible learning restrictions.
This means that the sequence of hypotheses has to converge and in addition has
the desired properties. Therefore, the collection of all learning success criteria is
{⋂n

i=0 δi∩Ex | n ∈ N,∀i ≤ n(δi ∈ Δ)}. Note that plain explanatory convergence
is a learning success criterion by letting n = 0 and δ0 = T.

We refer to all δ ∈ {Caut,Cons,Dec,Mon,SMon,WMon,NU,T} also
as semantic learning restrictions, as they do not require the learner to settle on
exactly one hypothesis. More formally, if texts T1, T2 are such that for all t ∈ N

holds WM(T1[t]) = WM(T2[t]), then δ(M,T1) and δ(M,T2) are equivalent.
In order to state observations about how two ways of defining learning success

relate to each other, the learning power of the different settings is encapsulated
in notions [αTxtβ]. A collection of languages L is in [αTxtβ], if there is a learner
with property α that β-learns L. We do not use separators in the notation to stay
consistent with established notation in the field that was inspired by [JORS99].
Whenever β includes BMS∗ it is understood that we are only considering BMS-
learners.

The proofs of Lemmata 31 and 41 employ the following property of learning
requirements and learning success criteria, that applies to all such considered in
this paper.

Definition 27. Denote the set of all unbounded and non-decreasing functions by
S, i.e., S := { s : N → N | ∀x ∈ N ∃t ∈ N : s(t) ≥ x and ∀t ∈ N : s(t+1) ≥ s(t) }.
Then every s ∈ S is a so called simulating function.

A predicate β on pairs of learners and texts allows for simulation on equiv-
alent text, if for all simulating functions s ∈ S, all texts T, T ′ ∈ Txt and all
learners M,M ′ holds: Whenever we have content(T ′[t]) = content(T [s(t)]) and
M ′(T ′[t]) = M(T [s(t)]) for all t ∈ N, from β(M,T) we can conclude β(M ′, T ′).

Intuitively, as long as the learner M ′ conjectures h′
t = hs(t) = M(T [s(t)]) at

time t and has, in form of T ′[t], the same data available as was used by M for
this hypothesis, M ′ on T ′ is considered to be a simulation of M on T .

It is easy to see that all learning success criteria considered in this paper
allow for simulation on equivalent text.

3 Relations Between Semantic Learning Requirements

The following lemma formally establishes the equal learning power of iterative
and BMS∗-learning for all learning success criteria but Conv, SDec and SNU.
We are going to prove in Sect. 4 that this is not true for these three non-semantic
additional requirements.

324 T. Kötzing and K. Seidel

Lemma 31. Let δ allow for simulation on equivalent text.

1. We have [TxtBMS∗δEx] ⊇ [ItTxtδEx].
2. If δ is semantic then [TxtBMS∗δEx] = [ItTxtδEx].

While 1. and “⊇” in 2. are easy to verify by using the hypotheses as states,
the other inclusion in 2. is more challenging. The iterative learner constructed
from the BMS-learner M uses the hypotheses of M on an equivalent text and
additionally pads a subgraph of the translation diagram of M to it.

With Lemma 31 the following results transfer from learning with iterative
learners and it remains to investigate the relations to and between the non-
semantic requirements Conv,SDec and SNU.

Theorem 32. 1. [TxtBMS∗NUEx] = [TxtBMS∗Ex]
2. [TxtBMS∗DecEx] = [TxtBMS∗WMonEx] = [TxtBMS∗CautEx] =

[TxtBMS∗Ex]
3. [TxtBMS∗MonEx] � [TxtBMS∗Ex]
4. [TxtBMS∗SMonEx] � [TxtBMS∗MonEx]

Proof. The respective results for iterative learners can be found in
[CM08, Theorem 2], [JKMS16, Theorem 10], [JKMS16, Theorem 3] and
[JKMS16, Theorem 2]. ��

4 Relations to and Between Syntactic Learning
Requirements

The following lemma establishes that we may assume BMS∗-learners to never go
back to withdrawn states. This is essential in almost all of the following proofs.
It can also be used to simplify the proof of Lemma 31.

Lemma 41. Let β be a learning success criterion allowing for simulation on
equivalent text and L ∈ [TxtBMS∗β]. Then there is a BMS-learner N such
that N never returns to a withdrawn state and BMS∗β-learns L from texts.

With the latter result we can show that strongly monotonically BMS∗-
learnability does not imply strongly non-U-shapedly BMS∗-learnability.

Theorem 42. [TxtBMS∗SMonEx] �⊆ [TxtBMS∗SNUEx]

In the proof a self-learning BMS-learner M is defined and with a tailored
ORT-argument there can not be a BMS-learner strongly non-U-shapedly learn-
ing all languages that M learns strongly monotonically.

For inferring the relations between the syntactic learning requirements SNU,
SDec and Conv, we refer to Wb. All these criteria are closely related to strongly
locking learners. The learnability of every language L by a learner M is witnessed
by a sequence σ, consistent with L, such that M(σ) is an index for L and no
extension of σ consistent with L will lead to a mind-change of M . Such a sequence

Learning in the Limit from Text with BMS-Learners 325

σ is called (sink-)locking sequence for M on L. A learner M acts strongly locking
on a language L, if for every text T for L there is an initial segment σ of T that
is a locking sequence for M on L.

The proof of the following theorem generalizes the construction of a conser-
vative and strongly decisive iterative learner from a strongly locking iterative
learner in [JKMS16, Theorem 8]. With it we obtain in the Corollary thereafter,
that all non-semantic learning restrictions coincide.

Theorem 43. Let L be a set of languages BMS∗Ex-learned by a strongly lock-
ing BMS-learner. Then L ∈ [TxtBMS∗WbEx].

The construction of the witness-based learner proceeds in two steps. First,
we construct a learner BMS∗-learning L locally conservatively, as defined in
[JLZ07], requiring the last datum to violate consistency with the former hypoth-
esis. Second, from the aforementioned locally conservative learner, we obtain a
new learner that BMS∗Ex-learns L in a witness-based fashion. We will do this
by keeping track of all data having caused a mind-change so far. More concretely,
we alter the text by excluding mind-change data causing another mind-change
and make sure that the witness for the mind-change is contained in all future
hypotheses.

With the latter theorem it is straightforward to observe that in the BMS∗Ex-
setting conservative, strongly decisive and strongly non-U-shaped Ex-learning
are equivalent.

Corollary 44. For all γ, δ ∈ {Conv,SDec,SNU} holds [TxtBMS∗γEx] =
[TxtBMS∗δEx].

By [JKMS16, Theorem 2] and Lemma 31 we obtain [TxtBMS∗ConvEx] �⊆
[TxtBMS∗SMonEx]. From this we conclude with Theorem 42 and Corollary 44
that [TxtBMS∗ConvEx] ⊥ [TxtBMS∗SMonEx].

Similarly, with [JKMS16, Theorem 3] and Lemma 31 [TxtBMS∗ConvEx] �⊆
[TxtBMS∗MonEx]. As [TxtBMS∗MonEx] �⊆ [TxtBMS∗SNUEx] by The-
orem 42, with Corollary 44 [TxtBMS∗ConvEx] ⊥ [TxtBMS∗MonEx].

Because Theorem 42 also reproves [TxtBMS∗SNUEx] � [TxtBMS∗Ex],
first observed in [CK13, Th. 3.10], we completed the map for BMS∗Ex-learning
from texts.

As the relations equal the ones for It-learning, naturally the question arises,
whether a result similar to Lemma 31 can be observed for the syntactic learning
criteria. In the following we show that this is not the case.

Theorem 45. [ItTxtSNUEx] � [TxtBMS∗SNUEx]

Proof. By Lemma 31 we have [ItTxtSNUEx] ⊆ [TxtBMS∗SNUEx].

326 T. Kötzing and K. Seidel

We consider the BMS-learner M initialized with state 〈〈 ?, 0〉, 〈∅〉〉 and hM

and sM for every 〈e, ξ〉 ∈ Ω, D ⊆ N finite and x ∈ Σ defined by:

sM (〈〈e, ξ〉, 〈D〉〉, x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

〈〈e, ξ〉, 〈D〉〉, if x ∈ D ∪ {#} ∨
pr1(ϕx(〈e, ξ〉)↓) = e;

〈ϕx(〈e, ξ〉), 〈D ∪ {x}〉〉, else if pr1(ϕx(〈e, ξ〉)↓) �= e;
↑, otherwise.

hM (〈〈e, ξ〉, 〈D〉〉, x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

e, if x ∈ D ∪ {#} ∨
pr1(ϕx(〈e, ξ〉)↓) = e;

pr1(ϕx(〈e, ξ〉)), else if pr1(ϕx(〈e, ξ〉)↓) �= e;
↑, otherwise.

Additionally to the last hypothesis as well as exactly the data that already lead
to a mind-change of M , some parameter ξ is stored, indicating whether a further
mind-change may cause a syntactic U -shape.

Let L = TxtBMS∗SNUEx(M). We will show that there is no iterative
learner ItTxtSNUEx-learning L. Assume N is an iterative learner with hypoth-
esis generating function hN and L ⊆ ItTxtEx(N).

We obtain L ∈ L\ItTxtSNUEx(N) by applying 1-1 ORT [Cas74] referring
to the Σ1-predicates MC and NoMC, expressing that N does (not) perform a
mind-change on a text built from parameters a, b ∈ R. More specifically, the
predicates state that N does converge and (not) make a mind-change when
observing σ ∈ Σ<ω after having observed a[i]�b(i)�#�i , with i ∈ N.

ψi(�) ⇔ N(a[i]�b(i)�#�) = N(a[i]�b(i)�#�+1);
NoMC(i, σ) ⇔ ∃�i ∈ N (ψi(�i) ∧ ∀� < �i ¬ψi(�) ∧

N(a[i]�b(i)�#�i�σ)↓ = N(a[i]�b(i)�#�i));
MC(i, σ) ⇔ ∃�i ∈ N (ψi(�i) ∧ ∀� < �i ¬ψi(�) ∧

N(a[i]�b(i)�#�i�σ)↓ �= N(a[i]�b(i)�#�i)).

By 1-1 ORT [Cas74], applied to the recursive operator implicit in the follow-
ing case distinction, there are recursive total functions a, b, e1, e2 with pairwise
disjoint ranges and e0 ∈ N, such that for all i, ξ ∈ N, e ∈ Ω

ϕa(i)(〈e, ξ〉) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈e0, ξ〉, if e ∈ {?, e0};
〈e1(k), 1〉, else if ξ = 0, i even and ∃k ≤ i (e = e1(k));
〈e1(k), 2〉, else if ξ = 0, i odd and ∃k ≤ i (e = e1(k));
〈e2(k), 0〉, else if ξ = 1, i odd and ∃k ≤ i (e = e1(k));
〈e2(k), 0〉, else if ξ = 2, i even and ∃k ≤ i (e = e1(k));
〈e, ξ〉, otherwise;

ϕb(i)(〈e, ξ〉) =

{
〈e1(i), ξ〉, if e ∈ {?, e0};
〈e, ξ〉, otherwise;

Learning in the Limit from Text with BMS-Learners 327

We0 =

{
ran(a[t0]), if t0 is minimal with ∀t ≥ t0 N(a[t]) = N(a[t0]);
ran(a), no such t0 exists;

We1(i) = ran(a[i]) ∪ {b(i)} ∪

⎧
⎪⎨

⎪⎩

{a(j)} for first j ≥ i found
with MC(i, a(j));

∅, no such j exists;

We2(i) = ran(a) ∪ {b(i)}.

As the learner constantly puts out e0 on every text for We0 , we have We0 ∈ L.
Thus, also N learns the finite language We0 and t0 exists. Note that by the
iterativeness of N we obtain N(a[t0]) = N(a[t0]�a(i)) for all i ≥ t0 and with
this N(a[t0]�b(t0)�#�t0) = N(a[t0]�a(i)�b(t0)�#�t0) for all i ≥ t0.

We1(t0) and We2(t0) also lie in L. To see that M explanatory learns both
of them, note that, after having observed b(t0), M only changes its mind from
e1(t0) to e2(t0) after having seen a(i) and a(j) with i, j ≥ t0 and i ∈ 2N as well as
j ∈ 2N + 1. This clearly happens for every text for the infinite language We2(t0).
As |We1(t0) \ (content(a[t0]) ∪ {b(t0)}) | ≤ 1, this mind change never occurs for
any text for We1(t0).

The syntactic non-U-shapedness of M ’s learning processes can be easily seen
as for all k, l ∈ N the languages We0 , We1(k) and We2(l) are pairwise distinct, the
learner never returns to an abandoned hypothesis and M only leaves hypothesis
〈e1(k), 0〉 for 〈e1(k), ξ〉, ξ �= 0, if We1(k) is not correct.

Next, we show the existence of j ≥ t0 with MC(t0, a(j)). Assume towards
a contradiction that j does not exist. Then We1(t0) = content(a[t0]) ∪ {b(t0)}.
As M learns this language from the text a[t0]�b(t0)�#∞, so does N . The con-
vergence of N implies the existence of �t0 . Thus, for every j ∈ N we either
have N(a[t0]�b(t0)�#�t0 �a(j)) = N(a[t0]�b(t0)�#�t0) or the computation of
N(a[t0]�b(t0)�#�t0 �a(j)) does not terminate. Because N is iterative and learns
We2(t0), it may not be undefined and therefore always the latter is the case. But
then N will not learn We1(t0) and We2(t0) as they are different but N does not
make a mind-change on the text a[t0]�b(t0)�#�t0 �a after having observed the
initial segment a[t0]�b(t0)�#�t0 , due to its iterativeness. Hence, j exists and
We1(t0) = ran(a[t0]) ∪ {b(t0), a(j)}.

Finally, by the choice of j, the learner N does perform a syntactic U-shape
on the text a[t0]�a(j)�b(t0)�#�t0 �a(j)�#∞ for We1(t0). More precisely, t0 and
�t0 were chosen such that N(a[t0]�a(j)�b(t0)�#�t0) has to be correct and the
characterizing property of j assures

N(a[t0]�a(j)�b(t0)�#�t0) �= N(a[t0]�a(j)�b(t0)�#�t0 �a(j)).

Thus, no iterative learner can explanatory syntactically non-U-shapedly learn
the language L. ��

By Corollary 44 we also obtain [ItTxtSDecEx] � [TxtBMS∗SDecEx] and
[ItTxtConvEx] � [TxtBMS∗ConvEx].

328 T. Kötzing and K. Seidel

5 Related Open Problems

We have given a complete map for learning with bounded memory states, where,
on the way to success, the learner must use only finitely many states. Future work
can address the complete maps for learning with an a priori bounded number of
memory states, which needs very different combinatorial arguments. Results in
this regard can be found in [CCJS07] and [CK13]. We expect to see trade-offs, for
example allowing for more states may make it possible to add various learning
restrictions (just as non-deterministic finite automata can be made deterministic
at the cost of an exponential state explosion).

Also memory-restricted learning from positive and negative data (so-called
informant) has only partially been investigated for iterative learners and not
at all for other models of memory-restricted learning. Very interesting also in
regard of 1-1 hypothesis spaces that prevent coding tricks is the Bem-hierarchy,
see [FJO94], [LZ96] and [CJLZ99].

Acknowledgements. This work was supported by DFG Grant Number KO 4635/1-1.
We are grateful to the people supporting us.

References

AKS18. Aschenbach, M., Kötzing, T., Seidel, K.: Learning from informants: relations
between learning success criteria. arXiv preprint arXiv:1801.10502 (2018)

Ang80. Angluin, D.: Inductive inference of formal languages from positive data. Inf.
Control 45(2), 117–135 (1980)

BB75. Blum, L., Blum, M.: Toward a mathematical theory of inductive inference.
Inf. Control 28, 125–155 (1975)

BCM+08. Baliga, G., Case, J., Merkle, W., Stephan, F., Wiehagen, R.: When unlearn-
ing helps. Inf. Comput. 206, 694–709 (2008)

Cas74. Case, J.: Periodicity in generations of automata. Math. Syst. Theory 8(1),
15–32 (1974). https://doi.org/10.1007/BF01761704

Cas94. Case, J.: Infinitary self-reference in learning theory. J. Exp. Theor. Artif.
Intell. 6, 3–16 (1994)

CC13. Carlucci, L., Case, J.: On the necessity of U-shaped learning. Top. Cogn.
Sci. 5, 56–88 (2013)

CCJS07. Carlucci, L., Case, J., Jain, S., Stephan, F.: Results on memory-limited U-
shaped learning. Inf. Comput. 205, 1551–1573 (2007)

CJLZ99. Case, J., Jain, S., Lange, S., Zeugmann, T.: Incremental concept learning
for bounded data mining. Inf. Comput. 152, 74–110 (1999)

CK10. Case, J., Kötzing, T.: Strongly non-U-shaped learning results by general
techniques. In: Kalai, A.T., Mohri, M. (eds.) COLT 2010, pp. 181–193 (2010)

CK13. Case, J., Kötzing, T.: Memory-limited non-U-shaped learning with solved
open problems. Theoret. Comput. Sci. 473, 100–123 (2013)

CK16. Case, J., Kötzing, T.: Strongly non-U-shaped language learning results by
general techniques. Inf. Comput. 251, 1–15 (2016)

CM08. Case, J., Moelius, S.: U-shaped, iterative, and iterative-with-counter learn-
ing. Mach. Learn. 72, 63–88 (2008). https://doi.org/10.1007/s10994-008-
5047-9

http://arxiv.org/abs/1801.10502
https://doi.org/10.1007/BF01761704
https://doi.org/10.1007/s10994-008-5047-9
https://doi.org/10.1007/s10994-008-5047-9

Learning in the Limit from Text with BMS-Learners 329

CM11. Case, J., Moelius, S.: Optimal language learning from positive data. Inf.
Comput. 209, 1293–1311 (2011)

FJO94. Fulk, M., Jain, S., Osherson, D.: Open problems in Systems That Learn. J.
Comput. Syst. Sci. 49(3), 589–604 (1994)

Gol67. Gold, E.: Language identification in the limit. Inf. Control 10, 447–474
(1967)

Jan91. Jantke, K.P.: Monotonic and non-monotonic inductive inference of functions
and patterns. In: Dix, J., Jantke, K.P., Schmitt, P.H. (eds.) NIL 1990. LNCS,
vol. 543, pp. 161–177. Springer, Heidelberg (1991). https://doi.org/10.1007/
BFb0023322

JKMS16. Jain, S., Kötzing, T., Ma, J., Stephan, F.: On the role of update constraints
and text-types in iterative learning. Inf. Comput. 247, 152–168 (2016)

JLZ07. Jain, S., Lange, S., Zilles, S.: Some natural conditions on incremental learn-
ing. Inf. Comput. 205, 1671–1684 (2007)

JMZ13. Jain, S., Moelius, S., Zilles, S.: Learning without coding. Theoret. Comput.
Sci. 473, 124–148 (2013)

JORS99. Jain, S., Osherson, D., Royer, J., Sharma, A.: Systems that Learn: An Intro-
duction to Learning Theory, 2nd edn. MIT Press, Cambridge (1999)

KP16. Kötzing, T., Palenta, R.: A map of update constraints in inductive inference.
Theoret. Comput. Sci. 650, 4–24 (2016)

KS16. Kötzing, T., Schirneck, M.: Towards an atlas of computational learning the-
ory. In 33rd Symposium on Theoretical Aspects of Computer Science (2016)

KSS17. Kötzing, T., Schirneck, M., Seidel, K.: Normal forms in semantic language
identification. In: Proceedings of Algorithmic Learning Theory, pp. 493–516.
PMLR (2017)

LZ96. Lange, S., Zeugmann, T.: Incremental learning from positive data. J. Com-
put. Syst. Sci. 53, 88–103 (1996)

MPU+92. Marcus, G., Pinker, S., Ullman, M., Hollander, M., Rosen, T.J., Xu, F.:
Overregularization in language acquisition. monographs of the society for
research in child development, vol. 57, no. 4. University of Chicago Press
(1992). Includes commentary by H. Clahsen

Odi99. Odifreddi, P.: Classical Recursion Theory, vol. II. Elsivier, Amsterdam
(1999)

OSW82. Osherson, D., Stob, M., Weinstein, S.: Learning strategies. Inf. Control 53,
32–51 (1982)

OSW86. Osherson, D., Stob, M., Weinstein, S.: Systems that Learn: An Introduc-
tion to Learning Theory for Cognitive and Computer Scientists. MIT Press,
Cambridge (1986)

RC94. Royer, J., Case, J.: Subrecursive Programming Systems: Complexity and
Succinctness. Research monograph in Progress in Theoretical Computer
Science. Birkhäuser, Boston (1994). https://doi.org/10.1007/978-1-4612-
0249-3

SS82. Strauss, S., Stavy, R. (eds.): U-Shaped Behavioral Growth. Developmental
Psychology Series. Academic Press (1982)

Wie91. Wiehagen, R.: A thesis in inductive inference. In: Dix, J., Jantke, K.P.,
Schmitt, P.H. (eds.) NIL 1990. LNCS, vol. 543, pp. 184–207. Springer, Hei-
delberg (1991). https://doi.org/10.1007/BFb0023324

https://doi.org/10.1007/BFb0023322
https://doi.org/10.1007/BFb0023322
https://doi.org/10.1007/978-1-4612-0249-3
https://doi.org/10.1007/978-1-4612-0249-3
https://doi.org/10.1007/BFb0023324

Compression Techniques in Group Theory

Markus Lohrey(B)

University of Siegen, Siegen, Germany
lohrey@eti.uni-siegen.de

Abstract. This paper gives an informal overview over applications of
compression techniques in algorithmic group theory.

1 Algorithmic Problems in Group Theory

The study of computational problems in group theory goes back more than
100 years. In a seminal paper from 1911, Dehn posed three decision problems
[15]: The word problem, the conjugacy problem, and the isomorphism problem.
The word and conjugacy problem are defined for a finitely generated group G.
This means that there exists a finite subset Σ ⊆ G such that every element
of G can be written as a finite product of elements from Σ. This allows to
represent elements of G by finite words over the alphabet Σ. For the word
problem, the input consists of such a finite word w ∈ Σ∗ and the goal is to check
whether w represents the identity element of G. For the conjugacy problem, the
input consists of two finite words u, v ∈ Σ∗ and the question is whether the
group elements represented by u and v are conjugated. For the isomorphism
problem the input consists of two finite group presentations (roughly speaking,
two finite descriptions of groups in terms of generators and defining relations)
and the question is whether these presentations describe isomorphic groups.
Dehn’s motivation for studying these abstract group theoretical problems came
from topology. In his paper from 1912 [16], Dehn gave an algorithm that solves
the word problem for fundamental groups of orientable closed 2-dimensional
manifolds, but also realized that his three problems seem to be very hard in
general. In [15], he wrote “Die drei Fundamentalprobleme für alle Gruppen mit
zwei Erzeugenden . . . zu lösen, scheint einstweilen noch sehr schwierig zu sein.”
(Solving the three fundamental problems for all groups with two generators seems
to be very difficult at the moment.) When Dehn wrote this sentence, a formal
definition of computability was still missing. So, it is not surprising that it took
more than 40 years until Novikov [56] and independently Boone [11] proved
that the word problem and hence also the conjugacy problem are in general
undecidable for finitely presented groups. The isomorphism problems was shown
to be undecidable by Adjan [1].

In this paper we are mainly interested in the word problem. Despite the unde-
cidability results from [11,56], for many groups the word problem is decidable.
Dehn’s result for fundamental groups of orientable closed 2-dimensional mani-
folds was extended to one-relator groups (finitely generated groups that can be
c© Springer Nature Switzerland AG 2021
L. De Mol et al. (Eds.): CiE 2021, LNCS 12813, pp. 330–341, 2021.
https://doi.org/10.1007/978-3-030-80049-9_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80049-9_30&domain=pdf
https://doi.org/10.1007/978-3-030-80049-9_30

Compression Techniques in Group Theory 331

defined by single defining relation) by his student Magnus [49]. Other important
classes of groups with a decidable word problem are:

– automatic groups [21] (including important classes like braid groups [4], Cox-
eter groups, right-angled Artin groups, hyperbolic groups [24]),

– finitely generated linear groups, i.e., finitely generated groups that can be
faithfully represented by matrices over a field [58] (including polycyclic groups
and nilpotent groups), and

– finitely generated metabelian groups (they can be embedded in direct prod-
ucts of linear groups [65]).

With the rise of computational complexity theory in the 1960’s, also the compu-
tational complexity of group theoretic problems moved into the focus of research.
From the very beginning, this field attracted researchers from mathematics as
well as computer science. One of the early results in this context was that for
every given n ≥ 0 there exist groups for which the word problem is decidable
but does not belong to the n-th level of the Grzegorczyk hierarchy (a hierarchy
of decidable problems) [13]. On the other hand, for many prominent classes of
groups the complexity of the word problem is quite low. For instance, for auto-
matic groups, the word problem can be solved in quadratic time [21], and for
the subclass of hyperbolic groups the word problem can be solved in linear time
(even real time) [31].

For finitely generated linear groups Lipton and Zalcstein [39] (for fields of
characteristic zero) and Simon [62] (for prime characteristic) proved in 1977
(resp., 1979) that deterministic logarithmic space (L for short) suffices to solve
the word problem. This was the first result putting the word problem for an
important class of groups into a complexity class below polynomial time. The
class L is located between the classes NC1 and NC2 (NC stands for Nick’s class
after Nicolas Pippenger). The circuit complexity class NCk consists of all prob-
lems that can be solved by uniform polynomial size boolean circuits of bounded
fan-in and depth (log n)k. The class NC =

⋃
k≥1 NC

k is usually identified with
the class of problems that have an efficient parallel algorithm. It is a subclass of
Ptime and it is a famous open problem whether NC = Ptime. In his thesis [59]
from 1993, Robinson investigated the parallel complexity of word problems in
more detail. He proved that for several important classes of groups (nilpotent
groups, polycyclic groups, solvable linear groups) the word problem belongs to
(subclasses of) NC1. For the free group of rank two, he proved that the word
problem is hard for NC1 (and since it is linear, the word problem belongs to L).
Other groups with low complexity word problems are hyperbolic groups (NC2

due to Cai [12], which was improved to LOGCFL ⊆ NC2 in [40]), Thompson’s
group V (NC2 due to Birget [10]), Baumslag-Solitar groups1 (L due to Weiß [66])
and of course finite groups. A famous result of Barrington [7] says that for every
finite non-solvable group the word problem is NC1-complete. In recent years, also
the class TC0 ⊆ NC1 came into the focus of group theorists. Roughly speaking,

1 These are the one-relator groups BS(p, q) = 〈a, t | t−1apt = aq〉.

332 M. Lohrey

uniform TC0 captures the complexity of multiplying two binary encoded inte-
gers. It turned out that for many interesting groups the word problem belongs
to uniform TC0. This includes finitely generated solvable linear groups [37] and
all subgroups of groups that can be obtained from finitely generated solvable
linear groups using direct products and wreath products [53]. This includes for
instance all metabelian groups and free solvable groups.

2 Compression with Straight-Line Programs

In recent years, compression techniques have led to important breakthroughs
concerning the complexity of word problems. The general strategy (which is not
restricted to word problems) is to use data compression to avoid the storage of
huge intermediate data structures. For solving the word problem in automor-
phism groups and certain group extensions (in particular, semi-direct products),
so called straight-line programs turned out to be the right compressed representa-
tion. A straight-line program is a context-free grammar that produces only a sin-
gle word. A typical example is the context-free grammar S → ABA, A → CBC,
B → CcC, C → DaD, D → bb. The nonterminal C produces the word
bbabb, hence B produces bbabb c bbabb. Then, A produces bbabb bbabbcbbabb bbabb.
Finally, the start nonterminal S produces

bbabbbbabbcbbabbbbabb bbabbcbbabb bbabbbbabbcbbabbbbabb

The length of the word produced by a straight-line program G can be exponential
in the length of G, where the latter is usually defined as the sum of the lengths of
all right-hand sides of the grammar (14 in the above example). In other words,
straight-line programs allow for exponential compression rates in the best case.
Let us just mention that straight-line programs are a very active area in string
algorithms and data compression, see for instance [14,42].

Here, we are interested in group theoretical applications of straight-line pro-
grams. One of the first such applications is the so-called reachability theorem of
Babai and Szemerédi for finite groups [6]. It says that if G is a finite group of
order n and S ⊆ G is any generating set of G such that S = S−1, then every
element g ∈ G can be defined by a straight-line program with terminal alphabet
S and size O((log n)2). Babai and Szemerédi used this result for the solution of
subgroup membership problems in finite black-box groups.

2.1 Compressed Word Problems

Here, we are mainly interested in finitely generated infinite groups. Straight-
line programs entered this area with the so-called compressed word problem.
The compressed word problem for a finitely generated group G is the variant
of the word problem for G where the input word is represented by a straight-
line program. The compressed word problem can be also explained in terms of
circuits. Define a circuit over the group G as a directed acyclic graph, where
the nodes of indegree 0 are labelled with group generators and all other nodes

Compression Techniques in Group Theory 333

have exactly two incoming edges (they have to be ordered in the sense that there
is a left and a right incoming edge). Moreover, there is a distinguished output
node. Such a circuit computes an element of G in the natural way (every inner
node computes the product of the two incoming group elements). Then, the
compressed word problem for G is equivalent to the problem whether a given
circuit over the group G evaluates to the group identity.

Schleimer [61] observed that the (standard) word problem for every finitely
generated subgroup of the automorphism group of a group G is polynomial time
reducible to the compressed word problem for G. Similar transfer results hold for
semi-direct products and other group extensions. For instance, the word problem
for a semi-direct product K � Q is logspace reducible to (i) the word problem
for Q and (ii) the compressed word problem for K [43]. These results make the
compressed word problem interesting for the efficient solution of standard word
problems. It has been shown before Schleimer’s work that the compressed word
problem for a free group can be solved in polynomial time (the problem is in fact
Ptime-complete) [41]. As a consequence, the word problem for the automorphism
group of a free group (which is finitely generated) can be solved in polynomial
time [61]. This solved an open problem from [36]. Schleimer’s result has drawn
interest on the compressed word problem in the combinatorial group theory
community. In general, the complexity of the compressed word problem is higher
than the complexity of the standard word problem, since the input is given in
a more succinct way (we will see concrete examples later). Nevertheless, there
are, in addition to free groups, many groups with a polynomial time compressed
word problem:

(i) finite groups. It is easy to see that the compressed word problem for a finite
group can be solved in polynomial time. Less trivial is the fact that for every
finite non-solvable group the compressed word problem is Ptime-complete
[9].

(ii) hyperbolic groups [32] and, more generally, groups that are hyperbolic rel-
ative to a collection of free abelian subgroups [33]

(iii) fully residually free groups [48],
(iv) right-angled Artin groups [28,45], and, more generally, virtually special

groups (finite extensions of subgroups of graph groups) [43]. By the work
of Agol, Haglund and Wise [2,26,67], virtually special groups are tightly
connected to low dimensional topology and contain many other important
classes of groups (Coxeter groups, one-relator groups with torsion, fully
residually free groups, and fundamental groups of hyperbolic 3-manifolds).

The polynomial time algorithms from (ii), (iii) and (iv) are all based on the
following important result: for two straight-line programs one can check in poly-
nomial time whether they produce the same word. This result has been shown
independently in [30,52,57].

For finitely generated virtually nilpotent groups, the compressed word prob-
lem belongs to the parallel complexity class NC2 [37]. Finitely generated virtually
nilpotent groups are in fact the larges class of infinite groups, for which the com-
pressed word problem is known to be in NC.

334 M. Lohrey

If we allow randomization, we find further examples of groups where the
compressed word problem can be parallelized efficiently: for finitely generated
free metabelian groups and wreath products of the form

(∏k
i=1 Ai

) � Z
n, where

every Ai is either Z or a cyclic group of prime order, the compressed word
problem belongs to the class coRNC2 (the complement of the randomized version
of NC2) [38]. To show this result, the compressed word problem for

(∏k
i=1 Ai

)�Zn

is reduced to a special case of polynomial identity testing (PIT for short). This is
the question, whether a given algebraic circuit over a polynomial ring evaluates
to the zero polynomial [60]. It is known that for polynomials over the rings Z

and Zn, PIT belongs to coRP (the complement of randomized polynomial time)
[3,34]. In [38] it was shown that a special case of PIT, where the input circuit
is a so-called powerful skew circuit over a polynomial ring Z[x] or Fp[x] (p a
prime), belongs to coRNC2. The compressed word problem for

(∏k
i=1 Ai

) � Zn is
logspace reducible to this special case of PIT.

Using a reduction to the general PIT problem, the compressed word problems
for the following groups were shown to be in coRP:

– finitely generated linear groups (which contain the above mentioned virtually
special groups), [43,45]

– wreath products of the form G � H, where G is finitely generated abelian and
H is finitely generated virtually abelian [38].

PIT is a famous problem in complexity theory. Proving PIT ∈ Ptime would
imply spectacular progress on circuit complexity lower bounds [35]. Therefore,
complexity theorists believe that proving PIT ∈ Ptime will be extremely difficult.
In [43] it was shown that PIT can be reduced in logspace to the compressed
word problem for the linear group SL(3, Z) (all (3×3)-matrices over the integers
with determinant 1), showing that the two problems are equivalent with respect
to logspace reductions. Hence, proving that the compressed word problem for
SL(3, Z) belongs to Ptime seems to be very difficult.

Besides specific classes of groups, also constructions that allow to build new
groups from existing groups are important in group theory. For the following
important group theoretical constructions the compressed word problem for the
constructed group is polynomial time Turing-reducible to the compressed word
problems for the constitutent groups: finite group extensions [43,45], HNN exten-
sions with finite associated subgroups [27], amalgamated free products with finite
amalgamated subgroups [27], graph products [28].

Another important construction in group theory is the wreath product. We
have already seen some positive results for wreath products of abelian groups
(at least if we allow randomization). It turns out that the wreath product does
not preserve the complexity of the compressed word problem in general. Based
on a characterization of the class PSPACE in terms of so-called leaf languages
[29], it was shown in [8] that for many groups G the compressed word problem
for the wreath product G � Z is PSPACE-complete. Concrete examples of such

Compression Techniques in Group Theory 335

groups G are finite non-solvable groups and free groups of rank at least two.2

Since the compressed word problem for these groups as well as for Z belongs
to L, one obtains two important consequences: (i) wreath products may strictly
increase the complexity of the compressed word problem (L is a proper subclass
of PSPACE) and (ii) there exist groups for which the compressed word problems
is strictly more difficult than the standard word problem (for this one needs the
fact that the word problem for a wreath product G � H is logspace reducible to
the word problems for G and H [63]).

Using the same technique as for wreath products, it was also shown in [8] that
the compressed word problem is PSPACE-complete for the Grigorchuk group and
Thompson’s group F . These groups are famous for their quite unusual proper-
ties. Let us just mention that the Grigorchuk group was the first example of a
group of intermediate growth. The Grigorchuk group belongs to the rich class
of automaton groups (which should not be confused with the class of auto-
matic groups). Recently, examples of automaton groups with an EXPSPACE-
complete compressed word problem (and PSPACE-complete word problem) were
constructed in [64].

2.2 Power Words

In some group theoretical applications, the straight-line programs that appear
have a very restricted form: a power word has the form wn1

1 wn2
2 · · · wnk

k , where
the exponents n1, . . . , nk are integers that are given in binary encoding and the
words w1, . . . , wk are given explicitly (uncompressed). Using the iterated squar-
ing trick, one can translate a power word into an equivalent straight-line program
in logspace. Power words were used in order to solve algorithmic problems for
(2 × 2)-matrix groups. Consider the group GL(2, Z) of all (2 × 2)-matrices over
the integers with determinant ±1. The natural representation of elements in this
group consists of 4-tuples of binary encoded integers. In [44] it was shown that
for this input representation the subgroup membership problem (does a given
element of GL(2, Z) belong to a given finitely generated subgroup of GL(2, Z)?)
can be solved in polynomial time. An analogous result was shown in [25] for
the modular group PSL(2, Z). Let us briefly sketch the proof for GL(2, Z). It is
a well-known fact that GL(2, Z) is virtually-free, i.e., it has a free subgroup of
finite index. The connection to power words is made by the observation that a
matrix A ∈ GL(2, Z) can be translated into a power word wn1

1 wn2
2 · · · wnk

k over a
fixed (but arbitrarily chosen) finite generating set of GL(2, Z). Thus, evaluating
wn1

1 wn2
2 · · · wnk

k in the group GL(2, Z) yields the matrix A. Therefore, it suffices to
show that for every virtually-free group G, the so called power subgroup member-
ship problem for G belongs to Ptime. The power subgroup membership problem
for G is the subgroup membership problem for G, where all input elements of G

2 In fact, PSPACE-hardness of the compressed word problem for G �Z holds for a quite
large class of non-solvable groups, namely all so-called uniformly SENS groups G
[8], whereas for every non-abelian group G, the compressed word problem for G � Z

is already coNP-hard [43].

336 M. Lohrey

are represented by power words. One can easily get rid off the finite extension,
which leaves the power subgroup membership problem for a free group. This
problem is finally solved in polynomial using an adaptation of Stallings folding
procedure. The ordinary subgroup membership problem for a free group, where
all group elements are given by finite words, is known to the Ptime-complete [5].

The proof for PSL(2, Z) [25] follows the same strategy as for GL(2, Z). Due to
the simpler algebraic structure of PSL(2, Z) (it is isomorphic to the free product
Z2∗Z3), it suffices to solve the power subgroup membership problem for a finitely
generated free group, where the input power words have the form an1

1 an2
2 · · · ank

k

for free generators a1, . . . , ak, in polynomial time.
Power words have been also studied in the context of the word problem. The

power word problem for a finitely generated group G is the word problem for G,
where the input word is given as a power word. In [46] it was shown that the
power word problem for a finitely generated free group Fk is logspace reducible
to the standard word problem for Fk. Since Fk is a finitely generated linear
group, the result of Lipton and Zalcstein [39] implies that the word problem,
and hence also the power word problem, for every finitely generated free group
can be solved in logspace.

For the following groups, the power word problem even belongs to TC0:

– wreath products of the form G � Z with G finitely generated nilpotent [22],
– right iterated wreath products of the form Z

n1 � (Zn2 � (Zn3 � · · · � Z
nk)) and,

as a consequence of the Magnus embedding [50], free solvable groups [22],
– solvable Baumslag-Solitar groups BS(1, q) [47].

Interestingly, it was shown in [46] that the power word problems for Thompson’s
group F and all wreath products G � Z with G free of rank at least two or finite
non-solvable are coNP-complete.3 Recall that the compressed word problems
for these groups are PSPACE-complete [8]. For the Grigorchuk group the power
word problem belongs to L [46], whereas the compressed word problem is again
PSPACE-complete [8]. This yields an example of a group, where the compressed
word problem is strictly more difficult than the power word problem.

In the commutative setting, power words can be traced back to work from
the 1990’s. Ge [23] showed that one can verify in polynomial time an identity
αn1
1 αn2

2 · · · αnn
n = 1, where the αi are elements of an algebraic number field and

the ni are binary encoded integers.

3 Compression Beyond Straight-Line Programs

Recall that straight-line programs were applied to word problems for automor-
phism groups (and certain group extensions) and yield in some cases polynomial
time algorithms. This is achieved by representing long words that appear as
intermediate results in computations succinctly by straight-line programs. In the
best case, a straight-line program allows to represent a word of length n in space

3 coNP-hardness holds for every uniformly SENS group G.

Compression Techniques in Group Theory 337

log n. For some word problems, this exponential compression is not enough. This
holds in particular for groups with extremely fast growing Dehn functions like
the Baumslag group or Higman’s group. The Dehn functions for these groups
have recursive but non-elementary growth. If one tries to solve the word problem
naively, one obtains intermediate words of non-elementary length. Therefore, it
was conjectured that these groups may have very hard word problems. But this
turned out to be wrong. For both the Baumslag group [54] as well as Higman’s
group [17], the word problem can be solved in polynomial time. To prove these
results, power circuits were introduced in [55]. Power circuits allow to represent
huge integers, which arise as exponent towers, succinctly. Moreover, comparison
and the arithmetic operations x + y and x · 2y on numbers that are represented
by power circuits can be carried out in polynomial time. Recently, the power
circuit technique has been further developed in [51], where it was shown that
the word problem for the Baumslag group belongs to NC. Further work on power
circuits in the context of group theory can be found in [18].

An even more extreme integer compression is used in [19]. Using the so-
called hydra groups, a family of groups Gk (k ≥ 1) was constructed in [20] such
that the Dehn functions of the groups Gk are arbitrarily high in the Ackermann
hierarchy. Nevertheless, the word problem for every group Gk can be solved in
polynomial time [19].

4 Open Problems

Let us conclude with some open problems related to compression in algorithmic
group theory:

Linear Groups. Recall that the compressed word problem for a finitely gener-
ated linear group belongs to coRP. Showing that the compressed word problem
for finitely generated linear groups belongs to Ptime seems to be very difficult
(it would imply that polynomial identity testing belongs to Ptime). But what
about restricted classes of linear groups? Braid groups and solvable linear groups
might be good candidates to look at. Within the class of solvable linear groups
one might first investigate polycyclic groups or solvable Baumslag-Solitar groups
BS(1, q). Also the power word problem for linear groups might be interesting to
look at. The author is not aware of any better upper bound than coRP (the same
upper bound as for the compressed word problem for linear groups). Recall that
for the solvable and linear Baumslag-Solitar groups BS(1, q) the power word
problem belongs to TC0 [47]. Is it possible to extend this result to all solvable
linear groups?

Baumslag-Solitar Groups. Weiß [66] showed that the word problem for every
Baumslag-Solitar group BS(p, q) can be solved in logspace by reducing it in
logspace to the word problem for a free group. The same reduction does not work
in logspace for the compressed word problem. Currently, the best upper bound

338 M. Lohrey

for the compressed word problem of a non-solvable Baumslag-Solitar group is
PSPACE.

Right Iterated Wreath Products of Free Abelian Groups. Recall that
for right iterated wreath products of free abelian groups the power word problem
belongs to TC0 [22]. This gives hope that the compressed word problem for these
groups should be not too difficult. Since the word problem belongs to TC0, a
standard argument shows that the compressed word problem for every right
iterated wreath product of free abelian groups lies in the counting hierarchy.
This makes PSPACE-hardness quite unlikely. The compressed word problem for
a wreath product of two free abelian groups belongs to coRP [38]. It would be
interesting to see whether this result can be extended to all right iterated wreath
products of free abelian groups.

Subgroup Membership Problems. In [44] it is shown that the subgroup
membership problem for a free group can be solved in polynomial time, when all
group element are specified by power words. Is it possible to extend this result
to the case where all group element are specified by straight-line programs.
Straight-line programs are strictly more succinct than power words. On could
try to come up with an extension of Stallings’ folding procedure to the case
where edges are labelled with straight-line programs (the same strategy with
power words instead of straight-line programs was successful in [44]).

References

1. Adjan, S.I.: The unsolvability of certain algorithmic problems in the theory of
groups. Trudy Moskov. Mat. Obsc. 6, 231–298 (1957). in Russian

2. Agol, I.: The virtual Haken conjecture. Documenta Mathematica 18, 1045–1087
(2013). With an appendix by Ian Agol, Daniel Groves, and Jason Manning

3. Agrawal, M., Biswas, S.: Primality and identity testing via Chinese remaindering.
J. Assoc. Comput. Mach. 50(4), 429–443 (2003)

4. Artin, E.: Theorie der Zöpfe. Abh. Math. Semin. Univ. Hambg. 4(1), 47–72 (1925)
5. Avenhaus, J., Madlener, K.: The Nielsen reduction and P-complete problems in

free groups. Theoret. Comput. Sci. 32(1–2), 61–76 (1984)
6. Babai, L., Szemerédi, E.: On the complexity of matrix group problems I. In: Pro-

ceedings of the 25th Annual Symposium on Foundations of Computer Science,
FOCS 1984, pp. 229–240 (1984)

7. Barrington, D.A.M.: Bounded-width polynomial-size branching programs recog-
nize exactly those languages in NC1. J. Comput. Syst. Sci. 38, 150–164 (1989)

8. Bartholdi, L., Figelius, M., Lohrey, M., Weiß, A.: Groups with ALOGTIME-hard
word problems and PSPACE-complete circuit value problems. In: Proceedings of
the 35th Computational Complexity Conference, CCC 2020. LIPIcs, vol. 169, pp.
29:1–29:29. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)

9. Beaudry, M., McKenzie, P., Péladeau, P., Thérien, D.: Finite monoids: from word
to circuit evaluation. SIAM J. Comput. 26(1), 138–152 (1997)

Compression Techniques in Group Theory 339

10. Birget, J.-C.: The groups of Richard Thompson and complexity. Int. J. Algebra
Comput. 14(5–6), 569–626 (2004)

11. Boone, W.W.: The word problem. Ann. Math. Second Ser. 70, 207–265 (1959)
12. Cai, J.-Y.: Parallel computation over hyperbolic groups. In: Proceedings of the

24th Annual Symposium on Theory of Computing, STOC 1992, pp. 106–115. ACM
Press (1992)

13. Cannonito, F.B.: Hierarchies of computable groups and the word problem. J. Symb.
Log. 31, 376–392 (1966)

14. Charikar, M., et al.: The smallest grammar problem. IEEE Trans. Inf. Theory
51(7), 2554–2576 (2005)

15. Dehn, M.: Über unendliche diskontinuierliche Gruppen. Math. Ann. 71, 116–144
(1911). In German

16. Dehn, M.: Transformation der Kurven auf zweiseitigen Flächen. Math. Ann. 72,
413–421 (1912). In German

17. Diekert, V., Laun, J., Ushakov, A.: Efficient algorithms for highly compressed data:
the word problem in Higman’s group is in P. Int. J. Algebra Comput. 22(8) (2012)

18. Diekert, V., Myasnikov, A., Weiß, A.: Conjugacy in Baumslag’s group, generic case
complexity, and division in power circuits. Algorithmica 76(4), 961–988 (2016)

19. Dison, W., Einstein, E., Riley, T.R.: Taming the hydra: the word problem and
extreme integer compression. Int. J. Algebra Comput. 28(7), 1299–1381 (2018)

20. Dison, W., Riley, T.R.: Hydra groups. Commentarii Mathematici Helvetici 88(3),
507–540 (2013)

21. Epstein, D.B.A., Cannon, J.W., Holt, D.F., Levy, S.V.F., Paterson, M.S.,
Thurston, W.P.: Word Processing in Groups. Jones and Bartlett, Boston (1992)

22. Figelius, M., Ganardi, M., Lohrey, M., Zetzsche, G.: The complexity of knapsack
problems in wreath products. In: Proceedings of the 47th International Colloquium
on Automata, Languages, and Programming, ICALP 2020. LIPIcs, vol. 168, pp.
126:1–126:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)

23. Ge, G.: Testing equalities of multiplicative representations in polynomial time
(extended abstract). In: Proceedings of the 34th Annual Symposium on Foun-
dations of Computer Science, FOCS 1993, pp. 422–426 (1993)

24. Gromov, M.: Hyperbolic groups. In: Gersten, S.M. (ed.) Essays in Group Theory.
MSRI, vol. 8, pp. 75–263. Springer, New York (1987). https://doi.org/10.1007/
978-1-4613-9586-7 3

25. Gurevich, Y., Schupp, P.E.: Membership problem for the modular group. SIAM J.
Comput. 37(2), 425–459 (2007)

26. Haglund, F., Wise, D.T.: Coxeter groups are virtually special. Adv. Math. 224(5),
1890–1903 (2010)

27. Haubold, N., Lohrey, M.: Compressed word problems in HNN-extensions and amal-
gamated products. Theory Comput. Syst. 49(2), 283–305 (2011). https://doi.org/
10.1007/s00224-010-9295-2

28. Haubold, N., Lohrey, M., Mathissen, C.: Compressed decision problems for graph
products of groups and applications to (outer) automorphism groups. Int. J. Alge-
bra Comput. 22(8) (2013)

29. Hertrampf, U., Lautemann, C., Schwentick, T., Vollmer, H., Wagner, K.W.: On
the power of polynomial time bit-reductions. In: Proceedings of the 8th Annual
Structure in Complexity Theory Conference, pp. 200–207. IEEE Computer Society
Press (1993)

30. Hirshfeld, Y., Jerrum, M., Moller, F.: A polynomial algorithm for deciding bisimi-
larity of normed context-free processes. Theoret. Comput. Sci. 158(1 & 2), 143–159
(1996)

https://doi.org/10.1007/978-1-4613-9586-7_3
https://doi.org/10.1007/978-1-4613-9586-7_3
https://doi.org/10.1007/s00224-010-9295-2
https://doi.org/10.1007/s00224-010-9295-2

340 M. Lohrey

31. Holt, D.: Word-hyperbolic groups have real-time word problem. Int. J. Algebra
Comput. 10, 221–228 (2000)

32. Holt, D., Lohrey, M., Schleimer, S.: Compressed decision problems in hyper-
bolic groups. In: Proceedings of the 36th International Symposium on Theoret-
ical Aspects of Computer Science, STACS 2019. LIPIcs, vol. 126, pp. 37:1–37:16.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)

33. Holt, D., Rees, S.: The compressed word problem in relatively hyperbolic groups.
Technical report (2020). arxiv:2005.13917

34. Ibarra, O.H., Moran, S.: Probabilistic algorithms for deciding equivalence of
straight-line programs. J. Assoc. Comput. Mach. 30(1), 217–228 (1983)

35. Kabanets, V., Impagliazzo, R.: Derandomizing polynomial identity tests means
proving circuit lower bounds. Comput. Complex. 13(1–2), 1–46 (2004)

36. Kapovich, I., Myasnikov, A., Schupp, P., Shpilrain, V.: Generic-case complexity,
decision problems in group theory, and random walks. J. Algebra 264(2), 665–694
(2003)

37. König, D., Lohrey, M.: Evaluation of circuits over nilpotent and polycyclic groups.
Algorithmica 80(5), 1459–1492 (2018)

38. König, D., Lohrey, M.: Parallel identity testing for skew circuits with big powers
and applications. Int. J. Algebra Comput. 28(6), 979–1004 (2018)

39. Lipton, R.J., Zalcstein, Y.: Word problems solvable in logspace. J. Assoc. Comput.
Mach. 24(3), 522–526 (1977)

40. Lohrey, M.: Decidability and complexity in automatic monoids. Int. J. Found.
Comput. Sci. 16(4), 707–722 (2005)

41. Lohrey, M.: Word problems and membership problems on compressed words. SIAM
J. Comput. 35(5), 1210–1240 (2006)

42. Lohrey, M.: Algorithmics on SLP-compressed strings: a survey. Groups Complex.
Cryptol. 4(2), 241–299 (2012)

43. Lohrey, M.: The Compressed Word Problem for Groups. SM, Springer, New York
(2014). https://doi.org/10.1007/978-1-4939-0748-9

44. Lohrey, M.: Subgroup membership in GL(2, Z). In: Proceedings of the 38th Inter-
national Symposium on Theoretical Aspects of Computer Science, STACS 2021.
LIPIcs, vol. 187, pp. 51:1–51:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2021)

45. Lohrey, M., Schleimer, S.: Efficient computation in groups via compression. In:
Diekert, V., Volkov, M.V., Voronkov, A. (eds.) CSR 2007. LNCS, vol. 4649, pp.
249–258. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74510-
5 26

46. Lohrey, M., Weiß, A.: The power word problem. In: Proceedings of the 44th Inter-
national Symposium on Mathematical Foundations of Computer Science, MFCS
2019. LIPIcs, vol. 138, pp. 43:1–43:15. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2019)

47. Lohrey, M., Zetzsche, G.: Knapsack and the power word problem in solvable
Baumslag-Solitar groups. In: Proceedings of the 45th International Symposium
on Mathematical Foundations of Computer Science, MFCS 2020. LIPIcs, vol. 170,
pp. 67:1–67:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)

48. Macdonald, J.: Compressed words and automorphisms in fully residually free
groups. Int. J. Algebra Comput. 20(3), 343–355 (2010)

49. Magnus, W.: Das Identitätsproblem für Gruppen mit einer definierenden Relation.
Math. Ann. 106(1), 295–307 (1932)

50. Magnus, W.: On a theorem of Marshall Hall. Ann. Math. Second Ser. 40, 764–768
(1939)

http://arxiv.org/abs/2005.13917
https://doi.org/10.1007/978-1-4939-0748-9
https://doi.org/10.1007/978-3-540-74510-5_26
https://doi.org/10.1007/978-3-540-74510-5_26

Compression Techniques in Group Theory 341

51. Mattes, C., Weiß, A.: Parallel algorithms for power circuits and the word problem
of the Baumslag group. CoRR, abs/2102.09921 (2021)

52. Mehlhorn, K., Sundar, R., Uhrig, C.: Maintaining dynamic sequences under
equality-tests in polylogarithmic time. In: Proceedings of the 5th Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 1994, pp. 213–222. ACM/SIAM
(1994)

53. Miasnikov, A., Vassileva, S., Weiß, A.: The conjugacy problem in free solvable
groups and wreath products of Abelian groups is in TC0. Theory Comput. Syst.
63(4), 809–832 (2019)

54. Myasnikov, A., Ushakov, A., Won, D.W.: The word problem in the Baumslag group
with a non-elementary Dehn function is polynomial time decidable. J. Algebra
345(1), 324–342 (2011)

55. Myasnikov, A.G., Ushakov, A., Won, D.W.: Power circuits, exponential algebra,
and time complexity. Int. J. Algebra Comput. 22(6) (2012)

56. Novikov, P.S.: On the algorithmic unsolvability of the word problem in group
theory. Am. Math. Soc. Transl. II Ser. 9, 1–122 (1958)

57. Plandowski, W.: Testing equivalence of morphisms on context-free languages. In:
van Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 460–470. Springer, Heidelberg
(1994). https://doi.org/10.1007/BFb0049431

58. Rabin, M.O.: Computable algebra, general theory and theory of computable fields.
Trans. Am. Math. Soc. 95, 341–360 (1960)

59. Robinson, D.: Parallel algorithms for group word problems. Ph.D. thesis, University
of California, San Diego (1993)

60. Saxena, N.: Progress on polynomial identity testing-II. In: Agrawal, M., Arvind,
V. (eds.) Perspectives in Computational Complexity. PCSAL, vol. 26, pp. 131–146.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05446-9 7

61. Schleimer, S.: Polynomial-time word problems. Commentarii Mathematici Hel-
vetici 83(4), 741–765 (2008)

62. Simon, H.-U.: Word problems for groups and contextfree recognition. In: Proceed-
ings of Fundamentals of Computation Theory, FCT 1979, pp. 417–422. Akademie-
Verlag (1979)

63. Waack, S.: The parallel complexity of some constructions in combinatorial group
theory. J. Inf. Process. Cybern. EIK 26, 265–281 (1990)

64. Wächter, J.P., Weiß, A.: An automaton group with PSPACE-complete word prob-
lem. In: Proceedings of the 37th International Symposium on Theoretical Aspects
of Computer Science, STACS 2020. LIPIcs, vol. 154, pp. 6:1–6:17. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2020)

65. Wehrfritz, B.A.F.: On finitely generated soluble linear groups. Mathematische
Zeitschrift 170, 155–167 (1980)

66. Weiß, A.: A logspace solution to the word and conjugacy problem of generalized
Baumslag-Solitar groups. In: Algebra and Computer Science, volume 677 of Con-
temporary Mathematics. American Mathematical Society (2016)

67. Wise, D.T.: The Structure of Groups with a Quasiconvex Hierarchy. Princeton
University Press, Princeton (2021)

https://doi.org/10.1007/BFb0049431
https://doi.org/10.1007/978-3-319-05446-9_7

Computable Procedures for Fields

Russell Miller1,2(B)

1 Queens College, 65-30 Kissena Blvd, Queens, NY 11367, USA
Russell.Miller@qc.cuny.edu

2 C.U.N.Y. Graduate Center, 365 Fifth Avenue, New York, NY 10016, USA

Abstract. This tutorial will introduce listeners to many questions that
can be asked about computable processes on fields, and will present the
answers that are known, sometimes with proofs. This is not original work.
The questions in greatest focus here include decision procedures for the
existence of roots of polynomials in specific fields, for the irreducibility of
polynomials over those fields, and for transcendence of specific elements
over the prime subfield. Several of these questions are related to the
construction of algebraic closures, making Rabin’s Theorem prominent.

Keywords: Computability · Computable structure theory ·
Factorization · Field · Hilbert’s Tenth Problem · Irreducibility ·
Polynomials · Rabin’s Theorem · Root set · Splitting set

1 Introduction

The classic problems of factoring polynomials and finding their roots arose long
before any formal notion of decidability existed. In Greece, geometric problems
led to it, such as finding side lengths in right triangles: the Greeks knew that√

2 was irrational, which is to say, that X2 − 2 does not factor over Q. In India,
the sixth-century mathematician Brahmagupta investigated integer solutions to
what came to be known in the West as the Pell equations X2 − dY 2 = 1.
(Not only did Pell trail Brahmagupta by a millennium in this study, but he was
also not even the first on his own continent to consider these equations, being
preceded in this by Fermat.) In 1900, the tenth of the problems posed by Hilbert
for the new century was to find a method of determining whether an arbitrary
diophantine equation f = 0, with f ∈ Z[X1,X2, . . .], has a solution in integers.

Algorithms for answering various of these questions had been discovered over
the centuries, of course, often independently in different cultures. With Alan
Turing’s 1936 definition of an algorithm – using what came to be known as a
Turing machine – questions of decidability could be studied more rigorously. Not
only could one ask whether classical algorithms really could be implemented on
a Turing machine – for the most part, the answers were affirmative, although
some of these algorithms require prohibitive time and memory resources – but

The author was partially supported by Grant #581896 from the Simons Foundation
and by the City University of New York PSC-CUNY Research Award Program.

c© Springer Nature Switzerland AG 2021
L. De Mol et al. (Eds.): CiE 2021, LNCS 12813, pp. 342–352, 2021.
https://doi.org/10.1007/978-3-030-80049-9_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80049-9_31&domain=pdf
https://doi.org/10.1007/978-3-030-80049-9_31

Computable Procedures for Fields 343

in certain cases, one could now prove that no algorithm at all could succeed.
Hilbert appears not to have anticipated the possibility that his Tenth Problem
would be resolved in this way, but indeed, in 1970, Matiyasevich [15] completed
work by Davis, Putnam, and Robinson [2], proving that no Turing machine at
all can accomplish the task demanded by Hilbert.

In this tutorial we will examine both decidability and undecidability results
within these topics. We will focus on fields of characteristic 0, and on results in
pure computability, rather than considering results from theoretical computer
science and other disciplines. In doing so, we omit a significant and intriguing
body of knowledge, but paradoxically, the time and space constraints on this
abstract and tutorial preclude consideration of time and space constraints on
the algorithms.

Apart from Sect. 6, we will restrict ourselves to countable (infinite) fields,
the most natural subjects for our questions. A presentation of such a field is a
first-order structure F with domain {x0, x1, . . .}, in the signature of rings, that
is isomorphic to F . (One can use N itself as the domain, but when studying fields
this would create much confusion.) The atomic diagram Δ(F) of F essentially
consists of the addition and multiplication tables for F , coded using a Gödel
coding so that we may regard Δ(F) as a subset of N. If Δ(F) is decidable,
then F is a computable presentation of the field. A single field will have many
presentations; some may be computable, but not all, and many fields have no
computable presentation at all. In order to consider all fields, we often give
ourselves the set Δ(F) as an oracle. The most basic countable field is the field
Q of rational numbers, and we fix a single computable presentation of it to be
used hereafter. (Often we will conflate the isomorphism type, the presentation,
and the atomic diagram of a field, when it seems safe to do so.)

The work described here is not original in this article, although certain stan-
dard facts may go uncited. Historically important sources on computable fields
includes work by van der Waerden [27], Fröhlich and Shepherdson [8], Rabin [23],
Ershov [6], Metakides and Nerode [16], Fried and Jarden [7], and Stoltenberg-
Hansen and Tucker [26], while [17] gives a helpful basic introduction to these
topics.

2 Rabin’s Theorem

The natural starting point is the simplest case: polynomials in a single variable
X, over Q. Systematic algorithms factoring polynomials in the polynomial ring
Q[X] and finding their roots date back at least as far as Kronecker [14], who
began with Z[X] and moved on to Q[X] and then to field extensions of Q.
It is worthwhile to examine his work: a good modern presentation appears in
Edwards’s Galois Theory [5, §§55–57]. In fact, determining whether an f ∈
Z[X] has a root x in Z is fairly trivial: x itself, if it exists, must divide the
constant coefficient c0, as it divides every other term in 0 = c0 + c1x + · · · +
cdx

d = f(x). If c0 = 0, then 0 is a root; otherwise this leaves only finitely many
possible values x1, . . . , xn for x, each of which can be tested by computing f(xi).

344 R. Miller

A similar procedure applies when f ∈ Q[X]: after one clears the denominators in
the coefficients, each prime power that divides the denominator of the possible
root must also divide the leading coefficient. The more challenging problem is
to determine reducibility: which f ∈ Z[X] can be factored there? Kronecker’s
algorithm for answering this question also appears in [5], and extends readily to
Q[X].

We choose here to present a more general result: the theorem of Michael
Rabin from 1960 [23, Thms. 7 & 8] that relates these questions to constructions
of the algebraic closure of a given field. The version given here includes a fairly
trivial extension to fields that have no computable presentation, as such fields
are omitted from Rabin’s own statement of the theorem.

Theorem 1 (Rabin’s Theorem [23]). There exist Turing functionals Φ and
Ψ , such that, for every presentation F of any countable field,

– ΦΔ(F) computes Δ(K) for a presentation K of some algebraically closed field;
– and ΨΔ(F) computes an embedding i : F → K such that K is algebraic over

the image i(F).

Thus K may be regarded as the algebraic closure of (the isomorphic image of)
F , being both algebraically closed and algebraic over that image. Moreover, the
following sets, each computably enumerable relative to Δ(F), are all Turing-
equivalent (relative to Δ(F)):

– The image i(F) of F , as a subset of the domain of K;
– the image j(F) of F within any computable presentation K0 of K, for an

arbitrary F -computable embedding j : F → K0 with K0 algebraic over j(F);
– the root set RF = {f ∈ F [X] : (∃x ∈ F) f(x) = 0} of F ;
– the splitting set SF = {f ∈ F [X] : (∃ nonconstant g, h ∈ F [X]) f = g · h}.
The Turing-equivalence of RF and SF may be surprising. It is quickly seen that
RF ≤T SF (relative to Δ(F): this really means RF ≤T SF ⊕ Δ(F)). Indeed,
with an SF -oracle, we can determine whether a given f factors over F , and if so,
we can find a factorization (using Δ(F)) and repeat the question for each factor
until we have found the irreducible factors of f in F [X]. Then f ∈ RF just if
one of these factors is linear. The reverse reduction is not so clear. However, it is
soon seen that SF ≤T i(F) (relative to Δ(F), again), since for f ∈ F [X], we can
factor the image of f in K[X] into linear factors in K[X], and the products of
these linear factors yield all possible factorizations of f in K[X]. Then f ∈ SF

just if one of those (finitely many) factorizations in K[X] has all its coefficients
in i(F). To complete the equivalence, one reduces i(F) to RF : for any x ∈ K, we
can find some g ∈ F [X] with (i ◦ g)(x) = 0, as K is algebraic over i(F). Using
RF , we can determine whether g has roots in F – and if so, how many roots, by
finding a root a ∈ F and repeating the process for g(X)

X−a . Then compute i(a) for
each root a of g in F : x lies in i(F) just if it is equal to one of these i(a).

Rabin’s Theorem is a classic example of computable structure theory. It
reveals exactly how much one needs to know about F in order to construct the
algebraic closure of F “around” F , with F as a decidable subfield. The pleasing

Computable Procedures for Fields 345

Turing-equivalence of RF and SF is a byproduct. Those readers who still feel
that SF is somehow more difficult to compute than RF will find an affirmation
of their intuition in [19,25], where it is shown that (for computable fields F
algebraic over Q) RF is always 1-reducible to SF , uniformly in Δ(F), whereas
SF can fail to be 1-reducible to RF , or even bounded-Turing-reducible to RF .

Useful corollaries of Rabin’s Theorem include several theorems first proven
by Kronecker. For example, Kronecker gave an algorithm for deciding SQ, but
this now follows directly from Rabin’s Theorem and Kronecker’s algorithm for
RQ. (Irreducibility in Z[X] is also now quickly seen to be decidable.) Edwards
[5] gives Kronecker’s actual algorithm, which enables him to construct algebraic
closures from an intuitionistic point of view. Rabin’s proof of his theorem may be
seen as nonconstructive in certain respects: it essentially assumes the existence
of the algebraic closure and builds a computable presentation of that closure,
rather than constructing the algebraic closure directly.

Furthermore, if E = F (a) is an algebraic field extension of F , then by Rabin’s
Theorem SE ≤T SF , uniformly relative to Δ(E) and the embedding of F into
E. This follows by giving an algorithm for deciding membership (of each x ∈ K)
in the image of F (a) from membership in i(F), once the embedding i : F → K is
extended to F (a). Thus all number fields have decidable splitting sets and root
sets. In turn, this allows one to compute the Galois group G of a finite algebraic
extension E/F , viewed as a set of automorphisms of E: one can determine the
order n of G and name its elements g1, . . . , gn so that gm(x) is computable
uniformly from m ≤ n and x ∈ E. All that is needed is an SF -oracle and the
minimal polynomial of a primitive generator of E over F .

3 Polynomials in Several Variables

The reader will notice that, while we sketched a proof of the Turing-equivalence
claims of Rabin’s Theorem above, we never addressed the initial claim of the
theorem: the uniform method of producing an algebraic closure K of the given
field F and of situating F inside K, via an embedding i : F → K, so as to view
K accurately as the algebraic closure of F . This claim is not that difficult to
prove when F is an algebraic field, by which we mean an algebraic extension of
its prime subfield (which here is always Q; if we considered characteristics p > 0,
it would be the p-element subfield Fp). However, the proof is significantly more
difficult for non-algebraic fields. For those with no computable transcendence
basis over Q, even a non-uniform construction of K and i requires real work. We
content ourselves here with referring the reader to the original paper [23].

However, another algorithm of Kronecker is worthy of notice here. We men-
tioned above that his method of deciding the splitting set of an algebraic exten-
sion F (a), given the splitting set for F , was superseded by Rabin’s Theorem
(apart from intuitionistic considerations). Kronecker showed the same for a
purely transcendental extension F (t) of F , and this does not follow from Rabin’s
Theorem. Here F (t) can be presented (given Δ(F)) as the set of all rational func-
tions in one variable t over F , i.e., quotients of polynomials in F [t]. Of course,

346 R. Miller

F (t) does not sit inside the algebraic closure of F , so we appeal instead to
Kronecker [14].

Kronecker found a trick for deciding whether a polynomial f ∈ F (t)[X]
factors there. (Once again, the modern source [5, §59] expounds his method well.)
First he argued that we can clear out the denominators of the rational functions
in F (t) serving as coefficients of f , reducing the problem to the situation where
f can be viewed as an element of F [t][X], or equivalently, a polynomial in two
variables in F [T,X]. If n is the degree of T in f , then any factorization of f
in F [T,X] produces a factorization of f(T, Tn+1) in F [T]. Using the splitting
set of F as an oracle, we find all (finitely many) factorizations of f(T, Tn+1) in
F [T], and check whether any of them arises from a factorization of f(T,X), thus
deciding SF (t). Moreover, Rabin’s Theorem, with F (t) as the given field, shows
that RF (t) ≡T SF (t), so RF (t) ≡T SF ≡T RF as well.

This result allows us to move beyond single-variable polynomials when con-
sidering irreducibility.

Proposition 1. Irreducibility of polynomials in F [X0,X1,X2, . . .] is decidable
by a uniform procedure using the splitting set SF of F (and the atomic diagram
Δ(F), if F is not computable) as an oracle.

Proof. Applying Kronecker’s trick recursively, we derive procedures for deciding
irreducibility in Rn = F [X0, . . . , Xn] for each n, uniformly in n. So, given f ∈
F [X0,X1, . . .], we simply find an n with f ∈ Rn and apply the algorithm for
that Rn. Of course, if f factors in F [X0,X1, . . .] at all, both factors must lie in
this Rn, so the algorithm for Rn gives the correct answer.
�

Proposition 1 reveals a significant distinction between the single-variable and
multi-variable situations. In F [X], the questions of irreducibility and having a
root are Turing-equivalent (relative to the atomic diagram Δ(F)), by Rabin’s
Theorem: for example, with F = Q, both RQ and SQ are decidable. How-
ever, in the multivariable situation, this fails. Irreducibility of polynomials in
Q[X0,X1, . . .] is decidable (and for F in general, it remains Turing-equivalent
to SF , so we do not even bother to give a separate name to the multivariable
problem). However, the question of whether an f ∈ Q[X0,X1, . . .] has a solu-
tion in Q poses a huge open problem. We refer to it as Hilbert’s Tenth Problem,
generalizing the original question posed by Hilbert.

Definition 1. For a field F (or more generally a ring), Hilbert’s Tenth Problem
for F is the set

HTP(F) =
⋃

n

{f ∈ F [X0, . . . , Xn] : (∃(x0, . . . , xn) ∈ Fn+1) f(x0, . . . , xn) = 0}.

So RF is just the single-variable case of HTP(F). Of course RF ≤T HTP(F),
indeed via a 1-reduction, but the converse in general is false. Indeed, the decid-
ability of HTP(Q) itself is unknown: this set is computably enumerable, but
there is no proof yet whether its Turing degree is the computable degree 0, or
the degree 0′ of the Halting Problem – or conceivably even a different c.e. degree
in between these two! Of course, Hilbert’s original Tenth Problem was to give

Computable Procedures for Fields 347

an algorithm deciding HTP(Z), which is now known from [15] to be undecid-
able, having degree 0′. It also remains unknown whether there is any existential
formula defining the set Z within the field Q: if such a definition exists, then
HTP(Q) would have degree 0′ too, as membership questions about HTP(Z)
could then be reduced to membership questions about HTP(Q) using that def-
inition. Julia Robinson [24] created the first definition of Z in Q, in 1949, by a
∀∃∀∃-formula, thus showing that the theory of the field Q is undecidable. Within
the past decade, Koenigsmann [13] gave a definition of Z in Q by a purely uni-
versal formula, but there are reasons to doubt whether an existential definition
exists.

Although the situation of HTP(Q) remains unresolved, one certainly can
build fields F (with Δ(F) computable) for which HTP(F) ≤T RF . Thus RF

can be strictly easier than HTP(F) under Turing reducibility. In Sect. 5 we will
mention some further results concerning this question.

4 Transcendence Bases

For fields in general, the most basic question about an element is whether it is
algebraic or transcendental. These questions can be asked relative to any subfield,
but for us they will always refer to transcendence over the prime subfield: either Q
or Fp, depending on the characteristic. In every presentation F of any countable
field, the prime subfield is always computably enumerable relative to Δ(F).

The prime subfield may be undecidable relative to Δ(F), but this can only
occur if F has characteristic 0 and contains transcendental elements. For an
algebraic x, Kronecker’s decision procedure for SQ allows us to find the minimal
polynomial of x over Q and thus decide whether x ∈ Q. Furthermore, it almost
defines x within F , as only finitely many other elements of f can have the same
minimal polynomial. (These other elements are the Q-conjugates of x in F .)

A transcendence basis B for F (over Q) is a way of extending this situation
to all of F . By definition, B is a maximal subset of F algebraically independent
over Q, and so every x ∈ F has a minimal polynomial over the subfield Q(B),
which identifies x (relative to B) up to finitely many conjugates, in the same
way that the minimal polynomial of an element of an algebraic field identifies
that element. If we can enumerate a particular transcendence basis B, therefore,
we are largely back in the comfortable situation of an algebraic field.

In [16], Metakides and Nerode provided the first example of a computable
field with no computable transcendence basis. This result is sharp, as there is
always a transcendence basis B that is co-c.e. relative to Δ(F): it consists of
each element xi in the domain of F that is independent over Q(x0, . . . , xi−1).
The proof involves ensuring that F has infinite transcendence degree, but using
a priority construction to guarantee that every infinite c.e. subset We of the
domain contains an algebraic element. This is not difficult: the key is that the
type of a transcendental x in a field is a nonprincipal type, i.e., not generated by
any single formula, and therefore certainly not generated by any single existential
formula. It follows that, no matter what finite amount of Δ(F) has been defined

348 R. Miller

so far, it will always be consistent with that amount for x to be algebraic. So,
when it comes time to make some element of We algebraic, it is always possible
to do so.

The further complication in transcendental fields is that there is no canonical
transcendence basis. The prime subfield of F is always c.e. relative to Δ(F),
by a uniform enumeration procedure, and is rigid, so elements in each copy
of an algebraic field F can be identified, up to conjugacy, by their minimal
polynomials. However, even in fields such as the purely transcendental extension
K = Q(t0, t1, . . .) of Q (which is just the field of all rational functions over Q in
the variables ti), this property no longer holds. It is quickly seen that there are
presentations of this K in which no generating set of transcendentals is c.e., and
therefore, even the natural candidate {t0, t1, . . .} for a canonical transcendence
basis does not succeed in the way one requires. Indeed, this is a significant open
question.

Question 1 (Melnikov & Miller). For the field K = Q(t0, t1, . . .), find the lowest
complexity level S such that every presentation F of K is generated by some
transcendence basis of complexity S.

It is known that Π1
1 is such a complexity level, and that Π0

1 is the least candidate
for S, but this leaves a wide spread of possibilities. This question is closely related
to the categoricity spectrum of the field Q(t0, t1, . . .); see [9] for basic definitions
and [18] for some results involving fields.

One might hope that, for each computable field K, there might at least exist
a computable copy F of K with a computable transcendence basis. However,
this hope was dashed by Kalimullin, Schoutens, and the author in [11].

Theorem 2 (Corollary 3 from [11]). For every Turing degree c ≤ 0′, there
exists a computable field K such that, in every computable copy F ∼= K, every
transcendence basis for F has degree ≥ c. If c is itself a c.e. degree, then we can
also ensure that every computable copy actually has a basis of degree c.

Oddly, the results here were based largely on work in [22] that produced a
computable field K, of infinite transcendence degree, such that every copy F
of K has a transcendence basis computable from Δ(F). (In particular, every
computable copy has a computable transcendence basis.) The argument there
used existential formulas to define the elements of one particular transcendence
basis: the basis elements were those x such that, for some y in the field, (x, y)
formed a nontrivial solution to a Fermat polynomial Xp+Y p = 1. This technique
of “tagging” basis elements by adjoining roots of polynomials over those elements
was subsequently extended by Poonen, Schoutens, Shlapentokh, and the author
in [21]. Discussion of that work is beyond the scope of this tutorial, but we
provide a short version of the relevant theorem here. Roughly, it states that
fields in general are just as complex as any other class of structures. Graphs,
groups, and partial orders are also maximally complex, whereas linear orders
and trees (for example) are not.

Computable Procedures for Fields 349

Theorem 3 (Theorem 1.8 from [21]). For every countable first-order struc-
ture M in a finite signature, there exists a countable field K with the same
computable-structure-theoretic properties as M.

To give a more precise, though incomplete, list of the properties preserved:
K has the same Turing degree spectrum as M, the same categoricity spectrum
as M, the same computable dimension as M, and the same automorphism
spectrum as M. Moreover, for every relation R on M, there is a relation on K
with the same degree spectrum. (All of these properties are described in [21], and
most in [10]. Some of them require M to be a computable structure; if it is, then
K can also be taken to be computable.) Indeed, even properties unknown when
Theorem 3 was proven have turned out to carry over from M to K, such as the
degree of categoricity on a cone, defined in [1]. The theorem in general holds for
countable structures in computable signatures, not just finite signatures, with the
exception of certain simple but pathological structures known as automorphically
trivial structures; see [12] for those details.

5 Algebraic Fields

Algebraic fields are fields in which every element is algebraic, i.e., is the root of
some polynomial over the prime subfield, which in this section will always be
Q. The class A of such fields is very far from satisfying Theorem 3: procedures
involving fields in A are in general much closer to computable, because each
element of such a field can be effectively identified up to conjugacy over Q,
thanks to the decidability of SQ. The means that, for two presentations of fields
in A, the property of being isomorphic is far simpler than for fields in general.
(Theorem 3 shows the isomorphism relation to be Π1

1 -complete for fields in
general.)

Theorem 4. Two fields E,F ∈ A are isomorphic just if

{f ∈ Q[X] : f has a root in E} = {f ∈ Q[X] : f has a root in F}.

Similarly, the elements x0, x1 ∈ F lie in the same orbit under automorphisms of
F just if they have the same minimal polynomial over Q and

{f ∈ Q[X,Y] : f(x0, Y) ∈ RF } = {f ∈ Q[X,Y] : f(x1, Y) ∈ RF }.

Theorem 4 suggests that {f ∈ Q[X] : f has a root in F} can serve as an index
for the isomorphism type of F , for each F ∈ A. This is the foundation of work in
[20] and [3,4], which uses these indices to place a topology on the space A of all
algebraic field extensions of Q. The same topology has been discovered by various
field theorists independently over the years: it is sometimes known as the étale
topology, or seen as the Vietoris topology on the space of all closed subgroups
of Aut(Q). Each of these is the same topology on the space of all subfields
of Q; one mods out by the relation of isomorphism and imposes the quotient
topology in order to topologize the space of isomorphism types in A. Both the

350 R. Miller

étale topology and the quotient modulo isomorphism have the pleasing property
of being homeomorphic to the set 2N under the usual Cantor topology, and this
allows one to use elements of Cantor space as indices for the isomorphism types.
Each index essentially specifies {f ∈ Q[X] : f has a root in F}, as described
above, although a certain amount of coding is necessary. This creates an effective
classification of A by the elements of 2N.

Theorem 5 (see [20]). There exist Turing functionals Φ and Ψ such that, for
all presentations E and F of fields in A and all S ∈ 2N:

– ΦE⊕RE ∈ 2N, with ΦE⊕RE = ΦF⊕RF if and only if E ∼= F ; and
– ΨS computes Δ(F) ⊕ RF for some presentation F of a field in A; and
– Φ(ΨS) = S.

Eisenträger, Springer, Westrick, and the author have recently exploited this
homeomorphism, using the Baire-category property of co-meagerness in 2N to
prove the following.

Theorem 6 (see [4]). In A under the topology described above, the (isomor-
phism types of) fields satisfying all of the following properties form a comeager
set.

– in some presentation F of the field, RF ≤T Δ(F); but
– in every presentation F of the field, (RF)′ ≤T (Δ(F))′; and
– in every presentation F of the field, RF ⊕ Δ(F) ≡T HTP(F) ⊕ Δ(F).

Thus the “generic” situation for algebraic extensions of Q is that the root set
is noncomputable but always low relative to the atomic diagram. Moreover, the
question of solvability of polynomial equations in several variables is “generi-
cally” only as hard as the same question for polynomials in a single variable (i.e.,
the root set), hence also low but generally noncomputable relative to Δ(F).

6 The Field R

Abstractly, it is natural to consider the problem of whether a polynomial f ∈
R[X0, . . . , Xn] has a real solution x ∈ R

n with f(x) = 0. In practice, since R

is uncountable, the techniques used here are entirely different from those for
countable fields, and we content ourselves with a brief summary.

It has been known since the work of Tarski that the theory of the field R is
decidable. From this one directly infers a decision procedure for the question of
whether an f ∈ Q[X0, . . . , Xn] has a solution in R

n. Indeed, we can describe it
succinctly: if we find x and y in the dense subset Qn with f(x) < 0 < f(y), then
the Intermediate Value Theorem guarantees a solution of f in R

n; whereas, if no
such pair (x,y) exists, then by a theorem of Artin f is either a sum of squares
of polynomials in Q[X0, . . . , Xn] or else the negation of a sum of such squares.
For a sum of squares, f will have a solution only if the absolute minimum value
of f is 0, and so basic calculus yields the endgame.

Computable Procedures for Fields 351

When the polynomial f is allowed to have arbitrary real coefficients, one must
first explain how those coefficients are to be presented. The usual procedure,
in computable analysis, is to use fast-converging Cauchy sequences 〈qn〉n∈N of
rational numbers, with the limit c ∈ R of the sequence satisfying |c − qn| <
2−n for all n. This is best viewed as an approximation of c by open intervals
(qn − 2−n, qn +2−n), all containing c, whose lengths decrease effectively to 0. Of
course, a single c will have many such representations, including noncomputable
ones. The book [28] is a standard source for computable analysis.

Over countable fields, the only important aspect of the root set is determining
whether a root exists: if it does, one can simply search through the field until a
root is found. Over R

n, this is no longer applicable, so this problem bifurcates:
the first problem is to decide the existence of a solution, and if one exists, the
second problem is to produce a solution. The first of these is undecidable, even
for n = 1, and the proof is fairly quick. Suppose Φ were a Turing functional that,
when given an oracle containing (d+1) Cauchy sequences converging fast to real
numbers c0, . . . , cd, outputs either “yes” if

∑
ciX

i = 0 has a solution in R, or
“no” if it has no solution. Run Φ on the monomial X2, given by constant Cauchy
sequences (1, 1, 1, . . .), (0, 0, 0, . . .) and (0, 0, 0, . . .) to represent 1X2+0X1+0X0.
Φ must output “yes” after examining the first u terms of each sequence, for some
finite “use” u ∈ N. But then, if we run it again and replace the coefficient in the
X0 term by (0, 0, . . . , 0, 2−(u+1), 2−(u+1), . . .) with u initial 0’s, it will give the
same output “yes,” which will be incorrect: the polynomial is now X2 + 1

2u+1 ,
which has no root in R.

The second problem is also undecidable, and again tangency is the culprit.
For example, the polynomial f(X) = X4 − 2X2 + 1 has real roots ±1, but an
arbitrarily small nonzero linear coefficient c can make either of them disappear:
for c > 0, X4 − 2X2 + cX + 1 has only negative roots, while when c < 0 it has
only positive roots. This allows us to use a strategy similar to the above: wait for
a functional Φ to compute its first approximation q0 to a root of f(X), and then
perturb the linear coefficient just slightly, making it either positive (if q0 ≥ 0)
or negative (otherwise).

References

1. Csima, B.F., Harrison-Trainor, M.: Degrees of categoricity on a cone via eta-
systems. J. Symbolic Logic 82(1), 325–346 (2017)

2. Davis, M., Putnam, H., Robinson, J.: The decision problem for exponential dio-
phantine equations. Ann. Math. 74(3), 425–436 (1961)

3. Eisenträger, K., Miller, R., Springer, C., Westrick, L.: A topological approach to
undefinability in algebraic fields, submitted for publication

4. Eisenträger, K., Miller, R., Springer, C., Westrick, L.: Genericity and forcing for
algebraic fields, in preparation

5. Edwards, H.M.: Galois Theory. Springer, New York (1984)
6. Ershov, Y.L.: Theorie der Numerierungen. Zeits. Math. Logik Grund. Math. 23,

289–371 (1977)
7. Fried, M.D., Jarden, M.: Field Arithmetic. Springer, Berlin (1986)

352 R. Miller

8. Frohlich, A., Shepherdson, J.C.: Effective procedures in field theory. Phil. Trans.
R. Soc. Lond. Ser. A 248(950), 407–432 (1956)

9. Fokina, E., Kalimullin, I., Miller, R.: Degrees of categoricity of computable struc-
tures. Arch. Math. Logic 49, 51–67 (2010)

10. Hirschfeldt, D.R., Khoussainov, B., Shore, R.A., Slinko, A.M.: Degree spectra and
computable dimensions in algebraic structures. Ann. Pure Appl. Logic 115, 71–113
(2002)

11. Kalimullin, I., Miller, R., Schoutens, H.: Degree spectra for transcendence in fields.
In: Manea, F., Martin, B., Paulusma, D., Primiero, G. (eds.) CiE 2019. LNCS, vol.
11558, pp. 205–216. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
22996-2 18

12. Knight, J.F.: Degrees coded in jumps of orderings. J. Symbolic Logic 51, 1034–1042
(1986)

13. Koenigsmann, J.: Defining Z in Q. Ann. Math. 183(1), 73–93 (2016)
14. Kronecker, L.: Grundzüge einer arithmetischen Theorie der algebraischen Größen.

Journal für die reine und angewandte Mathematik 92, 1–122 (1882)
15. Matiyasevich, Y.V.: The Diophantineness of enumerable sets. Dokl. Akad. Nauk

SSSR 191, 279–282 (1970)
16. Metakides, G., Nerode, A.: Effective content of field theory. Ann. Math. Logic 17,

289–320 (1979)
17. Miller, R.: Computable fields and Galois theory. Not. Am. Math. Soc. 55(7), 798–

807 (2008)
18. Miller, R.: d-Computable categoricity for algebraic fields. J. Symbolic Logic 74(4),

1325–1351 (2009)
19. Miller, R.: Is it easier to factor a polynomial or to find a root? Trans. Am. Math.

Soc. 362(10), 5261–5281 (2010)
20. Miller, R.: Isomorphism and classification for countable structures. Computability

8(2), 99–117 (2019)
21. Miller, R., Poonen, B., Schoutens, H., Shlapentokh, A.: A computable functor from

graphs to fields. J. Symbolic Logic 83(1), 326–348 (2018)
22. Miller, R., Schoutens, H.: Computably categorical fields via Fermat’s last theorem.

Computability 2, 51–65 (2013)
23. Rabin, M.: Computable algebra, general theory, and theory of computable fields.

Trans. Am. Math. Soc. 95, 341–360 (1960)
24. Robinson, J.: Definability and decision problems in arithmetic. J. Symbolic Logic

14, 98–114 (1949)
25. Steiner, R.M.: Computable fields and the bounded Turing reduction. Ann. Pure

Appl. Logic 163, 730–742 (2012)
26. Stoltenberg-Hansen, V., Tucker, J.V.: Computable rings and fields. In: Griffor,

E.R. (ed.) Handbook of Computability Theory, pp. 363–447. Elsevier, Amsterdam
(1999)

27. van der Waerden, B.L.: Algebra, volume I, trans. F Blum and J.R. Schulenberger.
Springer, New York (1991) (1970 hardcover, 2003 softcover)

28. Weihrauch, K.: Computable Analysis: An Introduction. Springer, Berlin (2000)

https://doi.org/10.1007/978-3-030-22996-2_18
https://doi.org/10.1007/978-3-030-22996-2_18

Minimum Classical Extensions
of Constructive Theories

Joan Rand Moschovakis1,2(B) and Garyfallia Vafeiadou2

1 Department of Mathematics, Occidental College, Los Angeles, CA, USA
joan@math.ucla.edu

2 Graduate Program in Logic, Algorithms and Computation,
Department of Mathematics, University of Athens, Athens, Greece

gvf@math.uoa.gr

Abstract. Reverse constructive mathematics, based on the pioneering
work of Kleene, Vesley, Kreisel, Troelstra, Bishop, Bridges and Ishihara,
is currently under development. Bishop constructivists tend to emulate
the classical reverse mathematics of Friedman and Simpson. Veldman’s
reverse intuitionistic analysis and descriptive set theory split notions in
the style of Brouwer. Kohlenbach’s proof mining uses interpretations and
translations to extract computational information from classical proofs.
We identify the classical content of a constructive mathematical theory
with the Gentzen negative interpretation of its classically correct part. In
this sense HA and PA have the same classical content but intuitionistic
and classical two-sorted recursive arithmetic with quantifier-free count-
able choice do not; Σ0

1 numerical double negation shift expresses the
precise difference. Other double negation shift and weak comprehension
principles clarify the classical content of stronger constructive theories.
Any consistent axiomatic theory S based on intuitionistic logic has a
minimum classical extension S+g, obtained by adding to S the nega-
tive interpretations of its classically correct consequences. Subsystems of
Kleene’s intuitionistic analysis and supersystems of Bishop’s construc-
tive analysis provide interesting examples, with the help of constructive
decomposition theorems.

1 There Is Virtue in Simplicity

The negative translations proposed by Gödel [7] and Gentzen [6] are straight-
forward syntactic methods for converting formulas of a full logical language into
classically equivalent formulas not involving ∨ or ∃. The Gentzen negative trans-
lation Eg of a formula E replaces ∨ and ∃ by their classical equivalents in terms
of ¬, & and ∀, but does not change →. The Gödel translation also replaces → by
its classical equivalent in terms of ¬ and &, but the simpler Gentzen version is
more transparent and will be used in what follows. When necessary to guarantee
the intuitionistic equivalence of ¬¬Eg and Eg, prime formulas are replaced by
their double negations; this step is omitted in applications where prime formulas
are stable under double negation.
c© Springer Nature Switzerland AG 2021
L. De Mol et al. (Eds.): CiE 2021, LNCS 12813, pp. 353–362, 2021.
https://doi.org/10.1007/978-3-030-80049-9_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80049-9_33&domain=pdf
https://doi.org/10.1007/978-3-030-80049-9_33

354 J. R. Moschovakis and G. Vafeiadou

The negative translations of classical logical axioms and rules are correct by
intuitionistic logic, so if E follows from Γ by classical logic then Eg follows from
Γg by intuitionistic logic. With classical logic E and Eg are equivalent. Even with
intuitionistic logic, ¬¬Eg and Eg are equivalent.

1.1 Classical Content in Arithmetic and Analysis

In what follows, the “language of arithmetic” may be any first-order language
with equality, constants 0, ′, +, · and possibly other constants for primitive recur-
sive functions. Prime formulas are equations s = t between terms. Classical arith-
metic PA and intuitionistic arithmetic HA are expressed in this language.

The “language of analysis” is any two-sorted language extending the language
of arithmetic, with variables m,n, . . . , x, y, z over natural numbers and variables
α, β, γ, . . . over infinite sequences of natural numbers (i.e. one-place number-
theoretic functions), with constants for additional primitive recursive functions
and functionals. Function application is denoted by α(x), and equality at type 1
is defined extensionally. Troelstra’s EL and Kleene and Vesley’s I are expressed
in the language of analysis; cf. [12,19,21].

Some applications involve intuitionistic arithmetic of arbitrary finite types
HAω, an extension of HA in a language with variables over, and terms for,
primitive recursive functions of all finite types. Prime formulas are equations
between terms of the same type. There are intensional and extensional versions
of HAω; for details see [19].

Definition 1. The classical content of a formula E in the language of arith-
metic, analysis, or the arithmetic of finite types is its Gentzen negative transla-
tion Eg. The classical content Γg of a collection Γ of formulas consistent with
classical logic is the closure under intuitionistic logic of the set {Eg: E ∈ Γ}.
Remark 1. If S is a formal system, based on intuitionistic logic but consistent
with classical logic, and if T comes from S by adding one or more classically
correct logical axiom schemas, then Sg = Tg so the classical content of S is
determined by the negative translations of its mathematical axioms. Following
Kleene [11] we denote S + (¬¬A → A) by S◦.

1.2 Minimum Classical Extension of a Constructive Theory

Definition 2. If S is a formal system based on intuitionistic logic, in a language
including &, ∨, →, ¬, and quantifiers ∀ and ∃ of one or more sorts, then the
classical subtheory cls(S) of S is the set of all classically correct theorems
of S; the classical content of S is (cls(S))g; and the minimum classical
extension S+g of S is the closure under intuitionistic logic of S ∪ (cls(S))g.

Remark 2. If S is an intuitionistic subsystem of a (consistent) classical theory
then cls(S) = S, so S+g is the closure under intuitionistic logic of S ∪ Sg. Intu-
itionistic arithmetic is its own minimum classical extension because the negative

Minimum Classical Extensions of Constructive Theories 355

interpretations of all the mathematical axioms of HA (and PA) are provable
in HA. The prime formulas of arithmetic are equations between terms of type
0, which do not change under the translation because HA proves that they are
decidable, hence stable under double negation.

However, the neutral (classically correct) “basic” subsystem B of Kleene and
Vesley’s formal system I for intuitionistic analysis does not contain its classical
content, nor does Troelstra’s recursive analysis EL. In each of these cases the
classical content is nevertheless completely determined by the negative transla-
tions of the mathematical axioms of the system.

In the case that S is consistent but S◦ is not, cls(S) may include more than
the consequences of the classically correct axioms of S. Intuitionistic analysis I
differs from B by just one axiom schema (which conflicts with B◦), but I proves
monotone bar induction (which is consistent with B◦) while B does not. The
question then is how to determine the classical subtheory of a subsystem S of I
with a classically false continuity axiom or schema, in order to identify S+g.

2 Double Negation Shift and Weak Comprehension
Axioms

Double negation shift principles have long been studied as weaker alternatives
to constructively questionable axioms like Markov’s Principle (cf. [1,5,16,18]).
In [2] Brouwer himself used double negation shift to prove that the intuitionistic
real numbers form a closed species, though he later rejected this argument.

The most general double negation shift schema, whose addition to intuition-
istic predicate logic would suffice to prove Glivenko’s Theorem, is

DNS : ∀x¬¬A(x) → ¬¬∀xA(x).

The converse holds by intuitionistic predicate logic. The strength of an instance
of double negation shift depends on the logical complexity of the formula A(x)
and the domain of the variable x.

2.1 “Double Negation Shift for Numbers” DNS0

DNS0 denotes the restriction of DNS to cases where x is a number variable. AC0

denotes the axiom schema of countable choice, which was accepted by Bishop and
Brouwer. Danko Ilik argues in [8] that HAω + AC0 + DNS0 “is a distinct variety
of Constructive Mathematics” because it satisfies existential instantiation, proves
the double negation of Bishop’s Limited Principle of Omniscience for numbers,
refutes the recursive choice principle CT0, and contains its classical content. He
also observes that DNS0 can replace Markov’s Principle in consistency proofs
for classical analysis (cf. [15]).

Proposition 1. HAω + AC0 + DNS0 is its own minimum classical extension.

Proof. (HAω + AC0 + DNS0)g = (HAω + AC0)g by Remark 1 since DNS0 is a
classical logical schema. (HAω)g ⊆ HAω and (AC0)g ⊆ HAω + AC0 + DNS0.

356 J. R. Moschovakis and G. Vafeiadou

2.2 Σ0
1 Double Negation Shift for Numbers

Definition 3. In the language of arithmetic or analysis, Σ0
1-double negation

shift for numbers is the schema

Σ0
1-DNS0 : ∀x¬¬∃yA(x, y) → ¬¬∀x∃yA(x, y)

where A(x, y) is a formula with only bounded number quantifiers and no sequence
quantifiers, but perhaps containing additional free variables.

Proposition 2. EL + Σ0
1-DNS0 is its own minimum classical extension.

Proof. The only axiom or schema of EL + Σ0
1-DNS0 whose negative interpreta-

tion is not provable in EL is the quantifier-free countable choice schema

QF-AC00 : ∀x∃yA(x, y) → ∃α∀xA(x, α(x))

where A(x, y) may have additional free variables of both sorts but only bounded
numerical quantifiers. Its negative interpretation is intuitionistically equivalent
to ∀x¬¬∃yAg(x, y) → ¬¬∃α∀xAg(x, α(x)), which follows easily from Σ0

1-DNS0

and QF-AC00 by intuitionisitic logic.

Definition 4. Two-sorted intuitionistic arithmetic IA1 is the subsystem
of Kleene’s B obtained by omitting the axiom schemas of countable choice and
bar induction. Intuitionistic recursive analysis IRA comes from IA1 by
adding the recursive comprehension axiom1

∀ρ[∀x∃yρ(〈x, y〉) = 0 → ∃α∀xρ(〈x, α(x)〉) = 0]

Remark 3. This special case is equivalent, over IA1, to QF-AC00. Vafeiadou
proved in [23] that IRA and EL are mathematically equivalent, in the sense of
having a common definitional extension. See [17] for a precise description of IA1

and [22] for her comparison of EL with IRA.

Proposition 3. Over EL and IRA, Σ0
1-DNS0 is interderivable with the case

∀ρ[∀x¬¬∃yρ(〈x, y〉) = 0 → ¬¬∀x∃yρ(〈x, y〉) = 0].

Proof. Each formula A(x, y) of the language of analysis with only bounded num-
ber quantifiers and no sequence quantifiers expresses a primitive recursive rela-
tion of its free variables, such that EL and IRA both prove

∃ρ∀x∀y[A(x, y) ↔ ρ(〈x, y〉) = 0].

Corollary 1. (to Propositions 2, 3):

(a) (EL0)+g = EL0, where EL0 comes from EL by omitting QF-AC00.
(b) EL+g = EL + Σ0

1-DNS0.
(c) (IA1)+g = IA1.
(d) IRA+g = IRA + Σ0

1-DNS0

Proof. EL0 and IA1 prove the converse of QF-AC00, and so Σ0
1-DNS0 follows

from (QF-AC00)
g in EL and IRA.

1 〈x, y〉 = 2x · 3y is Kleene’s code for the ordered pair of x and y; similarly for n-tuples.

Minimum Classical Extensions of Constructive Theories 357

2.3 Stronger Restricted Versions of DNS0

The full strength of DNS0 is not needed to negatively interpret AC0. In con-
structive or intuitionistic arithmetic and analysis, if A(x) is a negative formula
(i.e. has no occurrences of ∃ or ∨) then ¬¬A(x) ↔ A(x) is provable, so double
negation shift holds trivially for all negative formulas A(x).

Definition 5. In the language of arithmetic or analysis, DNS−
00 denotes the

restriction of DNS to the case where x is a number variable and A(x) is of the
form ∃yA(x, y) where A(x, y) is negative. In the language of analysis, DNS−

01

denotes the restriction of DNS to the case where x is a number variable and
A(x) is of the form ∃αA(x, α) where A(x, α) is negative. In the language of
HAω, DNS−

0∞ includes all DNS−
0σ for finite types σ.

These restricted double negation shift schemas characterize the minimum
classical extensions of theories with AC00, AC01, or the collection AC0∞ of all
AC0σ for finite types σ. In particular, AC01 is the strong countable choice axiom
schema of Kleene’s B:

AC01 : ∀x∃αA(x, α) → ∃α∀xA(x, λy.α(〈x, y〉))
where x is free for α in A(x, α), and AC00 is like QF-AC00 but with no restriction
on A(x, y) except that the substitution of α(x) for y must be free.

Proposition 4. Each of HAω + AC0∞ + DNS−
0∞, EL0 + AC00 + DNS−

00,
IA1 + AC00 + DNS−

00, EL0 + AC01 + DNS−
01 and IA1 + AC01 + DNS−

01

is its own minimum classical extension.

Proof. As for Propositions 1 and 2.

Corollary 2. (to Proposition 4):

(a) (HAω + AC0∞)+g = HAω + AC0∞ + DNS−
0∞.

(b) (EL0 + AC0i)+g = (EL + AC0i)+g = EL0 + AC0i + DNS−
0i for i = 0,1.

(c) (IA1 + AC0i)+g = (IRA + AC0i)+g = IA1 + AC0i + DNS−
0i for i = 0,1.

Proof. As for Corollary 1.

Remark 4. Many syntactic refinements of these results are possible. For
example, Proposition 15 in [4] shows that (b) holds for Π0

1-AC00

(with the hypothesis ∀x∃y∀zρ(〈x, y, z〉) = 0) and Σ0
2-DNS0 (with hypothesis

∀x¬¬∃y∀zρ(〈x, y, z〉) = 0) in place of AC00 and DNS−
00, respectively. Observe

that Σ0
1-DNS0 and Σ0

2-DNS0 are instances of DNS−
00, but e.g. Σ0

3-DNS0 is not.

2.4 Weak Comprehension Principles

Over EL or IRA, a number-theoretic relation A(x) (perhaps with number
and sequence parameters) has a characteristic function for x only if it satisfies
∀x(A(x) ∨ ¬A(x)). The weak comprehension schema

¬¬ CF0 : ¬¬∃ζ∀x(ζ(x) = 0 ↔ A(x))

358 J. R. Moschovakis and G. Vafeiadou

asserts only that it is consistent to assume that A(x) has a characteristic function
for x. Here we consider two restricted versions of ¬¬CF0. The first one is2

¬¬ Π0
1-CF0 : ∀α¬¬∃ζ∀x(ζ(x) = 0 ↔ ∀yα(〈x, y〉) = 0).

By formula induction, IRA + ¬¬Π0
1-CF0 proves ¬¬∃ζ∀x(ζ(x) = 0 ↔ A(x)) for

all negative arithmetical formulas A(x), with universal number quantifiers and
free variables of both types allowed. The same holds with EL in place of IRA.

The second is ¬¬CF−
0 , the restriction of ¬¬CF0 to negative formulas A(x).

Over IA1 or EL0, ¬¬CF−
0 is equivalent to the negative translation of the schema

CFd : ∀x(A(x) ∨ ¬A(x)) → ∃α∀x[α(x) ≤ 1 & (α(x) = 0 ↔ A(x))].

Over IA1 or EL0 the conjunction of CFd and QF-AC00 is equivalent (cf.
[23]) to the countable comprehension (“unique choice”) schema AC00! which is
like AC00 but with hypothesis ∀x∃!yA(x, y), where in general ∃!yB(y) abbrevi-
ates ∃yB(y) & ∀y∀z(B(y) & B(z) → y = z). Over IA1 or EL0, AC00 is stronger
than AC00! (which is stronger than QF-AC00), but the negative translations of
AC00 and AC00! are equivalent. Putting these facts together gives refinements
of Corollary 2(b), (c) (for i = 0), and additional characterizations.

Theorem 1. Let ACAr
00 be the restriction of AC00 to arithmetical predicates

A(x, y), with number quantifiers and free variables of both types allowed. Then

(a) (IA1 + ACAr
00)+g = IA1 + ACAr

00 + Σ0
1-DNS0 + ¬¬Π0

1-CF0.
(b) (IA1 + AC00)+g = IA1 + AC00 + Σ0

1-DNS0 + ¬¬CF−
0 .

(c) (IA1 + AC00!)+g = (IRA + CFd)+g = IRA + CFd + Σ0
1-DNS0 + ¬¬CF−

0 .

Each of these results remains true with EL0 in place of IA1, and EL in place
of IRA.

3 Bar Induction, a Weak Continuity Principle, and BD-N

As Iris Loeb [13] observes, constructive reverse mathematics currently lacks a
unifying methodology. According to Ishihara [9] its aim is “to classify various
theorems in intuitionistic, constructive recursive and classical mathematics by
logical principles, function existence axioms and their combinations” over a weak
constructive base built on intuitionistic logic. Resulting decomposition theorems
can help to extract and compare the classical content of constructive and semi-
constructive theories. Two examples, one involving bar induction and the other
involving a weak continuity principle, illustrate the method.

Brouwer’s bar theorem, although not accepted by Bishop, is of interest to
constructive mathematicians. The fan theorem FT, which follows from the bar
theorem but is conservative over Heyting arithmetic by [20], has the property
that the minimum classical extension of IRA + FT proves that intuitionistic
predicate logic is complete for its intended interpretation ([3,14]).
2 Over EL or IRA, ¬¬ Π0

1-CF0 entails the principle ¬¬Π0
1-LEM in [5], and similarly

for ¬¬ Σ0
1-CF0 and ¬¬Σ0

1-LEM.

Minimum Classical Extensions of Constructive Theories 359

3.1 Three Versions of Bar Induction

Kleene chose to axiomatize his neutral basic system B by IA1 + AC01 + BId,
where BId is “decidable bar induction:”

BId : ∀α∃xR(α(x)) & ∀w(R(w) ∨ ¬R(w)) & ∀w(R(w) → A(w))
& ∀w(∀xA(w ∗ 〈x + 1〉) → A(w)) → A(1).

Classical bar induction BI◦ simply drops the premise ∀w(R(w) ∨ ¬R(w)), and
monotone bar induction (which is provable in I but not in B) is

BImon : ∀α∃xR(α(x)) & ∀w(R(w) → ∀uR(w ∗ u)) & ∀w(R(w) → A(w))
& ∀w(∀xA(w ∗ 〈x + 1〉) → A(w)) → A(1).

Here α(0) = 1 and α(x + 1) = 〈α(0) + 1, . . . , α(x) + 1〉. We let w, u vary over
Kleene’s “sequence numbers” (so w determines the length lh(w) of the sequence
w codes); w ∗ v codes the concatenation of the sequences coded by w and v,
〈x + 1〉 codes the sequence whose only term is x, and 1 codes the empty sequence.

Kleene proved ([12] p. 79) that IA1 + AC00 + BImon � BId, so BImon lies
between BId and BI◦ in strength over IA1 + AC00.

Proposition 5. BId has the same classical content as BI◦ over IA1 or EL0.

Proof. The only difference between BId and BI◦ is a classically provable premise
∀w(R(w) ∨ ¬R(w)) whose negative interpretation is provable intuitionistically.

3.2 A Double Negation Shift Principle for Functions

In the absence of countable choice, the double negation shift principle

DNS−
1 : ∀α¬¬∃xR(α(x)) → ¬¬∀α∃xR(α(x)),

where R(w) is a negative formula of the language of analysis, is a sufficient
addition to prove the double negation translation of BId and BImon.3

Theorem 2. The minimum classical extensions of B and its subsystems with
AC01 replaced by AC00 or by QF-AC00 or omitted altogether are computed as
follows. Similar results hold with EL0 in place of IA1.

(a) B+g ≡ (IA1 + AC01 + BId)
+g = B + (AC01)

g = B + DNS−
01.

(b) (IA1 + AC00 + BId)
+g = IA1 + AC00 + BId + DNS−

00.
(c) (IRA + BId)

+g = IRA + BId + (BI◦)g+ Σ0
1-DNS0 ⊆ IRA + BId + DNS−

1 .
(d) (IA1 + BId)

+g = IA1 + BId + (BI◦)g⊆ IA1 + BId + DNS−
1 .

Proof. IA1 + AC00 + (¬¬A → A) � BI◦ (∗26.1◦ on p. 53 of [12]) and therefore
(IA1 + AC00)

g� (BI◦)g. Proposition 5, Corollary 2(b), (c), Corollary 1(c), (d)
and the (easy) fact that IA1 + DNS−

1 � Σ0
1-DNS0 complete the argument.

3 Only the special case Σ0
1-DNS1 is needed for the version of bar induction labeled

x26.3b in [12]; cf. [14,15].

360 J. R. Moschovakis and G. Vafeiadou

3.3 Applying a Typical Constructive Decomposition Theorem

Kleene proved (∗27.23 on p. 87 of [12]) that IRA + BI◦ entails the “weak limited
principle of omniscience” WLPO, which is inconsistent with I. In [4] Fujiwara
proved that BI◦ is equivalent over EL0 to BImon + CD, where CD is the constant
domain axiom schema ∀x(A(x) ∨ B) → (∀xA(x) ∨ B) (with x not free in B).

Proposition 6. BImon has the same classical content as BI◦ over IA1 or EL0,
so (IA1 + BId)

g = (IA1 + BImon)
g = IA1 + (BI◦)g and similarly with EL0 in

place of IA1.

Proof. CD is a classical logical schema whose negative interpretation is provable
by intuitionistic logic. Use Fujiwara’s decomposition theorem and Proposition 5.

Remark 5. It follows that the neutral subsystem B of Kleene and Vesley’s intu-
itionistic analysis I has the same classical content as the variant B′ with BImon

replacing BId, and so (B′)+g ≡ (IA1 + AC01 + BImon)
+g = B′ + DNS−

01.

3.4 Applying an Atypical Constructive Decomposition Theorem

In [10], over a constructive base theory EL′ ≡ EL + Π0
1-AC00, Ishihara and

Schuster decompose a restricted version
WC-N′ : ∀α∃n∀kσ(〈α(k),n〉) = 0

& ∀w∀m∀n(σ(〈w,m〉) = 0 & m ≤ n → σ(〈w,n〉) = 0)
→ ∀α∃n∃m∀β ∈ α(m)∀kσ(〈β(k),n〉) = 0

of weak continuity into a classically correct mathematical principle
BD-N : ∀α∃m∀n ≥ mβ(α(n)) < n → ∃m∀nβ(n) ≤ m

and a classically false logical principle ¬∀α(∃xα(x) �= 0 ∨ ∀xα(x) = 0) negating
the limited principle of omniscience LPO.

Proposition 7. The minimum classical extensions of EL′ and EL′ + BD-N
are computed as follows, and similarly for IRA + Π0

1-AC00 (≡ IA1 + Π0
1-AC00)

in place of EL′.

(a) EL′+g ≡ (EL0 + Π0
1-AC00)+g = EL′ + Σ0

2-DNS0.
(b) (EL′ + BD-N)+g = EL′ + BD-N + Σ0

2-DNS0.

Proof. (a) holds by Corollary 1(a) and Remark 4. EL′ + BD-N is consistent
with classical logic and satisfies (b) because EL+g proves the contrapositive of
(BD-N)g, which is equivalent to (BD-N)g over EL.

Remark 6. IA1 + Π0
1-AC00 + WC-N′ is a subsystem of Kleene’s I which is

consistent (by [12]) but is not consistent with classical logic. The next theorems,
discovered by the second author, essentially trivialize the notion of minimum
classical extension for intuitionistic systems inconsistent with classical logic.

Theorem 3. (EL′ + WC-N′)+g = EL′ + WC-N′ + (Γ◦)g where Γ◦ is the set of
all classically true sentences in the language of EL′. A corresponding result holds
with IA1 + Π0

1-AC00 in place of EL′.

Minimum Classical Extensions of Constructive Theories 361

Proof. EL′ + WC-N′ � ¬LPO by Ishihara and Schuster’s decomposition theo-
rem, therefore EL′ + WC-N′ � (¬LPO ∨ E) for every formula E. If E ∈ Γ0 then
(¬LPO ∨ E) ∈ Γ◦, so (¬LPO ∨ E) ∈ cls(EL′ + WC-N′). But (¬LPO ∨ E)g is just
¬(¬¬LPOg& ¬Eg), which is equivalent by intuitionistic logic to ¬¬Eg and hence
to Eg. So (Γ◦)g⊆ (cls(EL′ + WC-N′))g, and the reverse inclusion is immediate
from the definitions.

Theorem 4. I+g= I + (Γ◦)g where now Γ◦ is the set of all classically true
sentences in the language of I.

Proof. (cls(I))g = (Γ◦)g by an argument similar to the proof of Theorem 3, but
with WLPO (≡ ∀α(∀xα(x) = 0 ∨ ¬∀xα(x) = 0)) in place of LPO, using the fact
that I � ¬WLPO by ∗27.17 on p. 84 of [12]. Thus I+g = I + (Γ◦)g.

Remark 7. By Lemma 8.4a in [12] every classically true negative sentence of
the language of analysis is realizable by a primitive recursive function, so (by
Theorem 9.3 of [12]) Kleene’s function-realizability guarantees the consistency
of (EL′ + WC-N′)+g and of S+g for every subsystem S of I.

4 Conclusion

We have suggested a way to define the minimum classical extension S+g of a
mathematical theory S based on intuitionistic logic, with examples from arith-
metic, analysis and the arithmetic of finite types. If S + (¬¬A → A) is consistent,
then classical and constructive mathematics coexist in S+g exactly as far as the
mathematical axioms of S permit.

For example, if S is a classically correct subsystem of Kleene’s intuitionistic
analysis I ≡ B + CC11, then by viewing the choice sequence variables α, β, . . .
alternatively as variables over classical one-place number-theoretic functions,
restricting the language and logic by omitting the symbols ∨ and ∃ with their
axioms and rules, and replacing each mathematical axiom of S by its negative
translation, one obtains a faithful copy of S◦ ≡ S + (¬¬A → A) within the
extended intuitionistic system S+g. In particular, B+g includes the negative
translation of a system C ≡ B◦ of classical analysis with countable choice.

On the other hand, if S refutes a classical logical principle, then S+g includes
the negative translations of all classically true sentences in the language of S.
In particular, I+g contains a negative version of true classical analysis.

We conclude that only constructive and semi-constructive systems consistent
with classical logic have interesting minimum classical extensions, and typical
constructive decomposition theorems assist in comparing their classical content.

References

1. Berardi, S., Bezem, M., Coquand, T.: On the computational content of the axiom
of choice. J. Symb. Logic 63(2), 600–622 (1998)

362 J. R. Moschovakis and G. Vafeiadou

2. Brouwer, L.E.J.: Begründung der Mengenlehre unabhängig vom logischen Satz
vom ausgeschlossenen Dritten. In: Heyting, A. (ed.), L. E. J. Brouwer: Collected
Works, vol. I, pp. 150–190. North-Holland/American Elsevier (1975)

3. Dyson, V., Kreisel, G.: Analysis of Beth’s semantic construction of intuitionistic
logic. Technical report 3, Applied mathematics and statistics laboratory, Stanford
University (1961)

4. Fujiwara, M.: Bar induction and restricted classical logic. In: Iemhoff, R., Moort-
gat, M., de Queiroz, R., (eds.) Logic, Language, Information and Computation:
WoLLIC Proceedings, pp. 236–247 (2019)

5. Fujiwara, M., Kohlenbach, U.: Interrelation between weak fragments of double
negation shift and related principles. J. Symb. Logic 81(3), 991–1012 (2018)

6. Gentzen, G.: Über das Verhältnis zwischen intuitionistischer und klassischer Logik.
Arch. Math. Logik Grund. 16, 119–132 (1974). Accepted by Math. Annalen in 1933,
but withdrawn. English trans. In: Szabo (ed.), Gentzen: Collected Papers

7. Gödel, K.: Zur intuitionistischen Arithmetik und Zahlentheorie. Ergebnisse eines
math. Koll. 4, 34–38 (1933)

8. Ilik, D. Double-negation shift as a constructive principle. arXiv:1301.5089v1
9. Ishihara, H.: Constructive reverse mathematics: compactness properties. In:

Crosilla, L., Schuster, P. (eds.) From Sets and Types to Topology and Analysis,
pp. 245–267. Clarendon Press, Oxford (2005)

10. Ishihara, H., Schuster, P.: A continuity principle, a version of Baire’s theorem and
a boundedness principle. J. Symb. Logic 73, 1354–1360 (2008)

11. Kleene, S.C.: Introduction to Metamathematics. D. van Nostrand Company Inc.,
Princeton (1952)

12. Kleene, S.C., Vesley, R.E.: The Foundations of Intuitionistic Mathematics, Espe-
cially in Relation to Recursive Functions, North Holland (1965)

13. Loeb, I.: Questioning constructive reverse mathematics. Constructivist Found. 7,
131–140 (2012)

14. Moschovakis, J.R.: Calibrating the negative interpretation. arXiv:2101.10313.
Expanded extended abstract for 12th Panhellenic Logic Symposium, June 2019

15. Moschovakis, J.R.: Solovay’s relative consistency proof for FIM and BI.
arXiv:2101.05878v1. Historical note, to appear in Notre Dame J. Formal Logic

16. Moschovakis, J.R.: Classical and constructive hierarchies in extended intuitionistic
analysis. J. Symb. Logic 68, 1015–1043 (2003)

17. Moschovakis, J.R., Vafeiadou, G.: Some axioms for constructive analysis. Arch.
Math. Logik 51, 443–459 (2012). https://doi.org/10.1007/s00153-012-0273-z

18. Scedrov, A., Vesley, R.: On a weakening of Markov’s principle. Arch. Math. Logik
23, 153–160 (1983). https://doi.org/10.1007/BF02023022

19. Troelstra, A. S.: Intuitionistic formal systems. In: Troelstra, A.S. (ed.) Metamath-
ematical Investigation of Intuitionistic Arithmetic and Analysis. LNM, vol. 344.
Springer, Heidelberg (1973). https://doi.org/10.1007/BFb0066740

20. Troelstra, A.S.: Note on the fan theorem. J. Symb. Logic 39, 584–596 (1974)
21. Troelstra, A.S.: Corrections to some publications. University of Amsterdam, 10

December 2018. https://eprints.illc.uva.nl/1650/1/CombiCorr101218.pdf
22. Vafeiadou, G.: A comparison of minimal systems for constructive analysis.

arXiv:1808.000383
23. Vafeiadou, G.: Formalizing Constructive Analysis: a comparison of minimal sys-

tems and a study of uniqueness principles. Ph.D. thesis, University of Athens (2012)

http://arxiv.org/abs/1301.5089v1
http://arxiv.org/abs/2101.10313
http://arxiv.org/abs/2101.05878v1
https://doi.org/10.1007/s00153-012-0273-z
https://doi.org/10.1007/BF02023022
https://doi.org/10.1007/BFb0066740
https://eprints.illc.uva.nl/1650/1/CombiCorr101218.pdf
http://arxiv.org/abs/1808.000383

Subrecursive Equivalence Relations
and (non-)Closure Under Lattice

Operations

Jean-Yves Moyen1 and Jakob Grue Simonsen2(B)

1 LIPN, UMR CNRS 7030 – Université Paris 13, 99, Avenue Jean-Baptiste Clément,
93430 Villetaneuse, France

2 Department of Computer Science, University of Copenhagen (DIKU),
Universitetsparken 5, 2100 Copenhagen Ø, Denmark

simonsen@diku.dk

Abstract. The set of equivalence relations on any non-empty set is
equipped with a natural order that makes it a complete lattice. The lat-
tice structure only depends on the cardinality of the set, and thus the
study of the lattice structure on any countably infinite set is (up to order-
isomorphism) the same as studying the lattice of equivalence relations
on the set of natural numbers.

We investigate closure under the meet and join operations in the lat-
tice of equivalence relations on the set of natural numbers. Among other
results, we show that no set of co-r.e. equivalence relations that contains
all logspace-decidable equivalence relations is a lattice.

Keywords: Lattice theory · Equivalence relations · Subrecursive sets

1 Introduction

The set of equivalence relations Equ(S) on any set S is ordered by the relation ≤
defined by E ≤ E ′ iff mEn ⇒ mE ′n. It is known that for any non-empty set S,
(Equ(S),≤) is a complete, algebraic, simple, semimodular, and relatively comple-
mented lattice [6,8,12,24], and the behaviour of complements and (anti-)chains
in S has been studied for both finite and infinite-cardinality sets S [5]. The lattice
structure of Equ(S) is order-isomorphic to Equ(T) for any sets S and T of the
same cardinality, whence we may wlog. consider Equ(N), the set of equivalence
relations on the set of natural numbers1.

It is known that the set of r.e. equivalence relations form a sublattice of
Equ(N) [9], and sublattices of N appear in different guises in multiple places in
computability theory; we give three examples: (I) every countable partial order

1 Computable reducibility between elements of Equ(N) gives rise to an order structure
distinct from the classical ordering we consider, and has been investigated in various
settings, in particular for Σ0

1 equivalence relations (called ceers) [1–3,10,11,13].

c© Springer Nature Switzerland AG 2021
L. De Mol et al. (Eds.): CiE 2021, LNCS 12813, pp. 363–372, 2021.
https://doi.org/10.1007/978-3-030-80049-9_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80049-9_34&domain=pdf
https://doi.org/10.1007/978-3-030-80049-9_34

364 J.-Y. Moyen and J. G. Simonsen

embeds in the lattice of r.e. lambda theories2 [25]; (II) let R be the equivalence
relation on (Gödel numbers of) programs such that mRn iff φm = φn; then,
Rice’s Theorem [22] can be seen as the statement that any non-trivial equivalence
relation E on programs such that R ≤ E is undecidable [18]; (III) let Φ be any
Blum complexity measure [7], and let A be the equivalence relation on programs
defined by mAn iff (φm = φn ∧ Φm ∈ Θ(Φ(n))) (i.e., “two programs are equal
if they compute the same function and have the same complexity”), then a
complexity clique is an equivalence relation C on programs that respects A, and
the set of complexity cliques is a complete complemented distributive lattice
under ⊆ and ∨ and ∧ [4], and is thus a sublattice of Equ(N).

While the sublattice of r.e. equivalence relations is well-understood, and rea-
sonably well-behaved [9], Examples (II) above suggests that interesting lattice-
theoretic phenomena may appear below R and A in Equ(N), in particular for
sets of decidable equivalence relations—such as the ones induced by common
subrecursive classes in complexity theory. We hope that this paper can provide
impetus for future investigations of computability-related properties of (subsets
of) Equ(N) in addition to the well-known case of the sublattice Equ(N)r.e. of r.e.
equivalence relations.

Scope and Contributions: The purpose of this paper is to study sets of decid-
able equivalence relations on countable sets and whether they are closed under
the lattice operations, i.e. meet (∧) and join (∨). In particular, show that almost
none of the classes of equivalence relations corresponding to the usual set of
subrecursive classes of interest in computability and (coarse-grained) complexity
theory–e.g., classes induced by complexity classes, primitive recursive relations,
Kalmár elementary relations–are closed under the meet operation. This thwarts
any näıve hope of using Equ(N) as an “easy” means of studying subrecursive
analogues of Rice’s theorem in the vein of [18], but will hopefully pave the way
for further study of computability in Equ(N).

2 Preliminaries

Throughout the paper we let N = N0 = {0, 1, 2, . . .}. For n ∈ N, we write
↑{n} = {n, n + 1, n + 2, . . .}. Symbols k, l,m, n, . . . , x, y, . . . range over N unless
otherwise noted. If m ∈ N, we denote by m its standard representation as an
element of {0, 1}∗.

Equivalence Relations. We let cursive letters E , F , G range over equivalence
relations, and let bold capital roman letters C, D, E designate sets of equivalence
relations. If E is an equivalence relation, we write mEn to indicate that m and
n are related by E . Equ(N) is ordered by ≤, defined by E ≤ E ′ iff mEn ⇒ mE ′n.
Note that if an equivalence relation is seen as a subset of N × N, this order is
exactly the subset ordering ⊆ on N×N. By the standard correspondence between

2 A lambda theory is an equivalence relation on the set of closed terms in lambda
calculus containing β-equivalence and satisfying a few other natural constraints; see
[16] for basic properties.

Subrecursive Equivalence Relations and Lattice Operations 365

equivalence relation and partitions, this is isomorphic with the usual refinement
ordering on partitions. It is easily seen that E ≤ E ′ iff each class of E ′ is the
union of one or more classes of E .

An atom is an equivalence relations such that exactly one class contains two
elements, and all other classes are singletons. An equivalence relation E where
exactly one class is not a singleton is called singular3.

Lattices and Lattice Operations. Standard results for Equ(N) were laid out in
the seminal paper by Ore [19]; we briefly recapitulate basic definitions here.
(Equ(N),≤) is a lattice with the following operations:

– The meet (greatest lower bound) of E and F is G = E ∧ F such that mGn
iff mEn and mFn. In this case, the classes of G are exactly the (non-empty)
intersections of one class of E and one class of F .

– The join (least upper bound) of E and F is G = E ∨ F such that mGn iff
there exists a finite sequence a1, . . . , ak such that mEa1Fa2E · · · Fn.

As equivalence relations are subsets of N × N we have E ∧ F = E ⋂F while
E ∨ F is the least (wrt. ⊆) equivalence relation that contains E ⋃ F . For the
lattice of relations with the same order, E ∨ F = E ⋃ F . However, not all the
relations are equivalence relations and transitivity is closed under intersection
but not under union.

Observe that if E = {Ek} ⊆ Equ(N), then E =
∧
E is the equivalence relation

where each class is obtained as
⋂

k Ck where each Ck is a class of Ek. That is,
mEn iff mEkn for all k. Likewise, E =

∨
E is the equivalence relation defined by

mEn iff m(
⋃

k Ek)∗n, that is, mEn iff there are finite sequences a1, · · · , ap−1 ∈ N

and E1, · · · , Ep ∈ E such that mE1a1, a1E2a2, · · · , ap−1Epn. If A ⊆ Equ(N), we
say that A is closed under finite join (resp. finite meet) if, for any E ,F ∈ A
we have E ∨ F ∈ A (resp. E ∧ F ∈ A), and closed under arbitrary join (resp.
arbitrary meet) if, for any B ⊆ A, we have

∨
B ∈ A (resp.

∧
B ∈ A). Closure

of other classes under join and meet of are defined mutatis mutandis.

Computability and Complexity. We refer to standard textbooks covering com-
putability and complexity theory (e.g., [14,20,23]) and presuppose knowledge
of the basic notions; we recapitulate the most necessary concepts and notation
below. Unless otherwise stated, all Turing Machines are multi-tape machines with
one read-only input tape, one write-only output tape, and any number of work
tapes. Machines are assumed to be deterministic unless otherwise stated. Using
standard efficient computable pairing functions, for every k ∈ N, every Turing
machine may be assumed to compute a partial function on ({0, 1}∗)k −→ {0, 1}
or N

k −→ {0, 1}. We assume a fixed Gödel numbering of the Turing machines
and designate by Mi the machine with Gödel number i and by φi the partial func-
tion computed by Mi. For i, j ∈ N, we write φi = φj if dom(φi) = dom(φj), and

3 “Singular” is the term originally used in the seminal paper [19] and in the literature
on lattice theory; in work on reducibility between equivalence relations, the term
“1-dimensional” is sometimes used [10].

366 J.-Y. Moyen and J. G. Simonsen

φi(n) = φj(n) for all n ∈ dom(φi). If i is the Gödel number of a Turing machine
taking no input, we write φi↑ if i does not halt and φi↓ if it halts; the notation is
extended in the obvious way to Turing machines with input.

An equivalence relation E ∈ Equ(N) is decidable if there is a Turing Machine
M such that for every (m,n) ∈ N, M halts with output 1 on input (m, n) if
mEn and halts with output 0 otherwise, when M is started with the (suitably
encoded) pair of binary representations of m and n on the input tape. Using
highly efficient pairing functions, both pairing and unpairing can be performed
in linear time and constant space [21].

Similarly, E is recursively enumerable (abbreviated r.e.) if there is a TM
that halts on the corresponding input (or equivalently if there is a single-tape
Turing machine that halts on input (m, n) iff mEn). We denote by Equ(N)r.e.
(resp. Equ(N)co−r.e., resp. Equ(N)dec) the set of all r.e. equivalence relations
(resp. co-r.e., resp. decidable equivalence relations). As usual, we use the term
Σ0

1 -(hard,complete) instead of r.e.-(hard, complete), and the same terms mutatis
mutandis for Π0

1 . We say that E is Σ0
1 -hard if there is a computable total function

f : N −→ N × N and a Σ0
1 -hard subset H ⊆ N such that, for all i ∈ N, we have

i ∈ H iff f(i) = (m,n) such that mEn.
If s, t : N −→ N are non-decreasing functions and M decides E in space s and

time t in the size of the input, we say that E is s-space and t-time decidable.
Observe that if (m,n) ∈ N × N, the input given to M is (m, n) where (·, ·) is an
efficient pairing function. Thus, for example, as |m| = O(log m), an equivalence
relation decidable in logarithmic space uses space at most O(log log max{m,n}).

The sets of equivalence relations on N consisting of primitive recursive,
Kalmár elementary, exponential time, polynomial space, polynomial time, and
logarithmic space-decidable equivalence relations are denoted by Equ(N)p.r.,
Equ(N)KE, Equ(N)EXPTIME, Equ(N)PSPACE, Equ(N)P, and Equ(N)L, respec-
tively. Observe that each of these classes contains Equ(N)L.

If A ⊆ Equ(N) is a set of decidable equivalence relations, we say that A is
r.e. if there is a Turing machine that enumerates a sequence of Turing machines
Mi such that (i) for each E ∈ A there is a (not necessarily unique) i such that
Mi decides E , and (ii) each Mi decides some E ∈ A.

3 (Absence of) Closure Under the Lattice Operations

We wish to treat classes of equivalence relations where each relation is sub-
recursive, i.e. is decidable by machinery less extensionally powerful than Tur-
ing machines and typically avoiding unbounded search. We consider any class
of decidable equivalence relations that contains Equ(N)L, and this section is
devoted to prove the (lack of) closure properties for any such class.

There are simple counterexamples to closure under finite ∧ for sets of decid-
able equivalence relations (even those containing Equ(N)L): By the Space Hier-
archy Theorem, pick a decidable equivalence relation E /∈ Equ(N)L having at
least three equivalence classes. If A,B, and C are distinct equivalence classes of
E , let F be the relation with the same equivalence classes as E except for the

Subrecursive Equivalence Relations and Lattice Operations 367

class A ∪ B, and F the same relation as E except for the class B ∪ C. Then,
C = Equ(N)L ∪ {F ,G} is a set of decidable equivalence relations containing
Equ(N)L, but F ∧ G = E /∈ C.

However, with mild closure conditions, we can easily prove a a positive result:

Proposition 1. Let E and F be equivalence relations and ME and MF be Turing
machines such that ME decides E in time T (E) and space S(E), and MF decides
F in time T (F) and space S(F) Then E ∧ F is decidable in time O(n(T (E) +
T (F))) and space O(max(S(E), S(F)) + log n).

Proof. Observe that x(E ∧ F)y iff xEy and xFy. Hence to check whether x(E ∧
F)y, it is sufficient to first check whether xEy and then check whether xFy.
Using built-in copies of ME and MF as subroutines, a Turing machine M can
perform the simulations with exactly the same time and space resources as ME
and MF , using linear time overhead and constant space overhead to unpair the
input [21]. To avoid storing the binary representations of m and n on an auxiliary
tape (which would require linear space), M maintains two counters to the current
bits being read in each binary representation (taking logarithmic space in the
input size); note that this requires recomputing the unpairing function each
time any bit of the input is queried by ME or MF , and hence each step of the
subroutines for ME and MF potentially uses linear time and constant space.
Finally, M compares the results of running ME and MF . �
Corollary 1. Each of the sets Equ(N)r.e., Equ(N)dec, Equ(N)p.r., Equ(N)KE,
Equ(N)EXPTIME, Equ(N)PSPACE, Equ(N)P, and Equ(N)L are closed under finite
meet.

The ∨ operation is more intricate than ∧; in stark contrast to Proposition 1,
we have the following negative result:

Proposition 2. There are equivalence relations E ,F ∈ Equ(N)L such that E∨F
is Σ0

1 -complete.

Proof. If E ,F ∈ Equ(N)L, a fortiori, E ,F ∈ Equ(N)r.e., and as Equ(N)r.e. is a
lattice, we have E ∨ F ∈ Equ(N)r.e., thus proving containment in Σ0

1 .
Proving Σ0

1 -hardness is significantly more involved; the rest of the proof is
devoted to that task.

Let M be any deterministic Turing machine. We may assume wlog. that
the machine is not stuck on any of its configurations unless the state in the
configuration is either “accept” or “reject”.

Let c, c′ be any two of the configurations of M , and let c, c′ be the binary
representations of these under some standard one-to-one encoding. We assume
wlog. that each representation starts with 1. Note in particular that no con-
figuration is represented by the string “0” and that the representation of any
configuration is also a representation of some positive integer. Thus, we may
wlog. define equivalence relations on pairs of binary strings on this form instead
of equivalence relations on N.

368 J.-Y. Moyen and J. G. Simonsen

Define a partial binary relation →⊆ {0, 1}+ × {0, 1}+ as follows: Write c →
c′ if c and c′ are configurations of M and c′ is the result of executing one
step of M from configuration c. Moreover, we define c → 0 whenever c is a
final configuration of M (i.e., c is in an accept or reject state). The relation
→ can be decided in logarithmic space in the size of c and c′ by standard
techniques: If M is a Turing machine and configurations d are of the form d =
(state, tape content, tape head position), there is a Turing machine RM that on
input (c, c′) decides whether c → c′ using a fixed number of counters to (a) keep
track of where in each of c and c′ the tape heads of RM are currently reading4

and (b) to check whether the tape contents of c and c′ are identical except for,
possibly, at the tape head positions in c and c′. RM carries a copy of M in its
internal logic as a lookup table and simply performs a lookup to see whether
there is a transition in M that would allow the change observed at the tape head
positions in c and c′ (and checks whether the tape positions differ by at most
one). We denote by c ≈ c′ the reflexive transitive symmetric closure of →. By
construction, ≈ is an equivalence relation, and clearly c ≈ 0 iff the execution
starting in configuration c terminates.

Let U be a universal Turing machine, and let ≈U be the equivalence relation
induced by U as defined above. For each Turing machine N and input x, let cN,x

be the configuration of U where U is in the start state, all work tapes are empty,
and the input tape contains a binary representation of the pair (N,x). Then,
cN,x ≈U 0 iff N halts on input x. As {(N,x) : φN (x)↓} is Σ0

1 -complete, and cN,x

can clearly be obtained from (N,x) by computable many-one reduction, the set
{c : c ≈ 0} is Σ0

1 -hard.
Now, given a non-negative integer n with binary representation n, and a

configuration c, we build the pair (n, c) as the base-3 integer (n, c) = n2c. We
define the clocked one-step relation →′ on {0, 1}+2{0, 1}+ by (n, c) →′ (m, c′) iff
either m = n + 1 and c → c′ or if c is final and (m, c′) = 020 (= 6, in base-3).
Note that as → is decidable in logarithmic space in the size of c and c′, and as
it can be checked in logarithmic space whether m = n+1 and in constant space
whether (m, c′) = 020, then →′ is decidable in logarithmic space in (n, c) and
(m, c′). We define ≈′ as the reflexive transitive symmetric closure of →′. Observe
that, for each n, (n, c) ≈′ 020 iff the execution of U starting at c terminates.
Hence, ≈′ is a Σ0

1 -hard equivalence relation.
We now define two further binary relations →even and →odd as follows:

(n, c) →even (m, c′) (resp. (n, c) →odd (m, c′)) if either (i) (n, c) →′ (m, c′) and n
is even (resp. odd) or (ii) c is final, n is even (resp. odd) and (m, c′) = 020. It is
obvious that →even and →odd are still decidable in logarithmic space.

4 Note that c does contain the whole tape, of size N and the head position in it.
Because the head must point into the tape, the head position is at most N and
thus can be stored in binary using only log N space. Therefore, counting up to
N to actually find the position in the tape requires space log N (which is indeed
logarithmic in the size of c).

Subrecursive Equivalence Relations and Lattice Operations 369

Note that by construction, if (n, c) →even (m, c′) then n must be even, hence
m = n+1 must be odd (except for the special case of final configuration). Hence,
there is no (p, c′′) such that (m, c′) →even (p, c′′).

Now, consider ≈even, the reflexive transitive symmetric closure of →even. We
claim that ≈even is decidable in logarithmic space. Indeed, the only cases where
we can have x ≈even y are: (i) x = y, (ii) x →even y (this is decidable in
logarithmic space), (iii) y →even x (this is also decidable in logarithmic space),
and (iv) there exists z such that x →even z and y →even z. It is decidable in
logarithmic space whether case (iv) holds by simulating one step of the execution
on the configurations in x and y and checking whether the results are the same.
As the Turing machine M is deterministic, at most one step per configuration
must be simulated. Observe that in case (iv) we cannot directly simulate one
step of the machine from each of the configurations x and y and compare the
results in logarithmic space (because we cannot store the results). However, we
can check that x and y only differ by the state of the machine and the symbol
read by the tape head; then, the step can be performed by changing only local
information, i.e., compute the new state, tape symbol, and move. All of these
can clearly be done in logarithmic space.

As it is not possible to have x →even z →even y, it is never necessary to
simulate several steps in a row in order to check whether x ≈even y. Thus, at
most one step from each of x and y must be simulated. Hence, ≈even is decidable
in logarithmic space. Similarly, ≈odd is decidable in logarithmic space. However,
≈even ∨ ≈odd=≈′. �
Corollary 2. Let B be a set of equivalence relations such that Equ(N)L ⊆ B ⊆
Equ(N)co−r.e.. Then there are E ,F ∈ B such that E ∨ F /∈ B (in fact, E ∨ F /∈
Equ(N)co−r.e.).

Hence, none of Equ(N)co−r.e., Equ(N)dec, Equ(N)p.r., Equ(N)KE,
Equ(N)EXPTIME, Equ(N)PSPACE, Equ(N)P, or Equ(N)L are closed under finite
join, and hence none of these sets is a sublattice of Equ(N).

Remark 1. Corollary 2 contains the folklore result that Equ(N)dec is not a lattice.
For completeness, observe that this also implies that the set of co-r.e. equiva-
lence relations is not a lattice either: Assume that the join of every pair of co-r.e.
equivalence relations were co-r.e., consider any two decidable equivalence rela-
tions. A fortiori, both of these relations are both r.e. and co-r.e., and thus the
join of the two relations is r.e., and by the assumption above also co-r.e. and
hence decidable. But this is impossible by Corollary 2.

Observe also that the Σ0
1 -completeness of Proposition 2 is, in a sense, an

upper bound on the complexity of E ∨ F for decidable equivalence relations
E ,F , because E ∨ F is necessarily r.e. as Equ(N)r.e. is a lattice.

3.1 On Meet and Join of r.e Subsets of Equ(N)L

Let B be any set of decidable equivalence relations such that Equ(N)L ⊆ B.
Then B is not closed under taking the join of a finite number of elements, and B

370 J.-Y. Moyen and J. G. Simonsen

is not closed under taking the meet of an arbitrary set of elements (as any subset
of N can be realized as the meet of a subset of Equ(N)L). However, there remains
the possibility that a “middle ground” could be found where B could be closed
under taking the meet of r.e. subsets. This would be unexpected though, as it
is well-known that the set of decidable sets is not closed under r.e. intersection.
Indeed, the following proposition settles the matter, and is straightforwardly
proved:

Proposition 3. There is an r.e. set A of elements of Equ(N)L such that ∧A is
Π0

1 -complete.

Proof. First observe that if A is an r.e. set of decidable equivalence relations
(so, for instance, an r.e. subset of Equ(N)L), ∧A is co-r.e.: Let M be a Turing
machine that, on input (m,n), uses the enumeration of A to generate a sequence
of (encodings of) Turing machines that decide each of the elements Aj of A, and
then uses a universal Turing machine as a subroutine that asks each of the
generated machines whether mAjn. If a j is encountered such that ¬(mAjn),
M outputs’no’. As m(∧A)n iff mAjn for all Aj ∈ A, we conclude that ∧A is
co-r.e.

It remains to prove existence of an r.e. set A ⊆ Equ(N)L such that ∧A is
Π0

1 -hard. Consider a standard representation of Turing machines as elements of
{0, 1}∗ such that it can be checked in logarithmic space whether x ∈ {0, 1}∗ is
a valid representation of a Turing machine (see e.g., [20, Ch. 3]). Consider, for
every j ∈ N, the singular equivalence relation Ej whose unique non-singleton
class Aj consists of the Gödel numbers of Turing machines that do not halt in
at most j steps. Observe that A1 ⊇ A2 ⊇ · · · . Set A = {Ej : j ∈ N}.

Define E∞ as the singular equivalence relation whose unique non-singleton
class, A∞, consists of those non-negative integers whose binary expansion is the
encoding of an inputless Turing machine that does not halt. Then, E∞ = ∧Ej .
Furthermore, E∞ is Π0

1 -hard: {i : φi ↑} is a well-known Π0
1 -complete set and

mE∞n iff m = n or (φm↑ and φn↑). Let l be (the Gödel number of) an inputless
Turing machine that does not halt. Then, i ∈ {i : φi↑} iff iE∞l.

Now, for each j ∈ N, we have Ej ∈ Equ(N)L, by the following reasoning: Fix
a non-negative integer j; for every pair (m,n) ∈ N, a Turing machine may check
in logarithmic space whether the binary representation of m and n represents a
Turing machine and then use a universal Turing machine to simulate running
of both m and n for j steps. By proper construction of the universal machine,
the space overhead required can be made constant in the space used by the
machines that m and n represents, which is bounded above by j cells as both
machines are run for at most j steps; the universal machine needs only a fixed
number of counters beyond this overhead (see, e.g. [20, Ch. 3]; in essence, the
universal machine works by simulating one step of the simulated machine at a
time and keeping a representation of its configuration in memory). Hence, each
Ej ∈ Equ(N)L.

Observe that there is a Turing machine that, on input j produces a(n encod-
ing of a) Turing machine that decides Ej in logarithmic space: it simply special-
izes a universal Turing machine to j and outputs the specialization along with

Subrecursive Equivalence Relations and Lattice Operations 371

some fixed (i.e., independent of j) operations for comparing binary representa-
tions and checking whether the inputs are correct encodings of Turing machines.
Hence, the set {Ej : j ∈ N} is r.e.

However, E∞ is not decidable (indeed, is not even r.e.: if it were, we could
enumerate the set of all non-halting Turing machines by fixing a single such
machine Mi and recursively enumerate all pairs (i, n) ∈ E∞, hence recursively
enumerate the set of all non-halting machines, a contradiction). �

Proposition 3 immediately implies the below corollary.

Corollary 3. Let B be a set of equivalence relations such that Equ(N)L ⊆ B ⊆
Equ(N)r.e.. Then, there is an r.e. set A of elements of B such that ∧A /∈ B (in
fact, ∧A /∈ Equ(N)r.e.).

4 Future Work

While we laid the groundwork for study of closure under the lattice operations
for some of the most obvious subsets of Equ(N) related to computability, there
are many possible extensions. For example, performing a systematic study of
closure properties of sublattices decided by automata (e.g., multi-tape or syn-
chronous automata), and lattices corresponding to subrecursive classes not nec-
essarily containing Equ(N)L, possibly using an axiomatization of the notion of
subrecursive class in the style of [15]. In addition to the basic lattice operations
of join and meet, Equ(N) is known to be closed under other operations, notably
taking lattice complements, and closure under these operations should be con-
sidered for the classes treated in this paper. Finally, the connection between sets
of equivalence relations in the lattice and existing complexity theory should be
investigated, e.g. whether Equ(N)P = Equ(N)PSPACE implies P = PSPACE.

References

1. Andrews, U., Badaev, S., Sorbi, A.: A survey on universal computably enumerable
equivalence relations. In: Day, A., Fellows, M., Greenberg, N., Khoussainov, B.,
Melnikov, A., Rosamond, F. (eds.) Computability and Complexity. LNCS, vol.
10010, pp. 418–451. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
50062-1 25

2. Andrews, U., Sorbi, A.: The complexity of index sets of classes of computably
enumerable equivalence relations. J. Symbolic Logic 81(4), 1375–1395 (2016)

3. Andrews, U., Sorbi, A.: Joins and meets in the structure of ceers. Computability
8(3–4), 193–241 (2019)

4. Asperti, A.: The intensional content of rice’s theorem. In: Proceedings of the 35th
Annual ACM SIGPLAN - SIGACT Symposium on Principles of Programming
Languages (POPL 2008) (2008)

5. Avery, J.E., Moyen, J.Y., Růžička, P., Simonsen, J.G.: Chains, antichains, and
complements in infinite partition lattices. Algebra Univers. 79(2), 37 (2018)

6. Birkhoff, G.: Lattice Theory, Colloquium Publications, vol. 25. American Mathe-
matical Society (1940)

https://doi.org/10.1007/978-3-319-50062-1_25
https://doi.org/10.1007/978-3-319-50062-1_25

372 J.-Y. Moyen and J. G. Simonsen

7. Blum, M.: A machine-independent theory of the complexity of recursive functions.
J. ACM 14(2), 322–336 (1967)

8. Burris, S., Sankappanavar, H.P.: A Course in Universal Algebra, Graduate Texts
in Mathematics, vol. 78. Springer, New York (1981)

9. Carroll, J.S.: Some undecidability results for lattices in recursion theory. Pacific J.
Math. 122(2), 319–331 (1986)

10. Gao, S., Gerdes, P.: Computably enumerable equivalence relations. Studia Logica:
Int. J. Symbolic Logic 67(1), 27–59 (2001)

11. Gavryushkin, A., Khoussainov, B., Stephan, F.: Reducibilities among equivalence
relations induced by recursively enumerable structures. Theoretical Computer Sci-
ence 612, 137–152 (2016)

12. Grätzer, G.: General Lattice Theory. Birkhäuser, second edn. (2003)
13. Ianovski, E., Miller, R., Ng, K.M., Nies, A.: Complexity of equivalence relations

and preorders from computability theory. J. Symbolic Logic 79(3), 859–881 (2014)
14. Jones, N.D.: Computability and Complexity, from a Programming Perspective.

MIT press (1997)
15. Kozen, D.: Indexings of subrecursive classes. Theor. Comput. Sci. 11, 277–301

(1980)
16. Lusin, S., Salibra, A.: The lattice of lambda theories. J. Log. Comput. 14(3), 373–

394 (2004)
17. Moyen, J., Simonsen, J.G.: Computability in the lattice of equivalence relations.

In: Proceedings of DICE-FOPARA@ETAPS 2017, pp. 38–46 (2017)
18. Moyen, J., Simonsen, J.G.: More intensional versions of Rice’s theorem. In: Pro-

ceedings of the 15th Conference on Computability in Europe (CiE 2019), pp. 217–
229 (2019)

19. Ore, Ø.: Theory of equivalence relations. Duke Math. J. 9(3), 573–627 (1942)
20. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1994)
21. Regan, K.W.: Minimum-complexity pairing functions. J. Comput. Syst. Sci. 45(3),

285–295 (1992)
22. Rice, H.G.: Classes of Recursively Enumerable Sets and Their Decision Problems.

Trans. Am. Math. Soc. 74, 358–366 (1953)
23. Rogers, H.: Theory of Recursive Functions and Effective Computability. McGraw-

Hill (1967). (reprint, MIT press 1987)
24. Stern, M.: Semimodular Lattices. Cambridge University Press (1999)
25. Visser, A.: Numerations, λ-calculus and arithmetic. In: To H.B. Curry: Essays

on Combinatory Logic, Lambda-Calculus and Formalism, pp. 259–284. Academic
Press (1980)

Interactive Physical ZKP
for Connectivity: Applications

to Nurikabe and Hitori

Léo Robert1(B) , Daiki Miyahara2,4 , Pascal Lafourcade1 ,
and Takaaki Mizuki3,4

1 LIMOS, University Clermont Auvergne, CNRS UMR 6158,
Aubière, France

leo.robert@uca.fr
2 Graduate School of Information Sciences, Tohoku University, Sendai, Japan

3 Cyberscience Center, Tohoku University, Sendai, Japan
4 National Institute of Advanced Industrial Science and Technology, Tokyo, Japan

Abstract. During the last years, many Physical Zero-knowledge Proof
(ZKP) protocols for Nikoli’s puzzles have been designed. In this paper, we
propose two ZKP protocols for the two Nikoli’s puzzles called Nurikabe
and Hitori. These two puzzles have some similarities, since in their rules
at least one condition requires that some cells are connected to each
other, horizontally or vertically. The novelty in this paper is to propose
two techniques that allow us to prove such connectivity without leaking
any information about a solution.

Keywords: Zero-knowledge proofs · Card-based secure two-party
protocols · Puzzle · Nurikabe · Hitori

1 Introduction

Zero-Knowledge Proofs (ZKP) were introduced by Goldwasser et al. [7]. Such
a protocol has two parties: a prover P and a verifier V . The prover P wants
to convince the verifier V that P knows the solution s of a problem without
revealing any information about s. A ZKP must satisfy the following properties:

Completeness. If P knows s, then P can convince V .
Soundness. If P does not know s, then P cannot convince V .
Zero-Knowledge. V learns nothing about s. Formally, outputs of a simulator

and outputs of the real protocol follow the same probability distribution.

In [5], the authors proved that for any NP-complete problem there exists an
interactive ZKP protocol. A physical ZKP uses only physical algorithms with
day-to-day objects such as cards, envelopes or bags while prohibiting large com-
putations (i.e., no computer allowed). In 2007, the first physical ZKP was intro-
duced for Sudoku [8], which is the most famous Nikoli’s1 puzzle. In this paper
we focus on two other Nikoli’s puzzles, Nurikabe and Hitori.
1 Nikoli is a game publisher famously known for its Sudoku puzzle.

c© Springer Nature Switzerland AG 2021
L. De Mol et al. (Eds.): CiE 2021, LNCS 12813, pp. 373–384, 2021.
https://doi.org/10.1007/978-3-030-80049-9_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80049-9_37&domain=pdf
http://orcid.org/0000-0002-9638-3143
http://orcid.org/0000-0002-5818-8937
http://orcid.org/0000-0002-4459-511X
http://orcid.org/0000-0002-8698-1043
https://doi.org/10.1007/978-3-030-80049-9_37

374 L. Robert et al.

In [10] solving simple versions of Nurikabe was proven to be NP-complete.
In [9] the authors proved that Hitori is also NP-complete. One might think
that physical ZKP protocols for Nurikabe and Hitori could be constructed by
transforming a known physical ZKP protocol for an NP-complete problem, such
as a lockable-box-based ZKP protocol for 3-Colorability [6]; however, such a
transformation is not practical because the overhead must be included in the
transformation. Besides, the transformed ZKP protocol does not capture the
property of a puzzle.

Contributions: In this paper, we present physical ZKP protocols for Nurikabe
and Hitori using a deck of cards. Our protocols achieve no soundness error. That
is, no malicious P who does not have a solution can convince V that it has a
solution. Our work is inspired by [12], where P has to convince V of a single
loop property. For Nurikabe and Hitori, we take a similar strategy to [12]. That
is, P first increases the number of black (or white) cells one by one so that the
resulting cells are guaranteed to satisfy the constraint of connectivity; then V
verifies all the remaining constraints. We note that our protocols in this paper
could not be constructed by simply adapting the existing technique [12].

We emphasize that our proposed protocols can be applied to a situation
where Bob cannot solve by hand a Nurikabe or Hitori puzzle Alice created. In
addition to such really practical applications, we believe that one can add our
protocols (with others such as 3-Colorability one for instance) to introduce the
notion of a ZKP system to non-experts such as high school students.

Related Work: Efficient physical ZKP protocols for Nikoli puzzles have been
proposed: Sudoku [8,20], Akari [2], Takuzu [2,13], Kakuro [2,14], Kenken [2],
Makaro [3], Norinori [4], Slitherlink [12], Juosan [13], Suguru [16], Ripple
Effect [19], and Numberlink [18]. An important step in this line of research
is to achieve no soundness error.

Nurikabe’s Rule: This puzzle is formed by a rectangular grid where some cells
contain numbers (Fig. 1). The goal is to color some cells in black as follows:

1. Each numbered cell tells the number of continuous white cells surrounded by
black cells. Such a region is called an island.

2. An island must contain only one numbered cell.
3. The black cells form a connected figure (called a sea).
4. The sea cannot form a 2 × 2 area.

2 3
4

1
4

2 2
5

2 3
4

1
4

2 2
5

Fig. 1. Initial Nurikabe grid on the left and its solution on the right.

Interactive Physical ZKP for Connectivity 375

1 1 2 4 3 5
1 1 5 4 4 6
4 6 6 2 1 1
6 3 3 3 5 4
2 3 4 1 6 5
2 5 4 6 2 5

1 1 2 4 3 5
1 1 5 4 4 6
4 6 6 2 1 1
6 3 3 3 5 4
2 3 4 1 6 5
2 5 4 6 2 5

Fig. 2. Initial Hitori grid on the left and its solution on the right.

Hitori’s Rule: This puzzle is a grid where each cell contains a number as in the
example of Fig. 2. The goal is to color in black some cells with the following
constraints:

1. Each row and each column must contain only one occurrence of a number.
2. The black cells cannot touch side to side although they can be diagonal.
3. The numbered cells must be connected to each other, horizontally or verti-

cally.

2 Preliminaries

We introduce some notations of cards and shuffles and explain simple physical
sub-protocols used in our constructions.

Card: A deck of cards used in our protocols consists of clubs ♣ ♣ · · · , hearts
♥ ♥ · · · , and number cards 1 2 · · · , whose backs are identical ? . We encode
three colors with the order of two cards as follows:

black ← ♣ ♥ , white ← ♥ ♣ , red ← ♥ ♥ . (1)

We call such a face-down two cards ? ? corresponding to a color according to
the above encoding rule a commitment to the respective color. We also use the
terms, a black commitment, a white commitment, and a red commitment.

Pile-shifting Shuffle [15,21]: This shuffling action means to cyclically shuffle piles
of cards. More formally, given m piles, each of which consists of the same number
of face-down cards, denoted by (p1,p2, . . . ,pm), applying a pile-shifting shuffle
(denoted by < ·| · · · |· >) results in (ps+1,ps+2, . . . ,ps+m):

〈
?︸︷︷︸
p1

∣∣∣∣∣ ?︸︷︷︸
p2

∣∣∣∣∣ · · ·
∣∣∣∣∣ ?︸︷︷︸
pm

〉
→ ?︸︷︷︸ ?︸︷︷︸ · · · ?︸︷︷︸

ps+1 ps+2 ps+m

,

where s is uniformly and randomly chosen from Z/mZ. Implementing a pile-
shifting shuffle is simple: We use physical cases that can store a pile of cards,
such as boxes and envelopes; a player (or players) cyclically shuffle them by hand
until nobody traces the offset.

376 L. Robert et al.

Chosen Pile Protocol [4]: This is an extended version of the “chosen pile cut”
proposed in [11]. Given m piles (p1,p2, . . . ,pm) with 2m additional cards, the
chosen pile protocol enables a prover P to choose the i-th pile pi and replace
back the sequence of m piles to their original order.

1. Using m − 1 ♣ s and one ♥ , P places m face-down cards (denoted row 2)
below the given piles such that only the i-th card is ♥ . We further put m
cards (denoted row 3) below the cards such that only the first card is ♥ :

?︸︷︷︸
p1

?︸︷︷︸
p2

. . . ?︸︷︷︸
pi−1

?︸︷︷︸
pi

?︸︷︷︸
pi+1

. . . ?︸︷︷︸
pm

?
♣

?
♣

. . . ?
♣

?
♥

?
♣

. . . ?
♣

← row 2

?
♥

?
♣

. . . ?
♣

?
♣

?
♣

. . . ?
♣

← row 3

2. Considering the cards in the same column as a pile, apply a pile-shifting
shuffle to the sequence of piles.

3. Reveal all the cards in the row 2. Then, one ♥ appears, and the pile above the
revealed ♥ is the i-th pile (and hence, P can obtain pi). When this protocol
is invoked, certain operations are applied to the chosen pile. Then, the chosen
pile is placed back to the i-th position in the sequence.

4. Remove the revealed cards, i.e., the cards in the row 2. (Note, therefore, that
we do not use the card ♥ revealed in Step 3.) Then, apply a pile-shifting
shuffle.

5. Reveal all the cards in the row 3. Then, one ♥ appears, and the pile above
the revealed ♥ is p1. Therefore, by shifting the sequence of piles (such that
p1 becomes the first pile in the sequence), we can obtain a sequence of piles
whose order is the same as the original one without revealing any information
about the order of input sequence.

Input-Preserving Five-Card Trick [13]: Given two commitments to a, b ∈ {0, 1}
based on the encoding: ♣ ♥ = 0 and ♥ ♣ = 1, this sub-protocol [1,13] starts
by adding extra cards and rearranging the commitment to a so that we have the
negation a, as follows: ? ?︸ ︷︷ ︸

a

? ?︸ ︷︷ ︸
b

→ ? ?︸ ︷︷ ︸
a

♥ ? ?︸ ︷︷ ︸
b

1 2 3 4 5 .

The sub-protocol proceeds as follows to reveal only the value of a∧ b as well
as restore commitments to a and b:

1. Rearrange the sequence of cards and then turn over the face-up cards as:

? ? ♥ ? ? 1 2 3 4 5 → ?
1

?
2

♥
3

?
4

?
5

→ ?
?

?
?

?
?

?
?

?
?
.

2. Regarding cards in the same column as a pile, apply a pile-shifting shuffle to
the sequence:

〈
?
?

∣∣∣∣ ?
?

∣∣∣∣ ?
?

∣∣∣∣ ?
?

∣∣∣∣ ?
?

〉
→ ? ? ? ? ?

? ? ? ? ?
.

3. Reveal all the cards in the first row, if the resulting sequence is:
(a) ♣ ♣ ♥ ♥ ♥ (up to cyclic shifts), then we have a ∧ b = 1.
(b) ♥ ♣ ♥ ♣ ♥ (up to cyclic shifts), then we have a ∧ b = 0.

4. After turning over all the face-up cards, apply a pile-shifting shuffle.
5. Reveal all the cards in the second row, i.e., all the number cards. Then,

rearrange the sequence of piles so that the revealed number cards are in
ascending order again to restore commitments to a and b.

Interactive Physical ZKP for Connectivity 377

3 ZKP Protocol for Nurikabe

We propose a ZKP protocol for Nurikabe, which is composed of three phases:
the setup phase, the sea formation phase, and the verification phase. The full
security proof is provided in [17], we only give here a sketch in Sect. 3.4.

Consider a puzzle instance of a p× q grid containing m numbered cells such
that the ith numbered cell (in any order) has a number xi for every i, 1 ≤
i ≤ m. Remember that an island of a Nurikabe puzzle must contain exactly one
numbered cell, and the number of white cells inside the island is indicated by the
number written on the numbered cell. Thus, the number of (filled) black cells in
the solution, denoted by Nb, is the difference between the number of total cells

and the white cells (including the numbered cells), so Nb = pq −
m∑
i=1

xi.

Thus, this number Nb can be regarded as public information, and indeed, we
use the number Nb explicitly in our protocol.

Before going into the details of our protocol, let us define a neighbour cell
and show a sub-protocol called the 4-neighbour protocol that is important for
constructing our ZKP protocols.

Neighbour Cell: Consider a target cell ct on a grid. A cell is a neighbour of ct if
it is next to ct, on the left, the right, the top, or the bottom but not in diagonal.

4-Neighbour Protocol: Given pq commitments placed on a p × q grid, a prover
P wants to reveal a target commitment and another one that lies next to the
target commitment. Here, a verifier V is convinced that the second commitment
is a neighbour of the first one (without knowing which one) as well as V con-
firms the colors of both the commitments. To handle the case where the target
commitment is at the edge of the grid, we add red commitments (as “dummy”
commitments) around the grid to prevent P from choosing a commitment that
is not a neighbour. Thus, the size of the new grid is (p + 2) × (q + 2).

This protocol uses the chosen pile protocol (Sect. 2) twice. P first uses the
chosen pile protocol to reveal a target commitment. Since a pile-shifting shuffle
is a cyclic reordering, the distance between commitments are kept (up to a given
modulo). That is, for a target commitment (not at the edge), the possible four
neighbours are at distance 1 for the left or right one, and p + 2 for the bottom
or top one. Therefore, V and P can determine the positions of all the four
neighbours. Among these, P chooses one commitment by using the chosen pile
protocol again, and reveals it. This convinces V that the second commitment
is indeed a neighbour. The rest of the protocol is to end the second and first
chosen pile protocols.

3.1 Setup Phase

The verifier V and the prover P place a white commitment on each cell of a given
p × q grid and place red commitments (as “dummy” commitments) around the
grid so that we have (p + 2)(q + 2) commitments on the board.

378 L. Robert et al.

3.2 Sea Formation Phase

In this phase, P forms a sea on the board, i.e., P replaces a white commitment
with a black commitment one by one according to the solution which only P
knows, while hiding any information about the solution to V .

Let Nb be the number of black cells in the solution. This phase proceeds as
follows.

1. P uses the chosen pile protocol to choose one white commitment which P
wants to replace.
(a) V reveals the chosen commitment; if it corresponds to white, V swaps

the two cards constituting it so that the two cards become a black com-
mitment. Otherwise, V aborts.

(b) P and V end the chosen pile protocol to return the commitments to their
original positions.

2. Repeat the following steps exactly Nb − 1 times:
(a) P chooses one black commitment as a target and one white commitment

among its neighbours using the 4-neighbour protocol; the neighbour is
chosen such that P wants to make it black.

ct

(b) V reveals the target commitment. If it corresponds to black, V continues;
otherwise V aborts.

(c) V reveals the neighbour commitment (chosen by P). If it corresponds
to white, V swaps the two cards constituting it to make it be a black
commitment; otherwise V aborts.

(d) P and V end the 4-neighbour protocol.
3. P and V replace every red commitment (i.e., dummy commitment) with a

black commitment.

After this process, V is convinced that all the black commitments form a con-
nected sea (rule 3).

3.3 Verification Phase

V first verifies that the current commitments placed on the grid (after the sea
formation phase) satisfy the rule 4 (forbidden 2 × 2 area). Then, V verifies the
rules 1 and 2, relating to the white commitments (island constraints).

Sea Rule: Forbidden Area. The prover P wants to convince V that any 2×2 area
contains at least one white cell. Note that all 2 × 2 areas are determined given
an initial grid. Indeed, for a given p × q grid, there are (p − 1)(q − 1) possible
squares.

Thus, P and V consider each 2 × 2 area of commitments one by one (in any
order) and will repeat the following for each possible square:

Interactive Physical ZKP for Connectivity 379

1. P chooses a white commitment on this square via the chosen-pile protocol
applied to the four commitments.

2. V reveals the commitment marked by P . If the revealed commitment corre-
sponds to white, then V is convinced that the square is not formed by only
black commitments. Otherwise, V aborts.

? ? ? ?

? ? ? ?
→ Chosen pile protocol → ? ? ♥ ♣

? ? ? ?
.

Island Rules. P wants to convince V that the white cells respect the constraints.
There are two verifications to make. Only one numbered cell for a given region
and all white commitments are connected inside the region. Those two con-
straints are verified in the following protocol:

Let n ≥ 2 be the number written on a given numbered cell.2

1. V reveals the commitment on the numbered cell. If it corresponds to white,
V replaces it with a red commitment; otherwise V aborts.

2. Repeat the following steps exactly n − 1 times.
(a) P uses the 4-neighbour protocol to choose a red commitment as a target

and one white commitment among its neighbours.
(b) V reveals the target commitment. If it corresponds to red, V continues;

otherwise V aborts.
(c) V reveals the neighbour commitment (chosen by P). If it corresponds to

white, V replaces it with a red commitment; otherwise V aborts.
(d) P and V end the 4-neighbour protocol to return the commitments to their

original positions.

Now, V is convinced that the size of the island consisting of white cells is greater
than or equal to n. To show that it is equal to n, it suffices to prove that there
exists no white cell around them, as follows.

3. V replaces the commitment on the numbered cell with a black commitment.
4. Repeat the following steps exactly n − 1 times.

(a) P uses the chosen pile protocol to choose a red commitment.
(b) V reveals the chosen commitment. If it corresponds to red, V continues;

otherwise V aborts.
(c) Remember that P wants to show that any of four neighbour commitments

is not white. Recall also the encoding (1), i.e., note that the right card
of a black or red commitment is a heart ♥ . V reveals the right card of
each of the four neighbours. If all of them are hearts (which means that
all the commitments do not correspond to white), V replaces the chosen
commitment with a black commitment; otherwise V aborts.

? ?

? ? ♥ ♥ ? ?

? ?

→
? ♥

? ♥ ♥ ♥ ? ♥
? ♥

→
? ?

? ? ?
♣

?
♥

? ?

? ?

.

2 For a numbered cell where 1 is written, V simply reveals the commitment on it and
its four neighbours to confirm that the island is surrounded by the sea.

380 L. Robert et al.

(d) P and V end the chosen pile protocol to return the commitments to their
original positions.

By applying the above steps to all the numbered cells, V is convinced that
the placement of the commitments satisfies all the constraints, i.e., P has the
solution.

3.4 Security Proofs

We give the following theorems to show that our protocol respects the security
properties. All the proofs of our theorems are given in [17], we only give here a
proof sketch.

Theorem 1 (Completeness). If P knows a solution of a Nurikabe grid, then
it can convince V .

Proof (sketch). We suppose that P knows the solution s of the grid and runs the
setup phase. P is able to perform the proofs for the sea formation since all the
black cells are connected. P is also able to end the verification phase. Basically,
since s is a solution, all the rules are verified.

Theorem 2 (Soundness). If P does not provide a solution of the p×q Nurik-
abe grid G, it is not able to convince V .

Proof (sketch). We suppose that P does not know the solution s and the proof
is about showing that V will always detect it. Notice that the commitments of
P form a connected figure (otherwise the protocol is ended without any verifica-
tion). There are two cases to consider for the verification; (1) the forbidden area,
if all the commitment are black on a 2 × 2 square then V will detect it since P
cannot choose a white commitment, and (2) the island rules, where two invalid
shapes can occur, when a region is completely covered with another region and,
a part of a region is covered with another one. In both cases, we show that V
will detect it using the protocol.

Theorem 3 (Zero-knowledge). V learns nothing about P ’s solution of the
given grid G.

Proof (sketch). We use the same technique as in [8]; zero-knowledge is induced
by a description of an efficient simulator which simulates interaction between
a cheating verifier and a real prover. However, the simulator does not have a
solution but it can swap cards for different ones during shuffles. The aim of
the proof is to describe the behaviour of this simulator. Basically, the simulator
creates a random connected figure of size Nb and during the verification, it swaps
the cards to verify the rules.

Interactive Physical ZKP for Connectivity 381

4 ZKP Protocol for Hitori

We present a ZKP protocol for Hitori. The full security proof is provided in [17];
we only give here a sketch presented in Sect. 4.4. Similar to our protocol for
Nurikabe presented in Sect. 3, we let P choose a commitment which P wants
to make white so that V is convinced that the resulting numbered cells are
connected each other. However, we note that for Hitori the size of numbered
cells could be information about the solution. That is, we cannot simply use the
sea formation phase shown in Sect. 3.2. Therefore, we construct a sub-protocol
called the still-black protocol as follows.

Still-black Protocol: Given a black commitment, P can choose either changing
it (i.e., swapping the two cards constituting the commitment) or not without V
noticing it, as follows.

1. V reveals the given commitment to confirm that it is surely a black commit-
ment.

2. If P wants to change the commitment, P places face-down club-to-heart below
it; otherwise heart-to-club: ? ? → ?

?
♣

?
?
♥

or ?
?
♥

?
?
♣

.

3. Regarding cards in the same column as a pile, V applies a pile-shifting shuffle
to the sequence of piles.

4. V reveals all the cards in the second row. If the revealed card on the right is
a heart ♥ , V swaps the two cards in the first row; otherwise V does nothing.

4.1 Setup Phase

Put a black commitment on each cell of the p × q grid and red commitments
around the grid.

4.2 Connectivity Phase

This phase follows the same steps as the ones in the sea formation phase shown
in Sect. 3.2 (where a white commitment is regarded as a black one and vice
versa) except for Step 2c; instead of swapping the two cards, V and P use the
still-black protocol so that P can choose either swapping the two cards or not.
(Remember that P cannot change a white commitment into black.) Note that
the steps are repeated exactly pq − 1 times.

After the above process, V is convinced that the resulting commitments
represent a connected (white) figure (rule 3) and information about the number
of the white commitments is hidden from V .

382 L. Robert et al.

4.3 Verification Phase

One Occurrence for Each Row/Column. Here, V checks if each row and column
contains only one occurrence of a number. The idea is that for a given row or
column it suffices to look at only numbered cells that appear k > 1 times and
confirm that the k commitments on the numbered cells correspond to either k
blacks or k − 1 blacks. For a given row or column, this verification proceeds as
follows.

1. V looks for numbered cells that appear more than once; take such a num-
ber which appears exactly k > 1 times. Then, V picks the corresponding k
commitments.

2. P uses the chosen pile protocol to choose a white commitment among the k
commitments if it exists; otherwise P uses the one to choose any commitment.

3. V reveals the k − 1 commitments that are not chosen by P . If all of them
correspond to black (this means that the k commitments correspond to k or
k − 1 blacks), V continues; otherwise V aborts.

4. V and P end the chosen pile protocol to return the k commitments to their
original places.

5. V and P repeat the above steps for all numbers that appear twice or more.

Lonely Black. V checks that black cells are isolated from each other. Let a white
commitment correspond to bit 0 and a black to 1. For each pair of adjacent
commitments, V applies the input-preserving five-card trick (Sect. 2) to the two
commitments. If the output is 0, V continues; otherwise V aborts.

4.4 Security Proofs

Theorem 4 (Completeness). If P knows a solution of a Hitori grid, then it
can convince V .

Proof (sketch). Suppose that P knows the solution; thus P can perform the
connectivity and verification phases without aborting. There are two cases to
consider, when P wants to change the black commitment and when P wants a
black commitments to be still black.

Theorem 5 (Soundness). If P does not provide a solution of the p×q Hitori
grid G, then it is not able to convince V .

Proof (sketch). Suppose that P does not know the solution. The proof consists
in showing that V will detect it using the protocol. Without loss of generality,
suppose that P gives correct commitments (i.e., white cells are connected) with-
out corresponding to the solution, we show that V detects that the uniqueness
and the lonely black constraints are not respected.

Theorem 6 (Zero-knowledge). V learns nothing about P ’s solution of the
given grid G.

Proof (sketch). The same technique as for Nurikabe is used, namely the presence
of a simulator that does not know the solution but can swap cards randomly.

Interactive Physical ZKP for Connectivity 383

5 Conclusion

We proposed two ZKP protocols for Nurikabe and Hitori. These two Nikoli’s
puzzles require that some cells of the solution are continuous without any pre-
cision on the number of cells in Hitori and without an exact number of cells
in Nurikabe. We designed two methods and encoding for solving this continuity
challenge and also respecting the other rules of the puzzles.

In the future, we aim at solving more challenging puzzles with other rules that
also involve a kind of continuity property. For instance, in the puzzles Shikaku
and Shakashaka, the goal is to draw rectangles of a certain size, which does not
seem easy.

Acknowledgements. This work was supported in part by JSPS KAKENHI Grant
Numbers JP19J21153 and JP21K11881. This study was partially supported by the
French ANR project ANR-18-CE39-0019 (MobiS5), by the research program “Investisse-
ments d′Avenir” through the IDEX-ISITE initiative 16-IDEX-0001 (CAP 20-25), by the
IMobS3 Laboratory of Excellence (ANR-10-LABX-16-01), by the French ANR project
DECRYPT (ANR-18-CE39-0007) and SEVERITAS (ANR-20-CE39-0009).

References

1. Boer, B.: More efficient match-making and satisfiability the five card trick. In:
Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp.
208–217. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4 23

2. Bultel, X., Dreier, J., Dumas, J., Lafourcade, P.: Physical zero-knowledge proofs
for Akari, Takuzu, Kakuro and KenKen. In: Demaine, E.D., Grandoni, F. (eds.)
Fun with Algorithms. LIPIcs, vol. 49, pp. 8:1–8:20. Schloss Dagstuhl, Dagstuhl
(2016). https://doi.org/10.4230/LIPIcs.FUN.2016.8

3. Bultel, X., et al.: Physical zero-knowledge proof for Makaro. In: Izumi, T.,
Kuznetsov, P. (eds.) SSS 2018. LNCS, vol. 11201, pp. 111–125. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03232-6 8

4. Dumas, J.-G., Lafourcade, P., Miyahara, D., Mizuki, T., Sasaki, T., Sone, H.:
Interactive physical zero-knowledge proof for Norinori. In: Du, D.-Z., Duan, Z.,
Tian, C. (eds.) COCOON 2019. LNCS, vol. 11653, pp. 166–177. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26176-4 14

5. Goldreich, O., Kahan, A.: How to construct constant-round zero-knowledge proof
systems for NP. J. Cryptology 9(3), 167–189 (1996). https://doi.org/10.1007/
BF00208001

6. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
for all languages in NP have zero-knowledge proof systems. J. ACM 38(3), 691–729
(1991). https://doi.org/10.1145/116825.116852

7. Goldwasser, S., Micali, S., Rackoff, C.: Knowledge complexity of interactive proof-
systems. In: Annual ACM Symposium on Theory of Computing, pp. 291–304
(1985). https://doi.org/10.1145/3335741.3335750

8. Gradwohl, R., Naor, M., Pinkas, B., Rothblum, G.N.: Cryptographic and physical
zero-knowledge proof systems for solutions of Sudoku puzzles. Theory Comput.
Syst. 44(2), 245–268 (2009). https://doi.org/10.1007/s00224-008-9119-9

https://doi.org/10.1007/3-540-46885-4_23
https://doi.org/10.4230/LIPIcs.FUN.2016.8
https://doi.org/10.1007/978-3-030-03232-6_8
https://doi.org/10.1007/978-3-030-26176-4_14
https://doi.org/10.1007/BF00208001
https://doi.org/10.1007/BF00208001
https://doi.org/10.1145/116825.116852
https://doi.org/10.1145/3335741.3335750
https://doi.org/10.1007/s00224-008-9119-9

384 L. Robert et al.

9. Hearn, R.A., Demaine, E.D.: Games, Puzzles, and Computation. A. K. Peters Ltd.,
USA (2009)

10. Holzer, M., Klein, A., Kutrib, M., Ruepp, O.: Fundamenta. Informaticae. Com-
put. Complex. NURIKABE. 110(1–4), 159–174 (2011). https://doi.org/10.3233/
FI-2011-534

11. Koch, A., Walzer, S.: Foundations for actively secure card-based cryptography. In:
Farach-Colton, M., Prencipe, G., Uehara, R. (eds.) Fun with Algorithms. LIPIcs,
vol. 157, pp. 17:1–17:23. Schloss Dagstuhl, Dagstuhl (2021). https://doi.org/10.
4230/LIPIcs.FUN.2021.17

12. Lafourcade, P., Miyahara, D., Mizuki, T., Sasaki, T., Sone, H.: A physical ZKP for
Slitherlink: how to perform physical topology-preserving computation. In: Heng,
S.-H., Lopez, J. (eds.) ISPEC 2019. LNCS, vol. 11879, pp. 135–151. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-34339-2 8

13. Miyahara, D., et al.: Card-based ZKP protocols for Takuzu and Juosan. In: Farach-
Colton, M., Prencipe, G., Uehara, R. (eds.) Fun with Algorithms. LIPIcs, vol.
157, pp. 20:1–20:21. Schloss Dagstuhl, Dagstuhl (2021). https://doi.org/10.4230/
LIPIcs.FUN.2021.20

14. Miyahara, D., Sasaki, T., Mizuki, T., Sone, H.: Card-based physical zero-knowledge
proof for Kakuro. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 102-
A(9), 1072–1078 (2019). https://doi.org/10.1587/transfun.E102.A.1072

15. Nishimura, A., Hayashi, Y., Mizuki, T., Sone, H.: Pile-shifting scramble for card-
based protocols. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 101-
A(9), 1494–1502 (2018). https://doi.org/10.1587/transfun.E101.A.1494

16. Robert, L., Miyahara, D., Lafourcade, P., Mizuki, T.: Physical zero-knowledge
proof for Suguru puzzle. In: Devismes, S., Mittal, N. (eds.) SSS 2020. LNCS, vol.
12514, pp. 235–247. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
64348-5 19

17. Robert, L., Miyahara, D., Lafourcade, P., Mizuki, T.: Interactive physical ZKP
for connectivity: applications to Nurikabe and Hitori (long version). In: CiE. à
distance, Belgium (2021). https://hal.uca.fr/hal-03209911

18. Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for Numberlink puzzle and
k vertex-disjoint paths problem. New Gener. Comput. 39, 3–17 (2021). https://
doi.org/10.1007/s00354-020-00114-y

19. Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for ripple effect. In: Uehara,
R., Hong, S.-H., Nandy, S.C. (eds.) WALCOM 2021. LNCS, vol. 12635, pp. 296–
307. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68211-8 24

20. Sasaki, T., Miyahara, D., Mizuki, T., Sone, H.: Efficient card-based zero-knowledge
proof for Sudoku. Theor. Comput. Sci. 839, 135–142 (2020). https://doi.org/10.
1016/j.tcs.2020.05.036

21. Shinagawa, K., et al.: Card-based protocols using regular polygon cards. IEICE
Trans. Fundam. Electron. Commun. Comput. Sci. 100-A(9), 1900–1909 (2017).
https://doi.org/10.1587/transfun.E100.A.1900

https://doi.org/10.3233/FI-2011-534
https://doi.org/10.3233/FI-2011-534
https://doi.org/10.4230/LIPIcs.FUN.2021.17
https://doi.org/10.4230/LIPIcs.FUN.2021.17
https://doi.org/10.1007/978-3-030-34339-2_8
https://doi.org/10.4230/LIPIcs.FUN.2021.20
https://doi.org/10.4230/LIPIcs.FUN.2021.20
https://doi.org/10.1587/transfun.E102.A.1072
https://doi.org/10.1587/transfun.E101.A.1494
https://doi.org/10.1007/978-3-030-64348-5_19
https://doi.org/10.1007/978-3-030-64348-5_19
https://hal.uca.fr/hal-03209911
https://doi.org/10.1007/s00354-020-00114-y
https://doi.org/10.1007/s00354-020-00114-y
https://doi.org/10.1007/978-3-030-68211-8_24
https://doi.org/10.1016/j.tcs.2020.05.036
https://doi.org/10.1016/j.tcs.2020.05.036
https://doi.org/10.1587/transfun.E100.A.1900

Positive Enumerable Functors

Barbara F. Csima1, Dino Rossegger1(B) , and Daniel Yu2

1 Department of Pure Mathematics, University of Waterloo, Waterloo, Canada
{csima,dino.rossegger}@uwaterloo.ca

2 University of Waterloo, Waterloo, Canada
zy3yu@uwaterloo.ca

Abstract. We study reductions well suited to compare structures and
classes of structures with respect to properties based on enumeration
reducibility. We introduce the notion of a positive enumerable functor
and study the relationship with established reductions based on functors
and alternative definitions.

1 Introduction

In this article we study notions of reductions that let us compare classes of struc-
tures with respect to their computability theoretic properties. Computability
theoretic reductions between classes of structures can be formalized using effec-
tive versions of the category theoretic notion of a functor. While computable
functors have already been used in the 80’s by Goncharov [1], the formal investi-
gation of this notion was only started recently after R. Miller, Poonen, Schoutens,
and Shlapentokh [3] explicitly used a computable functor to obtain a reduction
from the class of graphs to the class of fields. Their result shows that fields
are universal with respect to many properties studied in computable structure
theory.

In [4] the third author studied effective versions of functors based on enu-
meration reducibility and their relation to notions of interpretability. There, it
was shown that the existence of an enumerable functor implies the existence
of a computable functor effectively isomorphic to it. In that article there also
appeared an unfortunately incorrect claim that enumerable functors are equiv-
alent to a variation of effective interpretability. Indeed, it was later shown in
Rossegger’s thesis [5], that the existence of a computable functor implies the
existence of an enumerable functor and thus enumerable functors are equivalent
to the original notion of effective interpretability, which was shown to be equiva-
lent to computable functors in [2]. Hence, enumerable functors are equivalent to
this original version. We provide a simple proof that computable functors imply
enumerable functors in Sect. 2. The equivalence of these two types of functors
is not very surprising, as the enumeration operators witnessing the effectiveness
of an enumerable functor are given access to the atomic diagrams of structures,
which are total sets.

The main objective of this article is the study of positive enumerable functors,
an effectivization of functors that grants the involved enumeration operators
c© Springer Nature Switzerland AG 2021
L. De Mol et al. (Eds.): CiE 2021, LNCS 12813, pp. 385–394, 2021.
https://doi.org/10.1007/978-3-030-80049-9_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80049-9_38&domain=pdf
http://orcid.org/0000-0003-3494-9049
https://doi.org/10.1007/978-3-030-80049-9_38

386 B. F. Csima et al.

access to the positive diagrams of structures instead of their atomic diagrams.
While computable functors are well suited to compare structures with respect
to properties related to relative computability and the Turing degrees, positive
enumerable functors provide the right framework to compare structures with
respect to their enumerations and properties related to the enumeration degrees.

The paper is organized as follows. In Sect. 2 we introduce the necessary
notions and show that computable functors and enumerable functors are equiv-
alent. Section 3 is dedicated to the study of positive enumerable functors and
reductions based on them. We show that reductions by positive enumerable bi-
transformations preserve enumeration degree spectra, a generalization of degree
spectra considering all enumerations of a structure introduced by Soskov [6]. We
then exhibit an example consisting of two structures which are computably bi-
transformable but whose enumeration degree spectra are different. This implies
that positive enumerable functors and computable functors are independent
notions. Towards the end of the section we compare different possible defini-
tions of positive enumerable functors. At last, in Sect. 4 we extend our results
to reductions between arbitrary classes of structures based on effectivizations of
functors.

2 Computable and Enumerable Functors

In this article we assume that our structures are in a relational language (Ri)i∈ω

where each Ri has arity ai and the map i �→ ai is computable. We furthermore
only consider countable structures with universe ω. We view classes of structures
as categories where the objects are structures in a given language L and the
morphisms are isomorphisms between them. Recall that a functor F : C → D
maps structures from C to structures in D and maps isomorphisms f : A → B
to F (f) : F (A) → F (B) preserving composition and identity.

The smallest classes we consider are isomorphism classes of a single struc-
ture A,

Iso(A) = {B : B ∼= A}.

We will often talk about a functor from A to B, F : A → B when we mean a
functor F : Iso(A) → Iso(B). Depending on the properties that we want our
functor to preserve we may use different effectivizations, but they will all be of
the following form. Generally, an effectivization of a functor F : C → D will
consist of a pair of operators (Φ,Φ∗) and a suitable coding C such that

1. for all A ∈ C, Φ(C(A)) = C(F (A)),
2. for all A,B ∈ C and f ∈ Hom(A,B), Φ∗(C(A), C(f), C(B)) = C(F (f)).

In this article the operators will either be enumeration or Turing operators. If
the coding is clear from context we will omit the coding function, i.e., we write
Φ(A) instead of Φ(C(A)). The most common coding in computable structure
theory is the following.

Positive Enumerable Functors 387

Definition 1. Let A be a structure in relational language (Ri)i∈ω. Then the
atomic diagram D(A) of A is the set

⊕

i∈ω

RA
i ⊕

⊕

i∈ω

¬RA
i .

In the literature one can often find different definitions of the atomic diagram. It
is easy to show that all of these notions are Turing and enumeration equivalent.
The reason why we chose this definition is that it is conceptually easier to define
the positive diagram and deal with enumerations of structures like this. We are
now ready to define various effectivizations of functors.

Definition 2 ([3],[2]). A functor F : C → D is computable if there is a pair of
Turing operators (Φ,Φ∗) such that for all A,B ∈ C

1. ΦD(A) = D(F (A)),
2. for all f ∈ Hom(A,B), Φ

D(A)⊕Graph(f)⊕D(B)
∗ = F (f).

Definition 3. A functor F : C → D is enumerable if there is a pair (Ψ, Ψ∗)
where Ψ and Ψ∗ are enumeration operators such that for all A,B ∈ C

1. ΨD(A) = D(F (A)),
2. for all f ∈ Hom(A,B), Ψ

D(A)⊕Graph(f)⊕D(B)
∗ = Graph(F (f)).

In [4] enumerable functors were defined differently, using a Turing operator
instead of an enumeration operator for the homomorphisms. The definition was
as follows.

Definition 4. ([4]). A functor F : C → D is �-enumerable if there is a pair
(Ψ,Φ∗) where Ψ is an enumeration operator and Φ∗ is a Turing operator such
that for all A,B ∈ C

1. ΨD(A) = D(F (A)),
2. for all f ∈ Hom(A,B), Φ

D(A)⊕Graph(f)⊕D(B)
∗ = Graph(F (f)).

It turns out that the two definitions are equivalent and we will thus stick with
Definition 3 which seems to be more natural.

Proposition 5. A functor F : A → B is enumerable if and only if it is �-
enumerable.

Proof. Say we have an enumerable functor given by (Ψ, Ψ∗) and an isomorphism
f : Ã → Â for Ã ∼= Â ∼= A. We can compute the isomorphism F (f) by enumer-
ating Graph(F (f)) using Ψ Ã⊕f⊕Â

∗ . For every x we are guaranteed to enumerate
(x, y) ∈ Graph(F (f)) for some y as the domain of A is ω. This is uniform in Ã,
f and Â. Thus there is a Turing operator Φ∗ such that (Ψ,Φ∗) witnesses that F
is �-enumerable.

388 B. F. Csima et al.

Now, say F is �-enumerable as witnessed by (Ψ,Φ∗). For every σ, x, y with
Φσ

∗ (x) ↓= y such that σ can be split into σ0 ⊕ σ1 ⊕ σ2 where σ0, σ2 are par-
tial characteristic functions of finite structures in a finite sublanguage L of the
language of A and σ1 is the partial graph of a function, consider the set

Xx,y
σ = {(B ⊕ Graph(τ) ⊕ C, 〈x, y〉) : B,C are atomic diagrams of finite

L-structures, B compatible with σ0, C compatible with σ2,

σ1(u, v) = 1 → τ(u) = v, and σ1(u, v) = 0 → τ(u) = z

where z
∈ range(σ1)}.

We can now define our enumeration operator as Ψ� =
⋃

x,y,σ:Φσ
� (x)↓=y Xx,y

σ . Given
an enumeration of Φ∗ we can produce an enumeration of Ψ∗, so Ψ∗ is c.e. It
remains to show that Ψ Â⊕f⊕Ã

∗ = ΦÂ⊕f⊕Ã
∗ .

Say ΦÃ⊕f⊕Â
∗ (x) = y. Then there is σ � Ã⊕f ⊕Â such that (σ, x, y) ∈ Φ∗ and

thus by the construction of Xσ there is B ⊆ D(Ã), C ⊆ DÂ) and Graph(τ) ⊆
Graph(f) such that (B ⊕ Graph(τ) ⊕ C, 〈x, y〉) ∈ Xσ. Thus 〈x, y〉 ∈ Ψ Ã⊕f⊕Â

∗ .
On the other hand say 〈x, y〉 ∈ Ψ Ã⊕f⊕Â

∗ . Then, there is (B ⊕ Graph(τ) ⊕
C, 〈x, y〉) ∈ Ψ∗ with B ⊆ Ã, Graph(τ) ⊆ Graph(f) and C ⊆ Â. Further-
more, there is σ � χB⊕Graph(τ)⊕C such that (σ, x, y) ∈ Φ∗. Thus Ψ Ã⊕f⊕Â

∗ =
Graph(F (f)) for any Â ∼= Ã ∼= A and f : Ã ∼= Â and hence F is enumerable. �
In [4] it was shown that the existence of an enumerable functor implies the
existence of a computable functor and in [5] the converse was shown. We give a
simple proof of the latter.

Theorem 6. If F : A → B is a computable functor, then it is enumerable.

Proof. Given a computable functor F we will show that F is �-enumerable. That
F is then also enumerable follows from Proposition 5.

Let D(LA) be the collection of finite atomic diagrams in the language of A.
To every p ∈ D(LA) we associate a finite string αp in the alphabet {0, 1, ↑} so
that if p specifies that Ri holds on elements coded by u, then we set that ¬Ri

does not hold on these elements. More formally, αp(x) = 1 if x ∈ p, αp(x) = 0 if
x = 2〈i, u〉 and 2〈i, u〉 + 1 ∈ p or x = 2〈i, u〉 + 1 and 2〈i, u〉 ∈ p , and αp(x) =↑ if
x is less than the largest element of p and none of the other cases fits. We also
associate a string α̃p ∈ 2|αp| with p where α̃p(x) = 1 if and only if αp(x) = 1
and α̃p(x) = 0 if and only if αp(x) = 0 or αp(x) ↑.

Let the computability of F be witnessed by (Φ,Φ∗). We build the enumeration
operator Ψ as follows. For every p ∈ D(LA) and every x if Φα̃p(x) ↓= 1 and every
call to the oracle during the computation is on an element z such that αp(z)
=↑,
then enumerate (p, x) into Ψ . This finishes the construction of Ψ .

Now, let Â ∼= A. We have that x ∈ Ψ Â if and only if there exists p ∈ D(LA)
such that p ⊆ D(Â) and (p, x) ∈ Ψ . We further have that (p, x) ∈ Ψ if and only
if Φα̃p(x) ↓= 1 if and only if ΦÂ(x) = 1. Thus F is enumerable using (Ψ,Φ∗). �

Positive Enumerable Functors 389

Combining Theorem 6 with the results from [4] we obtain that enumerable
functors and computable functors defined using the atomic diagram of a struc-
ture as input are equivalent notions. This is not surprising. After all, the atomic
diagram of a structure always has total enumeration degree and there is a canon-
ical isomorphism between the total enumeration degrees and the Turing degrees.
In order to make this equivalence precise we need another definition.

Definition 7 ([2]). A functor F : C → D is effectively isomorphic to a functor
G : C → D if there is a Turing functional Λ such that for any A ∈ C, ΛA :
F (A) → G(A) is an isomorphism. Moreover, for any morphism h ∈ Hom(A,B)
in C, ΛB ◦ F (h) = G(h) ◦ ΛA. That is, the diagram below commutes.

F (A)

F (B)

G(A)

G(B)

ΛA

ΛB

F (h) G(h)

The following is an immediate corollary of Theorem 6 and [4, Theorem 2].

Theorem 8. Let F : A → B be a functor. Then F is computable if and only if
there is an enumerable functor G : A → B effectively isomorphic to F .

Definition 9 ([2]). Suppose F : C → D, G : D → C are functors such that
G ◦ F is effectively isomorphic to IdC via the Turing functional ΛC and F ◦ G is
effectively isomorphic to IdD via the Turing functional ΛD. If furthermore, for
any A ∈ C and B ∈ D, Λ

F (A)
D = F (ΛA

C) : F (A) → F (G(F (A))) and Λ
G(B)
C =

G(ΛB
D) : G(B) → G(F (G(B))), then F and G are said to be pseudo inverses.

Definition 10 ([2]). Two structures A and B are computably bi-transformable
if there are computable pseudo-inverse functors F : A → B and G : B → A.

If the functors in Definition 10 are enumerable instead of computable then we
say that A and B are enumerably bi-transformable. As an immediate corollary
of Theorem 8 we obtain the following.

Corollary 11. Two structures A and B are enumerably bi-transformable if and
only if they are computably bi-transformable.

3 Effectivizations Using Positive Diagrams

We now turn our attention to the setting where we only have positive informa-
tion about the structures. We follow Soskov [6] in our definitions. See also the
survey paper by Soskova and Soskova [7] on computable structure theory and
enumeration degrees.

390 B. F. Csima et al.

Definition 12. Let A be a structure in relational language (Ri)i∈ω. The positive
diagram of A, denoted by P (A), is the set

= ⊕
= ⊕
⊕

i∈ω

RA
i .

We are interested in the degrees of enumerations of P (A). To be more precise
let f be an enumeration of ω and for X ⊆ ωn let

f−1(X) = {〈x1, . . . , xn〉 : (f(x1), . . . , f(xn)) ∈ X}.

Given A let f−1(A) = f−1(=)⊕ f−1(
=)⊕ f−1(RA
0)⊕ Notice that if f = id,

then f−1(A) is just the positive diagram of A.

Definition 13. The enumeration degree spectrum of A is the set

eSp(A) = {de(f−1(A)) : f is an enumeration of ω}.

If a is the least element of eSp(A), then a is called the enumeration degree of
A.

In order to obtain a notion of reduction that preserves enumeration spectra we
need an effectivization of functors where we use positive diagrams of structures
as coding. It is clear that for computable functors this makes no difference as
P (A) ≡T D(A). For enumerable functors it does make a difference. We also
need to replace the Turing operators in the definition of pseudo inverses with
enumeration operators. The new notions are as follows.

Definition 14. A functor F : C → D is positive enumerable if there is a pair
(Ψ, Ψ∗) where Ψ and Ψ∗ are enumeration operators such that for all A,B ∈ C

1. ΨP (A) = P (F (A)),
2. for all f ∈ Hom(A,B), Ψ

P (A)⊕Graph(f)⊕P (B)
∗ = Graph(F (f)).

Definition 15. A functor F : C → D is enumeration isomorphic to a functor
G : C → D if there is an enumeration operator Λ such that for any A ∈ C,
ΛP (A) : F (A) → G(A) is an isomorphism. Moreover, for any morphism h ∈
Hom(A,B) in C, ΛP (B) ◦ F (h) = G(h) ◦ ΛP (A).

Definition 16. Suppose F : C → D, G : D → C are functors such that G ◦ F
is enumeration isomorphic to IdC via the enumeration operator ΛC and F ◦ G
is enumeration isomorphic to IdD via the enumeration operator ΛD. If, further-
more, for any A ∈ C and B ∈ D, Λ

P (F (A))
D = F (ΛP (A)

C) : F (A) → F (G(F (A)))
and Λ

P (G(B))
C = G(ΛP (B)

D) : G(B) → G(F (G(B))), then F and G are said to be
enumeration pseudo inverses.

Definition 17. Two structures A and B are positive enumerably bi-transform-
able if there are positive enumerable enumeration pseudo-inverse functors F :
A → B and G : B → A.

Positive Enumerable Functors 391

Theorem 18. Let A and B be positive enumerably bi-transformable. Then
eSp(A) = eSp(B).

Proof. Say A and B are positive enumerably bi-transformable by F : A → B
and G : B → A. Let f be an arbitrary enumeration of ω, then, viewing
f−1(A)/f−1(=) as a structure on ω by pulling back a canonical enumera-
tion of the least elements in its =-equivalence classes, we have that there is
Â ∼= A such that P (Â) = f−1(A)/f−1(=) and P (Â) ≤e f−1(A). As F
is positive enumerable we have that f−1(A) ≥e P (F (Â)). Furthermore, we
shall see that f−1(F (Â)) ≤e f−1(A) and that f−1(A)/f−1(=) = P (F (Â)).
Given an enumeration of f−1(A) and an enumeration of P (F (Â)), we may first
order the equivalence classes of f−1(=) by their least elements and then, if
Ri(a1, . . . , an) ∈ P (F (Â)) we enumerate Ri(b1, . . . , bn) for all b1, . . . , bn ∈ ω such
that bj is in the aj

th equivalence class of f−1(=). It is not hard to see that this
gives an enumeration of a set X such that f−1(=) ⊕ f−1(
=) ⊕ X = f−1(F (Â)),
that f−1(F (Â))/f−1(=) = P (F (Â)), and since by construction f−1(F (Â)) ≤e

P (F (Â)) ⊕ f−1(A) we have f−1(F (Â)) ≤e f−1(A).
We can apply the same argument with G in place of F and F (Â) in place of

A to get that f−1(G(F (Â)))/f−1(=) = P (G(F (Â))) and

f−1(G(F (Â))) ≤e f−1(F (Â)) ≤e f−1(A).

At last, recall that, as A and B are positive enumerably bi-transformable, there is
an enumeration operator Ψ such that ΨP (G(F (Â))) is the enumeration of the graph
of an isomorphism i : G(F (Â)) ∼= Â. But then (f ◦ i)−1(G(F (Â))) = f−1(A)
and

f−1(A) ≤e f−1(G(F (Â))) ≤e f−1(F (Â)) ≤e f−1(A).

This shows that eSp(A) ⊆ eSp(B). The proof that eSp(B) ⊆ eSp(A) is analo-
gous. �
Proposition 19. There are computably bi-transformable structures A and B
such that eSp(A)
= eSp(B). In particular, A and B are not positive enumerably
bi-transformable.

Proof. Let A = (ω, 0, s,K) where s is the successor relation on ω, 0 the first ele-
ment, and K the membership relation of the halting set. Assume B = (ω, 0, s,K)
is defined as A except that K(x) if and only if ¬K(x). There is a computable
functor F : A → B taking Â = (ω, 0Â, sÂ,KÂ) ∼= A to F (Â) = (ω, 0Â, sÂ,¬KÂ)
and acting as the identity on isomorphisms. Furthermore, F has a computable
inverse and thus A is computably bi-transformable to B.

However, A has enumeration degree 0e and B has enumeration degree 0′
e.

Thus there cannot be a positive enumerable functor from B to A. �
The following shows that computable functors and positive enumerable func-

tors are independent.

392 B. F. Csima et al.

Proposition 20. There are structures A and B such that A is positive enu-
merably bi-transformable with B but A is not computably bi-transformable with
B.

Proof. Let A be as in Proposition 19, i.e., A = (ω, 0, s,K) and B = (ω, 0, s).
Then it is not hard to see that A is positive enumerably bi-transformable with
B. However, there can not be a computable functor from B to A as B has Turing
degree 0 and A has Turing degree 0′. �

We have seen in Proposition 5 that �-enumerable functors and enumer-
able functors are equivalent. Positive enumerable functors also admit a different
definition.

Definition 21. A functor F : C → D is positive �-enumerable if there is a pair
(Ψ,Φ∗) where Ψ is an enumeration operator and Φ∗ is a Turing operator such
that for all A,B ∈ C

1. ΨP (A) = P (F (A)),
2. for all f ∈ Hom(A,B), Φ

P (A)⊕Graph(f)⊕P (B)
∗ = Graph(F (f)).

Proposition 22. Every positive enumerable functor is positive �-enumerable.

Proof. Let F : A → B be given by (Ψ, Ψ∗) and let f : Ã ∼= Â for Ã ∼= Â ∼=
A. Now we can define a procedure computing F (f) as follows. Given x, and
Ã ⊕ f ⊕ Â enumerate Ψ Ã⊕f⊕Â

∗ until 〈x, y〉 ↘ Ψ Ã⊕f⊕Â
∗ for some y. This is

uniform in Ã ⊕ f ⊕ Â and thus there exists a Turing operator Φ∗ with this
behaviour. The pair (Ψ,Φ∗) then witnesses that F is �-enumerable. �
Theorem 23. There is positive �-enumerable functor that is not enumeration
isomorphic to any positive enumerable functor.

Proof. We will build two structures A and B such that there is a positive �-
enumerable functor F : A → B that is not positive enumerable. The structure
A is a graph constructed as follows. It has a vertex a with a loop connected
to a and a cycle of size n for every natural number n. If n ∈ K then there is
an edge between a and one element of the n cycle, otherwise there is no such
edge. Clearly, degT (P (A)) = 0′ and K ≥e P (A). Thus, dege(P (A)) = 0e and,
in particular, P (A)
≥e K.

The structure B is a typical graph that witnesses that there is a structure with
degree of categoricity 0′ (that is, 0′ is the least degree computing an isomorphism
between any two computable copies of B). Let us recap how we build two copies
of B, B1 and B2 such that 0′ is the least degree computing isomorphism between
B1 and B2. Both graphs consist of an infinite ray with a loop at its first element.
Let vi be the ith element in the ray in B1 and v̂i be the ith element in the ray
in B2. Now for every vi there are two elements ai and bi with viEai and viEbi.
Likewise for every v̂i there are two elements âi and b̂i with v̂iEâi and v̂iEb̂i.
Furthermore there are additional vertices si, ŝi with aiEsi and âiEŝi.

Positive Enumerable Functors 393

Take an enumeration of K. If i ↘ K, then add vertices biE · E· and ŝiE·,
b̂iE·. This finishes the construction of B. It is not hard to see that there is a
unique isomorphism f : B1 → B2 and that deg(f) = 0′ and Graph(f) ≥e K.

We now construct the functor F . Given an enumeration of P (Â) for Â ∼= A
we wait until we see the cycle containing 0 (any natural number would work).
If it is of even length, or 0 is the special vertex a, we let F (Â) = B1 and if it is
of odd length we let F (Â) = B2. Clearly given any enumeration of a copy of A
this procedure produces an enumeration of a copy of B.

As B is rigid we just let F (f : Â → Ã) = g : F (Â) → F (Ã) where g is
the unique isomorphism between F (Â) and F (Ã). Note that there is a Turing
operator Θ such that ΘP (Â) = K for any Â ∼= A and that the isomorphism
between F (Â) and F (Ã) can be computed uniformly from P (F (Â))⊕P (F (Ã))⊕
K. Thus, there is an operator Φ∗ witnessing that F is positive �-enumerable.

To see that F is not positive enumerable consider two copies Â and Ã of A
with dege(P (Â)) = dege(P (Ã)) = 0e such that 0 is part of an even cycle in Â
and part of an odd cycle in Ã. Notice that there is f : Â → Ã such that P (Â)⊕
P (Ã) ≥e P (Â) ⊕ Graph(f : Â → Ã) ⊕ P (Ã), and also that P (Â) ⊕ P (Ã)
≥e K.
But Graph(g : F (Â) → F (Ã)) ≥e K as F (Â) = B1 and F (Ã) = B2. Thus there
can not be an enumeration operator witnessing that F is positive enumerable.

Assume F was enumeration isomorphic to a positive enumerable functor G
and that this isomorphism is witnessed by Λ. Then, taking Â, Ã and f : Â → Ã
as in the above paragraph we have that P (Â) ⊕ P (Ã) ≥e Graph(G(f)). But
then

P (Â) ⊕ P (Ã) ≥e Graph(ΛP (Â) ◦ G(f) ◦ ΛP (Ã)
−1

) = Graph(F (f)) ≥e K.

This is a contradiction since dege(P (Â) ⊕ P (Ã)) = 0e. �

4 Reductions Between Arbitrary Classes

So far we have seen how we can compare structures with respect to computabil-
ity theoretic properties. Our notions can be naturally extended to allow the
comparison of arbitrary classes of structures.

Definition 24 ([2]). Let C and D be classes of structures. The class C is uni-
formly computably transformably reducible, short u.c.t. reducible, to D if there
are a subclass D′ ⊆ D and computable functors F : C → D′ ⊆ D and G : D′ → C
such that F and G are pseudo-inverses.

Definition 25. Let C and D be classes of structures. The class C is uniformly
(positive) enumerably transformably reducible, short u.e.t., (u.p.e.t.) reducible,
to D if there is a subclass D′ ⊆ D and (positive) enumerable functors F : C →
D′ ⊆ D and G : D′ → C such that F and G are pseudo-inverses.

Propositions 19 and 20 show that u.p.e.t. and u.c.t reductions are indepen-
dent notions.

394 B. F. Csima et al.

Corollary 26. There are classes of structures C1,C2 and D1,D2 such that

1. C1 is u.c.t. reducible to D1 but C1 is not u.p.e.t. reducible to D1.
2. C2 is u.p.e.t. reducible to D2 but C2 is not u.c.t. reducible to D2.

Similar to Corollary 11 we obtain the equivalence of u.e.t. and u.c.t reductions.

Corollary 27. Let C and D be arbitrary classes of countable structures. Then
C is u.e.t. reducible to D if and only if it is u.c.t. reducible to D.

References

1. Goncharov, S.S.: Problem of the number of non-self-equivalent constructivizations.
Algebra Logic 19(6), 401–414 (1980)

2. Harrison-Trainor, M., Melnikov, A., Miller, R., Montalbán, A.: Computable functors
and effective interpretability. J. Symbolic Logic 82(1), 77–97 (2017)

3. Miller, R., Poonen, B., Schoutens, H., Shlapentokh, A.: A computable functor from
graphs to fields. J. Symbolic Logic 83(1), 326–348 (2018)

4. Rossegger, D.: On functors enumerating structures. Siberian Electron. Math. Rep.
14, 690–702 (2017)

5. Rossegger, D.: Computable structure theory with respect to equivalence relations
(2019)

6. Soskov, I.N.: Degree spectra and co-spectra of structures. Ann. Univ. Sofia 96, 45–68
(2004)

7. Soskova, A.A., Soskova, M.I.: Enumeration reducibility and computable structure
theory. In: Day, A., Fellows, M., Greenberg, N., Khoussainov, B., Melnikov, A.,
Rosamond, F. (eds.) Computability and Complexity. LNCS, vol. 10010, pp. 271–
301. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-50062-1 19

https://doi.org/10.1007/978-3-319-50062-1_19

Splittings and Robustness
for the Heine-Borel Theorem

Sam Sanders(B)

Institute for Philosophy II, RUB, Bochum, Germany
sasander@me.com

Abstract. The Heine-Borel theorem for uncountable coverings has
recently emerged as an interesting and central principle in higher-order
Reverse Mathematics and computability theory, formulated as follows:
HBU is the Heine-Borel theorem for uncountable coverings given as
∪x∈[0,1](x − Ψ(x), x + Ψ(x)) for arbitrary Ψ : [0, 1] → R+, i.e. the origi-
nal formulation going back to Cousin (1895) and Lindelöf (1903). In this
paper, we show that HBU is equivalent to its restriction to functions con-
tinuous almost everywhere, an elegant robustness result. We also obtain
a nice splitting HBU ↔ [WHBU+ + HBC0 + WKL] where WHBU+ is a
strengthening of Vitali’s covering theorem and where HBC0 is the Heine-
Borel theorem for countable collections (and not sequences) of basic
open intervals, as formulated by Borel himself in 1898.

Keywords: Higher-order Reverse Mathematics · Heine-Borel
theorem · Vitali covering theorem · Splitting · Robustness

1 Introduction and Preliminaries

We sketch our aim and motivation within the Reverse Mathematics program
(Sect. 1.1) and introduce some essential axioms and definitions (Sect. 1.2).

1.1 Aim and Motivation

Reverse Mathematics (RM hereafter) is a program in the foundations of math-
ematics initiated by Friedman [5,6] and developed extensively by Simpson and
others [25,26]; an introduction to RM for the ‘mathematician in the street’ may
be found in [27]. We assume basic familiarity with RM, including Kohlenbach’s
higher-order RM introduced in [10]. Recent developments in higher-order RM,
including our own, are published in [13–19].

Now, a splitting A ↔ [B+C] is a relatively rare phenomenon in second-order
RM where a natural theorem A can be split into two independent natural parts B
and C. Splittings are quite common in higher-order RM, as studied in some detail
in [23]. An unanswered question here is whether the higher-order generalisations
of the Big Five of RM (and related principles) have natural splittings.

Supported by the Deutsche Forschungsgemeinschaft via the DFG grant SA3418/1-1.

c© Springer Nature Switzerland AG 2021
L. De Mol et al. (Eds.): CiE 2021, LNCS 12813, pp. 395–406, 2021.
https://doi.org/10.1007/978-3-030-80049-9_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80049-9_39&domain=pdf
https://doi.org/10.1007/978-3-030-80049-9_39

396 S. Sanders

In this paper, we study the Vitali and Heine-Borel covering theorems for
uncountable coverings with an eye on splittings. In particular, our starting point
is HBU, defined in Sect. 1.2, which is the Heine-Borel theorem for uncountable
coverings ∪x∈[0,1]I

Ψ
x for arbitrary third-order Ψ : [0, 1] → R+ and IΨ

x ≡ (x −
Ψ(x), x + Ψ(x)). This kind of coverings was already studied by Cousin in 1895
[3] and Lindelöf in 1903 [12]. In Sect. 2.2, we obtain an elegant splitting involving
HBU, namely as follows:

HBU ↔ [WHBU+ + HBC0 + WKL], (1.1)

where WHBU+ is a strengthening of the Vitali covering theorem and where HBC0

is the Heine-Borel theorem for countable collections (and not sequences) of open
intervals, as formulated by Borel himself in [1]. In Sect. 2.1, we prove HBU ↔
HBUæ, where the latter is HBU restricted to functions Ψ : [0, 1] → R+ continuous
almost everywhere on the unit interval. By contrast, the same restriction for the
Vitali covering theorem results in a theorem equivalent to weak weak König’s
lemma WWKL. The results in Sect. 2.1 were obtained following the study of
splittings involving ‘continuity almost everywhere’. The proof of Theorem 2.2 (in
a stronger system) was suggested to us by Dag Normann. In general, this paper
constitutes a spin-off from our joint project with Dag Normann on the Reverse
Mathematics and computability theory of the uncountable (see [13,17,19]).

Finally, the foundational and historical significance of our results is as follows.

Remark 1.1. First of all, as shown in [13,15,16], the third-order statements
HBU and WHBU cannot be proved Zω

2 , a conservative extension of Z2 based
on third-order comprehension functionals. A sceptic of third-order objects could
‘downplay’ this independence result by pointing to the outermost quantifier of
HBU and WHBU and declare that the strength of these principles is simply due
to the quantification over all third-order functions. This point is moot in light of
HBU ↔ HBUæ proved in Theorem 2.2, and the central role of ‘continuity almost
everywhere’ in e.g. the study of the Riemann integral and measure theory.

Secondly, our first attempt at obtaining a splitting for HBU was to decompose
the latter as HBUæ + WHBU, where WHBU allows one to reduce an arbitrary
covering to a covering generated by a function that is continuous almost every-
where. Alas, this kind of splitting does not yield independent conjuncts, which
is why we resort to stronger notions like countability, namely in Sect. 2.2.

Thirdly, the splitting in (1.1) has some historical interest as well: Borel him-
self formulates the Heine-Borel theorem in [1] using countable collections of inter-
vals rather than sequences of intervals (as in second-order RM). In fact, Borel’s
proof of the Heine-Borel theorem in [1, p. 42] starts with: Let us enumerate our
intervals, one after the other, according to whatever law, but determined. He then
proceeds with the usual ‘interval-halving’ proof, similar to Cousin in [3].

1.2 Preliminaries

We introduce some axioms and definitions from (higher-order) RM needed below.
We refer to [10, §2,] or [13, §2,] for the definition of Kohlebach’s base theory

Splittings and Robustness for the Heine-Borel Theorem 397

RCAω
0 , and basic definitions like the real numbers R in RCAω

0 . For completeness,
some definitions are included in the technical appendix, namely Sect.A.

Some Axioms of Higher-Order Arithmetic. First of all, the functional ϕ
in (∃2) is clearly discontinuous at f = 11 . . . ; in fact, (∃2) is equivalent to the
existence of F : R → R such that F (x) = 1 if x >R 0, and 0 otherwise [10, §3,].

(∃ϕ2 ≤2 1)(∀f1)
[
(∃n)(f(n) = 0) ↔ ϕ(f) = 0

]
. (∃2)

Related to (∃2), the functional μ2 in (μ2) is also called Feferman’s μ ([10]).

(∃μ2)(∀f1)
[
(∃n)(f(n) = 0) → [f(μ(f)) = 0 ∧ (∀i < μ(f))(f(i)
= 0)] (μ2)

∧ [(∀n)(f(n)
= 0) → μ(f) = 0]
]
.

Intuitively, μ2 is the least-number-operator, i.e. μ(f) provides the least n ∈ N
such that f(n) = 0, if such there is. We have (∃2) ↔ (μ2) over RCAω

0 and
ACAω

0 ≡ RCAω
0 + (∃2) proves the same second-order sentences as ACA0 by [9,

Theorem 2.5,].
Secondly, the Heine-Borel theorem states the existence of a finite sub-covering

for an open covering of certain spaces. Now, a functional Ψ : R → R+ gives rise
to the canonical cover ∪x∈II

Ψ
x for I ≡ [0, 1], where IΨ

x is the open interval
(x − Ψ(x), x + Ψ(x)). Hence, the uncountable covering ∪x∈II

Ψ
x has a finite sub-

covering by the Heine-Borel theorem; in symbols:

Principle 1.2 (HBU). (∀Ψ : R → R+)(∃y0, . . . , yk ∈ I)(∀x ∈ I)(x ∈ ∪i≤kIΨ
yi

).

Cousin and Lindelöf formulate their covering theorems using canonical covers in
[3,12]. This restriction does not make much of a difference, as studied in [24].

Thirdly, let WHBU be the following weakening of HBU:

Principle 1.3 (WHBU). For any Ψ : R → R+ and ε >R 0, there are pairwise
distinct y0, . . . , yk ∈ I with 1−ε <R

∑
i≤k |JΨ

yi
|, where JΨ

yi+1
:= IΨ

yi+1
\ (∪j≤iI

Ψ
yi

).

As discussed at length in [14], WHBU expresses the essence of the Vitali covering
theorem for uncountable coverings; Vitali already considered the latter in [31].
Basic properties of the gauge integral [28] are equivalent to HBU while WHBU is
equivalent to basic properties of the Lebesgue integral (without RM-codes; [14]).
By [13,14,16], ZΩ

2 proves HBU and WHBU, but Zω
2 cannot. The exact definition

of Zω
2 and ZΩ

2 is in the aforementioned references and Sect. A.2. What is relevant
here is that Zω

2 and ZΩ
2 are conservative extensions of Z2 by [9, Cor. 2.6,], i.e.

the former prove the same second-order sentences as the latter.
We note that HBU (resp. WHBU) is the higher-order counterpart of WKL

(resp. WWKL), i.e. weak König’s lemma (resp. weak weak König’s lemma) from
RM as the ECF-translation [10,29] maps HBU (resp. WHBU) to WKL (resp.
WWKL), i.e. these are (intuitively) weak principles. We refer to [10, §2,] or
Remark A.1 for a discussion of the relation between ECF and RCAω

0 .
Finally, the aforementioned results suggest that (higher-order) comprehen-

sion as in Zω
2 is not the right way of measuring the strength of HBU. As a better

alternative, we have introduced the following axiom in [22].

398 S. Sanders

Principle 1.4 (BOOT). (∀Y 2)(∃X ⊂ N)(∀n0)
[
n ∈ X ↔ (∃f1)(Y (f, n) = 0)

]
.

By [22, §3,], BOOT is equivalent to convergence theorems for nets, we have the
implication BOOT → HBU, and RCAω

0 +BOOT has the same first-order strength
as ACA0. Moreover, BOOT is a natural fragment of Feferman’s projection axiom
(Proj1) from [4]. Thus, BOOT is a natural axiom that provides a better ‘scale’
for measuring the strength of HBU and its ilk, as discussed in [17,22].

Some Basic Definitions. We introduce the higher-order definitions of ‘open’
and ‘countable’ set, as can be found in e.g. [15,17,19].

First of all, open sets are represented in second-order RM as countable unions
of basic open sets [26, II.5.6,], and we refer to such sets as ‘RM-open’. By [26,
II.7.1,], one can effectively convert between RM-open sets and (RM-codes for)
continuous characteristic functions. Thus, a natural extension of the notion of
‘open set’ is to allow arbitrary (possibly discontinuous) characteristic functions,
as is done in e.g. [15,17,21], which motivates the following definition.

Definition 1.5 [Sets in RCAω
0]. We let Y : R → R represent subsets of R as

follows: we write ‘x ∈ Y ’ for ‘Y (x) >R 0’ and call a set Y ⊆ R ‘open’ if for every
x ∈ Y , there is an open ball B(x, r) ⊂ Y with r0 > 0. A set Y is called ‘closed’
if the complement, denoted Y c = {x ∈ R : x
∈ Y }, is open.

For open Y as in Definition 1.5, the formula ‘x ∈ Y ’ has the same complexity
(modulo higher types) as for RM-open sets, while given (∃2) it is equivalent to
a ‘proper’ characteristic function, only taking values ‘0’ and ‘1’. Hereafter, an
‘(open) set’ refers to Definition 1.5; ‘RM-open set’ refers to the definition from
second-order RM, as in e.g. [26, II.5.6,].

Secondly, the definition of ‘countable set’ (Kunen; [11]) is as follows in RCAω
0 .

Definition 1.6 [Countable subset of R]. A set A ⊆ R is countable if there
exists Y : R → N such that (∀x, y ∈ A)(Y (x) =0 Y (y) → x =R y). If Y : R → N
is also surjective, i.e. (∀n ∈ N)(∃x ∈ A)(Y (x) = n), we call A strongly countable.

Hereafter, ‘(strongly) countable’ refers to Definition 1.6, unless stated otherwise.
We note that ‘countable’ is defined in second-order RM using sequences [26,
V.4.2,], a notion we shall call ‘enumerable’.

Thirdly, we have explored the connection between HBU, generalisations of
HBU, and fragments of the neighbourhood function principle NFP from [30] in
[22,24]. In each case, nice equivalences were obtained assuming A0 as follows.

Principle 1.7 (A0). For Y 2 and A(σ) ≡ (∃g ∈ 2N)(Y (g, σ) = 0), we have

(∀f ∈ NN)(∃n ∈ N)A(fn) → (∃G2)(∀f ∈ NN)A(fG(f)),

where fn is the finite sequence 〈f(0), f(1), . . . , f(n − 1)〉.
As discussed in [22,24], the axiom A0 is a fragment of NFP and can be viewed
as a generalisation of QF-AC1,0, included in RCAω

0 . As an alternative to A0, one
could add ‘extra data’ or moduli to the theorems to be studied.

Splittings and Robustness for the Heine-Borel Theorem 399

2 Main Results

In Sect. 2.1, we show that HBU is equivalent to HBUæ, i.e. the restriction to
functions continuous almost everywhere, while the same restriction applied to
WHBU results in a theorem equivalent to WWKL (see [26, X.1,] for the latter).
In Sect. 2.2, we establish the splitting (1.1) involving HBU.

2.1 Ontological Parsimony and the Heine-Borel Theorem

We introduce HBUæ, the restriction of HBU from Sect. 1.2 to functions contin-
uous almost everywhere, and establish HBU ↔ HBUæ over RCAω

0 . The same
restriction for WHBU turns out to be equivalent to weak weak König’s lemma
(WWKL; see [26, X.1,]), well-known from second-order RM.

We first need the following definition, where we note that the usual1 definition
of ‘measure zero’ is used in RM.

Definition 2.1 [Continuity almost everywhere]. We say that Ψ : [0, 1] → R is
continuous almost everywhere if it is continuous outside of an RM-closed set
E ⊂ [0, 1] which has measure zero.

Let HBUæ be HBU restricted to functions continuous almost everywhere as in
the previous definition. The proof of the following theorem (in a stronger system)
was suggested by Dag Normann, for which we are grateful.

Theorem 2.2. The system RCAω
0 proves HBU ↔ HBUæ.

Proof. First of all, as noted in Sect. 1.2, (∃2) is equivalent to the existence of a
discontinuous R → R-function, namely by [10, Prop. 3.12,]. Thus, in case ¬(∃2),
all functions on R are continuous. In this case, we trivially obtain HBU ↔ HBUæ.
Since RCAω

0 is a classical system, we have the law of excluded middle as in
¬(∃2) ∨ (∃2). As we have provided a proof in the first case ¬(∃2), it suffices to
provide a proof assuming (∃2), and the law of excluded middle finishes the proof.
Hence, for the rest of the proof, we may assume (∃2).

Secondly, the Cantor middle third set C ⊂ [0, 1] is available in RCA0 by (the
proof of) [26, IV.1.2,] as an RM-closed set, as well as the well-known recursive
homeomorphism from Cantor space 2N to C defined as H : 2N → [0, 1] and
H(f) :=

∑∞
n=0

2f(n)
3n+1 . Note that given ∃2, we can decide whether x ∈ C or not.

Thirdly, we prove HBUæ → HBUc, where the latter is HBU for 2N as follows:

(∀G2)(∃f0, . . . , fk ∈ 2N)(∀g ∈ 2N)(∃i ≤ k)(g ∈ [fiG(fi)]) (HBUc)

and where [σ] is the open neighbourhood in 2N of sequences starting with the
finite binary sequence σ. The equivalence HBU ↔ HBUc may be found in [13,16].
Now assume HBCæ and fix G2 and define Ψ : [0, 1] → R+ using (∃2) as:

Ψ(x) :=

{
d(x, C) x
∈ C

1
2G(I(x)) otherwise

, (2.1)

1 A set A ⊂ R is measure zero if for any ε > 0 there is a sequence of basic open
intervals (In)n∈N such that ∪n∈NIn covers A and has total length below ε.

400 S. Sanders

where I(x) is the unique f ∈ 2N such that H(f) = x in case x ∈ C, and
00 . . . otherwise. Note that the distance function d(x, C) exists given ACA0 by
[7, Theorem 1.2,]. Clearly, ∃2 allows us to define this function as a third-order
object that is continuous on [0, 1] \ C. Since C has measure zero (and is RM-
closed), apply HBUæ to ∪x∈[0,1]I

Ψ
x . Let y0, . . . , yk be such that ∪i≤kIΨ

yi
covers

[0, 1]. By the definition of Ψ in (2.1), if x ∈ [0, 1] \ C, then C ∩ IΨ
x = ∅. Hence,

let z0, . . . , zm be those yi ∈ C for i ≤ k and note that ∪j≤mIΨ
zj

covers C. Clearly,
I(z0), . . . , I(zm) yields a finite sub-cover of ∪f∈2N [fG(f)], and HBUc follows. ��
We could of course formulate HBUæ with the higher-order notion of ‘closed set’
from [15], and the equivalence from the theorem would still go through. The
proof of the theorem also immediately yields the following.

Corollary 2.3 (ACAω
0). HBU is equivalent to the Heine-Borel theorem for

canonical coverings ∪x∈EIΨ
x , where E ⊂ [0, 1] is RM-closed and has measure

zero.

As expected, Theorem 2.2 generalises to principles that imply HBU over RCAω
0

(see [17, Fig. 1,] for an overview) and that boast a third-order functional to
which the ‘continuous almost everywhere’ restriction can be naturally applied.
An example is the following corollary involving BOOT.

Corollary 2.4. The system RCAω
0 proves BOOT ↔ BOOTæ, where the latter is

(∃X ⊂ N)(∀n0)
[
n ∈ X ↔ (∃x ∈ [0, 1])(Y (x, n) = 0)

]
,

where λx.Y (x, n) is continuous almost everywhere on [0, 1] for any fixed n ∈ N.

Proof. In case ¬(∃2), all functions on R are continuous by [10, Prop. 3.12,]; in this
case, the equivalence is trivial. In case (∃2), the forward direction is immediate,
modulo coding real numbers given ∃2. For the reverse direction, fix Y 2 and
note that we may restrict the quantifier (∃f1) in BOOT to 2N without loss of
generality. Indeed, μ2 allows us to represent f1 via its graph, a subset of N2,
which can be coded as a binary sequence. Now define

Z(x, n) :=

{
0 x ∈ C ∧ Y (I(x), n) = 0
1 otherwise

, (2.2)

where C and I are as in the theorem. Note that λx.Z(x, n) is continuous outside
of C. By BOOTæ, there is X ⊂ N such that for all n ∈ N, we have:

n ∈ X ↔ (∃x ∈ [0, 1])(Z(x, n) = 0) ↔ (∃f ∈ 2N)(Y (f, n) = 0),

where the last equivalence is by the definition of Z in (2.2). ��
Next, we show that the Vitali covering theorem as in WHBU behaves quite
differently from the Heine-Borel theorem as in HBU. Recall that the Heine-Borel
theorem applies to open coverings of compact sets, while the Vitali covering

Splittings and Robustness for the Heine-Borel Theorem 401

theorem applies to Vitali coverings2 of any set E of finite (Lebesgue) measure.
The former provides a finite sub-covering while the latter provides a sequence
that covers E up to a set of measure zero. As argued in [14], WHBU is the
combinatorial essence of Vitali’s covering theorem.

Now, let WHBUæ be WHBU restricted to functions continuous almost every-
where, as in Definition 2.1; recall that Zω

2 cannot prove WHBU.

Theorem 2.5. The system RCAω
0 + WKL proves WHBUæ.

Proof. Let Ψ : [0, 1] → R+ be continuous on [0, 1] \ E with E ⊂ [0, 1] of measure
zero and RM-closed. Fix ε > 0 and let ∪n∈NIn be a union of basic open intervals
covering E and with measure at most ε/2. Then [0, 1] is covered by:

∪q∈Q\E B(q, Ψ(q))
⋃

∪n∈NIn. (2.3)

Indeed, that the covering in (2.3) covers E is trivial, while [0, 1]\E is (RM)-open.
Hence, x0 ∈ [0, 1]\E implies that B(x0, r) ⊂ [0, 1]\E for r > 0 small enough and
for q ∈ Q∩[0, 1] close enough to x0, we have x0 ∈ B(q, Ψ(q)). By [26, IV.1,], WKL
is equivalent to the countable Heine-Borel theorem. Hence, there are q0, . . . , qk ∈
Q \ E and n0 ∈ N such that the finite union ∪k

i=1B(qi, Ψ(qi))
⋃ ∪n0

j=0Ij covers
[0, 1]. Since the measure of ∪n0

j=0Ij is at most ε/2, the measure of ∪k
i=1B(qi, Ψ(qi))

is at least 1 − ε/2, as required by WHBUæ. ��
Corollary 2.6. The system RCAω

0 proves WWKL ↔ WHBUæ.

Proof. The reverse implication is immediate in light of the RM of WWKL in [26,
X.1,], which involves the Vitali covering theorem for countable coverings (given
by a sequence). For the forward implication, convert the cover from (2.3) to a
Vitali cover and use [26, X.1.13,]. ��
Finally, recall Remark 1.1 discussing the foundational significance of the above.

2.2 Splittings for the Heine-Borel Theorem

We establish a splitting for HBU as in Theorem 2.9 based on known principles
formulated with countable sets as in Definition 1.6. As will become clear, there
is also some historical interest in this study.

First of all, the following principle HBC0 is studied in [17, §3,], while the (his-
torical and foundational) significance of this principle is discussed in Remark 1.1.
The aforementioned system Zω

2 cannot prove HBC0.

Principle 2.7 (HBC0). For countable A ⊂ R2 with (∀x ∈ [0, 1])(∃(a, b) ∈
A)(x ∈ (a, b)), there are (a0, b0), . . . , (ak, bk) ∈ A with (∀x ∈ [0, 1])(∃i ≤ k)(x ∈
(ai, bi)).

2 An open covering V is a Vitali covering of E if any point of E can be covered by
some open in V with arbitrary small (Lebesgue) measure.

402 S. Sanders

Secondly, the second-order Vitali covering theorem has a number of equiva-
lent formulations (see [26, X.1,]), including the statement a countable covering
of [0, 1] has a sub-collection with measure zero complement. Intuitively speak-
ing, the following principle WHBU+ strengthens ‘measure zero’ to ‘countable’.
Alternatively, WHBU+ can be viewed as a weakening of the Lindelöf lemma,
introduced in [12] and studied in higher-order RM in [13,16].

Principle 2.8 (WHBU+). For Ψ : [0, 1] → R+, there is a sequence (yn)n∈N in
[0, 1] such that [0, 1] \ ∪n∈NIΨ

yn
is countable.

Note that WHBU+ + HBC0 yields a conservative3 extension of RCAω
0 , i.e. the

former cannot imply HBU without the presence of WKL. Other independence
results are provided by Theorem 2.10.

We have the following theorem, where A0 was introduced in Sect. 1.2. This
axiom can be avoided by enriching4 the antecedent of HBC0.

Theorem 2.9. The system RCAω
0 + A0 proves

[WHBU+ + HBC0 + WKL] ↔ HBU, (2.4)

where the axiom A0 is only needed for HBU → HBC0.

Proof. First of all, in case ¬(∃2), all functions on R are continuous, rendering
WHBU+ + HBC0 trivial while HBU reduces to WKL. Hence, for the rest of the
proof, we may assume (∃2), by the law of excluded middle as in (∃2) ∨ ¬(∃2).

For the reverse implication, assume A0 +HBU and let A be as in HBC0. The
functional ∃2 can uniformly convert real numbers to a binary representation.
Hence (2.5) is equivalent to a formula as in the antecedent of A0:

(∀x ∈ [0, 1])(∃n ∈ N)
[
(∃(a, b) ∈ A)(a < [x](n + 1) − 1

2n ∧ [x](n + 1) + 1
2n < b)

]
,

(2.5)
where ‘[x](n)’ is the n-th approximation of the real x, given as a fast-converging
Cauchy sequence. Apply A0 to (2.5) to obtain G : [0, 1] → N such that G(x) = n
as in (2.5). Apply HBU to ∪x∈[0,1]I

Ψ
x for Ψ(x) := 1

2G(x) . The finite sub-cover
y0, . . . , yk ∈ [0, 1] provided by HBU gives rise to (ai, bi) ∈ A containing IΨ

yi

for i ≤ k by the definition of G. Moreover, HBU implies WKL as the latter is
equivalent to the ‘countable’ Heine-Borel theorem as in [26, IV.1,]. Clearly, the
empty set is countable by Definition 1.6 and HBU → WHBU+ is therefore trivial.

For the forward implication, fix Ψ : [0, 1] → R+ and let (yn)n∈N be as in
WHBU+. Define ‘x ∈ B’ as x ∈ [0, 1] \ ∪n∈NIΨ

yn
and note that when B is empty,

the theorem follows as WKL implies the second-order Heine-Borel theorem [26,
IV.1,]. Now assume B
= ∅ and define A as the set of (a, b) such that either

3 The system RCAω
0 + ¬(∃2) is an L2-conservative extension of RCAω

0 and the former
readily proves WHBU+ + HBC0. By constrast HBU → WKL over RCAω

0 .
4 In particular, one would add a function G : [0, 1] → R2 to the antecedent of HBC0

such that G(x) ∈ A and x ∈ (
G(x)(1), G(x)(2)

)
for x ∈ [0, 1]. In this way, the

covering is given by ∪x∈[0,1](G(x)(1), G(x)(2)).

Splittings and Robustness for the Heine-Borel Theorem 403

(a, b) = IΨ
x for x ∈ B, or (a, b) = IΨ

yn
for some n ∈ N. Note that in the first case,

(a, b) ∈ A if and only a+b
2 ∈ B, i.e. defining A does not require quantifying over

R. Moreover, A is countable because B is: if Y is injective on B, then W defined
as follows is injective on A:

W
(
(a, b)

)
:=

{
2Y (a+b

2) a+b
2 ∈ B

H((a, b)) otherwise
,

where H((a, b)) is the least n ∈ N such that (a, b) = IΨ
yn

, if such there is, and
zero otherwise. The intervals in the set A cover [0, 1] as in the antecedent of
HBC0, and the latter now implies HBU. ��
The principles WHBU+ and HBC0 are ‘quite’ independent by the following the-
orem, assuming the systems therein are consistent.

Theorem 2.10. The system Zω
2 + QF-AC0,1 + WHBU+ cannot prove HBC0.

The system RCAω
0 + HBC0 + WHBU+ cannot prove WKL0.

Proof. For the first part, suppose Zω
2 + QF-AC0,1 + WHBU+ does prove HBC0.

The latter implies NIN as follows by [17, Cor. 3.2,]:

(∀Y : [0, 1] → N)(∃x, y ∈ [0, 1])(Y (x) = Y (y) ∧ x
=R y). (NIN)

Clearly, ¬NIN implies WHBU+, and we obtain that Zω
2 +QF-AC0,1+¬NIN proves

a contradiction, namely WHBU+ and its negation. Hence, Zω
2 +QF-AC0,1 proves

NIN, a contradiction by [17, Theorem 3.1,], and the first part follows.
For the second part, the ECF-translation (see Remark A.1) converts HBC0 +

WHBU+ into a triviality. ��
Finally, we discuss similar results as follows. Of course, the proof of Theorem 2.9
goes through mutatis mutandis for WHBU+ + HBC0 formulated using strongly
countable sets. Moreover, (2.6) can be proved in the same way as (2.4), assuming
additional countable choice as in QF-AC0,1:

WHBU ↔ [WHBU+ + WHBC0 + WWKL], (2.6)

where WHBC0 is HBC0 with the conclusion weakened to the existence of a
sequence (an, bn)n∈N of intervals in A with measure at least one. Also, if we
generalise HBU to coverings of any separably closed set in [0, 1], the resulting
version of (2.4) involves ACA0 rather than WKL0 in light of [8, Theorem 2].

A Reverse Mathematics: Second- and Higher-Order

A.1 Reverse Mathematics

Reverse Mathematics (RM hereafter) is a program in the foundations of math-
ematics initiated around 1975 by Friedman [5,6] and developed extensively by

404 S. Sanders

Simpson [26]. The aim of RM is to identify the minimal axioms needed to prove
theorems of ordinary, i.e. non-set theoretical, mathematics. We refer to [27] for
a basic introduction to RM and to [25,26] for an overview of RM. The details of
Kohlenbach’s higher-order RM may be found in [10], including the base theory
RCAω

0 . The latter is connected to RCA0 by the ECF-translation as follows.

Remark A.1 (The ECF-interpretation). The (rather) technical definition
of ECF may be found in [29, p. 138, §2.6,]. Intuitively, the ECF-interpretation
[A]ECF of a formula A ∈ Lω is just A with all variables of type two and higher
replaced by type one variables ranging over so-called ‘associates’ or ‘RM-codes’;
the latter are (countable) representations of continuous functionals. The ECF-
interpretation connects RCAω

0 and RCA0 (see [10, Prop. 3.1,]) in that if RCAω
0

proves A, then RCA0 proves [A]ECF, again ‘up to language’, as RCA0 is formulated
using sets, and [A]ECF is formulated using types, i.e. using type zero and one
objects.

In light of the widespread use of codes in RM and the common practise of
identifying codes with the objects being coded, it is no exaggeration to refer to
ECF as the canonical embedding of higher-order into second-order arithmetic.

We now introduce the usual notations for common mathematical notions.

Definition A.2 (Real numbers and related notions in RCAω
0)

a. Natural numbers correspond to type zero objects, and we use ‘n0’ and ‘n ∈ N’
interchangeably. Rational numbers are defined as signed quotients of natural
numbers, and ‘q ∈ Q’ and ‘<Q’ have their usual meaning.

b. Real numbers are coded by fast-converging Cauchy sequences q(·) : N → Q,
i.e. such that (∀n0, i0)(|qn−qn+i| <Q

1
2n). We use Kohlenbach’s ‘hat function’

from [10, p. 289,] to guarantee that every q1 defines a real number.
c. We write ‘x ∈ R’ to express that x1 := (q1(·)) represents a real as in the

previous item and write [x](k) := qk for the k-th approximation of x.
d. Two reals x, y represented by q(·) and r(·) are equal, denoted x =R y, if

(∀n0)(|qn − rn| ≤ 2−n+1). Inequality ‘<R’ is defined similarly. We sometimes
omit the subscript ‘R’ if it is clear from context.

e. Functions F : R → R are represented by Π1→1 mapping equal reals to equal
reals, i.e. extensionality as in (∀x, y ∈ R)(x =R y → Π(x) =R Π(y)).

f. Binary sequences are denoted ‘f, g ∈ C’ or ‘f, g ∈ 2N’. Elements of Baire
space are given by f1, g1, but also denoted ‘f, g ∈ NN’.

Notation A.3 (Finite sequences). The type for ‘finite sequences of objects
of type ρ’ is denoted ρ∗, which we shall only use for ρ = 0, 1. Since the usual
coding of pairs of numbers goes through in RCAω

0 , we shall not always distinguish
between 0 and 0∗. Similarly, we assume a fixed coding for finite sequences of type
1 and shall make use of the type ‘1∗’. In general, we do not always distinguish
between ‘sρ’ and ‘〈sρ〉’, where the former is ‘the object s of type ρ’, and the
latter is ‘the sequence of type ρ∗ with only element sρ’. The empty sequence for
the type ρ∗ is denoted by ‘〈〉ρ’, usually with the typing omitted. Furthermore,
we denote by ‘|s| = n’ the length of the finite sequence sρ∗

= 〈sρ
0, s

ρ
1, . . . , s

ρ
n−1〉,

Splittings and Robustness for the Heine-Borel Theorem 405

where |〈〉| = 0, i.e. the empty sequence has length zero. For sequences sρ∗
, tρ

∗
,

we denote by ‘s ∗ t’ the concatenation of s and t, i.e. (s ∗ t)(i) = s(i) for i < |s|
and (s ∗ t)(j) = t(|s| − j) for |s| ≤ j < |s| + |t|. For a sequence sρ∗

, we define
sN := 〈s(0), s(1), . . . , s(N − 1)〉 for N0 < |s|. For a sequence α0→ρ, we also
write αN = 〈α(0), α(1), . . . , α(N − 1)〉 for any N0. Finally, (∀qρ ∈ Qρ∗

)A(q)
abbreviates (∀i0 < |Q|)A(Q(i)), which is (equivalent to) quantifier-free if A is.

A.2 Further Systems

We define some standard higher-order systems that constitute the counterpart
of e.g. Π1

1-CA0 and Z2. First of all, the Suslin functional S2 is defined in [10] as:

(∃S2 ≤2 1)(∀f1)
[
(∃g1)(∀n0)(f(gn) = 0) ↔ S(f) = 0

]
. (S2)

The system Π1
1-CA

ω
0 ≡ RCAω

0 +(S2) proves the same Π1
3-sentences as Π1

1-CA0 by
[20, Theorem 2.2,]. By definition, the Suslin functional S2 can decide whether a
Σ1

1 -formula as in the left-hand side of (S2) is true or false. We similarly define the
functional S2k which decides the truth or falsity of Σ1

k-formulas from L2; we also
define the system Π1

k-CAω
0 as RCAω

0 + (S2k), where (S2k) expresses that S2k exists.
We note that the operators νn from [2, p. 129,] are essentially S2n strengthened
to return a witness (if existant) to the Σ1

n-formula at hand.
Secondly, second-order arithmetic Z2 readily follows from ∪kΠ1

k-CAω
0 , or

from:

(∃E3 ≤3 1)(∀Y 2)
[
(∃f1)(Y (f) = 0) ↔ E(Y) = 0

]
, (∃3)

and we therefore define ZΩ
2 ≡ RCAω

0 + (∃3) and Zω
2 ≡ ∪kΠ1

k-CAω
0 , which are

conservative over Z2 by [9, Cor. 2.6,]. Despite this close connection, Zω
2 and ZΩ

2

can behave quite differently, as discussed in e.g. [13, §2.2,]. The functional from
(∃3) is also called ‘∃3’, and we use the same convention for other functionals.

References

1. Borel, E.: Leçons sur la théorie des fonctions. Gauthier-Villars, Paris (1898)
2. Buchholz, W., Feferman, S., Pohlers, W., Sieg, W.: Iterated Inductive Definitions

and Subsystems of Analysis: Recent Proof-Theoretical Studies. LNM, vol. 897.
Springer, Heidelberg (1981). https://doi.org/10.1007/BFb0091894

3. Cousin, P.: Sur les fonctions de n variables complexes. Acta Math. 19, 1–61 (1895)
4. Feferman, S.: How a Little Bit goes a Long Way: Predicative Foundations of Analy-

sis (2013). unpublished notes from 1977–1981 with updated introduction. https://
math.stanford.edu/∼feferman/papers/pfa.pdf

5. Friedman, H.: Some systems of second order arithmetic and their use. In: Proceed-
ings of the ICM (Vancouver, B. C., 1974), vol. 1, pp. 235–242 (1975)

6. Friedman, H.: Systems of second order arithmetic with restricted induction, I & II
(abstracts). J. Symbolic Logic 41, 557–559 (1976)

https://doi.org/10.1007/BFb0091894
https://math.stanford.edu/~feferman/papers/pfa.pdf
https://math.stanford.edu/~feferman/papers/pfa.pdf

406 S. Sanders

7. Giusto, M., Simpson, S.G.: Located sets and reverse mathematics. J. Symbolic
Logic 65(3), 1451–1480 (2000)

8. Hirst, J.L.: A note on compactness of countable sets. In: Reverse Mathematics
(2001). Lect. Notes Log., vol. 21. Assoc. Symbol. Logic 2005, pp. 219–221

9. Hunter, J.: Higher-order reverse topology, ProQuest LLC, Ann Arbor, MI (2008).
Thesis (Ph.D.)-The University of Wisconsin - Madison

10. Kohlenbach, U.: Higher order reverse mathematics. In: Reverse Mathematics
(2001). Lect. Notes Log., vol. 21. ASL 2005, pp. 281–295

11. Kunen, K.: Set theory, Studies in Logic, vol. 34. College Publications, London
(2011)

12. Lindeöf, E.: Sur Quelques Points De La Théorie Des Ensembles. Comptes Rendus,
pp. 697–700 (1903)

13. Normann, D., Sanders, S.: On the mathematical and foundational signifi-
cance of the uncountable. J. Math. Logic (2019). https://doi.org/10.1142/
S0219061319500016

14. Normann, D., Sanders, S.: Representations in measure theory. arxiv:1902.02756
(2019, Submitted)

15. Normann, D., Sanders, S.: Open sets in reverse mathematics and computability
theory. J. Logic Computability 30(8), 40 (2020)

16. Normann, D., Sanders, S.: Pincherle’s theorem in reverse mathematics and com-
putability theory. Ann. Pure Appl. Logic 171(5), 102788, 41 (2020)

17. Normann, D., Sanders, S.: On the uncountability of R, p. 37. arxiv:2007.07560
(2020, Submitted)

18. Normann, D., Sanders, S.: The axiom of choice in computability theory and reverse
mathematics. J. Log. Comput. 31(1), 297–325 (2021)

19. Normann, D., Sanders, S.: On robust theorems due to Bolzano, Weierstrass, and
Cantor in Reverse Mathematics, p. 30. https://arxiv.org/abs/2102.04787 (2021)

20. Sakamoto, N., Yamazaki, T.: Uniform versions of some axioms of second order
arithmetic. MLQ Math. Log. Q. 50(6), 587–593 (2004)

21. Sanders, S.: Nets and reverse mathematics: a pilot study. Computability 34 (2019).
https://doi.org/10.3233/COM-190265

22. Sanders, S.: Plato and the foundations of mathematics, p. 40. arxiv:1908.05676
(2019, Submitted)

23. Sanders, S.: Splittings and disjunctions in reverse mathematics. Notre Dame J.
Form. Log. 61(1), 51–74 (2020)

24. Sanders, S.: Reverse mathematics of topology: dimension, paracompactness, and
splittings. Notre Dame J. Formal Logic 61(4), 537–559 (2020)

25. Simpson, S.G. (ed.): Reverse Mathematics (2001). Lecture Notes in Logic, vol. 21,
ASL, 2005

26. Simpson, S.G. (ed.): Subsystems of Second Order Arithmetic, 2nd edn. Perspectives
in Logic. Cambridge University Press (2009)

27. Stillwell, J.: Reverse Mathematics, Proofs from the Inside Out. Princeton Univer-
sity Press, Princeton (2018)

28. Swartz, C.: Introduction to Gauge Integrals. World Scientific (2001)
29. Troelstra, A.S.: Metamathematical Investigation of Intuitionistic Arithmetic and

Analysis. LNM, vol. 344. Springer, Heidelberg (1973). https://doi.org/10.1007/
BFb0066739

30. Troelstra, A.S., van Dalen, D.: Constructivism in Mathematics. Vol. I. Studies in
Logic and the Foundations of Mathematics, vol. 121. North-Holland (1988)

31. Vitali, G.: Sui gruppi di punti e sulle funzioni di variabili reali. Atti della Accademia
delle Scienze di Torino, vol. XLIII 4, pp. 229–247 (1907)

https://doi.org/10.1142/S0219061319500016
https://doi.org/10.1142/S0219061319500016
http://arxiv.org/abs/1902.02756
http://arxiv.org/abs/2007.07560
https://arxiv.org/abs/2102.04787
https://doi.org/10.3233/COM-190265
http://arxiv.org/abs/1908.05676
https://doi.org/10.1007/BFb0066739
https://doi.org/10.1007/BFb0066739

Non-collapse of the Effective Wadge
Hierarchy

Victor Selivanov(B)

A.P. Ershov Institute of Informatics Systems SB RAS and S.L. Sobolev Institute
of Mathematics SB RAS, Novosibirsk, Russia

vseliv@iis.nsk.su

Abstract. We study the recently suggested effective Wadge hierarchy
in effective spaces, concentrating on the non-collapse property. Along
with hierarchies of sets, we study hierarchies of k-partitions which are
interesting on their own. In particular, we establish sufficient conditions
for the non-collapse of the effective Wadge hierarchy and apply them to
some concrete spaces.

Keywords: Effective space · Computable quasi-Polish space · Effective
Wadge hierarchy · Fine hierarchy · k-partition · Non-collapse property

1 Introduction

Hierarchies are basic tools for calibrating objects according to their complexity,
hence the non-collapse of a natural hierarchy is fundamental for understanding
the corresponding notion of complexity. A lot of papers investigate the non-
collapse property in different contexts, see e.g. [16] for a survey of hierarchies
relevant to those studied in this paper.

The Wadge hierarchy (WH), which is fundamental for descriptive set theory
(DST), was developed for the Baire space N , first for the case of sets [22], and
recently for the Q-valued Borel functions on N , for any better quasiorder Q [10].
A convincing extension of this to arbitrary topological spaces was developed in
[20] (see also [13,19]). In [21] we introduced and studied the effective Wadge
hierarchy (EWH) in effective spaces as an instantiation of the fine hierarchy
(FH) [16]. Here we concentrate on the non-collapse property of this hierarchy.
As in [21], along with the EWH of sets we consider the EWH of k-partitions for
k > 2 (sets correspond to 2-partitions).

The non-collapse of EWH is highly non-trivial already for the discrete space
N of natural numbers. In fact, for the case of sets it follows from the results on the
non-collapse of a FH in [15]; m-degrees of complete sets in levels of this hierarchy
are among the “natural m-degrees” studied recently in [9]. For k-partitions with

V. Selivanov—The work is supported by Mathematical Center in Akademgorodok
under agreement No. 075-15-2019-1613 with the Ministry of Science and Higher Edu-
cation of the Russian Federation.

c© Springer Nature Switzerland AG 2021
L. De Mol et al. (Eds.): CiE 2021, LNCS 12813, pp. 407–416, 2021.
https://doi.org/10.1007/978-3-030-80049-9_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80049-9_40&domain=pdf
https://doi.org/10.1007/978-3-030-80049-9_40

408 V. Selivanov

k > 2, the non-collapse property was not proved in [15] because that time we
did not have a convincing notion of a hierarchy of k-partitions (introduced only
in [17,19]). Here we prove additional facts which, together with the results in
[15], imply the non-collapse of EWH of k-partitions in N. We also prove the
non-collapse of EWH in N , providing an effective version for the fundamental
result in [10]; modulo this result, our proofs for N are easy.

Along with the spaces N and N , which are central in computability theory,
we discuss the non-collapse of EWH for other spaces which became popular in
computable analysis and effective DST. The preservation property established
in [20,21] implies that the non-collapse property is inherited by the (effective)
continuous open surjections which suggests a method for proving non-collapse.
Unfortunately, this method is less general than the dual inheritance method for
the Hausdorff-Kuratowski property [20,21], that completely reduces this prop-
erty in (computable) quasi-Polish spaces to that in the Baire space. Nevertheless,
the method suggested here provides some insight which enables e.g. to show that
the non-collapse property is hard to prove for the majority of spaces.

The FH (as most objects related to the WH) has inherent combinatorial
complexity resulting in rather technical notions and involved proofs. For this
reason, it was not possible to make this paper completely self-contained. But,
with papers [10,15,17,21] at hand, the reader would have everything to under-
stand the remaining technical details.

After preliminaries in the next section, we recall in Sect. 3 necessary informa-
tion on the EWH. In Sect. 4 we define some versions of the non-collapse property
and relate them to the preservation property. In Sect. 5 we state our main tech-
nical results on the EWH in N and the domain ω≤ω of finite and infinite strings
and apply them to some other spaces, illustrating the method of Sect. 4.

2 Preliminaries

We use standard set-theoretical notation, in particular, Y X is the set of functions
from X to Y , and P (X) is the class of subsets of a set X. All (topological) spaces
in this paper are countably based T0 (cb0-spaces, for short). An effective cb0-
space is a pair (X,β) where X is a cb0-space, and β : ω → P (X) is a numbering
of a base in X such that there is a uniformly c.e. sequence {Aij} of c.e. sets with
β(i) ∩ β(j) =

⋃
β(Aij) where β(Aij) is the image of Aij under β. We simplify

(X,β) to X if β is clear from the context. The effectively open sets in X are the
sets

⋃
β(W), for some c.e. set W ⊆ N. The standard numbering {Wn} of c.e.

sets [14] induces a numbering of the effectively open sets. The notion of effective
cb0-space allows to define e.g. computable and effectively open functions between
such spaces [18,23].

Among effective cb0-space are: the discrete space N of natural numbers,
the Euclidean spaces R

n, the Scott domain Pω (see [1] for information about
domains), the Baire space N = N

N, the Baire domain ω≤ω of finite and infinite
strings over ω with the Scott topology, the Cantor space 2ω of binary infinite
strings, the Cantor domains n≤ω, 2 ≤ n < ω, of finite and infinite strings over

Non-collapse of the Effective Wadge Hierarchy 409

{0, . . . , n − 1} with the Scott topology; all these spaces come with natural num-
berings of bases. The space N is trivial topologically but very interesting for
computability theory.

Quasi-Polish spaces (introduced in [4]) are important for DST and have sev-
eral characterisations. Effectivizing one of them we obtain the following notion
identified implicitly in [18] and explicitly in [5,7]: a computable quasi-Polish space
is an effective cb0-space (X,β) such that there exists a computable effectively
open surjection from N onto (X,β). Most spaces of interest for computable anal-
ysis and effective DST, in particular the aforementioned ones, are computable
quasi-Polish.

Effective hierarchies were studied by many authors, see e.g. [2,3,6,12,18]. Let
{Σ0

1+n(X)}n<ω be the effective Borel hierarchy, and {Σ−1,m
1+n (X)}n (with Σ−1,1

usually simplified to Σ−1) be the effective Hausdorff difference hierarchy over
Σ0

m(X) in arbitrary effective cb0-space X. We do not repeat standard definitions
but mention that the effective hierarchies come with standard numberings of all
levels, so we can speak e.g. about uniform sequences of sets in a given level. We
use definitions based on set operations (see e.g. [18]); there is also an equivalent
approach based on the Borel codes [8,11]. E.g., Σ0

1(X) is the class of effectively
open sets in X, Σ−1

2 (X) is the class of differences of Σ0
1(X)-sets, and Σ0

2(X) is
the class of effective countable unions of Σ−1

2 (X)-sets. A function f : X → Y is
Σ0

2 -measurable if f−1(B) ∈ Σ0
2 for each B ∈ Σ0

1(Y), effectively on the indices.
Levels of effective hierarchies are denoted in the same manner as levels of the

corresponding classical hierarchies, using the lightface letters Σ,Π instead of
the boldface Σ,Π used for the classical hierarchies [8,12]. Any lightface notion
in this paper will have a classical boldface counterpart, as is standard in DST.
In particular, f : X → Y is Σ0

2-measurable if f−1(B) ∈ Σ0
2 for each B ∈ Σ0

1(Y).
Every Σ0

2 -measurable function is Σ0
2-measurable.

As preparation to the next section, let us recall a notation system for levels
of the FH of k-partitions introduced in [17]. Let ω<ω be the set of finite strings
of natural numbers including the empty string ε, and |σ| be the length of a
string σ. A tree is a nonempty initial segment of (ω<ω;�) where � is the prefix
relation; by default, all trees below are finite. A tree T is normal if τ(i + 1) ∈ T
implies that τi ∈ T . For any finite tree T and any τ ∈ T , define the tree
T (τ) = {σ | τ · σ ∈ T}. Then any non-singleton tree T is determined by the
singleton tree {ε} and the trees T (i), i ∈ T of lesser tree ranks than T , then
T = {ε} ∪

⋃
i∈T T (i). We will use this representation in the proofs by induction

on ranks. By a forest we mean an initial segment of (ω<ω \ {ε};�). Note that
there is a unique empty forest, and for any forest F there is a unique tree T
with F = T \ {ε}. The non-empty forest F may be considered as the non-empty
disjoint union of trees F (i), i ∈ ω ∩ F .

Next we recall notation related to iterated labeled trees from [17]. Let (Q;≤)
be a preorder; abusing notation we often denote it just by Q. A Q-tree is a
pair (T, t) consisting of a tree T ⊆ ω<ω and a labeling t : T → Q. Let T (Q)
denote the set of all finite Q-trees. The h-preorder ≤h on T (Q) is defined as
follows: (T, t) ≤h (V, v), if there is a monotone function f : (T ;�) → (S;�)

410 V. Selivanov

satisfying ∀τ ∈ T (t(τ) ≤ v(f(τ))). For any q ∈ Q, let s(q) = ({ε}, q) be the
singleton tree labeled by q. The preorder Q is called WQO if it has neither infinite
descending chains nor infinite antichains. An example of WQO is the antichain
k̄ = {0, . . . , k − 1} with k elements. A famous Kruskal’s theorem implies that if
Q is WQO then (TQ;≤h) is WQO.

Define the sequence {Tm(k̄)}m<ω of preorders by induction on m as follows:
T0(k̄) = k and Tm+1(k̄) = TTm(k̄). The sets Tm(k̄), m < ω, are pairwise disjoint
but, identifying i < k with s(i), we may think that T0(k̄) � T1(k̄), i.e. the
quotient-poset of the first preorder is an initial segment of the quotient-poset of
the second. This also induces an embedding of Tm(k̄) into Tm+1(k̄) as an initial
segment, so (abusing notation) we may think that T0(k̄) � T1(k̄) � · · · , hence
Tω(k̄) =

⋃
m<ω Tm(k̄) is WQO w.r.t. the induced preorder which we also denote

≤h. The embedding s is extended to Tω(k̄) by defining s(T) as the singleton tree
labeled by T . For k = 2, the quotient-poset of (Tω(2̄);≤h) has order type 2̄ · ε0
(see Proposition 8.28 in [17]).

The construction in the previous paragraph is made precise by using the
known fact that the category of WQOs has arbitrary colimits and considering
Tω(k̄) as the colimit of the sequence {Tm(k̄)}.

3 Effective Wadge Hierarchy

Since the EWH is a special case of the FH, we first recall some information about
the FH from [17,21]. We warn the reader that our definition of EWH uses set
operations instead of the Wadge reducibility the reader could expect to see. The
Wadge reducibility leads to complex degree structures in non-zero-dimensional
spaces which hide the hierarchy (see [20,21] for detailed discussion).

By a base in a set X we mean a sequence L(X) = {Ln}n<ω of subsets of
P (X) such that any Ln is closed under union and intersection, contains ∅,X,
and A ∈ Ln implies that A,X \ A ∈ Ln+1. With any base L(X) we associate
some other bases as follows. For any m < ω, let Lm(X) = {Lm+n(X)}n; we
call this base m-shift of L(X). For any U ∈ L0, let L(U) = {Ln(U)}n<ω where
Ln(U) = {U ∩S | S ∈ Ln(X)}; we call this base in U the U -restriction of L(X).

We define the FH not only of subsets of X but also of k-partitions A : X → k̄,
1 < k < ω. Note that 2-partitions of X are essentially subsets of X. For any finite
tree T ⊆ ω<ω and any T -family {Uτ} of subsets of X, we define the T -family
{Ũτ} of subsets of X by Ũτ = Uτ \

⋃
{Uτ ′ | τ � τ ′ ∈ T}. The T -family {Uτ} is

monotone if Uτ ⊇ Uτ ′ for all τ � τ ′ ∈ T . We associate with any T -family {Uτ}
the monotone T -family {U ′

τ} by U ′
τ =

⋃
τ ′�τ Uτ ′ . A T -family {Vτ} is reduced if

it is monotone and satisfies Vτi ∩ Vτj = ∅ for all τi, τj ∈ T . Obviously, for any
reduced T -family {Vτ} the components Ṽτ are pairwise disjoint.

We will use the following technical notions. The first one is the notion “F is
a T -family in L(X)” defined by induction as follows: if T ∈ T0(k̄) then F = {X};
if (T, t) ∈ Tm+1(k̄) then F = ({Uτ}, {Fτ}) where {Uτ} is a monotone T -family
of L0-sets with Tε = X and, for each τ ∈ T , Fτ is a t(τ)-family in L1(Ũτ).
The version of this notion “F is a reduced T -family in L(X)” is obtained by

Non-collapse of the Effective Wadge Hierarchy 411

taking the reducible T -families in place of the monotone ones. The second is the
notion “a T -family F in L(X) determines A : X → k̄” defined by induction as
follows: if T ∈ T0(k̄), T = i < k (so F = {X}), then T determines the constant
partition A = λx.i; if (T, t) ∈ Tm+1(k̄) (so F is of the form ({Uτ}, {Fτ})) then
T determines the k-partition A such that A|Ũτ

= Bτ for every τ ∈ T , where
Bτ : Ũτ → k̄ is the k-partition of Ũτ determined by Fτ .

As explained in [20], the T -family F that determines A provides a mind-
change algorithm for computing A(x) (see Section 3 of [21] for additional details).
We are ready to give a precise definition of the FH of k-partitions over L(X).

Definition 1. The FH of k-partitions over L(X) is the family {L(X,T)}T∈Tω(k̄)

of subsets of kX where L(X,T) is the set of A : X → k̄ determined by some T -
family in L(X).

As shown in [17], T ≤h S implies L(X,T) ⊆ L(X,S), hence ({L(X,T) | T ∈
Tω(k̄)};⊆) is WQO. The FH of sets obtained from this construction for k = 2
is even semi-well-ordered since the quotient-poset of (T2(ω);≤h) has order type
2̄ · ε0 (see Definition 8.27 and Proposition 8.28 in [17]).

The FH of k-partitions over the effective Borel base L(X) = {Σ0
1+n(X)} in

an effective cb0-space X is written as {Σ(X,T)}T∈Tω(k̄) and called the effective
Wadge hierarchy in X. For k = 2 the structure of levels degenerate to the semi-
well-ordered structure which enables the Σ,Π-notation for them. The EWH of
sets subsumes many hierarchies including those mentioned in Sect. 2.

The corresponding boldface FH {Σ(X,T)}T∈Tω(k̄) over the finite Borel base
L(X) = {Σ0

1+n(X)} is written as {Σ(X,T)}T∈Tω(k̄) and is called finitary Wadge
hierarchy in X. It forms a small but important fragment of the whole (infinitary)
Wadge hierarchy of k-partitions in X (which is constructed from the whole
Borel hierarchy by taking countable well-founded trees T in place of the finite
trees T). The latter hierarchy, which may be defined in arbitrary space, was
introduced and studied in [20]. For the effective and boldface versions we have
the obvious inclusions Σ(X,T) ⊆ Σ(X,T). In this paper we stick to levels of
EWH corresponding to finite trees; the levels corresponding to computable well-
founded trees (briefly discussed in [21]) are important on their on and we plan to
investigate them in a separate publication. In [20,21] the following preservation
property for levels of the introduced hierarchies was established.

Proposition 1. Let f : Y → X be a computable effectively open surjection
between effective cb0-spaces. Then, for all T ∈ Tω(k̄) and A ∈ kX , we have: A ∈
Σ(X,T) iff A ◦ f ∈ Σ(Y, T). Similarly for the boldface versions and continuous
open surjections between cb0-spaces.

4 Non-collapse Property

Here we establish some general facts about the non-collapse property. First we
carefully define natural versions of this property.

412 V. Selivanov

We say that EWH {Σ(X,T)}T∈Tω(k̄) does not collapse at level T if Σ(X,T) ⊆
Σ(X,V) for each V ∈ Tω(k̄) with T ≤h V ; it strongly does not collapse at level T
if Σ(X,T) ⊆

⋃
{Σ(X,V) | V ∈ Tω(k̄), T ≤h V }. We say that {Σ(X,T)}T∈Tω(k̄)

(strongly) does not collapse if it (strongly) does not collapse at any level T ∈
Tω(k̄). The latter non-strong version is equivalent to saying that the quotient-
poset of (Tω(k̄);≤h) is isomorphic to ({Σ(X,T) | T ∈ Tω(k̄)};⊆).

Note that for the case of sets k = 2 these definitions are equivalent to the
standard definition of non-collapse in DST (Σ-levels are distinct from the corre-
sponding Π-levels), and the strong version is equivalent to the non-strong one.

The non-collapse for the boldface versions are defined in the same way. In
the effective case, there are also the following uniform versions of non-collapse
property which relate EWH to the corresponding WH. The EWH {Σ(X,T)}
uniformly does not collapse at level T if Σ(X,T) ⊆ Σ(X,V) for each V ∈ Tω(k̄)
with T ≤h V . It strongly uniformly does not collapse at level T if Σ(X,T) ⊆⋃

{Σ(X,V) | V ∈ Tω(k̄), T ≤h V }. It strongly uniformly does not collapse if
Σ(X,T) ⊆

⋃
{Σ(X,V) | V ∈ Tω(k̄), T ≤h V } for all T ∈ Tω(k̄).

The next assertion follows from the inclusions between levels.

Proposition 2. For any effective cb0-space X we have: if {Σ(X,T)} (strongly)
uniformly does not collapse (at level T) then both {Σ(X,T)} and {Σ(X,T)}
(strongly) do not collapse (at level T).

For cb0-spaces X and Y , let X ≤co Y mean that there is a continuous open
surjection f from Y onto X. For effective cb0-spaces X and Y , let X ≤eco Y
mean that there is a computable effectively open surjection f from Y onto X.
Clearly, both ≤eco and ≤co are preorders, and the first preorder is contained in
the second. The non-collapse property is inherited w.r.t. these preorders:

Proposition 3. 1. If X ≤co Y and {Σ(X,T)}T∈Tω(k̄) (strongly) does not col-
lapse (at level T) then {Σ(Y, T)} (strongly) does not collapse (at level T).
The same holds for the infinitary version of WH in X.

2. If X ≤eco Y and {Σ(X,T)}T∈Tω(k̄) (strongly) does not collapse (at level T)
then {Σ(Y, T)} (strongly) does not collapse (at level T). The same holds for
the uniform version of non-collapse property.

Proof. All assertions follow from the definitions and the preservation property,
so consider only the finitary version in item (1). Let X ≤co Y via f : Y → X, and
{Σ(X,T)} does not collapse at level T . We have to show that Σ(Y, T) ⊆ Σ(Y, V)
for any fixed V ∈ Tω(k̄) with T ≤h V . Choose A ∈ Σ(X,T) \ Σ(X,V). By
Proposition 1 we get A ◦ f ∈ Σ(Y, T) \ Σ(Y, V). ��

Corollary 1. 1. If X is quasi-Polish and {Σ(X,T)}T∈Tω(k̄) (strongly) does not
collapse (at level T) then {Σ(N , T)} (strongly) does not collapse (at level T).
The same holds for the infinitary version of the WH.

2. If X is computable quasi-Polish and {Σ(X,T)}T∈Tω(k̄) (strongly) does not
collapse (at level T) then {Σ(N , T)} (strongly) does not collapse (at level T).
The same holds for the uniform version.

Non-collapse of the Effective Wadge Hierarchy 413

3. If X is the product of a sequence {Xn} of nonempty cb0-spaces, and the
finitary WH {Σ(Xn, T)}T∈Tω(k̄) (strongly) does not collapse (at level T) for
some n < ω, then {Σ(X,T)} (strongly) does not collapse (at level T). The
same holds for the infinitary version of the WH.

4. If X is the product of a uniform sequence {Xn} of nonempty effective cb0-
spaces, and {Σ(Xn, T)}T∈Tω(k̄) (strongly) does not collapse (at level T) for
some n < ω, then {Σ(X,T)} (strongly) does not collapse (at level T). The
same holds for the uniform version.

Proof. (1) Follows from Proposition 3(1) since X is quasi-Polish iff X ≤co N .
(2) Follows from Proposition 3(2) since X is computable quasi-Polish iff

X ≤eco N .
(3) Follows from Proposition 3(1) since Xn ≤co X.
(4) Follows from Proposition 3(2) since Xn ≤eco X.

��

Although the assertion (1) is void (because the infinitary WH in N strongly
does not collapse [10,22]), it is of some methodological interest because it shows
that proving the non-collapse of WH in any quasi-Polish space is at least as
complicated as proving it in N , and the proof of the latter fact is highly non-
trivial. The same applies to item (2) but this assertion is non-void because the
non-collapse of EWH in N was open until this paper, to my knowledge. In
the next section we give prominent examples of spaces with the non-collapse
property. A good strategy to obtain broad classes of such spaces is to make
them as low as possible w.r.t. ≤co,≤eco, and use the preservation property.

5 Some Examples

In this section we illustrate the method of Proposition 3 by proving the non-
collapse of EWH and WH in some concrete spaces.

First we consider the domain ω≤ω. For this space, the result is obtained
by some observations and additions to the proofs in [10], so let us recall some
information from that paper. Let ω̂ = ω ∪ {p} be obtained from ω by adjoining
a new element p; we endow ω̂ with the discrete topology. For x ∈ ω̂ω, let δ(x) ∈
ω≤ω be obtained from x by deleting all entries of p. A function f : ω̂ω → ω̂ω

(resp. A : ω̂ω → k̄) is conciliating if δ ◦ f = f∗ ◦ δ (resp. A = A∗ ◦ δ) for
some (unique) f∗ : ω≤ω → ω≤ω (resp. A∗ : ω≤ω → k̄). The function f is
initializable if, for every τ ∈ ω̂<ω, there is a continuous function hτ : ω̂ω → ω̂ω

such that δ(f(x)) = δ(f(τhτ (x))) for all x ∈ ω̂ω. In Proposition 2.15 from [10], an
initializable Σ0

2-measurable conciliating function U : ω̂ω → ω̂ω was constructed
which is universal in the sense that for every Σ0

2-measurable conciliating function
V : ω̂ω → ω̂ω there is a continuous function h : ω̂ω → ω̂ω such that δ◦V = δ◦U◦h.

Theorem 1. 1. The WH {Σ(ω≤ω, T)}T∈Tω(k̄) strongly does not collapse. Sim-
ilarly for the infinitary WH.

2. The EWH {Σ(ω≤ω, T)}T∈Tω(k̄) strongly uniformly does not collapse.

414 V. Selivanov

Proof. (1) For notation simplicity, we only consider the finitary case, in the
infinitary case the argument is the same. The Definition 3.1.4 in [10], using
the induction on trees and the universal function U , associates with any tree
T a conciliatory ΩT : ω̂ω → k̄. By the results in Sect. 3.3 of [10], ΩT is in
Σ(ω̂ω, T)\

⋃
{Σ(ω̂ω, V) | V ∈ Tω(k̄), T ≤h V }. As the function δ is a continuous

open surjection and ΩT = Ω∗
T ◦ δ, we get Ω∗

T ∈ Σ(ω≤ω, T) \
⋃

{Σ(ω≤ω, V) | V ∈
Tω(k̄), T ≤h V } by Proposition 1, completing the proof.

(2) Inspecting the proof of Proposition 2.15 (resp. Lemma 2.11) in [10] shows
that U and U∗ are in fact Σ0

2 -measurable. Inspecting the proof of Lemma 2.15
in [10] shows that ΩT is in Σ(ω̂ω, T). Clearly, δ is a computable effectively open
surjection. Thus, Ω∗

T is in Σ(ω≤ω, T) \
⋃

{Σ(ω≤ω, V) | V ∈ Tω(k̄), T ≤h V } by
Proposition 1, completing the proof. ��

This theorem and Proposition 1 imply some new information on the EWH
in Baire and Cantor spaces:

Theorem 2. The EWHs {Σ(N , T)} and {Σ(C, T)}T∈Tω(k̄) strongly uniformly
do not collapse.

Proof. As δ is a computable effectively open surjection, {Σ(ω̂ω, T)} strong uni-
formly does not collapse by Theorem 1 and Proposition 3. As ω̂ω is effectively
homeomorpic to N , the first assertion follows.

For the second assertion, consider the domain n≤ω, n ≥ 2, in place of ω≤ω.
A slight modification of the notions from the beginning of this section apply to
n≤ω. Also, a slight modification of the proof of Theorem 1 shows that it remains
true for n≤ω. As in the previous paragraph, {Σ(n̂ω, T)} strong uniformly does
not collapse. Since n̂ω is effectively homeomorpic to (n+1)ω, and thus to C, this
implies the second assertion. Note that the spaces n≤ω for distinct n are not
homeomorphic. ��

Next we discuss the EWH in N. Since N is discrete, the WH {Σ(N, T)}
collapses to very low levels (it has finitely many distinct levels), so the next
result cannot be improved to the strong uniform version.

Theorem 3. The EWH {Σ(N, T)}T∈Tω(k̄) strongly does not collapse.

Proof sketch. Let G be the ternary operation on kω introduced in [15]. For
i < k, let i be the constant function λn.i ∈ kω. Let 0(0) = 0 and 0(n+1) =
G(0,1,0(n)), then {0(n)} coincides (up to computable isomorphism) with the
usual sequence of iterations of Turing jump starting with 0. For any n < ω we
define the binary operation ·n on kω by ν ·n μ = G(μ, ν,0(n)). We also define the
family {fn

m}n<ω of functions from Tm(k̄) to kω by induction on m as follows. Let
fn
0 (i) = i for all i < k, n < ω. It remains to define fn

m+1 from fn+1
m . Let (T, t) ∈

Tk(m + 1) = TTk(m). If T is singleton we set fn
m+1(T) = fn+1

m (t(ε)), otherwise
we set fn

m+1(T) = fn+1
m (t(ε)) ·n (

⊕
{fn

m+1(T (i)) | i ∈ T}) (using induction on the
rank of T) where

⊕
is the finitary join operation on kω.

Using algebraic properties of G established in [15] and some additional similar
facts, it may be shown that for all T, V ∈ Tk(m) we have: T ≤h V iff fn

m(T) ≤

Non-collapse of the Effective Wadge Hierarchy 415

fn
m(V), where ≤ is the reducibility of numberings in kω (i.e., μ ≤ ν iff μ = ν ◦ g,

for some computable function g on ω). Using the representation of Tω(k̄) as
the colimit of the sequence of preorders {Tm(k̄)}, the sequence {f0m} induces a
function f : Tω(k̄) → kω such that T ≤h V iff f(T) ≤ f(V), for all T, V ∈ Tω(k̄).

Finally, from Definition 1 by induction on trees we deduce that, for any T ∈
Tω(k̄), we have: Σ(N, T) = {B ∈ kω | B ≤ f(T)}, i.e. f(T) is complete in Σ(N, T)
w.r.t. the reducibility of numberings. Thus, f(T) ∈ Σ(N, T) \

⋃
{Σ(N, V) | V ∈

Tω(k̄), T ≤h V }, completing the proof. ��
Theorem 3 implies non-collapse of EWH in many spaces:

Corollary 2. Let X = X0�X1�· · · be the disjoint union of a uniform sequence
{Xn} of nonempty effective cb0-spaces. Then the EWH {Σ(X,T)} strongly does
not collapse.

Proof. For x ∈ X, let g(x) be the unique number n with x ∈ Xn. Then g : X → N

is a computable effectively open surjection. By Theorem 3 and Proposition 1,
{Σ(X,T)} strongly does not collapse. ��

In particular, Corollary 2 applies to N � N � N � · · · which gives another
proof of the fact that {Σ(N , T)} strongly does not collapse. But properties
of witnesses for strong non-collapse given by Theorem 2 and Corollary 2 are
quite different: the first ones have typically high topological complexity while
the second ones are clopen (a k-partition A is clopen if A−1(i) is clopen for each
i < k).

However, Corollary 2 still does not apply to many spaces, e.g. to C or Pω
(because these spaces are compact), and to the intervals of R (because they are
connected).

The EWH strongly does not collapse also in Pω and R but the proofs of
this (which are not given in this paper) require additional modifications of our
method. We hope that suitable modifications apply to many other natural spaces.

References

1. Abramsky S., Jung, A.: Domain theory. In: Handbook of Logic in Computer Sci-
ence, vol. 3, pp. 1–168, Oxford (1994)

2. Becher, V., Grigorieff, S.: Borel and Hausdorff hierarchies in topological spaces
of Choquet games and their effectivization. Math. Struct. Comput. Sci. 25(7),
1490–1519 (2015)

3. Brattka, V.: Effective Borel measurability and reducibility of functions. Math.
Logic Q. 51(1), 19–44 (2005)

4. de Brecht, M.: Quasi-Polish spaces. Ann. Pure Appl. Logic 164, 356–381 (2013)
5. de Brecht, M., Pauly, A., Schröder, M.: Overt choice. Computability 9(3–4), 169–

191 (2020)
6. Hemmerling, A.: The Hausdorff-Ershov hierarchy in Euclidean spaces. Arch. Math.

Logic 45, 323–350 (2006)
7. Hoyrup, M., Rojas, C., Selivanov, V., Stull, D.M.: Computability on Quasi-Polish

spaces. In: Hospodár, M., Jirásková, G., Konstantinidis, S. (eds.) DCFS 2019.
LNCS, vol. 11612, pp. 171–183. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-23247-4 13

https://doi.org/10.1007/978-3-030-23247-4_13
https://doi.org/10.1007/978-3-030-23247-4_13

416 V. Selivanov

8. Kechris, A.S.: Classical Descriptive Set Theory. GTM, vol. 156. Springer, New York
(1995). https://doi.org/10.1007/978-1-4612-4190-4

9. Kihara, T., Montalbán, A.: The uniform Martin’s conjecture for many-one degrees.
Trans. Am. Math. Soc. 370(12), 9025–9044 (2018)

10. Kihara, T., Montalbán, A.: On the structure of the Wadge degrees of BQO-valued
Borel functions. Trans. Am. Math. Soc. 371(11), 7885–7923 (2019)

11. Louveau, A.: Recursivity and compactness. In: Müller, G.H., Scott, D.S. (eds.)
Higher Set Theory. LNM, vol. 669, pp. 303–337. Springer, Heidelberg (1978).
https://doi.org/10.1007/BFb0103106

12. Moschovakis, Y.N.: Descriptive Set Theory. North Holland, Amsterdam (2009)
13. Pequignot, Y.: A Wadge hierarchy for second countable spaces. Arch. Math. Logic

54(5–6), 659–683 (2015). https://doi.org/10.1007/s00153-015-0434-y
14. Rogers Jr, H.: Theory of Recursive Functions and Effective Computability.

McGraw-Hill, New York (1967)
15. Selivanov, V.L.: Hierarchies of hyperarithmetical sets and functions. Algebra Logic

22, 473–491 (1983). https://doi.org/10.1007/BF01978879
16. Selivanov, V.L.: Fine hierarchies and m-reducibilities in theoretical computer sci-

ence. Theor. Comput. Sci. 405, 116–163 (2008)
17. Selivanov, V.L.: Fine hierarchies via Priestley duality. Ann. Pure Appl. Logic 163,

1075–1107 (2012)
18. Selivanov, V.: Towards the effective descriptive set theory. In: Beckmann, A.,

Mitrana, V., Soskova, M. (eds.) CiE 2015. LNCS, vol. 9136, pp. 324–333. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-20028-6 33

19. Selivanov, V.L.: Towards a descriptive theory of cb0-spaces. Mathematical Struc-
tures in Computer Science, vol. 28, no. 8, pp. 1553–1580 (2017). arXiv:1406.3942v1
[Math.GN], 16 June 2014

20. Selivanov, V.: A Q-Wadge hierarchy in quasi-Polish spaces. J. Symbolic Logic
(2019). https://doi.org/10.1017/jsl.2020.52

21. Selivanov, V.L.: Effective Wadge hierarchy in computable quasi-Polish spaces.
Siberian Electron. Math. Rep. 18(1), 121–135 (2021). https://doi.org/10.33048/
semi.2021.18.010. arxiv:1910.13220v2

22. Wadge, W.: Reducibility and determinateness in the Baire space. Ph.D. thesis,
University of California, Berkely (1984)

23. Weihrauch, K.: Computable Analysis. TTCSAES. Springer, Heidelberg (2000).
https://doi.org/10.1007/978-3-642-56999-9

https://doi.org/10.1007/978-1-4612-4190-4
https://doi.org/10.1007/BFb0103106
https://doi.org/10.1007/s00153-015-0434-y
https://doi.org/10.1007/BF01978879
https://doi.org/10.1007/978-3-319-20028-6_33
http://arxiv.org/abs/1406.3942v1
https://doi.org/10.1017/jsl.2020.52
https://doi.org/10.33048/semi.2021.18.010
https://doi.org/10.33048/semi.2021.18.010
http://arxiv.org/abs/1910.13220v2
https://doi.org/10.1007/978-3-642-56999-9

Effective Inseparability
and Its Applications

Andrea Sorbi(B)

Department of Information Engineering and Mathematics,
University of Siena, 53100 Siena, Italy

sorbi@unisi.it

http://www3.diism.unisi.it/sorbi/

Abstract. We survey some recent applications of the classical notion
of effective inseparability to computably enumerable structures, formal
systems and lattices of sentences.

Keywords: Effective inseparability · Lattices of sentences ·
Computably enumerable structures

The notion of effective inseparability for pairs of disjoint sets of natural num-
bers is due to Smullyan [14].

Definition 1. A pair (A,B) of sets of natural numbers is said to be effectively
inseparable (or, simply, e.i.) if the pair is disjoint, i.e. A ∩ B = ∅, and there
exists a partial computable function ψ(u, v) (called a productive function for the
pair) such that

(∀u, v)[A ⊆ Wu &B ⊆ Wv &Wu ∩ Wv = ∅ ⇒ ψ(u, v) ↓ &ψ(u, v) /∈ Wu ∪ Wv].

When applied to computably enumerable (or, simply, c.e.) sets, this notion pro-
vides a natural generalization to disjoint pairs of the notion of creativeness for a
single set. In particular: each half of an e.i. pair of c.e. sets is creative; if (A,B)
is an e.i. pair of c.e. sets then (C,D) ≤1 (A,B) for every disjoint pair of c.e.
sets (C,D), i.e. there exists a 1-1 computable function f which simultaneously
1-reduces C ≤1 A and D ≤1 B (this shows that 1-completeness of creative sets
generalizes to e.i. pairs of c.e. sets); every two pairs of e.i. pairs of c.e. sets are
computably isomorphic (hence the Myhill Isomorphism Theorem for creative
sets generalizes to e.i. pairs of c.e. sets). The proofs of these theorems rely on
beautiful applications of the Recursion Theorem, in the form (due to Smullyan)
of the Double Recursion Theorem.

Effective inseparability was exploited by Smullyan to shed new insights on
the Gödel incompleteness phenomenon of formal systems. If T is even a very

Partially supported by PRIN 2017 Grant “Mathematical Logic: models, sets, com-
putability”. Sorbi is a member of INDAM.

c© Springer Nature Switzerland AG 2021
L. De Mol et al. (Eds.): CiE 2021, LNCS 12813, pp. 417–423, 2021.
https://doi.org/10.1007/978-3-030-80049-9_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80049-9_41&domain=pdf
http://orcid.org/0000-0001-9288-3290
https://doi.org/10.1007/978-3-030-80049-9_41

418 A. Sorbi

weak c.e. consistent system of arithmetic such as Robinson’s R or Q (see [15]),
then one can show that the pair (ThmT,RefT) is an e.i. pair of c.e. sets, where
ThmT consists of the (Gödel numbers of the) sentences which are theorems of
T, and RefT consists of the (Gödel numbers of the) refutable sentences, i.e. the
sentences which are negations of theorems of T. This implies that T is essentially
undecidable, i.e. every consistent c.e. extension of T is undecidable, since disjoint
pairs extending e.i. pairs are e.i., and thus consist of undecidable sets.

Effective inseparability and Smullyan’s results for pairs were subsequently
generalized by Cleave [4] from pairs to c.e. sequences of mutually disjoint sets
computably listed without repetitions. More recently the notion of effective
inseparability has been applied to uniformly c.e. sequences of sets which pro-
vide partitions of the set ω of natural numbers, or, equivalently, to computably
enumerable equivalence relations (called also ceers) on ω. Namely, an equiva-
lence relation R on ω is uniformly effectively inseparable (abbreviated as u.e.i.)
if it is nontrivial (i.e. it has more than one equivalence class) and there is a com-
putable function f(x, y) such that if x�Ry then ϕf(x,y) is a productive function
witnessing that the pair of equivalence classes ([x]R, [y]R) is effectively insep-
arable. Moreover, if R,S are equivalence relations on ω let us say that R is
computably reducible to S (in symbols R ≤c S) if there exists a computable
function f such that x R y if and only if f(x) S f(y), for all x, y. In analogy
with the 1-completeness results of Smullyan and Cleave, the following theorem
holds.

Theorem 1 ([1]). Every u.e.i. ceer R is universal, i.e. S ≤c R for every ceer
S, with reduction provided by a 1-1 computable function.

There are nice and popular properties of equivalence relations that imply u.e.i.-
ness. The most useful one is given by the following definition (Shavrukov [12],
after Montagna [7]).

Definition 2. An equivalence relation S on ω is uniformly finitely precomplete
(abbreviated as u.f.p.) if it is nontrivial and there exists a computable function
of three variables f(D, e, x) (where D is a finite set given by its canonical index)
such that

(∀D, e, x)[ϕe(x) ↓ & (∃y)[y ∈ D &ϕe(x) S y] ⇒ ϕe(x) S f(D, e, x)]. (1)

It is not difficult to see:

Lemma 1. If S is u.f.p. then S is u.e.i..

By Theorem 1 our generalization to ceers of the notion of effective insep-
arability preserves the classical 1-completeness result, but interestingly it does
not preserve the Myhill Isomorphism Theorem, as there exist u.e.i. (even u.f.p.)
ceers which are not computably isomorphic. To see this, an important example
of a u.f.p. ceer is given by the relation ↔T of provable equivalence (i.e. x ↔T y if
T x ↔ y), where T is any c.e. consistent extension of R or Q ([7,8]). To provide
examples of u.f.p. ceers which are not computably isomorphic with ↔T, let us

Effective Inseparability and Its Applications 419

first recall a notion from the theory of numberings [6]: an equivalence relation
S on ω is precomplete if S is nontrivial and there is a computable function of
two variables f(e, x) such that if ϕe(x) ↓ then ϕe(x) S f(e, x). Several examples
of precomplete ceers are given in [16]: for instance, for every n ≥ 1, the rela-
tion ↔PA,n of provable equivalence in Peano Arithmetic PA restricted to the Σn

sentences is a precomplete ceer. As clearly precompleteness implies u.f.p.-ness,
we have that every precomplete ceer is u.f.p.. But ↔T cannot be computably
isomorphic with any precomplete ceer. To show this, notice that the function
induced by the connective ¬ provides a computable diagonal function for ↔T

(i.e. a computable function d such that x��↔Td(x) for every x), whereas no pre-
complete equivalence relation R admits a computable diagonal function by the
Ershov Fixed Point Theorem [6] stating that for every computable function f
there exists a number e such that e R f(e).

1 Does u.e.i. Imply u.f.p.?

We have observed that all u.f.p. equivalence relations are u.e.i.. Is the converse
true, or is it at least true for ceers?

Question 1. Does u.e.i.-ness coincide with u.f.p.-ness for ceers?

It is known in this regard that u.e.i.-ness for ceers is equivalent ([1]) to a seem-
ingly weaker version of u.f.p.-ness: namely, being u.e.i. is equivalent for ceers to
being weakly u.f.p., where an equivalence relation S is said to be weakly u.f.p. if
S is nontrivial and there exists a computable function f(D, e, x) for which (1)
is required to hold only if the elements of D are pairwise non-S-equivalent. This
is perhaps evidence for a negative answer to Question 1.

However, if more structure is added to a ceer R, then there are cases in
which u.e.i.-ness implies u.f.p-ness. In the following we agree that a computably
enumerable structure (or, simply, a c.e. structure) A is a nontrivial algebraic-
relational structure for which there exists a c.e. presentation, i.e. a structure Aω

of the same type as A but with universe ω and possessing uniformly computable
operations, uniformly c.e. relations, and a ceer =A which is a congruence on Aω

such that A is isomorphic with Aω divided by =A. For more on c.e. structures see
[11]. When talking about a c.e. structure A with some property, in the following
we intend in fact a c.e. presentation of it with that property.

With the exception of Corollary 1, the results of this section (coming from [2])
are proved by the Recursion Theorem, or suitable generalized versions of it.

Lemma 2. Let A be a c.e. algebra whose type contains two binary operations
+, ·, and two constants (presented by the numbers) 0, 1 such that + is associative,
the pair of sets 0A = {x : x =A 0}, and 1A = {x : x =A 1} is e.i., and, for every
a,

a + 0 =A a, a · 0 =A 0, a · 1 =A a.

Then =A is a u.f.p. ceer.

420 A. Sorbi

The usefulness of this lemma consists in the fact that from effective insep-
arability of just the pair (0A, 1A) one can infer that =A is not only u.e.i., but
even u.f.p.. As a first application, we look at c.e. lattices. If L is a c.e. lattice
then its preordering relation ≤L is a c.e. preordering relation on ω, and a =L b
if and only if a ≤L b and b ≤L a.

Definition 3. A c.e. lattice L is said to be effectively inseparable (or simply
e.i.) if L is bounded, with, say, the numbers 0 and 1 presenting the least element
and the greatest element, respectively, and the pair of sets (0L, 1L) is e.i.. Let us
also say that a c.e. lattice L is u.e.i. or u.f.p. if so is the ceer =L.

By Lemma 2 we have:

Theorem 2. If L is an e.i. c.e. lattice then L is u.f.p..

Given two preordering relations R,S on ω, one says that R is computably
reducible to S (in symbols, R ≤c S) if, as for equivalence relations, there exists a
computable function f such that x R y if and only if f(x) S f(y), for all x, y. A
c.e preorder R is universal, if S ≤c R, for every c.e. preorder S. A c.e preorder R
is locally universal, if R is nontrivial and for every pair a, b of natural numbers
such that a R b but b�Ra, and every c.e. preorder S, we have that S ≤c R via
some reducing function whose range is contained in the interval {x : a R x R b}.

Theorem 3. If L is a u.f.p. c.e. lattice then the associated c.e. pre-ordering
relation ≤L is locally universal.

If L is a c.e. lattice such that its preordering relation is locally universal then
we say that L is locally universal. A close look at the proofs of the previous two
theorems, and their uniformity, enables us to show that for ceers of the form =L,
where L is a c.e. lattice, Question 1 can be positively answered:

Corollary 1. Il L is a u.e.i. c.e. lattice then L is u.f.p.. In other words, for any
c.e. lattice L, =L is u.e.i. if and only if =L is u.f.p..

2 Applications to Lattices of Sentences

The following theorem from [2] is an interesting application of u.f.p.-ness. Its
proof is again by the Recursion Theorem.

Theorem 4. If L is a u.f.p. c.e. lattice then the associated pre-ordering relation
≤L is uniformly dense, i.e. there exists a computable function f such that for
every a, b if a <L b then a <L f(a, b) <L b, and if a =L a′ and b =L b′ then
f(a, b) =L f(a′, b′).

A c.e. lattice L is called uniformly dense if so is ≤L. Uniform density for lattices
of sentences of formal theories, where the preordering relation is presented by
provable implication, has been studied in [13]. Given a formal system T, suppose
that C is any c.e. set of sentences such that (via coding of sentences as numbers)

Effective Inseparability and Its Applications 421

the set LC,T (that is, C modulo provable equivalence in T) is a c.e. bounded
lattice with its operations presented by the propositional connectives, and its
preordering relation presented by provable implication. In view of Lemma 2,
Theorem 2, Theorem 3 and Theorem 4, the following results can be proved by
just showing that the pair (0LC,T

, 1LC,T
) is e.i.:

(1) If T is any c.e. consistent extension of Buss’ weak arithmetical system
S1

2 (see [3]) then ([10]) the c.e. lattice L∃Σb
1/T of ∃Σb

1 sentences modulo provable
equivalence in T, is uniformly dense (this answers a question in [13]), and locally
universal. We recall that Σb

1 is the smallest class of formulas containing the for-
mulas in which all possibly existing quantifiers are sharply bounded, i.e. bounded
by the length of a term, and is closed under sharply bounded quantification, the
connectives ∨,∧ and bounded existential quantification. Then ∃Σb

1 is comprised
of the formulas which arise from allowing a single unbounded existential quan-
tifier over a Σb

1 formula.
(2) If iT is a c.e. consistent intuitionistic extension of iR or iQ (the intuition-

istic versions of Robinson’s systems R or Q), and C is any c.e. set of sentences
closed under ∧,∨ and containing the ∃Δ0 sentences (in fact one can isolate much
smaller classes than ∃Δ0 which suffice for the claim) then the c.e. lattice LC/T

is locally universal and uniformly dense, [10]. It also follows that if T is any c.e.
(classical) consistent extension of R or Q, and C is as above, then the c.e. lattice
LC/T is locally universal and uniformly dense (for this last observation on classi-
cal theories, see also [2]). Taking C to be the class of all sentences, this includes
that if iT is a c.e. consistent intuitionistic extension of iR, or iQ, then the c.e.
Lindenbaum Heyting algebra LT is locally universal, and uniformly dense (for
this observation see also [2]).

3 Diagonal Functions

A positive answer to Question 1 would be relevant also to the study of the
complexity of word problems of c.e. structures. The word problem of a c.e. pre-
sentation of A is just the ceer =A. For instance it is known [7] that all ceers
R which are u.f.p. and possess a computable diagonal function are computably
isomorphic with ↔T, where T is any c.e. consistent extension of R or Q. We
recall from the informal remarks following Lemma 1 that a computable diagonal
function for an equivalence relation R on ω is a computable function d such that
x�Rd(x), for every x ∈ ω. Therefore the word problem of every e.i. Boolean alge-
bra (according to Definition 3) is computably isomorphic with ↔T. This follows
from the fact that an e.i. Boolean algebra is u.f.p. by Theorem 2, and obviously
has a computable diagonal function, for instance the one that maps x to its com-
plement; or it follows from the stronger result [8] that the e.i. Boolean algebras
are computably isomorphic with each other, and thus with the c.e. Lindenbaum
algebra of T. However the e.i. Boolean algebras do not cover all the cases of c.e.
structures having word problem computably isomorphic with ↔T. For instance,
a non-commutative c.e ring A satisfying the hypotheses of Lemma 2 has been
built in [5]. This implies that the word problem =A of A is u.f.p., which in turn

422 A. Sorbi

implies that =A is computably isomorphic to ↔T , as clearly =A has a com-
putable diagonal function, for instance the function d(a) = a + v for any fixed
v �=A 0. On the other hand it is known [9] that there is a finitely presented
group G whose word problem =G is u.e.i.. Clearly =G has a computable diago-
nal function: again, take d(a) = ab−1 for any fixed b �=G 1. So, should u.e.i.-ness
coincide with u.f.p.-ness for ceers or at least for finitely presented groups, it
would automatically follow that the group built in [9] has a word problem which
is computably isomorphic to ↔T. The existence of such a finitely presented group
is however still an open problem, since Lemma 2 does not apply to groups, and
at the same time it is still open whether for ceers u.e.i.-ness plus the existence
of a computable diagonal function implies u.f.p.-ness. A small approximation
to this is given by the following observation (Andrews and Sorbi, unpublished),
where a computable strong diagonal function for an equivalence relation R on ω
is a computable function d such that for every (canonical index of a) finite set
D, d(D) outputs a number such that d(D)�Rx, for every x ∈ D:

Fact 1. Every u.e.i. ceer with a computable strong diagonal function is u.f.p..

References

1. Andrews, U., Lempp, S., Miller, J.S., Ng, K.M., San Mauro, L., Sorbi, A.: Univer-
sal computably enumerable equivalence relations. J. Symbolic Logic 79(1), 60–88
(2014)

2. Andrews, U., Sorbi, A.: Effective inseparability, lattices, and pre-ordering
relations. Rev. Symbolic Logic. 13, 1–28 (2019). https://doi.org/10.1017/
S1755020319000273

3. Buss, S.R.: Bounded Arithmetic, Studies in Proof Theory. Lecture Notes, vol. 3.
Bibliopolis, Naples (1986)

4. Cleave, J.P.: Creative functions. Z. Math. Logik Grundlagen Math. 7, 205–212
(1961)

5. Delle Rose, V., San Mauro, L.F., Sorbi, A.: Word problems and ceers. Math. Logic
Q. 66(3), 341–354 (2020)

6. Yu. L.: Ershov, Theory of Numberings, Nauka, Moscow (1977)
7. Montagna, F.: Relatively precomplete numerations and arithmetic. J. Philos. Logic

11, 419–430 (1982)
8. Montagna, F., Sorbi, A.: Universal recursion theoretic properties of r.e. preordered

structures. J. Symbolic Logic 50(2), 397–406 (1985)
9. Nies, A., Sorbi, A.: Calibrating word problems of groups via the complexity of

equivalence relations. Math. Struct. Comput. Sci. 28(3), 1–15 (2018)
10. Pianigiani, D., Sorbi, A.: A note on uniform density in weak arithmetical theo-

ries. Arch. Math. Logic 60(1), 211–225 (2020). https://doi.org/10.1007/s00153-
020-00741-8

11. Selivanov, V.: Positive structures. In: Cooper, S.B., Goncharov, S.S. (eds.) Com-
putability and Models. The University Series in Mathematics. Springer, Boston
(2003). https://doi.org/10.1007/978-1-4615-0755-0 14

12. Shavrukov, V.Y.: Remarks on uniformly finitely precomplete positive equivalences.
Math. Logic Q. 42, 67–82 (1996)

https://doi.org/10.1017/S1755020319000273
https://doi.org/10.1017/S1755020319000273
https://doi.org/10.1007/s00153-020-00741-8
https://doi.org/10.1007/s00153-020-00741-8
https://doi.org/10.1007/978-1-4615-0755-0_14

Effective Inseparability and Its Applications 423

13. Yu, V.: Shavrukov and Visser, A., Uniform density in Lindenbaum algebras. Notre
Dame J. Formal Logic 55(4), 569–582 (2014)

14. Smullyan, R.M.: Theory of Formal Systems, Revised Princeton University Press,
Princeton (1961)

15. Tarski, A., Mostowsky, A., Robinson, T.M.: Undecidable Theories. North-Holland,
Amsterdam (1953)

16. Visser, A.: Numerations, λ-calculus & arithmetic. In: Seldin, J.P., Hindley, J.R.
(eds.) To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and For-
malism, pp. 259–284. Academic Press, London (1980)

Simple Betting and Stochasticity

Tomasz Steifer(B)

Institute of Fundamental Technological Research, Polish Academy of Sciences,
Warsaw, Poland

tsteifer@ippt.pan.pl

Abstract. A sequence of zeros and ones is called Church stochastic if
all subsequences chosen in an effective manner satisfy the law of large
numbers with respect to the uniform measure. This notion may be inde-
pendently defined by means of simple martingales, i.e., martingales with
restricted (constant) wagers (hence, simply random sequences). This
paper is concerned with generalization of Church stochasticity for arbi-
trary (possibly non-stationary) measures. We compare two ways of doing
this: (i) via a natural extension of the law of large numbers (for non-i.i.d.
processes) and (ii) via restricted martingales, i.e., by redefining simple
randomness for arbitrary measures. It is shown that in the general case
of non-uniform measures the respective notions of stochasticity do not
coincide but the first one is contained in the second.

Algorithmic randomness is a dynamically developing field of study at the
crossroads between computability theory and foundations of probability. In a
way, it builds up on the following question: what does it mean for an individual
sequence of zeros and ones to be random? Approached from of a perspective of
computability, this led to the discovery of a whole universe of notions of random-
ness and stochasticity (c.f. [2]). One of these is the notion of Church stochasticity.
Its history dates back to von Mises’ project to axiomatize probability theory in
a frequentist spirit. His theory was based on the concept of Kollektiv [5]. But
it was Church who gave it a formal mathematical interpretation grounded in
recursion theory. Consider the class of sequences x of zeros and ones satisfying
the following condition: every subsequence of x selected by a computable method
(where selecting n+1-th bit depends only on the previous bits) satisfies the law
of large numbers, i.e. the ratio of zeros and ones in the subsequence converges
to half. We call such sequences Church stochastic.

The existence of Church stochastic sequence may be proven in a constructive
way (see e.g. [9]). Countability of computable functions guarantees that the set of
all Church stochastic sequences is of λ-measure one, where λ denotes the uniform
probability measure, i.e. the measure corresponding to unbiased coin tossing. In
fact, Church stochasticity is one of the weakest known notions of randomness,
containing other standard classes such as Martin-Löf randomness [4].

T. Steifer—This work was supported by the Polish National Foundation of Science
grant 2018/31/B/HS1/04018. The author thanks �Lukasz Debowski for his advice on
how to simplify the proof of the main result.

c© Springer Nature Switzerland AG 2021
L. De Mol et al. (Eds.): CiE 2021, LNCS 12813, pp. 424–433, 2021.
https://doi.org/10.1007/978-3-030-80049-9_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80049-9_42&domain=pdf
https://doi.org/10.1007/978-3-030-80049-9_42

Simple Betting and Stochasticity 425

The intuition behind the definition of Church stochasticity may be visualised
by betting. As written by Church:

If a fixed number of wagers of “heads” are to be made, at fixed odds and in
fixed amount, on the tosses of a coin, no advantage is gained in the long run
if the player, instead of betting at random, follows some system, such as
betting on every seventh toss, or (more plausibly) betting on the next toss
after the appearance of four tails in succession, or (still more plausibly)
making his nth bet after the appearance of n+4c tails in succession.

As was shown by Ambos-Spies et al. [1], the idea of fixed wagers may be given a
precise meaning which leads to an alternative definition of Church stochasticity.
This is done by means of martingales (betting strategies). Consider a game in
which the player starts with a finite amount of capital and the bits of a sequence
are unraveled one by one. At each step, the player bets (or not) some amount of
their money on one of the possible outcomes. After the next bit is revealed, the
capital is modified in accordance, just as in a real casino. Our only requirement
is that the expected (with respect to a given measure) change of the capital is
zero, perhaps unlike in some casinos. In principle, the player should not be able
to earn much but it may happen that the strategy (i.e. the martingale) performs
so well that they can obtain unbounded amount of capital. In such case we say
that the martingale succeeds on the sequence.

Now, we may imagine betting schemes which modify the wagers as they see
fit, perhaps acting on a presupposition that the sequence exemplifies some sort
of regularity. However, for now our attention will be limited to a very simple case
of martingales which always bet a fixed fraction of capital (or pass the round).
Consider a class of sequences on which no such martingale succeeds. We will call
these simply random sequences. And what we already know is that this class
coincides precisely with Church stochasticity. At least, this is how the story goes
as long as we stay in the textbook case of the uniform measure.

Now, to get a better understanding of the present contribution, suppose we
want to somehow generalize the notion of Church stochasticity for other proba-
bility measures. The law of the large numbers might be stated as follows: given a
sequence of outcomes x1, x2, . . . from an independent and identically distributed
(i.i.d) process1, the average (x1 + . . . + xn)/n converges to the expected value
of xi. Consequently, defining Church stochasticity for i.i.d. measures is rather
straightforward. To make this notion applicable in the general case, we treat
the law of large numbers as a special case of the following general law: given a
probability measure μ, for μ-almost every sequence x = x1, x2, . . . the average
(x1 + . . . + xn)/n converges to the average of the expected values conditioned
on the past, i.e., to (μ(1) + μ(x11)/μ(x1) + . . . + μ(xn−1

1 1)/μ(xn−1
1))/n. In fact,

a very similar idea was proposed in a more general context of non-monotonic
stochasticity in [6].

1 Such process may be interpreted as performing the same experiment infinitely many
times.

426 T. Steifer

For a generalized definition of Church stochasticity with respect to an arbi-
trary computable measure we require that every effectively selected subsequence
satisfies this extended law of large numbers. Indeed, as already stated, it might
be shown using well-established probabilistic tools that the class of sequences
Church stochastic with respect to a measure μ is of μ-measure one. Following
this observation, we consider a natural generalization of the simple randomness
for non-uniform probability measures. In general case of non-uniform measure
μ, a betting strategy which uses constant wagers may not satisfy the fairness
condition with respect to μ and hence, it may fail to define a martingale. Hence,
to get a non-trivial class of sequences, we will have to weaken the condition of
fixed wagers to a form of ‘semi-fixation’. This will be given a precise meaning
in the technical part of the paper along with the formal definition of simple
randomness for an arbitrary measure. The main question tackled in the paper is
whether Church stochasticity and simple randomness coincide in a general case
as they do for uniform measure. As it turns out, this is not true. We prove the
inclusion in one direction, i.e., that every simply random sequence satisfies the
extended law of large numbers. The proof of this facts relies on an auxiliary the-
orem concerning Cesàro limitability. To our best knowledge, this result is novel.
A simple example witnessing the failure of the other inclusion is also given.

1 Preliminaries

The set of finite words over {0, 1} is denoted by 2<N. The set of all one-sided
infinite sequences is denoted by 2N. Following information-theoretic convention,
bits of a one-sided infinite sequence are indexed from 1. It is assumed that 0 ∈ N.
The set of all nonzero natural numbers is denoted as N

+ (similarly, R+ denotes
the set of positive real numbers). The empty word is denoted by �.

Given a sequence (or a word) x we denote the i-th bit of x by xi. To denote a
string xj , xj+1, . . . , xk (with j < k) we write xk

j . In particular, a prefix of length
n of x is denoted by xn

1 . By convention, for a sequence (or a word) x, we let x0
1

denote the empty word as well.
Since every measure in this paper is a probability measure, we simply refer

to these as measures. Every binary word w ∈ 2<N corresponds to a cylinder
set �w� = {x : x

|w|
1 = w}. We work with probability measures over the σ-

algebra generated by all cylinder sets �w�. By the Kolmogorov extension theorem,
such measure is uniquely determined by the values μ(�w�) for all w ∈ 2<N. We
will abuse this notation by writing μ(w) instead of μ(�w�). The Kolmogorov
extension theorem guarantees the existence of the canonical stochastic process
X = X1,X2, . . . with μ(X |w|

1 = w) = μ(w) for all w ∈ 2<N.
We will give a special attention to conditional probabilities μ(Xn = b|Xn−1

1).
These random variables obey the elementary definition, i.e.,

μ(Xn = b|Xn−1
1)(x) = μ(Xn = b|Xn−1

1 = xn−1
1) =

μ(xn−1
1 b)

μ(xn−1
1)

.

Simple Betting and Stochasticity 427

Similarly, we have conditional expectations E(Xn|Xn−1
1) reducing to

E(Xn|Xn−1
1) = μ(Xn = 1|Xn−1

1).

In order to compress some equations we often write μ(1|w) instead of μ(Xn =
1|Xn−1

1 = w).
If an event A has μ-probability one, i.e., μ(A) = 1, we say that A happens

μ-almost surely. If x ∈ 2N and μ({x}) > 0 we say that x is a μ-atom and μ is
an atomic measure. A measure with no atoms is called continuous. A stochas-
tic process Y is independent and identically distributed (i.i.d) if Y1, Y2, . . . are
mutually independent and μ(Yi = b) is constant for all i. If the canonical process
X satisfies this condition, then we say that μ is an i.i.d. measure. In particular,
we single out the uniform measure λ with λ(w) = 2−|w| for all w ∈ 2<N.

We adapt the following convention: a partial computable function is called
computable if it is total. A function g : 2<N → R

0≤ is called computable if there
exists a computable f : 2<N × N :→ Q such that for every σ ∈ 2<N and every
n ∈ N we have

|g(σ) − f(σ, n)| < 2−n.

In particular, this allows us to talk about computable measures.

1.1 Martingales

The notion of a martingale (or a betting strategy) (as defined in algorithmic
randomness theory) formalizes the idea of prediction through betting. A gambler
starts with some amount of capital. Again, at each step, information about the
past observations is available. The gambler bets some amount of capital on the
outcome. This notion may be also seen as representing the degree of confidence
that the gambler has in his prediction. In fact, the gambler may consider both
outcomes to be equiprobable and effectively abstain from prediction by making
a zero bet.

As the new bit is unraveled, the gambler either gets richer or loses part of his
wealth. The evolution of the capital is governed by a simple fairness condition.

Definition 1. Let μ be a computable probability measure. A function d : 2<N →
R

≥0 is called a μ-martingale if for all σ ∈ 2<N:

d(σ)μ(σ) = d(σ0)μ(σ0) + d(σ1)μ(σ1)

A μ-martingale d succeeds on a sequence x if

lim sup
n

d(xn
1) = ∞.

In probabilistic terms, the fairness condition says that the conditional expecta-
tion of the capital after the bet is equal to the capital before the bet. Given a
class of martingales we get a corresponding class of random sequences by consid-
ering these sequences for which no relevant martingale succeeds. As long as we

428 T. Steifer

limit ourselves to a countable set of martingales, the obtained class of sequences
is of measure one, as was shown by Ville [9].

Hence, sequences corresponding to some countable class of martingales form
natural candidates for notions of algorithmic randomness. In particular, one of
such classes, namely, computably enumerable martingales, gives a characteriza-
tion of the familiar notion of Martin Löf randomness as witnessed by Schnorr’s
theorem [7]. Other classes may be also of interest, as we will discuss soon.

1.2 Church Stochasticity for the Uniform Measure

We have already signalled that every sufficiently effective subsequence of a
Church stochastic sequence must satisfy the law of large numbers. To make
it more precise, we need to explain how the subsequence selection works.

Definition 2. A selection rule is a partial function f : 2<N → {yes,no}. Given
a sequence x and a selection rule f , we denote the n-th number k such that
f(xk

1)=yes as sf (x, n) and say that sf (x, n) is the n-th bit selected by f .

Definition 3. We will say that a sequence x is Church stochastic if for every
total computable selection rule f either f selects only a finite number of bits or
we have:

lim
n→∞

1
n

n∑

i=1

xsf (x,n) =
1
2
.

1.3 Simple λ-martingales

It is now time to turn our attention back to martingales. Recall the idea that
a notion of randomness may be defined via a restricted class of martingales.
A particular case of such a restriction is given by the following condition: an
admissible betting strategy always bets a fixed proportion of capital. This is
exactly the concept of a simple martingale as defined by Ambos-Spies et al. [1].

Definition 4. A computable λ-martingale d is simple if there exists some q ∈ Q

with 0 < q < 1 such that for every σ ∈ 2<N and j ∈ {1, 0} we have d(σj) ∈
{d(σ), (1 − q)d(σ), (1 + q)d(σ)}
In other words, a simple λ-martingale always bets a fraction q of the accumulated
capital or does nothing. The next definition comes with no surprise:

Definition 5. A sequence x is called λ-simply random if no simple λ-martingale
succeeds on x.

We might now state the theorem of interest:

Theorem 1 ([1]). A sequence x is Church λ-stochastic if and only if it is λ-
simply random.

In what follows we will provide a sound candidate for generalization of the notion
of Church stochasticity for non-uniform measures.

Simple Betting and Stochasticity 429

2 Technical Developments

2.1 Beyond LLN

In the elementary probability theory, the law of large numbers (LLN) is defined
for i.i.d. processes. This corresponds to an ideal scenario in which we are per-
forming the same experiment infinitely many times with the assumption that
no trial influences another one. Then, LLN simply tells us that almost surely
the average of the outcomes is asymptotically equal to the expected outcome.
In particular, the empirical average is a consistent estimator of the expectation.
Some might consider this to be quite intuitive. In fact, von Mises wanted to treat
the law of large numbers as an axiom (c.f. [8]).

In the general case, the limit of empirical averages may not exist. For an
example, consider a measure μ of the following form. Let f be some fast growing
function, e.g., f(n) = 22

n

. Set μ(Xi = 1) = 3
4 if for some odd n we have

f(n) ≤ i < f(n + 1). Otherwise, let μ(Xi = 1) = 1
4 . Assume that X1,X2, . . . are

pairwise independent. It is almost routine to show that the average of X1, . . . , Xn

does not converge μ-almost surely. Indeed, this follows from the fact that μ-
almost surely

lim
n→∞

1
n

n∑

i=1

(
Xi − E(Xi|Xi−1

1)
)

= 0. (1)

If X1,X2, . . . are pairwise independent binary variables, this reduces to

lim
n→∞

1
n

n∑

i=1

(Xi − μ(Xi = 1)) = 0.

In other words, the difference between the empirical average of first n outcomes
and its expected value vanishes as n goes to infinity. Hence, as in the example,
the empirical average may diverge if the corresponding expectations diverge.

As soon as we begin to realize that LLN is, in fact, a special case of (1),
a way presents itself for a generalization of Church stochasticity for arbitrary
measures. To be precise, we will require that (1) is satisfied by every subsequence
selected by a computable method.

Definition 6. Let μ be a computable measure. We will say that a sequence x ∈
2N is Church μ-stochastic if for every computable selection function f either the
number of bits selected by f on x is finite or

lim
n→∞

1
n

n∑

i=1

(
xsf(x,i) − E(Xsf(x,i) |x

sf(x,i)−1
1)

)
= 0.

We note that this definition is similar to what was proposed by Muchnik,
Semenov and Uspensky [6] in the context of nonmonotonic stochasticity. How-
ever, those authors chose to condition the conditional expectation not on the
whole prefix but only on the bits selected by the selection function in question—
which makes sense in the case of nonmonotonic selection functions.

430 T. Steifer

2.2 Semi-fixed Wagers

For many measures, fixation of wagers makes it impossible to satisfy fairness
condition by a non-trivial martingale. Hence, we propose the following relaxed
condition.

Definition 7. Given a computable measure μ, let d be a μ-martingale. We will
say that d is simple if it is computable and there is a rational 0 < q ≤ 1 such
that for every σ ∈ 2<N and j ∈ {0, 1} we have

d(σj)
d(σ)

∈ {1, 1 + qμ(0|σ), 1 − qμ(0|σ), 1 + qμ(1|σ), 1 − qμ(1|σ).}

We note that a case for a different approach could be made. For instance, we
could ask that we always loose the same fractions of capital while modifying only
the reward. Whether these are more intuitive is up to reader to decide. That
being said, these alternative definitions would have similar problems to those
discussed in the last section.

Definition 8. We will say that a sequence x ∈ 2N is μ-simply random if no
simple μ-martingale succeeds on x.

2.3 Simple Randomness Implies LLN

Theorem 2. If x is μ-simply random then it is Church μ-stochastic.

This theorem may be reduced to a statement concerning bounded sequences and
their infinite products.

Lemma 1. Let a1, a2, . . . be a sequence of real numbers such that −1 ≤ ai ≤ 1
for all i ∈ N. The sequence a1, a2, . . . is Cesàro limitable with the limit 0 if for
every rational number q with −1 < q < 1 the following holds:

sup
n∈N

n∏

i=1

(1 + qai) < ∞.

Proof. Fix the sequence a1, a2, . . . and assume the antecedent of the implication.
We begin by recalling that

sup
n∈N

n∏

i=1

(1 + qai) < ∞

is equivalent to

sup
n∈N

n∑

i=1

log(1 + qai) < ∞,

from which it follows that (†):

lim sup
n∈N

1
n

n∑

i=1

log(1 + qai) ≤ 0.

Simple Betting and Stochasticity 431

By Taylor expansion (see e.g. [3]), for every x with |x| < 1 we have

log(1 + x) = x − x2

2
+

x3

3
− . . .

and
1 − x−1 ≤ log(x) ≤ x − 1.

Suppose that q < 0. We have q−1 log(1 + qan) ≤ an for all n. Then it follows
from (†) that

lim inf
n∈N

1
n

n∑

i=1

ai ≥ lim inf
n∈N

q−1 1
n

n∑

i=1

log(1 + qai) ≥ 0.

Now, suppose that q > 0. Then we have q−1 log(1 + qan) ≥ ai

1+qai
. Combining it

with (†) we get

0 ≥ lim sup
n∈N

1
n

q−1
n∑

i=1

log(1 + qai) ≥ lim sup
n∈N

1
n

n∑

i=1

log(ai − q/(1 − q)).

With q converging to 0 we get

lim sup
n∈N

1
n

n∑

i=1

log(ai) ≤ 0.

It remains to observe that Lemma 1 is basically all we need.

Proof (of Theorem 2). Suppose that x is μ-simply random. We show that x
is Church μ-random. Without loss of generality, we restrict our attention only
to the selection function f which obliviously selects all bits. For every rational
number 0 < q < 1 consider a martingale dq such that for every σ ∈ 2<N

dq(σ1) = (1 + qμ(0|σ)) dq(σ)

and
dq(σ0) = (1 − qμ(1|σ)) dq(σ).

Note that if xi
1 = σ1 for some σ ∈ 2<N then (1 + qμ(0|σ)) = (1 + qμ(Xi �=

xi|xi−1
1)). Similarly, xi

1 = σ0 then (1 − qμ(1|σ)) = (1 − qμ(Xi �= xi|xi−1
1)).

Each martingale dq is simple. By simple randomness of x, for each of dq we have

sup
n→∞

dq(xn
1) = sup

n→∞

n∏

i=1

(
1 + (−1)xi−1qμ(Xi �= xi|xi−1

1)
)

< ∞.

Note that given a rational 0 < q ≤ 1 the following defines a simple martingale
as well.

dq(σ1) = (1 − qμ(0|σ)) dq(σ)

dq(σ0) = (1 + qμ(1|σ)) dq(σ).

432 T. Steifer

So, for every 0 < q ≤ 1 we have

sup
n∈N

n∏

i=1

(
1 + (−1)xiqμ(Xi �= xi|xi−1

1)
)

< ∞.

By Lemma 1, it follows that

lim
n→∞

1
n

n∑

i=1

(
xi − E(Xi|xi−1

1)
)

= lim
n→∞

1
n

n∑

i=1

(−1)xi−1μ(Xi �= xi|xi−1
1) = 0.

The case of other selection functions is analogous with the one exception. If the
selection function f does not select the i-th bit we simply require martingale
dq to abstain from betting on the i-th bit. With that adjustment we repeat the
argument with respect to the selected subsequence.

2.4 Failure of the Other Implication

Unfortunately, the other implication fails as witnessed by the following construc-
tion.

Theorem 3. There exists a computable measure μ and a sequence y ∈ 2N which
is Church μ-stochastic but is not μ-simply random.

Proof. Suppose that X = X1,X2, . . . are mutually independent and for each
n ∈ N we have

μ(Xn = 1) = 1 − 1
n + 1

.

Note that for every infinite sequence of strictly increasing indexes n1, n2, . . . the
sequence

μ(Xn1 = 1), μ(Xn2 = 1), . . .

converges to one. Consider the sequence y = 11 . . . and note that every infi-
nite subsequence of y has density one. Consequently, y is Church μ-stochastic.
However, it is also true that

sup
n∈N

n∏

i=1

(1 + μ (Xi = 0)) = sup
n∈N

n∏

i=1

(
1 +

1
i + 1

)
= ∞.

In other words, the following martingale succeds on x:

d(σ1) = (1 + μ(Xi = 0)) d(σ).

This means that y is not μ-simply random.

Interestingly, the presented counterexample is relatively simple. In particular,
the process X consists of independent variables and the construction does not
rely on any carefully tailored conditional probabilities. Furthermore, we have the
following.

Simple Betting and Stochasticity 433

Corollary 1. There exist a computable measure μ and a sequence y ∈ 2N such
that:

1. y is Church μ-stochastic,
2. y is computable,
3. y is not a μ-atom.

Proof. We take the measure μ and y ∈ 2N as in the proof of Theorem 3. To show
that y is not a μ-atom consider:

∞∏

i=1

μ (Xi = 1) =
∞∏

i=1

(
1 − 1

i + 1

)
= 0.

This is quite different from the case of continuous i.i.d. measures—where no
Church stochastic sequence is computably enumerable, let alone computable.
Indeed, recall that an infinite computably enumerable set A has an infinite com-
putable subset - this subset defines a selection function which selects 11 . . . on A.

References

1. Ambos-Spies, K., Mayordomo, E., Wang, Y., Zheng, X.: Resource-bounded balanced
genericity, stochasticity and weak randomness. In: Puech, C., Reischuk, R. (eds.)
STACS 1996. LNCS, vol. 1046, pp. 61–74. Springer, Heidelberg (1996). https://doi.
org/10.1007/3-540-60922-9 6

2. Downey, R.G., Hirschfeldt, D.R.: Algorithmic Randomness and Complexity.
Springer Science & Business Media (2010). https://doi.org/10.1007/978-0-387-
68441-3

3. Knopp, K.: Theory and application of infinite series. Courier Corporation (1990)
4. Martin-Löf, P.: The definition of random sequences. Inf. Control 9(6), 602–619

(1966)
5. Mises, R.V.: Grundlagen der wahrscheinlichkeitsrechnung. Mathematische

Zeitschrift 5(1–2), 52–99 (1919)
6. Muchnik, A.A., Semenov, A.L., Uspensky, V.A.: Mathematical metaphysics of ran-

domness. Theor. Comput. Sci. 207(2), 263–317 (1998)
7. Schnorr, C.P.: A unified approach to the definition of random sequences. Math.

Syst. Theor. 5(3), 246–258 (1971). https://doi.org/10.1007/BF01694181
8. Van Lambalgen, M.: Von Mises’ definition of random sequences reconsidered. J.

Symbolic Logic 52(3), 725–755 (1987)
9. Ville, J.: Etude critique de la notion de collectif. Gauthier-Villars Paris (1939)

https://doi.org/10.1007/3-540-60922-9_6
https://doi.org/10.1007/3-540-60922-9_6
https://doi.org/10.1007/978-0-387-68441-3
https://doi.org/10.1007/978-0-387-68441-3
https://doi.org/10.1007/BF01694181

Péter on Church’s Thesis, Constructivity
and Computers

Máté Szabó(B)

University of Oxford, Oxford, UK
mate.szabo@maths.ox.ac.uk

Abstract. The aim of this paper is to take a look at Péter’s talk Rekur-
sivität und Konstruktivität delivered at the Constructivity in Mathemat-
ics Colloquium in 1957, where she challenged Church’s Thesis from a
constructive point of view. The discussion of her argument and motiva-
tions is then connected to her earlier work on recursion theory as well as
her later work on theoretical computer science.

Keywords: Rózsa Péter · Church’s Thesis · Constructivity

1 Introduction

Rózsa Péter and László Kalmár, lifelong colleagues and friends, were both invited
to the famous Constructivity in Mathematics Colloquium held in Amsterdam in
1957. In their talks, both of them challenged Church’s Thesis, albeit in quite
different ways. The aim of this paper is to discuss Péter’s less frequently cited
contribution Rekursivität und Konstruktivität [21]. And to provide more context
and background to her argument and to connect it to her earlier and later
work in recursion theory and theoretical computer science respectively. Besides
her published paper [21], Péter and Kalmár’s correspondence [9] will be used
to provide such context. Due to the lack of space, attention will be focused
on Péter’s work and connections to the ideas of other scholars will merely be
indicated.

2 Church’s Thesis in Péter’s Recursive Functions

Péter’s most well known scholarly work, Recursive Functions [19], famously the
first monograph in recursion theory, was first published in 1951. The phrase

I would like to thank Marianna Antonutti-Marfori and Alberto Naibo for inviting me to
the HaPoC Special Session on Church’s Thesis in Constructive Mathematics. I am also
indebted to Alberto for his insightful discussions on this topic and his useful comments
on earlier versions of this paper. I would also like to thank Kendra Chilson, Katalin
Gosztonyi, Wilfried Sieg and Kristóf Szabó for their help and the anonymous reviewers
for their suggestions. The writing of this paper was supported by the UK Engineering
and Physical Sciences Research Council under grant EP/R03169X/1.

c© Springer Nature Switzerland AG 2021
L. De Mol et al. (Eds.): CiE 2021, LNCS 12813, pp. 434–445, 2021.
https://doi.org/10.1007/978-3-030-80049-9_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80049-9_43&domain=pdf
http://orcid.org/0000-0001-7721-1103
https://doi.org/10.1007/978-3-030-80049-9_43

Peter on Church’s Thesis, Constructivity and Computers 435

‘Church’s Thesis’ does not appear as a label anywhere in the book, as it was
popularized by Kleene’s Introduction to Metamathematics [13] that was pub-
lished the next year.1 But, of course, the identification of the notion of ‘calcu-
lable functions’ with the general recursive functions “proposed” by Church is
discussed. As it is described below in detail, in general Péter displayed a “non-
committal” attitude towards the Thesis in [19] and in later editions she kept
including materials that challenged it.

In §20, Calculable Functions, Péter “quote[s] some of the arguments used in
attempts to make plausible the identification.” However, this chapter is entirely
devoted to a detailed description of Turing’s machines and their capability to
compute every general recursive function. This emphasis is due to Péter’s view
that the finite calculability of a function is strongly tied to the existence of a
repeatable and communicable “mechanical procedure,” where the “single steps
of the calculation” could be carried out even by a machine “in principle” (p.
225). Péter acknowledges that Turing’s machines satisfy these requirements while
his analysis makes it plausible that “this interpretation correctly reflects real
mathematical activity” (p. 240) and that it gives “the impression that a very
general concept of calculability has been captured here.” (p. 234).

Church’s “proposed” identification is only discussed in the less than a page
long 7th section of §21, History and Applications. As support for the identifi-
cation, in addition to what was already given in §20, Péter points to the ‘con-
fluence’ of the multiple attempts to formalize the “vague concepts of ‘calcula-
bility’, ‘constructibility’, [and] ‘effectibility”’ (p. 245). More precisely, she states
the equivalence of general recursive functions, functions computable by Turing’s
machines, Hilbert and Bernays’ reckonable functions, and the functions calcula-
ble by Markov’s algorithms.

At the same time, whenever Péter presents some of the arguments for
Church’s Thesis, she also remarks that the acceptance of it would lead to “a cer-
tain demarcation of the concept of calculability” (p. 240). She finds this problem-
atic, as she strongly believed that mathematics and its methods would develop
without an end. As she puts it here: “the future evolution of mathematics may
bring about methods of calculation completely unexpected nowadays” (p. 240).
For this reason, while she considers the concept of general recursivity a “most
welcome generalization,” nevertheless she sees it “merely [as] a stage – albeit
a very high one” (p. 9). Thus the concept of calculability should not be for-
mally confined based on our current mathematical knowledge, as it is expected
to develop further in the future. For this reason Péter concludes: “In my opinion,

1 Already in his ([12], p. 60) Kleene labeled the assertion that “Every effectively cal-
culable function is general recursive” as a ‘thesis’ that was stated by Church (and
implicitly by Turing) but did not use the phrase ‘Church’s Thesis’ anywhere in the
paper. The phrase became widely used after it was popularized in Kleene’s [13].

436 M. Szabó

no ‘final word’ is possible here: the concept of calculability cannot be definitely
comprised once and for all” (p. 9).2

In later editions of Recursive Functions, Péter kept adding materials that
supported her “non-committal” attitude towards Church’s Thesis. In the Preface
of the Second German Edition, written in 1955, Péter acknowledges that “it
has been noted” by the reviewers and readers of the first edition that she was
“non-committal on the question of the identification of calculability with general
recursivity.” And she adds that “It was at that time my intention, however, to
set beside one another the possible positions in this question” ([19], p. 9).

Next Péter alludes to her view that based on the endless development of
mathematics, the concept of calculability should not be formally confined based
on our current knowledge. She claims that this point of view “has lately been
very strongly supported by the new results” of Kalmár, which are then dis-
cussed in §19.2 and §20.8. The first one is essentially a summary of an early
version of Kalmár’s An Argument Against the Plausibility of Church’s The-
sis [8]. Here, assuming Church’s Thesis while adopting a much less restricted
notion of ‘effective calculability’ than customary, Kalmár constructed a proposi-
tion that is intuitively considered to be false, but its falsity cannot be proven by
“any correct means.” He regarded this “very strange consequence” of the Thesis
as an argument against its plausibility (without claiming to have refuted it).
Kalmár concluded his paper with his belief that certain mathematical concepts,
such as ‘effective calculability’ or ‘provability,’ “cannot permit any restriction
imposed by an exact mathematical definition” due to the endless development
of mathematics, and thus, the possible further development of these concepts in
the future.3 Then Péter discusses Kalmár’s [6]. Here, answering a question of
Karl Schröter’s in the negative, he showed that a system of functional equations
(without restrictions on the operations to compute its values) may have a unique
solution without the determined function being general recursive.

In his JSL review of the second edition of [19] Robinson focused only on
these new additions and felt compelled to proclaim that “the reviewer is still
convinced that the concept of general recursive function does provide the proper
formalization of the intuitive concept of computable function” ([25], p. 363).

2 Péter also concludes her popular book, Playing with Infinity [22], with the same
thought. The last chapter explains Gödel’s incompleteness and Church’s undecid-
ability results and raises the question whether we have “come up against final obsta-
cles?” (p. 264). This is then answered quite forcefully by the very last paragraph of
the book: “Future development is sure to enlarge the framework, even if we cannot as
yet see how. The eternal lesson is that Mathematics is not something static, closed,
but living and developing. Try as we may to constrain it into a closed form, it finds
an outlet somewhere and escapes alive” (p. 265).

3 For a detailed description and analysis of Kalmár’s [8] visit Szabó’s [33]. In addition,
Gosztonyi’s [4] discusses Péter and Kalmár’s shared views on mathematics and its
education within the Hungarian mathematical culture as their broader context, while
Máté’s [15] examines their philosophical views on mathematics.

Peter on Church’s Thesis, Constructivity and Computers 437

3 Recursion and Constructivity

In the summer of 1956, Péter received an invitation from Arend Heyting to
the Constructivity in Mathematics Colloquium to be held in August of 1957 in
Amsterdam (see the Appendix). Péter accepted the invitation and her contribu-
tion became known as Rekursivität und Konstruktivität [21].

The correspondence of Péter and Kalmár [9] reveals that they discussed what
they should present at the meeting. In a letter from the 18th of February, 1957,
Kalmár recommended to Péter that she either discuss any current work of hers on
open problems of recursion theory or, “Since [the Colloquium] is about construc-
tivity, you should discuss why you do not find the concept of general recursive
function satisfactory from the standpoint of constructivity (as you usually say,
something is fishy about it), or at least why you find the concept of recursion
present in the theory of special recursive functions more satisfactory”.4 Péter
ended up exploring this latter suggestion.

Before turning to Péter’s paper, it is important to note that she did not
hold constructivist views. Her views on the foundations of mathematics, like
Kalmár’s, were most closely aligned with that of the Hilbert school. However,
when Péter began research in recursion theory at the very beginning of the 1930s
the notions of ‘effective’ and ‘constructive’ were used essentially interchangeably
in the community, including by Church and Kleene.5 Thus Péter was not opposed
to classical or non-constructivist approaches in mathematics and logic in general,
but considered the concept of recursive function to be an attempt to precisely
characterize the concept of constructivity.

In the beginning of the paper, Péter asserts that functions defined via spe-
cial types of recursion (such as primitive recursion, course-of-values recursion,
simultaneous and nested recursions, etc.) are obviously finitely calculable, and
thus, constructive functions. Then the “Herbrand-Gödel-Kleene” notion of gen-
eral recursive function is considered. On Péter’s account, the main reason to
introduce this notion was to precisely formulate the concept of constructivity,
and Church’s Thesis identifies this very notion with the concept of calculable
functions. Then the question is raised whether every ‘effectively calculable’ func-
tion can justifiably be called ‘constructive’. Thus Péter challenges the direction
of Church’s Thesis that is usually considered obvious or unproblematic.

Péter then goes on to argue that Church’s Thesis is either non-constructive or
it contains a vicious circle. By definition, a function is considered to be general
recursive if there exists a finite system of equations from which all of its values

4 The correspondence of Péter and Kalmár is in Hungarian; quotes are translated by
the present author.

5 For examples, see Sieg’s ([28], pp. 558–559) quoting Church, and Kleene’s [11] where
he states that “The notion of a recursive function of natural numbers, which is
familiar in the special cases associated with primitive recursions, Ackermann-Péter
multiple recursions, and others, has received a general formulation from Herbrand
and Gödel. The resulting notion is of especial interest, since the intuitive notion of a
‘constructive’ or ‘effectively calculable’ function of natural numbers can be identified
with it very satisfactorily” (p. 544).

438 M. Szabó

can be calculated in a finite manner. The existential quantifier in the definition
can be interpreted both classically and constructively, and the former is (possibly)
not satisfactory from a constructivist point of view.6 Péter was not the only one to
point out this issue. Not only did Heyting and Skolem raise this exact issue around
the time,7 but Church ([1], p. 351, fn 10) and Kleene ([13], p. 319) were evidently
aware of it too. Church’s recommendation for his concerned readers was to “take
the existential quantifier [...] in a constructive sense”, and added that “[w]hat
the criterion of constructiveness shall be is left to the reader”.8 But, according
to Péter, this leads to a vicious circle since general recursion was offered as a pre-
cise formulation of constructivity,9 yet the notion of constructivity is alluded to in
the interpretation of the existential quantifier in its definition.10 She then remarks
that the same vicious circle appears however one tries to get around it.

Péter’s paper was reviewed jointly with articles that challenged or criticized
Church’s Thesis ([16,17]) and it is usually cited in that context as well. While this
assessment is appropriate, especially with Péter’s known non-committal attitude
towards the Thesis, it misses an aspect of her undertaking, namely that Péter’s
primary goal in this work was not to undermine the Thesis, but to give a precise
account of constructive functions.

Indeed, after the short discussion of Church’s Thesis, Péter considers multiple
possible definitions to characterize the constructive functions in the second half
of the paper. After the presentation of each possible formalization, she points out
the “vicious circle” in them. However, these examples are not merely there to
strengthen her challenge to Church’s Thesis by pointing out the circularity over
and over again. These are her genuine (and failed) attempts to give a positive,
non-circular characterization of the constructive functions.

Péter’s main aim was to provide a formal characterization of constructive
functions that includes all the special recursive functions11 but does not exhaust
the general recursive ones. When she recognized the circularity in all of her

6 Kleene brings up a related issue in his [10]: “The definition of general recursive
function offers no constructive process for determining when a recursive function is
defined. This must be the case, if the definition is to be adequate, since otherwise
still more general “recursive” functions could be obtained by the diagonal process”
(p. 738).

7 See Coquand’s [2] for a discussion of their relevant writings.
8 Here Péter remarks that since no “real” general recursive function is known, i.e. one

that is general recursive but does not belong to any of the special types of recursive
functions, it is not clear what the difference between the two interpretations could
actually amount to.

9 See Sundholm’s ([30], pp. 13–14) on Church’s view on the Thesis and its relation to
constructivism.

10 Heyting raises a rather similar concern about the circularity involved in the definition
of recursive functions from a constructivist point of view in his [5] without referring
to Péter’s [21].

11 The term “special recursive functions” is used here loosely, to refer to the collection
of those recursive functions that are defined via a specific type of recursion (see
above) and are seen as obviously finitely calculable and constructive functions.

Peter on Church’s Thesis, Constructivity and Computers 439

attempts, she was discouraged. In a letter to Kalmár, written on the 2nd of
July, 1957, not long before the Colloquium, she reported that “sadly it appears
to me that the whole idea is bankrupt.” Péter ended her paper on the same
note with the following, resigned last sentence: “It seems that the concept of
constructivity cannot be captured in a non-circular way at all.”12

Nevertheless Péter did not entirely give up on the idea to provide a precise
formal characterization of constructive functions. The next section describes her
subsequent attempt after the Colloquium.

4 Péter’s Road to Computer Science

Another aspect of Péter’s Rekursivität und Konstruktivität worth mentioning is
its connection to her later work on recursive functions in the field of theoretical
computer science. Péter became involved with the field through the active encour-
agement of Kalmár. As the interests of Kalmár turned towards the applications
of logic in cybernetics, automata theory, computer design and even in engineer-
ing in general ([14,34]), he started a research seminar devoted to these topics in
the spring of 1956 at the University of Szeged.13 To involve Péter, who was in
Budapest, with the work by the members of the seminar, he sent the papers they
were reading and open questions to Péter by mail. The specific research problems
he posed to Péter were connected both to theoretical interests, such as Victor Shes-
takov’s [27] and Claude Shannon’s [26] work on representing relay and switching
circuits with Boolean algebras, as well as their use in actual computer design ques-
tions that Kalmár planned to undertake in the near future. By the end of the sum-
mer, Péter was sending her results frequently and via express mail to Kalmár in
order to be part of the “delightful work” of the group.

Péter’s recent engagement with the field that we would today call theoretical
computer science provides the background for her remark below. While dis-
cussing administrative details about their trip with Kalmár to the Colloquium
in Amsterdam in a letter on the 14th of January 1957, Péter casually inserted
the following comment mid-sentence: “by the way, and I mention this only to
you, it seems to me that the notion of definability by calculators14 is very closely
12 Translated by Tamás Lénárt.
13 Kalmár’s travel report [7] on the Constructivity in Mathematics Colloquium also

stands witness to these interests of his. In the second page of the report he mentions
that: “[After the Colloquium I had] the opportunity to visit the ‘Mathematisch Cen-
trum’ and take a look at their operating ARMAC electronic calculator. In addition
I had scientific discussion with [Jurjen Ferdinand] Koksma, a mathematics profes-
sor, and his colleagues; and with [Adriaan] van Wijngaarden, an engineering profes-
sor, about the practical applications of the calculator, as well as about the logical
machine under construction in Szeged.” (Translated by the present author.) In the
report, Kalmár mistakenly refers to “A. Koksma.” On Kalmár’s description of the
ARMAC computer as an electronic calculator, see footnote 14. For short descriptions
of the ARMAC computer and the logical machine in Szeged, visit [35] and [32], respec-
tively.

14 At the time computers were referred to as (high speed) electronic or digital calcula-
tors in Hungary.

440 M. Szabó

tied to constructivity.” This cryptic comment turned out to be rather prescient,
as her first paper published after the Colloquium (even before its proceedings
appeared), Graphschemata und Rekursive Funktionen [20], engaged with pro-
gramming in yet another attempt to characterize constructive functions.

In the first paragraph of [20] Péter directly refers to her talk at the Collo-
quium and her “failed attempts” to characterize constructive functions through
non-circular definitions. This paper presents another attempt to provide such
a characterization that includes the special recursive functions but does not
exhaust the general recursive ones. Péter introduces “graphschemata,” a graphi-
cal representation of flow-charts used in programming, which later became known
as “Kalužnin-Péter diagrams.”15 Then she considers a rather restricted type of
diagram, “normalschemata,” as a possible candidate for the characterization of
constructive functions. However, at the end it turns out that normalschemata
are unsuited for her purposes as she shows that every partial recursive function
is computable by a “normalschema.” Hence Péter considered this attempt to be
yet another failed one.

5 Computers and Church’s Thesis

From the end of the 1950s until her passing in 1977, Péter published several
papers on the use and applications of recursion theory in computer science.
Her late, lesser known book, Recursive Functions in Computer Theory [24], first
published in German in 1976 and translated to English in 1981, provides a great
introduction and summary of more than a dozen of her papers from this period
and deserves greater attention than it has received so far. This section exam-
ines how Church’s Thesis is discussed in the book in the context of computing
machines and programming.

Surprisingly, while Péter showed a non-committal attitude towards Church’s
Thesis in the earlier works mentioned above, here in [24], she seemingly commits
to what we would today call a (particular version of the) physical version of the
thesis in the Preface:

The action of a computer can always be thought of as a process such that
in response to given input data, the machine produces certain outputs.
Since both the input data and the sequential output of the results can
be encoded into natural numbers, it follows that the functioning of the
computer can always be considered as the computation value of a numeric
function. With the idealization that the contents of the computer store are
unlimited,16 it can be shown that the functions computable by a computer

15 To learn more about Péter’s and Kalužnin’s work on diagrams in the historical
context of automata theory, visit [18]; for a short biography of Kalužnin see [31].

16 Later on the page Péter adds the following remark: “The above idealization (which
will be assumed throughout in what follows) always arises if a general mathematical
theory is applied to practical problems. This is often expressed by saying ‘the infinite
is a useful approximation to the large but finite”’ (p. 9).

Peter on Church’s Thesis, Constructivity and Computers 441

are identical with the class of “partial recursive functions.” [emphasis
in the original] (p. 9)

The reason to take such a strong stance already in the ‘first’ page is to justify the
approach taken in the book. From this statement, Péter draws the conclusion
that “if we study how the computation of partial recursive number-theoretic
functions can be programmed, essentially all questions concerning the problems
solvable by a computer will be studied” (p. 9). This statement is repeated again
later: “Thus if we study the programming problems of the computation of partial
recursive functions, this means, in principle, the study of programming of all the
machine solvable problems” (p. 63).

There are two noteworthy qualifications in the above statement: the emphasis
on the partiality of the functions involved and the claim that the identification
in this form “can be shown.” The latter is especially surprising, as later in the
book Péter describes (the classical) Church’s Thesis as neither provable nor
disprovable mathematically, as it is, “of course, [...] not an exact mathematical
proposition” (p. 142).

Péter devotes Chapter 4, The Recursivity of Everything Computable, to show-
ing that “for every partial recursive function there is a program such that com-
putation with this program yields the value of the function, if it is defined, and
goes on forever, without calculating anything if it is not” (p. 63). Péter then
uses an idealized assembly language with a simple system of statements. First
she shows that every primitive recursive function is machine computable and
then claims that “[m]achine computability is also preserved in the application
of a µ-operation, not only in the bounded case [...], but in the unbounded case
as well” (p. 57). Here a cycle is used for the µ-operation which exits only if the
smallest number that was searched for is found and goes on forever otherwise.
Then she points to her construction of a universal program for the calculation
of partial recursive functions in [23]. Finally, to establish the reverse direction,
Péter shows through examples how to encode programs written in assembly
language via partial recursive functions.

Thus it seems that the possibility of “showing” the “recursivity of everything
[machine] computable” rests on the availability of concrete computers and their
known operations and (assembly) languages. On the other hand, Péter does not
provide any argument or even raise as a question whether current computers are
capable of computing everything that is machine computable in principle (for
example, as Robin Gandy did in his [3]). The inclusion of an argument of this
sort most likely could not be considered as “an exact mathematical proposition”
either.

Interestingly, Péter later eases up on both qualifications in the remarkably
short 10th Chapter, Does Recursivity Mean Restriction? First she returns to
the question of partiality and states that: “Actually, a really partial recursive
function might not be obtained at all.” Here, surprisingly, Péter alludes to pro-
gramming practices. The problem with the computation of the arguments of a
proper partial recursive function is that “one can never know whether the com-
puter has failed to stop because the computation is lengthy, or if it will work

442 M. Szabó

on forever, without computing anything.” Hence “[o]ne always strives to feed
‘reasonable’ programs into the computer, whereby [...] the calculation will come
to a halt after a (large) finite number of computing steps.” After this practical
restriction, Péter arrives at the conclusion that “whatever can really be obtained
by the use of a computer is general recursive” (p. 141).

According to Péter this conclusion raises the question in the title of the
chapter, namely, whether the recursivity of what is computable means “an essen-
tial restriction on the abilities of the computer” (p. 141). This question, then,
leads her to Church’s Thesis, i.e. the statement that “every numeric function is
general recursive if its values are computable in a finite number of steps for all
arguments” (p. 142). Under the assumption of the Thesis, recursivity not only
does not pose any restriction, but it means that “computers, which in principle
are capable of computing every general recursive function, yield the most that
can be expected according to the present state of our knowledge” (p. 142).

Of course when discussing Church’s Thesis, while admitting that “there are
many arguments for it,” Péter has to mention that there are “some” against
it as well. Here she mentions the informal character of the Thesis and points
to Kalmár’s argument against its plausibility [8]. More importantly, she re-
emphasizes the conviction she shared with Kalmár in the endless development
of mathematics, namely that “effective calculability is one of those notions the
definition of which can never be considered complete in the course of the devel-
opment of mathematics” (p. 142).

This allusion to possible future developments leads to the last and most
interesting remark of the short chapter:

Let us hope, provided a counter-example to Church’s thesis is made known
[...that...] the technological means will develop to modify computers to
enable them to compute such functions. (p. 142)

Hence, Péter not only believes in the endless development of mathematics and
mathematical methods, but in the possibility of advancements in computing
technologies as well.17 This latter belief might explain why Péter did not even
attempt to characterize in any way what actual computing machines are capa-
ble of in principle. At the same time, it seems to undermine the possibility of
“showing” that the machine computable functions are identical with the (partial)
general recursive functions, or at least casts into doubt what it could amount to
in general.

Thus in the end, it seems that Péter was not philosophically committed to
what we would call a physical version of Church’s Thesis either. However, it
appears that she truly endorsed it under “the present state of our knowledge”
and saw it as appropriate justification of the approach taken in the book.

17 This is in stark contrast with Gödel’s view that the human mind infinitely surpasses
any finite machine for which the “inexhaustibility” of mathematics or the possible
future discovery of humanly effective but non-mechanical processes would provide
an argument. See Sieg’s [29] for a detailed analysis of Gödel’s writings on this issue.

Peter on Church’s Thesis, Constructivity and Computers 443

6 Conclusion

This short overview of Péter’s main discussions of Church’s Thesis show a con-
stant and consistent non-committal attitude towards it. She never questioned the
usefulness of the concept of general recursive functions within recursion theory
and the importance of undecidability results based on Church’s Thesis. Nev-
ertheless she persisted in her belief in the endless development of mathematics
and that such a development is an argument against the exact formalization and
confinement of the concept of calculability once and for all.

Appendix: The Amsterdam Colloquium

In the summer of 1956, Heyting sent Péter the following invitation (found in [9])
to the Amsterdam Colloquium, which was then in the early planning phase.

Dear18 Madam Péter,

The International Union for Logic, Methodology and Philosophy of the Sciences
has charged the Netherlands Society for Logic and Philosophy of Sciences to organize
in 1957 at Amsterdam a colloquium on “The different notions of constructivity in
mathematics”. I hope to organize this colloquium in the summer of 1957, presumably in
August. Subventions have been asked from UNESCO and from the Dutch government,
by which probably we shall be able to pay a considerable part of the expenses of the
participants.

The object of the colloquium will be to study the different notions of constructivity
which have been proposed and the relations between them. I shall be please very much
if you will participate in it. I join to this letter a list of persons whom I intend to
invite.19 However, this list, as the plan in general is in a preliminary state. I shall be
thankful for suggestions w[h]ich you can give me. If the funds are sufficient, I should
like to invite a number of young and promising mathematicians as auditors. You will
also oblige me by mentioning names which can be considered in this respect, but I beg
you to remember that it is by no means sure that such invitations will be possible.

Yours sincerely

A. Heyting

The working title of the Colloquium appears to be more pluralistic at this stage
than the final Constructivity in Mathematics. Nevertheless, in the Preface of the
Proceedings, Heyting states in a similar vein that “Several different notions of
constructivity were discussed in these lectures” (p. 9).

Based on Péter and Kalmár’s correspondence [9] and Kalmár’s travel report
[7], we know that Péter was among the first 18 logicians invited to the Collo-
quium, and Kalmár was later invited on her strong recommendation. Altogether
24 logicians received invitations to the event, 21 attended and 19 gave talks,

18 The greeting is stapled over, thus ‘dear’ is merely an educated guess here.
19 Sadly this list was not kept in [9].

444 M. Szabó

while about the same number of “promising young mathematicians” were among
the audience.

Originally the organizers offered to cover 60% of the costs of the attendees.
However, since even the remaining costs were essentially insurmountable for
the Hungarian scholars, the costs of Péter, Kalmár, and their student, the set
theorist and combinatorist András Hajnal (later frequent Paul Erdős co-author)
were almost entirely covered by the organizers.

References

1. Church, A.: An unsolvable problem of elementary number theory. Am. J. of Math.
58(2), 345–363 (1936)

2. Coquand, T.: Recursive functions and constructive mathematics. In: Dubucs, J.,
Bourdeau, M. (eds.) Constructivity and Computability in Historical and Philosoph-
ical Perspective. LEUS, vol. 34, pp. 159–167. Springer, Dordrecht (2014). https://
doi.org/10.1007/978-94-017-9217-2 6

3. Gandy, R.: Church’s thesis and principles for mechanisms. In: Barwise, J., Keisler,
J., Kunen, K. (eds.) The Kleene Symposium, pp. 123–148. North-Holland, Ams-
terdam (1980)

4. Gosztonyi, K.: Mathematical culture and mathematics education in hungary in the
XXth century. In: Larvor, B. (ed) Mathematical Cultures. Trends in the History
of Science, pp. 71–89, Birkhäuser, Basel (2016)

5. Heyting, A.: After thirty years. In: Nagel, E., Suppes, P., Tarski, A. (eds.) CLMPS
1960, pp. 194–197. Stanford University Press, Stanford (1962)

6. Kalmár, L.: Über ein Problem, betreffend die Definition des Begriffes der allge-
meinrekursiven Funktion. Zeitschr. f. Math. Logik und Grundlagen d. Math. 1(2),
93–96 (1955)

7. Kalmár, L.: Travel Report and Other Documents Related to the Constructivity in
Mathematics Colloquium. In: Folder MS 2044 at Kalmár’s Nachlass at the Klebels-
berg Library at the University of Szeged (1956–1957)

8. Kalmár, L.: An argument against the plausibility of church’s thesis. In: Heyting,
A. (ed) Constructivity in Mathematics, Amsterdam, pp. 72–80, North-Holland,
Amsterdam (1959)

9. Kalmár, L., Péter, R.: Correspondence with Rózsa Péter. In: Folder MS 1966 at
Kalmár’s Nachlass at the Klebelsberg Library at the University of Szeged (1930–
1976)

10. Kleene, S.C.: General recursive functions of natural numbers. Math. Annalen
112(5), 727–742 (1936)

11. Kleene, S.C.: A note on recursive functions. Bull. Amer. Math. Soc. 42(8), 544–546
(1936)

12. Kleene, S.C.: Recursive predicates and quantifiers. Trans. AMS 53(1), 41–73 (1943)
13. Kleene, S.C.: Introduction to Metamathematics. North-Holland, Amsterdam

(1952)
14. Makay, Á.: The activities of László Kalmár in the world of information technology.

Acta Cybernetica 18(1), 9–14 (2007)
15. Máté, A.: Kalmár and Péter on the Philosophy and Education of Mathemat-

ics. Talk delivered at Logic in Hungary (2005). http://phil.elte.hu/mate/KalP
%E9tPhil.doc. Accessed 23 Feb 2021

https://doi.org/10.1007/978-94-017-9217-2_6
https://doi.org/10.1007/978-94-017-9217-2_6
http://phil.elte.hu/mate/KalP%E9tPhil.doc
http://phil.elte.hu/mate/KalP%E9tPhil.doc

Peter on Church’s Thesis, Constructivity and Computers 445

16. Mendelson, E.: On some recent criticism of church’s thesis. Notre Dame J. Formal
Logic 4(3), 201–205 (1963)

17. Moschovakis, Y.: Review of four recent papers on church’sthesis. JSL 33(3), 471–
472 (1968)

18. Mosconi, J.: The developments of the concept of machine computability from 1936
to the 1960s. In: Dubucs, J., Bourdeau, M. (eds.) Constructivity and Computability
in Historical and Philosophical Perspective. LEUS, vol. 34, pp. 37–56. Springer,
Dordrecht (2014). https://doi.org/10.1007/978-94-017-9217-2 2

19. Péter, R.: Recursive Functions. 3rd edn, Akadémiai Kiadó, Budapest and Aca-
demic Press, New York (1967). Rekursive Funktionen. 1st edn, Akadémiai Kiadó,
Budapest (1951)

20. Péter, R.: Graphschemata und Rekursive Funktionen. Dialectica 12, 373–393
(1958)

21. Péter, R.: Rekursivität und Konstruktivität. In: Heyting, A. (ed) Constructivity
in Mathematics, Amsterdam, pp. 226–233, North-Holland, Amsterdam (1959)

22. Péter, R.: Playing with Infinity. New York: Dover (1976). 1st English edn (1961)
23. Péter, R.: Automatische Programmierung zur Berechnung der Partiell-rekursiven

Funktionen. Studia Sci. Math. Hung. 4, 447–463 (1969)
24. Péter, R.: Recursive Functions in Computer Theory. Akadémiai Kiadó, Budapest

and Ellis Horwood Ltd, Chichester (1981). Rekursive Funktionen in der Komputer-
Theorie. 1st edn, Akadémiai Kiadó, Budapest (1976)

25. Robinson, R.: Review of [19]. JSL 23(3), 362–363 (1958)
26. Shannon, C.: A symbolic analysis of relay and switching circuits. Trans. AIEE

57(12), 713–723 (1938)
27. Shestakov, V.: Algebra of two poles schemata (Algebra of A-schemata). [in Russian]

J. Tech. Phys. 11(6), 532–549 (1941)
28. Sieg, W.: On Computability. In Irvine, A. (ed) Philosophy of Mathematics (Hand-

book of the Philosophy of Science). North-Holland Publishing Company, Amster-
dam, pp. 535–630 (2009)

29. Sieg, W.: Gödel’s philosophical challenge (to Turing). In: Copeland, J., Posy, C.,
Shagrir, O. (eds.) Computability: Turing, Gödel, Church, and Beyond, pp. 183–202.
MIT Press, Cambridge (2013)

30. Sundholm, G.: Constructive recursive functions, church’s thesis, and Brouwer’s the-
ory of the creating subject: afterthoughts on a Parisian joint session. In: Dubucs,
J., Bourdeau, M. (eds.) Constructivity and Computability in Historical and Philo-
sophical Perspective. LEUS, vol. 34, pp. 1–35. Springer, Dordrecht (2014). https://
doi.org/10.1007/978-94-017-9217-2 1

31. Sushchanskii, V., Lazebnik, F., Ustimenko, V., et al.: Lev Arkad’evich Kalužnin
(1914–1990). Acta Appl. Math. 52, 5–18 (1998)

32. Szabó, M.: The M-3 in Budapest and in Szeged. Proc. IEEE 104(10), 2062–2069
(2016)

33. Szabó, M.: Kalmár’s argument against the plausibility of church’s thesis. Hist. Phil.
Logic 39(2), 140–157 (2018)

34. Szabó, M.: László Kalmár and the first university-level programming and computer
science training in hungary. In: Leslie, C., Schmitt, M. (eds.) HC 2018. IAICT, vol.
549, pp. 40–68. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29160-
0 3

35. Unsung Heroes in Dutch Computing History: ARMAC, http://www-set.win.tue.
nl/UnsungHeroes/machines/armac.html. Accessed 26 Apr 2021

https://doi.org/10.1007/978-94-017-9217-2_2
https://doi.org/10.1007/978-94-017-9217-2_1
https://doi.org/10.1007/978-94-017-9217-2_1
https://doi.org/10.1007/978-3-030-29160-0_3
https://doi.org/10.1007/978-3-030-29160-0_3
http://www-set.win.tue.nl/UnsungHeroes/machines/armac.html
http://www-set.win.tue.nl/UnsungHeroes/machines/armac.html

Constructive Mathematics, Church’s
Thesis, and Free Choice Sequences

D. A. Turner(B)

University of Kent, Canterbury, UK
D.A.Turner@kent.ac.uk

Abstract. We see the defining properties of constructive mathematics
as being the proof interpretation of the logical connectives and the defi-
nition of function as rule or method.

We sketch the development of intuitionist type theory as an alterna-
tive to set theory. We note that the axiom of choice is constructively
valid for types, but not for sets. We see the theory of types, in which
proofs are directly algorithmic, as a more natural setting for construc-
tive mathematics than set theories like IZF.

Church’s thesis provides an objective definition of effective com-
putability. It cannot be proved mathematically because it is a conjecture
about what kinds of mechanisms are physically possible, for which we
have scientific evidence but not proof. We consider the idea of free choice
sequences and argue that they do not undermine Church’s Thesis.

Keywords: Constructive type theory · Church’s thesis · Free choice
sequence

Introduction

What makes constructive mathematics constructive? I believe it is two things:
(i) the proof interpretation of the logical connectives, and (ii) restoring the older
meaning of function as rule or method of which it had been stripped by the
development of set theory in late 19C. Both steps are due to Brouwer (1908),
whose point of departure was the paradoxes of set theory.

Brouwer’s intuitionism also drew on his intuitions about free choice sequences
for conclusions about properties of the continuum. Modern constructivism dates
from Bishop (1967) whose treatment of the reals is straightforwardly constructive
and doesn’t make use of free choice sequences. Bridges and Richman (1987) give
a thorough technical comparison of Brouwer’s intuitionism, Bishop-style con-
structivism, and a third strand, Russian constructivism, due to Markov, which
identifies function with recursive function, thus incorporating Church’s Thesis.

Bishop and Bridges (1985) develop constructive analysis within the (infor-
mal) framework of set theory using intuitionistic logic and without the axiom
of choice. A formal system of constructive set theory (CST) along these lines

c© Springer Nature Switzerland AG 2021
L. De Mol et al. (Eds.): CiE 2021, LNCS 12813, pp. 446–456, 2021.
https://doi.org/10.1007/978-3-030-80049-9_44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80049-9_44&domain=pdf
https://doi.org/10.1007/978-3-030-80049-9_44

Constructive Mathematics, Church’s Thesis, and Free Choice Sequences 447

appears in Myhill (1975). The intuitionist set theory (IZF) of Friedman (1973)
is similar, for a full discussion of these theories see Beeson (1985), Chap. VIII.

An alternative to CST or IZF as a framework for the formal development of
constructive mathematics, is the intuitionist theory of types of Per Martin-Löf
(1973), and its descendants such as Homotopy Type Theory (Univalent Foun-
dations 2013). These type theories are based on propositions-as-types and differ
radically from set theories, whose essential ingredient is some version of the
axiom of comprehension.

In the following sections I will cover:

1. Sketch the emergence of propositions-as-types as an alternative to set theory,
with a note on the conflicted status of AC (axiom of choice).

2. Church’s thesis and constructivity
3. Remarks on free choice sequences.

1 From Frege to Martin-Löf

Propositional Functions

The Begriffsschrift of Frege (1879) broke from the analysis, current since Aris-
totle, of the proposition as comprising subject and predicate. Instead we have
an n-ary propositional function applied to n terms

P (a1, . . . , an)

one of the ai might be the grammatical subject, others direct and indirect
objects, but in Frege’s analysis the terms are all treated in the same way. Each
term is a referring (or denoting) expression which has a reference (or denotation).
In the case of a mathematical proposition this will be a mathematical entity like
a number, a function, etc.

But what is the reference of a complete proposition, that is of a propositional
function supplied with its arguments? For Frege it was a truthvalue, either True
or False. If P is a complete (or saturated) proposition for which we have a proof
we can write the judgement

� P

asserting that P has the value True. This is the sole form of judgement in Frege’s
system. Note that the judgement is not manifest, that is valid on its face. To be
justified in writing it we must have a sequence of valid steps in Frege’s system
whose last step is � P .

Frege’s analysis of meaning in terms of reference led to various difficulties
leading him (Frege 1892) to introduce a second notion of meaning, sense. So for
example

√
16 and 4 have the same reference but different senses. But the exact

nature of sense remained elusive.
Jumping ahead by 90 years, to Howard (1969), we can see in propositions-as-

types, an elegant solution to Frege’s difficulties. The reference, or denotation, of
a proposition is not a truthvalue, but a type, namely the type of its proofs. But
what is a type?

448 D. A. Turner

Types

Russell (1903) in Appendix B “The Doctrine of Types”, defines a type as the
range of significance of a propositional function, that is what we would now call
its domain. This is different from a set, which is the extension of a propositional
function, that is the collection of values for which it is true. Types were intro-
duced in an attempt to block self-reference which appear to be at the root of
the paradoxes which had been found in set theory, such as the Russell paradox.

Applying the doctrine of types to Frege’s analysis of propositions introduces
another form of judgement, which we will write

ai ::Ti

saying that term ai has type Ti. Note that this is a manifest judgement, it should
be verifiable on its face as a condition of well-formation of the formula in which it
stands. To make this judgement we may need context, because in mathematical
reasoning we introduce variables, always with their types e.g.,

Let n be a natural number . . .
let f be a function in R → R . . .

So the general form of a typing judgement is

Γ � a ::T

where Γ is a sequence of hypotheses introducing variables with their types. This
is a manifest judgement, whose validity can be mechanically checked, as in the
type systems of functional programming languages such as Haskell or Agda.

Types Versus Sets

Types and sets are quite different in behaviour

– set membership e ∈ S is not in general decidable but requires proof; that is
e ∈ S is a proposition not a judgement.

– basic operations on sets include union S ∪ T and intersection S ∩ T , which
usually make no sense on types; the natural operations on types are cartesian
product A ⊗ B, disjoint sum A ⊕ B, the function type A → B and the
dependent versions of product and function types.

– sets are equal iff they have the same elements—this is the axiom of exten-
sionality ; the situation with types is more complicated—including that in
constructive type theories we must distinguish propositional equality from
definitional equality. In Homotopy Type Theory, types are propositionally
equal when they are isomorphic.

– set theory has the axiom1of separation, or restricted comprehension: if T is a
set and P a property we can form the set S = {x ∈ T | P (x)}. This effectively
erases the distinction between type and set implicit in Russell’s doctrine of
types. ZF set theory is typeless, or to put it another way there is only one
type—everything is a set.

1 Technically an axiom schema.

Constructive Mathematics, Church’s Thesis, and Free Choice Sequences 449

– the axiom of choice of set theory is constructively problematic, as we discuss
later, while a choice principle is provable in the main versions of type theory.

Propositions as Types

The standard account of intuitionistic logic is the BHK (for “Brouwer, Heyting,
Kolmogorov”) or proof interpretation, see for example (Troelstra & van Dalen
1988). Paraphrasing slightly2 we have

1. A proof of A ∧ B is given by presenting a proof of A and a proof of B.
2. A proof of A ∨ B is given by presenting a proof of A or a proof of B and

saying which has been given.
3. A proof of A ⊃ B is a rule or method for constructing from any proof of A,

a proof of B.
4. Absurdity ⊥ (contradiction) has no proof; a proof of ¬A is a rule or method

for constructing from any proof of A, a proof of contradiction.
5. A proof of (∀x : D)A(x) is a rule or method which for any d : D constructs

a proof of A(d).
6. A proof of (∃x : D)A(x) is given by providing a d : D, and a proof of A(d).

From 2 we see why the law of the excluded middle is rejected. To assert
P ∨ ¬P in the general case would require a universal decision procedure for
mathematical propositions.

Given the above definitions, propositions–as–types (aka the Curry-Howard
isomorphism) jumps out, once we are given the idea. We see that a proof of
A ∧ B is a pair (a, b) of A ⊗ B; that a proof of A ∨ B is a left or right element
of the disjoint union A ⊕ B; that a proof of A ⊃ B is a function in A → B; that
Absurdity is the empty type. The relation of proof to proposition proved is seen
to be the same “::” judgement already met, of a term to its type.

The interpretations of rules 5 & 6 for the quantifiers require, respectively,
dependent function and product types. In stating these rules I have the range of
quantification, D, a type. Universal quantification over a set, (∀x ∈ S)A(x), can
be translated as (∀x : T)P (x) ⊃ A(x) where P is the defining property of set S
in type T . Similarly (∃x ∈ S)A(x) can be translated (∃x : T)P (x) ∧ A(x).

The coincidence of the types of closed terms in typed λ-calculus with the
tautologies of intuitionistic implication, and of the terms themselves with natural
deduction proofs of these formulae, was first noted in Curry and Feys (1958).
Howard (1969) extends this to a lambda calculus with sums and products and
full intuitionistic first order logic.

The Intuitionist Theory of Types of Martin-Löf (1973) adds equality types,
natural numbers and induction, and a hierarchy of universes so that types have
types. This is both a functional programming language and a formal system
for constructive mathematics in the sense of Bishop (1967)—with fully formal

2 I have used “rule or method for constructing” where Troelstra & van Dalen say
“construction for transforming”.

450 D. A. Turner

proofs. It is strongly normalising and has decidable typing judgement (which is
the relation between element and type aka that between proof and theorem).

This has given rise to a number of descendant constructive type theories,
including Homotopy Type Theory, and computer systems for developing proofs
in constructive mathematics alias functional programs, including Robert Con-
stable’s Nuprl at Cornell, Agda (Norell 2007) designed at Chalmers by Caterina
Coquand and Ulf Norell, and COQ, developed at INRIA and based on the Calcu-
lus of Inductive Constructions, a development from Coquand and Huet (1988).

Mathematicians have a century of highly successful work based on set theory
and it is unsurprising that constructive mathematics has to date, from Bishop
(1967) on, often been done using constructive versions of set theory. I believe
this will change as systems based on type theories like those above continue to
develop and become more convenient to use.

It is in any case likely that the publication standard in mathematics (whether
classical or constructive) will come to require the submission of fully formal
machine checked versions of proofs.

A Note on the Axiom of Choice

The principle of dependent choice

(∀x : A)(∃y : B)C(x, y) ⊃ (∃f : A → B)(∀x : A)C(x, f(x))

is easily provable in Martin-Löf type theory and its descendents.
The same principle in set theory is an axiom, the axiom of choice (AC),

whose constructive status is widely regarded as problematic.
Bishop (1967) remarks in his introduction that “choice is implied by the con-

structive meaning of existence”. But in the development of constructive analysis
Bishop is working within an (informal) set theory close to Myhill’s CST, which
does not include AC.

Goodman and Myhill (1978) give a proof that in ZF set theory AC implies
the law of the excluded middle, P ∨ ¬P . So AC is omitted from constructive
versions of ZF for good reason.

Goodman & Myhill’s proof uses two other axioms of set theory besides AC:
the axiom of pairing, that the set {a, b} exists for any (not necessarily different)
a, b and the axiom of extensionality. Pairing is a special case of the axiom of
separation.

The axiom of separation is not part of Martin-Löf type theory—by conflating
types and sets it would destroy the decidability of the typing judgement. That
the choice principle for types is constructively valid while AC (for sets) is not,
is telling us that the latter is a stronger claim.

There have been proposals to add a subtyping construct, analogous to the
axiom of separation, to constructive type theory. In the light of Goodman &
Myhill’s result, this looks suspect—and Thompson (1992) gives arguments why
a subtype construction is not needed in type theory.

Constructive Mathematics, Church’s Thesis, and Free Choice Sequences 451

2 Church’s Thesis and Constructivity

In or around 1936, an objective definition of effective computability emerged: the
general recursive functions of Herbrand, Gödel and Kleene, the λ-definable func-
tions of Church, and those computable by Turing’s “logical computing machines”
were found to be one and the same class of number theoretic functions, of which
further definitions have since been found.

These are the partial recursive functions, whose types are Nk → N , with N
the type of the natural numbers and N = N ∪{⊥} where ⊥ stands for undefined
or non-terminating. Without loss of generality we can restrict ourselves to the
type N → N ; by the use of Gödel numbering, elements of N can be used to
represent any finite input or output data. The recursive functions are the total
partial recursive functions, whose type can be written N → N .

Church’s Thesis (jointly due to Church and Turing) is the conjecture that this
class identifies what is computable by any realisable mechanism3 By mechanism
we here mean one that takes a symbolic input and produces a symbolic output; a
device with analog components is not excluded provided it meets that condition.

The thesis provides an objective basis to computability results that underly
computing science. It is shown that such and such is not recursive (aka not
computable by a Turing machine etc.), and Church’s Thesis allows us to say
that the proposed function is not effectively computable. The earliest example
of this mode of reasoning is Church (1936b) where he argues from the results in
Church (1936a) that the decision problem for predicate calculus is unsolvable.
It is striking that in stating his conclusion Church uses the word “unsolvable”
without any qualifying adverb.

What is equally important and emerged together with Church’s thesis is the
undecidability of termination. Given a computation of type N there is no gener-
ally effective procedure for determining if it is ⊥. From this other undecidability
results are derived, including that for first order predicate logic.

Church’s Thesis is Empirical

Gandy (1980) shows that assuming a small number of rather general physical
principles—finite (although possibly changing) number of parts, no infinitesimal
parts, no instantaneous action at a distance etc.—what can be computed by any
machine is recursive.

3 In his analysis of Church’s Thesis, Gandy (1980) distinguishes between two claims,
which he calls T and M. Theorem T says anything that can be computed by an
idealised human being following rules, with an unlimited supply of paper and a pen-
cil, is recursive (alias computable by a Turing machine). Gandy calls it a theorem
because, although not formally provable, it is intuitively clear that a Turing machine
models an idealised human computer. Thesis M says anything that can be mechan-
ically computed is recursive. This implies T but is stronger. Hodges (2006) offers
evidence that Church and Turing held the stronger claim, and this is what I take as
Church’s Thesis in this paper.

452 D. A. Turner

Quantum computers lie outside Gandy’s assumptions by the use of quantum
entanglement. They make feasible certain computations that would be expo-
nential on a conventional computer, for example factorizing an integer in linear
time. But they do not allow the computation of anything that is not recursive.
See Rieffel and Polak (2000) for a survey.

Church’s thesis reflects the fact that, according to our current understanding,
our universe (or at least the part of it which can have causal effects on us)
contains no infinities and no infinitesmals, the latter because space, time and
matter are all quantised.

It is thus a conjecture of physics, rather like the second law of thermodynam-
ics, for which we have strong scientific evidence but no proof. Deutsch (1997)
takes exactly this view.

It should therefore not be built into constructive mathematics. Mathematics
should have the ability to describe universes other than our own.

Are There Non-computable Functions?

In classical mathematics non-computable functions flow from the law of the
excluded middle and its friend the law of double negation. It is enough to write
a specification for a function, prove that it is not absurd, and then, as if by magic,
we have the function without having provided a method of computing it. In his
“Constructivist Manifesto” Bishop4 sees these as an obscuring fog that must be
blown away to reveal a leaner, algorithmic structure.

If we accept the constructive definition of function as rule or method then
non-computable function is an oxymoron, like a round square or a four cornered
triangle. See Greenleaf (1992) “Bringing Mathematics Education into the Algo-
rithmic Age”.

A non-recursive function is logically possible—because Church’s Thesis might
be false—but to demonstrate the existence of one you would have to produce a
method for computing it that others can understand and use. Since CT is almost
certainly true this is not expected to happen. So constructive mathematics is
destined to remain in the position that it can neither produce an example of a
non-recursive function nor a proof that none exist. I don’t see this as a problem,
it seems entirely reasonable.

A fallacious argument from cardinality is sometimes advanced to “prove” that
non-recursive functions both exist and greatly outnumber the recursive ones:

1. N → N is uncountable, by diagonalisation (Cantor).
2. The partial recursive functions N → N are recursively enumerable
3. The total recursive functions, as a subset of (2), are countable
4. Therefore “almost all” members of N → N are non-recursive.

Classically this is unproblematic. Viewed constructively, the argument fails at
step 3. An effective enumeration of a set yields an effective enumeration of a

4 Bishop and Bridges (1985) Chap. 1.

Constructive Mathematics, Church’s Thesis, and Free Choice Sequences 453

subset only if the subset is decidable. The proof of (3) from (2) requires a totality
test and totality for partial recursive functions is not recursively decidable. The
argument is circular; it assumes a non-recursive function to prove that non-
recursive functions exist.

The underlying issue is that the classical theory of transfinite cardinals is
almost entirely non-constructive. Constructively, a set that is not countable has
a more complex internal structure than a countable one but that does not nec-
essarily make it “bigger” nor prevent it from being a subset of the latter. The
ordering of transfinite sets by cardinality (trichotomy) is equivalent to the axiom
of choice, which is not constructively valid.

Note that the total recursive functions constitute a set whose countability we
cannot prove from the given facts. This is different from a set whose countability
is absurd (leads to contradiction) meaning it is provably uncountable. It is the
absence of the law of the excluded middle that separates these two situations.

In constructive mathematics the set N → N is uncountable, by Cantor’s
diagonalisation proof5. This does not imply the existence of non-recursive func-
tions, which is logically independent.

To show this we use the result, established by Bridges and Richman (1987),
that Bishop’s constructive mathematics, BISH in their terminology, sits in the
logical intersection of classical mathematics (CLASS), the recursive mathematics
of Markov (RUSS), and Brouwer’s intuitionism (INT), although the last is not
relevant here. Anything provable in BISH is provable in the other three systems.

Conversely, any proposition that would lead to a contradiction in CLASS,
RUSS, or INT, cannot be provable in BISH.

We see straight away that there cannot be a constructive proof that there
are non-recursive functions because that would lead to a contradiction in RUSS,
which incorporates Church’s Thesis as an axiom6. Nor can there be a construc-
tive proof that all functions are recursive—that is impossible in CLASS by the
cardinality argument.

From which we conclude that the existence of non-recursive functions can be
neither proved, nor disproved constructively.

Even in recursive mathematics N → N is internally (that is recursively)
uncountable by the usual diagonalisation proof, despite being externally count-
able from a classical viewpoint. There are no objective grounds for regarding the
classical view as the “correct” one.

In summary: there is no constructive proof that non-recursive functions exist
and constructive N → N is uncountable, regardless of their presence or absence.

Similar results apply concerning the status of non-recursive real numbers,
which have been latched onto by some as a possible analog route for evading
Church’s Thesis (ignoring quantum mechanics).

5 This is a proof by contradiction of non-existence, which is uncontroversial—what is
not allowed, intuitionistically, is a proof by contradiction of existence.

6 See Bridges and Richman (1987) Chap. 3.

454 D. A. Turner

In a survey of schemes for “Hypercomputation” by Stannett (2004), we find
this statement7: “As is well known, a randomly selected real number has a 100%
chance of being non-recursive.”. An appeal to the, constructively invalid, cardi-
nality argument, it raises another interesting question—how can a point in say,
the interval [0, 1] be “randomly selected”? Presumably by an infinite free choice
sequence, to which topic we now turn.

3 Free Choice Sequences

Do free choice sequences contradict Church’s Thesis?
Bishop is dismissive of Brouwer’s use of free choice sequences for analysis,

and develops constructive analysis without them. He writes

In Brouwer’s case there seems to have been a nagging suspicion that unless
he personally intervened to prevent it, the continuum would turn out to
be discrete. He therefore introduced the method of free-choice sequences
for constructing the continuum, as a consequence of which the continuum
cannot be discrete because it is not well enough defined.8

However, this doesn’t settle the question of whether free choice sequences
exist, and if so, do they give us access to something non-recursive? Concerning
existence, we do not need to get entangled in discussions about whether humans
have free will and in what sense.

A genuinely random, i.e., not rule-governed, sequence of bits can be gen-
erated from quantum uncertainty. It is possible to design a practical piece of
equipment that detects atomic transitions or some other event subject to quan-
tum uncertainty to produce a random sequence of numbers in some finite range
[0, k], of any desired length. An apparatus of this kind, ERNIE (for Electronic
Random Number Indicator Equipment), first employed in 1956, is used to pick
monthly winning numbers for UK government premium bonds.

So does ERNIE, by its randomness, give us access to a non-recursive function?
Of course not9. The free choice sequences generated by ERNIE and his friends
are not rule-generated but they are always finite. To get something that might
be non-recursive we would have to run ERNIE forever—and forever is too long
to wait. We are mortal as individuals and as a society; any apparatus we build
will eventually stop working, our civilisation will eventually come to an end.

A finite sequence of natural numbers, however long, is always computable.
Computable means generable by a rule or method. A rule or method is something
that can be used in another time or place to get the same results. For a finite
sequence you can record it, and replay it when needed or transmit it to another
place to be replayed. Also for any finite sequence, there are an infinite number
of algorithms that will generate it and that will remain true as it is extended.
7 Teuscher (2004) p. 152.
8 Bishop and Bridges (1985), p. 9.
9 It was shown in (De Leeuw et al. 1956) that adding a random number generator to

a Turing machine does not enlarge the class of functions it can compute.

Constructive Mathematics, Church’s Thesis, and Free Choice Sequences 455

Suppose someone resists this argument and insists that we consider a free
choice sequence that runs forever and tries to argue that this has probability 1 of
being a non-recursive function in N → k (appealing to the fallacious cardinality
argument). My response is that what we are being asked to consider is not a
function. To be given a function, in the general case, we have to be given the
function in its entirety . Some questions can be answered by looking at points, say
f(0), f(17), etc., but to prove something about a function in the general case you
need the whole function, and a function on N can only be given, constructively,
by a rule or method expressed in finite form.

The proper framework for understanding an indefinitely proceeding free
choice sequence is as codata rather than as a function on N (see e.g., Turner
2004). What we have is a colist of digits which we can interrogate to get the
next digit and another colist. In the case under consideration we are not given
any rule governing the sequence of digits.

To conclude, I do not see free choice sequences as having any impact on the
plausibility of Church’s Thesis (that every computable function is recursive),
because if finite they are recursive and if considered as running indefinitely they
are not functions within the constructive meaning of the term.

References

Beeson, M.J.: Foundations of Constructive Mathematics. Springer, Heidelberg (1985).
https://doi.org/10.1007/978-3-642-68952-9

Bishop, E.: Foundations of Constructive Analysis. McGraw-Hill (1967). Revised and
reissued as Bishop & Bridges (1985)

Bishop, E., Bridges, D.: Constructive Analysis. Springer, Heidelberg (1985). https://
doi.org/10.1007/978-3-642-61667-9

Bridges, D., Richman, F.: Varieties of Constructive Mathematics. Cambridge Univer-
sity Press (1987)

Brouwer, L.E.J.: On the unreliability of the logical principles (1908). New transla-
tion with introduction by van Atten, M. & Sundholm, G. (2015). https://www.
researchgate.net/publication/283448904

Church, A.: An unsolvable problem of elementary number theory. Am. J. Math. 58,
345–363 (1936)

Church, A.: A note on the entscheidungsproblem. J. Symbolic Logic 1(1), 40–41 (1936)
Coquand, T., Huet, G.: The calculus of constructions. Inf. Comput. 76, 95–120 (1988)
Curry, H.B., Feys, R.: Combinatory Logic, vol. I. North-Holland, Amsterdam (1958)
De Leeuw, K., Moore, E.F., Shannon, C.E., Shapiro N.: Computability by probabilistic

machines. In: Shannon, C.E., McCarthy, J. (eds.) Automata Studies, pp. 183–212.
Princeton University Press (1956)

Deutsch, D.: The Fabric of Reality. The Penguin Press, Allen Lane (1997)
Frege, G.: Begriffsschrift: a formula language, modeled on that of arithmetic, for pure

thought (1879). In: van Heijenoort, J. (ed.) From Frege to Gödel – A Source Book
in Mathematical Logic 1879–1931. pp. 1–82. Harvard University Press (1967)

Frege, G.: On sense and reference (1892). In: Geech, P., Black, M. (eds.) Translations
From the Philosophical Writings of Gottlob Frege, pp. 56–78. Basil Blackwell, Oxford
(1966)

https://doi.org/10.1007/978-3-642-68952-9
https://doi.org/10.1007/978-3-642-61667-9
https://doi.org/10.1007/978-3-642-61667-9
https://www.researchgate.net/publication/283448904
https://www.researchgate.net/publication/283448904

456 D. A. Turner

Friedman, H.: The consistency of classical set theory relative to a set theory with
intuitionistic logic. J. Symbolic Logic 38(2), 315–319 (1973)

Gandy, R.: Church’s thesis and principles for mechanisms. In: Barwise, J., Keisler, H.J.,
Kunen, K. (eds.), The Kleene Symposium, pp. 123–148. North-Holland, Amsterdam
(1980)

Goodman, N.D., Myhill, J.: Choice Implies Excluded Middle. Zeit. Logik und Grund-
lagen der Math 24, 461 (1978)

Greenleaf, N.: Bringing mathematics education into the algorithmic age. In: Myers,
J.P., O’Donnell, M.J. (eds.) Constructivity in CS 1991. LNCS, vol. 613, pp. 199–
217. Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0021092

Hodges, A.: Did Church and Turing have a thesis about machines? In: Olszewski, A.,
et al. Church’s Thesis After 70 Years, pp. 242–252. Ontos Verlag (2006)

Howard, W.A.: The formulae as types notion of construction (original paper manuscript
of 1969). In: Hindley, R.J., Seldin, J.P. (eds.) To H. B. Curry: Essays on Combinatory
Logic, Lambda Calculus, and Formalism, pp. 479–490. Academic Press (1980)

Martin-Löf, P.: An intuitionist theory of types – predicative part. In: Rose, H.E., Shep-
herdson, J.C. (eds.) Logic Colloquium 1973, pp. 73–118. North Holland (1975)

Myhill, J.: Constructive set theory. J. Symb. Log. 40(3), 347–382 (1975)
Norell, U.: Towards a practical programming language based on dependent type theory.

Ph.D. Thesis. Chalmers University of Technology (2007)
Rieffel, E., Polak, W.: An introduction to quantum computing for non-physicists. ACM

Comput. Surv. 32(3), 300–335 (2000)
Russell, B.: The Principles of Mathematics. Cambridge University Press (1903)
Stannett, M.: Hypercomputational models. In: Teuscher, pp. 135–157 (2004)
Teuscher, C. (ed.): Alan Turing: Life and Legacy of a Great Thinker. Springer, Heidel-

berg (2004). https://doi.org/10.1007/978-3-662-05642-4
Thompson, S.: Are subsets necessary in Martin-Löf type theory? In: Myers, J.P.,

O’Donnell, M.J. (eds.) Constructivity in CS 1991. LNCS, vol. 613, pp. 46–57.
Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0021082

Troelstra, A.S., van Dalen, D.: Constructivism in Mathematics. Studies in Logic and
the Foundations of Mathematics, vol. 121 & 123. North-Holland, Amsterdam (1988)

Turner, D.A.: Total functional programming. J. Univ. Comput. Sci. 10(7), 751–768
(2004)

Univalent Foundations Program: Homotopy Type Theory—Univalent Foundations
of Mathematics. Institute for Advanced Study, Princeton (2013). https://
homotopytypetheory.org/book/

https://doi.org/10.1007/BFb0021092
https://doi.org/10.1007/978-3-662-05642-4
https://doi.org/10.1007/BFb0021082
https://homotopytypetheory.org/book/
https://homotopytypetheory.org/book/

KL-Randomness and Effective Dimension
Under Strong Reducibility

Bjørn Kjos-Hanssen(B) and David J. Webb

University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA
{bjoern.kjos-hanssen,dwebb42}@hawaii.edu
http://math.hawaii.edu/wordpress/bjoern/

Abstract. We show that the (truth-table) Medvedev degree KLR of
Kolmogorov–Loveland randomness coincides with that of Martin-Löf
randomness, MLR, answering a question of Miyabe. Next, an analogue
of complex packing dimension is studied which gives rise to a set of weak
truth-table Medvedev degrees isomorphic to the Turing degrees.

Keywords: Algorithmic randomness · Effective dimension · Medvedev
reducibility

1 Introduction

Computability theory is concerned with the relative computability of reals, and
of collections of reals. The latter can be compared by various means, including
Medvedev and Muchnik reducibility. Among the central collections considered
are those of completions of Peano Arithmetic, Turing complete reals, Cohen
generic reals, random reals, and various weakenings of randomness such as reals
of positive effective Hausdorff dimension.

Perhaps the most famous open problem in algorithmic randomness [2,9] is
whether Kolmogorov–Loveland randomness is equal to Martin-Löf randomness.
Here we show that at least they are Medvedev equivalent.

Randomness extraction in computability theory concerns whether reals that
are close (in some metric) to randoms can compute random reals. A recent exam-
ple is [4]. That paper does for Hausdorff dimension what was done for a notion
intermediate between packing dimension and Hausdorff dimension in [3]. That
intermediate notion, complex packing dimension, has a natural dual which we
introduce in this article. Whereas our result on KL-randomness is positive, we
establish some negative (non-reduction) results for our new inescapable dimen-
sion and for relativized complex packing dimension (in particular Theorem 14).
These results are summarized in Fig. 1.

Let CR, SR, KLR, and MLR be the classes of computably random, Schnorr
random, Kolmogorov-Loveland random, and Martin-Löf random reals, respec-
tively. For basic definitions from algorithmic randoness, the reader may consult

B. Kjos-Hanssen—This work was partially supported by a grant from the Simons Foun-
dation (#704836 to Bjørn Kjos-Hanssen).

c© Springer Nature Switzerland AG 2021
L. De Mol et al. (Eds.): CiE 2021, LNCS 12813, pp. 457–468, 2021.
https://doi.org/10.1007/978-3-030-80049-9_45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80049-9_45&domain=pdf
http://orcid.org/0000-0002-1825-0097
http://orcid.org/0000-0002-5031-7669
https://doi.org/10.1007/978-3-030-80049-9_45

458 B. Kjos-Hanssen and D. J. Webb

X ∈ MLR

X ∈ KLR

Theorem 2

dimH(X) = 1

dimisΔ0
1
(X) = 1 dimsiΔ0

1
(X) = 1

dimsiΔ0
1(A)(X) = 1

Theorem 14
dimsiΔ0

1(B)(X) = 1

dimp(X) = 1

Fig. 1. Truth-table Medvedev degrees of mass problems associated with randomness
and dimension. Here C → D means C ≥s D, dotted arrow means C �≥s D and we assume
A �≤T B.

two recent monographs [2,9]. Let ≤s denote the uniform (strong) reducibility
of mass problems known as Medvedev reducibility, and let ≤w denote the non-
uniform (weak) version known as Muchnik reducibility. It was shown by Nies,
Stephan and Terwijn [10] that CR ≤w SR. Miyabe [8] obtains an interesting
counterpoint by showing as his main theorem that CR �≤s SR.

Theorem 1 ([7]). Given a KL-random set A = A0 ⊕A1, at least one of A0, A1

is ML-random.

As a corollary, MLR ≤w KLR. Miyabe [8] posed one open problem — is
MLR ≤s KLR? — which we answer in Theorem 2.

Let K(σ) denote the prefix-free Kolmogorov complexity of a string σ ∈ 2<ω,
and let Ks(σ) be a computable nonincreasing approximation of K(σ) in stages
s ∈ ω. The prefix of A of length n is denoted A � n.

Theorem 2. MLR ≤s KLR.

Proof. Given a KL-random set A = A0 ⊕ A1, we output bits of either A0 or A1,
switching whenever we notice that the smallest possible randomness deficiency
(c such that ∀n (K(Ai � n) ≥ n − c)) increases.

This constant c depends on s and changes at stage s + 1 if

(∃n ≤ s + 1) Ks+1(Ai � n) < n − cs.

By Theorem 1, one of A0, A1 is ML-random, hence switching will occur only
finitely often. Thus our output will have an infinite tail that is ML-random, and
hence be itself ML-random. 	

KL-Randomness and Effective Dimension Under Strong Reducibility 459

Inspection of the proof of Theorem 2 shows that we do not need the full power
of Turing reductions, but have a truth-table reduction with use ϕ(n) ≤ 2n.

2 Complex Packing Dimension and Its Analogue

Let K(σ) denote the prefix-free Kolmogorov complexity of a string σ ∈ 2<ω.
The prefix of A of length n is denoted A � n.

Viewed in terms of complexity [1,6], the Hausdorff and packing dimensions
are dual to one another:

Definition 1. Let A ∈ 2ω. The effective Hausdorff dimension of A is defined
by

dimH(A) = sup
m∈N

inf
n≥m

K(A � n)
n

.

The effective packing dimension of A is

dimp(A) = inf
m∈N

sup
n≥m

K(A � n)
n

.

Another notion of dimension was defined in previous work by Kjos-Hanssen
and Freer [3], which we review here. Let D denote the collection of all infinite
Δ0

1 elements of 2ω. The complex packing dimension is defined as

Definition 2. dimcp(A) = sup
N∈D

inf
n∈N

K(A � n)
n

.

This leads naturally to a new notion, the dual of complex packing dimension:

Definition 3. dimi(A) = inf
N∈D

sup
n∈N

K(A � n)
n

.

This is the inescapable dimension of A, so named because if dimi(A) = α,
every infinite computable collection of prefixes of A must contain prefixes with
relative complexity arbitrarily close to α. For such a real, there is no (com-
putable) escape from high complexity prefixes.

As Freer and Kjos-Hanssen show in [3], for any A ∈ 2ω,

0 ≤ dimH(A) ≤ dimcp(A) ≤ dimp(A) ≤ 1.

The expected analogous result also holds:

Theorem 3. For any A ∈ 2ω, 0 ≤ dimH(A) ≤ dimi(A) ≤ dimp(A) ≤ 1.

Proof. As the sets [n,∞) are computable subsets of N, dimi(A) ≤ dimp(A). For
the second inequality, notice that for all m ∈ N and all N ∈ Δ0

1,

inf
n∈[m,∞)

K(A � n)
n

≤ inf
n∈N∩[m,∞)

K(A � n)
n

≤ sup
n∈N∩[m,∞)

K(A � n)
n

≤ sup
n∈N

K(A � n)
n

.

	

460 B. Kjos-Hanssen and D. J. Webb

Unexpectedly, this is the best one can do. As we will see in the next section,
while the Hausdorff dimension of a real is always lower than its packing dimen-
sion, any permutation is possible for the complex packing and inescapable dimen-
sions of a real.

3 Incomparability for Inescapable Dimension

We begin with a proof that the inescapable and complex packing dimensions
are incomparable in the following sense: dimcp(A) ≤ dimcp(B) does not imply
dimi(A) ≤ dimi(B), nor vice versa. In fact we show a stronger statement:

Theorem 4. There exist A and B in 2ω such that dimcp(A) < dimcp(B), but
dimi(B) < dimi(A).

Recall that a real A meets a set of strings S if there is some σ ∈ S such that
σ is a prefix of A. Moreover, A is weakly 2-generic if for each dense Σ0

2 set of
strings S, A meets S [5].

For a real A, let us write A[m,n] to denote the string A(m)A(m+1) . . . A(n−
1). For two functions f(n), g(n) we write f(n) ≤+ g(n) to denote ∃c∀n f(n) ≤
g(n) + c. We write f(n) = O(g(n)) to denote ∃M∃n0∀n > n0 f(n) ≤ Mg(n). It
will also be useful to have the following theorem of Schnorr at our disposal:

Theorem 5. A is Martin-Löf random iff n ≤+ K(A � n).

Finally, for a real A and n ∈ ω we use the indicator function 1A defined by

1A(n) =

{
1 if n ∈ A,

0 otherwise.

Proof (of Theorem 4). Let A be a weakly 2-generic real, and let R be a Martin-
Löf random real. Let sk = 2k2

, kn = max{k | sk ≤ n}, C = (01)ω. Define

B(n) = R (n − skn
) · 1C(kn).

Unpacking this slightly, this is

B(n) =

{
R (n − sk) if sk ≤ n < sk+1 for some even k,

0 otherwise.

In this proof, let us say that an R-segment is a string of the form
B � [s2m, s2m+1) for some m, and say that a 0-segment is a string of the form
B � [s2m+1, s2m+2) for some m. These are named so that a 0-segment consists
of zeros, and an R-segment consists of random bits. Notice that by construc-
tion, each such segment is much longer than the combined length of all previous
segments. This guarantees certain complexity bounds at the segments’ right end-
points. For instance, B has high complexity at the end of R-segments: for any
even k ∈ N,

KL-Randomness and Effective Dimension Under Strong Reducibility 461

sk+1 − sk ≤+ K (B [sk, sk+1])
≤+ K(B � sk) + K(B � sk+1) ≤+ 2sk + K(B � sk+1).

The first inequality holds by Theorem 5 because B [sk, sk+1] = R � (sk+1 −
sk). The second (rather weak) inequality holds because from descriptions of
B � sk and B � sk+1 we can recover B[sk, sk+1]. Finally, K(σ) ≤+ 2|σ| is a
property of prefix-free Kolmogorov complexity K. Combining and dividing by
sk+1 gives

sk+1 − 3sk ≤+ K(B � sk+1)

1 − 3 · 2−(2k+1) ≤ K(B � sk+1)
sk+1

+ O
(
2−(k+1)2

)
as k → ∞. (1)

Dually, the right endpoints of 0-segments have low complexity: for odd k ∈ N,

K(B � sk+1) ≤+ K(B � sk) + K(B[sk, sk+1]) ≤+ 2sk + 2 log(sk+1 − sk).

The first inequality is again the weak bound that B � sk+1 can be recovered
from descriptions of B � sk and B[sk, sk+1]. For the second, we apply the 2|σ|
prefix-free complexity bound to B � sk, but also notice that since B[sk, sk+1] =
0sk+1−sk , it can be recovered effectively from a code for its length. Combining
and dividing by sk+1, we have

K(B � sk+1) ≤+ 2sk + 2(k + 1)2

K(B � sk+1)
sk+1

≤ 2−(2k+1) + O
(
2−(k+1)2

)
as k → ∞. (2)

Now we can examine the dimensions of A and B.

Claim 1: dimcp(B) = 1.
Let Rn be the set of right endpoints of R-segments of B, except for the first
n of them — that is, Rn = {s2k+1}∞

k=n. Then the collection of these Rn is a
subfamily of D, so that a supremum over D will be at least the supremum over
this family.

sup
N∈D

inf
n∈N

K(B � n)
n

≥ sup
n∈N

inf
s∈Rn

K(B � s)
s

≥ sup
n∈N

inf
s∈Rn

1 − 3 · 2−(2s+1) = sup
m∈N

1 − 3 · 2−(2m+1) = 1

by (1).

Claim 2: dimi(B) = 0.
Let Zn be the set of right endpoints of 0-segments of B, except for the first n of
them: Zn = {s2k}∞

k=n. Similarly to Claim 1, we obtain

inf
N∈D

sup
n∈N

K(B � n)
n

≤ inf
n∈N

sup
s∈Zn

K(B � s)
s

≤ inf
n∈N

sup
s∈Zn

2−(2s+1) = inf
m∈N

2−(2m+1) = 0

by (2).

462 B. Kjos-Hanssen and D. J. Webb

Claim 3: dimcp(A) = 0.
For each natural k and N in D, the following sets are dense Σ0

1 :{
σ ∈ 2<ω : |σ| ∈ N and (∃s) Ks(σ) < |σ|/k]

}
.

As A is weakly 2-generic, it meets all of them. Hence

sup
N∈D

inf
m∈N

K(σ � m)
m

= 0.

Claim 4: dimi(A) = 1.
For each natural k and N in D,{

σ ∈ 2<ω : |σ| ∈ N and (∀s) Ks(σ) > |σ|(1 − 1/k)
}

is a dense Σ0
2 set. As A is weakly 2-generic, it meets all of these sets. Hence

inf
N∈D

sup
m∈N

K(A � m)
m

= 1.

	

We say that A is finite-to-one reducible to B if there is a total computable

function f : ω → ω such that the preimage of each n ∈ ω is finite and for all n,
n ∈ A ⇐⇒ f(n) ∈ B.

Definition 4. Let B be a class of infinite sets downward closed under finite-to-
one reducibility. For A ∈ 2ω, we define

dimisB(A) = inf
N∈B

sup
n∈N

K(A � n)
n

and dimsiB(A) = sup
N∈B

inf
n∈N

K(A � n)
n

.

Notice that for any oracle X, the classes of infinite sets that are
Δ0

n(X), Σ0
n(X) or Π0

n(X) are downward closed under finite-to-one reducibil-
ity, and so give rise to notions of dimension of this form. We will label these
Dn(X), Sn(X), and Pn(X) respectively, leaving off X when X is computable.
Interestingly, for fixed n, the first two give the same notion of dimension.

Theorem 6. For all A ∈ 2ω and n ∈ N, dimisΣ0
n
(A) = dimisΔ0

n
(A).

Proof. We prove the unrelativized version of the statement, n = 1.
[≤] As Δ0

1 ⊆ Σ0
1 , this direction is trivial.

[≥] As every infinite Σ0
1 set N contains an infinite Δ0

1 set N ′, we have

dimisΣ0
1
(A) = inf

N∈S1
sup
n∈N

K(A � n)
n

≥ inf
N∈S1

sup
n∈N ′

K(A � n)
n

≥ inf
N∈D1

sup
n∈N

K(A � n)
n

= dimisΔ0
1
(A).

	

KL-Randomness and Effective Dimension Under Strong Reducibility 463

By a similar analysis, the analogous result for si dimensions is also true.

Theorem 7. For all A ∈ 2ω and n ∈ N, dimsiΣ0
n
(A) = dimsiΔ0

n
(A).

What about the Π0
n dimensions? Unlike the Σ0

1 case, these do not collapse
to any other dimension. Two lemmas will be useful in proving this. The first
(which was implicit in Claims 1 and 2 of Theorem 3) will allow us to show that
an si-dimension of a real is high by demonstrating a sequence that witnesses this.
The second is a generalization of the segment technique, forcing a dimension to
be 0 by alternating 0- and R-segments in a more intricate way, according to the
prescriptions of a certain real. The constructions below proceed by selecting a
real that will guarantee that one dimension is 0 while leaving room to find a
witnessing sequence for another.

Lemma 1 (Sequence Lemma). Let B be a class of infinite sets downward
closed under finite-to-one reducibility, and let N = {nk | k ∈ ω} ∈ B.

1. If lim
k→∞

K(X � nk)
nk

= 1, then dimsiB(X) = 1.

2. If lim
k→∞

K(X � nk)
nk

= 0, then dimisB(X) = 0.

Proof. We prove (1); (2) is similar.
Form the infinite family of sets {Nm} defined by Nm = {nk | k ≥ m}. From

the definition of the limit, for any ε > 0 there is an l such that

inf
Nl

K(X � nk)
nk

> 1 − ε.

As ε was arbitrary,

sup
m

inf
Nm

K(X � nm)
nm

= 1.

Thus as B is closed under finite-to-one reduction, the Nm form a subfamily of
B, so that supN∈B infn∈N K(X � n)/n = 1. 	

Recall that an infinite real A is said to be immune to a class B if there is no
infinite member B ∈ B such that B ⊆ A as sets, or co-immune to a class B if
its complement is immune to B. We will sometimes refer to these properties as
B-immunity or B-co-immunity, respectively.

Lemma 2 (Double Segment Lemma). Let X0 ∈ 2ω be such that X0 is
B-immune for a class B of infinite sets downward closed under finite-to-one
reducibility. Set X = X0 ⊕ X0. Let sk = 2k2

, and kn = max{odd k | sk ≤ n}.
Let A be an arbitrary real and let R be Martin-Löf random.

1. If B = A (n − skn
) · 1X(kn), then dimsiB(B) = 0.

2. If B = R (n − skn
) · 1X(kn), then dimisB(B) = 1.

464 B. Kjos-Hanssen and D. J. Webb

Again, we will give a detailed proof of only the dimsiB result (though the nec-
essary changes for dimisB are detailed below). Unpacking the definition of B,

B(n) =

{
A (n − sk) if kn ∈ X

0 otherwise.

B is here built out of segments of the form B [skn
, skn+2] for odd k. Here a seg-

ment is a 0-segment if kn �∈ X, or an A-segment if kn ∈ X, which by definition
is a prefix of A. These segments are now placed in a more intricate order accord-
ing to X, with a value n being contained in a 0-segment if X(kn) = 0, and in
an A-segment if X(kn) = 1. With some care, this will allow us to leverage the
B-immunity of X0 to perform the desired complexity calculations.

Specifically, we want to show that for any N ∈ B, infN K(B � n)/n = 0. It
is tempting to place the segments according to X0 and invoke its B-immunity
to show that for any N ∈ B, there are infinitely many n ∈ N such that n is in
a 0-segment, and argue that complexity will be low there. The problem is that
we have no control over where in the 0-segment n falls. Consider in this case
the start of any segment following an A-segment: n = skn

for kn − 1 ∈ X0 and
kn ∈ X0. We can break A and B into sections to compute

K(A � n) ≤+ K(A � (n − skn−1)) + K(A[n − skn−1, n])
= K(B[skn−1, n]) + K(A[n − skn−1, n]) (kn − 1 ∈ X0)

≤+ K(B � n) + K(B � skn−1) + K(A[n − skn−1, n])

K(A � n) ≤+ K(B � n) + 4skn−1 (K(σ) ≤+ 2|σ|)
Even if n is the start of a 0-segment, if K(A � n) is high, K(B � n) may not be
as low as needed for the proof. Our definition of X avoids this problem:

Proof (of Theorem 2). Suppose for the sake of contradiction that for some N ∈
B, there are only finitely many n ∈ N with kn, kn − 1 ∈ X, i.e., that are in
a 0-segment immediately following another 0-segment. Removing these finitely
many counterexamples we are left with a set N ′ ∈ B such that for all n ∈ N ′,
¬[(kn �∈ X) ∧ (kn − 1 �∈ X)]. As kn is odd, the definition of X gives that
�kn/2� ∈ X0. By a finite-to-one reduction from N ′, the infinite set {�kn/2�}n∈N ′

is a member of B and is contained in X0 - but X0 is immune to such sets.
Instead it must be the case that there are infinitely many n ∈ N in a 0-

segment following a 0-segment, where the complexity is

K(B � n) ≤+ K
(
B � snk−1

)
+ K

(
B

[
snk−1 , n

])
≤+ 2 · snk−1 + 2 log

(
n − snk−1

)
.

Here the second inequality follows from the usual 2|σ| bound and the fact that
B

[
snk−1 , n

]
contains only 0s. As 2k2

n ≤ n, we can divide by n to get

K(B � n)
n

≤+ 2k2
n−2kn

2k2
n

+
2 log(n)

n
= 2−2kn +

2 log(n)
n

.

KL-Randomness and Effective Dimension Under Strong Reducibility 465

As there are infinitely many of these n, it must be that infn∈N K(B � n)/n = 0.
This holds for every real N with property B, so taking a supremum gives the
result.

The dimisB version concerns reals B constructed in a slightly different way.
Here, the same argument now shows there are infinitely many n ∈ N in an R-
segment following an R-segment. At these locations, the complexity K(B � n)
can be shown to be high enough that supN K(B � n)/n = 1, as desired. 	

With these lemmas in hand, we are ready to prove the following theorem:

Theorem 8. For all natural n there is a set A with dimsiΠ0
n
(A) = 1 and

dimsiΔ0
n
(A) = 0.

Proof. We prove the n = 1 case, as the proofs for higher n are analogous.
Let S0 be a co-c.e. immune set, and let R be Martin-Löf random. Set S =

S0 ⊕ S0, and define kn = max{odd k | 2k2 ≤ n}. To build A out of 0-segments
and R-segments, define A(n) = R

(
n − 2k2

n

)
· 1S(kn).

As S0 is Π0
1 , so is S. Thus the set of right endpoints of R-segments,

M =
{

2k2 | k is odd and k − 1 ∈ S
}

is also Π0
1 . By construction limm∈M K(A �

m)/m = 1 and thus the Sequence Lemma 1 gives that dimsiΠ0
1
(A) = 1.

As the complement of a simple set is immune, the Double Segment Lemma
2 shows that dimsiΔ0

1
(A) = 0. 	

The proof of analogous result for the is-dimensions is similar, using the same
S0 and S, and the real defined by B(n) = R

(
n − 2k2

n

)
· 1S(kn).

Theorem 9. For all n ≥ 1 there exists a set B with dimisΠ0
n
(B) = 1 and

dimisΔ0
n
(B) = 0.

It remains to show that the Δ0
n+1 and Π0

n dimensions are all distinct. We
can use the above lemmas for this, so the only difficulty is finding sets of the
appropriate arithmetic complexity with the relevant immunity properties.

Lemma 3. For all n ≥ 1, there is an infinite Δ0
n+1 set S that is Π0

n-immune.

Proof. We prove the unrelativized version, n = 1. Let C be a Δ0
2 cohesive set

that is not co-c.e, i.e., for all e either We ∩C or We ∩C is finite. As C is not c.e.
it cannot finitely differ from any We, so for all e, We \ C = We ∩ C is infinite.
Hence if We ⊆ C, then by cohesiveness, We ∩ C = We is finite. 	

Theorem 10. For all n ≥ 1 there exists a set A with dimsiΔ0

n+1
(A) = 1 and

dimsiΠ0
n
(A) = 0.

Proof. This is exactly like the proof of Theorem 8, but S0 is now the Π0
1 -immune

set guaranteed by Lemma 3. 	

Again, the analogous result for is-dimensions is similar:

466 B. Kjos-Hanssen and D. J. Webb

Theorem 11. For all n ≥ 1 there exists a set B with dimisΠ0
n
(B) = 1 and

dimisΔ0
n+1

(B) = 0.

After asking questions about the arithmetic hierarchy, it is natural to turn
our attention to the Turing degrees. As the familiar notion of B-immunity for
an oracle is exactly Δ0

1(B)-immunity for a class, we have access to the usual
lemmas. We shall embed the Turing degrees into the si-Δ0

1(A) dimensions (and
dually, is-Δ0

1(A)). First, a helpful lemma:

Lemma 4 (Immunity Lemma). If A �T B, there is an S ≤T A such that S
is B-immune.

Proof. Let S be the set of finite prefixes of A. If S contains a B-computable
infinite subset C, then we can recover A from C, but then A ≤T C ≤T B. 	

Theorem 12 (si-Δ0

1 Embedding Theorem). Let A,B ∈ 2ω. Then A ≤T B
iff for all X ∈ 2ω,dimsiΔ0

1(A)(X) ≤ dimsiΔ0
1(B)(X).

Proof. [⇒] Immediate, as Δ0
1(A) ⊆ Δ0

1(B).
[⇐] This is again exactly like the proof of Theorem 8, now using the set guar-
anteed by the Immunity Lemma 4 as S0. 	

The result for is-dimensions is again similar:

Theorem 13 (si-Δ0
1 Embedding Theorem). Let A,B ∈ 2ω. Then A ≤T B

iff for all X ∈ 2ω,dimisΔ0
1(A)(X) ≥ dimisΔ0

1(B)(X).

We can push this a little further by considering weak truth table reductions:

Definition 5. A is weak truth table reducible to B (A ≤wtt B) if there exists
a computable function f and an oracle machine Φ such that ΦB = A, and the
use of ΦX(n) is bounded by f(n) for all n (ΦX(n) is not guaranteed to halt).

Theorem 14. If A �≤T B, then for all wtt-reductions Φ there exists an X such
that dimsiΔ0

1(A)(X) = 1 and, either ΦX is not total or dimsiΔ0
1(B)(ΦX) = 0.

Proof. Let A �≤T B, and let Φ be a wtt-reduction. Let f be a computable bound
on the use of Φ, and define g(n) = max{f(i) | i ≤ n}, so that K(ΦX � n) ≤+

K(X � g(n)) + 2 log(n). For notational clarity, for the rest of this proof we will
denote inequalities that hold up to logarithmic (in n) terms as ≤log.

Next, we define two sequences �k and λk which play the role 2k2
played in

previous constructions:

�0 = λ0 = 1, λk = λk−1 + �k−1, �k = min
{

2n2 | g(λk) < 2n2
}

.

These definitions have the useful consequence that limk �k−1/�k = 0. To see this,
suppose �k−1 = 2(n−1)2 . As g is an increasing function, the definitions give

�k > g(λk) ≥ λk = λk−1 + �k−1 ≥ �k−1 = 2(n−1)2 .

KL-Randomness and Effective Dimension Under Strong Reducibility 467

Hence �k ≥ 2n2
, so that �k−1/�k ≤ 2−2n+1. As �k > �k−1 for all k, this ratio can

be made arbitrarily small, giving the limit.
A triple recursive join operation is defined by

2⊕
i=0

Ai = {3k + j | k ∈ Aj , 0 ≤ j ≤ 2}, A0, A1, A2 ⊆ ω.

Let S0 ≤T A be as guaranteed by Lemma 4, and define S =
⊕2

i=0 S0.
Let R be Martin-Löf random, and define X(n) = R (n − �kn

) · 1S(kn), where
kn = max{k = 2 (mod 3) | �k ≤ n}. This definition takes an unusual form com-
pared to the previous ones we have seen in order to handle the interplay between
λk and �k - specifically the growth rate of g(n). We are effectively “tripling up”
bits of S0 (rather than doubling them as before) to account for the possibil-
ity that g(n) grows superexponentially, with the condition that k = 2 (mod 3)
replacing the condition that k is odd.

Claim 1: dimsiΔ0
1(A)(X) = 1.

Proof: As N = {�k}k∈S is an A-computable set, by the Sequence Lemma 1 it
suffices to show that limk∈S K(X � �k)/�k = 1. For �k ∈ N ,

K(X � �k) ≥log K(X[�k−1, �k]) − K(X � �k−1)
≥ K(R � (�k − �k−1)) − 2�k−1 (as k ∈ S)

≥log �k − �k−1 − 2�k−1 (as R is Martin-Löf random)
K(X � �k)

�k
≥log �k − 3�k−1

�k
= 1 − 3

�k−1

�k
.

which gives the desired limit by the above.
Claim 2: dimsiΔ0

1(B)(ΦX) = 0.
Proof: Suppose N ≤T B. For notation, define a = kg(n). By mimicking the proof
of Lemma 2, we can use the B-immunity of S to show that there are infinitely
many n ∈ N such that g(n) is in a 0-segment following two 0-segments, i.e.,
a − 2, a − 1, a �∈ S. By the definition of X,

X[�a−2, �a+1] = 0�a+1−�a−2 .

Suppose the value X(m) is queried in the course of computing ΦX � n. By
the definitions of g, a, and �k, m ≤ g(n) < �a+1. Hence either m < �a−2 or
m ∈ [�a−2, �a+1], so that X(m) = 0. Thus to compute ΦX � n, up to a constant
it suffices to know X � �a−2. Thus

K(ΦX � n) ≤+ K(X � �a−2) ≤+ 2�a−2

As g(n) > �a it must be that n > λa. Dividing by n, we find that

K(ΦX � n)
n

≤+ 2�a−2

λa
<

2�a−2

λa−1 + �a−1
<

2�a−2

�a−1
.

As there are infinitely many of these n, it must be that infn∈N K(ΦX � n)/n = 0.
This holds for every N ≤T B, so taking a supremum gives the result. 	

468 B. Kjos-Hanssen and D. J. Webb

Remark. We only consider si-dimensions for this theorem, as it is not clear
what an appropriate analogue for is-dimensions would be. The natural dual
statement for is-dimensions would be that for all reductions Φ there is an X
such that dimisΔ0

1(A)(X) = 0, and either ΦX is not total or dimisΔ0
1(B)(ΦX) = 1.

But many reductions use only computably much of their oracle, so that ΦX is
a computable set. This degenerate case is not a problem for the si theorem,
as its conclusion requires dimΔ0

1(B)(ΦX) = 0. But for an is version, it is not
even enough to require that ΦX is not computable - consider the reduction that
repeats the nth bit of X 2n − 1 times, so that n bits of X suffice to compute n2

bits of ΦX . Certainly ΦX ≡wtt X, so that ΦX is non-computable iff X is. But

K(ΦX � n)
n

≤+ K(X � √
n)

n
≤+ 2

√
n

n

for all n, so that dimp(ΦX) = 0, and hence all other dimensions are 0 as well.

References

1. Athreya, K.B., Hitchcock, J.M., Lutz, J.H., Mayordomo, E.: Effective strong
dimension in algorithmic information and computational complexity. SIAM J.
Comput. 37(3), 671–705 (2007)

2. Downey, R.G., Hirschfeldt, D.R.: Algorithmic Randomness and Complexity Theory
and Applications of Computability. Springer, New York (2010). https://doi.org/
10.1007/978-0-387-68441-3

3. Freer, C.E., Kjos-Hanssen, B.: Randomness extraction and asymptotic Hamming
distance. Log. Methods Comput. Sci. 9(3), 3:27, 14 (2013)

4. Greenberg, N., Miller, J.S., Shen, A., Westrick, L.B.: Dimension 1 sequences are
close to randoms. Theoret. Comput. Sci. 705, 99–112 (2018)

5. Jockusch, C.: Degrees of generic sets. In: Drake, F.R., Wainer, S.S. (eds.) Recursion
Theory: its Generalisations and Applications, pp. 110–139. Cambridge University
Press, Cambridge (1980)

6. Mayordomo, E.: A Kolmogorov complexity characterization of constructive Haus-
dorff dimension. Inf. Process. Lett. 84(1), 1–3 (2002)

7. Merkle, W., Miller, J.S., Nies, A., Reimann, J., Stephan, F.: Kolmogorov-Loveland
randomness and stochasticity. Ann. Pure Appl. Logic 138(1–3), 183–210 (2006)

8. Miyabe, K.: Muchnik degrees and Medvedev degrees of randomness notions. In:
Proceedings of the 14th and 15th Asian Logic Conferences, pp. 108–128. World Sci
Publ, Hackensack (2019)

9. Nies, A.: Computability and Randomness. Oxford Logic Guides, vol. 51. Oxford
University Press, Oxford (2009)

10. Nies, A., Stephan, F., Terwijn, S.A.: Randomness, relativization and turing degrees.
J. Symb. Logic 70(2), 515–535 (2005)

https://doi.org/10.1007/978-0-387-68441-3
https://doi.org/10.1007/978-0-387-68441-3

An Algorithmic Version of Zariski’s
Lemma

Franziskus Wiesnet1,2,3(B)

1 Ludwig-Maximilians Universität, Theresienstr. 39, 80333 München, Germany
wiesnet@mathematik.uni-muenchen.de

2 Università degli Studi di Trento, Via Sommarive 14, 38123 Povo, Italy
franziskus.wiesnet@unitn.it

3 Università degli studi di Verona, Strada le Grazie 15, 37134 Verona, Italy

Abstract. Zariski’s lemma was formulated and used by Oscar Zariski
to prove Hilbert’s Nullstellensatz. This article gives an elementary and
constructive proof of Zariski’s lemma and only uses basics of integral
ring extensions under the condition that each field is discrete. After this
constructive proof we take a look at the computational side. We give a
computational interpretation of Zariski’s lemma and use our constructive
proof to develop an algorithm which realises the computational interpre-
tation. This is a typical approach in constructive mathematics.

Keywords: Zariski’s lemma · Constructive algebra · Computational
algebra · Program extraction · Proof mining

1 Introduction

1.1 Historical Background

Presumably the first time Zariski’s lemma appeared was in [19]. There Oscar
Zariski used it to prove Hilbert’s Nullstellensatz. In 1976, John McCabe gave
an interesting but not constructive proof [9], which relied on the existence of
maximal ideals. In 2020 Daniel Wessel has avoided this maximality argument by
using Jacobson radicals [16]. However, the proof still contains a non-constructive
moment. To wit, if R is an algebra over a field K and S ⊆ R is a finite subset,
then there exists S0 ⊆ S maximal such that all elements in S0 are algebraically
independent over K. To avoid this, one could use Noether normalization. A con-
structive proof of Noether normalisation is given in [10] and Zariski’s lemma is
a corollary of it [5,10,13]. The proofs in [1,2,15,19] are non-constructive but,
instead of a maximal algebraically independent subset, they use induction on

I would like to thank the Istituto Nazionale di Alta Matematica “Francesco Severi”
for the financial support of my PhD study. Thanks for direct support goes to Daniel
Wessel for his ideas and taking a look at the manuscript, my supervisor Peter Schuster
for the selection of this topic and support of the publication, and Henri Lombardi and
Ihsen Yengui who helped to improve the proof with important comments.

c© Springer Nature Switzerland AG 2021
L. De Mol et al. (Eds.): CiE 2021, LNCS 12813, pp. 469–482, 2021.
https://doi.org/10.1007/978-3-030-80049-9_46

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80049-9_46&domain=pdf
https://doi.org/10.1007/978-3-030-80049-9_46

470 F. Wiesnet

the number of generators of the algebra. This will also be part of our construc-
tive proof. The proof in the present paper is a direct and constructive proof of
Zariski’s lemma. To get this proof, we have analysed the proofs in the sources
above and put them together with some new ideas.

1.2 Method of Proof Interpretation

We have considered some non-constructive proofs of Zariski’s lemma, analysed
them and rebuilt them into a new constructive proof (Sect. 2). This approach
was inspired by the methods of proof mining [6,7]. Inspired by the methods of
the formal program extraction from proofs as in [3,14,17], we have turned our
constructive proof into algorithms and realisability statements (Sect. 3). But in
contrast to formal program extraction, when we speak about “realisability” we
do not mean the rigorously defined realisability predicate of program extraction,
for example given in [14]. In this paper “realisability” is rather a heuristic notion.

Our approach shows a typical approach in constructive mathematics.
Analysing a theorem constructively often goes as follows:

– Formulate a quite constructive proof of the theorem.
– Formulate an algorithmic interpretation of the theorem.
– Inspired by the quite constructive proof formulate an algorithm which shall

realise the algorithmic interpretation.
– Prove that the algorithm is indeed a realiser of the algorithmic interpretation.

This paper is an example where these steps are done manually on paper and
where the formulation of the quite constructive proof is only necessary to get an
inspiration for the other steps. As the space in this paper is quite scarce we have
to forgo the fourth step. In particular, we do not give proofs in Sect. 3. However,
in the example of program extraction from proofs above usually only the quite
constructive proof is formulated manually and the other steps are done by the
computer. Note that we have written “quite constructive” because sometimes
one can bypass a non-constructive moment or it can be included as assumption
in the algorithmic version. We also see an example of this in the present paper:
since our proof uses case distinction on x = 0 or x �= 0 for all x in a ring,
we assume that this ring is discrete. However, this is the only computational
restriction we have to make.

1.3 Fundamental Notions

Before formulating a proof of Zariski’s lemma and the computational interpre-
tation, we define the underlying objects. In Zariski’s lemma, we use axioms for
rings, field and algebra and their structures. But an algorithm cannot operate
on axioms. More specifically: if we state an algorithm about a field, we do not
use the field axioms in the algorithm but we use the field structure like +, ·, 0,
1 and so on. Therefore, we first define the underlying structures precisely:

In our setting a ring structure (R,+, ·, 0, 1,−,=) is a set R equipped with an
addition operator + : R×R → R, a multiplication operator · : R×R → R, a zero

An Algorithmic Version of Zariski’s Lemma 471

element 0 ∈ R, an unit element 1 ∈ R, an additive inverse function − : R → R
and an equality = ⊆ R × R. If furthermore = is an equivalence relation and
compatible with +, ·,−, i.e., = is a congruence relation on (R,+, ·, 0, 1,−), and
the other ring axioms are fulfilled (w.r.t. the equality =), R is a ring. In our case
a ring is always commutative. We call (K,+, ·, 0, 1,−, −1,=) a field structure if
(K,+, ·, 0, 1,−,=) is a ring structure and −1 : K → K is a map. If K is a ring,
xx−1 = 1 ∨ x = 0 for all x ∈ K and 1 �= 0, K is a field.

Since the notation of +, ·, 0, 1,−,−1 and = will not change, we do not mention
it and say that R is a ring (structure) or K is a field (structure) and so on. A
homomorphism φ : R → S between two ring structures R and S is a map which
preserves the structure in the canonical way.

For a ring structure R we define the ring structure of polynomials R[X] with
coefficients in R by the well-known construction. For n ∈ IN we have also the
polynomial ring structure in n variables denoted by R[X1, . . . , Xn]. Obviously,
if R is a ring then so is R[X1, . . . , Xn].

An algebra structure R over a field structure K, or short K-algebra structure,
is a ring structure together with a map K → R. If R is a ring, K is a field
and the map K → R is a homomorphism, we call R a K-algebra. For a K-
algebra R and x1, . . . , xn ∈ R we get an extension K[X1, . . . , Xn] → R of the
homomorphism by Xi �→ xi. We denote the image by K[x1, . . . , xn], where an
element is in the image of a homomorphism if it is equal (w.r.t. =) to a value of
the homomorphism.

The following definition comes from [8,18]:

Definition 1. A ring structure R is discrete if all its operators are computable.
Here = is seen as a Boolean-valued function. A field structure K is discrete if
it is discrete as ring and −1 is computable.

Here, “computability” means that we can use the operations above freely in
our algorithms. In particular, we can use the ring operators arbitrarily, and can
distinguish between the cases x = y and x �= y.

We do not specify the underlying theory of computability and how the objects
are represented, as there are several possibilities. However, in Sect. 3 we develop
an algorithm out of the constructive proof. If one wants this algorithm to be a
Turing machine, a discrete structure should be interpreted as a structure where
all operators (including =) are representable by a Turing machine.

In this article we tacitly assume that each structure be discrete and make
case distinctions like x = 0 ∨ x �= 0 without explicitly justifying them.

Remark 1. If K is a discrete field structure then the polynomial ring structure
K[X1, . . . , Xn] is also discrete and for f ∈ K[X1, . . . , Xn] we can decide whether
f ∈ K or f /∈ K because f ∈ K if and only if all non-constant coefficients are
zero. Similarly, it is even possible to compute deg(f) for every f ∈ K[X].

Let A ⊆ B be a ring extension, i.e., the inclusion A → B is a homomorphism.
An element x ∈ B is called integral over A if there are a0, . . . , ak−1 ∈ A such
that xk + ak−1x

k−1 + · · · + a0 = 0. The ring extension A ⊆ B is called integral,
if each x ∈ B is integral over A.

472 F. Wiesnet

In our constructive proof we need the following two lemmas. The proofs of
them we refer to are also constructive.

Lemma 1. If A ⊆ B is an integral ring extension and B is a field then A is a
field, too.

Proof. A constructive proof is given in [1, Proposition 5.7]. �	
Lemma 2. Let A ⊆ B be a ring extension. If x1, . . . , xn ∈ B are integral over
A then the ring extension A ⊆ A[x1, . . . , xn] is integral.

Proof. This follows from Corollary 5.3 of [1]. �	

2 A Constructive Proof

In this section we give a new constructive proof of Zariski’s lemma. The proof
does not use any non-constructive principles (except that the rings be discrete).
In the next section we use this proof as basis to create an algorithmic version.

Theorem 1 (Zariski’s lemma). Let K be a field and R an algebra over
K which is a field. Suppose that R = K[x1, . . . , xn] for some x1, . . . , xn ∈ R.
Then x1, . . . xn are algebraic over K, i.e., there are f1, . . . , fn ∈ K[X] \ K with
fi(xi) = 0 for all i.

Proof. If n = 0, there is nothing to show. We continue by considering the case
n = 1: if x1 = 0 then R = K and we are done. Otherwise, x1 is invertible. Since
R is a field, there is p ∈ K[X]\{0} with x1p(x1) = 1. We set q := Xp−1 ∈ K[X].
Then q �= 0 because deg(Xp) > 0 and q(x1) = 0.

Next, we consider the case n = 2: We show that x1 is algebraic. The argument
for x2 is analogous. If x2 = 0 we are done by the case n = 1 as above. Otherwise,
we have p ∈ K[X1,X2] with p(x1, x2)x2 = 1. Therefore, q := Xp(x1,X) − 1 is
a polynomial in K[x1][X] with q(x2) = 0 and q �= 0 as its constant coefficient is
−1. Let y ∈ K[x1] be the leading coefficient of q, which is non-zero by definition.
Then K[x1, y

−1] ⊆ K[x1, x2] is an integral ring extension by Lemma 2 because
x2 is integral over K[x1, y

−1] witnessed by y−1q ∈ K[x1, y
−1][X]. Therefore,

K[x1, y
−1] is a field by Lemma 1.

With this preparation we are now able to construct a non-zero polynomial
with root x1. By y ∈ K[x1], there is f ∈ K[X] such that f(x1) = y. If f ∈ K
then K[x1, y

−1] = K[x1] and we are done by the case n = 1. So, we assume
f ∈ K[X]\K. If 1−f(x1) = 0 then x1 is algebraic over K. Otherwise, 1−f(x1)
is invertible1 in K[x1, y

−1] and therefore there is h ∈ K[X] and N ∈ IN with
(1 − f(x1))−1 = h(x1)y−N = h(x1)f(x1)−N . So, we have

f(x1)N − h(x1)(1 − f(x1)) = 0.

1 The idea to take 1 − f(x1) is based on an idea by Daniel Wessel [16] and an hint by
Henri Lombardi. Inspired by [15], the first approach of the author was to take g(x1)
for some irreducible g ∈ K[X] with g � f .

An Algorithmic Version of Zariski’s Lemma 473

It remains to show that fN − h(1 − f) �= 0 in K[X]. By the binomial theorem
there is a g ∈ K[X] with fN = 1 + (1 − f)g, and so

fN − h(1 − f) = 1 + (1 − f)(g − h).

Since f is non-constant, also 1−f is non-constant. Now assume that fN −h(1−
f) = 0 then g−h = 0 as otherwise deg((1−f)(g−h)) > 0 and 1+(1−f)(g−h) �=
0. But then 0 = 1, a contradiction.

Finally, we assume n ≥ 2 and use induction over n. The base case n = 2 was
done above. For the induction step let n ≥ 3 be given. Again, we just show that
x1 is algebraic. The arguments for x2, . . . , xn are analogous. Let L := K(x1) the
field of fractions of K[x1]. Since R is a field, we can consider L ⊆ R and therefore
L[x2, . . . , xn] = R. By induction, each xi for i ∈ {2, . . . , n} is algebraic over L. So
for each such i, there is a monic polynomial fi ∈ L[X] with fi(xi) = 0. Let vi be
the product of the denominators of all coefficients in fi and v :=

∏n
i=2 vi. Then

all xi are integral over K[x1, v
−1]. Using Lemma 2, K[x1, v

−1] ⊆ K[x1, . . . , xn]
is an integral ring extension. By Lemma 1, also K[x1, v

−1] is a field. By the case
n = 2 it follows that x1 is algebraic over K. �	

3 Computational Interpretation

The goal of this section is to build an algorithm out of the constructive proof
above. One could argue that this is not necessary as a constructive proof provides
an algorithm by definition and it is an easy exercise to extract it. However, as
we are not using computer support and the proof is not totally formal, there is
still some work to do. In particular, we consider the concepts we have used in
the proof and give them a computational meaning in the next two definitions.

3.1 Preliminary

We use the following syntactical abbreviations: �x := x1, . . . , xn; �X :=
X1, . . . , Xn; �y := y1, . . . , ym and �Y := Y1, . . . , Ym. For n ∈ IN and any I ∈ INn

we define �xI :=
∏n

i=1 xIi
i and �XI :=

∏n
i=1 XIi

i .
In Zariski’s lemma a K-algebra K[�x] is given. In particular, there is a surjec-

tive homomorphism from K[�X] to K[�x]. It is well-known that the existence of a
right-inverse of a surjection in general requires the axiom of choice. That is the
reason why we do not use it computationally and we work on the level of the
polynomial rings. The following definition is the computational interpretation of
K[�y] ⊆ K[�x] being a ring extension on the level of polynomials:

Definition 2. Let K be a field, R be a K-algebra and �x, �y ∈ R. We say that
K[�y] ⊆ K[�x] is a ring extension of K-algebras witnessed by �h := h1, . . . , hm ∈
K[�X] if hi(�x) = yi for all i. In short notation we write �h(�x) = �y.

Similarly, the next definition is the computational interpretation of K[�x]
being a field on the level of polynomials:

474 F. Wiesnet

Definition 3. Let a field K, a K-algebra R and �x ∈ R be given. A computable
function ι : K[�X] → K[�X] with f(�x) = 0 ∨ (ι(f))(�x)f(�x) = 1 for all f ∈ K[�X]
is called algebraic inverse function on K[�x].

Remark 2. An algebraic inverse function does not have to be compatible with the
equality relation of the ring structure K[�X]. From an algebraic inverse function
on K[�x] and a right inverse of a surjection K[�X] → K[�x] we get that K[�x] is
a field. But this is constructively delicate, so in both definitions above we have
avoided a direct use of K[�x] and we also do this in the following algorithms. The
occurrence of K[�x] in the definitions above is just a way of speaking.

Similar to above, “computable” means that we can use the algebraic inverse
function freely in our algorithm. For instance, if the algorithm shall be a Turing
machine, an algebraic inverse function has to be Turing computable.

In the light of the definitions above: an algorithm which realises Zariski’s
lemma takes an algebraic inverse function on K[�x] as input and returns polyno-
mials f1, . . . , fn ∈ K[X] \ K with fi(xi) = 0 for all i ∈ {1, . . . , n}.

3.2 Some Algorithms for Integral Extensions of Algebras

The following lemma is an algorithmic version, in terms of algebras over a field,
of Lemma 2. Given a field K, R be a K-algebra and �x, �y ∈ R. As realiser of this
lemma we expect an algorithm which takes for each xi an integral equation in the
form Pi(�y)(xi) = 0 for some monic Pi ∈ K[�Y][X] and some f ∈ K[�X] as input
and returns an integral equation of f(�x) as output in the form Q(�y)(f(�x)) = 0
for some monic Q ∈ K[�Y][X].

Algorithm 1. Given a field structure K, f ∈ K[�X] and ki ∈ IN,
g
(i)
ki−1, . . . , g

(i)
0 ∈ K[�Y] for each i ∈ {1, . . . , n}. We compute k ∈ IN and

gk−1, . . . , g0 ∈ K[�Y]:

1. Define I := {I ∈ INn|I1 < ki, . . . , In < kn} and for each I ∈ I compute the
finite sum f �XI =

∑
J∈INn fIJ �XJ with fIJ ∈ K.

2. For each I ∈ I and i ∈ {1, . . . , n} replace each Xki
i by −g

(i)
ki−1X

ki−1 −
· · · − g

(i)
0 in

∑
J∈INn fIJ �XJ one by one until we get a polynomial of the form

∑
J∈I gIJ �XJ with gIJ ∈ K[�Y]

3. Compute the characteristic polynomial P ∈ K[�Y][X] of the matrix (gIJ)I,J∈I
as the determinant of the matrix (δIJX − gIJ)I,J∈I , where δIJX := X if
I = J , and δIJX := 0 if I �= J .

4. Let P =
∑l

i=0 giX
i for some l ∈ IN and gi ∈ K[�Y]. Return k :=

∏n
i=1 ki and

the first k coefficients gk−1, . . . , g0 of P , where gi := 0 if i > l.

Note that in Step 2 there is no order mention in which each Xki
i has to be

replaced. However, the following lemma is true for any possible order.

An Algorithmic Version of Zariski’s Lemma 475

Lemma 3. In the situation of Algorithm1 we assume that K is a field, R is a
K-algebra and �x, �y ∈ R with

xki
i + g

(i)
ki−1(�y)xki−1

i + · · · + g
(i)
0 (�y) = 0 (1)

for each i ∈ {1, . . . , n}. Then

(f(�x))k + gk−1(�y)(f(�x))k−1 + · · · + g0(�y) = 0.

The next lemma is an algorithmic version of Lemma 1. In terms of K-algebras
and in the light of computational algebra, we want to compute an algebraic
inverse function on K[�y] from an algebraic inverse function on K[�x] and the
integral equations of �x.

Algorithm 2. Let a field structure K, �h := h1, . . . , hm ∈ K[�X], ι : K[�X] →
K[�X] and ki ∈ IN, g

(i)
ki−1, . . . , g

(i)
0 ∈ K[�Y] for each i ∈ {1, . . . , n} be given. We

define a map ι̃ : K[�Y] → K[�Y] as follows:

1. Given an input f ∈ K[�Y], compute p := ι(f(�h)) ∈ K[�X].
2. Apply Algorithm1 to K, p and ki, g

(i)
ki−1, . . . , g

(i)
0 for each i ∈ {1, . . . , n} to

get k ∈ IN and gk−1, . . . , g0 ∈ K[�Y].
3. Return −gk−1 − gk−2f − · · · − g0f

k−1.

Lemma 4. In the situation of Algorithm2 we assume that K is a field and let
a K-algebra R and �x, �y ∈ R be given such that K[�y] ⊆ K[�x] is an extension of
K-algebras witnessed by �h. Furthermore, we assume that ι is an algebraic inverse
function and

xki
i + g

(i)
ki−1(�y)xki−1

i + · · · + g
(i)
0 (�y) = 0

for all i ∈ {1, . . . , n}. Then ι̃ is an algebraic inverse function on K[�y].

3.3 An Algorithm for Zariski’s Lemma

In the following we give an algorithmic version of Zariski’s lemma. As in the
proof of Theorem 1, we first consider the cases n = 1 and n = 2. Hence, the next
two algorithms construct the polynomials which witness that the generators are
algebraic.

Algorithm 3. Given a discrete field structure K, a discrete K-algebra structure
R, x ∈ R and ι : K[X] → K[X], we compute an element f ∈ K[X] as follows:

1. If x = 0, return X.
2. If x �= 0, return Xι(X) − 1.

Lemma 5. In the situation of Algorithm3 we assume that K is a field, R is
a K-algebra, x ∈ R and ι is an algebraic inverse function on K[x]. Then f is
non-constant and f(x) = 0, i.e., x is algebraic over K.

476 F. Wiesnet

Algorithm 4. Let a discrete field structure K, a discrete K-algebra structure R,
two elements x1, x2 ∈ R and ι : K[X1,X2] → K[X1,X2] be given. We compute
f1, f2 ∈ K[X] as follows starting with f1:

1. If x2 = 0, we use Algorithm3 with input K, R, x1 ∈ R and ι′ : K[X] → K[X]
defined by ι′(p) := ι(p(X1))(X, 0) and return the output as f1.

2. Otherwise, compute ι(X2) and define g as the polynomial which comes from
X2ι(X2)−1 ∈ K[X1,X2] by dropping each coefficient p ∈ K[X1] with p(x1) =
0 and let h ∈ K[X1] be the leading coefficient of g (and 1 if g = 0).

3. Apply Algorithm2 to the input K, �h := (X1, ι(h)), ι, g
(1)
0 = Y1 and g

(2)
k2−1, . . . ,

g
(2)
0 ∈ K[Y1, Y2] are the coefficients of g(Y1,X), except the leading coefficient,

multiplied with Y2. Let ι̃ : K[Y1, Y2] → K[Y1, Y2] be the output of this algo-
rithm.

4. If deg(h) = 0, (i.e., h = h0 for some h0 ∈ K), apply Algorithm3 to K, R,
x1 ∈ R and ι′ : K[X] → K[X] given by ι′(p) := ι̃(p(Y1))(X,h−1

0) and return
the output of this algorithm as f1.

5. Otherwise, check if 1 − h(x1) = 0. If yes, return f1 := 1 − h(X).
6. If no, compute ι̃(1 − h(Y1)) =

∑N
i=0 aiY

i
2 with ai ∈ K[Y1] and aN �= 0; define

q :=
N∑

i=0

ai(h(Y1))N−i ∈ K[Y1]

and return f1 := h(X)N − (1 − h(X))q(X).

Change x1 and x2 and repeat the steps above to compute f2 ∈ K[X].

Lemma 6. In the situation of Algorithm4 we assume that K is a field, R is
a K-algebra, ι is an algebraic inverse function on K[x1, x2]. Then f1(x1) =
f2(x2) = 0 and f1, f2 are non-constant.

The next algorithm shows how to compute the field L, which corresponds to the
field of fractions of K[x1] in K[�x] on the level of polynomials.

Algorithm 5. Let a discrete field structure K, a discrete K-algebra structure
R, n > 0 and �x ∈ R be given. We define a field structure as follows:

L :=
{

f

g

∣
∣
∣
∣f, g ∈ K[X], g(x1) �= 0 ∨ 0 = 1

}

,

f1
g1

=
f2
g2

:⇔ f1(x1)g2(x1) = f2(x1)g1(x1),

f1
g1

+
f2
g2

:=

{
f1g2+f2g1

g1g2
if (g1g2)(x1) �= 0

0
1 else,

0 :=
0
1
,

f1
g1

f2
g2

:=

{
f1f2
g1g2

if (g1g2)(x1) �= 0
0
1 else,

1 :=
1
1
,

−f

g
:=

−f

g
,

(
f

g

)−1

:=

{
g
f if f(x1) �= 0
0
1 else

An Algorithmic Version of Zariski’s Lemma 477

For a given map ι : K[�X] → K[�X] we define a map ϕ : L → R by f
g �→

f(x1)(ι(g))(x1), which turns R into an L-algebra structure. Furthermore, we
define a map ι̃ : L[X2, . . . , Xn] → L[X2, . . . , Xn] as follows:

1. Given an input p ∈ L[X2, . . . , Xn], it has the presentation

p =
∑

i2,...,in

fi2...in
gi2...in

Xi2
2 · · · Xin

n ,

for finitely many fi2...in , gi2...in ∈ K[X].
2. Let a ∈ K[X] be the product of all these gi2...in , and for j2, . . . , jn let hj2...jn

be the product of all these gi2...in except gj2...jn .
3. Define f̃i2...in := fi2...inhi2...in and p̃ :=

∑
i2,...,in

f̃i2...in(X1)Xi2
2 · · · Xin

n ; set

ι̃(p) := (a(X1)ι(p̃))
(

X

1
,X2, . . . , Xn

)

,

where we consider b ∈ K also as the element b
1 ∈ L.

Because we have to define the algorithm without the ring and field axioms, the
definitions of L and the operators are more complex than one might expect.

As already mentioned we cannot define L as
{

a
b | a, b ∈ K[x1], b �= 0 ∨ 0 = 1

}
,

which is the field of fractions of K[x1] if this is an integral domain, because we
want to avoid terms like a ∈ K[x1], which are constructively delicate. In partic-
ular, there is in general no map which takes a ∈ K[x1] and returns f ∈ K[X]
with f(x1) = a without using the axiom of choice. But in the next algorithm we
operate on the level of polynomials.

Lemma 7. In the situation of Algorithm5 we assume that K is a field, R is a
ring, �x ∈ R and ι is an algebraic inverse function of K[�x]. Then L is indeed a
discrete field, ϕ turns R into a L-algebra and ι̃ is an algebraic inverse function
on L[x2, . . . , xn].

With this preparation we now formulate the final algorithm and an algorithm
version of Zariski’s lemma.

Algorithm 6. Let K be a discrete field structure, R be a discrete K-algebra
structure, ι : K[�X] → K[�X] be a map and x1, . . . , xn ∈ R. We compute
f1, . . . , fn ∈ K[X] by recursion over n as follows:

1. If n = 0, return the empty list. If n = 1, use Algorithm3 with input K, R,
x1 and ι and return the output f1. If n = 2, use Algorithm4 with input K;
R; x1, x2 ∈ R and ι, and return the output f1, f2.

2. Apply Algorithm5 to K, R, n, �x and ι and let the field structure L and the
map ι′ : L[X2, . . . , Xn] → L[X2, . . . , Xn] be the output.

3. Apply recursion to L, the L-algebra structure R, ι′ and x2, . . . , xn ∈ R and
we get F̃2, . . . , F̃n ∈ L[X].

478 F. Wiesnet

4. For each i we define Fi as F̃i divided by its leading coefficient and replacing
the leading coefficient by 1 (or Fi := 1 if F̃i = 0). In particular,

Fi = Xni +
ni−1∑

j=0

aij

bij
Xj

for some aij , bij ∈ K[X].
5. Let v :=

∏
(k,l) bkl ∈ K[X], b̃ij :=

∏
(k,l) �=(i,j) bkl, and ãij := b̃ijaij. Define

Gi :=
ni∑

j=0

ãij(Y1)Y2X
j ∈ K[Y1, Y2,X].

6. Use Algorithm2 with input K, �h := (X1, ι(v)), ι, k1 := 1, g
(1)
0 := Y1 and for

i ∈ {2, . . . , n} take ki := ni and g
(i)
ni−1, . . . , g

(i)
0 are the non-leading coefficients

of Gi. Let ι̃ be the output.
7. Apply Algorithm4 to the input K, R, x1, ι(v)(x1) ∈ R and ι̃, and define

f1 ∈ K[X] as the output.
8. For each i ∈ {2, . . . , n} exchange x1 with xi and repeat the processes starting

at Step 2 to get fi instead of f1. Then return f1, . . . , fn.

Theorem 2 (Algorithmic version of Zariski’s lemma). In the situation
of Algorithm6 we assume that K is a field, R is a K-algebra, �x ∈ R and ι is
an algebraic inverse function on K[�x]. Then f1(x1) = · · · = fn(xn) = 0 and
f1, . . . , fn are non-constant.

4 Summary and Outlook

For K[x1, . . . , xn] and an algebraic inverse function ι on K[�x] our algorithm
computes f1, . . . , fn with fi(xi) = 0 for all i as follows: The case n = 0 is
trivial. The case n = 1 is given in Lemma 5. The algorithm uses now recursion
on n and reduction to the case n = 2. The case n = 2 itself is considered in
Lemma 6. In this lemma the main idea was to find a suitable element u such that
K[x1, u] ⊆ K[x1, x2] is an integral extension of K-algebras. By using Lemma 4 we
have an algebraic inverse function on K[x1, u], where Lemma 4 uses Lemma 3.
In the case n ≥ 3, we use Lemma 7 to produce a new field L over which the
original algebra is generated by one element less, such that we can use recursion
and get F2, . . . , Fn ∈ L[X] with Fi(xi) = 0 for all i. From these Fi’s we generate
v such that K[x1, v] ⊆ K[�x] is an integral extension of K-algebras. Using again
Lemma 4 we get an algebraic inverse function on K[x1, v] and therefore, again
by Lemma 6, we get f1 ∈ K[X] with f1(x1) = 0. One now repeats the algorithm
where x1 and xi are switched for all i ≥ 2 and get fi ∈ K[X] with fi(xi) = 0.

Using the theory given in [11,12] one can probably formulate an algorithmic
version of Hilbert’s Nullstellensatz if the underlying field is countable. Another
direction in which this paper can be extended is an analysis of the complexity of

An Algorithmic Version of Zariski’s Lemma 479

the algorithm. The algorithm of Sect. 3 as a whole is defined by recursion over the
number of generators. In the recursion step (i.e., Algorithm6) the algorithm with
input x1, . . . , xn relies on the algorithm with input x1, . . . , xi−1, xi+1, . . . , xn for
each i ≤ n. Therefore, the runtime of this algorithm must be at least quadratic
in the number of generators.

A Omitted Proofs

Proof (Lemma 3). We define the K[�Y]-module M := K[�Y][�X]/〈G1, . . . , Gn〉
where Gi := Xki + g

(i)
ki−1X

ki−1 + · · · + g
(i)
0 for all i, and go through the steps of

Algorithm 1: by the definition of M and the process to get the gIJ ’s, we have
∑

J∈INn

fIJ �XJ =
∑

J∈I
gIJ (�Y) �XJ

in M or in other words
∑

J∈INn

fIJ �XJ −
∑

J∈I
gIJ (�Y) �XJ ∈ 〈G1, . . . , Gn〉

seen in K[�Y][�X]. Note that (�XI)I∈I is a set of generators of M as K[�Y]-
module, and multiplication with f corresponds to the matrix (gIJ)I,J∈I . Let
P be the characteristic polynomial as in the algorithm. By the theorem of
Cayley-Hamilton [4], P (f) = 0 in M , hence P (f) ∈ 〈G1, . . . , Gn〉 in K[�Y][�X].
By (1), we have Gi(�y, �x) = 0 for all i, and hence 0 = P (f)(�y, �x) = (f(�x))k +
gk−1(�y)(f(�x))k−1 + · · · + g0(�y). Here we have used the definition of the gi in the
last step, and deg(P) = k because k is the number of elements in I which is also
the cardinality of the generator (xI)I∈I . �	
Proof (Lemma 4). Let f ∈ K[�Y] with f(�y) �= 0 be given. Since �h is a witness
that K[�y] ⊆ K[�x] is an extension of K-algebras, we have f(�h(�x)) = f(�y) �= 0.
Let p be given as in Step 1. Then p(�x)f(�y) = 1 because ι is an algebraic inverse
function. By Lemma 3 we have

(p(�x))k + gk−1(�y)(p(�x))k−1 + · · · + g0(�y) = 0.

Multiplying this with (f(�y))k−1 and isolating p(�x), we get

p(�x) = (−gk−1 − gk−2f − · · · − g0f
k−1)(�y) = ι̃(f)(�y).

�	
The proof of Lemma 5 follows directly by the definition of an algebraic inverse
function.

Proof (Lemma 6). It suffices to consider f1 since the statement with f2 is proved
analogously. We follow the algorithm step by step. If x2 = 0, we use Lemma 5.
That ι′ is an algebraic inverse function on K[x1] follows from

(ι(p(X1)))(x1, 0)p(x1) = (ι(p(X1))p(X1))(x1, x2) = 1

for all p ∈ K[X] with p(x1) �= 0.

480 F. Wiesnet

So, we continue with x2 �= 0. By definition, g(x1, x2) = x2ι(X2)(x1, x2)−1 =
0 and the constant coefficient (as polynomial in X2) of g is equal to −1.

In the next step it is obvious that X1, ι(h) is a witness of K[x1, ι(h)(x1, x2)] ⊆
K[x1, x2] being an extension of K-algebras and that x1 −g

(1)
0 (x1, ι(h)(x1, x2)) =

x1 − x1 = 0. Furthermore, let g =
∑k2

i=0 giX
i
2 for some gi ∈ K[X1] with gk2 �= 0.

Then h = gk2 and

0 = ι(h)(x1, x2)g(x1, x2) = xk2
2 +

k2−1∑

i=0

gi(x1)ι(h)(x1, x2)xi
2

= xk2
2 +

k2−1∑

i=0

g
(2)
i (x1, ι(h)(x1, x2))xi

2.

So, ι̃ is an algebraic inverse function on K[x1, ι(h)(x1, x2)] by Lemma 4.
If deg(h) = 0, we have h = h0 and h0 �= 0 because h is a leading coefficient.

Therefore, it follows ι(h)(x1, x2) = h−1
0 , and we apply Lemma 5 to K[x1] =

K[x1, h
−1
0]. To apply this lemma it remains to show that ι′ is an algebraic inverse

function: if p ∈ K[X] with p(x1) �= 0 then

(ι′(p))(x1)p(x1) = (ι̃(p(Y1)))(x1, h
−1
0)p(x1) = (ι̃(p(Y1))p(Y1))(x1, h

−1
0) = 1.

Now we continue with deg(h) �= 0, i.e., deg(h) > 0 because h �= 0. If
h(x1) + 1 = 0, we have that f1 is non-constant since deg(h) > 0 and by the
case assumption f(x1) = 0.

So let h(x1) + 1 �= 0. Then

q(x1)(ι(h)(x1, x2))N = ι̃(1 − h(Y1))(x1, ι(h)(x1, x2)).

Since ι and ι̃ are algebraic inverse functions and h �= 0 and 1 − h �= 0, it follows

q(x1)(1 − h(x1))) = h(x1).

So for f1 := (1 − h(X))q(X) − h(X)N we have f1(x1) = 0 and f1 �= 0, similar to
the end of the proof of Zariski’s lemma.

�	
Proof (Lemma 7). L is a discrete field because in the definition of L and its
operators we only use the operators of K.

By using the property of an algebraic inverse function, it is also straightfor-
ward to check that the map ϕ is a homomorphism.

It remains to show that ι̃ is an algebraic inverse function on L[x2, . . . , xn].
For this let p ∈ L[X2, . . . , Xn] with p(x2, . . . , xn) �= 0 be given. We take the
representation of p, a, f̃i2...in and p̃ as defined in the algorithm, and calculate

p(x2 · · · , xn)a(x1) =
∑

i2,··· ,in
ϕ

(
f̃i2···in

1

)

xi2
2 · · · xin

n

=
∑

i2,··· ,in
f̃i2···in(x1)xi2

2 · · · xin
n = p̃(x1, · · · , xn).

An Algorithmic Version of Zariski’s Lemma 481

Obviously, a(x1) �= 0 because it is a product of non-zero factors. Hence, if
p(x2, . . . , xn) �= 0, it follows p̃(x1, . . . xn) �= 0. Since additionally ι is an alge-
braic inverse function, we have

ι(p̃)(x1, . . . , xn) = (p̃(x1, . . . , xn))−1,

and therefore

(p(x2, . . . , xn))−1 = a(x1)(p̃(x1, . . . , xn))−1 = a(x1)(ι(p̃))(x1, . . . , xn)

= (a(X1)ι(p̃))
(

X

1
, x2, . . . , xn

)

.

�	
Proof (Algorithmic version of Zariski’s Lemma). We use induction on n and
consider the algorithm step by step. If n = 0, there is nothing to show. If n = 1,
the statement follows by Lemma 5. If n = 2, the statement follows by Lemma 6.

If n ≥ 3, it suffices to consider e = 1. We use Lemma 7 to get that L is a
field, R is an L-algebra and ι′ is an algebraic inverse function on L[x2, . . . , xn].

We have that F2(x2) = · · · = Fn(xn) = 0 by the induction hypothesis and
the fact that Fi is indeed F̃i divided by its leading coefficient since L is a field.

Furthermore, Fi = Gi(x1, v
−1,X) as polynomial in R[X] and therefore

0 = Fi(xi) = Gi(x1, (v(x1))−1, xi). So, the non-leading coefficients of Gi (as
polynomials in X) witness that xi is integral over K[x1, ι(v)(x1)] for each
i ∈ {2, . . . , n}.

Because of this, the requirements of Lemma 4 are fulfilled and hence ι̃ is an
algebraic inverse function on K[x1, ι(v)(x1)].

Therefore, we get f1(x1) = 0 and f1 is non-constant by Lemma 6. �	

References

1. Atiyah, M.F., Macdonald, I.G.: Introduction to Commutative Algebra. Addison-
Wesley Pub. Co., Boston (1969)

2. Azarang, A.: A simple proof of Zariski’s Lemma. Bull. Iran. Math. Soc. 43(5),
1529–1530 (2017)

3. Berger, U., Miyamoto, K., Schwichtenberg, H., Seisenberger, M.: Minlog - a tool
for program extraction supporting algebras and coalgebras. In: Corradini, A., Klin,
B., Ĉırstea, C. (eds.) CALCO 2011. LNCS, vol. 6859, pp. 393–399. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22944-2 29

4. Eisenbud, D.: Commutative Algebra: With a View Toward Algebraic Geometry,
Graduate Texts in Mathematics, vol. 150. Springer, New York (1995). https://doi.
org/10.1007/978-1-4612-5350-1

5. Hulek, K.: Elementare Algebraische Geometrie: Grundlegende Begriffe und Tech-
niken mit zahlreichen Beispielen und Anwendungen. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-8348-2348-9

6. Kohlenbach, U.: Applied Proof Theory: Proof Interpretations and their Use
in Mathematics. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
77533-1

https://doi.org/10.1007/978-3-642-22944-2_29
https://doi.org/10.1007/978-1-4612-5350-1
https://doi.org/10.1007/978-1-4612-5350-1
https://doi.org/10.1007/978-3-8348-2348-9
https://doi.org/10.1007/978-3-540-77533-1
https://doi.org/10.1007/978-3-540-77533-1

482 F. Wiesnet

7. Kohlenbach, U.: Proof-theoretic methods in nonlinear analysis. In: Proceedings of
the International Congress of Mathematicians, vol. 2, pp. 61–82. World Scientific
(2018)

8. Lombardi, H., Quitté, C.: Commutative Algebra: Constructive Methods: Finite
Projective Modules, vol. 20. Springer, Dordrecht (2015). https://doi.org/10.1007/
978-94-017-9944-7

9. McCabe, J.: A note on Zariski’s lemma. Am. Math. Mon. 83(7), 560–561 (1976)
10. Mines, R., Richman, F., Ruitenburg, W.: A Course in Constructive Algebra.

Springer, New York (1988). https://doi.org/10.1007/978-1-4419-8640-5
11. Powell, T., Schuster, P., Wiesnet, F.: An algorithmic approach to the existence of

ideal objects in commutative algebra. In: Iemhoff, R., Moortgat, M., de Queiroz, R.
(eds.) WoLLIC 2019. LNCS, vol. 11541, pp. 533–549. Springer, Heidelberg (2019).
https://doi.org/10.1007/978-3-662-59533-6 32

12. Powell, T., Schuster, P., Wiesnet, F.: A universal algorithm for Krull’s theorem.
Inf. Comput. (2020, submitted)

13. Reid, M.: Undergraduate Algebraic Geometry. Cambridge University Press, Cam-
bridge (1988)

14. Schwichtenberg, H., Wainer, S.S.: Proofs and Computations. Cambridge University
Press, Cambridge (2011)

15. Sharifi, Y.: Zariski’s Lemma (2011). https://ysharifi.wordpress.com/tag/zariskis-
lemma/. Acccessed 7 Jun 2020

16. Wessel, D.: Making the use of maximal ideals inductive (2021), talk at workshop
Reducing complexity in algebra, logic, combinatorics

17. Wiesnet, F.: Introduction to minlog. In: Mainzer, K., Schuster, P., Schwichtenberg,
H. (eds.) Proof and Computation, pp. 233–288. World Scientific (2018)

18. Yengui, I.: Constructive Commutative Algebra. Projective Modules Over Polyno-
mial Rings and Dynamical Gröbner Bases. LNM, vol. 2138. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-19494-3

19. Zariski, O.: A new proof of Hilbert’s Nullstellensatz. Bull. Am. Math. Soc. 53(4),
362–368 (1947)

https://doi.org/10.1007/978-94-017-9944-7
https://doi.org/10.1007/978-94-017-9944-7
https://doi.org/10.1007/978-1-4419-8640-5
https://doi.org/10.1007/978-3-662-59533-6_32
https://ysharifi.wordpress.com/tag/zariskis-lemma/
https://ysharifi.wordpress.com/tag/zariskis-lemma/
https://doi.org/10.1007/978-3-319-19494-3

Einstein Meets Turing:
The Computability of Nonlocal Games

Henry Yuen(B)

Columbia University, New York, NY 10027, USA
hyuen@cs.columbia.edu

Abstract. Quantum entanglement – the phenomenon where distant
particles can be correlated in ways that cannot be explained by classical
physics – has mystified scientists since the1930s, when quantum the-
ory was beginning to emerge. Investigation into fundamental questions
about quantum entanglement has continually propelled seismic shifts
in our understanding of nature. Examples include Einstein, Podolsky
and Rosen’s famous 1935 paper about the incompleteness of quantum
mechanics, and John Bell’s refutation of EPR’s argument, 29 years later,
via an experiment to demonstrate the non-classicality of quantum entan-
glement.

More recently, the field of quantum computing has motivated
researchers to study entanglement in information processing contexts.
One question of deep interest concerns the computability of nonlocal
games, which are mathematical abstractions of Bell’s experiments. The
question is simple: is there an algorithm to compute the optimal win-
ning probability of a quantum game – or at least, approximate it? In
this paper, I will discuss a remarkable connection between the complex-
ity of nonlocal games and classes in the arithmetical hierarchy. In par-
ticular, different versions of the nonlocal games computability problem
neatly line up with the problems of deciding Σ0

1 , Π0
1 , and Π0

2 sentences,
respectively.

Keywords: Nonlocal games · Quantum entanglement ·
Uncomputability

1 EPR’s Dream, Bell’s Theorem, and the CHSH Game

In 1935, Einstein, Podolsky and Rosen (who we’ll henceforth abbreviate as
“EPR”) wrote a paper titled “Can Quantum-Mechanical Description of Physi-
cal Reality be Considered Complete?”, which became one of the most influential
papers in the history of physics. The EPR paper was motivated by a fundamental
dissatisfaction with quantum mechanics, which at the time was revolutionizing
how physicists understood the world at its smallest scales. At the heart of this
discontent was the phenomenon of quantum entanglement, in which two parti-
cles can be separated far away from other but still exhibit “spooky” correlations

c© Springer Nature Switzerland AG 2021
L. De Mol et al. (Eds.): CiE 2021, LNCS 12813, pp. 483–493, 2021.
https://doi.org/10.1007/978-3-030-80049-9_47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80049-9_47&domain=pdf
https://doi.org/10.1007/978-3-030-80049-9_47

484 H. Yuen

that defy classical explanation. EPR believed that the mathematical theory of
quantum mechanics, while accurate in its predictions, must be incomplete. They
hoped that quantum theory could be replaced with a completely classical the-
ory of nature that was consistent with the predictions of quantum theory and
relativity but free of what EPR thought were apparent paradoxes.

Their paper sparked decades-long debates about the interpretation of quan-
tum mechanics and the validity of EPR’s arguments. It wasn’t until 1964 when
the physicist John Bell came up with a startlingly simple argument for what
is known as Bell’s theorem, which dashed EPR’s dream of a classical replace-
ment of quantum theory [1]. I’ll present a modern and computer science-friendly
formulation of Bell’s argument using nonlocal games.

Consider a scenario involving three parties; there are two players (who we
name Alice and Bob, in the computer science convention) and a referee. The
referee chooses two bits x, y ∈ {0, 1} (called “questions”) uniformly at random,
and sends x to Alice and y to Bob. Alice and Bob are cooperating players on
the same team, but during this game they are not allowed to communicate with
each other.1 Instead Alice has to respond with an answer a ∈ {0, 1} and Bob
with an answer b ∈ {0, 1} to the referee. The game ends and the players win
if a ⊕ b = x ∧ y. This is known as the CHSH game, named after physicists
Clauser, Horne, Shimony and Holt who designed this game as an experimental
demonstration of Bell’s argument [2].

What strategy should Alice and Bob use to win with highest probability in
the CHSH game? This depends on what strategies Alice and Bob are allowed
to employ, and this depends on what theory of physics we use to model Alice
and Bob’s behavior. For example, if we use a deterministic, classical theory of
physics to model Alice and Bob, then their strategies can be described as a pair
of functions a, b : {0, 1} → {0, 1}; upon receiving question x Alice responds with
answer a(x) and upon receiving question y Bob responds with answer b(y).

It is not difficult to see that when Alice and Bob employ deterministic strate-
gies, their maximum probability of success is 3/4. Furthermore, even if we model
Alice and Bob using a probabilistic classical theory – i.e., their answers a, b are
not just functions of their respective questions but also some common random
variable r – their maximum success probability remains 3/4. This number is
called the classical value of the CHSH game.

When Alice and Bob employ a quantum strategy, however, they can win
the CHSH game with probability that is strictly higher than the classical value.
At the beginning of the game, the players share two entangled particles and
perform measurements (which depend on their questions) on their own particle,
and respond with answers based on the measurement results.

An important thing to note is that the players cannot use quantum entangle-
ment to communicate with each other during the game; there is no way for Alice
to use entanglement to glean information about Bob’s question y, and similarly

1 This non-communication constraint is used to model the situation when Alice and
Bob are separated far from each other, and relativity prevents Alice and Bob from
instantaneously signaling to each other.

Einstein Meets Turing: The Computability of Nonlocal Games 485

Bob cannot obtain any information about Alice’s question x. Instead, quantum
entanglement should be viewed as a form of correlations that are stronger than
what is possible classically, but still do not allow for instantaneous signaling
between two distant parties.

Clauser, Horne, Shimony and Holt showed that there is a quantum entan-
gled strategy for Alice and Bob to produce winning answers with probability
cos2(π/8)≈.854 (this is known as the quantum value of the CHSH game). Thus,
no classical strategy satisfying the no-communication constraint can match the
winning probability of this quantum strategy, and thus there cannot be a clas-
sical theory of nature that is compatible with both quantum theory and Ein-
stein’s theory of relativity, which forbids instantaneous signaling. Furthermore,
games like the CHSH game with a separation in their classical and quantum val-
ues have been experimentally demonstrated many times over the past 40 years,
and the results are unambiguous: Nature is non-classical. These experiments are
often called Bell tests, in honor of the physicist who conceived of the first such
experiment.

Over the past twenty years, computer scientists and mathematicians have
also become quite interested in Bell experiments because of their intriguing ties
to quantum information theory, theoretical computer science, and pure math-
ematics. In this paper, we will see how studying Bell tests through the lens of
computation and information reveals fascinating connections with computability
theory and more.

2 Nonlocal Games and Their Computability

The CHSH game is an example of a nonlocal game, which is a general math-
ematical abstraction of a Bell test. A nonlocal game G consists of a tuple
(X ,Y,A,B, μ,D), where X ,Y (called question sets) and A,B (called answer
sets) are finite sets, μ (called the question distribution) is a probability distri-
bution over X × Y, and D : X × Y × A × B → {0, 1} is a function called a
decision procedure. The game is played between a referee and two players where
the referee first samples a pair (x, y) according to μ and sends x to Alice, y to
Bob. They have to respond with answers a and b respectively, and they win if
D(x, y, a, b) = 1. We assume that Alice and Bob know the question distribution
and decision procedure before the game starts, and can choose a strategy for
answering the questions in order to optimize their probability of winning.

The motivating question of this paper is the following:

What is the complexity of computing the optimal winning probability in a
nonlocal game?

To make this question precise, we need to formalize what we mean by optimal
winning probability, and this depends on what class of strategies Alice and Bob
are allowed to use – for each class, there is an associated complexity question.

A general strategy S for a game G = (X ,Y,A,B, μ,D) is a set of conditional
probability distributions {pxy : A × B → R+}x∈X ,y∈Y where

∑
a,b pxy(a, b) = 1,

486 H. Yuen

and the value of the strategy is defined to be

ω(G,S) =
∑

x,y,a,b

μ(x, y) pxy(a, b)D(x, y, a, b).

In other words, this describes the probability of winning when Alice and Bob
sample winning answers (a, b) from the distribution pxy, when receiving a ques-
tion pair (x, y) drawn from μ. Let C denote a class of strategies for a game G.
Then the C -value of a game G is defined to be

ωC (G) = sup
S ∈C

ω(G,S) .

In other words, it is the optimal probability of winning the game G using a
strategy from the class C . There are three main classes of strategies that we
consider in this paper.

First, define the class Cc, which is the class of classical strategies S where
there are functions f : X → A, g : Y → B such that pxy(a, b) = 1 if and only if
f(x) = a and g(y) = b. We denote the classical value of a game G by ωc(G).

Next, define the class Cq, which is the class of quantum strategies. Such a
strategy consists of a state, which is a unit vector ψ ∈ C

d⊗C
d where d > 0 is some

integer; and measurements, which for x, y ∈ {0, 1} are sets of positive semidefinite
operators Ax = {Ax

a}a∈A and By = {By
b }b∈B acting on C

d. The operators satisfy
the completeness condition

∑
a∈A Ax

a =
∑

b∈B By
b = I for all x ∈ X , y ∈ Y where

I denotes the identity on C
d. The probability of producing answers (a, b) given

questions (x, y) is given by the formula pxy(a, b) = ψ∗(Ax
a ⊗ By

b)ψ. We denote
the quantum value of a game by ωq(G).

Finally, define the class Cco, which is the class of commuting operator
strategies. This class captures quantum strategies that are infinite-dimensional
(whereas the quantum strategies of Cq are by definition finite-dimensional).2

This generalization of quantum strategies is motivated by quantum field the-
ories, where the natural description of physical phenomena involves infinitely
many degrees of freedom; for example the fundamental quantum fields from
which elementary particles arise have a degree of freedom for every point in
space and time. We denote the commuting operator value of a game by ωco(G).

We won’t really use the specifics of the definitions of the different strategy
classes in this paper, but an important point is the following relationship between
the different values. For all nonlocal games G, we have

ωc(G) ≤ ωq(G) ≤ ωco(G) . (1)
2 Formally, a commuting operator strategy consists of a unit state ψ defined on a sep-

arable Hilbert space H (which is in general infinite-dimensional), and measurement
operators {Ax

a}x,a and {By
b } such that for all x, y,

∑
a Ax

a =
∑

b By
b = I where I

denotes the identity operator on H, and furthermore Alice’s and Bob’s operators
must commute with each other : Ax

aBy
b = By

b Ax
a for all x, y, a, b. The probability of

producing answers (a, b) given questions (x, y) is given by ψ∗Ax
aBy

b ψ. The essential
difference between this model of strategies and the quantum strategies defined above
is that (a) the dimension of the Hilbert space may be infinite, and (b) there is not
necessarily a tensor product structure in the Hilbert space.

Einstein Meets Turing: The Computability of Nonlocal Games 487

In other words, in any game, quantum strategies can do at least as well as clas-
sical strategies, and commuting strategies can do at least as well as quantum
strategies. A succinct way to state Bell’s theorem is that there exists a nonlocal
game G such that ωc(G) < ωq(G); the CHSH game is one example. A fundamen-
tal question in the study of nonlocal games and quantum information theory is
whether there exists a game for which the second inequality in (1) is strict – this
is known as Tsirelson’s problem [11]. This question was recently resolved in the
affirmative: there exists a game G for which ωq(G) < ωco(G). The CHSH game
is not an example of such a game because ωq(CHSH) = ωco(CHSH). We will
return to this later.

We can now formalize the complexity question raised earlier. In fact, there
are several natural formulations of this question that we can consider, depending
on whether one cares about computing the optimal winning probability exactly
or approximately, and what class of strategies are allowed. Fix a value type
t ∈ {c, q, co}. For the exact computation question, to goal is to decide, given a
description of a nonlocal game G and a real number 0 ≤ ν ≤ 1, whether ωt(G) =
ν. For the approximation question, the goal is to decide whether ωt(G) = ν or
|ωt(G) − ν| > ε, promised that one is the case. (Here, the error parameter ε can
be fixed or provided as part of the input to the problem.) Throughout this paper
we will generally fix ν = 1 and ε = 1

2 for convenience.
What is the computational complexity of these problems? We start with the

classical problem. The question of the complexity of computing and approxi-
mating ωc(G) has been central to theoretical computer science: although it may
not be obvious when stated this way, the Cook-Levin theorem, which states
that boolean satisfiability is NP-complete, is equivalent to the statement that
deciding whether ωc(G) = 1 is an NP-complete problem. Furthermore, the com-
plexity of approximating ωc(G) to within an additive error of 1

2 (or any other
fixed constant) is still NP-complete; this is equivalent to the famous probabilis-
tically checkable proofs (PCP) theorem. Thus, even when restricted to consider-
ing deterministic classical strategies, computing optimal strategies for nonlocal
games is a computationally intractable task.

What about the quantum and commuting operator values of games? The
question about the computability of the quantum values of nonlocal games is a
relatively recent one; versions of this were first formulated by [3,6,9]. What is
striking about these questions is that it is not obvious a priori that the quantum
and commuting operator values are even computable!

I’ll discuss the situation with the quantum value first. Recall that it is defined
as a supremum over the set of (finite-dimensional) quantum strategies involving
an entangled state between the two players and measurements for each of them.
This is a very daunting space to optimize over; in particular it is infinite in two
ways. First, it is continuous. This is not a critical issue as, for a fixed dimension
d, the space of d-dimensional strategies can be discretized and enumerated over
in finite time. The more important issue is that there is no a priori upper bound
on the dimension d needed to come close to the optimal winning probability.

488 H. Yuen

What that means is, even if one were to try to do a näıve brute force
search over the space of quantum strategies—e.g., enumerating over a discretiza-
tion of d-dimensional quantum strategies for increasing d = 1, 2, 3, . . .—it is
not immediately clear how to determine whether the best winning probability
computed so far in the enumeration is converging to the quantum value. This
brute force approach only gives a “semialgorithm” that computes a sequence
of values α1 ≤ α2 ≤ · · · ≤ ωq(G) where αd is the best winning probability
amongst a discretization of d-dimensional strategies, and it is only guaranteed
that αd → ωq(G) in the limit as d → ∞. This shows that the approximation
problem of deciding whether ωq(G) = 1 or ωq(G) ≤ 1

2 (promised that one is the
case) is contained in RE, the class of recursively enumerable problems, because
if ωq(G) > 1

2 , then there is a certificate for this fact in the form of a finite-
dimensional strategy, and this certificate can be found by the semialgorithm. In
other words, you can encode the quantum value approximation problem as an
instance of the Halting problem.

The situation is mirrored with the commuting operator value. The space of
infinite-dimensional commuting operator strategies is perhaps even more intimi-
dating than the space of finite-dimensional quantum strategies. It turns out that
there is a semialgorithm for certifying that ωco(G) is strictly less than 1: the
algorithm computes a sequence of values β1 ≥ β2 ≥ · · · ≥ ωco(G) where βd is
guaranteed to converge to ωco(G) as d → ∞.3 This shows that the problem of
deciding whether ωco(G) = 1 (as well as the problem of approximating ωco(G))
is contained in coRE, the complement of RE. In other words, you can encode
the commuting value problem (both exact and approximation versions) as an
instance of the non-Halting problem.

These upper bounds were all that were known about the complexity of the
quantum and commuting operator values of nonlocal games until very recently.
To some, this constituted an embarrassing state of affairs; surely there is some
algorithm for the quantum/commuting-operator value!

A sequence of results have shown that the lack of a computable upper bound
on the complexity of nonlocal games is for a good reason: In 2016, Slofstra [12,13]
showed that for either t ∈ {q, co} there is no algorithm to decide whether ωt(G) =
1. In 2020, Ji, Natarajan, Vidick, Wright and myself [7] showed, via a complexity-
theoretic result stated as MIP∗ = RE, that there is no algorithm to compute
an additive approximation ωq(G) ± ε for any 0 ≤ ε < 1. Surprisingly, this
(un)computability result also resolves Tsirelson’s problem (i.e., there exists a
game G for which ωq(G) �= ωco(G)), which in turn resolves Connes’ embedding
problem, an important question in the study of functional analysis that was
first raised by Alain Connes in 1976 [4,10]. For more information about the
connection between the approximability of the quantum value of nonlocal games
and Connes’ embedding problem, we refer the reader to Vidick’s survey [14].

3 For the curious: βd is defined to be the smallest number such that the nonnegativity
of βd − ωco(G) admits a degree-d sum-of-squares polynomial in noncommuting vari-
ables. Each βd can be computed in finite time using the semidefinite programming
hierarchies of [6,9].

Einstein Meets Turing: The Computability of Nonlocal Games 489

Furthermore, it is still an open question whether there is an algorithm to
approximate ωco(G), but the current evidence indicates that one is unlikely to
exist; for example Coudron and Slofstra have proved lower bounds on the time
complexity of approximating ωco(G) as a function of the approximation qual-
ity [5].

While these (non)computability results about the quantum and commuting
operator value of nonlocal games present striking statements about the sheer
complexity of the space of quantum strategies (both in the finite-dimensional
and infinite-dimensional setting), one can even make sharper statements about
the degree to which these problems are algorithmically unsolvable. In fact, the
recent results on the complexity of nonlocal games have uncovered a remarkable
correspondence between the complexity of computing the value of nonlocal games
and different classes of the arithmetical hierarchy.

3 Nonlocal Games and the Arithmetical Hierarchy

We consider sentences S of the form

∃x1 ∀x2 ∃x3 · · · φ(x1, x2, x3, . . . , xk) or ∀x1 ∃x2 ∀x3 · · · φ(x1, x2, x3, . . . , xk)

where the variables range over {0, 1}∗, all variables are quantified over, and φ
is a predicate computable by a Turing machine4. In this paper we call these
arithmetical sentences. Every arithmetical sentence S is either true or false.

Arithmetical sentences are classified according to the number of quantifiers
in the sentence, and whether the first quantifier is ∃ or ∀ :

1. Σ0
0 is the class of arithmetical sentences S of the form ∃x φ(x), and Π0

0 is the
class of arithmetical sentences S of the form ∀x φ(x).

2. For n ≥ 2, Σ0
n is the class of arithmetical sentences of the form ∃x F where

F ∈ Πn−1, and Π0
n is the class of sentences of the form ∀x F where F ∈ Σn−1.

The classes {Σ0
n,Π0

n}n form the arithmetical hierarchy that is studied in recur-
sion theory and computability theory. For simplicity we abbreviate Σ0

n and Π0
n

as Σn and Πn, respectively.
The set of true arithmetical sentences is undecidable; for example, deciding

whether a sentence in Σ1 is true is equivalent to deciding the Halting problem.
It is well-known that the complexity of deciding sentences with k quantifiers is
strictly harder than the complexity of deciding sentences with k − 1 quantifiers;
for example, a Turing machine equipped with an oracle to decide Σn sentences
still cannot decide sentences in Σn+1 or Πn+1.

Fix 0 ≤ ε < 1 and a value type t ∈ {q, co}. Define two sets of nonlocal games
Lyes

t := {G : ωt(G) = 1} and Lno
t,ε := {G : ωt(G) < 1 − ε}. (We assume a natural

encoding of nonlocal games as binary strings). These two sets are disjoint, and

4 Formally, these are sentences over a first-order language that uses binary strings as
its universe, and can encode the behavior of Turing machines.

490 H. Yuen

ε = 0 ε > 0

ωq(G)± ε Π2 [8] Σ1 [7]

ωco(G) ε Π1 [13] Π1 (conjectured)

Fig. 1. A characterization of the complexity of computing the value of a nonlocal
game in terms of the arithmetical hierarchy, depending on whether the quantum or
commuting operator value is being considered, and whether the value is being computed
exactly or approximately.

when ε = 0, the union of these two sets is all nonlocal games. These two sets
give rise to a decision problem: given a nonlocal game G in the union of these
sets, decide whether G is a YES instance or a NO instance.

Figure 1 indicates the following correspondence between deciding Lyes
t versus

Lno
t,ε and deciding whether a sentence S is true (the correspondence is conjectural

in the case of ε > 0 and t = co):

– (Sentences to nonlocal games) There exists a computable map Γ mapping
sentences of the type specified by the entry (t, ε) to nonlocal games in Lyes

t ∪
Lno

t,ε such that Γ (S) ∈ Lyes
t if and only if S is true.

– (Nonlocal games to sentences) There exists a computable map Ξ mapping
nonlocal games in Lyes

t ∪ Lno
t,ε to sentences of the type specified by the entry

(t, ε) such that Ξ(G) is true if and only if G ∈ Lyes
t .

Going from nonlocal games to sentences is straightforward. Fix a nonlocal game
G. We consider the different cases.

Let t = q and ε > 0. Define the predicate φ(x) that is 1 if and only if x is a
description of a finite-dimensional strategy S for G such that ω(G,S) ≥ 1 − ε.
Here we assume a natural enumeration of a countable net that covers the set of
finite-dimensional strategies with arbitrarily fine closeness5. It is clear that φ(x)
is computable. If ωq(G) = 1, then there exists a sequence of finite-dimensional
strategies whose value approaches 1, so therefore ∃x φ(x). On the other hand, if
ωq(G) < 1 − ε, then ∀x ¬φ(x).

Let t = q and ε = 0. Define the predicate φ(x, y) that is 1 if and only if x is
a description of a real number 0 < δ < 1 and y is a description of a strategy S
from a canonical net of finite-dimensional strategies (i.e., every finite-dimensional
strategy has a sequence of strategies from the net converging to it) such that
ω(G,S) ≥ 1 − δ. If ωq(G) = 1, then by definition for all δ > 0 there exists a
strategy S such that ω(G,S) ≥ 1 − δ, and furthermore this strategy can be
taken from the net, so therefore ∀x ∃y φ(x, y). On the other hand, if ωq(G) < 1,
then there exists a δ > 0 such that for all strategies S , the value ω(G,S) < 1−δ,
so ∃x ∀y ¬φ(x, y).

5 We assume some natural distance measure between strategies; such as the sum of
the �2 distances between the states and the measurements.

Einstein Meets Turing: The Computability of Nonlocal Games 491

Let t = co and ε ≥ 0. Define the predicate φ(x) that is 1 if and only if x
is a natural number d such that there does not exist a degree-d noncommuta-
tive sum-of-squares certificate, specified with precision d−1, that ωco(G) < 1.
The semidefinite programming hierarchies of [6,9] can be used to compute φ. If
ωco(G) = 1, then ∀x φ(x), whereas if ωco(G) < 1 the completeness of the hierar-
chy shows that there exists a degree-d certificate (specified with precision d−1)
of this fact, for some d, so ∃x ¬φ(x).

It is significantly more difficult to transform sentences into equivalent nonlo-
cal games. Slofstra [13] showed that exactly computing ωco is as hard as decid-
ing Π1 sentences, and Ji, et al. [7] showed that approximating ωq is as hard as
deciding Σ1 sentences. In [8], Mousavi, Nezhadi and myself showed that exactly
computing ωq for three-player games is as hard as deciding Π2 sentences, and in
upcoming work we show that the same holds for two-player games:

Theorem 1 (Mousavi-Nezhadi-Yuen 2021). There exists a computable
map from Π2 sentences S to nonlocal games G such that S is true if and only if
ωq(G) = 1.

The only remaining piece of the puzzle (which we do not resolve here) is to
determine the complexity of approximating ωco, which we conjecture is as hard
as deciding Π1 sentences.

A priori, this close correspondence between nonlocal games and arithmetical
sentences seems quite surprising. On one hand, computing the value of a non-
local game corresponds to a continuous optimization problem over a space of
quantum states and quantum measurements, possibly in infinite dimensions. On
the other hand, deciding whether a quantified arithmetical sentence is true is a
discrete problem in symbolic logic ostensibly having nothing to do with quantum
physics. Furthermore, the reader may notice that there are several interesting
asymmetries in Fig. 1:

1. If we assume the conjecture, then both exact and approximate computation
of the commuting operator value are equivalent to deciding Π1 sentences,
whereas for the quantum value, the complexity splits depending on whether
we are considering exact or approximate computation.

2. It is known that there is no computable map Λ from Σ1 to Π1 (or vice versa)
such that S is true if and only if Λ(S) is true6. Thus, since approximating
the quantum value is equivalent to deciding Σ1 sentences, the complexities
of approximating the quantum value and computing the commuting operator
value are incomparable in the logic sense, even though both problems are
algorithmically unsolvable.

3. Since deciding true Π2 sentences is strictly harder than deciding Σ1 or Π1 sen-
tences, exactly computing the quantum value is strictly harder than approx-
imating the quantum value or exactly computing the commuting operator
value. In other words, an oracle that decides whether the quantum value of

6 In the terminology of computability theory, this is stating that the recursively enu-
merable languages and co-recursively enumerable languages are incomparable sets.

492 H. Yuen

nonlocal games is 1 can be used to approximate the quantum value or com-
pute the commuting operator value of games – but not the other way around.

4 Conclusion

Nonlocal games have become a deeply fruitful research area at the confluence of
quantum physics, theoretical computer science, cryptography, and pure math-
ematics. They have provided a bridge connecting the discrete world of logic
and computation to the continuous world of quantum physics, and from them
we have learned that the mathematical structure of quantum entanglement is
rich enough to capture various phenomena in computability theory. Although I
didn’t get to the details of how such uncomputability results are proved, they
involve sophisticated tools and techniques from quantum information theory,
probabilistically checkable proofs, property testing, group theory, and more. All
of this suggests that these computability results about nonlocal games is just
the start of an exciting research direction with deep connections to many fields.

References

1. Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics 1, 195 (1964)
2. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test

local hidden-variable theories. Phys. Rev. Lett. 23(15), 880 (1969)
3. Cleve, R., Hoyer, P., Toner, B., Watrous, J.: Consequences and limits of nonlocal

strategies. In: 2004 Proceedings of the 19th IEEE Annual Conference on Compu-
tational Complexity, pp. 236–249. IEEE (2004)

4. Connes, A.: Classification of injective factors cases II1, II∞, IIIλ, λ�= 1. Ann. Math.
104, 73–115 (1976)

5. Coudron, M., Slofstra, W.: Complexity lower bounds for computing the
approximately-commuting operator value of non-local games to high precision.
arXiv preprint arXiv:1905.11635 (2019)

6. Doherty, A.C., Liang, Y.C., Toner, B., Wehner, S.: The quantum moment prob-
lem and bounds on entangled multi-prover games. In: 2008 23rd Annual IEEE
Conference on Computational Complexity, pp. 199–210. IEEE (2008)

7. Ji, Z., Natarajan, A., Vidick, T., Wright, J., Yuen, H.: MIP∗ = RE. arXiv preprint
arXiv:2001.04383 (2020)

8. Mousavi, H., Nezhadi, S.S., Yuen, H.: On the complexity of zero gap MIP*. In: Czu-
maj, A., Dawar, A., Merelli, E. (eds.) 47th International Colloquium on Automata,
Languages, and Programming (ICALP 2020). Leibniz International Proceedings in
Informatics (LIPIcs), vol. 168, pp. 87:1–87:12 (2020)

9. Navascués, M., Pironio, S., Aćın, A.: A convergent hierarchy of semidefinite pro-
grams characterizing the set of quantum correlations. New J. Phys. 10(7), 073013
(2008)

10. Ozawa, N.: About the Connes embedding conjecture, algebraic approaches. Jpn.
J. Math. 8, 147–183 (2013)

11. Scholz, V.B., Werner, R.F.: Tsirelson’s problem. arXiv preprint arXiv:0812.4305
(2008)

http://arxiv.org/abs/1905.11635
http://arxiv.org/abs/2001.04383
http://arxiv.org/abs/0812.4305

Einstein Meets Turing: The Computability of Nonlocal Games 493

12. Slofstra, W.: The set of quantum correlations is not closed. Forum Math, Pi 7,
1–41 (2019). Cambridge University Press

13. Slofstra, W.: Tsirelson’s problem and an embedding theorem for groups arising
from non-local games. J. Am. Math. Soc. 33, 1–56 (2020)

14. Vidick, T.: From operator algebras to complexity theory and back. Not. Am. Math.
Soc. 66(10), 1618–1627 (2019)

Computability of Limit Sets
for Two-Dimensional Flows

Daniel S. Graça1,2 and Ning Zhong3(B)

1 Universidade do Algarve, C. Gambelas, 8005-139 Faro, Portugal
2 Instituto de Telecomunicações, Lisbon, Portugal

3 DMS, University of Cincinnati, Cincinnati, OH 45221-0025, USA
zhongn@ucmail.uc.edu

Abstract. A classical theorem of Peixoto qualitatively characterizes, on
the two-dimensional unit ball, the limit sets of structurally stable flows
defined by ordinary differential equations. Peixoto’s density theorem fur-
ther shows that such flows are typical in the sense that structurally stable
systems form an open dense set in the space of all continuously differen-
tiable flows.

In this note, we discuss the problem of explicitly finding the limit sets
of structurally stable planar flows.

1 Introduction

In this note, we discuss limit sets of planar C1 dynamical systems from the
viewpoint of computability.

The dynamical systems to be considered are of the type

ẋ = f(x) (1)

where f : E → R
2 is continuously differentiable (C1) on E - either an open or

a compact subset of R2 (if E is compact, then f is assumed to be C1 in some
open set containing E), t ∈ R is the independent variable, and ẋ = dx/dt. The
solution to the equation with the initial condition x(0) = x0 is a function φ(f, x0)
of time t that describes the time dependence of x0 in the phase space, either R2

or a subset of R2. The function φ(f, ·)(·) is called the flow defined by the vector
field f and φ(f, x0)(·) is called a trajectory (or orbit) passing through x0.

Since the trajectories can be defined for arbitrarily long terms and explicit
solution formulas do not exist for most dynamical systems, it becomes necessary
and essential to study asymptotic (long term) behaviors of the trajectories. The
topic is extensively studied in mathematics and physics. The asymptotic behavior
of a dynamical system is captured by its limit sets, which are the states the
trajectories approach to or land on as t → ±∞. The limit sets are well understood
qualitatively for C1 planar dynamical systems: a closed and bounded limit set
other than an equilibrium point or a periodic orbit consists of equilibria and
solutions connecting them according to the Poincaré-Bendixson Theorem. From
the quantitative perspective, limit sets of planar flows remain elusive; there are
c© Springer Nature Switzerland AG 2021
L. De Mol et al. (Eds.): CiE 2021, LNCS 12813, pp. 494–503, 2021.
https://doi.org/10.1007/978-3-030-80049-9_48

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80049-9_48&domain=pdf
http://orcid.org/0000-0002-0330-833X
https://doi.org/10.1007/978-3-030-80049-9_48

Computability of Limit Sets for Two-Dimensional Flows 495

a number of open problems in the field, including Hilbert’s 16th problem. The
second part of Hilbert’s 16th problem asks for the maximum number and relative
positions of periodic orbits of planar polynomial (real) vector fields of a given
degree. The problem is open even for the simplest nonlinear flows - the quadratic
flows.

It is well known that the operator (f, x0) → φ(f, x0)(·) (as a function of t)
is computable (see [3] and references therein). Intuitively, this means that there
is an algorithm that plots a polygon curve p(t) on a computer screen satisfying
max−T≤t≤T ‖φt(f, x0) − p(t)‖ ≤ 2−n for every natural number n, every rational
number T , and “good enough” information on f and x0. (It is a convention to
write φt(f, x0) for φ(f, x0)(t).) However, the algorithm is local in the sense that
it provides little information on asymptotic behaviors of the trajectories. On the
other hand, the limit sets are asymptotic and global in nature - global properties
are generally more difficult to deal with in classical mathematics and to compute
in numerical as well as in computable analysis. It turns out that there are C1

computable planar flows whose periodic orbits are badly non-computable. This
is our first theorem.

Theorem 1. For any k ≥ 1, there is a Ck computable function f : R2 → R
2

such that none of the periodic orbits of the Ck planar system ẋ = f(x), x ∈ R
2,

is r.e. or co-r.e. as a closed subset of R2.

Intuitively, the theorem says that it is impossible to plot any periodic orbit of
the flow on a computer screen, not even a good adumbration of it. Then, under
what conditions can the qualitatively well-understood limit sets of a planar flow
be computable - quantitatively plotted with arbitrarily high magnification? Our
second theorem provides an answer.

Theorem 2. There is an algorithm that locates the positions of equilibrium
points and periodic orbits with arbitrarily high precision for any structurally sta-
ble C1 planar vector field defined on the closed unit disk. Moreover, the compu-
tation is uniform on the set of all structurally stable planar vector fields.

Recall that the density theorem of Peixoto [10, Theorem 2] shows that, on
two-dimensional compact manifolds, structurally stable systems are “typical”
in the sense that such systems form a dense open subset in the set of all C1

planar systems. Hence, Theorem 2 says that the limit set of a typical differential
equation (1) defined on the unit disk of R2, where f is of class C1, is computable.

2 Preliminaries

In this section, we recall necessary definitions. We begin with definitions related
to computable analysis with assumption that the reader is familiar with the
classical computable functions from Z1 to Z2, where Zi is the set of (or the
set of tuples of) natural numbers (N), integers (Z), or rational numbers (Q). In
computable analysis, informally speaking, an operator Φ : X → Y is computable
if

496 D. S. Graça and N. Zhong

(1) elements in X and Y can be encoded by sequences of exact “functions” of
finite size (such as rational numbers, polynomials with rational coefficients,
polygonal curves with rational corners, etc.) which converge to those ele-
ments at a known rate of convergence; such sequences are called names of
the corresponding elements; and

(2) there is a computer (a Turing machine, an algorithm or a computer program)
that outputs an approximation to Φ(x) within accuracy 2−n on input of n
(accuracy) and (a name of) x.

To execute evaluations in practice, an infinite input datum - a name of x - can
be conveniently treated as an interface to a program computing Φ: for every
n ∈ N, the name supplies a good enough (finite size) approximation p of x to
the program, the program then performs computations based on inputs n and
p, and returns a (finite size) approximation q of Φ(x) with an error bounded by
2−n. This is often termed as Φ(x) is computable from (a name of) x. For more
details the reader is referred to e.g., [1].

The following is the precise definition.

Definition 1. 1. A name of a real number x is a function a : N → Q such that
|x − a(n)| ≤ 2−n. If the function a is (classically) computable, then x is said
to be computable.

2. Let f : R2 → R
2 be a Ck function, and let B = {x ∈ R

2 : ‖x‖ ≤ r}, where r
is a rational number. A Ck-name of f on B is a sequence {Pl} of polynomials
with rational coefficients such that dk(f, Pl) ≤ 2−l, where

dk(f, Pl) = max
0≤j≤k

max
x∈B

‖Djf(x) − DjPl(x)‖.

In particular:
A. f is said to be (Ck-) computable on B if there is a Turing machine (or

a computer) that outputs a Ck-name {Pl} of f in the following sense: on
input l (accuracy), it outputs the rational coefficients of the polynomial
Pl.

B. Or, equivalently, f is said to be (Ck-) computable on B if there is an
oracle Turing machine such that for any input l ∈ N (accuracy) and any
name of x ∈ B given as an oracle, the machine will output the rational
vectors q0, q1, . . . , qk in R

2 such that ‖qj−Djf(x)‖ ≤ 2−l for all 0 ≤ j ≤ k
(see e.g., [2,9]).

As already mentioned above, an oracle can be conveniently treated as an interface
to a program computing f in practice.

We turn now to define computable open and closed subsets of R
2. In R

2,
computability can be intuitively visualized by plotting pixels: a subset of R2 is
computable if it can be plotted on the screen of a computer with arbitrarily high
magnification. The following definition shares this spirit.

Definition 2. Let U be an open subset of R
2, and let C be a closed subset

contained in B, where B is a closed disk of R
2 centered at the origin with a

rational radius.

Computability of Limit Sets for Two-Dimensional Flows 497

1. U is said to be r.e. open if there are computable functions a : N → Q
2 and

r : N → Q such that U = ∪∞
n=1B(a(n), r(n)), where B(a(n), r(n)) is the open

disk centered at a(n) with radius r(n). In other words U can be filled up by
the fattened pixels at an - the open disk B(an, rn).

2. C is called co-r.e. closed if B \ C is r.e. open in B. C is called r.e. closed if
C has a computable dense sequence. C is called computable if it is co-r.e. and
r.e. closed. Or, equivalently, if there is a Turing machine that, on input n ∈ N

(accuracy), outputs finite sequences rj ∈ Q and aj ∈ Q
2, 1 ≤ j ≤ j(n), such

that dH(C,B \ ∪j(n)
j=1B(aj , rj)) ≤ 2−n, where dH(·, ·) denotes the Hausdorff

distance between two compact subsets of R2.

We observe that the r.e. openness is a local property - one pixel at a time
- and the plotting does not give any adumbration of the whole picture of U .
On the other hand, co-r.e. closeness is a global property: Assume that C = K \
∪B(an, rn). If one plots B(an, rn) as before, then at each step one obtains a set
(the portion not covered by the pixels) containing the entire C, an adumbration
of C.

Now we turn to define structurally stable planar dynamical systems. Let
K ⊆ R

2 be a compact set, and let f : K → R
2 be a C1 function. The C1-norm

is used for C1 functions

‖f‖1 = max
x∈K

‖f(x)‖ + max
x∈K

‖Df(x)‖

Definition 3. The system (1), where f : K → R
2 is of class C1, is structurally

stable if there exists some ε > 0 such that for all g ∈ C1(K) satisfying ‖f − g‖1 ≤
ε, the trajectories (orbits) of

y′ = g(y) (2)

are homeomorphic to the trajectories of (1), i.e., there exists some homeomor-
phism h such that if γ is a trajectory of (1), then h(γ) is a trajectory of (2).
Moreover, the homeomorphism h is required to preserve the orientation of tra-
jectories by time.

Intuitively, (1) is structurally stable if the shape of its dynamics is (globally)
robust to small perturbations. If K is the unit disk D = {x ∈ R

2 : ‖x‖ ≤ 1}, as
in Theorem 2, it is common to assume that the vector field points inwards along
the boundary of D. Otherwise, the system may be structurally unstable if the
flow is tangent to a point on the boundary. We note that not all planar systems
are structurally stable. Explicit examples of structurally unstable systems can
be found in e.g., [7, Figure 9.4 in p. 193]. However, due to Peixoto’s density theo-
rem, structurally stable systems are typical in the sense that structurally stable
systems form an open dense set in the space of all continuously differentiable
flows.

3 Proof of Theorem1

We now proceed with the proof of Theorem1. We begin by recalling a theorem by
Weihrauch (Theorem 4.2.8. [Wei00]): the countable set Rc of all computable real

498 D. S. Graça and N. Zhong

numbers can be covered by the union of a computable sequence of open intervals,
In = (αn, βn), such that the length of

∑
In is at most 1. Let A = R\⋃

In. Then
A
= ∅ is co-r.e. closed and none of points in A is computable.

Fix k ∈ N. Now we construct a Ck computable function g : R → R such that
g(x) = 0 if and only if x ∈ A. Let φ : R → R be the computable C∞ standard
bump function

φ(x) =

{

e
− x2

1−x2 if |x| < 1
0 otherwise

The function g : R → R is defined by the following formula: for every x ∈ R,

g(x) =
∞∑

n=1

φ

(
x − αn+βn

2

rn

)

2−n

where rn = βn−αn

2 . It is readily seen that the function g is Ck computable,
g(x) ≥ 0, and g(x) = 0 if and only if x ∈ A. We are now ready to define the
desired function f : R2 → R

2: f(x1, x2) = (f1(x1, x2), f2(x1, x2)), where

f1(x1, x2) = −x2 + x1(x2
1 + x2

2) · g
(
x2
1 + x2

2

)

and
f2(x1, x2) = x1 + x2(x2

1 + x2
2) · g

(
x2
1 + x2

2

)
.

It is clear that f is a Ck computable function.
For the following system

ẋ1 = f1(x1, x2), ẋ2 = f2(x1, x2)

it can be rewritten, in polar coordinates, in the form of

ṙ = r3g(r2), θ̇ = 1

for r > 0 with ṙ = 0 at r = 0. It is clear that the system has a unique equilibrium
point at the origin of R2. Since g(x) ≥ 0 for all x ∈ R, it follows that the only
periodic orbits are circles with center at the origin and radius r satisfying r > 0
and g(r2) = 0.

Consider one such circle Γ0 with center at the origin and radius r0. Then
it follows from the construction of g that r20 is a non-computable real. For any
point (x1, x2) on Γ0, if the point is computable, then x1 and x2 must be com-
putable reals, which implies that r20 = x2

1 + x2
2 is a computable number. This is

a contradiction. Hence none of the points on Γ0 is computable, which implies
that Γ0 cannot be r.e. Next we show that Γ0 is not co-r.e. either. Suppose oth-
erwise Γ0 was co-r.e. in R

2. Since the intersection of two co-r.e. closed sets is
again co-r.e., the set Γ0 ∩ {(x, 0) : x ≥ 0} = {(r0, 0)} is co-r.e.. Then it follows
from Theorem 6.2.9 [Wei00] that there is a computable function γ, γ : R2 → R,
such that {(r0, 0)} = γ−1[{0}]. Since (r0, 0) is the unique zero of γ, (r0, 0) is a
computable point (Corollary 6.3.9 [Wei00]). This contradicts the fact that r20 is
non-computable. Hence Γ0 is not co-r.e. This completes the proof of Theorem 1.

Computability of Limit Sets for Two-Dimensional Flows 499

We mention in passing that the set P of all periodic orbits of the planar
system defined above is co-r.e. closed because it is the set G−1(0), where G :
R

2 → R, G(x1, x2) = g(x2
1 + x2

2), is a computable function. Hence, it is possible
to plot over-adumbrations of P with better and better accuracies (although the
accuracies are unknown per se since P is not computable). On the other hand,
the relative positions of the periodic orbits are completely in dark - there is no
good over- or under-adumbration of any periodic orbit.

4 Main Ideas of the Proof of Theorem2

One apparent difficulty to plot periodic orbits of the flow in Theorem1 is that
there are too many of them. Can we plot the periodic orbits of a flow if there are
only finitely many of them? While the problem is open for C1 computable planar
flows in general, the answer is yes if the planar flow is structurally stable. The
structural stability of a planar flow is characterized in terms of its limit set by
Peixoto in 1962 in his seminal paper [10]. Let f be a C1 vector field defined on a
compact two-dimensional differentiable manifold K ⊆ R

2. Peixoto showed that if
f is structurally stable on K, then, among other characterizations, the number of
equilibria (i.e., zeros of f) and of periodic orbits is finite and each is hyperbolic,
and there is no trajectories connecting saddle points. Similar results hold if K
is a manifold with boundary; in particular, K = D = {x ∈ R

2 : ‖x‖ ≤ 1} with
the assumption that the vector fields always point inwards along the boundary
of D.

We now outline the proof of Theorem2, which shows that there is an (uni-
form) algorithm that locates the positions of equilibrium points and periodic
orbits with arbitrarily high precision for any structurally stable C1 planar vec-
tor field defined on D.

Remark. The algorithm is a “master” program in the sense that it computes
all equilibria and periodic orbits simultaneously when given a structurally stable
planar vector field f .

Main Ideas of the Proof. The proof is long and intricate; only a brief outline
is presented. The complete proof can be found in the preprints [4,5].

(A) Construct a sub-algorithm to locate the equilibrium points: on input n ≥ 1
(accuracy) and (a C1-name of) f , the sub-algorithm outputs a union of
mutually disjoint squares such that each square contains exactly one equi-
librium and the side-length of a square is at most 1/n. The construction relies
on the fact that there are only finitely many equilibria and each is hyper-
bolic. The hyperbolicity ensures that the Jacobean of f at each equilibrium
is non-zero. By computing f and Df simultaneously on refined square-grids
of D, the algorithm will return a desired output after finitely many updates
on the square-grids.
More specifically, if s is some square, its corners will have rational coordi-
nates, which ensures all squares are computable. Hence, both f(s) and Df(s)
are computable from any given C1-name of f . If s does not contain any zero

500 D. S. Graça and N. Zhong

of f , then 0 /∈ f(s) (precisely, it should be (0, 0) /∈ f(s); 0 is used to denote
the origin of either R or R2). Consequently, the distance between 0 and f(s),
d(0, f(s)) = minx∈f(s) d(0, x), is greater than 0. Since f(s) is computable
(from f), an over-approximation Al(s) (a polygon with rational corners)
of f(s) can be computed with accuracy bounded by 2−l for some l ≥ n. If
0 /∈ f(s), then 0 /∈ Al(s) for l sufficiently large. Hence, by testing if 0 /∈ Al(s)
for all squares s and l = n, n + 1, n + 2, . . ., the algorithm can eventually
identify the squares which do not have zeros after finitely many updates
on l. The problematic squares are those containing zeros, because whether
d(0, f(s)) = 0 cannot in general be decided by finitely many approximations
- one may not be able to conclude either 0 ∈ f(s) or 0 /∈ f(s) with (any) cur-
rent choice of l. To deal with this problem, one makes use of the hypothesis
that all zeros are hyperbolic; hence, the Jacobean at each zero is invertible.
In other words, f is locally invertible at each of its zeros. This is why the
algorithm computes both f(s) and Df(s). After finitely many updates on l,
the algorithm arrives at a midway stage that either d(0, f(s)) > 2−l (i.e., s
contains no zero of f) or ‖Df(s)‖ > 2−m for some m ≥ l ≥ n. For the latter
case, the algorithm computes - based on an effective version of the inverse
function theorem - a polygon (under-)approximation of f(s) as the domain
of f−1. Hence, if 0 is in this (under-)approximation of f(s), then s contains
a zero of f . A possible problem is that s might have a zero whose image
is outside this (under-)approximation of f(s). This problem can be solved
by covering s with several overlapping smaller squares and then applying
the procedure to all those overlapping smaller squares. By proceeding in
this way and by increasing the accuracy l ≥ n used in the computations,
the algorithm will be able to determine whether or not each square has a
zero after finitely many updates on l. If a square contains a zero, the zero
is unique because on this square f is invertible. (See [4] for more details).

(B) Construct a sub-algorithm to locate the periodic orbits: It suffices to con-
struct an algorithm that takes as input (n; f) and returns a union An of
compact subsets, each has polygonal boundaries, such that the Hausdorff
distance between An and P - the set of periodic orbits - is less than 1/n for
every n ∈ N and every structurally stable vector field f .
Before constructing this algorithm, it is important to remark that, by
Peixoto’s theorem (see [10]), the limit set of (1) is formed by hyperbolic
equilibrium points and hyperbolic periodic orbits. Hence, each periodic orbit
is either attracting or repelling. The hyperbolicity condition ensures (see
e.g., [11]) that, for each periodic orbit γ, there is an open set Uγ (a so-
called basin of attraction) containing γ such that, if the periodic orbit is
attracting, then any trajectory entering Uγ will converge to γ exponen-
tially fast as t → ∞ (a similar condition holds for repelling periodic orbits
when t → −∞). Furthermore, if the system (1) has no saddle points, then
there exists some time Tε ≥ 0 such that any trajectory starting at a point
x ∈ D at least ε-distance away from equilibrium point(s) or repelling peri-
odic orbit(s) will be inside the basin of attraction of some attracting periodic
orbit γ after time Tε, i.e., φt(x) ∈ Uγ for all t ≥ Tε. Hence, by computing

Computability of Limit Sets for Two-Dimensional Flows 501

φt(D) for increasing (decreasing) values of time, one is able to approach the
set of attracting (repelling) periodic orbits as t → ∞ (t → −∞), as long
as the neighborhoods of equilibrium point(s) are avoided (those neighbor-
hoods - squares each containing a unique equilibrium point - have already
been identified in step (A)). This can be done with the following steps:

(1) Cover the compact set D with a finite number of square “pixels;”
(2) Use a rigorous numerical method to compute the (flow) images of all pixels

after some time T , and take the union An,T of the images of all pixels as a
first-round candidate for an approximation to P. Then pick sets of pixels
from An,T and test whether they are forward or backward time invariant,
essentially by testing whether φt(A) ⊆ A for positive or negative t. In
this manner, a set Bn,T ⊆ An,T is obtained as a second-round candidate
for an (over-) approximation to P.

For simplicity and consistency of the algorithm sketched here, An,T will be
used once again to denote Bn,T . The next step is to see whether An,T is a
“good enough” approximation of P.

(3) Test whether An,T is an over-approximation of P within the desired accu-
racy. If the test is successful, set An = An,T and output An. If the test
fails, increase time T and use a finer lattice of square pixels when numer-
ically approximating the flow after T . Similar simulations using time −T
are run in parallel to find repellers.

Recall that a periodic orbit γ will separate D into the interior and the exte-
rior according to the Jordan curve theorem. The same can be said to a “good
enough” approximation of γ. Hence, An,T can be separated into connected
components; each of the components will have a “doughnut shape.” If one
is able to identify the interior and exterior of each doughnut, then one can
determine the maximum width of each doughnut. The maximum widths pro-
vide an upper bound on the error occurred when using An,T to approximate
P. To identify the interior and exterior regions delimited by a connected
component of An,T , a coloring algorithm is constructed, which works along
the following lines. All pixels considered below are disjoint from the compo-
nent of An,T : (i) pick some pixel and paint this pixel blue; (ii) paint pixels
adjacent to blue pixels with the color blue; (iii) when there are no more
unpainted pixels which can be painted blue, paint one of the remaining pix-
els red; (iv) paint unpainted pixels adjacent to red pixels with the color red;
(iv) if there are still unpainted pixels, restart the algorithm with a better
accuracy (the connected component under consideration has not yet had a
doughnut shape). After the successful termination of this (sub-)algorithm,
the interior and exterior regions of the considered connected component will
correspond to regions of different colors. It can be shown that the main algo-
rithm will eventually halt and that when it does halt, it provides a correct
result.
The intricate components of the algorithm are where the saddle points are
dealt with, and the search for a time T such that the Hausdorff distance
between An,T and P is less than 1/n with (n; f) being the input to the

502 D. S. Graça and N. Zhong

algorithm. The problem with a saddle point is that it may take an arbi-
trarily long time for the flow starting at some point near but not on the
stable manifold of the saddle to eventually move away from the saddle. This
undesirable behavior is dealt with by transforming the original flow near a
saddle to a linear flow using a computable version of Hartman-Grobman’s
theorem ([6]). The time needed for the linear flow to go through a small
neighborhood can be explicitly calculated. (See [5] for details)

We conclude this note with two open questions, which are suggested to us
by one of the referees.

– Does there exist a computable function f : R2 → R
2 such that Theorem 1

remains true, where f is either an analytic function or a polynomial?
– It is known that the structurally stable systems defined on D form an open

dense subset of C1(D). Is this open subset computable? In other words, is it
decidable whether a planar system defined on D is structurally stable?

We remark that the proof of Theorem1 relies on bump functions. A bump
function is usually not analytic at the “foot” of the bump. For a polynomial
planar system, it is well-known that such a system can only have finitely many
limit cycles [8]. Thus, for polynomial planar systems, the question is: Can the
finiteness ensure the computability? Concerning the second question, we note
that the open subset of all structurally stable systems defined on D can be
shown to be r.e. open in C1(D).

Acknowledgments. We thank the referees’ helpful suggestions and insightful com-
ments. D. Graça was partially funded by FCT/MCTES through national funds and
co-funded EU funds under the project UIDB/50008/2020. This project has received
funding from the European Union’s Horizon 2020 research and innovation programme
under the Marie Sk�lodowska-Curie grant agreement No. 731143.

References

1. Brattka, V., Hertling, P., Weihrauch, K.: A tutorial on computable analysis. In:
Cooper, S.B., Löwe, B., Sorbi, A. (eds.) New Computational Paradigms: Changing
Conceptions of What is Computable, pp. 425–491. Springer, New York (2008).
https://doi.org/10.1007/978-0-387-68546-5 18

2. Braverman, M., Yampolsky, M.: Non-computable Julia sets. J. Am. Math. Soc.
19(3), 551–578 (2006)

3. Graça, D.S., Zhong, N., Buescu, J.: Computability, noncomputability, and hyper-
bolic systems. Appl. Math. Comput. 219(6), 3039–3054 (2012)

4. Graça, D.S., Zhong, N.: The set of hyperbolic equilibria and of invertible zeros on
the unit ball is computable (2020, submitted). https://arxiv.org/abs/2002.08199

5. Graça, D.S., Zhong, N.: Computing the exact number of periodic orbits for planar
flows (2021, submitted). http://arxiv.org/abs/2101.07701

6. Graça, D.S., Zhong, N., Dumas, H.S.: The connection between computability of a
nonlinear problem and its linearization: the Hartman-Grobman theorem revisited.
Theoret. Comput. Sci. 457(26), 101–110 (2012)

https://doi.org/10.1007/978-0-387-68546-5_18
https://arxiv.org/abs/2002.08199
http://arxiv.org/abs/2101.07701

Computability of Limit Sets for Two-Dimensional Flows 503

7. Hirsch, M.W., Smale, S., Devaney, R.: Differential Equations, Dynamical Systems,
and an Introduction to Chaos. Academic Press (2004)

8. Ilyashenko, Y.: Finiteness Theorems for Limit Cycles, Translations of Mathemati-
cal Monographs, vol. 84. American Mathematical Society (1991)

9. Ko, K.I.: Complexity Theory of Real Functions. Birkhäuser (1991)
10. Peixoto, M.: Structural stability on two-dimensional manifolds. Topology 1, 101–

121 (1962)
11. Perko, L.: Differential Equations and Dynamical Systems, 3rd edn. Springer,

New York (2001). https://doi.org/10.1007/978-1-4613-0003-8

https://doi.org/10.1007/978-1-4613-0003-8

Author Index

Alaev, P. E. 1
Antonelli, Melissa 12

Berger, Julian 25
Berndt, Sebastian 38
Birns, Samuel D. 50
Böther, Maximilian 25
Brejová, Broňa 227
Bringmann, Karl 60

Carl, Merlin 71, 82
Carlucci, Lorenzo 94
Cenzer, Douglas 106
Chikhi, Rayan 120
Cohen, Liron 135
Csima, Barbara F. 385

Dal Lago, Ugo 12
Doskoč, Vanja 25, 146, 158

Eizenga, Jordan M. 169
Ezra, Esther 178

Faizrahmanov, Marat 189
Ferreira, Fernando 199
Fluschnik, Till 204
Franklin, Johanna N. Y. 217

Gafurov, Askar 227
Galeotti, Lorenzo 82
Genco, Francesco A. 237
Georgiev, Ivan 248
Goles, Eric 260
Graça, Daniel S. 494
Grage, Kilian 38

Harder, Jonathan Gadea 25

Jansen, Klaus 38
Johannsen, Lukas 38

Kellerhals, Leon 204
Khazraei, Ardalan 273

Kjos-Hanssen, Bjørn 50, 457
Klodt, Nicolas 25
Kołodziejczyk, Leszek Aleksander 297
Kosche, Maria 38
Kötzing, Timo 25, 146, 158, 273, 318
Koutsoukou-Argyraki, Angeliki 285
Kristiansen, Lars 308
Krogman, Richard 106

Lafourcade, Pascal 373
Lohrey, Markus 330
Lorig-Roach, Ryan 169
Lötzsch, Winfried 25

Meredith, Melissa M. 169
Miller, Russell 342
Miyahara, Daiki 373
Mizuki, Takaaki 373
Montealegre, Pedro 260
Moschovakis, Joan Rand 353
Moyen, Jean-Yves 363

Passmann, Robert 82
Paten, Benedict 169
Peters, Jannik 25
Pistone, Paolo 12
Poggiolesi, Francesca 237

Ríos Wilson, Martín 260
Robert, Léo 373
Rossegger, Dino 385

Sanders, Sam 395
Schiller, Leon 25
Seidel, Karen 273, 318
Seifert, Lars 25
Selivanov, V. L. 1
Selivanov, Victor 407
Simonsen, Jakob Grue 363
Sorbi, Andrea 417
Steifer, Tomasz 424
Szabó, Máté 434

506 Author Index

Theyssier, Guillaume 260
Turner, D. A. 446

Vafeiadou, Garyfallia 353
Vinař, Tomáš 227

Webb, David J. 457
Wells, Armin 25

Wiesnet, Franziskus 469
Wietheger, Simon 25

Yokoyama, Keita 297
Yu, Daniel 385
Yuen, Henry 483

Zhong, Ning 494

	Preface
	Structure and Program of the Conference
	Invited Tutorials
	Invited Lectures
	Special Sessions
	Computational Geometry
	Classical Computability Theory: Open Problems and Solutions
	Proof Theory and Computation
	Quantum Computation and Information
	Church’s Thesis in Constructive Mathematics (HaPoC Session)
	Computational Pangenomics
	Women in Computability Workshop
	Organization and Acknowledgements

	Organization
	Invited Talks
	Don’t Be Afraid to Burn Your Fingers on the Definition of the Real RAM
	The Many Computational Models of Computational Geometry
	Holonomic Techniques, Periods, and Decision Problems
	Contents
	Searching for Applicable Versions of Computable Structures
	1 Introduction
	2 Structure Presentations
	3 Grzegorczyk's Structures
	4 Polynomial Time Structures
	References

	On Measure Quantifiers in First-Order Arithmetic
	1 Introduction
	2 Measure-Quantified Peano Arithmetic
	3 On the Expressive Power of MQPA
	4 Arithmetization
	5 Realizability
	6 Conclusion
	References

	Learning Languages with Decidable Hypotheses
	1 Introduction
	2 Preliminaries
	2.1 Mathematical Notations and Learning Criteria
	2.2 Normal Forms

	3 Requiring C-Indices as Output
	4 Syntactic Versus Semantic Convergence to C-indices
	References

	Robust Online Algorithms for Dynamic Choosing Problems
	1 Introduction
	2 Preliminaries
	2.1 Knapsack-Type Problems
	2.2 Independent Set
	2.3 Our Results
	2.4 Related Work

	3 Upper Bounds for Choosing Problems
	3.1 Framework for Choosing Problems
	3.2 Resulting Upper Bounds
	3.3 Lower Bounds on Migration

	4 Conclusion
	References

	On the Degrees of Constructively Immune Sets
	1 Introduction
	2 01-density
	2.1 Numberings

	3 Prevalence of 01-density
	3.1 Closure Properties and 01-density
	3.2 Cofinality in the Turing Degrees of Constructive 01-density
	3.3 Non-02 Degrees
	3.4 High Degrees
	3.5 Progressive Approximations

	References

	Fine-Grained Complexity Theory: Conditional Lower Bounds for Computational Geometry
	1 Introduction
	1.1 Hardness Hypotheses

	2 Nearest Neighbor Search
	2.1 Bichromatic Closest Pair
	2.2 Nearest Neighbor Data Structures
	2.3 Further Results on Nearest Neighbor Search

	3 Curve Similarity and the Fréchet Distance
	3.1 Nearest Neighbor Search Under Fréchet Distance
	3.2 Computing the Fréchet Distance
	3.3 Further Results on Fréchet Distance

	4 More Fine-Grained Computational Geometry
	References

	The Lost Melody Theorem for Infinite Time Blum-Shub-Smale Machines
	1 Introduction
	1.1 Infinite Time Blum-Shub-Smale Machines

	2 The Lost Melody Theorem for ITBMs
	3 The Distribution of ITBM-Recognizable Real Numbers
	4 Non-recognizability with and Without Resource Bounds
	References

	Randomising Realizability
	1 Introduction
	2 Preliminaries
	3 Random Realizability
	4 Kleene Realizability and Random Realizability
	5 Soundness and Arithmetic
	6 Big Realizability
	References

	Restrictions of Hindman's Theorem: An Overview
	1 Introduction
	2 Hindman's Theorem(s) and the Apartness Condition
	3 Sums of at Most n Elements
	4 Sums of Exactly n Elements
	5 Weak Yet Strong Hindman Theorems
	References

	Complexity and Categoricity of Injection Structures Induced by Finite State Transducers
	1 Introduction and Preliminaries
	2 FST Injection Structures
	3 The Character of FST Injection Structures
	4 Isomorphisms Between FST Injection Structures
	5 Conclusions and Further Research
	References

	A Tale of Optimizing the Space Taken by de Bruijn Graphs
	1 Context
	2 Problem Formulation
	3 Caveats
	4 The Early Days
	5 The Birth of a Line of Research
	6 Beating the Lower Bound (by Inexactness)
	7 Beating the Lower Bound (by Instance Specificity)
	8 Construction Algorithms
	9 Current State of the Art
	10 Colored de Bruijn Graphs
	11 Wrap-Up and Open Questions
	References

	Formally Computing with the Non-computable
	1 Introduction
	2 Integrating Choice Sequences into a Proof Assistant
	2.1 Storing Choice Sequences in the Library
	2.2 Extending the Computation System
	2.3 Possible Library Semantics
	2.4 Extending the Type System

	3 The Resulting Theories of Choice Sequences
	3.1 Axioms for Choice Sequences
	3.2 Classical Axioms

	4 Implications of the Formalization of Choice Sequences
	4.1 Formal Verification
	4.2 Intuitionistic Mathematics

	References

	Mapping Monotonic Restrictions in Inductive Inference
	1 Introduction
	2 Preliminaries
	2.1 Language Learning in the Limit
	2.2 Normal Forms in Inductive Inference

	3 Studying Monotone Learning Restrictions
	3.1 Explanatory Monotone Learning
	3.2 Behaviourally Correct Monotone Learning

	References

	Normal Forms for Semantically Witness-Based Learners in Inductive Inference
	1 Introduction
	2 Language Learning in the Limit
	3 Semantic Witness-Based Learning
	References

	Walk-Preserving Transformation of Overlapped Sequence Graphs into Blunt Sequence Graphs with GetBlunted
	1 Introduction
	2 Problem Statement
	3 Notation
	4 Methods
	5 Implementation
	6 Results
	7 Discussion
	References

	On 3SUM-hard Problems in the Decision Tree Model
	1 Introduction
	2 Testing a Pair of Polynomial Equations and Collinearity Testing in the Complex Plane
	3 Segment Concurrency
	References

	Limitwise Monotonic Spectra and Their Generalizations
	1 Introduction
	2 Limitwise Monotonic Sets and Sequences of Integers
	3 Limitwise Monotonic Sets and Sequences of Reals
	References

	On False Heine/Borel Compactness Principles in Proof Mining
	References

	Placing Green Bridges Optimally, with a Multivariate Analysis
	1 Introduction
	2 Connecting Habitats with a Patch at Short Reach
	2.1 When a Next Habitat Is Directly Reachable (d=1)
	2.2 One Hop Between Habitat Patches (d=2)
	2.3 At Least Two Hops Between Habitat Patches (d3)

	3 Connecting Habitats at Short Pairwise Distance
	3.1 When Each Part Is Just Two Steps Away (d=2)
	3.2 When Reaching Each Part Is a Voyage (d3)

	4 Connecting Habitats at Small Diameter
	4.1 Via at Most One (d=2) or Two (d3) Patches to Every Other

	5 Conclusion, Discussion, and Outlook
	References

	A Church-Turing Thesis for Randomness?
	1 A Potential Parallel
	1.1 An Initial Characterization of Randomness

	2 Other Randomness Notions
	3 Three Desiderata
	3.1 Decompositions and Combinations of Random Sequences
	3.2 Computational Strength
	3.3 Applications

	4 Conclusion
	References

	Probabilistic Models of k-mer Frequencies (Extended Abstract)
	1 Introduction
	2 Preliminaries
	3 Models of k-mer Spectra
	4 Comparison of k-mer Frequencies Between Samples
	5 Conclusion
	References

	Defining Formal Explanation in Classical Logic by Substructural Derivability
	1 Introduction
	2 Formal Explanation
	3 The Substructural Calculus
	4 Formal Explanation by Substructural Proofs
	5 Conclusions
	References

	Dedekind Cuts and Long Strings of Zeros in Base Expansions
	1 Introduction
	2 Preliminaries
	3 Dedekind Cuts of Numbers with Sparse Non-zero Digits
	4 Dedekind Cuts of Numbers with Alternating Long Strings of Zero and Non-zero Digits
	References

	On the Impact of Treewidth in the Computational Complexity of Freezing Dynamics
	1 Introduction
	2 Preliminaries
	3 Localized Trace Properties
	4 A Fast-Parallel Algorithm for the Specification Checking Problem
	5 Wch24Arnborg1987-Hardness Results
	6 Hardness Results for Polynomial Treewidth Networks
	References

	Towards a Map for Incremental Learning in the Limit from Positive and Negative Information
	1 Introduction
	2 Iterative Learning from Informant
	3 Comparison with Learning from Text
	4 Total and Canny Learners
	5 Additional Requirements
	6 Suggestions for Future Research
	References

	On Preserving the Computational Content of Mathematical Proofs: Toy Examples for a Formalising Strategy
	1 Motivation
	2 My Suggestion
	3 Toy Examples
	3.1 2 Is Irrational
	3.2 There Exist Infinitely Many Prime Numbers
	3.3 Uniform Continuity
	3.4 Uniqueness
	3.5 Inclusions Between Sets of Solutions

	4 Propagation of Computational Information: More Toy Examples
	4.1 The Product and Ratio of an Irrational and a Rational Are Irrationals
	4.2 Example on Uniformly Continuous Bounded Functions
	4.3 Rates of Convergence
	4.4 Asymptotic Regularity

	References

	In Search of the First-Order Part of Ramsey's Theorem for Pairs
	1 Introduction
	2 11-Conservation via -Extensions
	2.1 Extending Models via Second-Jump Control
	2.2 Extending Models via First-Jump Control

	3 Partial-Conservation and Indicator Arguments
	4 The Strength of Ramsey's Theorem over RCA0*
	5 First-Jump Control and an Isomorphism Argument
	References

	On Subrecursive Representation of Irrational Numbers: Contractors and Baire Sequences
	1 Introduction
	2 Technical Preliminaries
	3 Main Results
	4 The Big Picture
	References

	Learning Languages in the Limit from Positive Information with Finitely Many Memory Changes
	1 Introduction
	2 Learners, Success Criteria and Other Terminology
	3 Relations Between Semantic Learning Requirements
	4 Relations to and Between Syntactic Learning Requirements
	5 Related Open Problems
	References

	Compression Techniques in Group Theory
	1 Algorithmic Problems in Group Theory
	2 Compression with Straight-Line Programs
	2.1 Compressed Word Problems
	2.2 Power Words

	3 Compression Beyond Straight-Line Programs
	4 Open Problems
	References

	Computable Procedures for Fields
	1 Introduction
	2 Rabin's Theorem
	3 Polynomials in Several Variables
	4 Transcendence Bases
	5 Algebraic Fields
	6 The Field R
	References

	Minimum Classical Extensions of Constructive Theories
	1 There Is Virtue in Simplicity
	1.1 Classical Content in Arithmetic and Analysis
	1.2 Minimum Classical Extension of a Constructive Theory

	2 Double Negation Shift and Weak Comprehension Axioms
	2.1 ``Double Negation Shift for Numbers'' DNS0
	2.2 01 Double Negation Shift for Numbers
	2.3 Stronger Restricted Versions of DNS0
	2.4 Weak Comprehension Principles

	3 Bar Induction, a Weak Continuity Principle, and BD-N
	3.1 Three Versions of Bar Induction
	3.2 A Double Negation Shift Principle for Functions
	3.3 Applying a Typical Constructive Decomposition Theorem
	3.4 Applying an Atypical Constructive Decomposition Theorem

	4 Conclusion
	References

	Subrecursive Equivalence Relations and (non-)Closure Under Lattice Operations
	1 Introduction
	2 Preliminaries
	3 (Absence of) Closure Under the Lattice Operations
	3.1 On Meet and Join of r.e Subsets of [L]

	4 Future Work
	References

	Interactive Physical ZKP for Connectivity: Applications to Nurikabe and Hitori
	1 Introduction
	2 Preliminaries
	3 ZKP Protocol for Nurikabe
	3.1 Setup Phase
	3.2 Sea Formation Phase
	3.3 Verification Phase
	3.4 Security Proofs

	4 ZKP Protocol for Hitori
	4.1 Setup Phase
	4.2 Connectivity Phase
	4.3 Verification Phase
	4.4 Security Proofs

	5 Conclusion
	References

	Positive Enumerable Functors
	1 Introduction
	2 Computable and Enumerable Functors
	3 Effectivizations Using Positive Diagrams
	4 Reductions Between Arbitrary Classes
	References

	Splittings and Robustness for the Heine-Borel Theorem
	1 Introduction and Preliminaries
	1.1 Aim and Motivation
	1.2 Preliminaries

	2 Main Results
	2.1 Ontological Parsimony and the Heine-Borel Theorem
	2.2 Splittings for the Heine-Borel Theorem

	A Reverse Mathematics: Second- and Higher-Order
	A.1 Reverse Mathematics
	A.2 Further Systems

	References

	Non-collapse of the Effective Wadge Hierarchy
	1 Introduction
	2 Preliminaries
	3 Effective Wadge Hierarchy
	4 Non-collapse Property
	5 Some Examples
	References

	Effective Inseparability and Its Applications
	1 Does u.e.i. Imply u.f.p.?
	2 Applications to Lattices of Sentences
	3 Diagonal Functions
	References

	Simple Betting and Stochasticity
	1 Preliminaries
	1.1 Martingales
	1.2 Church Stochasticity for the Uniform Measure
	1.3 Simple -martingales

	2 Technical Developments
	2.1 Beyond LLN
	2.2 Semi-fixed Wagers
	2.3 Simple Randomness Implies LLN
	2.4 Failure of the Other Implication

	References

	Péter on Church's Thesis, Constructivity and Computers
	1 Introduction
	2 Church's Thesis in Péter's Recursive Functions
	3 Recursion and Constructivity
	4 Péter's Road to Computer Science
	5 Computers and Church's Thesis
	6 Conclusion
	References

	Constructive Mathematics, Church's Thesis, and Free Choice Sequences
	1 From Frege to Martin-Löf
	2 Church's Thesis and Constructivity
	3 Free Choice Sequences
	References

	KL-Randomness and Effective Dimension Under Strong Reducibility
	1 Introduction
	2 Complex Packing Dimension and Its Analogue
	3 Incomparability for Inescapable Dimension
	References

	An Algorithmic Version of Zariski's Lemma
	1 Introduction
	1.1 Historical Background
	1.2 Method of Proof Interpretation
	1.3 Fundamental Notions

	2 A Constructive Proof
	3 Computational Interpretation
	3.1 Preliminary
	3.2 Some Algorithms for Integral Extensions of Algebras
	3.3 An Algorithm for Zariski's Lemma

	4 Summary and Outlook
	A Omitted Proofs
	References

	Einstein Meets Turing: The Computability of Nonlocal Games
	1 EPR's Dream, Bell's Theorem, and the CHSH Game
	2 Nonlocal Games and Their Computability
	3 Nonlocal Games and the Arithmetical Hierarchy
	4 Conclusion
	References

	Computability of Limit Sets for Two-Dimensional Flows
	1 Introduction
	2 Preliminaries
	3 Proof of Theorem1
	4 Main Ideas of the Proof of Theorem2
	References

	Author Index

