
109© The Author(s), under exclusive license to Springer Nature 
Switzerland AG 2022
K. N. Bieda et al. (eds.), Conceptions and Consequences of Mathematical 
Argumentation, Justification, and Proof, Research in Mathematics Education, 
https://doi.org/10.1007/978-3-030-80008-6_10

Proof in the Context of Middle Grades: 
Can We Label Middle School Arguments 
as Proof with a Capital P?

David A. Yopp, Rob Ely, Anne E. Adams, and Annelise W. Nielsen

 Introduction

The concept of proof is central to the field of mathematics, but defining the term has 
challenged educators and researchers (see Czocher & Weber, 2020; Weber, 2014, 
for a discussion). In theory, the term seems easy to define. A proof is a sequence of 
statements involving logic and prior results. These statements are arranged in a logi-
cal order to support or refute a quantified claim. Prior results include axioms, defi-
nitions, and previously established results. The logic is mathematical logic, which is 
a metatheory about what types of logical inferences can be made and what methods 
and modes of reasoning (e.g., modus ponens and modus tollens) are acceptable. 
This metatheory also establishes what types of statements can be made (e.g., quanti-
fied statements that are either true or false), which statements are logically equiva-
lent, and the norms for representing generality and inferences. This metatheory 
provides the “rules of the game” for mathematical proof and proving.

The challenge in using this definition is that the metatheory is tough to unpack in 
school mathematics and it does not account for all the types of arguments some 
mathematicians have accepted as proofs (Czocher & Weber, 2020). Moreover, it 
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seems impractical and, arguably, imprudent to teach middle school students all the 
rules that mathematicians have learned to follow when producing a proof. Teachers 
pursue many instructional goals in the middle school mathematics—content, skills, 
and other mathematical practices—and have limited amounts of time to pursue 
these goals. Yet, many educators, researchers, and policy makers ask that middle- 
grade mathematics students produce arguments that can be taken as proofs, have 
elements of proof, or at least provide pathways toward proofs. In the USA, Common 
Core State Standards for Mathematics (National Governors Association Center for 
Best Practices & Council of Chief State School Officers, 2010) recommend that 
students use “stated assumptions, definitions, and previously established results in 
constructing arguments” (p. 3) and “build logical progression[s] of statements to 
explore the truth of their conjectures” (p. 3). Similar recommendations have moti-
vated researchers to search students’ mathematical arguments for elements of proof 
amidst the various types of reasoning students use when they are asked to prove. 
Researchers have noted proof-like behaviors among students who responded to 
proving tasks, such as attending to the general case and using definitions and prior 
results, and have sometimes likened these behaviors to the practices of trained 
mathematicians. Stylianides (2007), for example, found proof-like practices among 
elementary students’ responses and likened them to the proof practices of mathema-
ticians. Yet, noting “proof- and proving-like” behaviors among students does not 
necessarily mean that students have an understanding of a metatheory for mathe-
matical proof and proving. In other words, the students who produce arguments 
akin to proofs may not understand why their reasoning is valid nor understand how 
their reasoning fits into a valid proof and proving scheme.

Students’ lack of a proof metatheory is perhaps one reason the editors of this 
book asked us to use a broader definition of proof that more readily adapts to the 
reasoning of students in the middle grades. In this definition, which we will call 
“our working definition,” a mathematical proof has all or most of the following 
characteristics, and proving is an activity that leads to such a product:

 1. A proof is a convincing argument that convinces a knowledgeable mathemati-
cian that a claim is true.

 2. A proof is a deductive argument that does not admit possible rebuttals.
 3. A proof is a transparent argument where a mathematician can fill in every gap 

(given sufficient time and motivation), perhaps to the level of being a formal 
derivation.

 4. A proof is a perspicuous argument that provides the reader with an understand-
ing of why a theorem is true.

 5. A proof is an argument within a representation system satisfying commu-
nal norms.

 6. A proof is an argument that has been sanctioned by the mathematical community 
(Weber, 2014, p. 537).

In this book chapter, we use a version of this definition to analyze a collection of 
middle-grade student work presented to us by the editors to determine the degree to 
which the students demonstrated a level of proficiency with proof and proving as 
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described by this definition. We also consider the teachers’ contributions during 
activities related to proof, proving, and justification from the classroom episode 
from which this student work was collected. Through this lens we aim to discuss 
whether or not students in the class exhibited characteristics of the above definition 
in their arguments and justification practices as well as whether or not these students 
were exposed these “rules of the game” for proof and proving in mathematics. 
Consequently, we discuss possible mismatches between this definition and the 
guidelines students were given for developing acceptable justification.

Ultimately, we will consider the possibilities for proof and proving in the middle 
grades and the implications of exposing students to the same definition of proof and 
proving that is used to analyze their work. In other words, we ask, “What can hap-
pen when students are presented with the same rules of the game for proof and 
proving in mathematics as those used to analyze their data?” But, first, we consider 
this above definition in the context of middle school mathematics and discuss fac-
tors to consider when adapting this definition into a rubric used to examine middle- 
grade students’ proving activities.

 Reframing the Definition of Proof for the Current Context

As described in the chapter “Overview of Middle Grades Data” (this volume), the 
current context involved a small seventh-grade class of 19 students in New England 
(USA) who engaged in the Number Trick task. This class was taught by a teacher 
who actively worked to engage students in argument and justification as part of the 
Justification and Argumentation: Growing Understanding of Algebraic Reasoning 
Project (the JAGUAR Project, funded by NSF, DRL 0814829). More will be said in 
the methods section about the materials the students received for understanding 
characteristics of justifications and argumentation, and later we will discuss how 
well these resources aligned with our working definition of mathematical proof. For 
now, we will reflect on the definition of mathematical proof we were provided and 
aspects we considered when adapting it to be an analytic tool.

In our opinion, the six characteristics in our working definition of mathematical 
proof attend to purposes and norms for proving in the community of mathemati-
cians, and consequently, the definition can be difficult to apply to the work of 
school-age children, particularly when we do not know whether the children 
received explicit training in the norms and practices expressed in the definition or 
frequent experiences with these norms and purposes. Applying the definition also 
relies on the judgment and imagination of the reader, which is a source of subjectiv-
ity. Nonetheless, we believe it to be valuable to adapt the criteria in the definition to 
our current context for the sake of understanding the types of reasoning students 
used in their arguments and justifications and how their reasoning can be developed 
to better fit with the norms and practices of the broader mathematical community.

One characteristic that was particularly challenging to apply to our context—
middle-grade students engaged in the Number Trick task—was the convincingness 
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characteristic. A knowledgeable mathematician or mathematics educator would 
already be convinced that Jessie’s two computational approaches equate prior to 
reading a student’s argument because Jessie’s approaches can be equated using the 
distributive property. Thus, to ascertain convincingness, the analyst must imagine, 
“Were I unfamiliar with this claim, and the distributive property, would this argu-
ment convince me of its truth?” We wonder how reliable an analyst’s image of a 
convincing argument can be in such a hypothetical situation.

Another source of subjectivity when applying the convincingness characteristic 
is “who gets to decide?” Who exactly are these “knowledgeable mathematicians,” 
and how can we assume they would all agree? Can mathematics teachers of various 
mathematical backgrounds count as knowledgeable mathematicians? This question 
is particularly troubling if we view proof and proving as a means for students and 
teachers to take ownership of and authority over their mathematical knowledge and 
learning. Relying on the authority of more knowledgeable others to assess the teach-
ers’ and students’ arguments seems to defeat this purpose of proof and proving.

The representation system and community-sanctioned characteristics (5 and 6) 
presented similar challenges. The community-sanctioned characteristic applies 
readily to classic proofs like those of the Pythagorean theorem and those showing 
2  is irrational, but no such prototypical proofs exist for claims associated with the 

Number Trick task, such as “For all real numbers, the two computational approaches 
in the Number Trick task produce the same result.” Therefore, it was unclear how to 
compare students’ arguments in this context to arguments sanctioned by the math-
ematical community.

The representation system characteristic (5) presented similar challenges. This 
characteristic refers to norms for representing arguments, but whose norms are to be 
met? The mathematical norm for representing algebraic proofs is to use variables to 
express the general case. However, Yopp and Ely (2016) argued that noncanonical 
representations such as generic example referents can be leveraged in proofs pro-
vided that certain criteria were met. One critical criterion is that the example (a.k.a. 
referent) is not appealed to in any way that is specific to the example chosen. Here, 
specific means a trait not shared by all cases in the domain of the claim. To us, it is 
more important to assess how representations are leveraged in the argument than it 
is to assess whether or not the representations are canonical. But this view can be in 
tension with the social role of proof and proving. In other words, our view acknowl-
edges that a student might produce a proof that her/his peers would not sanction as 
proof but a reader with an open mind about the power of alterative representation 
systems would sanction as proof.

Indeed, all six of the characteristics in the definition of proof depend on socially 
accepted norms and meanings. Even the characteristics that seem most objective 
such as deductive inference, proof characteristic (2), are subjective when applied to 
middle school students’ work. Deduction is a well-defined method of reasoning 
where the arguer identifies a rule p → q and a case of p and concludes that because 
of the rule, the case of p also has the property (or properties) q. But in practice, we 
rarely find middle school reasoning expressed in this form. Instead, we, the authors, 
have found ourselves searching student arguments for deductive-like reasoning, as 
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we envision it, without any knowledge of whether or not the students who produced 
the arguments were conscious of the deductive inferences being made and the logi-
cal necessities such inferences produced. Are we sometimes using wishful thinking 
when we attribute deductive reasoning?

In fact, a student who appears to be reasoning deductively may be appealing to 
modes of reasoning that arise outside of mathematics courses. Various psychology 
frameworks describe “naturally occurring” and spontaneous modes of reasoning 
that can mimic deduction but are distinct from deduction (e.g., mental models, 
Johnson-Laird, 1983, and pragmatic reasoning schemes, Cheng & Holyoak, 1985). 
Even Harel and Sowder (1998) ground their analytic and deductive reasoning 
schemes not just in deductive inferences but in schema-based transformations of 
mathematical objects. We assert that it would be quite difficult to know whether or 
not deductive reasoning is truly present in any piece of student work unless the stu-
dent is explicit about this mode of thought.

Another subjective aspect of applying the deductive characteristic is judging 
whether the general rules being leveraged by students are taken as general prior 
knowledge in the classroom community. Stylianides (2007) and Stylianides and 
Stylianides (2008) proposed, as part of a definition of proof for school mathematics, 
that “[proof in school mathematics] uses statements accepted by the classroom 
community (set of accepted statements) that are true and available without further 
justification” (Stylianides & Stylianides, 2008, p.  107). Although this criterion 
specifies the community, it also requires that the reader assessing the argument is 
knowledgeable in the background of that classroom community.

A final point we wish to make about the deductive characteristic is that some-
times the characteristic does not apply at all to a proof. For instance, a proof by 
exhaustion might contain no deductive reasoning. In some of the proofs we ana-
lyzed in this chapter, the students simply checked that the claim was true for all ten 
possible cases. This is a completely valid method of proving that uses no deductive 
reasoning.

Moreover, a proof by exhaustion also might have no explanatory power, which 
would also prevent us from applying the explains why characteristic (4) when evalu-
ating it. Another factor when applying this proof characteristic (to any argument, 
not just to an exhaustion argument) is that a proof’s explanatory power depends 
upon the reader. For instance, Hanna (1990) asserts that mathematical induction 
may not have this explanatory trait, but Stylianides, Sandefur, and Watson (2016) 
point out that many mathematical induction arguments do have this trait and can be 
distinguished from those that do not. Perhaps what we mean is that explanatory  
proofs! demonstrate why the defining properties of the mathematical objects speci-
fied in the conditions of the claim must also have the properties specified in the 
conclusion of the claim. If so, the explains why characteristic may be better described 
in terms of conceptual insights (Sandefur et  al., 2013), which provide structural 
links between the conditions and conclusions.

In the context of the Number Trick task, an example of a conceptual insight that 
provides such a structural link is the distributive property, which transforms one 
expression into another equivalent expression. Yet students might see other 
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structures in the expressions that equate the approaches’ outputs. The need for “bal-
ance” by adding twice as much to the doubled value in the case where doubling 
comes first is one such structural link that does not explicitly employ the distributive 
property. Moreover, what if it is clear that a student is searching for a conceptual 
insight but does not find one in the time allocated? This could be evidence that the 
student is aware that a proof of a general claim needs more than just an empirical 
check but that the student got “stuck” and was unable to find an insight that shows 
why the conditions imply the conclusion. We consider any search for a conceptual 
insight as evidence of deeper understanding of proof than expressed in an empirical 
argument.

Although our discussion so far has pointed out ambiguities and potential prob-
lems with assessing these six characteristics of proof, we wrap up with a more 
optimistic look at one of these, the fillable gaps characteristic (3). This characteris-
tic turned out to be one of the most useful of the six and perhaps truest to the ana-
lytic methods we typically use. Inevitably, when analyzing middle-grade students’ 
arguments, including arguments we collected in other projects, our group’s discus-
sions of these arguments turn to our own knowledge and practices. To make sense 
of the students’ work, we often spend a great deal of time constructing our own 
proofs from the sparks of insights found in students’ work. We find merit in novel 
approaches, and we discover proof paths that we overlooked. Of course, this type of 
analysis also presents challenges. Reconstructions, gap-fillings, and extensions may 
project reasoning onto student responses that the students did not intend. Perhaps 
we might also fail to value certain insights because we cannot see the proof path, 
even when one is present.

 Methods

Our critical discussion in the introduction was not meant to dismiss our task as 
impossible. Instead, our critical discussion was an attempt to make sense of what we 
could assess and how we could assess it and to determine what we could not assess. 
From our ponderings, we developed a rubric (Fig. 1) for assessing the student data 
that maintains, in slightly altered form, the six characteristics provided to us and 
elaborates on them in the context of the Number Trick task.

The rubric applies only to arguments that attempt to address a general case. It 
does not apply to exhaustive proofs. We found that we needed to create two scores 
for each student because the Number Trick task had two prompts: whether the 
Number Trick worked for natural numbers from 1 to 10 and whether the Number 
Trick worked for all real numbers. For the first prompt, the second and fourth char-
acteristics in Levels 1 and 2 had to be modified to accommodate proof by exhaust-
ing all cases, which may contain little or no explicit deduction and may provide no 
explanatory power.

We also wish to note that while our rubric articulates criteria for every character-
istic at every level, the notion of cluster category does not mean that every argument 
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that can be labeled as “proof” must satisfy all six characteristics. Weber (2014) 
explains that such an argument that satisfies all six characteristics is likely to gener-
ate wide agreement regarding its status as a proof, while arguments that only satisfy 
a subset may generate more debate among the community of mathematicians as to 
whether or not it suffices as a proof. However, because one of our goals is to help 

2
general claim, “for all real numbers, the two approaches produce the same result,” is 
true. 

prior results to make inferences that we assume are logical neces  

are provided.

The argument provides a conceptual insight showing why for every real number, the 
two approaches produce the same result.

illustrate how the structure of the approaches necessitate the conclusion that the 
approaches produce the same values for any number in the domain of the claim.

1
the general claim, “for all real numbers, the two approaches produce the same result”, 
is true. The argument leaves room for doubt.

like reasoning, yet the prior results and inferences made are vague. 

The argument needs gap filling, meaning some important inferences must be filled in by 
the reader.

The argument indicates a search for a conceptual insight that could show a structural 
reason why for every real number, the two approaches produce the same result, even if 
the structural reason was not found or is unclear. 

how the structure of the approaches necessitate the conclusion that the approaches 
produce the same values for any number in the domain of the claim.

Overall: The argument provides evidence that the arguer was aware that either all cases 
in the domain of the claim must be tested or awareness that a general argument based 

0 Perhaps the argument provides empirical support for the general claim, perhaps 

argument fails to provide evidence that the arguer was aware that either all cases in the 
 

structures must be illustrated.

Fig. 1 Proof rubric
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translate the characteristics presented in Weber’s (2014) cluster concept of proof for 
a middle-grade context, we included revised descriptions for each of the six charac-
teristics at each level of proof.

Our first pass through the student work included a search for (1) empiricism, 
which tests only a subset of cases to which the claim applies, (2) conceptual insights, 
and (3) searches for conceptual insights. This pass helped us understand the nature 
of students’ proving processes and prepared us to apply the rubric. We asked our-
selves questions such as:

 1. What type of claim is being made, and what is the claim’s domain?
 2. What prior results and knowledge does the student leverage to support their claim?
 3. Are these results and knowledge leveraged in a manner consistent with what was 

assumed to be taught or with what is canonical to mathematics?
 4. Are the inferences, implicit or explicit, logical necessities?

Ultimately, we used the rubric more as a guide than a checklist, as it was difficult 
to assess every characteristic in any piece of student work because the students were 
often vague and perhaps unfamiliar with ways of expressing their mathematical 
thinking. Although a score of 2 required that most or all of the characteristics were 
met and the four questions above were answered in the affirmative, a score of 1 was 
awarded if there was compelling evidence that the student searched for a conceptual 
insight, as noted in the overall summary of a score of 1 in the rubric. To us, all six 
characteristics are implicit in the expression of a conceptual insight explaining why 
the two approaches must produce the same outcome.

Each author reviewed the student work separately and scored it using the rubric. 
The scores were compared and discussed until the authors reached agreement on 
the scores.

We also reviewed the materials associated with the lesson from which the student 
work was generated. This analysis also involved our rubric and included transcripts 
of the teaching episode and other materials provided to the students, including a 
description of “what makes a good justification.” Our review of the transcript was 
performed for two purposes. One purpose was to triangulate our analysis of the 
student work with any discussion of the student work, particularly by the student. 
Here, we looked for any comments about the students’ work that might shed light 
on meaning in the student work that might have been overlooked. The other purpose 
was to better understand the context in which the student work was constructed and 
presented, including attending to Mr. MC’s prompts and contributions that related 
to the six elements of proof as articulated in our rubric. This later analysis provided 
us with an opportunity to consider consistencies and possible mismatches between 
the teacher’s justification and argument goals and our analysis scheme based on the 
definition of mathematical proof we were provided.
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 Findings

 Classroom Episode

Based on Mr. MC’s activities during the lesson and the materials provided to the 
students, we found that the teacher valued and at times sanctioned student activities 
that showed promise for developing a proof, as defined by our working definition of 
mathematical proof and as described in our rubric. We found numerous occasions 
throughout the transcript where Mr. MC asked students to consider whether or not 
the students’ examples or reasoning demonstrated that Jessie’s Number Trick works 
for all cases or every case. Such teacher moves are likely to encourage convincing 
arguments and arguments that do not admit rebuttals. These requests were given in 
both the finite and infinite-domain contexts, when students were addressing Jessie’s 
Number Trick for natural numbers 1 through 10, and again when students were 
addressing Jessie’s Number Trick for any number, which we assumed to be any 
natural number.

We also found numerous occasions throughout the transcript where Mr. MC 
asked students to explain their thinking, explain why their claim about Jessie’s 
Number Trick is true, and explain how they knew it worked for all cases. These 
requests were also made in both contexts, when students were addressing the finite- 
domain prompt and when students were addressing the infinite-domain prompt. We 
found it interesting that the terms “explain” and “explanations” were used to encour-
age students to be more explicit about their reasoning in both these contexts. In lines 
134–135, when students are addressing the finite-domain prompt, Mr. MC tells stu-
dents, “You’re going to have to explain how you think… why you think it true,” and 
in lines 239–240, Mr. MC refocuses students with the prompt, “Explain your rea-
soning.” Both of these statements were made during exchanges in which Mr. MC 
was also encouraging students to test every case from 1 to 10. This observation is 
not to criticize Mr. MC’s uses of these phrases but to point out that the use of the 
expressions “show why” and “explain why” in the classroom could lead to a mis-
match between students’ notions of showing why and notions of “a perspicuous 
argument…[offering] an understanding of why a theorem is true,” (Weber, 2014, 
p.  537), as well as the notion of conceptual insights as described in our rubric. 
Exhaustive arguments may be included in the classroom community’s concept 
image of arguments that explain or show why a theorem/claim is true, while our use 
of the term refers to arguments that express conceptual insights, which typically do 
not include exhaustive arguments. We wonder if “showing [or explaining] why” was 
a catch-all phrase for being explicit about your thinking and argument approaches 
or why you believe your argument is viable as opposed to its intended meaning in 
the working definition of mathematical proof and in our rubric. This lack of clarity 
in the terms “explain why” and “show why” could lead to confusion among students 
as to what constitutes viable arguments and proofs in mathematics class.

Having acknowledged this possible mismatch between our use of these phrases 
and the classroom community’s use of these phrases, we did find evidence that Mr. 
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MC valued and encouraged arguments that expressed conceptual insights often by 
revoicing students’ arguments. The exchange below was representative of these 
teacher activities when encouraging searches for conceptual insights:

S4: When you add these two numbers together, it’s going to be higher than when you… first 
and then you add it: since eight is more than four, you need to have a higher number.

S6: They come in doubles… The second number that you add needs to be higher, so they 
need to be the same [inaudible].

T: So, you’re saying that here you’re multiplying the number by something before you add 
something to it. Up here, you’re adding something and then multiplying. So what you 
are multiplying is going to be bigger here… So, that’s some great thinking in terms of 
the general case….

In exchanges like this, we see the teacher focus students on structural aspects of 
the situation (here, the order in which multiplication and addition occur and how 
that affects the size of the outcome) that could lead students to understand why 8 
must be added instead of 4 when the input number is doubled first. We interpreted 
this type of teacher move as encouraging and valuing conceptual insights, as well as 
encouraging perspicuous arguments that show why.

Yet, we found little evidence that Mr. MC encouraged or explicitly described the 
other properties of a proof as described in our rubric and working definition. Most 
of the episode involved discussion of student approaches both in small-group and 
whole-class settings. There was little emphasis on how students represented their 
ideas in their written work and no explicit instruction on  what it meant to provide a 
deductive argument. Mr. MC sanctioned several students’ approaches with phrases 
such as “perfectly valid explanation” and “good logic,” but there was no explicit 
standard for validity and good logic. Finally, the convincingness of an argument was 
implicit in the teacher’s emphasis on why the two approaches would equate for any 
real number; yet, the standard for convincing others, such as knowledgeable math-
ematicians, was not mentioned.

The lack of evidence of Mr. MC explicitly discussing these properties of proof 
raises the question of whether the definition of proof we applied was a match for his 
goals for this lesson. Our analysis of the transcribed episode suggests that Mr. MC’s 
primary goals were to introduce students to the distributive property and encourage 
good justifications for a general claim. Further, this speculation aligns with the two 
descriptions of a good justification that Mr. MC had provided to the students and 
referenced during the classroom episode we analyzed. One of these was a sheet of 
paper titled “R.A.C.E. What makes a good mathematical justification?” This docu-
ment suggested: (1) reword[ing], restate the question; (2) answering, include your 
answer and make it reasonable; (3) cite[ing], use information from the problem and 
what you previously learned; and (4) explain[ing], draw pictures, show work, 
explain thinking in words, and give specific details. The second document was 
titled, “What makes a good justification,” which restated the above suggestions 
without referencing the R.A.C.E acronym. Early during the teaching episode, the 
teacher reminded students of the R.A.C.E. sheet and directed students to “follow 
your steps in R.A.C.E.” Because these documents do not completely align with the 
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properties of proof on our definition, it is not surprising that students’ arguments 
would not attend to all of these features. However, it is reasonable to anticipate that 
the students’ work would score at Level 1 in our rubric, because our overarching 
indicator for this score is that the student at least searched for a conceptual insight.

 Students’ Written Work

Findings from our analysis of the students’ written work were similar to our find-
ings from our analysis of the teaching episode and the associated materials. When 
addressing generalizations with infinite domains, more than half of the students (six 
of nine) described structural reasons why the two approaches must produce the 
same result. Yet, these reasons were generally too vague to be viewed as proof. 
These students appeared to be searching for conceptual insights, which suggested 
that the students were at least aware of what they needed to do to prove their general 
claims. While the Number Trick task asked students to argue for a claim with the 
finite domain of natural numbers between 1 and 10 as well as for a claim with the 
infinite domain of all real numbers, most students did not specify which of these 
domains they were addressing in their written work. Thus we include in our analysis 
below our own inferences about which claim or claims each student was attempting 
to prove.

In total, we analyzed the nine student work samples provided to us by the editors. 
Due to space limitations, we discuss several representative cases and then summa-
rize our findings from the sample.

Shawn, Finite-Domain Argument Score, N/A; Infinite-Domain Argument Score, 0
Shawn explicitly asserted that the two approaches will equate for any input num-

bers, including large natural numbers outside the originally proposed domain. He 
offered several examples that conformed to his claim. No conceptual insight was 
found in his response, and we find no evidence that he searched for a structural link 
between the two approaches and the results. His argument was purely empirical.

Hope, Finite-Domain Argument Score, 2; Infinite-Domain Argument Score, N/A
Hope tested every natural number case from 1 to 10 but made no claim about all 

real numbers. We judged her argument to be a proof of a claim with a finite domain.
Jared, Finite-Domain Argument Score, 2; Infinite-Domain Argument Score, 0
Jared claimed the equivalence “works with all” numbers. Jared compared the 

two approaches for all natural numbers 1 to 9 and placed check marks beside the 
work, as if noting that every case had been tested. If Jared’s claim was restricted to 
this domain, then his support was an exhaustive proof. (The case of n = 10 was not 
included; perhaps he interpreted “between 1 and 10” as not including 10.) Because 
Jared included no structural link equating the approaches and his work does not 
suggest any search for structure, his work is not proof of the more general claim.

Emma, Finite-Domain Argument Score, 1; Infinite-Domain Argument Score, 1
We coded Emma’s argument in regard to both the finite-domain and the infinite- 

domain claims because at first she claimed that the Number Trick works for 
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numbers 1–10 (assumed to be natural numbers) but scratched that out. In both cases, 
Emma’s argument, and our analysis of it, focused on structure that she leveraged to 
equate the two approaches. Emma noted that the 4 was to be doubled regardless of 
whether it was added to the 5 prior to doubling or after doubling.

In particular, Emma wrote, “In the first equation when she added the 5 + 4 and 
doubled it, but you must realize that 4 is still part of the equation even though it was 
smushed [sic] in with the 5, you did double the 4 but when it was part of the 5 [sic].” 
Emma clearly searched for a conceptual insight and found one, but we had to make 
significant assumptions about Emma’s approach. We assumed that Emma noted that 
both the 5 and the 4 were ultimately doubled in both approaches (perhaps she 
implicitly invoked the commutative and associative properties), but our assumptions 
required considerable gap-filling given that Emma’s response was vague and clum-
sily worded.

Jenna, Finite-Domain Argument Score, 2 or 1, Infinite-Domain Argument 
Score, 2 or 1

Jenna wrote, “Jessie’s trick will work for any number between 1-10.” We 
assumed Jenna referred to natural numbers in this range, a finite domain, but her 
argument could also be interpreted as addressing an infinite domain: all real num-
bers between 1 and 10. Jenna wrote, “(e + 4) ∙ 2 = e ∙ 2 + 4 ∙ 2, or e ∙ 2 + 8.” as her 
key representation of the structure she observed. These equations illustrate Jenna’s 
thinking about how to transform one of the general expressions into the other using 
the distributive property. Jenna’s argument could be viewed as proof, if we assume 
that the distributive property was a prior result to her. If this were so, the distributive 
property served as a tool for linking the two structures, a conceptual insight explain-
ing why the two approaches produce the same outcome for numbers in the speci-
fied domain.

However, this interpretation assumes that the distributive property was a prior 
result for Jenna, which brings out a dilemma. As noted earlier in chapter “Overview 
of Middle Grades Data” (this volume), the teacher used the Number Trick task as a 
way of introducing the distributive property. Consequently, if Jenna’s argument was 
viewed as communication between her and her classroom community, then the dis-
tributive property could not be taken as shared knowledge. From this perspective, 
Jenna’s response did not have backing in a prior result. Instead, Jenna’s key equa-
tions could be viewed as merely stating a generalized version of what Jessie found 
in her specific instance, e = 5, as given in the task. In that case, Jenna’s score would 
be a 1 because she expressed awareness that a general argument is based in math-
ematical structures of the conditions and the conclusion and awareness that inferen-
tial links between these structures must be illustrated. However, Jenna failed to 
provide reasoning based in knowledge assumed to be prior knowledge. Thus, 
Jenna’s score depended on whether the argument was a communication with her-
self, with her teacher, or with her peers, because students in a single classroom may 
have very different mathematics backgrounds.
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 Summary

Although only one student in the data set presented an argument that could be taken 
as proof of the general claim with infinite domain—under certain assumptions—six 
of nine students presented evidence that they searched for conceptual insights. We 
found few characteristics of “proof” as described in the definition provided to us 
among the students’ work, but we found evidence that students engaged in a prac-
tice critical to proof construction: finding a structural link between the two 
approaches that allows one to equate the two approaches. This finding was also 
supported by exchanges found in the transcripts, where students discussed with 
peers and teachers the reasons why the two approaches would equate for any num-
ber. Practices such as searching for structure linking two approaches/expressions 
can be groundwork for learning about the other characteristics of proof and proving 
such as being explicit about the prior results leveraged in the reasoning and explicit 
about the deductive inferences made in a progression toward writing proofs in the 
canonical sense.

 Is a Proof Accessible to This Classroom Community?

After our analysis, we wondered, “Can we envision an argument that does not rely 
on the distributive property and could be taken as proof?” We also wondered, 
“Would such an argument be accessible?” We cannot answer these questions defini-
tively, as we lack knowledge of these students’ mathematical backgrounds and past 
experiences. Yet, based in our knowledge of many US states’ mathematical content 
standards, we developed an argument that we believe could be accepted as proof 
and is within the conceptual reach of these students.

The argument we developed relies upon the interpretation of multiplication as 
repeated addition. This would serve a prior result, an informal definition. In nota-
tion, 2(n + 4) = (n + 4) + (n + 4). Applying the associate and commutative proper-
ties, (n + 4) + (n + 4) = 2n + 2 · 4 = 2n + 8. We could also envision prose or a generic 
example argument that accomplishes a similar proof. To label the argument as 
proof, we would not require the students to explicitly name the prior results used.

The argument above could be leveraged as a generic example proof of the dis-
tributive property if the domain was restricted to natural numbers. Extending the 
argument to other multipliers (e.g., non-integer rational numbers and irrational mul-
tipliers) would be difficult or impossible for this classroom community. After all, 
the distributive property is generally taken as an axiom in advanced mathematical 
classes where the real number system is developed.
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 Data from Another Project

We were concerned that the data provided to us came from students who had not 
received explicit instruction on “the rules of the game” for proof and proving as 
described in the working definition provided to us and in the rubric we developed 
from this definition. Yopp (2015) pointed out that students benefit from explicit 
instruction on types of claims in mathematics and how these claims are written. 
Yopp also noted that students benefit from explicit instruction on how to present 
their arguments and what modes of argumentation are acceptable in mathematics.

Below, we include data on a different but related task from our own project, 
Longitudinal Learning of Argument Methods for Adolescents (LLAMA) (see 
acknowledgements). We do this only to illustrate the possibilities for proof and 
proving in classrooms where the “rules of the game” for proof and proving are 
explicitly taught. Students in the LLAMA project were taught by teachers who 
learned about our models and methods for viable argumentation and proving, and 
the teachers and students had access to our project-developed lessons. These lessons 
developed Common Core Grade 8 content (NGA & CCSSO, 2010) through viable 
argument activities. A complete description of LLAMA is beyond the scope of this 
chapter, but for our current purposes, we summarize key features of LLAMA in 
terms of what students were taught:

 1. Viable arguments/proofs include well-worded general claims or existence claims 
using language such as “for all,” “if-then,” or “there exist.”

 2. Viable arguments/proofs for general claims with large or infinite domains use 
representations (referents) that illustrate a general case(s) and the logical steps/
transformations pertinent to showing the claim is true. Explicitly, viable argu-
ments/proofs eliminate the possibility of counterexamples (Yopp, 2015) to 
the claim.

 3. Viable arguments/proofs include a narrative that links the representations/refer-
ents in the argument to the claim, notes the prior results used, the method/mode 
of argumentation used, and how the argument’s steps are logical and demon-
strate the truth of the claim.

 4. Viable arguments/proofs of general claims use established methods/modes of 
argumentation such as exhaustion, direct (e.g., a sequence of modus ponens 
transformations/steps), contrapositive, and contradiction.

We used the term viable argumentation in place of proof and proving to acknowl-
edge that axiomatic systems are not necessarily in place in the middle grades. We 
also wished to emphasize the phrasing in Common Core Mathematical Practice 3, 
Construct viable arguments and critique the reasoning of others (NGA & 
CCSSO, 2010).

Figures 2 and 3 illustrate sample work from two LLAMA students, Students A 
and B. This work is not representative of all students who received the intervention 
but illustrates the possibilities. Our point is that if we make explicit to students the 
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“rules of the game” for proof and proving, we are more able to assign the label of 
proof to their arguments. For example, we call Student A’s argument “proof” of the 
claim “For all real numbers, none solve 3(x + 5) = 3x + 5” because we can identify:

 1. A general claim that Maria’s two approaches are unequal no matter the choice of 
x—although the wording and labeling of the claim could be improved

Fig. 2 Response from Student A, a US eighth-grade student who participated in the LLAMA project
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 2. A referent, the equation-solving steps, with the appropriate generality and a nar-
rative discussing the logic expressed in the referent: that the use of “solution- 
preserving steps” (the key prior result) leads to a contradiction, rendering the 
assumption of a solution false

 3. A clear, unambiguous expression of the method/mode of argumentation, proof 
by contradiction, and an explicit discussion of this method/mode as proof

Moreover, when we applied the rubric developed for this chapter, we still arrived 
at a Level 2 rating. The argument convinces us that the general claim is true 
(Characteristic 1), uses deductive-like inferences from prior results (Characteristic 
2), and needs little gap-filling (Characteristic 3). The referent provides the structural 
links (Characteristic 4), the referent (equation-solving approaches) is canonical 
(Characteristic 5), and we all sanctioned the argument as proof (Characteristic 6). 
We also labeled Student B’s argument as proof for similar reasons. We included 
Student B’s argument as a more succinct proof that explicitly names the prior results 
used in the logical inference: the distributive property.

 Conclusion

Applying a definition of proof to middle-grade students’ arguments is challenging 
when the definition is presented as a list of characteristics derived from social- 
cultural norms in mathematics and formal logical constructions like deduction. 
Middle-grade students may have access to very different guidelines on what 

Fig. 3 Response from Student B, a US eighth-grade student who participated in the LLAMA project
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characteristics should present in proofs, arguments, and justification. Our focus was 
on the “rules of the game” for proof and proving, but the students in Mr. MC’s class-
room were focused on rules for justifications as expressed in the R.A.C.E sheet. As 
we noted in the beginning, our theoretical framework did not align well with the 
goals of instruction in this particular episode, and our focus may have misconstrued, 
and even overlooked, learning opportunities presented to students in this class. 
Consequently, our chapter can serve as a cautionary tale for researchers about 
applying a definition of proof or proving to a classroom where the students have 
different goals and notions about what it means to argue that a claim is true and 
justify their thinking.

Having acknowledged this possible mismatch, we did find that the definition 
provided to us and the rubric we generated, which valued conceptual insights, 
proved useful in finding proof-like features among students’ work. Most students in 
Mr. MC’s class at least searched for conceptual insights that explained why the two 
approaches must produce the same result. Perhaps searches for conceptual insights 
can be encouraged in classrooms that use very different guidelines for developing 
acceptable justifications, arguments, and proofs.

Our rubric was also useful in determining what was missing from an argument 
that prevented it from being sanctioned as proof. Scores of 0 and 1 were most easily 
determined by assessing whether or not a student searched for a conceptual insight. 
Category 1 ended up being a broad category containing responses that expressed a 
conceptual insight that could be leveraged toward proofs and responses that made 
clear the students at least searched for conceptual insights. Category 0 contained 
responses that included empirical support or no evidence that the student searched 
for a conceptual insight. Perhaps, for practitioners, the rubric can serve as a forma-
tive tool for giving students feedback as they learn the “rules of the game” for math-
ematical proof and proving.

Our assessment did however rely heavily on our abilities to recognize insights 
among the “noise” found in middle-grade students’ writing. This type of assessment 
poses risks. Researchers might overlook potentially fruitful student reasoning that is 
novel and expressed ambiguously, or researchers might inadvertently impose 
sophisticated reasoning onto an argument that the student who wrote it did not 
possess.

In closing, we argue that giving students access to the “rules of the game” for 
proof and proving in mathematics, including the language of mathematics and the 
accepted methods/modes of proving, can help students understand what they are 
required to do when proving as well as help them to clearly communicate their rea-
soning to teachers, researchers, and peers. The rules of the game can also empower 
students with knowledge of the mathematical obligations for proving a general 
claim, such as representing the general case and demonstrating through logical 
applications of prior results that every case satisfying the conditions also satisfies 
the conclusion. And yet, we acknowledge that the “rules of the game” as we describe 
them  may not be appropriate for all classrooms and may be inconsistent with some 
teachers’ and researchers’ goals.
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