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Abstract. The class of quasi-chain graphs is an extension of the well-
studied class of chain graphs. The latter class enjoys many nice and
important properties, such as bounded clique-width, implicit representa-
tion, well-quasi-ordering by induced subgraphs, etc. The class of quasi-
chain graphs is substantially more complex. In particular, this class is
not well-quasi-ordered by induced subgraphs, and the clique-width is not
bounded in it. In the present paper, we show that the universe of quasi-
chain graphs is at least as complex as the universe of permutations by
establishing a bijection between the class of all permutations and a sub-
class of quasi-chain graphs. This implies, in particular, that the induced
subgraph isomorphism problem is NP-complete for quasi-chain graphs.
On the other hand, we propose a decomposition theorem for quasi-chain
graphs that implies an implicit representation for graphs in this class
and efficient solutions for some algorithmic problems that are generally
intractable.

Keywords: Bipartite chain graphs · Implicit representation ·
Polynomial-time algorithm

1 Introduction

A chain graph is a bipartite graph such that the neighbourhoods of the vertices
in each part of its bipartition form a chain with respect to the inclusion relation.
The class of chain graphs appeared in the literature under various names such
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as difference graphs [8] or half-graphs [5]. In model theory, half-graphs appear
as an instance of the order property [17]. The class of chain graphs is closely
related to one more well-studied class of graphs, known as threshold graphs, and
together they share many nice and important properties. In particular,

– chain graphs have bounded clique-width (and even linear clique-width), which
implies polynomial-time solutions for a variety of algorithmic problems that
are generally NP-hard;

– chain graphs are well- (and even better-) quasi-ordered under induced sub-
graphs. This is because another important parameter, graph lettericity, is
bounded for chain graphs [22];

– chain graphs admit an implicit representation, which in turn implies a small
induced-universal graph for the class. More specifically, there is a chain graph
with 2n vertices containing all n-vertex chain graphs as induced subgraphs
[14].

In the terminology of forbidden induced subgraphs, the class of chain graphs
is precisely the class of 2P2-free bipartite graphs, i.e., bipartite graphs that do
not contain the disjoint union of two copies of P2 as an induced subgraph (Pn

denotes the chordless path on n vertices).
In the present paper, we study a class of bipartite graphs that forms an exten-

sion of chain graphs defined by relaxing the chain property of the neighbourhoods
in the following way. We say that a linear ordering (a1, . . . , a�) of vertices is good
if for all i < j, the neighbourhood of aj contains at most 1 non-neighbour of
ai. We call a bipartite graph G a quasi-chain graph if the vertices in each part
of its bipartition admit a good ordering. Alternatively, quasi-chain graphs are
bipartite graphs that do not contain an “unbalanced” induced copy of 2P3. To
explain what we mean by this, we observe that 2P3 admits two bipartitions: one
with parts of equal size (balanced) and the other with parts of different sizes
(unbalanced). In the unbalanced bipartition, one of the parts does not admit a
good ordering and hence quasi-chain graphs are free of unbalanced 2P3. On the
other hand, if a bipartite graph G does not contain an unbalanced induced copy
of 2P3, then by ordering the vertices in each part in a non-increasing order of
their degrees we obtain a good ordering, i.e., G is a quasi-chain graph.

The class of quasi-chain graphs is substantially richer and more complex
than the class of chain graphs. In particular, it is not well-quasi-ordered by
induced subgraphs [13] and the clique-width is not bounded in this class [15].
To emphasize the complex nature of this class, in Sect. 2 we establish a bijection
f between the class of all permutations and a subclass of quasi-chain graphs
such that a permutation π contains a permutation ρ as a pattern if and only if
the graph f(π) contains the graph f(ρ) as an induced subgraph. Together with
the NP-completeness of the pattern matching problem for permutations this
implies the NP-completeness of the induced subgraph isomorphism problem
for quasi-chain graphs.

In spite of the more complex structure, the quasi-chain graphs inherit some
attractive properties of chain graphs. To show this, in Sect. 3 we propose a struc-
tural characterisation that describes any quasi-chain graph as the symmetric
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difference of two graphs Z and H, where Z is a chain graph and H is a graph
of vertex degree at most 2. This characterisation allows us to prove that quasi-
chain graphs admit an implicit representation (Sect. 4) and that some algorithmic
problems that are NP-complete for general bipartite graphs admit polynomial-
time solutions when restricted to quasi-chain graphs (Sect. 5).

All graphs in this paper are simple, i.e., undirected, with neither loops nor
multiple edges. The vertex set and the edge set of a graph G are denoted V (G)
and E(G), respectively. The neighbourhood of a vertex v ∈ V (G) is the set of
vertices adjacent to v. We denote the neighbourhood of v in the graph G by
NG(v) and omit the subscript if it is clear from the context. The subgraph of G
induced by a set U ⊆ V (G) is denoted G[U ].

A bipartite graph G = (V,E) given together with a bipartition V = A∪B is
denoted G = (A,B,E). Once such a bipartition has been fixed, we may define the
bipartite complement ˜G = (A,B,E′) of G, in which two vertices a ∈ A and b ∈ B
are adjacent if and only if they are not adjacent in G (that is, E′ = (A×B)−E).

2 Quasi-chain Graphs and Permutations

Given two permutations π = (π(1), . . . , π(n)) and ρ = (ρ(1), . . . , ρ(m)), we will
write π ⊆ ρ to indicate that π is contained in ρ as a pattern, i.e., there is an
order-preserving injection e : {1, 2, . . . , n} → {1, 2, . . . ,m} such that π(i) < π(j)
if and only if ρ(e(i)) < ρ(e(j)) for all 1 ≤ i < j ≤ n. The pattern containment
relation on permutations is the subject of a vast literature, see, e.g., the book
[12] and the references therein. By mapping each permutation to its permutation
graph, we transform the pattern containment relation on permutations into the
induced subgraph relation on graphs. This mapping, however, is not injective,
as it can map different permutations to the same (up to an isomorphism) graph.
In the present section we propose an alternative mapping from permutation
to graphs: we map permutations to quasi-chain graphs, in such a way that two
permutations are comparable if and only if their images are comparable. To make
this mapping injective, we require the quasi-chain graphs to be coloured. That
is, we will assume that every quasi-chain graph is given together with a partition
of its vertex set into an independent set A of white vertices and an independent
set B of black vertices and we will write G ⊆ H to indicate that G is a coloured
induced subgraph of H, i.e., there is an induced subgraph embedding of G into
H that respects the colours. The distinction between coloured and uncoloured
graphs matters, for instance, in the assignment problem.

We denote our mapping from permutations to graphs by f and define it as
follows. If π = (π(1), π(2), . . . , π(n)) is an n-entry permutation, then f(π) is a
bipartite graph with parts A = {a1, a2, . . . , a2n} and B = {b1, b2, . . . , b2n} and
the following edges:

(i) For any 1 ≤ i ≤ j ≤ 2n, we have aibj ∈ E(G).
(ii) For any 1 ≤ i ≤ n, we have an+ibπ(i) ∈ E(G).
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We write Gπ := f(π) and say that Gπ is the quasi-permutation graph of π. Any
graph G isomorphic to Gπ for some π will be called a quasi-permutation graph.
It follows easily from the definition that f is order-preserving, in that π ⊆ ρ
implies f(π) ⊆ f(ρ).

Claim. Any quasi-permutation graph G is a quasi-chain graph.

Proof. We observe that the edges of type (i) define a chain subgraph of G in
which N(aj) ⊆ N(ai) for all 1 ≤ i < j ≤ 2n. The edges of type (ii) form a
matching and therefore in the graph G we have |N(aj) − N(ai)| ≤ 1 for all
1 ≤ i < j ≤ 2n. Similarly, |N(bi) − N(bj)| ≤ 1 for all 1 ≤ i < j ≤ 2n in G. This
shows that A and B have good orderings, and so any quasi-permutation graph
G is a quasi-chain graph. ��
Claim. f is a bijection from the class of all permutations to the (non-hereditary)
class of quasi-permutation graphs.

Proof. f is surjective by the definition of quasi-permutation graphs. Now notice
that in the graph f(π) the degree sequence of vertices in both A and B is
(2, 3, 4, . . . , n + 1, n + 1, n + 2, . . . , 2n). In particular, f(π) uniquely determines
the size of π.

The unique vertex of A with degree 2 is adjacent to vertices b2n and bπ(n)

in part B. Vertex b2n has degree 2n and vertex bπ(n) has degree k, for some
k ≤ n + 1. Inspecting the value of k allows us to determine the value of π(n),
which is k − 1. Similarly, the unique vertex of degree 3 has three neighbours:
b2n, b2n−1 and bπ(n−1), which allows us to determine the value of π(n − 1). In
this way, we see that f(π) uniquely determines π(i) for all 2 ≤ i ≤ n. But two
permutations with the same number of elements cannot disagree in exactly one
entry, hence the graph f(π) uniquely determines the permutation π. Therefore
f is injective. ��
Lemma 1. Let π and ρ be two permutations with n and m entries, respectively,
with n ≤ m and π(1) 	= n. If f(π) ⊆ f(ρ), then π ⊆ ρ.

Proof. Assume f(π) ⊆ f(ρ). We denote the vertices of f(ρ) as A = {a1, . . . , a2m}
and B = {b1, . . . , b2m} and edges aibj if either 1 ≤ i ≤ j ≤ 2m or m+1 ≤ i ≤ 2m
and j = ρ(i − m). Also, we denote the vertices of f(π) as A′ = (a′

1, a
′
2, . . . , a

′
2n),

and B′ = (b′
1, b

′
2, . . . , b

′
2n) with edges a′

ib
′
j if either 1 ≤ i ≤ j ≤ 2n or n + 1 ≤ i ≤

2n and j = π(i − n). The mapping that embeds f(π) into f(ρ) as an induced
subgraph will be denoted by a′

i 
→ ae(i), b′
i 
→ bw(i).

Firstly, observe that all but at most one entry from the set {w(1), . . . , w(n)}
are less than or equal to m. Indeed, the vertices b′

1, b
′
2, . . . , b

′
n have pairwise

incomparable neighbourhoods, and this must also be the case for their images;
however, if i, j > m, the neighbourhoods of bi and bj are comparable. Moreover,
since b′

i+1 has two private neighbours with respect to b′
i for any i ≤ n − 1,

we must have w(i) < w(i + 1) for any i ≤ n − 1, and hence we must have
w(1) < w(2) < . . . < w(n − 1) ≤ m and w(n − 1) < w(n). Similarly, we can
deduce that m+1 ≤ e(n+2) < e(n+3) < . . . < e(2n) with e(n+1) < e(n+2).
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Now, a′
1, a

′
2, . . . , a

′
n−2 are adjacent to two vertices b′

n−2, b
′
n−1 with w(n−2) <

w(n− 1) ≤ m. Therefore, we conclude that {e(1), e(2), . . . , e(n− 2)} must all be
smaller than or equal to m. As a1, a2, . . . , am form a chain graph together with
the vertices in B, in order to have N(ae(i)) � N(ae(j)) for 1 ≤ i < j ≤ n − 2, we
conclude that we must have 1 ≤ e(1) < e(2) < . . . < e(n − 2) ≤ m. To preserve
correct adjacencies between {a′

1, . . . , a
′
n−2} and {b′

1, . . . , b
′
n−1} we must have

e(1) ≤ w(1) < e(2) ≤ w(2) < . . . < e(n − 2) ≤ w(n − 2) < w(n − 1) ≤ m.

Now bw(n−1) is already adjacent to ae(1), ae(2), . . . , ae(n−2), but it has to be adja-
cent to two more vertices, ae(n−1) and ae(n+π−1(n−1)). Clearly, at least one of
e(n + π−1(n − 1)) and e(n − 1) must be at most w(n − 1). Hence there are two
cases: either both e(n+π−1(n− 1)) and e(n− 1) are at most w(n− 1), or one of
them is at most w(n − 1) and the other is at least m + 1, in which case e(n − 1)
is the one that is at most w(n−1), as a′

n−1 has a private neighbour with respect
to a′

n+π−1(n−1). In either case, we must have e(n − 1) ≤ w(n − 1). As a′
n−1 is

non-adjacent to b′
n−2, we must also have w(n − 2) < e(n − 1), implying that

e(1) ≤ w(1) < e(2) ≤ w(2) < . . . < e(n − 2) ≤ w(n − 2) < e(n − 1) ≤ w(n − 1) ≤ m.

By symmetry, we derive that

m + 1 ≤ e(n + 2) ≤ w(n + 2) < e(n + 3) ≤ . . . < e(2n) ≤ w(2n).

We are only left with determining the location of the embeddings of the four
vertices a′

n, b′
n, a′

n+1, b′
n+1. Since π(1) 	= n, we have that a′

n+1 is not connected
to b′

n, but connected to b′
π(1) (with π(1) < n). It follows that e(n + 1) ≥ m + 1.

Clearly, for a′
n+1 to have two private neighbours with respect to a′

n+2 we must
also have e(n + 1) < e(n + 2). The two private neighbours of a′

n+1 are b′
π(1) and

b′
n+1; since ae(n+1) only has one neighbour bi with i < e(n+1) (namely bπ(1)), the

embedding of b′
n+1 must satisfy e(n+1) ≤ w(n+1) < e(n+2). Now b′

n, which is
not adjacent to a′

n+1 but adjacent to a′
n+π−1(n) (note e(n+π−1(n)) ≥ m+1 since

π−1(n) > 1) must therefore satisfy w(n) ≤ m. As b′
n has two private neighbours

with respect to b′
n−1, we must have w(n − 1) < w(n), and as above, the private

neighbour a′
n of b′

n must satisfy w(n − 1) < e(n) ≤ w(n).
Summarizing, we conclude that

e(1) ≤ w(1) < . . . < e(n) ≤ w(n) ≤ m < m + 1
≤ e(n + 1) ≤ w(n + 1) < . . . < e(2n) ≤ w(2n).

We may now alter this embedding of f(π) into f(ρ) if necessary to guarantee that
e(i) = w(i) for all i = 1, 2, . . . , 2n. Indeed, it follows from the above inequalities
that, for 1 ≤ i ≤ n, ae(i) and aw(i) have the same set of neighbours among the
embedded b-vertices, and similarly, for n + 1 ≤ i ≤ 2n, bw(i) and be(i) have the
same set of neighbours among the embedded a-vertices. We may thus keep the
embeddings of b′

1, . . . , b
′
n, a′

n+1, . . . , a
′
2n where they are, and move the embeddings

of the remaining vertices as appropriate to ensure e(i) = w(i) for 1 ≤ i ≤ 2n.
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From this altered embedding, it is easy to see that π ⊆ ρ as claimed (for instance,
interpret the matching between b1, . . . , bm and am+1, . . . , a2m as a line segment
intersection model for ρ, and note that the intersection of this matching with
the embedded graph f(π) gives a line segment intersection model for π). ��

Lemma 1 cannot, in general, be extended to permutations π with π(1) = n
(except trivially, when n = 1 or m = n). For example, if π = (2, 1) and ρ =
(1, 2, 3, 4), then one can easily see that f(ρ) ⊇ f(π), but ρ does not contain π. One
underlying reason for this phenomenon is that whenever π(1) = n, the vertices
an and an+1 have exactly the same neighbourhoods, which makes it possible
for the graphs to be embedded with more flexibility, not necessarily forcing
embedding of permutations. For this reason, we introduce a slight modification
of the embedding, which allows us to always avoid the case π(1) = n.

Definition 1. Given a permutation π = (π(1), π(2), . . . , π(n)), define π∗ =
(1, π(1) + 1, π(2) + 1, . . . , π(n) + 1). Define f∗(π) = f(π∗), where f is the map
from permutations to quasi-permutation graphs.

Theorem 1. f∗ is an injection from the class of permutations to the class of
quasi-permutation graphs such that for any two permutations π and ρ we have
f∗(π) ⊆ f∗(ρ) if and only if π ⊆ ρ.

Proof. f∗ is a composition of two injective maps π 
→ π∗ and π∗ 
→ f(π∗), with
the image of the second map being a quasi-permutation graph. Therefore, f∗

is an injection from the class of permutations to the class of quasi-permutation
graphs. Further, f∗(π) ⊆ f∗(ρ) means, by definition, that f(π∗) ⊆ f(ρ∗), which
happens if and only if π∗ ⊆ ρ∗ (this follows from Lemma 1 as π∗(1) = 1 	= n).
Finally, it is easy to see that π∗ ⊆ ρ∗ if and only if π ⊆ ρ, from which the second
part of the theorem follows. ��

3 The Structure of Quasi-chain Graphs

For two graphs G1 = (V,E1) and G2 = (V,E2) on the same vertex set we
denote by G1 ⊗G2 the graph G = (V,E1 ⊗E2), where ⊗ denotes the symmetric
difference of two sets. The main result in this section is the following theorem.

Theorem 2. If a bipartite graph G = (A,B,E) is a quasi-chain graph, then
G = Z ⊗ H for a chain graph Z and a graph H of vertex degree at most two
such that E(H) ∩ E(Z) and E(H) − E(Z) are matchings. Such a decomposition
G = Z ⊗ H can be obtained in polynomial time.

In the proof of this result, we use a word representation for our graphs, which
builds on a special case of letter graph representations, introduced in [22]. The
starting point is as follows: there is a bijective, order-preserving mapping between
words over the alphabet {a, b} (under the subword relation) and coloured chain
graphs (under the coloured induced subgraph relation). This mapping sends a
word w to the graph whose vertices are the entries of w, and we have edges
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a1 a2

b1

a3

b2 b3

a4

b4

Fig. 1. The graph corresponding to the word w = aababbab

between each a and each b appearing after it in w. See Fig. 1 for an example (the
indices of the letters indicate the order of their appearance in w).

We would like to extend this representation to graphs with the structure
claimed in Theorem 2. To do so, we enhance the letter representation described
above by allowing bottom edges between pairs a, b with the a appearing before
the b in w and top edges between pairs a, b with the a appearing after the b in w.
We require, in addition, that the set of top edges forms a matching and the set of
bottom edges forms a matching, and interpret the bottom edges as an instruction
to remove the corresponding matching from the chain graph represented by w,
and the top edges as an instruction to add the corresponding matching. We call
such a word an enhanced word. For instance, w′ = aababbab is an enhanced word
obtained from w = aababbab by adding the bottom edge connecting the first a
to the first b and the top edge connecting the second b to the last a.

If G is the graph described by an enhanced word w, we say that w is an
enhanced letter representation for G. In particular, w′ = aababbab is an enhanced
letter representation of the graph obtained from the graph in Fig. 1 by removing
the edge a1b1 and adding the edge b2a4. It is immediate from our discussion that
Theorem 2 can be restated as follows.

Theorem 3. Any quasi-chain graph admits an enhanced letter representation
that can be found in polynomial time.

The proof is by induction on the number of vertices of a quasi-chain graph G,
noting that either G or ˜G has a vertex of degree at most 1. By considering various
cases, we show that such a vertex can always be added to an enhanced letter
representation obtained inductively. The case analysis can be made algorithmic,
yielding a polynomial bound.

4 Implicit Representation of Quasi-chain Graphs

The idea of implicit representation of graphs (also known in the literature as
adjacency labelling scheme) was introduced in [11] and can be described as
follows. A representation of an n-vertex graph G is said to be implicit if it assigns
to each vertex of G a binary code of length O(log n) so that the adjacency of
two vertices is a function of their codes.

Not every class of graphs admits an implicit representation, since a bound on
the length of a vertex code implies a bound on the number of graphs admitting
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such a representation. More precisely, only classes containing 2O(n log n) labelled
graphs with n vertices can admit an implicit representation. In the terminology
of [3], hereditary classes containing 2O(n log n) labelled graphs on n vertices are
at most factorial, i.e., they have at most factorial speed of growth. Whether all
hereditary classes with at most factorial speed admit an implicit representation
is a big open question known as the implicit representation conjecture [23]. The
conjecture holds for a variety of factorial classes such as interval graphs, per-
mutation graphs (which include chain graphs), line graphs, planar graphs, etc.
It also holds for all graph classes of bounded vertex degree, of bounded clique-
width, of bounded arboricity (including all proper minor-closed classes), etc.; see
[2] and the references therein for more information on this topic.

The class of quasi-chain graphs is known to be factorial, which was shown in
[1]. However, the question whether this class admits an implicit representation
remains open. In this section, we answer this question in the affirmative. To this
end, we introduce the following general tool.

For a graph G = (V,E), let AG denote the adjacency matrix of G, and
for two vertices x, y ∈ V , let AG(x, y) be the element of the matrix corre-
sponding to x and y. Given a Boolean function f of k variables and graphs
H1 = (V,E1), . . . , Hk = (V,Ek), we will write G = f(H1, . . . , Hk) if

AG(x, y) = f(AH1(x, y), . . . , AHk
(x, y))

for all distinct vertices x, y ∈ V . If G = f(H1, . . . , Hk), we say that G is an
f -function of H1, . . . , Hk.

Theorem 4. Let X be a class of graphs, k a natural number, f a Boolean func-
tion of k variables, and Y1, . . . , Yk classes of graphs admitting an implicit repre-
sentation. If every graph in X is an f-function of graphs H1 ∈ Y1, . . . , Hk ∈ Yk,
then X also admits an implicit representation.

Proof. To represent a graph G = f(H1, . . . , Hk) in X implicitly, we assign to
each vertex of G k labels, each of which represents this vertex in one of the graphs
H1, . . . , Hk. Given the labels of two vertices x, y ∈ V (G), we can compute the
adjacency of these vertices in each of the k graphs and hence, using the function
f (which we may encode in each label with a constant number of bits), we can
compute the adjacency of x and y in the graph G. ��

According to Theorem 2, any quasi-chain graph is a ⊕-function of a chain
graph and a graph of vertex degree at most 2, where ⊕ is addition modulo 2. As
we mentioned earlier, chain graphs and graphs of vertex degree at most 2 admit
an implicit representation. Together with Theorem 4 this implies the following
conclusion.

Corollary 1. The class of quasi-chain graphs admits an implicit representation.

The same conclusion can be derived in an alternative way, which is of inde-
pendent interest, because it deals with a parameter motivated by some biological
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applications. This parameter was introduced in [7] under the name contiguity
and it can be defined as follows.

Graphs of contiguity 1 are graphs that admit a linear order of the vertices
in which the neighbourhood of each vertex forms an interval. Not every graph
admits such an ordering, in which case one can relax this requirement by looking
for an ordering in which the neighbourhood of each vertex can be split into
at most k intervals. The minimum value of k which allows a graph G to be
represented in this way is the contiguity of G.

Theorem 5. Contiguity of quasi-chain graphs is at most 3.

Proof. It is not difficult to see that chain graphs have contiguity 1. Let G be a
quasi-chain graph, and use Theorem 2 to obtain a decomposition G = Z ⊗ H.
Consider a linear order of the vertices of G such that their neighbourhoods in Z
are intervals. Z can be transformed into G by adding at most one edge and at
most one non-edge incident to each vertex. By adding a non-edge, we split the
interval of neighbours of v into at most two intervals, and by adding a neighbour
to v, its neighbourhood spans at most one additional interval consisting of a
single vertex. ��

It is routine to check that graphs of bounded contiguity admit an implicit
representation. Therefore, Corollary 1 follows from Theorem 5 as well.

5 Optimisation in Quasi-chain Graphs

Many algorithmic problems that are NP-complete for general graphs remain
computationally intractable for bipartite graphs, which is the case, for instance,
for hamiltonian cycle [20], maximum induced matching [16], alternat-
ing cycle-free matching [19], balanced biclique [10], maximum edge
biclique [21], dominating set, steiner tree [18], independent domina-
tion [6], induced subgraph isomorphism [9].

The simple structure of chain graphs implies bounded clique-width and there-
fore polynomial-time solvability of all these and many other problems. How-
ever, in quasi-chain graphs the clique-width is unbounded and hence no solu-
tion comes for free in this class. Moreover, induced subgraph isomorphism
remains intractable, as we show in Sect. 5.1 based on the relationship between
quasi-chain graphs and permutations revealed in Theorem 1.

On the other hand, the structure of quasi-chain graphs revealed in Theorem 2
allows us to prove polynomial-time solvability of three problems in the above list,
which we do in Sect. 5.2.

5.1 NP-completeness of Induced Subgraph Isomorphism
in Quasi-chain Graphs

The induced subgraph isomorphism problem can be stated as follows: given
two graphs H and G, decide whether H is an induced subgraph of G or not.
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This problem is known to be NP-complete even when both graphs are bipartite
permutation graphs [9]. A related problem on permutations is known as pattern
matching: given two permutations π and ρ, it asks whether π contains ρ as a
pattern. This problem is also NP-complete [4]. Together with Theorem 1 this
immediately implies that coloured induced subgraph isomorphism is NP-
complete for quasi-chain graphs. Below we extend this conclusion to uncoloured
graphs.

Theorem 6. The induced subgraph isomorphism problem is NP-complete
for quasi-chain graphs.

Proof. Let H and G be two coloured connected quasi-chain graphs. The NP-
completeness of pattern matching together with Theorem 1 imply that deter-
mining whether there is an embedding of H into G as an induced subgraph
that respects the colours is an NP-complete problem. To reduce the problem to
uncoloured graphs, we modify the instance of the problem as follows.

Let p be a natural number greater than the maximum vertex degree in G,
and let K1,p be a star with the center x. We add this star to G, connect x to all
the black vertices of G and denote the resulting graph by G∗. Similarly, we add
this star to H, connect x to all the black vertices of H and denote the resulting
graph by H∗. Clearly, G∗ and H∗ are quasi-chain graphs.

Now we ignore the colours and ask whether G∗ contains H∗ as an induced
subgraph. If G∗ contains H∗, then vertex x in H∗ must map to vertex x in G∗

(due to the degree condition), and the vertices of H in H∗ are mapped to the
vertices of G in G∗ in a colour-preserving way (due to the connectedness of G
and H). Therefore, G contains H as a coloured induced subgraph if and only if
G∗ contains H∗ as an induced subgraph. Since G∗ and H∗ are quasi-chain graphs
and these graphs can be obtained from G and H in polynomial time, we conclude
that induced subgraph isomorphism is NP-complete for quasi-chain graphs.

��

5.2 Polynomial-Time Algorithms for Quasi-chain Graphs

In this section, we use Theorem 2 to prove polynomial-time solvability of the
following problems in quasi-chain graphs: balanced biclique, maximum edge
biclique, and independent domination. We emphasize that Theorem 2 not
only provides a structural characterisation of quasi-chain graphs, it also proves
that a quasi-chain graph can be transformed into a chain graph by removing
a matching and adding a matching in polynomial time, which is an important
ingredient in all three solutions. We start with an auxiliary lemma.

Lemma 2. A quasi-chain graph G with n vertices contains a collection I of
O(n) subsets of vertices that can be found in polynomial time such that every
subset I ∈ I induces a graph of vertex degree at most 1, and every independent
set in G is contained in one of these subsets.
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Proof. First, we observe that there are O(n) inclusion-wise maximal independent
sets in a chain graph, and that all of them can be found in polynomial time.

Now let G = Z ⊗ H be a quasi-chain graph and let S be an independent set
in G. Then in the graph Z, the vertices of S either form an independent set,
or induce some bottom edges, i.e., some edges of E(H) ∩ E(Z). Since bottom
edges form a matching and Z is 2P2-free, we conclude that S contains at most
one bottom edge in the graph Z.

If S is an independent set in Z, then it is contained in a maximal independent
set I in Z. For each maximal independent set I in the graph Z, the vertices of
I induce in G a subgraph G[I] of vertex degree at most 1, because all edges of
G[I] are top edges and therefore they form a matching.

Assume now that S contains an edge aibj in the graph Z. We denote the set
of non-neighbours of ai in G by Ai and the set of non-neighbours of bj in G by
Bj , and let I = Ai ∪ Bj . In particular, S ⊆ I. In Z, the vertices of I induce a
subgraph Z[I] containing exactly one edge aibj . Indeed, no edge e 	= aibj in Z[I]
can be incident to ai or bj , because otherwise both e and aibj are bottom edges,
which is impossible, and if e is not incident to ai and bj , then e and aibj create
an induced 2P2 in Z, which is not possible either. Since aibj is the only edge in
Z[I] and this edge is not present in G[I], we conclude that all edges of G[I] are
top edges and hence G[I] is a graph of vertex degree at most one.

Putting everything together, our collection I consists of two types of sets:
the maximal independent sets from Z, and the sets constructed as above from
each of the bottom edges. This collection thus has O(n) sets, and can be found
in polynomial time as claimed. ��

Bicliques in Quasi-chain Bipartite Graphs. A biclique is a complete bipar-
tite graph Kp,q for some p and q. In a bipartite graph, the problem of finding a
biclique with the maximum number of vertices can be solved in polynomial time.
However, the problem of finding a biclique with the maximum number of edges,
known as the maximum edge biclique problem, is NP-complete for bipartite
graphs [21]. Additionally, the problem of finding a biclique Kp,p with the maxi-
mum value of p, known as the balanced biclique problem, is NP-complete for
bipartite graphs [10]. We show that both problems can be solved in polynomial
time when restricted to quasi-chain graphs.

Theorem 7. The maximum edge biclique and balanced biclique prob-
lems can be solved in polynomial time for quasi-chain graphs.

Proof. Let G = (A,B,E) be a quasi-chain graph. A biclique in G becomes an
independent set in the bipartite complement ˜G of G. Since an unbalanced 2P3 is
self-complementary in the bipartite sense, we note that ˜G is a quasi-chain graph
too.

Let I be as in Lemma 2 for ˜G. Every independent set in ˜G is contained in a
maximal independent set, which in turn is contained in one of the subsets of I. In
G, those subsets induce almost complete bipartite graphs, i.e., graphs in which
every vertex has at most one non-neighbour in the opposite part. Therefore, to
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solve both problems for G, it suffices to solve them for this collection of O(n)
almost complete bipartite graphs.

But those problems are both easy for almost complete bipartite graphs: sup-
pose a graph is obtained from Ks,t by deleting a matching of size m ≤ s ≤ t.
It is not difficult to see that the number of edges in a maximum edge biclique
in this graph equals max

0≤i≤m
(t − m + i) · (s − i). As for the balanced biclique

problem, the optimal solution is given by p = s if t − s ≥ m, and by
⌊

t−m+s
2

⌋

if
t − s < m. ��

Independent Domination in Quasi-chain Graphs. The independent
dominating set problem asks to find in a graph G an inclusion-wise maxi-
mal independent set of minimum cardinality. This problem is NP-complete for
general graphs and remains intractable in many restricted graph families. In par-
ticular, it is NP-complete both for 2P3-free graphs [24] and for bipartite graphs
[6]. In the following theorem, we prove polynomial-time solvability of the problem
for quasi-chain graphs.

Theorem 8. The independent dominating set problem can be solved for
quasi-chain graphs in polynomial time.

Proof. Let G = (A,B,E) be a quasi-chain graph and S an optimal solution to
the problem in G, and let I be as in Lemma 2. Note that S is contained in at
least one of the elements of I. Moreover, crucially, for any I ∈ I, all maximal
independent sets in G[I] have the same size. This suggests the following way of
finding an optimal solution:

1. For each I ∈ I, determine if I contains an independent set that dominates
G, and if yes, find such a set.

2. Among the sets we found, pick one with minimum size.

We claim that this produces an optimal solution to the problem. Indeed,
this procedure is guaranteed to produce a set S, since any optimal solution to
the problem dominates G and is contained in some I ∈ I. Moreover, since all
maximal independent sets in G[I] have the same size (and S dominates G, so it
is maximal in both G and G[I]), S must be an optimal solution.

It thus suffices to show that Step 1 can be done efficiently. To do this, let
I ∈ I. Let I ′ ⊆ I be the subset of I of vertices that have degree 1 in G[I], and
put I ′′ := I − I ′. We note that any independent subset of I dominating G must
contain all vertices of I ′′, and exactly one vertex from each edge of G[I ′]. Let
A′′ and B′′ be the sets of vertices in A, respectively B that have at least one
neighbour in I ′′. We also denote I ′

A := I ′ ∩ A and I ′
B := I ′ ∩ B, and let A′ and

B′ be the sets of vertices in A− (A′′ ∪ I ′
A), respectively B − (B′′ ∪ I ′

B) that have
at least one neighbour in I ′.

If I does not dominate G, then no subset of I dominates G; we may thus
assume I dominates G, that is, A − I = A′ ∪ A′′ and B − I = B′ ∪ B′′. Since
G does not contain an unbalanced 2P3, the graphs G[I ′

A ∪ B′] and G[I ′
B ∪ A′]
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are 2P2-free, i.e., chain graphs. It follows that I ′
A and I ′

B each have vertices that
dominate B′ and A′ respectively. If there exists such a pair x ∈ I ′

A and y ∈ I ′
B

that is non-adjacent, then we are done: we pick x and y in their respective
edges, and arbitrarily choose vertices from each other edge of I ′ to complete our
independent dominating set. Otherwise, the unique vertices x ∈ I ′

A and y ∈ I ′
B

that dominate B′ and A′ respectively belong to the same edge of I ′. In this
case, no independent set of I dominates G, since vertices A′ and B′ have no
neighbours in I ′′ by construction, and (using 2P2-freeness) I ′

A − {x} does not
dominate A′, and I ′

B − {y} does not dominate B′. This proves the theorem. ��
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