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Abstract. For a given shape S in the plane, one can ask what is the
lowest possible density of a point set P that pierces (“intersects”, “hits”)
all translates of S. This is equivalent to determining the covering density
of S and as such is well studied. Here we study the analogous question
for families of shapes where the connection to covering no longer exists.
That is, we require that a single point set P simultaneously pierces each
translate of each shape from some family F . We denote the lowest pos-
sible density of such an F-piercing point set by πT (F). Specifically, we
focus on families F consisting of axis-parallel rectangles. When |F| = 2
we exactly solve the case when one rectangle is more squarish than
2×1, and give bounds (within 10% of each other) for the remaining case
when one rectangle is wide and the other one is tall. When |F| ≥ 2 we
present a linear-time constant-factor approximation algorithm for com-
puting πT (F) (with ratio 1.895).

Keywords: Axis-parallel rectangle · Piercing · Approximation
algorithm

1 Introduction

In a game of Battleship, the opponent secretly places ships of a fixed shape on
an n × n board and your goal is to sink them by identifying all the cells the
ships occupy (the ships are stationary). Consider now the following puzzle: If
the opponent placed a single 2 × 3 ship, how many attempts do you need to
surely hit the ship at least once? The answer depends on an extra assumption.
If you know that the ship is placed, e.g., vertically, it is fairly easy to see that
the answer is roughly n2/6: When n is a multiple of 6, then one hit is needed
per each of the n2/6 interior-disjoint translates of the 2 × 3 rectangle that tile
the board and, on the other hand, a lattice with basis [2, 0], [0, 3] achieves the
objective. The starting point of this paper was to answer the question when it
is not known whether the ship is placed vertically or horizontally. It turns out
that the answer is n2/5 + O(n) hits (the main term comes from Theorem 1 (ii)
whereas the O(n) correction term is due to the boundary effect).

Motivated by the above puzzle, we study the following problem: Given a
family F of compact shapes in the plane, what is its translative piercing density
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πT (F), that is, the lowest density of a point set that pierces (“intersects”, “hits”)
every translate of each member of the family? Here the density of an infinite point
set P (over the plane) is defined in the standard fashion as a limit of its density
over a disk Dr of radius r, as r tends to infinity. The piercing density πT (F) of
the family is then defined as the infimum over all point sets that pierce every
translate of each member of the family [5, Ch. 1], [15]. (See Sect. 1.1 for precise
definitions.) Note that unlike in the puzzle, we allow translations of each shape
in the family by any, not necessarily integer, vector.

First, we cover the case when the family F = {S} consists of a single
shape. The problem is then equivalent to the classical problem of determin-
ing the translative covering density ϑT (S) of the shape S: Indeed, determining
the translative covering density ϑT (S) amounts to finding a (sparsest possible)
point set P such that the translates {p + S | p ∈ P} cover the plane, that is,

(∀x ∈ R
2)(∃p ∈ P ) such that x ∈ p + S.

(Here “+” is the Minkowski sum.) This is the same as requiring that

(∀x ∈ R
2)(∃p ∈ P ) such that p ∈ x + (−S),

that is, the point set P pierces all translates of the shape −S. Hence ϑT (S) =
πT ({−S}) = πT ({S}). Specifically, when S tiles the plane, then the answer is
simply πT ({S}) = 1/Area(S), where Area(S) is the area of S. We note that
apart from the cases when S tiles the plane, the translative covering density
ϑT (S) is known only for a few special shapes S such as a disk or a regular
n-gon [5, Ch. 1].

For the rest of this work (apart from the Conclusions) we limit ourselves to
the case when F consists of n ≥ 2 axis-parallel rectangles. First we consider the
special case n = 2 (Theorem 1 in Sect. 2), then we consider the case of arbitrary
n ≥ 2 (Theorem 2 in Sect. 3).

Related Work. There is a rich literature on related (but fundamentally dif-
ferent) fronts dealing with piercing finite collections. One broad direction is
devoted to establishing combinatorial bounds on the piercing number as a func-
tion of other parameters of the collection, most notably the matching num-
ber [2,10,11,13,17,20,23,24,26–29] or in relation to Helly’s theorem [12,21,23];
see also the survey articles [14,24]. Another broad direction deals with the prob-
lem of piercing a given set of shapes in the plane (for instance axis-parallel rect-
angles) by the minimum number of points and concentrates on devising algorith-
mic solutions, ideally exact but frequently approximate; see for instance [7–9].
Indeed, the problem of computing the piercing number corresponds to the hit-
ting set problem in a combinatorial setting [19] and is known to be NP-hard
even for the special case of axis-aligned unit squares [18]. The theory of ε-nets
for planar point sets and axis-parallel rectangular ranges is yet another domain
at the interface between algorithms and combinatorics in this area [3,32].

A third direction that appears to be most closely related to this paper is
around the problem of estimating the area of the largest empty axis-parallel
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rectangle amidst n points in the unit square, namely, the quantity A(n) defined
below. Given a set S of n points in the unit square U = [0, 1]2, a rectangle
R ⊂ U is empty if it contains no points of S in its interior. Let A(S) be the
maximum volume of an empty box contained in U (also known as the dispersion
of S), and let A(n) be the minimum value of A(S) over all sets S of n points
in U . It is known that 1.504 ≤ limn→∞ nA(n) ≤ 1.895; see also [1,30,34,36].
The lower bound is a recent result of Bukh and Chao [6] and the upper bound
is another recent result of Kritzinger and Wiart [31]. It is worth noting that the
upper bound ϕ4/(ϕ2 + 1) = 1.8945 . . . can be expressed in terms of the golden
ratio ϕ = 1

2 (1 +
√

5). The connection will be evident in Sect. 3.

1.1 Preliminaries

Throughout this paper, a shape is a Lebesque-measurable compact subset of
the plane. Given a shape S, let Area(S) denote its area. We identify points
in the plane with the corresponding vectors from the origin. Given two shapes
A,B ⊂ R

2, we denote by A+B = {a+b | a ∈ A, b ∈ B} their Minkowski sum. A
translate of a shape S by a point (vector) p is the shape p+S = {p+ s | s ∈ S}.

In the next three definitions we introduce the (translative) piercing density
πT (F) of a family F of shapes in the plane. Then we define a certain shorthand
notation for the special case when F consists of two axis-parallel rectangles.

Definition 1 (F-piercing sets). Given a family F of shapes in the plane, we
say that a point set P is F-piercing if it intersects all translates of all the shapes
in F , that is, if

(∀S ∈ F)(∀x ∈ R
2)(∃p ∈ P ) such that p ∈ x + S.

Definition 2 (Density of a point set). Given a point set P and a bounded
domain D with area Area(D), we define the density of P over D by δ(P,D) =
|P∩D|
Area(D) .

Given a (possibly infinite and unbounded) point set P , we define its asymp-
totic upper and lower densities by

δ(P ) = lim sup
r→∞

δ(P,Dr) and δ(P ) = lim inf
r→∞ δ(P,Dr),

where Dr is the disk with radius r centered at the origin.

Definition 3 (Translative piercing density πT (F)). Fix a family F of
shapes in the plane. Then we define the (translative) piercing density by

πT (F) = inf
P is F-piercing

{δ(P )}

and the (translative) lattice piercing density πL(F) by

πL(F) = inf
P is an F-piercing lattice

{δ(P )} .
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Pairs of Axis-Parallel Rectangles. Let Rw×h denote a rectangle with width
w and height h. Here we introduce a shorthand notation for the case when
F = {Ra×b, Rc×d} consists of two axis-parallel rectangles. If a ≤ c and b ≤ d
then clearly πT (F) = πL(F) = 1/(ac) as the lattice with basis {[a, 0], [0, c]}
that pierces all translates of the smaller rectangle also pierces all translates of
the larger rectangle. Otherwise we can suppose a ≥ c and b ≤ d. Stretching
horizontally by a factor of c and then vertically by a factor of b, we have

πT (F) = c · πT ({R a
c ×b, R1×d}) = cd · πT ({R a

c ×1, R1× d
b
}).

and likewise for πL(F). Thus it suffices to determine

πT (w, h) := πT ({Rw×1, R1×h}) and πL(w, h) := πL({Rw×1, R1×h})

for w, h ≥ 1. We say that a point set (resp. a lattice) P is (w, h)-piercing if it is
{Rw×1, R1×h}-piercing. It is sometimes convenient to work with the reciprocals
AT (w, h) = 1/πT (w, h) (resp. AL(w, h) = 1/πL(w, h)) which correspond to the
largest possible per-point area of a (w, h)-piercing point set (resp. lattice). Note
that AL(w, h) ≤ AT (w, h), since the sparsest (w, h)-piercing point set perhaps
does not have to be a lattice. Also, AT (w, h) ≤ min(w, h) as translates of the
smaller rectangle tile the plane and each translate has to be pierced.

1.2 Results

The following theorem and its corollary summarize our results for piercing all
translates of two axis-parallel rectangles in R

2.

Theorem 1. Fix w, h ≥ 1.

(i) When 	w
 �= 	h
 then AT (w, h) = AL(w, h) = min{w, h}.
(ii) When 	w
 = 	h
 = k ≥ 1, set w = k + x, h = k + y for x, y ∈ [0, 1). Then

max
{

k, k + xy − k − 1
k

(1 − x)(1 − y)
}

≤ AL(w, h) ≤ AT (w, h) ≤ k + xy.

Note that the inequalities in (ii) become equalities in two different cases:
When k = 1 then AL(w, h) = AT (w, h) = k + xy and when min{x, y} = 0 (that
is, when w or h is an integer) then AL(w, h) = AT (w, h) = min{w, h} = k.

Corollary 1. Given a family F = {R1, R2} consisting of two axis-parallel rect-
angles, a 1.086-approximation of πT (F) can be computed in O(1) time. The
output piercing set is a lattice with density at most (52 −

√
2) · πT (F).

We then address the general case of piercing all translates of any finite col-
lection of axis-parallel rectangles.

Theorem 2. Given a family F = {R1, . . . , Rn} consisting of n axis-parallel
rectangles, a 1.895-approximation of πT (F) can be computed in O(n) time. The
output piercing set is a lattice with density at most (1 + 2

5

√
5) · πT (F).
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2 Piercing Two Rectangles

Proof (of Theorem 1). (i) Note that AT (w, h) ≤ min{w, h}: Indeed, any (w, h)-
piercing point set has to pierce all the translates of the rectangle with smaller
area and certain copies of that smaller rectangle tile the plane. To complete
the proof, it suffices to exhibit a suitable (w, h)-piercing lattice. Without loss of
generality suppose that 	h
 < 	w
. We will show that the lattice Λ1 with basis
u1 = [1, h − 1], v1 = [1,−1] (see Fig. 1(a)) is (w, h)-piercing. Note that the area
of the fundamental parallelogram of the lattice is (h − 1) + 1 = h, as required.

We first show that Λ1 pierces all 1 × h rectangles. Observe that the 1 × h
rectangles centered at points in Λ1 tile the plane. Denote this tiling by T . Let
now R be any 1 × h rectangle. Its center is contained in one of the rectangles in
T , say σ. Then the center of σ pierces R, as required.

We next show that Λ1 pierces all w×1 rectangles. It suffices to show that Λ1

pierces all w0 ×1 rectangles, where w0 = 	h
+1. Let R be any w0 ×1 rectangle.
Assume that R is not pierced by Λ1. Translate R downwards until it hits a point
in Λ1, say q, and then leftwards until it hits another point in Λ1, say p. Let
R′ denote the resulting rectangle. Then p is the top left corner of R′. Observe
that the top and the right side of R′ are not incident to any other point in Λ1.
Consider the lattice point s := p + u1 + (w0 − 1)v1; note that x(s) − x(p) = w0

and y(s) − y(p) = h − 1 − 	h
 ∈ [−1, 0). As such, s is contained in the right side
of R′, a contradiction. It follows that R is pierced by Λ1, as required.

(a) (b) (c)

Fig. 1. (a) A lattice Λ1 for the case �w� �= �h�. Here w = 3+ 1
4
, h = 2+ 1

2
. (b) A lattice

Λ2 with basis u2 = [1, k − 1], v2 = [1, −1] attesting that AT (k + x, k + y) ≥ k. Here
w = 3 + 1

2
, h = 3 + 1

4
. (c) A lattice Λ3 with basis u3 = [1, h − 1], v3 = [(w − 1)/k, −1]

attesting that AT (k+x, k+y) ≥ k+xy− k−1
k

(1−x)(1−y). Here w = 2+ 3
4
, h = 2+ 1

2
.

(ii) In order to prove the lower bound it suffices to exhibit suitable lattices.
We will show that the following lattices do the job: The lattice Λ2 with basis
u2 = [1, k − 1], v2 = [1,−1] (see Fig. 1(b)) attests that AT (k + x, k + y) ≥ k.
Note that the area of the fundamental parallelogram of Λ2 is (k − 1) + 1 = k,
as required. The lattice Λ3 with basis u3 = [1, h − 1], v3 = [(w − 1)/k,−1]
(see Fig. 1(c)) attests that AT (k + x, k + y) ≥ k + xy − k−1

k (1 − x)(1 − y). Note
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that the area of the fundamental parallelogram of Λ3 is (w − 1)(h − 1)/k + 1 =
(k + xy) − k−1

k (1 − x)(1 − y), as required.
For both lattices, the proof proceeds by contradiction as in part (i). Assume

that there exists an unpierced rectangle of dimensions either w × 1 or 1 × h.
Translate the rectangle downwards until it hits a point in the lattice, say q,
and then leftwards until it hits another point in the lattice, say p. For Λ2, note
that r := p + u2 lies on the right edge of the 1 × h rectangle and that s :=
p + u2 + (k − 1)v2 lies on the top edge of the w × 1 rectangle. Similarly, for Λ3

note that r := p + u3 is the top right corner of the 1 × h rectangle and that
s := p + u3 + kv3 lies on the right edge of the w × 1 rectangle. Either way, we
get a contradiction.

Finally, we show the upper bound, that is, AT (w, h) ≤ k + xy. Recall that
AT (w, h) ≤ min{w, h} = k + min{x, y}; we will obtain an improved bound
AT (w, h) ≤ k + xy by an integral calculus argument (which originates from a
probabilistic argument). Let P be a (w, h)-piercing point set, where w = k + x,
h = k+y with k ∈ N and x, y ∈ [0, 1). The desired upper bound on AT (w, h) will
follow from a lower bound on the density δ(P,Dr) = |P∩Dr|

Area(Dr)
, where Dr is the

disk with radius r centered at the origin. Fix a radius r and write Pr = P ∩ Dr.
Given a point a = (ax, ay) ∈ R

2, we denote by Ra = [ax −w, ax]× [ay −h, ay]
the w × h rectangle whose top right corner is a. For brevity, we denote R =
R(w,h) = [0, w] × [0, h]. We consider two sets of w × h rectangles: Those that
intersect Dr and those that are contained within Dr. We denote the sets of their
top right corners by X = {a ∈ R

2 | Ra ∩Dr �= ∅} and W = {a ∈ R
2 | Ra ⊂ Dr},

respectively. See Fig. 2(a).

D

R

X

(a) (b)

Fig. 2. (a) The top right corners of rectangles intersecting Dr form a region X =
Dr + R. The top right corners of rectangles contained within Dr form a region W =
Dr ∩ ([w, 0] + Dr) ∩ ([0, h] + Dr) ∩ ([w, h] + Dr). Both regions are convex and their
boundaries consist of circular arcs and line segments. (b) A w×h rectangle R = R(w,h)

(here k = 2, x = 1/3, and y = 2/3, hence w = k + x = 7/3 and h = k + y = 8/3). Its
zone Z is shaded.
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Given a rectangle Ra, we define its zone Za to be a union of k2 closed
rectangles with sizes (1 − x) × (1 − y) each, arranged as in Fig. 2(b). Note that
Area(Za) = k2(1−x)(1−y). Further, let Ia := |Pr∩Za| and Ja := |Pr∩(Ra\Za)|
be the number of points of Pr contained in Ra inside its zone and outside of it,
respectively. We make two claims about Ia and Ja.

Claim 1. If a ∈ W then (k + 1)Ia + kJa ≥ k(k + 1).

Proof. Fix a ∈ W . Since Ra ⊂ Dr, we have P ∩ Ra = Pr ∩ Ra. The key
observation is that for any point p ∈ Ra \ Za, the set Ra \ {p} contains k
pairwise disjoint rectangles of dimensions either all w × 1 or all 1 × h. We thus
must have |Pr ∩ Ra| ≥ k + 1, except when Pr ∩ Ra ⊆ Za, in which case we must
have |Pr ∩ Ra| ≥ k.

Denote I = Ia and J = Ja. There are two simple cases:

1. J ≥ 1: Then I + J ≥ k + 1, thus (k + 1)I + kJ ≥ kI + kJ ≥ k(k + 1).
2. J = 0: Then I ≥ k, thus (k + 1)I + kJ ≥ k(k + 1). ��

Claim 2. We have∫
X

Ia

Area(Z)
d a =

∫
X

Ja

Area(R \ Z)
d a = |Pr|.

Proof. Fix p ∈ Pr. Note that the set Xp = {a ∈ R
2 | p ∈ Za} of top right corners

of w ×h rectangles whose zone contains p is a subset of X congruent to Z. Thus
Area(Xp) = Area(Z). Summing over p ∈ Pr we obtain

∫
X

Ia

Area(Z)
d a =

∑
p∈Pr

Area(Xp)
Area(Z)

= |Pr|.

For Ja we proceed completely analogously. ��

Now we put the two claims together to get a lower bound on |Pr|.

Claim 3. We have |Pr| ≥ Area(W )
k+xy .

Proof. First, applying Claim 1 to all w × h rectangles Ra with a ∈ W and then
invoking W ⊂ X, we obtain

Area(W ) · k(k + 1) =
∫

W

k(k + 1) d a ≤ (k + 1)
∫

W

Ia d a + k

∫
W

Ja d a

≤ (k + 1)
∫

X

Ia d a + k

∫
X

Ja d a.

By Claim 2 and straightforward algebra we further rewrite this as

(k + 1)
∫

X

Ia d a + k

∫
X

Ja d a = |Pr| ·
(
(k + 1)Area(Z) + k Area(R \ Z)

)
= |Pr| · (k Area(R) + Area(Z)) = |Pr| · k(k + 1)(k + xy),
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where the last equality follows from

k Area(R) + Area(Z) = k(k + x)(k + y) + k2(1 − x)(1 − y) = k(k + 1)(k + xy).

The bound |Pr| ≥ Area(W )
k+xy follows by rearranging. ��

Consequently, by Claim 3 we have

δ(P,Dr) =
|Pr|

Area(Dr)
≥ Area(W )

Area(Dr)
· 1
k + xy

→r→∞
1

k + xy
,

where we used that Area(W )/Area(Dr) → 1 as r → ∞. This in turn gives

πT (w, h) = inf
P

{
lim inf
r→∞ δ(P,Dr)

}
≥ 1

k + xy
and AT (w, h) =

1
πT (w, h)

≤ k + xy

and completes the proof of Theorem 1. ��
For a visual illustration of our results, see Fig. 3.

1 2 3 4
aspect ratio w = h ≥ 1

ar
ea

A
(w

,h
)
pe

r
po

in
t triv. upper bound

upper bound
lower bound

5

(a) (b)

Fig. 3. (a) We plot AT (w, h) when �w� �= �h� and/or when �w� = �h� = 1 (orange).
When �w� = �h� ≥ 2 we plot the two lower bounds from Theorem 1, Item ii (blue).
As k → ∞, the two lower bounds coincide for x + y = 1. (b) A section corresponding
to w = h. We plot the lower bounds (blue) and the upper bound (red) on AT (w, w)
from Theorem 1, Item ii and the trivial upper bound AT (w, w) ≤ w (red, dashed).
(Color figure online)

Proof (of Corollary 1). It suffices to show that

sup
k≥2, k∈N

x,y∈[0,1)

k + xy

max
{
k, k + xy − k−1

k (1 − x)(1 − y)
} =

5 − 2
√

2
2

< 1.086.

A computer algebra system (such as Mathematica) shows that the supremum is
attained when k = 2 and when x, y are both equal to a value that makes the two
expressions inside the max{} operator equal. This happens for x = y =

√
2 − 1

and the corresponding value is (5 − 2
√

2)/2 < 1.086 as claimed. ��
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3 Piercing n Rectangles

In this section we prove Theorem 2. Let ϕ = 1
2 (1 +

√
5) be the golden ratio.

In Lemma 2 we show that a lattice Λϕ with basis u = [1, ϕ], v = [ϕ,−1] pierces all
rectangles with area ϕ4 or larger, irrespective of their aspect ratio. See Fig. 4 (a).
Theorem 2 then follows easily by rescaling Λϕ to match the smallest-area rect-
angle from the family.

(a) (b)

Fig. 4. (a) Empty rectangles amidst Λϕ. (b) A generic empty rectangle R.

Recall the well-known sequence of Fibonacci numbers defined by the following
recurrence:

Fi = Fi−1 + Fi−2, with F1 = F2 = 1. (1)

The first few terms in the sequence are listed in Table 1 for easy reference; here
it is convenient to extend this sequence by F−1 = 1 and F0 = 0.

Table 1. The first few Fibonacci numbers.

m −1 0 1 2 3 4 5 6 7 8 9 10

Fm 1 0 1 1 2 3 5 8 13 21 34 55

We first list several properties of Fibonacci numbers.

Lemma 1. The following identities hold for every integer m ≥ 1:

1. Fmϕ + Fm−1 = ϕm,
2. Fmϕ − Fm+1 = (−1)m+1ϕ−m,
3. F2m+1F2m−1 − (F2m)2 = 1.

Proof. This is straightforward to verify, for instance using the well-known for-
mula Fm = 1√

5
(ϕm − ψm), where ψ = −1/ϕ. ��
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Next we prove a lemma that establishes a key property of the lattice Λϕ.

Lemma 2. The area of every empty rectangle amidst the points in Λϕ is at
most ϕ4.

Proof. Let R be a maximal axis-parallel empty rectangle, bounded by four lat-
tice points p, q, r, s from the left, below, right and top, respectively. Refer
to Fig. 4 (b). Then pqrs is a fundamental parallelogram of the lattice; as such,
its area is ϕ2 + 1. Clearly, we may assume p = (0, 0). Further, we may assume
q = cu + dv, s = au + bv, where a, b, c, d are nonnegative integers: Indeed, since
Λϕ is invariant under rotation by 90◦, we can assume that the width of R is
at least as large as its height. Points q, s thus lie on the “funnel” (depicted in
Fig. 4 (a) dotted) within the angle formed by the vectors u, v. The coordinates
of points s, q, r and the area of the parallelogram pqrs are:

s = (a + bϕ, aϕ − b),
q = (c + dϕ, cϕ − d),
r = ((a + c) + (b + d)ϕ, (a + c)ϕ,−(b + d)),

Area(pqrs) = |(a + bϕ)(cϕ − d) − (aϕ − b)(c + dϕ)| = |(ad − bc)|(ϕ2 + 1).

Since s lies above the horizontal line through p and since q lies below it,
we have aϕ − b > 0 and cϕ − d < 0. This implies a, b, c, d > 0 and rewrites
as b

a < ϕ < d
c , so in particular ad > bc. Together with the expression for

Area(pqrs) = ϕ2 + 1 this yields |ad − bc| = ad − bc = 1. To summarize, we have

b

a
< ϕ <

d

c
and ad − bc = 1. (2)

The relation ad − bc = 1 implies that gcd(a, b) = gcd(c, d) = 1. By a result
from the theory of continued fractions [33], [22, Ch. 10], relation (2) implies that
the fractions b/a and d/c are consecutive convergents of ϕ. Moreover, it is well
known that the convergents of ϕ are ratios of consecutive Fibonacci numbers:

F0

F−1
<

F2

F1
<

F4

F3
<

F6

F5
<

F8

F7
< · · · < ϕ < · · · <

F7

F6
<

F5

F4
<

F3

F2
<

F1

F0
= ∞,

0
1

<
1
1

<
3
2

<
8
5

<
21
13

< · · · < ϕ < · · · <
13
8

<
5
3

<
2
1

<
1
0

= ∞.

Thus we can assume that b
a = F2k

F2k−1
. There are two cases:

Case 1: d
c = F2k−1

F2k−2
, and thus F2k

F2k−1
< ϕ < F2k−1

F2k−2
.

Case 2: d
c = F2k+1

F2k
, and thus F2k

F2k−1
< ϕ < F2k+1

F2k
.

(Note that in both cases we indeed have ad − bc = 1 by Lemma 1, Item 3.)
We compute Area(R) using Items 1 to 2 of Lemma 1. Let Δx and Δy denote
the side-lengths of R.



Piercing All Translates of a Set of Axis-Parallel Rectangles 305

Case 1: We have

Δx = (a + c) + (b + d)ϕ = (F2k−1 + F2k−2) + (F2k + F2k−1)ϕ

= F2k + F2k+1ϕ = ϕ2k+1,

Δy = (a − c)ϕ − (b − d) = (F2k−1 − F2k−2)ϕ − (F2k − F2k−1)

= F2k−3ϕ − F2k−2 = ϕ−(2k−3),

thus Area(R) = Δx · Δy = ϕ2k+1ϕ−(2k−3) = ϕ4, as required.

Case 2: Similarly, we have

Δx = (a + c) + (b + d)ϕ = (F2k−1 + F2k) + (F2k + F2k+1)ϕ

= F2k+1 + F2k+2ϕ = ϕ2k+2,

Δy = (a − c)ϕ − (b − d) = (F2k−1 − F2k)ϕ − (F2k − F2k+1)

= −F2k−2ϕ + F2k−1 = ϕ−(2k−2),

thus Area(R) = Δx · Δy = ϕ2k+2ϕ−(2k−2) = ϕ4, as required. ��

With Lemma 2 at hand, the proof of Theorem 2 is straightforward.

Proof (of Theorem 2). Let R ∈ F be the smallest-area rectangle among those
in F . By Lemma 2, the lattice Λϕ pierces all axis-parallel rectangles with area
at least ϕ4. Thus the rescaled lattice Λ′

ϕ =
√

Area(R)/ϕ4 · Λϕ pierces all axis-
parallel rectangles with area at least Area(R). In particular, it pierces all rect-
angles in F . Since the fundamental parallelogram of Λϕ has area ϕ2 + 1, the
fundamental parallelogram of Λ′

ϕ has area (ϕ2 + 1)/ϕ4 · Area(R) and gives an
approximation factor ϕ4/(ϕ2 + 1) = 1 + 2

5

√
5 < 1.895 as claimed. Note that

computing the smallest-area rectangle and the rescaling only take O(n) time. ��

Remarks. We have learned from the recent article of Kritzinger and Wiart [31]
that a rescaled version of the lattice Λϕ was considered several years ago by
Thomas Lachmann (unpublished result) as a candidate for an upper bound on
the minimum dispersion A(n) of an n-point set in a unit square. Yet another
lattice resembling Λϕ was studied in the same context by Ismăilescu [25].

It is easy to check that the lattice Λϕ yields the upper bound
lim infn→∞ nA(n) ≤ ϕ4/(ϕ2 + 1), i.e., matching exactly the dispersion bound
obtained by Kritzinger and Wiart using a suitable modification of the so-called
Fibonacci lattice [16]. It is worth noting that: (i) the lattice Λϕ yields the above
dispersion result with a cleaner and shorter proof; (ii) the Fibonacci lattice as
well as its modification lead to this bound only by a limiting process; and perhaps
more importantly, (iii) the upper bound in Lemma 2 on the maximum rectangle
area amidst points in this lattice holds universally across the entire plane and
not only inside a bounding box with n points (i.e., one does not need to worry
about rectangles with a side supported by the bounding box boundary).
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4 Conclusion

We list several open questions.

1. (Computational complexity.) Given a family F of n axis-parallel rectangles,
what is the computational complexity of determining the optimal density
πT (F) of a piercing set for all translates of all members in F? (For the deci-
sion problem: given a threshold τ , is there a piercing set whose density is at
most τ?) Is the problem algorithmically solvable? Is there a polynomial-time
algorithm? And how about the complexity of determining the optimal density
πL(F) of a piercing lattice for F?

2. (Exact answer for two rectangles.) For two rectangles, what is the actual value
of πT (w, h) (or its reciprocal AT (w, h)) when 	w
 = 	h
 ≥ 2? Is it the same
as πL(w, h)?

3. (Other shapes.) How about pairs of different shapes such as triangles?
4. (Congruent copies.) How about requiring that the point set pierces all con-

gruent copies of a set of shapes, not only translates? See for instance [4] where
it is shown that when F consists of a single square (or rectangle), a suitable
triangular grid gives an upper bound on the density.

5. (Discrete version.) Consider a discrete version where: (i) each shape in the
family F consists of cells of an infinite square grid; (ii) we consider translates
by integer vectors only; and (iii) instead of piercing with a point set we
pierce with a set of grid cells. What can be said about this (lowest possible)
discrete hitting density πdisc

T (F) or its reciprocal Adisc
T (F)? As one example,

we note that Theorems 1 and 2 can be adapted to the discrete setting in a
straightforward way: When F consists of two rectangles Ra×b, Rb×a, where
b = k · a + r (with k ≥ 1 and r < a), the adapted Theorem 1 yields an upper
bound Adisc

T ({Ra×b, Rb×a}) ≤ k · a2 + r2 that solves the puzzle we mentioned
in the introduction. Furthermore, when F consists of all rectangles that have
area at least K, then the adapted Theorem 2 gives an F-piercing set of cells
with density (1 + 2

5

√
5)/K. In the language of Fiat and Shamir [16], there

is a probing strategy that locates a battleship of K squares in a rectangular
sea of M squares (where M → ∞) in at most 1.895M/K probes. This is a
substantial improvement over the 3.065M/K bound from [16].
As another example, when F consists of two L-triominoes that are centrally
symmetric to each other, one can show that Adisc

T (F) = 3. In contrast, when F
consists of two (or more) L-triominoes, one of which is obtained from another
one by rotation by 90◦, one can show that Adisc

T (F) = 2.
6. (Higher dimensions.) Consider the problem in higher dimensions. When d = 3

and |F| = 2, stretching along the coordinate axis yields a non-trivial case
{(a, b, 1), (1, 1, c)} where a, b, c ≥ 1. The trivial upper bound AT (a, b, c) ≤
min{ab, c} can be matched in two “easy” cases:
(i) When c ≥ �a�·�b� then “piercing 1×1×c is free”: Briefly, in the plane z = 0
we use a lattice with basis [a, 0], [0, b] and in the planes z ∈ Z we consider
�a�·�b� “integer horizontal offsets” [u, v], u = 0, . . . , �a�−1, v = 0, . . . , �b�−1
and use them periodically (in any order).
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(ii) When c ≤ 	a
 · 	b
 then “piercing a × b × 1 is free”: Briefly, along the
line x = y = 0 we put points at k · 	a
 · 	b
 for k ∈ Z. For other vertical
lines through integer points we use 	a
 · 	b
 “integer vertical offsets” such
that every 	a
 · 	b
 horizontal grid-rectangle contains all offsets.
Together, the easy cases (i) and (ii) cover the case when a ∈ Z, b ∈ Z, c ∈ R

and the case when ab and c “differ by a lot”. Another easy case is a = 1,
when the planar bounds apply (for two rectangles with sizes 1× b and c× 1).
Finally, from the algorithmic standpoint, given a finite collection of axis-
parallel boxes in R

d, what approximations for the piercing density can be
obtained?

7. (Disconnected shapes.) What can be said about disconnected shapes? The
easiest variant seems to be when each shape is a set of integer points on the
line (or in Z

d) and we consider translates by integer vectors only. Note that the
piercing density and the lattice piercing densities may differ in this case; for
instance, when S = {0, 2} ⊂ Z, these densities are 1/2 and 1, respectively. In
view of the connection to covering mentioned in Sect. 1, it is worth mentioning
that the problem of tiling the infinite integer grid with finite clusters is only
partially solved [35]; however, covering is generally easier than tiling.

Acknowledgments. We would like to thank Wolfgang Mulzer and Jakub Svoboda
for helpful comments on an earlier version of this work.
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