
Search for Combinatorial Objects Using
Lattice Algorithms – Revisited

Alfred Wassermann(B)

Department of Mathematics, University of Bayreuth, 95440 Bayreuth, Germany
alfred.wassermann@uni-bayreuth.de

Abstract. In 1986, Kreher and Radziszowski were the first who used
the famous LLL algorithm to construct combinatorial designs. Subse-
quently, lattice algorithms have been applied to construct a large variety
of objects in design theory, coding theory and finite geometry. Unfor-
tunately, the use of lattice algorithms in combinatorial search is still
not well established. Here, we provide a list of problems which could
be tackled with this approach and give an overview on exhaustive search
using lattice basis reduction. Finally, we describe a different enumeration
strategy which might improve the power of this method even further.

Keywords: Lattice enumeration · Combinatorial search

1 Introduction

In 1982, Lenstra, Lenstra and Lovász published the groundbreaking LLL algo-
rithm, which finds in polynomial time “short” vectors in a lattice. As soon as in
1983, Lagarias and Odlyzko [44] applied the LLL algorithm successfully to break
certain cryptosystems based on the subset sum problem.

It seems that in the field of constructive combinatorics, Kreher and Radzis-
zowski were the first who used the LLL algorithm. In [40,41] they used it to con-
struct a 6-(14, 7, 4) design. Subsequently, lattice basis reduction was used by the
author and collaborators to find the first combinatorial designs for t = 7, 8, and
9 with small parameters and other variants of designs, see e.g. [2–4,14,42,43,45]
(see [16] for a comprehensive overview on combinatorial design theory). The
same program has been used successfully in the search for large sets of
designs [5,46,47], in coding theory (linear codes, codes over rings, two-weight
codes, covering codes) [6,12,32,34,37,54,62], subspace designs and their variants
[8–11,13,33], as well as in finite geometry [7] and other problems.

All of these combinatorial search problems can be reduced to the solution of
a Diophantine linear system which is a generalization of the subset sum problem
studied by Lagarias and Odlyzko [44] and has the following form.

Let A ∈ Z
m×n, d ∈ Z

m, and l, r ∈ Z
n. Determine all vectors x ∈ Z

n such
that

A · x = d and l ≤ x ≤ r , (1)

where l ≤ r for vectors l, r ∈ Z
n is defined as li ≤ ri for all 0 ≤ i < n.

c© Springer Nature Switzerland AG 2021
P. Flocchini and L. Moura (Eds.): IWOCA 2021, LNCS 12757, pp. 20–33, 2021.
https://doi.org/10.1007/978-3-030-79987-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79987-8_2&domain=pdf
http://orcid.org/0000-0001-5946-668X
https://doi.org/10.1007/978-3-030-79987-8_2

Search for Combinatorial Objects Using Lattice Algorithms – Revisited 21

With the substitution x := x − l, d := d − A · l and r := r − l, it suffices to
consider l = 0 as a lower bound on the variables.

Kramer and Mesner [39] reduced the search for combinatorial designs with
prescribed automorphism group to such a problem.

Solving equation (1) is a special instance of the multi-dimensional subset
sum problem which is known to be NP-complete [22]. Since problem (1) can be
reduced to many other NP-hard problems it is no surprise that there are many
solving algorithms available. See [23,31,49] for a survey.

In case the right hand side vector d in (1) is the all-one vector, the problem is
also called exact cover problem and the fastest algorithm seems to be the dancing
links algorithm1 by Knuth [35] or – in special cases – maximum clique search,
see e.g. [53]. In case there is a “≤” instead of “=” in (1), it seems that typical
integer linear programming algorithms [24,27] are most promising.

However, in the special case that there is “=” in (1), and d is much larger
than the all-one vector, and r is the all-one vector (i.e. solution vectors x are
{0, 1} vectors), reduction of the problem to a lattice point enumeration problem
has been very successful as shown in the above references. The algorithm has
been described in detail in [60,61] but unfortunately there are not many other
implementations if any. This may be due to the widespread misconception that
lattice basis reduction is only able to find random solutions which was the case
in the implementation of [41]. It has been overlooked that lattice basis reduction
can be followed by an exhaustive enumeration of all solutions of (1) with a
backtracking algorithm.

In the sequel we will give an overview to exhaustive enumeration of all solu-
tions of (1) using lattice point enumeration and also hint to a different enumera-
tion scheme (limited discrepancy search) which allows to find the first solutions
sometimes much more quickly.

2 Lattices

Let R
n denote the real Euclidean n-dimensional space. Its elements v ∈ R

n are
written as column vectors v = (v0, v1, . . . , vn−1)�. Let 〈v,w〉 =

∑
i∈n vi · wi be

the standard bilinear form for v,w ∈ R
n. For q ∈ R, q ≥ 1, the �q-norm is

defined by
‖−‖q : Rn → R : v 	→ (∑

i∈n

|vi|q
)1/q

,

and the �∞-norm is defined as:

‖−‖∞ : Rn → R : v 	→ max
i∈n

|vi| .

Let b(0),b(1), . . . ,b(m−1) be m linearly independent vectors in R
n. The discrete

additive subgroup of Rn

1 Updated versions available at https://www-cs-faculty.stanford.edu/∼knuth/progr
ams.html.

https://www-cs-faculty.stanford.edu/~knuth/programs.html
https://www-cs-faculty.stanford.edu/~knuth/programs.html

22 A. Wassermann

L(b(0),b(1), . . . ,b(m−1)) = {
m−1∑

i=0

ui · b(i) | ui ∈ Z, i ∈ m } ⊂ R
n

is called lattice with basis b(0),b(1), . . . ,b(m−1).
The rank m of a lattice L with basis b(0),b(1), . . . ,b(m−1) is the dimension

of the R-subspace 〈b(0),b(1), . . . ,b(m−1)〉 which is spanned by the basis. The
corresponding n × m-matrix

B =
(
b(0) | . . . | b(m−1)

)

is called a generator matrix of L if L = L(b(0),b(1), . . . ,b(m−1)).
For a lattice L ⊂ R

n, the most important algorithmic problems are:

– Shortest vector problem (SVP): Find an �q-shortest vector in L, i.e. find an
element w in L such that

‖w‖q = min{‖w′‖q | w′ ∈ L \ {0}}.

This question is most interesting for the Euclidean norm �2, the �1-norm, and
the �∞-norm.

– Closest vector problem (CVP): Given a vector v ∈ R
n, find a lattice vector

w ∈ L which is closest to v in the �q-norm, i.e. such that

‖v − w‖q = min{‖v − w′‖q | w′ ∈ L} .

– Lattice basis reduction: Given a basis b(0),b(1), . . . ,b(m−1) of the lattice L
compute a new basis b′(0),b′(1), . . . ,b′(m−1) of L consisting of “shortest”
vectors. Here, the meaning of short will have to be made precise, compare
Fig. 1.

Fig. 1. Two different bases for b(0),b(1) and b(0)′
,b(1)′

of the same lattice

Search for Combinatorial Objects Using Lattice Algorithms – Revisited 23

For an overview on the algorithmic complexity of the above problems we refer
e.g. to [50] and the literature cited there.

Concerning the last of the mentioned problems, we remark that the problem
of finding a basis consisting of shortest vectors is not exactly defined provided
the dimension is at least three. In fact, many different versions of the concept
of a shortest basis exist. Two classical concepts are the reduced bases in the
sense of Minkowski [51] and the reduced quadratic forms in the sense of Korkine
and Zolotarev [38] which rely on the computation of shortest lattice vectors in
sublattices and related lattices. Therefore, the problem of computing a reduced
lattice basis in the sense of Minkowski or Korkine and Zolotarev is at least as
hard as the shortest vector problem.

Let B = (b(0) | . . . | b(m−1)) be a generator matrix of a lattice L. The
matrix G(B) = (〈b(i),b(j)〉)i,j∈m ∈ R

m×m is called Gram matrix of the lattice
basis. The volume of the lattice L is defined as Vol(L) = det(L) =

√
det(G(B)),

it does not depend on the choice of the basis. Further invariants of a lattice –
independent from the choice of the basis – are the successive minima of Min-
kowski [51].

Let L ⊂ R
n be a lattice of rank m. For an integer i ∈ m let λi(L) be the

least positive real number for which there exist i+1 linearly independent lattice
vectors v ∈ L \ {0} with ‖v‖2 ≤ λi(L). The numbers λ0(L), λ1(L), . . . , λm−1(L)
are the successive minima of the lattice L. From the definition it follows that
λ0(L) ≤ λ1(L) ≤ . . . ≤ λm−1(L). A classical result due to Hermite [26] gives an
upper bound for the �2-shortest vector of a lattice L ⊂ Z

n, namely L contains a
nonzero vector v such that

‖v‖22 ≤ (4/3)(m−1)/2 · det(L)2/m .

3 Lattice Basis Reduction

Let b(0),b(1), . . . ,b(m−1) be a set of linearly independent vectors ∈ R
n.

Gram–Schmidt orthogonalization (GSO) is the orthogonal family defined for
0 ≤ i < m by

b̂(i) = b(i) −
i−1∑

j=0

μij · b̂(j) ,

where

μij =
〈b(i), b̂(j)〉
〈b̂(j), b̂(j)〉 . (2)

For 0 ≤ t < m and v ∈ R
n the orthogonal projection πt(v) is defined by

πt : Rn → 〈b(0),b(1), . . . ,b(t−1)〉⊥, v 	→
m−1∑

j=t

〈v, b̂(j)〉
〈b̂(j), b̂(j)〉 · b̂(j)

and b̂(t) = πt(b(t)). The orthogonal projection of a lattice L is the lattice Lt

defined by
Lt = L(πt(b(t)), πt(b(t+1)), . . . , πt(b(m−1))) .

24 A. Wassermann

A basis b(0),b(1), . . . ,b(m−1) of a lattice L ⊂ R
n is reduced in the sense of

Korkine and Zolotarev [38] if

1. b(0) is an �2-shortest vector in L and
2. for 0 ≤ t < m, b̂(t) is an �2-shortest vector in the lattice Lt(b(t), . . . ,b(m−1)).

However, no polynomial time algorithm to compute a Korkine–Zolotarev-
reduced basis is known. A major breakthrough was achieved by Lenstra, Lenstra,
and Lovász in their seminal work [48]. They compute a different type of reduced
basis, which is now called an LLL-reduced basis, see the original paper [48] or
textbooks like [15,52].

The LLL algorithm computes an LLL-reduced basis. The input is a basis
b(0), . . . ,b(m−1) of the lattice L of rank m.

(1) Let δ ∈ R with 1
4 < δ < 1.

(2) Set k := 0.
(3) do

(4) 1. for j = 0, . . . , k − 1
(5) replace b(k) by b(k) − �μkj�b(j),
(6) where μkj is the Gram-Schmidt coefficient (2).
(7) 2. if δ‖πk(b(k))‖2 > ‖πk(b(k+1))‖2 then

(8) swap b(k+1) and b(k)

(9) update b̂(k+1), b̂(k) and μ
(10) set k := max(k − 1, 0)
(11) else

(12) set k := k + 1
(13) until k = m − 1. �
The output b(0),b(1), . . . ,b(m−1) of the LLL-algorithm with 1

4 < δ < 1 is called
δ-reduced basis of the lattice L.

The LLL algorithm runs in polynomial time in m, n, and the size of the
entries of the basis vectors. In [52, Chapters 4 and 5] recent developments are
described, e.g. how to approximate the LLL algorithm by using floating point
numbers.

The LLL algorithms can not be expected to compute shortest vectors in a
lattice. Let b(0),b(1), . . . ,b(m−1) be a δ-reduced basis of the lattice L ⊂ Q

n.
Then, the following bounds can be proved [48].

‖b(j)‖2 ≤ (
4

4δ − 1
)i · ‖b̂(i)‖2 for 0 ≤ j ≤ i < m . (3)

det(L) ≤
m−1∏

i=0

‖b(i)‖ ≤ (
4

4δ − 1
)m(m−1)/4 · det(L) . (4)

‖b(0)‖ ≤ (
4

4δ − 1
)(m−1)/4 · det(L)1/m . (5)

The fascinating mystery behind the LLL algorithm is that in many cases it
produces a much better approximation to the shortest vector of the lattice than
the proven bounds guarantee.

Search for Combinatorial Objects Using Lattice Algorithms – Revisited 25

Nevertheless, a full reduction in the sense of Korkine and Zolotarev would
require exponential complexity. In [56,57] blockwise Korkine–Zolotarev reduction
(BKZ) was introduced which restricts enumeration in the sense of Korkine and
Zolotarev to blocks of a fixed size β of basis vectors, i.e. searches by exhaustive
enumeration for nontrivial integer linear combinations

ukb(k) + uk+1b(k+1) + . . . + uk+β−1b(k+β−1)

which minimize the Euclidean length of

πk(ukb(k) + uk+1b(k+1) + . . . + uk+β−1b(k+β−1)) .

The original LLL algorithm can be interpreted as blockwise Korkine–Zolotarev
reduction for β = 2. For a further description of improved practical versions and
recent developments, e.g. sieving methods, we refer to [52,57,58]. In a blockwise
Korkine–Zolotarev-reduced basis of a lattice of rank m the factor (4

4δ−1)(m−1)/2

can be replaced by (1 + ε)m for any fixed ε > 0. Of course, the time complexity
increases exponentially as ε approaches 0.

4 Lattice Embedding of Diophantine Linear Systems

In [44], Lagarias and Odlyzko described the reduction of problem (1) for {0, 1}
vectors x, i.e. r = 1. In [17,18] their embedding of (1) into a lattice problem was
be improved. In turn, the following generalization to arbitrary upper bounds r
has been given in [61].

The basis of the lattice to which the LLL algorithm is applied consists of the
columns of the following generator matrix of size (m + n + 1) × (n + 1):

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−N · d N · A
−rmax 2c1 0 · · · 0
−rmax 0 2c2 · · · 0

...
...

. . .
...

−rmax 0 · · · · · · 2cn

rmax 0 · · · · · · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(6)

where N ∈ Z>0 is a large constant and

rmax = lcm{r1, . . . , rn} and ci =
rmax

ri
, 1 ≤ i ≤ n .

If N is large enough, see [1], the reduced basis will consist of n − m + 1 vectors
with only zeroes in the first m rows and m vectors which contain at least one
nonzero entry in the first m rows. The latter vectors can be removed from the
basis. From the remaining n−m+1 vectors we can delete the first m rows which
contain only zeroes. This gives a basis b(0), b(1), . . ., b(n−m) ∈ Z

n+1.
In the second step of the algorithm, see Sect. 5, all integer linear combina-

tions of the basis vectors b(0), b(1), . . ., b(n−m) ∈ Z
n+1 are enumerated which

correspond to solutions of (1).

26 A. Wassermann

Theorem 1 ([61]). Let

w = u0 · b(0) + u1 · b(1) + . . . + un−m · b(n−m) (7)

be an integer linear combination of the basis vectors with w0 = rmax.
w is a solution of the system (1) if and only if

w ∈ Z
n+1 where − rmax ≤ wi ≤ rmax, 1 ≤ i ≤ n .

5 Lattice Point Enumeration

Usually, we are interested in finding all solutions to problem (1), or to conclude
that there are none. In terms of the associated lattice (6), this mean that we wish
to enumerate all lattice points which are subject to a certain set of constraints.
Such an approach has first been described by Ritter [55] for {0, 1} problems.
Here we solve the general problem with arbitrary bounds on the variables.

A priori, a lattice L = {∑i∈m uib(i) | ui ∈ Z} of rank m contains infinitely
many elements. However, it will turn out that there are bounds on the integers
|ui|, i ∈ m, which depend solely on the lattice basis b(0),b(1), . . . ,b(m−1). These
bounds reduce the problem of finding solution vectors to a finite set of lattice
vectors. Each solution vector v has the upper bounds

‖v‖22 ≤ (n + 1) · r2max and ‖v‖∞ ≤ rmax .

The exhaustive enumeration is arranged as backtracking algorithm. Starting
from un−m ∈ Z, successively all possible ut ∈ Z for t = n−m,n−m−1, . . . , 1, 0
are tested. The enumeration can be pruned at stage t if certain conditions are
violated. These pruning tests have quite a long history and are based on the
work of [19–21,28,29,36,55].

In each level t of the backtracking algorithm, w(t) = πt(
∑n−m

j=t ujb(j)) is
the projection of the linear combination of the already fixed variables ut, ut+1,
. . ., un−m into the subspace of R

n+1 which is orthogonal to the linear span
〈b0, . . . , bt−1〉.

Starting from w(n−m+1) = 0, w(t) can be computed iteratively from w(t+1)

by

w(t) = (
n−m∑

i=t

uiμit)b̂(t) + w(t+1)

with Gram-Schmidt coefficients μit. In each level t, n − m ≥ t ≥ 0, all possible
integer values for the variable ut are tested. The following two main tests allow
to restrict the possible values of ut.

First pruning condition. For all j ≤ t the vectors b̂(j) are orthogonal to w(t+1)

and therefore

‖w(t)‖22 = (
n−m∑

i=t

uiμit)2‖b̂(t)‖22 + ‖w(t+1)‖22 .

Search for Combinatorial Objects Using Lattice Algorithms – Revisited 27

We notice that w(0) =
∑n−m

j=0 ujb(j) . Using ‖w(j)‖2 ≥ ‖w(t)‖2 for j ≤ t we can
backtrack as soon as

‖w(t)‖22 > c := (n + 1) · r2max .

For fixed ut+1, . . ., un−m, this gives a bound for ut:

(ut +
n−m∑

i=t+1

uiμit)2 ≤ c − ‖w(t+1)‖22
‖b̂(t)‖22

.

Second pruning condition. The second test is an adaption to the special situation
that we are searching for an integer linear combination of the basis vectors
which consists solely of components whose absolute value is bounded by rmax.
It is based on the following theorem by Ritter [55].

Theorem 2 ([55]). If the given sequence of integers ut, ut+1, . . ., un−m ∈ Z

can be extended to u0, . . ., ut, . . ., un−m ∈ Z such that
∑n−m

i=0 uib(i) is a solution
of (1), then for all yt, yt+1, . . ., yn−m ∈ R:

|
n−m∑

i=t

yi‖w(i)‖22| ≤ rmax · ‖
n−m∑

i=t

yiw(i)‖1 .

We use this theorem in the enumeration algorithm in the following way. Taking
(yt, yt+1, . . . , yn−m) = (1, 0, . . . , 0) results in the test

|w(t)‖22 ≤ rmax‖w(t)‖1 .

If this inequality is violated for some vector w(t) = xb̂(t) + w(t+1), then it will
also fail for all vectors of the form (x + r)b̂(t) + w(t+1) with r ∈ Z and xr > 0.

Summarizing, a high level description of the algorithm to solve (1) is as
follows.

Lattice point enumeration

Given the generator matrix (6) of the lattice L ⊂ R
m+n+1 of rank n + 1 of

problem (1) all nonzero vectors v ∈ L such that ‖v‖∞ ≤ rmax are determined.

– Compute an LLL/BKZ-reduced basis b(0),b(1), . . . ,b(n) of the lattice L.
– Delete the unnecessary columns and rows of the generator matrix. The

remaining basis b(0),b(1), . . . ,b(n−m) ⊂ R
n+1 has rank n − m + 1.

– Compute the Gram–Schmidt vectors b̂(0), b̂(1), . . . , b̂(n−m) together with the
Gram–Schmidt coefficients μij .

– Set R := (n + 1) · r2max.
– The recursive backtracking algorithm enum() is initiated with the call of

enum(n − m,0).

(1) function enum(t, w′)
(2) begin

(3) onedirection := false

28 A. Wassermann

(4) yt :=
∑n−m

i=t+1 uiμit

(5) ut := �−yt�
(6) while true
(7) w := (

∑n−m
i=t uiμit)b̂(t) + w′

(8) if ‖w‖22 > R then return /* step back */
(9) if t > 0 then

(10) if ‖w‖22 > rmax · ‖w‖1 then

(11) if onedirection then return /* step back */
(12) else

(13) next(ut)
(14) onedirection := true
(15) goto line (7)
(16) end if

(17) else

(18) enum(t − 1, w) /* step forward */
(19) else /* t = 0 → solution */
(20) output solution w
(21) next(ut)
(22) end while

(23) end

The procedure next() in lines (13) and (21) determines the next possible integer
value of the variable ut. Initially, when entering a new level t, in line (5) ut is set to
be the closest integer value of −yt := −∑n−m

i=t+1 uiμit, say u1
t . The next value u2

t of
ut is the second closest integer to −yt followed by u3

t and so forth. In other words,
the values of ut alternate with increasing distance around −yt.

If the condition in line (10) is true then we do one more regular call of the
procedure next() in line (13), i.e. ut is set to be the next closest integer to −yt. In
Fig. 2 this happens while u4

t is determined. After that, the enumeration proceeds
only in this remaining direction, see the computation of u5

t in Fig. 2. Finally, the
second time when the condition in line (10) is true, the algorithm steps back and
increases the enumeration level, see line (11).

6 Limited Discrepancy Search

For some problems of the form (1) it might be not interesting or may be impossi-
ble to enumerate all solutions. But nevertheless one is interested to find at least
one solution as quick as possible. It turns out that in this situation, the enumer-
ation algorithm in the previous section might not be optimal. In the following
we will try to motivate a different enumeration algorithm.

The enumeration algorithm in Sect. 5 performs depth first search. In particu-
lar, when entering enumeration level t, ut is chosen for w := (

∑n−m
i=t uiμit)b̂(t)+

w′ in line (7) such that ‖w‖2 is minimal among all choices for ut. In other words,
the depth first search is organized using the heuristic that choosing in each level

Search for Combinatorial Objects Using Lattice Algorithms – Revisited 29

Fig. 2. Enumeration in level t and pruning after u3
t

the vector w such that ‖w‖2 is minimal will most probably lead to a solution
vector. However, it may be that this choice for ut in one of the first levels might
lead to no solution, but nevertheless the algorithm will enumerate a huge search
tree below ut.

This is a general problem of depth first search algorithm. In 1995, Harvey
and Ginsberg [25] described a simple, novel enumeration scheme called limited
discrepancy search which aims to overcome this weakness of depth first search.

Assume that a backtrack algorithm has to examine a search tree. Each level
corresponds to a variable and the algorithm has to assign a value to that variable,
followed by a test if this assignment might lead to a solution. If yes, we can
proceed to the next level, otherwise we have to assign a different value. If we
have tested all values, we have to step back to the previous level. If values could
be assigned to all variables, a solution has been found.

We assume that variable ordering is fixed and in each level of the backtrack-
ing there exists a heuristic which determines the order in which the values are
assigned to the variable corresponding to that enumeration level. A discrepancy
is defined as an deviation from the heuristic.

Harvey and Ginsberg suggest to enumerate the search tree in increasing num-
ber of discrepancies. In the first step, only the optimal choice in each level of
enumeration in Sect. 5 is assigned to the variables until there is a contradiction
or a solution is found. In the next step, all possible paths in the search tree with
exactly one deviation (i.e. discrepancy) from the heuristic are examined. After
that, all paths in the search tree with two deviations from the optimal choice
are enumerated, and so forth.

In [25], the algorithm is given for binary search trees. In [30], the algorithm
is described for general search trees, also a stop condition is given which allows
to use the algorithm for exhaustive enumeration. The latter is mostly interesting
to show the non-existence of solutions. There are other variants, see e.g. [59] for
an overview.

Limited discrepancy search requires higher book keeping efforts than depth
first search. Therefore, enumerating the whole search tree with limited discrep-
ancy search will always be slower than with depth first search. But first tests with

30 A. Wassermann

the lattice point enumeration algorithm and its value order heuristic in Sect. 5
show sometimes dramatic improvements for finding the first solution in hard
combinatorial search problems mentioned in the introduction. A more detailed
comparison of the two enumeration algorithms is in preparation.

It may be remarked that limited discrepancy search can also be useful for
the enumeration algorithm in blockwise Korkine–Zolotarev reduction.

References

1. Aardal, K., Hurkens, C., Lenstra, A.K.: Solving a linear diophantine equation
with lower and upper bounds on the variables. In: Bixby, R.E., Boyd, E.A., Ŕıos-
Mercado, R.Z. (eds.) IPCO 1998. LNCS, vol. 1412, pp. 229–242. Springer, Heidel-
berg (1998). https://doi.org/10.1007/3-540-69346-7 18

2. Betten, A., Kerber, A., Laue, R., Wassermann, A.: Simple 8-designs with small
parameters. Des. Codes Crypt. 15, 5–27 (1998)

3. Betten, A., Kerber, A., Kohnert, A., Laue, R., Wassermann, A.: The discovery of
simple 7-designs with automorphism group PΓL(2, 32). In: Cohen, G., Giusti, M.,
Mora, T. (eds.) AAECC 1995. LNCS, vol. 948, pp. 131–145. Springer, Heidelberg
(1995). https://doi.org/10.1007/3-540-60114-7 10

4. Betten, A., Klin, M., Laue, R., Wassermann, A.: Graphical t-designs. Discrete
Math. 197(198), 111–121 (1999)

5. Betten, A., Laue, R., Wassermann, A.: New t-designs and large sets of t-designs.
Discrete Math. 197(198), 83–109 (1999)

6. Bouyukliev, I., Bouyuklieva, S., Kurz, S.: Computer classification of linear codes.
CoRR abs/2002.07826 (2020). https://arxiv.org/abs/2002.07826

7. Braun, M., Kohnert, A., Wassermann, A.: Construction of (n, r)-arcs in PG(2, q).
Innovations Incidence Geom. 1, 133–141 (2005)

8. Braun, M., Kerber, A., Laue, R.: Systematic construction of q-analogs of t-(v, k, λ)-
designs. Des. Codes Crypt. 34(1), 55–70 (2005). https://doi.org/10.1007/s10623-
003-4194-z

9. Braun, M., Kiermaier, M., Kohnert, A., Laue, R.: Large sets of subspace designs.
J. Comb. Theory Ser. A 147, 155–185 (2017). https://doi.org/10.1016/j.jcta.2016.
11.004

10. Braun, M., Kiermaier, M., Wassermann, A.: Computational methods in subspace
designs. In: Greferath, M., Pavčević, M.O., Silberstein, N., Vázquez-Castro, M.Á.
(eds.) Network Coding and Subspace Designs. SCT, pp. 213–244. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-70293-3 9

11. Braun, M., Kohnert, A., Österg̊ard, P.R.J., Wassermann, A.: Large sets of t-designs
over finite fields. J. Comb. Theory A 124, 195–202 (2014)

12. Braun, M., Kohnert, A., Wassermann, A.: Optimal linear codes from matrix
groups. IEEE Trans. Inform. Theory 51(12), 4247–4251 (2005). https://doi.org/
10.1109/TIT.2005.859291

13. Buratti, M., Kiermaier, M., Kurz, S., Nakić, A., Wassermann, A.: q-analogs of
group divisible designs. In: Pseudorandomness and Finite Fields, Radon Series on
Computational and Applied Mathematics, vol. 23. DeGruyter (2019)

14. Buratti, M., Wassermann, A.: On decomposability of cyclic triple systems. Aus-
tralas. J. Comb. 71(2), 184–195 (2018)

15. Cohen, H.: A Course in Computational Algebraic Number Theory. Graduate Texts
in Mathematics, vol. 138. Springer, Berlin (1993). https://doi.org/10.1007/978-3-
662-02945-9

https://doi.org/10.1007/3-540-69346-7_18
https://doi.org/10.1007/3-540-60114-7_10
https://arxiv.org/abs/2002.07826
https://doi.org/10.1007/s10623-003-4194-z
https://doi.org/10.1007/s10623-003-4194-z
https://doi.org/10.1016/j.jcta.2016.11.004
https://doi.org/10.1016/j.jcta.2016.11.004
https://doi.org/10.1007/978-3-319-70293-3_9
https://doi.org/10.1109/TIT.2005.859291
https://doi.org/10.1109/TIT.2005.859291
https://doi.org/10.1007/978-3-662-02945-9
https://doi.org/10.1007/978-3-662-02945-9

Search for Combinatorial Objects Using Lattice Algorithms – Revisited 31

16. Colbourn, C.J., Dinitz, J.H.: Handbook of Combinatorial Designs, Second Edition
(Discrete Mathematics and Its Applications). Chapman & Hall/CRC, Boca Raton
(2006)

17. Coster, M., Joux, A., LaMacchia, B., Odlyzko, A., Schnorr, C., Stern, J.: Improved
low-density subset sum algorithms. Comput. Complex. 2, 111–128 (1992)

18. Coster, M.J., LaMacchia, B.A., Odlyzko, A.M., Schnorr, C.P.: An improved low-
density subset sum algorithm. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS,
vol. 547, pp. 54–67. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-
46416-6 4

19. Coveyou, R., MacPherson, R.: Fourier analysis of uniform random number gener-
ators. J. ACM 14, 100–119 (1967)

20. Dieter, U.: How to calculate shortest vectors in a lattice. Math. Comput. 29(131),
827–833 (1975)

21. Fincke, U., Pohst, M.: Improved methods for calculating vectors of short length in
a lattice, including a complexity analysis. Math. Comput. 44, 463–471 (1985)

22. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company, New York (1979)

23. Gibbons, P.B., Österg̊ard, P.R.J.: Computational methods in design theory. In:
Colbourn, C.J., Dinitz, J.H. (eds.) Handbook of Combinatorial Designs, chap.
VII.6, 2 edn, pp. 755–783. Chapman & Hall/CRC, Boca Raton (2007)

24. Gurobi Optimization: Gurobi optimizer reference manual (2016). http://www.
gurobi.com

25. Harvey, W.D., Ginsberg, M.L.: Limited discrepancy search. In: Proceedings of the
14th International Joint Conference on Artificial Intelligence, IJCAI 1995, vol. 1.
pp. 607–613. Morgan Kaufmann Publishers Inc., San Francisco (1995)

26. Hermite, C.: Extraits de lettres de M.Ch. Hermite à M. Jacobi sur différents objets
de la théorie des nombres. J. reine angew. Math. 40, 279–290 (1850)

27. IBM: ILOG CPLEX Optimizer (2010)
28. Kaib, M., Ritter, H.: Block reduction for arbitrary norms. Preprint, Universität

Frankfurt (1995)
29. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math.

Oper. Res. 12, 415–440 (1987)
30. Karoui, W., Huguet, M.-J., Lopez, P., Naanaa, W.: YIELDS: a yet improved

limited discrepancy search for CSPs. In: Van Hentenryck, P., Wolsey, L. (eds.)
CPAIOR 2007. LNCS, vol. 4510, pp. 99–111. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-72397-4 8

31. Kaski, P., Österg̊ard, P.R.: Classification Algorithms for Codes and Designs.
Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-28991-7

32. Kiermaier, M., Kurz, S., Solé, P., Stoll, M., Wassermann, A.: On strongly walk
regular graphs, triple sum sets and their codes. ArXiv e-prints, abs/1502.02711
(2020)

33. Kiermaier, M., Laue, R., Wassermann, A.: A new series of large sets of subspace
designs over the binary field. Des. Codes Crypt. 86(2), 251–268 (2018). https://
doi.org/10.1007/s10623-017-0349-1

34. Kiermaier, M., Wassermann, A., Zwanzger, J.: New upper bounds on binary linear
codes and a Z4-code with a better-than-linear Gray image. IEEE Trans. Inf. Theory
62(12), 6768–6771 (2016). https://doi.org/10.1109/TIT.2016.2612654

35. Knuth, D.E.: Dancing links. In: Davies, J., Roscoe, B., Woodcock, J. (eds.) Millen-
nial Perspectives in Computer Science: Proceedings of the 1999 Oxford-Microsoft
Symposium in Honour of Sir Tony Hoare. Palgrave (2000)

https://doi.org/10.1007/3-540-46416-6_4
https://doi.org/10.1007/3-540-46416-6_4
http://www.gurobi.com
http://www.gurobi.com
https://doi.org/10.1007/978-3-540-72397-4_8
https://doi.org/10.1007/978-3-540-72397-4_8
https://doi.org/10.1007/3-540-28991-7
https://doi.org/10.1007/s10623-017-0349-1
https://doi.org/10.1007/s10623-017-0349-1
https://doi.org/10.1109/TIT.2016.2612654

32 A. Wassermann

36. Knuth, D.: The Art of Computer Programming, Vol. 2: Seminumerical Algorithms.
Addison-Wesley, Reading (1969)

37. Kohnert, A.: Constructing two-weight codes with prescribed groups of automor-
phisms. Discret. Appl. Math. 155(11), 1451–1457 (2007). https://doi.org/10.1016/
j.dam.2007.03.006

38. Korkine, A., Zolotareff, G.: Sur les formes quadratiques. Math. Ann. 6, 366–389
(1873)

39. Kramer, E.S., Mesner, D.M.: t-designs on hypergraphs. Discret. Math. 15(3), 263–
296 (1976). https://doi.org/10.1016/0012-365X(76)90030-3

40. Kreher, D.L., Radziszowski, S.P.: The existence of simple 6-(14, 7, 4) designs. J.
Comb. Theory Ser. A 43, 237–243 (1986)

41. Kreher, D.L., Radziszowski, S.P.: Finding simple t-designs by using basis reduction.
Congr. Numer. 55, 235–244 (1986)

42. Krčadinac, V.: Some new designs with prescribed automorphism groups. J. Comb.
Des. 26(4), 193–200 (2018). https://doi.org/10.1002/jcd.21587

43. Krčadinac, V., Pavčević, M.O.: New small 4-designs with nonabelian automor-
phism groups. In: Blömer, J., Kotsireas, I.S., Kutsia, T., Simos, D.E. (eds.) MACIS
2017. LNCS, vol. 10693, pp. 289–294. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-72453-9 23

44. Lagarias, J., Odlyzko, A.: Solving low-density subset sum problems. J. Assoc.
Comp. Mach. 32, 229–246 (1985). Appeared already in Proceedings of 24th IEEE
Symposium on Foundations of Computer Science, pp. 1–10 (1983)

45. Laue, R.: Constructing objects up to isomorphism, simple 9-designs with small
parameters. In: Betten, A., Kohnert, A., Laue, R., Wassermann, A. (eds.) Alge-
braic Combinatorics and Applications, pp. 232–260. Springer, Heidelberg (2001).
https://doi.org/10.1007/978-3-642-59448-9 16

46. Laue, R., Magliveras, S., Wassermann, A.: New large sets of t-designs. J. Comb.
Des. 9, 40–59 (2001)

47. Laue, R., Omidi, G.R., Tayfeh-Rezaie, B., Wassermann, A.: New large sets of t-
designs with prescribed groups of automorphisms. J. Combin. Des. 15(3), 210–220
(2007). https://doi.org/10.1002/jcd.20128

48. Lenstra, A., Lenstra Jr., H., Lovász, L.: Factoring polynomials with rational coef-
ficients. Math. Ann. 261, 515–534 (1982)

49. Mathon, R.: Computational methods in design theory. In: Keedwell, A.D. (ed.)
Surveys in Combinatorics, Proc. 13th Br. Comb. Conf., Guildford/UK 1991, vol.
166, pp. 101–117. London Mathematical Society Lecture Note (1991)

50. Micciancio, D., Goldwasser, S.: Complexity of Lattice Problems. Kluwer Academic
Publishers (2002)

51. Minkowski, H.: Geometrie der Zahlen. Teubner, Leipzig (1896)
52. Nguyen, P.Q., Vallée, B.: The LLL Algorithm: Survey and Applications, 1st edn.

Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02295-1
53. Niskanen, S., Österg̊ard, P.R.J.: Cliquer user’s guide, version 1.0. Technical report

T48, Helsinki University of Technology (2003)
54. Österg̊ard, P.R.J., Quistorff, J., Wassermann, A.: New results on codes with cov-

ering radius 1 and minimum distance 2. Des. Codes Crypt. 35, 241–250 (2005)
55. Ritter, H.: Aufzählung von kurzen Gittervektoren in allgemeiner Norm. Ph.D. the-

sis, Universität Frankfurt (1997)
56. Schnorr, C.: A hierachy of polynomial time lattice basis reduction algorithms.

Theoret. Comput. Sci. 53, 201–224 (1987)

https://doi.org/10.1016/j.dam.2007.03.006
https://doi.org/10.1016/j.dam.2007.03.006
https://doi.org/10.1016/0012-365X(76)90030-3
https://doi.org/10.1002/jcd.21587
https://doi.org/10.1007/978-3-319-72453-9_23
https://doi.org/10.1007/978-3-319-72453-9_23
https://doi.org/10.1007/978-3-642-59448-9_16
https://doi.org/10.1002/jcd.20128
https://doi.org/10.1007/978-3-642-02295-1

Search for Combinatorial Objects Using Lattice Algorithms – Revisited 33

57. Schnorr, C.P., Euchner, M.: Lattice basis reduction: improved practical algorithms
and solving subset sum problems. In: Budach, L. (ed.) FCT 1991. LNCS, vol. 529,
pp. 68–85. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-54458-5 51

58. Schnorr, C.P., Hörner, H.H.: Attacking the Chor-Rivest cryptosystem by improved
lattice reduction. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995.
LNCS, vol. 921, pp. 1–12. Springer, Heidelberg (1995). https://doi.org/10.1007/3-
540-49264-X 1

59. van Beek, P.: Backtracking search algorithms. In: Rossi, F., van Beek, P., Walsh, T.
(eds.) Handbook of Constraint Programming, Foundations of Artificial Intelligence,
vol. 2, pp. 85–134. Elsevier (2006). https://doi.org/10.1016/S1574-6526(06)80008-8

60. Wassermann, A.: Finding simple t-designs with enumeration techniques. J. Comb.
Des. 6(2), 79–90 (1998)

61. Wassermann, A.: Attacking the market split problem with lattice point enumera-
tion. J. Comb. Optim. 6, 5–16 (2002)

62. Wassermann, A.: Computing the minimum distance of linear codes. In: Eighth
International Workshop Algebraic and Combinatorial Coding Theory (ACCT
VIII), Tsarskoe Selo, Russia, pp. 254–257 (2002)

https://doi.org/10.1007/3-540-54458-5_51
https://doi.org/10.1007/3-540-49264-X_1
https://doi.org/10.1007/3-540-49264-X_1
https://doi.org/10.1016/S1574-6526(06)80008-8

	Search for Combinatorial Objects Using Lattice Algorithms – Revisited
	1 Introduction
	2 Lattices
	3 Lattice Basis Reduction
	4 Lattice Embedding of Diophantine Linear Systems
	5 Lattice Point Enumeration
	6 Limited Discrepancy Search
	References

