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Abstract. The question of characterizing graphs H such that the Ver-
tex Cover problem is solvable in polynomial time in the class of H-free
graphs is notoriously difficult and still widely open. We completely solve
the corresponding question for a distance-based generalization of vertex
cover called distance-k vertex cover, for any positive integer k. In this
problem the task is to determine, given a graph G and an integer �,
whether G contains a set of at most � vertices such that each edge of G
is at distance at most k from a vertex in the set. We show that for all
k ≥ 1 and all graphs H, the distance-k vertex cover problem is solvable in
polynomial time in the class of H-free graphs if H is an induced subgraph
of P2k+2 + sPmax{k,2} for some s ≥ 0, and NP-complete otherwise.

Keywords: Distance-k Vertex Cover · H-free graph ·
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1 Introduction

Various theoretical and practical motivations have led to generalizations of many
classical graph optimization problems to their distance-based variants. Infor-
mally, this means that the adjacency property used to defined a feasible solution
to the problem is replaced with a relaxed property based on distances in the
graph.

For a concrete example, consider the Vertex Cover problem. A vertex cover
in a graph G is a set of vertices intersecting all edges. For a non-negative integer
k, a distance-k vertex cover in a graph G is a set C of vertices such that every
edge has an endpoint which is at distance at most k from a vertex in C. Note that
a distance-0 vertex cover is the same thing as a vertex cover. The Distance-k
Vertex Cover problem is the problem of deciding, given a graph G and an
integer �, whether G contains a distance-k vertex of size at most �. Motivated by
an application in network monitoring, where links between hosts (edges in the
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network graph) can be monitored from hosts (vertices) at distance at most k,
the problem was first studied in 2008, under the name Beacon Placement
Problem, by Sasaki et al. [33]. They showed that the problem is NP-complete
for all k ≥ 2 and provided a greedy heuristic for the corresponding minimization
problem. NP-completeness for k = 1 was established in 2003 by Horton and
López-Ortiz [18]. Our terminology, Distance-k Vertex Cover, follows the
work of Busch et al. [8] from 2010, where it was proved that for the class of
dually chordal graphs, the problem is NP-complete for k = 0 but solvable in
polynomial time for any fixed integer k ≥ 1.

The case k = 0 corresponds to the Vertex Cover problem, which is equiva-
lent to the Independent Set problem and has been the subject of great interest
in algorithmic graph theory. One of the key questions in this area, investigated
for decades, is whether for every positive integer p, the Vertex Cover problem
can be solved in polynomial time in the class of graphs not containing a p-vertex
path as an induced subgraph. While the solution for p = 4 has been known at
least since 1981 [12], the cases of p = 5 and p = 6 were settled only in 2014 and in
2019, respectively, by Lokshantov et al. [24] and Grzesik et al. [17]. The question
is currently still open for all p ≥ 7, but Gartland and Lokshtanov recently devel-
oped a quasi-polynomial time algorithm for every fixed p [16]. Going beyond
forbidden induced paths, the following more general question is also open: Is
the Vertex Cover problem polynomial-time solvable in the class of H-free
graphs whenever every component of H is either a path or a subdivision of the
claw? While this restriction on H is necessary for the polynomial-time solvability
(unless P = NP) [1], it is not known whether it is also sufficient. Also for the
cases when H is not a path, only few partial results are known, see, e.g., [2,5].

Our Focus. We study the Distance-k Vertex Cover problem for k ≥ 1.
Contrary to the case k = 0, the distance-based generalizations have received
only limited attention in the literature so far. We already mentioned the work
of Busch et al. [8] and an application in network monitoring [33]. Canales et al.
gave an extremal result regarding minimum distance 2-vertex covers of maximal
outerplanar graphs [10]. This result was further generalized to all k by Alvarado
et al. [3]. Nonetheless, the complexity of the problem for restricted inputs remains
poorly understood. Our main goal is to fill this gap by providing a systematic
study of the complexity of the problem. We do this by analyzing the Distance-k
Vertex Cover problem for k ≥ 1 in classes of H-free graphs, that is, in classes
of graphs defined by a single forbidden induced subgraph H.

Our Results. For integers k ≥ 1, s ≥ 0, and t ≥ 1, we denote by Pk + sPt the
disjoint union of a k-vertex path and s copies of the t-vertex path. We develop
the following computational complexity dichotomies for Distance-k Vertex
Cover in classes of H-free graphs.

– A dichotomy for k = 1 and arbitrary graph H: the Distance-1 Vertex
Cover problem is solvable in polynomial time in the class of H-free graphs
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if H is an induced subgraph of P4 + sP2 for some s ≥ 0, and NP-complete
otherwise.

– A dichotomy for any k ≥ 2 and arbitrary graph H: the Distance-k Vertex
Cover problem is solvable in polynomial time in the class of H-free graphs
if H is an induced subgraph of P2k+2 + sPk for some s ≥ 0, and NP-complete
otherwise.

In polynomially solvable cases, the degrees of the polynomials expressing the
running times of our algorithms depend on k and s. However, this is not the case
when H is connected. We obtain the following result.

– A dichotomy for any k ≥ 1 and connected graph H: the Distance-k Vertex
Cover problem is solvable in time O((|V (G)| + |E(G)|)2) in the class of H-
free graphs if H is an induced subgraph of P2k+2, and NP-complete otherwise.

To derive the NP-completeness results, we introduce a distance-based gener-
alization of the notion of edge dominating set and establish the NP-completeness
of the corresponding decision problems. As a corollary of our approach, we
show that for all k ≥ 1, polynomial-time solvability of the Distance-k Vertex
Cover problem in the class of strongly chordal graphs established in [8] cannot
be generalized to the class of chordal graphs, unless P = NP. Our polynomial-
time algorithms are based on properties of minimum dominating sets in Pt-free
graphs established by Camby and Schaudt [9].

Related Work. Besides vertex cover, distance-based generalizations of several
other graph concepts were studied in the literature, including matchings [8,35],
dominating sets [11,14,19,27], independent sets [4,11,14,15,21,26,30,31], and
cliques [25,29].

To the best of our knowledge, the first systematic study aimed towards devel-
oping a complexity dichotomy for distance-based generalizations of some classical
graph optimization problem was done in 2017 by Bacsó et al. [4]. They consid-
ered a natural distance generalization of the notion of independent set: given a
positive integer k, a set S of vertices in a graph G is a distance-k independent
set (also known as a k-scattered set) if any two distinct vertices in S are at
distance at least k from each other. Bacsó et al. gave a complete characteriza-
tion of graphs H such that, assuming ETH, the maximum size of a distance-k
independent set on H-free graphs can be computed in subexponential time in
the size of the input.

We remark that the notion of vertex cover has also been generalized with
respect to the length of paths that need to be intersected. A k-path vertex cover
is a set of vertices intersecting every path of order k [6,7,23,37]. An equivalent
notion, known as k-path transversal, is defined as set of vertices whose removal
leaves a graph that does not contain a path of order k [22].

Structure of the Paper. After summarizing the necessary preliminaries
in Sect. 2, we develop NP-completeness results in Sect. 3 and polynomial-time
algorithms in Sect. 4. The main results of the paper – the complexity dichotomies
– are derived in Sect. 5. Due to lack of space, proofs of results marked by � are
omitted.
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2 Preliminaries

Let G be a graph. The order of G is the number of vertices in it. For a vertex
v ∈ V (G), we denote by NG(v) (or simply N(v) if the graph is clear from
the context) the set of neighbors of v in G, by NG[v] (or simply N [v]) the set
NG(v) ∪ {v}. The degree of a vertex v is the cardinality of N(v). For a positive
integer k, we denote by Pk the path graph of order k. The length of a path or a
cycle is the number of edges in it. The girth of a graph G is the minimum length
of a cycle in G (or ∞ is G is acyclic). The distance between two vertices u and v
in G is defined as the length of a shortest path between u and v (or ∞ if there is
no u, v-path in G). Given two sets A,B ⊆ V (G), we denote by distG(A,B) the
minimum over all distances in G between a vertex in A and a vertex in B. When
clear from context, we may simply write dist(A,B). For simplicity, if A contains
a unique element a, then we may simply write dist(a,B), and similarly for B.

A distance-k vertex cover in G is a set C of vertices such that for all edges
e ∈ E(G), it holds dist(e, C) ≤ k. We denote by τk(G) the size of a minimum
distance-k vertex cover of G. For an integer k ≥ 0, the Distance-k Vertex
Cover problem is formally defined as follows.

Distance-k Vertex Cover

Instance: A graph G and an integer �.
Question: Is there a distance-k vertex cover in G with size at most � ?

In particular, Vertex Cover is the same as Distance-0 Vertex Cover.
An induced subgraph of a graph G is any graph H such that V (H) ⊆ V (G)

and E(H) = {{u, v} ∈ E(G) : u, v ∈ V (H)}. Given a graph G and a set
S ⊆ V (G), we denote by G[S] the subgraph of G induced by S, that is, the
unique induced subgraph of G with vertex set S. Given two graphs G and H,
we say that G is H-free if no induced subgraph of G is isomorphic to H. More
generally, for graphs H1, . . . , Hp, we say that G is {H1, . . . , Hp}-free if G is
Hi-free for all i ∈ {1, . . . , p}. The claw is the graph with four vertices and three
edges, all having an endpoint in common. Given two graphs G and H, we denote
by G + H their disjoint union. For a non-negative integer s, we denote by sG
the disjoint union of s copies of G.

An induced matching in a graph G is a set M of edges of G such that no two
of them share an endpoint (that is, M is a matching) and G contains no edge
whose endpoints belong to different edges of M .

The line graph of a graph G is the graph, denoted by L(G), with vertex set
E(G) in which two distinct vertices are adjacent if and only if the corresponding
edges of G have an endpoint in common. It is well known, and easily observed,
that line graphs are claw-free. A graph is chordal if it does not contain an induced
cycle of length at least four, bipartite if its vertex set can be partitioned into two
independent sets, planar if it can be drawn on the plane with no edges crossing,
and cubic if every vertex has degree three. A linear forest is a disjoint union of
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paths. The operation of subdividing en edge {u, v} in a graph G means deleting
the edge and introducing a new vertex w adjacent precisely to u and v.

Given a positive integer k and a graph G, a set S ⊆ V (G) is a distance-k
dominating set in G if every vertex in G is at distance at most k from S. A
dominating set in a graph G is a distance-1 dominating set, and a connected
dominating set is a dominating set S such that the induced subgraph G[S] is
connected.

3 NP-Completeness Results

3.1 When H Is Not a Linear Forest

There are two reasons why the forbidden induced subgraph H may fail to be
a linear forest: either because it is not a forest, that is, it contains a cycle, or
because it contains an induced claw. We first consider the case when H contains
a claw and later the case when H contains a cycle.

When H Contains a Claw. Note that Distance-0 Vertex Cover, that is,
Vertex Cover, can be solved in polynomial time for claw-free graphs [28,34].
However, as we show next, this is not the case for Distance-k Vertex Cover
when k ≥ 1 (unless P = NP). The proof goes in two steps. First, we generalize
the notion of edge dominating set to its distance-based variant, and consider the
corresponding decision problem called Distance-k Edge Dominating Set.
For k = 0 the problem coincides with the NP-complete Edge Dominating Set
problem. We establish NP-completeness also for all k ≥ 1. Then we use this
result to prove that, for every integer k ≥ 1, Distance-k Vertex Cover is
NP-complete on line graphs, which are claw-free.

For an edge e and a set of edges F , we denote by dist(e, F ) the minimum
over all distances between an endpoint of e and an endpoint of an edge in F .
Given an integer k ≥ 0 and a graph G, a set F ⊆ E(G) is a distance-k edge
dominating set if for every edge e ∈ E(G), dist(e, F ) ≤ k. The corresponding
decision problem is defined as follows.

Distance-k Edge Dominating Set

Instance: A graph G and an integer �.
Question: Does there exist a distance-k edge dominating set in G with

size at most �?

The Edge Dominating Set problem, which in our context is equivalent to
the Distance-0 Edge Dominating Set problem, is known to be NP-complete.

Theorem 1 (Yannakakis and Gavril [36]). Edge Dominating Set is NP-
complete, even for cubic bipartite graphs and cubic planar graphs.
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Construction 1. Given a graph G and an integer k ≥ 1, we define a graph G′

obtained from G as follows: for each edge {u, v} ∈ E(G), create a path Pu,v made
of 2k new vertices and connect the endpoints of Pu,v to u and v, respectively. The
path Pu,v together with the edge {u, v} is called the u,v-gadget. Note that the
u,v-gadget is an induced cycle in G′ of length 2k+2. In particular, there exists a
unique edge e′ ∈ E(G′) of the u,v-gadget such that distG′(e′, u) = distG′(e′, v) =
k. We call the edge e′ the opposite edge of the edge {u, v}. See Fig. 1 for an
example.

Fig. 1. An edge {u, v} (left) and its corresponding u,v-gagdet (right).

� Theorem 2. For every integer k ≥ 1, Distance-k Edge Dominating Set
is NP-complete, even for bipartite graphs with maximum degree 6 and for planar
graphs with maximum degree 6.

Proof sketch. Fix an integer k ≥ 1. Since distances in graphs can be computed
efficiently using breadth-first search, the Distance-k Edge Dominating Set
problem is in NP. Let G′ be the graph obtained from Construction 1 given G
and k. Note that G′ can be obtained in polynomial time. To complete the proof,
it can be shown that G contains an edge dominating set of size at most � if and
only if G′ contains a distance-k edge dominating set of size at most �. �	

Fig. 2. An example of the graphs used in the proof of Theorem 3: the input graph
G, the graph G′ obtained from G, and H the line graph of G′. Dashed edges in G′

correspond to square shaped vertices in H.
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� Theorem 3. For every fixed integer k ≥ 1, Distance-k Vertex Cover is
NP-complete for line graphs of bipartite graphs and line graphs of planar graphs,
even if the maximum degree (of the line graphs) is at most 6 if k = 1 and at
most 12 if k ≥ 2.

Proof sketch. Fix a positive integer k and let G be a graph. We construct a
graph G′ from G by adding for each vertex u ∈ V (G) a new vertex u′ and the
edge {u, u′} in G′. Let H be the line graph of G′. See Fig. 2 for an example. Note
that H can be computed in polynomial time. The rest of the proof consists in
showing that G has a distance-k edge dominating set with size at most � if and
only if H has a distance-k vertex cover with size at most �. �	

Since every line graph is claw-free, Theorem 3 implies the following result.

Corollary 1. Let H be a graph containing a claw as induced subgraph. Then
for every fixed integer k ≥ 1, Distance-k Vertex Cover is NP-complete on
H-free graphs.

When H Contains a Cycle. We start by generalizing a well-known fact,
observed first in 1974 by Poljak [32], that a double subdivision of an edge
increases the minimum size of a vertex cover by exactly one.

� Lemma 1. Let G be a graph, let e ∈ E(G), and let G′ be the graph obtained
from G by subdividing edge e exactly 2k +2 times, for some integer k ≥ 0. Then
τk(G′) = τk(G) + 1.

An iterative application of Lemma 1 leads to the following result.

� Corollary 2. Let G be a graph, let e ∈ E(G), and let G′ be the graph obtained
from G by subdividing edge e exactly p(2k+2) times, for some two integers k ≥ 0
and p ≥ 0. Then τk(G′) = τk(G) + p.

Theorem 4. Let H be a graph containing a cycle. Then for every fixed integer
k ≥ 0, Distance-k Vertex Cover is NP-complete on H-free graphs.

Proof. Let G be any graph and k a non-negative integer. Denote by g the girth
of H and let G′ be the graph obtained from G by subdividing every edge of G
exactly g(2k + 2) times. Note that G′ is obtained in polynomial time and by
Corollary 2, τk(G′) = τk(G) + g|E(G)|. Moreover, notice that G′ has no cycle
of length g, and thus is H-free. By Theorem 3, Distance-k Vertex Cover
is NP-complete, and hence the problem remains NP-complete on H-free graphs
when H contains a cycle. �	

Corollary 1 and Theorem 4 imply the following result.

Corollary 3. Let H be a graph that is not a linear forest. Then for any fixed
integer k ≥ 1, Distance-k Vertex Cover is NP-complete on H-free graphs.
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3.2 When H Is a Linear Forest

We now show that Distance-k Vertex Cover remains NP-complete in the
class of H-free graphs even for certain linear forests. In particular, this is the
case when H = 2Pk+1 for k ≥ 2 and when H is either P5 or 2P3 for k = 1, even
if the input graph is chordal.

Construction 2. Given a graph G containing at least one edge and an integer
k ≥ 1, we construct a graph G′ as follows. First, we take a complete graph on a
set Q of |V (G)| new vertices such that for every vertex u ∈ V (G) there exists a
unique vertex u′ in Q. Then, for each edge {u, v} ∈ E(G), we create a u,v-ladder
as follows. We create a path Pu,v of order k and connect one of its endpoints
to both u′ and v′; then for each such vertex w of Pu,v we add a new vertex w′

and make it adjacent exactly to the vertices in N [w] (in particular, this means
that N [w′] = N [w] in the resulting graph). We call the unique edge e of the
u, v-ladder such that distG′(e, {u, v}) = k the opposite edge of the edge {u′, v′}.
See Fig. 3 for an example.

Fig. 3. An edge {u, v} (left) and its corresponding u,v-ladder (right).

Theorem 5. Distance-1 Vertex Cover is NP-complete on {P5, 2P3}-free
chordal graphs and, for all k ≥ 2, Distance-k Vertex Cover is NP-complete
on 2Pk+1-free chordal graphs.

Proof. Let G be a graph containing at least one edge and k a positive integer.
Let G′ be the graph obtained from Construction 2 given G and k. Note that
G′ can be obtained in polynomial time. Besides, it is easily observed that G′

is chordal. Notice that any induced subgraph of G′ isomorphic to Pmax{k+1,3}
contains at least one vertex in the clique Q, which implies that G′ cannot contain
2Pmax{k+1,3} as an induced subgraph, that is, if k = 1, then G′ is 2P3-free, and
if k ≥ 2, then G′ is 2Pk+1-free. Furthermore, if k = 1, then G′ is also P5-free.
To see this, consider an induced path P in G′ of order 4. Then P has both its
endpoints in V (G) \ Q and its two internal vertices in Q, as otherwise P would
not be induced. This readily implies that P is a maximal path, and thus that
G′ is P5-free.
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To complete the proof, we show that G has a vertex cover with size at most
� if and only if G′ has a distance-k vertex cover with size at most �.

Let C be a vertex cover in G with size at most � and C ′ = {u′ : u ∈ C}.
Note that C ′ ⊆ Q ⊆ V (G′); we claim that C ′ is a distance-k vertex cover in
G′. Suppose that this is not the case. Then there exists an edge f ∈ E(G′) at
distance more than k from C ′. Observe that C ′ ⊆ Q, and thus, every edge of
G′ having one endpoint in Q is at distance at most 1 from C ′. Therefore, as f
is at distance more than k from C ′, it must have both endpoints in V (G′) \ Q,
and hence belongs to an u,v-ladder for some edge {u, v} ∈ E(G). Since C is a
vertex cover in G, at least one of u or v belongs to C. We assume without loss of
generality that u belongs to C. Since f belongs to the u,v-ladder and u′ ∈ C ′, we
have distG′(f, C ′) ≤ distG′(f, u′) ≤ k, a contradiction. Thus, C ′ is a distance-k
vertex cover in G′ with size |C ′| = |C| ≤ �.

Let C ′ be a distance-k vertex cover in G′ with size at most �. Observe that if
w ∈ V (G′)\Q, then w is a vertex in a u,v-ladder for some {u, v} ∈ E(G). Observe
that, by construction of G′, every edge f of G′ with distG′(f, w) ≤ k is such that
distG′(f, u′) ≤ k. Hence, if w ∈ C ′, then the set (C ′\{w})∪{u′} is also a distance-
k vertex cover in G′ with size at most �. Hence, we may assume that C ′ ⊆ Q. Let
C = {u ∈ V (G) : u′ ∈ C ′}. Suppose that C is not a vertex cover in G. Then there
is an edge {u, v} ∈ E(G) such that u, v 
∈ C. Therefore, u′, v′ 
∈ C ′ but then the
opposite edge e of the u,v-ladder is such that distG′(e, C ′) > distG′(e, {u′, v′}) =
k, a contradiction. Hence, C is a vertex cover in G with size |C| = |C ′| ≤ �.

Since Vertex Cover is NP-complete [20], we obtain that Distance-1 Ver-
tex Cover is NP-complete on {P5, 2P3}-free chordal graphs and that, for all
k ≥ 2, Distance-k Vertex Cover is NP-complete on 2Pk+1-free chordal
graphs. �	

4 Polynomial Algorithms

In this section we identify, for each integer k ≥ 1, an infinite family of graph
classes in which Distance-k Vertex Cover can be solved in polynomial time.
Our first result will be based on the following structural property of Pt-free
graphs.

Theorem 6 (Camby and Schaudt [9]). Let t ≥ 4 be an integer, let G be a
connected Pt-free graph, and let S be any minimum connected dominating set
in G. Then the subgraph induced by S in G is either Pt−2-free or isomorphic
to Pt−2.

Theorem 6 has the following consequence for distance-k vertex covers in
P2k+2-free graphs.

Lemma 2. For every integer k ≥ 1, every connected P2k+2-free graph G has a
distance-k vertex cover that induces a path of order at most two.
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Proof. Fix a positive integer k. To prove the statement of the lemma, we will in
fact establish the following stronger statement: every connected P2k+2-free graph
G has a distance-k dominating set that induces a path of order at most two. It
follows immediately from the definitions that every distance-k dominating set is
also a distance-k vertex cover, hence this will indeed suffice.

The proof is by induction on k. Suppose first that k = 1. In this case, the
statement says that every connected P4-free graph G has a dominating set that
induces a path of order at most two. This follows from the well-known fact that
for every connected P4-free graph G with at least two vertices, the complement
of G is disconnected (see, e.g., [12]). Indeed, denoting by C any component of
the complement of G and taking u ∈ V (C) and v ∈ V (G)\V (C), the set {u, v} is
a dominating set in G that induces a path of order two. Suppose now that k > 1
and consider a connected P2k+2-free graph G. Let S be a minimum connected
dominating set in G and let G′ be the subgraph of G induced by S. Following
Theorem 6, we obtain that G′ is either P2k-free or isomorphic to P2k. If G′ is
P2k-free, then the induction hypothesis implies that G′ has a distance-(k − 1)
dominating set that induces a path of order at most two. If G′ is isomorphic
to P2k, with vertices v1, . . . , v2k in order, then the edge {vk, vk+1} is a distance-
(k−1) dominating set in G′. In either case, G′ has a distance-(k−1) dominating
set S′ that induces a path of order at most two. Since every vertex in G is either
in S or has a neighbor in S, we infer that S′ is a distance-k dominating set in
G that induces a path of order at most two. �	

In the following theorem, the running time of the algorithm is independent
of k, that is, the O notation does not hide any constants depending on k.

� Theorem 7. For every integer k ≥ 1, there is an algorithm with running
time O((|V (G)| + |E(G)|)2) that takes as input a P2k+2-free graph G and com-
putes a minimum distance-k vertex cover of G.

Proof sketch. Fix a positive integer k and let G be a P2k+2-free graph. To com-
pute a minimum distance-k vertex cover of G, we first compute the connected
components G1, . . . , Gs of G, solve the problem in each connected component
Gi, and combine the obtained solutions. By Lemma 2, each connected compo-
nent Gi of G has a distance-k vertex cover that induces a path of order at most
two. Thus, we immediately obtain a polynomial-time algorithm for computing a
minimum distance-k vertex cover of a nontrivial component Gi. We first check if
there exists a vertex u ∈ V (Gi) such that {u} is a distance-k vertex cover of Gi.
If this is the case, then we have an optimal solution; otherwise we check for each
edge {u, v} ∈ E(Gi) if {u, v} is a distance-k vertex cover of Gi. Once we find
one, we return it. We can verify, in each Gi, if a vertex or an edge is a distance-k
vertex cover using a breadth-first search, and the running time follows. �	
Remark 1. For k = 1, an improved running time of O(|V (G)| + |E(G)|) can
be obtained using a different approach: the fact that P4-free graphs have clique-
width at most two, the fact that the defining property of distance-1 vertex covers
can be expressed in MSO1 logic, and a metatheorem for MSO1 problems on
graphs of bounded clique-width of Courcelle et al. [13].
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We now consider the more general case of (P2k+2 + sPmax{k,2})-free graphs
for two integers k ≥ 1 and s ≥ 0. We first consider the case k = 1 and then the
case k ≥ 2.

� Lemma 3. For every integer s ≥ 0, every connected (P4 +sP2)-free graph G
has a distance-1 vertex cover that induces a linear forest of order at most 2s+2.

Lemma 4. For every two integers k ≥ 2 and s ≥ 0, every connected (P2k+2 +
sPk)-free graph G has a distance-k vertex cover that induces a linear forest of
order at most fk(s) where

fk(s) =
{

2 if s = 0 ,
(s + 1)k + 2 if s ≥ 1 .

Proof. Fix an integer k ≥ 2. We use induction on s. For s = 0, the statement
follows from Lemma 2.

Suppose now that s ≥ 1 and that every connected (P2k+2 + (s − 1)Pk)-
free graph has a distance-k vertex cover that induces a linear forest of order
at most fk(s − 1). Let G be a connected (P2k+2 + sPk)-free graph. If G is
(P2k+2 + (s − 1)Pk)-free, then G has a distance-k vertex cover that induces
a linear forest of order at most fk(s − 1) ≤ fk(s). On the other hand, if G
is not (P2k+2 + (s − 1)Pk)-free, then there exists a set S ⊆ V (G) inducing a
P2k+2+(s−1)Pk. Note that S induces a linear forest of order (s+1)k+2 = fk(s).
It thus suffices to show that S is a distance-k vertex cover in G. Let X = N(S)
be the set of vertices not in S and with a neighbor in S and Y = V (G) \ (S ∪X)
be the set of vertices not in S and without a neighbor in S. Let e be an edge of
G. If e has an endpoint in S ∪ X, then distG(e, S) ≤ 1 ≤ k. So let e be entirely
contained in Y . Since G is connected, there exists a shortest path P between
an endpoint of e and a vertex in S. Since G is (P2k+2 + sPk)-free, the part of
P entirely contained in Y has at most k − 1 vertices. Other than that, P has
exactly one vertex in X and exactly one in S. Thus, the length of P is at most
k, which implies distG(e, S) ≤ k. This shows that S is a distance-k vertex cover
in G and completes the proof. �	

Lemmas 3 and 4 imply that for all integers k ≥ 0 and s ≥ 0 the minimum size
of a distance-k vertex cover in a (P2k+2 + sPmax{k,2})-free graph is bounded by
a function depending only on k and s but independent of G. Thus, we can do a
complete enumeration of small subsets of vertices to find a minimum distance-k
vertex cover in such a graph, and essentially the same approach as the one used
to prove Theorem 7 using Lemma 2 can be used to prove the following theorem
using Lemmas 3 and 4.

Theorem 8. For every two integers k ≥ 1 and s ≥ 0, there is a polynomial-time
algorithm that takes as input a (P2k+2 + sPmax{k,2})-free graph G and computes
a minimum distance-k vertex cover of G.
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5 Complexity Dichotomies

Our results from Sects. 3 and 4 allow us to obtain a complexity dichotomy of
Distance-k Vertex Cover on H-free graphs, for all k ≥ 1.

Theorem 9. For every graph H, the following holds:

– Distance-1 Vertex Cover is solvable in polynomial time in the class of
H-free graphs if H is an induced subgraph of P4 + sP2, for some s ≥ 0, and
NP-complete otherwise.

– For every integer k ≥ 2, Distance-k Vertex Cover is solvable in poly-
nomial time in the class of H-free graphs if H is an induced subgraph of
P2k+2 + sPk for some s ≥ 0, and NP-complete otherwise.

Proof. Fix a graph H and let G be the class of H-free graphs. If H is not a linear
forest, then for all k ≥ 1, Corollary 3 implies that Distance-k Vertex Cover
is NP-complete on G. Suppose that H is a linear forest.

Consider first the case when k = 1. If H contains P5 or 2P3 as an induced
subgraph, then G contains the class of {P5, 2P3}-free chordal graphs, and hence
by Theorem 5 Distance-1 Vertex Cover is NP-complete on G. Otherwise, we
obtain that H is {P5, 2P3}-free. Recall that H is a linear forest. Let us denote by
t be the maximum order of a component of H and let P be a component of H
of order t. If t ≤ 2, then every component of H has order at most two. If t ≥ 3,
then, since H is 2P3-free, every component of H other than P has order at most
two. In either case, every component of H other than P has order at most two,
which implies that H is an induced subgraph of Pt + sP2 for some s ≥ 0. Since
H is P5-free, we have t ≤ 4, and hence every H-free graph is (P4 + sP2)-free.
Thus, by Theorem 8 the problem can be solved in polynomial time for graphs
in G.

Suppose now that k ≥ 2. If H contains 2Pk+1 as an induced subgraph, then
G contains the class of 2Pk+1-free chordal graphs, and hence by Theorem 5 Dis-
tance-k Vertex Cover is NP-complete on G. Again, let t denote the maximum
order of a component of H and let P be a component of H of order t. If t ≤ k,
then every component of H has order at most k. If t ≥ k + 1, then, since H
is 2Pk+1-free, every component of H other than P has order at most k. Thus,
in either case, every component of H other than P has order at most k, and
H is an induced subgraph of Pt + sPk for some s ≥ 0. Since H is 2Pk+1-free,
it is also P2k+3-free, which implies that t ≤ 2k + 2, and thus H is an induced
subgraph of P2k+2 + sPk for some s ≥ 0. It follows that every H-free graph is
(P2k+2+sPk)-free. Thus, by Theorem 8 the problem can be solved in polynomial
time for graphs in G. �	

For the case when the forbidden induced subgraph is connected, Theorems 7
and 9 imply the following dichotomy.

Corollary 4. For every connected graph H and integer k ≥ 1, the Distance-k
Vertex Cover problem is solvable in time O((|V (G)|+|E(G)|)2) in the class of
H-free graphs if H is an induced subgraph of P2k+2, and NP-complete otherwise.
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Furthermore, as explained in Remark 1, the running time can be improved
to linear for the case k = 1.

Acknowledgments. The authors wish to thank Peter Muršič for valuable discussions.
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