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Abstract. Let
−→
G = (V, A) be an oriented graph and G the underlying

graph of
−→
G . An oriented k-coloring of

−→
G is a partition of V into k subsets

such that there are no two adjacent vertices belonging to the same subset,
and all the arcs between a pair of subsets have the same orientation. The

oriented chromatic number χo(
−→
G) of

−→
G is the smallest k, such that−→

G admits an oriented k-coloring. The oriented chromatic number of G,

denoted by χo(G), is the maximum of χo(
−→
G) for all orientations

−→
G of

G. Oriented chromatic number of product of graphs were widely studied,
but the disjoint union has not being considered. In this article we study
oriented coloring for the disjoint union of graphs. We establish the exact
values of the union: of two complete graphs, of one complete with a forest
graph, and of one complete and one cycle. Given a positive integer k, we
denote by CNk the class of graphs G such that χo(G) ≤ k. We use those
results to characterize the class of graphs CN 3. We evaluate, as far as we
know for the first time, the value of χo(Wn) and we yield with this value
an upper bound for the union of one complete and one wheel graph Wn.

Keywords: Oriented graph · Oriented chromatic number ·
Disconnected graphs · Graph classes · Disjoint union of graphs

1 Introduction

Given a graph G = (V,E), the orientation of an edge e = {u, v} ∈ E is one of
the two possible ordered pairs uv or vu called arcs. If uv ∈ E we say that u

dominates v. An oriented graph
−→
G is obtained from G by orienting each edge of

E,
−→
G is called an orientation of G, and G is called the underlying graph of

−→
G .
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Note that an oriented graph is a digraph without opposite arcs or loops. Given
an arc uv ∈ E(

−→
G), v is called the successor of u and u is called the predecessor of

v. A vertex without predecessors is called source and a vertex without successors
is called sink. Let G and H be a pair of graphs. If H is a subgraph of G we say
that G contains H as a subgraph, otherwise we say that G is H-free. Two graphs
are disjoint if they have no vertex in common. If G and H are disjoint, their
disjoint union graph denoted by G ∪ H, has V (G ∪ H) = V (G) ∪ V (H) and
E(G ∪ H) = E(G) ∪ E(H).

A directed path is the orientation of a path, a directed cycle is the orientation
of a cycle. If for each pair u, v of consecutive vertices in a directed cycle we
have the arc uv, then this orientation called cyclic, otherwise is called acyclic.
A tournament

−→
Kn with n vertices is an orientation of a complete graph Kn. A

tournament is called transitive if and only if whenever uv and vw are arcs, uw
is also an arc. The complete bipartite graph G = K1,n is a star. A wheel graph
Wn has V (Wn) = {v1, v2, . . . , vn, c} and E(Wn) =

{
vivi+1 : i ∈ {1, 2, . . . , n −

1}} ∪ {vnv1} ∪ {
vic : i ∈ {1, 2, . . . , n}}. We say that

−→
G is an oriented star (the

same for a tree, forest, cycle, and wheel).
Let

−→
G be an oriented graph, xy, zt ∈ E(

−→
G) and C = {1, 2, . . . , k} be a set

of colors. An oriented k-coloring of
−→
G is a function c : V (

−→
G) → C, such that

c(x) �= c(y), and if c(x) = c(t), then c(y) �= c(z). The oriented chromatic number
of

−→
G denoted by χo(

−→
G) is the smallest k such that

−→
G admits an oriented k-

coloring. An oriented absolute clique or o-clique [7] is an oriented graph
−→
G for

which χo(
−→
G) = |V (

−→
G)|.

Let
−→
G and

−→
H be oriented graphs, a homomorphism of

−→
G into

−→
H is a mapping

f : V (
−→
G) → V (

−→
H ) such that f(u)f(v) ∈ E(

−→
H ) for all uv ∈ E(

−→
G). When

−→
H is

an oriented graph on k vertices, a homomorphism from
−→
G into

−→
H is an oriented

k-coloring of
−→
G .

We can extend the definition of oriented chromatic number to graphs. The
oriented chromatic number of a graph G denoted by χo(G), is the maximum
χo(

−→
G) for all orientations

−→
G of G. Given a positive integer k, we denote by CNk

the class of graphs G such that χo(G) ≤ k.
Oriented coloring has been studied by many authors. A survey on oriented

coloring can be seen in [13]. Subsequently, many other papers have been pub-
lished on oriented coloring. See for instance [3] and [7] on complexity aspects
and approximation algorithms, and [8–10] for bounds on oriented coloring.

It is NP-complete [3,6,7] to decide whether a graph belongs to CNk for all
k ≥ 4. In [2] it was shown that CNk for all k ≥ 4 is NP-complete even for acyclic
oriented graph such that the underlying graph has maximum degree 3 and it
is at the same time connected, planar and bipartite. Already, it can be decided
in polynomial time [7] whether a graph belongs to CNk. So, in the Sect. 2 we
characterize the class of connected and disconnected graphs that belong to the
CN3 class.
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The works of [1,4,5,12] presents various bounds for oriented chromatic num-
ber on the product of graphs. In spite of the vast amount of literature dedicated
to the product of graphs, we don’t have many results on the disjoint union.

Assume the 3-oriented coloring for
−→
K3 in Fig. 1 (a), where colors 1, 2 and

3 are assigned respectively, to vertices a, b and c. Notice that, by definition of
oriented coloring, if the P4 in Fig. 1 (b) is colored with the three colors 1, 2 and
3, then necessarily to vertices d, e, f are assigned, respectively, colors 1, 2 and
3. Hence, it is required a fourth color to assign to vertex g.

Fig. 1. Graph
−→
K3 ∪ −→

P 4.

From the coloring given to the graph of Fig. 1 we can notice that, different
from the usual coloring, the oriented coloring given to a connected component
interferes in the coloring of another connected component in graphs formed by
the disjoint union of two other graphs. Motivated by this fact, in Sect. 4 we
determine the oriented chromatic number of the disjoint union between complete
graphs and others graphs, such as stars, trees, forests, cycles and an upper bound
for the union of one complete and one wheel. In Sect. 3 we show the oriented
chromatic number of wheel graphs, for the first time as far as we know.

2 The Chromatic Number of the Class CN3

In this section, we characterize the class of graphs CN3 = {G;χo(G) ≤ 3}. First,
we consider the case when the graph G is connected.

Lemma 1. Let G = (V,E) be a connected graph, |V | ≥ 4. If G contains a K3

as a subgraph, then χo(G) ≥ 4.

Proof. Let G = (V,E) be a connected graph with |V | ≥ 4 and u, v, w be the
vertices of a K3 subgraph of G. As G is connect there is a vertex t /∈ {u, v, w} in
V such that t is adjacent to a vertex in {u, v, w}. Assume {t, u} ∈ E. Consider
an orientation

−→
G = (V,

−→
E ) of G where uv, vw, uw, tu ∈ −→

E . We need 3 different
colors to vertices u, v, w since u, v, w belong to K3. As there is a path of size at
most 2 from t to each vertex in {u, v, w} by the oriented k-coloring definition,
an additional fourth color is necessary to t. Hence, χo(G) ≥ 4. �	

From Lemma 1, we know that the connected not K3-free graphs on 4 vertices
or more do not belong to the class CN3. Sopena [11] proved that for oriented
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graphs with maximum degree 2, the oriented chromatic number is at most 5. He
also proved that the cycle on 5 vertices has oriented chromatic number 5, this
result is presented in Lemma 2. We use these results to propose Lemma 3.

Lemma 2 ([11]). If C5 is the cycle on 5 vertices, then χo(C5) = 5.

Lemma 3. If a connected graph G contains Ck as a subgraph, with k ≥ 4, then
χo(G) ≥ 4. In particular, if G contains C5 as a subgraph, then χo(G) ≥ 5.

Now we can describe the class of connected graphs that belongs to CN3.

Theorem 1. The connected graph G ∈ CN3 if and only if, G is either a K3 or
a tree.

Proof. Let G ∈ CN3 be a connected graph. If G is acyclic, then G is a tree. If G
is not acyclic, then from Lemmas 1 and 3, it follows that G = K3. We conclude
that G is either a K3 or a tree. Suppose that G is a K3 or a tree. If G is a K3

then χo(G) = 3. If G is a tree, then χo(G) = 3 by [3]. Therefore G ∈ CN3. �	
Now will consider the case when G is a disconnected graph.

Lemma 4. Let G be a graph with q connected components X1,X2, . . . , Xq, q ≥
2, such that Xi contains K3 as a subgraph, for some i ∈ {1, 2, . . . , q}. If there is
a component Xj, i �= j, containing K3 or P4 as a subgraph, then χo(G) ≥ 4.

Proof. Consider a graph G with q connected components X1,X2, . . . , Xq, q ≥ 2.
Suppose there are two connected components Xi and Xj , i �= j, such that both
contains K3 as a subgraph.

We can obtain an oriented graph
−→
G from G with χo(

−→
G) ≥ 4, by defining

the orientation of the subgraph K3 of component Xi as a directed cycle and
the subgraph K3 of the component Xj as a transitive tournament. Let c be
an oriented coloring for the subgraph K3 of the component Xi, c has 3 colors,
suppose {1, 2, 3} and the property that no color dominates the two others. Let c1
be an oriented coloring of K3 of the component Xj . In c one color dominates the
two others, thus one fourth color is required in the component Xj and therefore
χo(G) ≥ 4.

Now suppose that the component Xj contains P4 as a subgraph. In the
oriented graph

−→
G obtained from G, we choose the transitive orientation

−→
K3

for the subgraph K3 of the component Xi and the directed path
−→
P 4 for the

subgraph P4 of the component Xj . We know that χo(
−→
K3) = 3, we use colors

1, 2 and 3 in the oriented coloring of
−→
K3 of the component Xi. We choose the

oriented coloring of
−→
K3 such as the vertex with color 1 is the source and the

vertex with color 2 is the sink. We will show that, using the constraints obtained
in the oriented coloring of the subgraph

−→
K3 in the component Xi, we cannot

color the subgraph
−→
P 4 of the component Xj only with colors 1, 2 and 3.
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We consider three cases:
Case 1 : (Assign color 1 to the source of

−→
P 4) Since the vertex with color 1 is

a predecessor of the vertex with color 2 in the oriented coloring of
−→
K3, we can

assign color 2 to the successor of the source in
−→
P 4. The vertex with color 2 in−→

K3 is the sink, so we cannot assign any of the colors 1, 2 or 3 to the successor
of the vertex with color 2 in

−→
P 4. A fourth color is needed in component Xj .

Another sub-case is to assign color 3 to the successor of the source in
−→
P 4,

because the vertex with the color 1 also precedes a vertex with color 3 in an
oriented coloring of

−→
K3. We can assign color 2 to the successor of the vertex

with color 3 in
−→
P 4, but again the color 2 is assigned to a vertex that is not sink

in
−→
P 4 and a fourth color is needed in component Xj .
Case 2 : (Assign color 2 to the source of

−→
P 4) The vertex with color 2 in the

oriented coloring of
−→
K3 is a sink, so none of the colors 1, 2 or 3 can be assigned

to the successor of the source in
−→
P 4. A fourth color is required in component

Xj .
Case 3 : (Assign color 3 to the source of

−→
P 4) Respecting the constraints on

the coloring of
−→
K3, we can assign color 2 to the successor of the source in

−→
P 4.

Again, the successor of the vertex with color 2 in
−→
P 4 cannot be colored with

any color used in
−→
K3. A fourth color is required in component Xj .

We conclude that χo(G) ≥ 4. �	
It follows from Lemma 4 that the graph G = K3 ∪ P4 /∈ CN3. In Fig. 1 we

have an orientation of graph G such that χo(G) = 4. If we consider the graph G
to be a forest, we have the following results.

Lemma 5. Let F be a forest with a collection {T1, T2, . . . , Tq} of q disjoint trees,
then χo(F ) = max{χo(Ti); i = 1, 2, . . . , q}.

From Lemma 5 we can show that every oriented forest has a homomorphism
to a directed cycle, as we show on Corollary 1.

Corollary 1. Every oriented forest
−→
F has a homomorphism into a directed

cycle
−→
C3.

Finally in Theorem 2 we can characterize the class CN3.

Theorem 2. Let G be a graph. G ∈ CN3 if and only if, G is either a forest or
a K3 ∪ S, where S is a forest of stars.

Proof. Suppose that G ∈ CN3. If G has a cycle, then by Lemmas 1, 3 and 4 there
is at most one connected component Gi of G which has a cycle as a subgraph,
and in this case Gi = K3. Still by Lemma 4 the remaining components have a
diameter that is less than 3, and hence G is a disjoint union of K3 and a forest
of stars.

If G is acyclic, then G is a forest and by Lemma 5 and [3] we have χo(
−→
G) ≤ 3.

Conversely, first suppose that G is a forest. For every tree Ti of G we know that
χo(Gi) ≤ 3, by [3]. By Lemma 5 we conclude that χo(G) ≤ 3.
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Now suppose that G = K3 ∪ S. The connected component K3 can be oriented
in two different ways, with circular orientation or transitive orientation. If the
component K3 have a circular orientation

−→
K3, we know by Corollary 1 that

there is a homomorphism from
−→
S into

−→
K3 and χo(G) ≤ 3. Now consider the

component K3 with a transitive orientation
−→
K ′

3. We choose the oriented coloring
of

−→
K ′

3 with the colors 1, 2 and 3, so that the vertices with color 1 are predecessors
of vertices with color 2 and the vertices with color 2 are predecessors of vertices
with color 3.

We define a homomorphism from
−→
S into

−→
K ′

3 where all sources in
−→
S are

mapped into the vertex with color 1 in
−→
K ′

3, and all sinks in
−→
S are mapped into

the vertex with color 3 in
−→
K ′

3, if the vertex is neither a source nor a sink in−→
S , then it is mapped into a vertex with color 2 in

−→
K ′

3. This homomorphism is
easily verified, since only one vertex that has more than one neighbor in

−→
S can

be mapped into the vertex with color 2 in
−→
K ′

3. �	

3 The Oriented Chromatic Number of Wheel Graphs

In this section we establish that the family of wheel graphs Wq with q ≥ 8 has its
oriented chromatic number 8. We use this value, in Sect. 4, in order to establish
an upper bound for the disjoint union of a wheel with a complete graph.

Theorem 3. Let q ≥ 8, be a positive integer. Then χo(Wq) = 8.

Proof. We consider q mod 3, i.e., q = 3k + 1, 3k + 2, k ≥ 2 and q = 3k, k ≥ 3.
We prove first that 8 colors are sufficient to color every orientation ω of Wq.
Consider an orientation ω for Wq. We construct an 8–oriented color for this
orientation. Let V (Wq) = {v1, v2, . . . , vq, c} and E(Wq) =

{
vivi+1, vic : i ∈

{1, 2, 3, . . . , q − 1}} ∪ {
vqv1, vqc

}
.

In order to yield an 8–oriented coloring for ω we consider a key property of an
orientation ω that is when there is a 4-oriented coloring for the corresponding Cq,
such that there is one color, say color 4, that occurs just in one vertex v ∈ V (Cq).

From this 4–oriented coloring of Cq, we give the following recipe to color Cq

in Wq, with at most 7 colors, and hence Wq with 8 colors. For each x ∈ {1, 2, 3}
of the 3 colors that can be repeated, consider the oriented bipartite graph Bx

induced of Wq by the vertices with color x and vertex c. If there are sinks and
sources in Bx \{c}, then If v ∈ V (Bx)\{c} and v is a sink, set to x+4 the color
of v. If the orientation ω in Cq is acyclic, then there is a sink vertex vi, hence we
color the path vi+1, . . . , vn, v1, . . . , vi−1 with 6 colors in {1, 2, 3, 5, 6, 7}, color vi
with color 4, and c with color 8. Hence, when ω is acyclic, there is an 8–oriented
coloring for Wq.

The remaining case is when the orientation ω is cyclic in Cq. Next we consider
q = 3k, k ≥ 3 and q = 3k+1, k ≥ 2, and prove that there is a 4–oriented coloring
for the corresponding Cq where there is a color class with at most one vertex
v ∈ Cq, say color 4.



200 E. M. M. Coelho et al.

1. If q = 3k, k ≥ 3, in this case we color v1, v2, . . . , vn, respectively, with colors
1, 2, 3, . . . , 1, 2, 3.

2. If q = 3k + 1, k ≥ 2, in this case we color v1, v2, . . . , vn−1, respectively, with
colors 1, 2, 3, . . . , 1, 2, 3, and color vn with color 4.

Hence, when ω is cyclic in Cq, q = 3k, k ≥ 3 or q = 3k + 1, k ≥ 2, there is an
8–oriented coloring for Wq.

We prove that if the orientation is cyclic, and q = 3k +2, k ≥ 3, then there is
a 5–oriented coloring such that exactly 2 colors appear once. For that we color
v1, v2, . . . , vn−2, respectively, with colors 1, 2, 3, . . . , 1, 2, 3, color vn−1 with color
4, and vn with color 5. From this 5–oriented coloring of Cq, we give the following
recipe to color Cq in Wq, with at most 7 colors, and hence Wq with 8 colors.

We consider 2 cases:

1. Vertex c is a sink or a source of Wq. In this case we can color Wq with 6
colors.

2. Vertex c is neither a sink nor a source of Wq. In this case we assume that
cvn, v1c ∈ ω. We can assume that because the orientation of Cq is cyclic.
First, for each x ∈ {1, 2, 3} of the 3 colors that can be repeated in Cq, consider
the oriented bipartite graph Bx induced by the vertices with color x and vertex
c. If there are sinks and sources in Bx \ {c}, then If v ∈ V (Bx) \ {c} and v
is a sink, set to x + 5 the color of v. Hence, we have an 8-oriented coloring
of Cq in Wq, which is an 9-oriented coloring of Wq, that we will reduce to a
8-oriented coloring of Wq.
Hence, we set to 6 the color of vertex vn. This can be done, since v1 has color
1, and every other vertex in Cq with color 6, has a distance to vn of at least
3. And thus, we have a coloring of Cq with colors 1, 2, 3, 4, 6, 7, 8, and we can
give the color 5 to vertex c.

Now we prove that 8 colors are necessary. For that we show an example of W8

that requires 8 colors. For the convenience of the reader we exhibit this example
in Fig. 2 and ask the reader to follow the Figure with the next items. Let φ be an
8-coloring of W8. The set of vertices {v1, v2, v4, v5, v6, v8, c} is an o-clique, thus
the colors of this vertices are different, respectively {0, 1, 2, 3, 4, 5, 6}. Hence, we
know from the orientation of W8 that φ(v3) �∈ {0, 1, 2, 3, 5, 6} because all of the
vertices with these colors are adjacent or have a path of size two to v3. We
can color v3 with the color 4. Again from the orientation of W8 we have that
φ(v7) �∈ {0, 2, 3, 4, 5, 6} because all of the vertices with these colors are adjacent
or have a path of size two to v7. We also can not color v7 with the color 1 because
we have v3v2 ∈ E(

−→
W8) and φ(v3) = 4, so we need an eighth color for v7. �	

4 On the Oriented Chromatic Number of the Union
of Graphs

The study of the class CN3 motivated us to study the oriented chromatic num-
ber of disconnected graphs. We show an example in Fig. 1, where the oriented
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Fig. 2. An orientation of W8 that has χo(
−→
W8) = 8.

chromatic number of a graph G = K3∪P4 is greater than the oriented chromatic
number of each of its connected components separately.

In Fig. 3, where G = K4 ∪ P5, consider the orientation
−→
G of G in which

−→
K4

is the transitive tournament and
−→
P 5 is the directed path.

So we have another example in which χo(G) > max{K4;P5}, where K4 and
P5 are components of G. Since χo(

−→
K4) = 4, we assign a 4-oriented coloring of−→

K4. Using the constraints of 4-oriented coloring of
−→
K4 in the component

−→
P 5,

we prove that
−→
P 5 cannot be colored only with four colors and one fifth color is

required, so the graph G = K4 ∪ P5 /∈ CN4.

Fig. 3. Graph
−→
K4 ∪ −→

P 5.

Now, we will obtain the oriented chromatic number of the disjoint union
between the complete graph and others graphs, such as graphs that can be
colored by the path

−→
P3 or the cycle

−→
C3, stars, trees, forests and cycles. First we

analyse the case of graphs that have a homomorphism to the path
−→
P3 or the

cycle
−→
C3

Theorem 4. Let G be a graph with two connected components G1 and G2, where
G1 is a complete graph Kp, p ≥ 3, and G2 is a graph such that all oriented graphs−→
G2 have a homomorphism f into a directed path

−→
P 3, then χo(G) = p.

Proof. Since χo(
−→
P 3) = 3 (by definition of oriented coloring), considering an

oriented coloring c of
−→
P 3, in which we assign color 1 to the source, color 3 to the

sink, and color 2 to the remaining vertex (successor of color 1 and predecessor
of color 3). By hypothesis, all oriented graphs

−→
G2 have a homomorphism f
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into a directed path
−→
P 3. Thus, we can assign an oriented coloring for

−→
G2 using

c ◦ f : V (
−→
G2) → {1, 2, 3}.

We will assign an oriented coloring with p colors to any oriented graph
−→
G1

from G1 respecting the constraints used in
−→
G2. As G1 = Kp, p ≥ 3, χo(G1) = p

and all oriented graphs
−→
G1 from G1 contains either a transitive or a circular

−→
K3.

In both cases, there exists a directed path P3 as a subgraph. This directed path
can be colored with the same constraints used in G1. There are no restrictions
for the remaining p − 3 colors and therefore we can assign these colors to the
other vertices not yet colored without conflict. �	
Theorem 5. Let G be a graph with two connected components G1 and G2, where
G1 is a complete graph Kp, p ≥ 3, and G2 is a graph such that all oriented graphs−→
G2 have a homomorphism into a directed cycle

−→
C 3 and diameter greater than

p. Then χo(G) = p + 1.

Proof. By hypothesis,
−→
G2 requires three colors 1, 2, 3 to an oriented coloring,

with the property that no color dominates the two others. We can obtain an
oriented graph

−→
G from G with χo(

−→
G) ≥ p + 1, in the following way: orient

−→
G1

as a transitive tournament. It follows that all subgraphs
−→
K3 of

−→
G1 are transitive.

As in an oriented coloring of
−→
G1, for all

−→
K3 of

−→
G1 one color dominates the two

others, at least one different color from 1, 2, 3 is required in some component−→
K3. Then χo(G) ≥ p + 1.

Conversely, we show that χo(G) ≤ p + 1. Let
−→
Kp be any orientation for G1.

As χo(
−→
Kp) = p, without loss of generality, we admit a coloring of

−→
Kp using the

colors from 1 to p. We add a vertex v to the graph
−→
Kp, and if there is source f

or sink s in
−→
Kp we add the arcs vf and sv, we call the resulting graph of

−→
K ′

p+1,
the remaining edges assume any orientation so that v is neither source nor sink
in the new graph. We assign the color p+1 to the vertex v. Note that

−→
K ′

p+1 has

neither sources nor sinks. On the other hand, considers the directed cycle
−→
C 3.

We assign an oriented coloring of
−→
C 3 respecting the constraint on the coloring

of
−→
K ′

p+1.

We start by assigning a color p+1 to any vertex v1 of
−→
C 3. By the construction

of
−→
K ′

p+1 the vertex v with color p+1 is neither source nor sink, so we divide the
neighbors of v into two disjoint sets, a set of successors of v denoted by Suc(v)
and a set of predecessors of v denoted by Pred(v). We will assign the same color
as the successor v2 of v1 in

−→
C 3 of a vertex r ∈ Suc(v) who has a successor

in t ∈ Pred(v), the same color for predecessor v3 of v1 in
−→
C 3 of the vertex of

t ∈ Pred(v).
By construction, there exists at least one vertex in r ∈ Suc(v) such that rt is

an arc in
−→
K ′

p+1, where t ∈ Pred(v). So we can assign colors to
−→
C 3 with the p+1

colors of
−→
K ′

p+1 and as
−→
Kp is a subgraph of

−→
K ′

p+1 then χo(G) ≤ χo(
−→
K ′

p+1∪
−→
C 3) =

p + 1. �	
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Corollary 2 follows directly from Theorem 5 and Corollary 1. We also
show an upper bound for the disjoint union of complete graphs and stars on
Corollary 3.

Corollary 2. Given G = Kp ∪ Pq or G = Kp ∪ Tq or G = Kp ∪ Fq, then
χo(G) = p + 1. Where p ≥ 3 and Pq, Tq, Fq be respectively a path, a tree and a
forest on q vertices and diameter greater than 2.

Corollary 3. Given G = Kp ∪ Sq, then χo(G) = p, where p ≥ 3 and Sq is a
star on q vertices.

Now we define a special tournament on 5 vertices that we will use to describe
the union of cycles and a few other graph classes. Let TU

5 be the tournament
where V (TU

5 ) = {v1, v2, v3, v4, v5}, and E(TU
5 ) = {v1v2, v2v3, v2v5, v3v1, v3v4,

v3v5, v4v2, v4v5, v1v4, v5v1}. Also for this purpose we show that every tournament
in 4 vertices has a sub-tournament which has a homomorphism to the acyclic
tournament in 3 vertices.

Lemma 6. Every tournament with 4 vertices has a homomorphism into TU
5 .

Proof. We can verify by exhaustion that every 4-vertex tournament has a homo-
morphism into TU

5 .

Corollary 4. Every tournament in 4 vertices has a sub-tournament which has
a homomorphism to the acyclic tournament in 3 vertices.

Now we define the chromatic number of the disjoint union of graphs that
belongs to the class CN4 and cycles.

Theorem 6. Let G ∈ CN 4 be a graph and C be a cycle. Then χo(G ∪ C) = 5.

Proof. Let
−→
C d

5 be a directed cycle with 5 vertices, then χo(C5) = 5, see Lemma 2.
By Lemma 3 and because any other orientation of C5 has a 4-oriented coloring,
the class C\−→C d

5 ∈ CN4. By Lemma 6 every G ∈ CN4 has a homomorphism into
TU
5 . The cycle

−→
C d

5 also has homomorphism in TU
5 , see that TU

5 has a directed
cycle 1, 2, 3, 4, 5, 1. Therefore, χo(G ∪ C) = 5 with TU

5 as a color graph. �	
Corollary 5. Let G = C ∪ C or G = C ∪ P or G = C ∪ T or G = C ∪ K4,
then χo(G) = 5, where C,P, T,K4 be respectively a cycle, a path, a tree and the
complete graph with 4 vertices.

We also define the chromatic number of the disjoint union of complete graphs
and cycles.

Theorem 7. Let p and q be a pair of integers with p ≥ 2 and q ≥ 3, then

χo(Kp ∪ Cq) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

3, if p = 2 and χo(Cq) = 3

4,

{
if p = 2
if p = 3

and
and

χo(Cq) = 4
(χo(Cq) = 3 or χo(Cq) = 4)

5,

{
if p = 2
if p = 3

and
and

χo(Cq) = 5
χo(Cq) = 5

p + 1, if p ≥ 4
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Finally we will analyse the chromatic number of the disjoint union of two
complete graphs.

Lemma 7. Let c be an oriented coloring of
−→
Kp ∪ −→

K q. Given
−→
G1 and

−→
G2 sub-

graphs induced of
−→
Kp and

−→
K q respectively, such that ∃ u ∈ V (

−→
G1) if and only if

∃ a ∈ V (
−→
G2) with c(u) = c(a). Then

−→
G1 and

−→
G2 are isomorphic.

Proof. As
−→
G1 and

−→
G2 are induced subgraphs by vertices of tournaments, then−→

G1 and
−→
G2 are also tournaments. Thus, in an oriented coloring c of

−→
Kp ∪ −→

K q

there are no identical colors between the vertices of
−→
G1, as well as between the

vertices of
−→
G2, then by hypothesis we know that |V (

−→
G1)| = |V (

−→
G2)|.

Case |V (
−→
G1)| = |V (

−→
G2)| ≤ 2 then

−→
G1 and

−→
G2 are isomorphic.

Suppose that |V (
−→
G1)| = |V (

−→
G2)| ≥ 2. Let u, v ∈ V (

−→
G1) and a, b ∈ V (

−→
G2)

such that c(u) = c(a) and c(v) = c(b). We define f : V (
−→
G1) → V (

−→
G2) such that

f(u) �→ a and f(v) �→ b.
Let f(u) = f(v). As

−→
G2 is a tournament then c(f(u)) = c(f(v)). By function

f we have that c(f(u)) = c(u) we get by replacing c(u) = c(v). Like
−→
G2 also

is a tournament, then u = v. We conclude that the function f is injective.
As |V (

−→
G1)| = |V (

−→
G2)| and

−→
G1,

−→
G2 are tournaments, then the function f is

sobrejective. �	

Theorem 8. Let Kp and Kq be complete graphs, and
−→
K be the collection of all

tournaments. Consider the sets P and Q consisting of all orientations of Kp and
Kq respectively. Define the set L = {−→K l ∈ K; |V (

−→
K l)| = max{|V (

−→
K j)|;−→K j ⊆−→

K ′
p,

−→
K j ⊆ −→

K ′
q}, ∀−→

K ′
p ∈ P and

−→
K ′

q ∈ Q}. Let r = min{|V (
−→
K l)|;∀−→

K l ∈ L}.
Then χo(Kp ∪ Kq) = p + q − r.

Proof. Let
−→
K r a tournament on r vertices, where r = min{|V (

−→
K l)|;∀−→

K l ∈ L}.
We denote by

−→
Kp

r a subgraph
−→
K r of

−→
Kp and

−→
K q

r a subgraph
−→
K r of

−→
K q. Since−→

Kp
r and

−→
K q

r are isomorphic, we can assign identical r colors to the vertices
of both graphs. As r ≤ q ≤ p remain p + q − r vertices to be colored. Then
χo(Kp ∪ Kq) ≤ p + q − r.

By Lemma 7, the maximum number of colors used in both
−→
Kp and

−→
K q

is r, otherwise we contradict the cardinality of
−→
K r. Hence χo(Kp ∪ Kq) =

p + q − r. �	
We also analyse some specific disjoint unions of K5 with another K5 and

with complete graphs.

Theorem 9. Given the union K5 ∪ K5, set L = {−→K l ∈ K; |V (
−→
K l)| =

max{|V (
−→
K j)|;−→K j ⊆ −→

K ′
5,

−→
K j ⊆ −→

K ′
5}, ∀−→

K ′
p ∈ P and

−→
K ′

q ∈ Q}, then r =

min{|V (
−→
K l)|;∀−→

K l ∈ L} = 3.
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Corollary 6. Given the union Kp ∪ K5, p ≥ 5, set L = {−→K l ∈ K; |V (
−→
K l)| =

max{|V (
−→
K j)|;−→K j ⊆ −→

K ′
5,

−→
K j ⊆ −→

K ′
5}, ∀−→

K ′
p ∈ P and

−→
K ′

q ∈ Q}, then r =

min{|V (
−→
K l)|;∀−→

K l ∈ L} = 3.

We have done some computational experiments, that drove us to Conjec-
ture 1.

Conjecture 1. Let Kp, Kq be 2 complete graphs with p, q ≥ 4. Then χo(Kp ∪
Kq) = p + q − 3.

Lastly we show an upper bound for the disjoint union of wheel graphs and
complete graphs.

Theorem 10. Let p, q, p ≥ 4, q ≥ 3 be positive integers. Then χo(Kp + Wq) ≤
p + 5.

Proof. Let
−→
K3 be the transitive orientation of the tournament with 3 vertices.

We consider 2 cases:

1.
−→
K3 is not a subgraph of Wq. In this case we can color Wq with 3 colors. Hence,
2 colors of the graph Kp can be used with color p + 1 to color Wq.

2.
−→
K3 is a subgraph of Wq. In this case according to Theorem 3 we can color
Wq with 8 colors. From Corollary 4 we know that we can use 3 colors of the
graph Kp plus additional 5 colors to color Wq. �	

5 Conclusions

In this paper, we prove that if q ≥ 8 then χo(Wq) = 8 and for every forest F ,
χo(F ) is determined by the connected component of F with the largest oriented
chromatic number of its connected components, what is an exception to the
general case of disconnected graphs.

We characterized the class CN3 of the graphs with χo(G) ≤ 3. This charac-
terization motivated us to study the oriented chromatic number of disconnected
graphs. We have established χo(Kp∪Pq), χo(Kp∪F ), χo(Kp∪Cq), and an upper
bound for χo(Kp ∪ Wq).

We establish the oriented chromatic number of the union of two complete
graphs Kp, Kq as χo(Kp ∪ Kq) = p + q − r, where r is the size of the maximum
tournament contained in all orientations of Kp and Kq. We have conjectured
that r = 3 for every pair 4 ≤ p, q.

Table 1 presents the results obtained in this paper regarding to the union of
complete graphs with other graph classes. For future works we intend to expand
our Table of results where most of the important classes be added in the firsts
column and row of the Table, besides considering the cases when we have more
than 2 components.
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Table 1. Oriented chromatic number of the union χo(G ∪ H).

G
H

Forest
diameter

d ≤ 2

Forest
diameter

d ≥ 3

Cq,
q ≥ 3 Kq Wq

Kp,
p = 2

d + 1
3

(Corol. 1)

3, if χo(Cq) = 3
4, if χo(Cq) = 4
5, if χo(Cq) = 5

p + q − r
(Corol. 8)

q + 1, if 3 ≤ q ≤ 6
8, if q ≥ 8

Kp,
p = 3

3
(Thm. 2)

4
(Corol. 8)

4, if χo(Cq) = 3
4, if χo(Cq) = 4
5, if χo(Cq) = 5

p + q − r
(Thm. 8)

q + 1, if 3 ≤ q ≤ 6
8, if q ≥ 8

Kp,
p ≥ 4

p
(Corol. 3)

p + 1
(Corol. 2)

p + 1
(Thm. 7)

p + q − r
(Corol. 8)

≤ p + 5
(Thm. 10)
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