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Abstract. We consider the planar two-center problem for a convex
polygon: given a convex polygon in the plane, find two congruent disks
of minimum radius whose union contains the polygon. We present an
O(nlogn)-time algorithm for the two-center problem for a convex poly-
gon, where n is the number of vertices of the polygon. This improves
upon the previous best algorithm for the problem.
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1 Introduction

The problem of covering a region R by a predefined shape @ (such as a disk,
a square, a rectangle, a convex polygon, etc.) in the plane is to find & homoth-
ets' of Q with the same homothety ratio such that their union contains R and
the homothety ratio is minimized. The homothets in the covering are allowed
to overlap, as long as their union contains the region. This is a fundamental
optimization problem [2,4,19] arising in analyzing and recognizing shapes, and
it has real-world applications, including computer vision and data mining.

The covering problem has been extensively studied in the context of the k-
center problem and the facility location problem when the region to cover is a set
of points and the predefined shape is a disk in the plane. In last decades, there have
been a lot of works, including exact algorithms for k = 2 [3,11,13,14,33, 35|, exact

! For a shape Q in the plane, a (positive) homothet of Q is a set of the form AQ + v :=
{A\¢+v | q€ Q}, where X\ > 0 is the homothety ratio, and v € R? is a translation
vector.
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and approximation algorithms for large k [2,19,21,24], algorithms in higher dimen-
sional spaces [1,2,29], and approximation algorithms for streaming points [5, 6,12,
22,25,37]. There are also some works on the k-center problem for small k when the
region to cover is a set of disks in the plane, for k = 1 [20,27,28] and k = 2 [8].

In the context of the facility location, there have also been some works on the
geodesic k-center problem for simple polygons [7,30] and polygonal domains [9],
in which we find k points (centers) in order to minimize the maximum geodesic
distance from any point in the domain to its closest center.

In this paper we consider the covering problem for a convex polygon in which
we find two congruent disks of minimum radius whose union contains the con-
vex polygon. Thus, our problem can be considered as the (geodesic) two-center
problem for a convex polygon. See Fig.1 for an illustration.

Previous Works. For a convex polygon with n vertices, Shin et al. [34] gave an
O(n? log® n)-time algorithm using parametric search for the two-center problem.
They also gave an O(n log® n)-time algorithm for the restricted case of the two-
center problem in which the centers must lie at polygon vertices. Later, Kim and
Shin [26] improved the results and gave an O(nlog® nloglogn)-time algorithm
for the two-center problem and an O(n log? n)-time algorithm for the restricted
case of the problem.

There has been a series of work dedicated to variations of the k-center prob-
lem for a convex polygon, most of which require certain constraints on the cen-
ters, including the centers restricted to lie on the polygon boundary [31] and
on a given polygon edge(s) [17,31]. For large k, there are quite a few approx-
imation algorithms. For k& > 3, Das et al. [17] gave an (1 + €)-approximation
algorithm with the centers restricted to lie on the same polygon edge, along
with a heuristic algorithm without such restriction. Basappa et al. [10] gave a
(2 + €)-approximation algorithm for k& > 7, where the centers are restricted to
lie on the polygon boundary. There is a 2-approximation algorithm for the two-
center problem for a convex polygon that supports insertions and deletions of
points in O(logn) time per operation [32].

(a)

Fig. 1. (a) Two congruent disks whose union covers a convex polygon P. (b) P can be
covered by two congruent disks of smaller radius.
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Our Results. We present an O(nlogn)-time deterministic algorithm for the two-
center problem for a convex polygon P with n vertices. That is, given a convex
polygon with n vertices, we can find in O(nlogn) time two congruent disks
of minimum radius whose union covers the polygon. This improves upon the
O(nlog® nloglogn) time bound of Kim and Shin [26].

Sketch of Our Algorithm. Our algorithm is twofold. First we solve the sequential
decision problem in O(n) time. That is, given a real value r, decide whether
r > r* where r* is the optimal radius value. Then we present a parallel algorithm
for the decision problem which takes O(logn) time using O(n) processors, after
an O(nlogn)-time preprocessing. Using these decision algorithms and applying
Cole’s parametric search [16], we solve the optimization problem, the two centers
for P, in O(nlogn) deterministic time.

We observe that if P is covered by two congruent disks D; and D5 of radius
r, Dy covers a connected subchain P; of the boundary of P and Dy covers the
remaining subchain P, of the boundary of P. Thus, in the sequential decision
algorithm, we compute for any point x on the boundary of P, the longest sub-
chain of the boundary of P from « in counterclockwise direction that is covered
by a disk of radius r, and the longest subchain of the boundary P from z in
clockwise direction that is covered by a disk of radius r. We show that the deter-
minators of the disks that define the two longest subchains change O(n) times
while = moves along the boundary of P. We also show that the disks and the
longest subchains can be represented by O(n) algebraic functions. Our sequen-
tial decision algorithm computes the longest subchains in O(n) time. Finally,
the sequential decision algorithm determines whether there is a point =’ in P
such that the two longest subchains from z’, one in counterclockwise direction
and one in clockwise direction, cover the polygon boundary in O(n) time.

Our parallel decision algorithm computes the longest subchains in parallel
and determines whether there is a point z’ in P such that the two longest sub-
chains from 2’ covers the polygon boundary in O(logn) parallel steps using O(n)
processors after O(nlogn)-time preprocessing. For this purpose, the algorithm
finds rough bounds of the longest subchains, by modifying the parallel decision
algorithm for the planar two-center problem of points in convex position [14]
and applying it for the vertices of P. Then the algorithm computes O(n) alge-
braic functions of the longest subchains in O(logn) time using O(n) processors.
Finally, it determines in parallel computation whether there is a point z’ in P
such that the two longest subchains from z covers the polygon boundary.

We can compute the optimal radius value r* using Cole’s parametric
search [16]. For a sequential decision algorithm of running time Tg and a
parallel decision algorithm of parallel running time Tp using N processors,
Cole’s parametric search is a technique that computes an optimal value in
O(NTp + Ts(Tp + log N)) time. In our case, Ts = O(n), Tp = O(logn), and
N = O(n). Therefore, we get a deterministic O(nlogn)-time algorithm for the
two-center problem for a convex polygon P.

Due to lack of space, some of the proofs and details are omitted. A full version
of this paper is available in [15].
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2 Preliminaries

For any two sets X and Y in the plane, we say X covers Y if Y C X. We say a
set X is r-coverable if there is a disk D of radius r covering X. For a compact
set A, we use 0A to denote the boundary of A. We simply say x moves along
0A when z moves in the counterclockwise direction along 0A. Otherwise, we
explicitly mention the direction.

Let P be a convex polygon with n vertices vy, vs, ..., v, in counterclockwise
order along the boundary of P. Throughout the paper, we assume general cir-
cular position on the vertices of P, meaning no four vertices are cocircular. We
denote the subchain of P from a point x to a point y in P in counterclockwise
order as P, , = (z,v;,Vix1,- . ., V;,Y), where v;, v;41,...,v; are the vertices of P
that are contained in the subchain. We call x,v;,vi41,...,v;,y the vertices of
P, . By | Py 4|, we denote the number of distinct vertices of P, ,,.

We can define an order on the points of 0P, with respect to a point p € P.
For two points = and y of 9P, we use x <, y if y is farther from p than z in the
counterclockwise direction along 0P. We define <, >,, >, accordingly.

For a subchain C of 0P, we denote by I,.(C) the intersection of the disks
of radius r, each centered at a point in C. See Fig.2(a). Observe that any disk
of radius r centered at a point p € I.(C) covers the entire chain C. Hence,
I.(C) # 0 if and only if C is r-coverable. The circular hull of a set X, denoted
by a,(X), is the intersection of all disks of radius r covering X. See Fig.2(b).
Let S be the set of vertices of a subchain C' of 9P. If a disk covers C, it also
covers S. If a disk covers .5, it covers C' since it covers every line segment induced
by pairs of the points in S, due to the convexity of a disk. Therefore, «,.(C) and
a;-(S) are the same and I.(C) and I.(S) are the same.

(a) (b)

Fig. 2. C is a subchain of 9P and S is the vertex set of C. (a) I.(S) = I.(C) (b)
ar(S) = ar(C)

Every vertex of a,(C) is a vertex of C. The boundary of «,(C) consists of
arcs of radius r, each connecting two vertices of C. The circular hull a,.(C) is
dual to the intersection I,.(C), in the sense that every arc of «,.(C) is on the circle
of radius r centered at a vertex of I,.(C), and every arc of I,.(C) is on the circle
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of radius r centered at a vertex of a,.(C). This implies that a,.(C) # @ if and
only if I,.(C) # 0. Therefore, a,.(C) is nonempty if and only if C' is r-coverable.

For a vertex v of a,.(C'), we denote by ccw(v) its counterclockwise neighbor
on da,-(C), and by cw(v) its clockwise neighbor on da,(C). We denote by v(v)
the arc of a,.(C) connecting v and cew(v) of «,.(C). By §(v), we denote the
supporting disk of the arc y(v) of a,(C), that is, the disk containing v(v) in
its boundary. We may use «(C) and I(C) to denote «,.(C) and I.(C), respec-
tively, if it is understood from context. Since a(C) and «(S) are the same, we
obtain the following observation on subchains from the observations on planar
points [18,23].

Observation 1 [18,23]. For a subchain C of 0P the followings hold.

1. For any subchain ¢’ C C, «,.(C") C «,(C) .

2. A vertex of C appears as a vertex in «,.(C) if and only if C is r-coverable by
a disk containing the vertex on its boundary.

3. An arc of radius r connecting two vertices of C' appears as an arc of «,.(C) if
and only if C' is r-coverable by the supporting disk of the arc.

For a point « € 0P, let f.(z) be the farthest point on P from z in the coun-
terclockwise direction along 9P such that P, y (, is r-coverable. We denote by
D7i(x) the disk of radius r covering P, y, (). Similarly, let g,.(x) be the farthest
point on 9P from x in the clockwise direction such that P, (., is r-coverable,
and denote by Dj(x) the disk of radius r covering P, (). Note that x may
not lie on the boundaries of D] and Dj. We may use f(z), D1(z), g(x), and
Dy (x) by omitting the subscript and superscript r in the notations, if they are
understood from context.

Since we can determine in O(n) time whether P is r-coverable [29], we assume
that P is not r-coverable in the remainder of the paper. For a fixed r, consider any
two points ¢ and ¢’ in JP satisfying t <; t' <; f(t). Then Py ;) is r-coverable,
which implies f(t) < f(t'). Thus, we have the following observation.

Observation 2. For a fixed r, as x moves along dP in the counterclockwise
direction, both f(z) and g(z) move monotonically along OP in the counterclock-
wise direction.

3 Sequential Decision Algorithm

In this section, we consider the decision problem: given a real value r, decide
whether r > r*, that is, whether there are two congruent disks of radius r whose
union covers P.

For a point  moving along dP, we consider two functions, f(x) and g(z). If
there is a point 2 € OP such that f(x) >, g(z), the union of P, ;) and Py, »
is OP. Thus there are two congruent disks of radius r whose union covers P, and
the decision algorithm returns yes. Otherwise, we conclude that r < r*, and
the decision algorithm returns no. For a subchain P, , of 9P, we use a(x,y) to

denote «(Py ), and I(z,y) to denote I(Py ).
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3.1 Characterizations

For a fixed r, I(z, f()) is a point, and it is the center of a(x, f(x)). Moreover,
a(z, f(x)) and Dy (x) are the same. Observe that Dy (x) is defined by two or three
vertices of P, ¢(,), which we call the determinators of Dy(z). For our purpose,
we define four types of D;(z) by its determinators: (T1) x, f(z), and one vertex.
(T2) z and f(z). (T3) f(z) and one vertex. (T4) f(x) and two vertices. See Fig. 3
for an illustration of the four types.

f(x) @)
-# . i
. | T 7 f(x)
T2 T3 T4

Fig. 3. Four types of Di(x) and its determinators (small circles).

We denote by e(a) the edge of P containing a point a € 9P. If a is a vertex
of P, e(a) denotes the edge of P incident to a lying in the counterclockwise
direction from a. For a point = moving along 0P, the combinatorial structure
of f(z) is determined by e(x), e(f(z)), and the determinators of D;(x). We
call each point z in 9P at which the combinatorial structure of f(z) changes a
breakpoint of f(x). For z € OP lying in between two consecutive breakpoints,
we can compute f(z) using e(z), e(f(z)), and Dy (x).

Consider z moving along 0P starting from xg on JP in counterclockwise
direction. Let x1 = f(x0), z2 = f(z1) and x5 = f(z2). We simply use the index
i instead of x; for ¢ = 0,...,3 if it is understood from context. For instance,
we use P; ; to denote Py, .., and <; to denote <;,. For the rest of the section,
we describe how to handle the case that z moves along Fy ;. The cases that x
moves along P; o and P 3 can be handle analogously. As z moves along Py 1,
f(z) moves along P; 5 in the same direction by Observation 2.

Lemma 1. For any fized r > r*, the union of Py 1, P12, and Pa3 is OP.

The structure of a circular hull can be expressed by the circular sequence of
arcs appearing on the boundary of the circular hull. There is a 1-to-1 correspon-
dence between a breakpoint of f(z) for x moving along Fy; and a structural
change to a(z, f(x)). This is because D (z) and a(x, f(x)) are the same. Thus,
we maintain D;(x) for x moving along Py ; and capture every structural change
to a(z, f(x)). Observe that the boundary of a(z, f(x)) consists of a connected
boundary part of a(x,x1), a connected boundary part of a(z1, f(z)), and two
arcs of Dy (x) connecting a(x,z1) and a(xy, f(z)). See Fig. 4 for an illustration.

The following lemmas give some characterizations to the four types of D1 (x).
Recall that 6(v) is the supporting disk of the arc v(v) of an circular hull, that
is, the disk containing v(v) on its boundary.
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Fig. 4. Two cases of D1(z) of type T1. Two arcs (dashed) of D1(z) connecting a(z, z1)
and a(z1, f(z)). (a) If v is on the boundary of a(z,z1), Di(z) is é(x) of a(z,z1). (b)
If v is on the boundary of a(z1, f(x)), D1(x) is d(cw(f(x))).

Lemma 2. The following characterizations hold for each type of D1(x).

— For Dy(z) of type T1, it is 6(x) of a(x,x1) or §(ew(f(x))) of a(xy, f(x)).

— For Dy(z) of type T2, the Euclidean distance between x and f(x) is 2r.

— For D1(z) of type T3 or T4 containing x on its boundary, it is 6(x) of a(x, x1)
or 6(ew(f(z))) of a(x1, f(x)). Moreover, for any point y in the interior of
P, v, D1(y) has the same type as D1(x), where v is the determinator of D1 (x)
closest to x in counterclockwise order.

If there is a change to e(x), e(f(x)), cew(x) of ax, x1) or ew(f(z)) of a(z1, f(z)),
the combinatorial structure of f(z) changes. Therefore, we compute the changes
to e(x) and ccw(z) of a(x,xq1) for a point x moving along Py 1, and compute
the changes to e(y) and cw(y) of a(z1,y) for a point y moving along P; ». We
call the points inducing these changes the event points. From this, we detect the
combinatorial changes to f(x).

3.2 Data Structures and Decision Algorithm

Wang [36] proposed a semi-dynamic (insertion-only) data structure for maintain-
ing the circular hull for points in the plane that are inserted in increasing order
of their z-coordinates. It is also mentioned that the algorithm can be modified
to work for points that are inserted in the sorted order around a point. Since
the vertices of P are already sorted around any point in the interior of P, we
can use the algorithm for our purpose.

Lemma 3 (Theorem 5 in [36]). We can maintain the circular hull of a set Q
of points such that when a new point to the right of all points of Q is inserted,
we can decide in O(1) amortized time whether a(Q) is nonempty, and update

a(Q).
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We can modify the algorithm to work not only for point insertions, but also
for edge insertions. Let vy, ...,v; be the vertices of P inserted so far in order
from v;. When v, is inserted, we compute the points z on edge v;v;41 at which
a structural change to a(vy, 2) occurs.

Lemma 4. For a point x moving along Py 1, e(x) and cew(z) of ax, 1) change
O(|Po1]) times. We can compute the event points x at which cew(z) of oz, x1)
changes in O(|Py1]|) time.

From Lemma 4, we obtain the following Corollary.

Corollary 1. For a point y moving along Pi2, e(y) and cw(y) of a(z1,y)
change O(| Py 2]) times. We can compute the event points y at which cw(y) of
a(x1,y) changes in O(|Py2|) time.

The event points subdivide Py ; and P; o into O(|Py1]) and O(| Py 2|) pieces,
respectively. Since the vertices of Pyq and Pj o are also event points (defined
by the changes to e(x) and e(y)), each piece is a segment contained in an edge.
Moreover, any point z in a segment of Py 1 has the same ccw(z) of a(x, z1), and
any point y in a segment of Pj 5 has the same cw(y) of a(z1,y).

Let T be a maximal segment contained in an edge of Py ; such that e(z),
e(f(x)), cew(z) of a(x,x1), and cw(f(x)) of a(zy, f(x)) remain the same for
any ¢ € T. We count the breakpoints of f(x) in the interior of 7. There are
O(n) such segments by Lemmas 1, 4 and Corollary 1. We count the breakpoints
of f(x) by computing point & where the type of D;(z) or the determinators of
D;(z) changes. We show that there are at most O(1) breakpoints in the interior
of each maximal segment, and therefore there are O(n) breakpoints in total. In
order to compute f(z), we first compute f(z¢) = x1. Then starting from z = x
and f(x) = x1, we compute f(z) as x moves along P by maintaining the two
maximal segments such that e(x) and ccw(x) of a(x,z1) remain the same and
e(f(z)) and cw(f(z)) of a(z1, f(x)) remain the same. By repeating this process
over maximal segments, we get the following lemma. The details of the process
can be found in [15].

Lemma 5. For a fized r > r*, there are O(n) breakpoints of f(z) and g(x), and
they can be computed in O(n) time.

Recall that our algorithm returns yes if there exists a point x € P such
that f(z) >, g(z), otherwise it returns no. Hence, using Lemma 5, we have the
following theorem.

Theorem 1. Given a convex polygon P with n vertices in the plane and a radius
r, we can decide whether there are two congruent disks of radius v covering P
in O(n) time.
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4 Parallel Decision Algorithm

Given a real value r, our parallel decision algorithm computes f(z) and g(z)
that define the longest subchains of 9P from x covered by disks of radius r, and
determines whether there is a point « € 9P such that f(z) >, g(x), in parallel.
To do this efficiently, our algorithm first finds rough bounds of f(x) and g(z) by
modifying the parallel decision algorithm for the two-center problem for points
in convex position by Choi and Ahn [14] and applying it for the vertices of P.
Then our algorithm computes f(z) and g(z) exactly.

The parallel decision algorithm by Choi and Ahn runs in two phases: the pre-
processing phase and the decision phase. In the preprocessing phase, their algo-
rithm runs sequentially without knowing r. In the decision phase, their algorithm
runs in parallel for a given value r. It constructs a data structure that supports
intersection queries of a subset of disks centered at input points in O(logn)
parallel time using O(n) processors after O(nlogn)-time preprocessing. In our
problem, two congruent disks must cover the edges of P as well as the vertices
of P, and thus we modify the preprocessing phase.

In the preprocessing phase, their algorithm partitions the vertices of P into

two subsets S1 = {v1,...,v;} and Sy = {vgy1,...,v,}, each consisting of con-
secutive vertices along OF such that there are v; € S; and v; € Sy satisfying
{vi,viy1,...,vj1} C Dy and {vj,vj41,...,v;—1} C Dy for an optimal pair

(D1, Ds) of disks for the vertices of P. The indices of vertices are cyclic such
that n + k = k for any integer k. Then in O(nlogn) time, it finds O(n/log® n)
pairs of subsets, each consisting of O(log® n) consecutive vertices such that there
is one pair (U, W) of sets with v; € U and v; € W, where v; and v; are the
vertices that determine the optimal partition.

In the preprocessing phase, our algorithm partitions 0P into two subchains.
Then, we partition dP into O(n/log® n) subchains, each consisting of O(log® n)
consecutive vertices, and compute O(n/log® n) pairs of the subchains such that
at least one pair has x in one subchain and 2z’ in the other subchain, and P, ./
and P, , is r*-coverable.

In the decision phase, their algorithm constructs a data structure in O(logn)
parallel time with O(n) processors, that for a query with r computes I (u,w),
where u € U',w € W' for any pair (U, W’) among the O(n/log®n) pairs.
Then it computes I(u,w) in O(logn) time and determines if I(u,w) = @ in
O(log® log n) time using the data structure.

In our case, our algorithm constructs a data structure that for a query with
r computes I,.(v;,v;) and I,.(vj,v;) for v; € Py, v; € Py, where (Py, P,) is one of
the O(n/log®n) pairs of subchains computed in our preprocessing phase. Our
data structure also determines if I(v;,v;) = 0.

Using the data structure, our algorithm gets rough bounds of f(z) and g(x).
Then it computes f(z) and g(x) exactly. In doing so, it computes all break-
points of f(z) and g(z), and their corresponding combinatorial structures, and
determines whether there exists € 9P such that f(x) >, g(x).
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4.1 Preprocessing Phase

We use f*(z) and g*(z) to denote f,~(x) and g, (x), respectively. Our algorithm
partitions 0P into two subchains such that P, ;- and P,/ , are r*-coverable, for
x and ' contained in each subchain. Then it computes O(n/log®n) pairs of
subchains of 9P, each consisting of O(log6 n) consecutive vertices.

More precisely, for any two points z,y € 9P, let 7(z,y) be the smallest value
such that P, , is 7(x,y)-coverable. For a point p € 9P, let h(p) be the farthest
point from p in counterclockwise direction along OP that satisfies 7(p, h(p)) <
7(h(p),p). Then for any vertex v of P, P, j(,) and Pj(y), form a partition of
OP such that there are x € P, j(,) and 2’ € Py, and Py, and Py, are
r*-coverable. The details on the partition of P into two subchains can be found
in [15].

We consider  moving along P,, ,(v,) and f(x) moving along Py, )., - Also,
from now on, we use < instead of <,,. The same goes for <,,,>,,,>,,. To
compute rough bounds of f(z) and g(zx), our algorithm computes a step function
F(z) approximating f*(z) and a step function G(z) approximating g*(z) on the
same set of intervals of the same length. More precisely, at every (log6 n)-th
vertex v from vy along OP, it evaluates step functions F(v) and G(v) on r* such
that f*(v) < F(v) and ¢g*(v) > G(v). See Fig.5(a). In each interval, the region
bounded by F(z) from above and by G(z) from below is a rectangular cell. Thus,
there is a sequence of O(n/ log® n) rectangular cells of width at most log® n.
See Fig.5(b). Observe that every intersection of f*(z) and g*(z) is contained
in one of the rectangular cells. Thus, we focus on the sequence of rectangular
cells bounded in between F(x) and G(x), which we call the region of interest
(ROI shortly). In addition, we require F'(z) and G(z) to approximate f*(z) and
g*(x) tight enough such that each rectangular cell can be partitioned further
by horizontal lines into disjoint rectangular cells of height at most log®n, and
in total there are O(n/log®n) disjoint rectangular cells of width and height at
most log® n in ROL See Fig. 5(c).

f(2)

Fig. 5. (a) Step function F(z) satisfying f*(z) < F(z), with intervals, each consisting
of log®n consecutive vertices. (b) Sequence of rectangular cells bounded in between
F(z) and G(x). (c) Disjoint rectangular cells of width and height at most log® n.



Covering Convex Polygons by Two Congruent Disks 175

We say that a vertex pair (v;,v;) is in ROI if and only if G(v;) < v; <
F(v;). Also, we say an edge pair (v;vi+1,v;v541) is in ROI if and only if vertex
pairs (vi,v;), (v, vj41), (Vit1,v;) and (vi41,v541) are all in ROIL The details on
computing ROI can be found in [15].

4.2 Decision Phase

Recall that our parallel decision algorithm finds, for a given r, the intersections
of the graphs of f(z) and g(z) in ROI. We use the data structure of the parallel
decision algorithm of the two-center problem for points in convex position [14].
To evaluate f(x) for a given r, we first find O(n) edge pairs (e(x), e(f(z))) in ROL
Then we assign a processor to each edge pair to compute the event points. Then
we assign a processor to each event point to compute the breakpoints and the
corresponding combinatorial structures of f(x). We also do this for g(z). Lastly,
for each combinatorial structure, we determine whether there exists x € 9P such
that f(x) > g(«). This process can be done in O(logn) parallel steps using O(n)
processors, after O(nlogn)-time preprocessing.

Data Structures. We adopt the data structure for the two-center problem for
points in convex position by Choi and Ahn [14]. To construct the data structure,
they store the frequently used intersections of disks for all » > 0. Then, they
find a range of radii (r, 73] containing the optimal radius 7’ for the two center
problem for points in convex position. To do this they use binary search and
the sequential decision algorithm for points in convex position. In our case, we
compute a range of radii (ry, 2] containing the optimal radius r* using binary
search and the sequential decision algorithm in Sect. 3 running in O(n) time. For
r € (r1,r2], we construct a data structure that supports the following.

Lemma 6 [14]. After O(nlogn)-time preprocessing, we can construct a data
structure in O(logn) parallel steps using O(n) processors that supports the fol-
lowing queries with r € (ri,72]: (1) For any vertex v; in Py, p,), compute
I(v;, h(v1)) represented in a binary search tree with height O(logn) in O(logn)
time. (2) For any pair (v;,v;) of vertices in ROI, determine if I(v;,v;) = 0 in
O(log®logn) time.

Computing Edge Pairs. Using the data structure in Lemma 6, we get the
following lemma.

Lemma 7. Given r € (ry,r2], we can compute all edge pairs (e(x),e(f(x)))
in ROI in O(logn) parallel time using O(n) processors, after O(nlogn)-time
preprocessing.

Computing the Combinatorial Structure. After computing the edge pairs
using Lemma 7, we compute the breakpoints and the corresponding combinato-
rial structures of f(x). To do this, we compute event points and find breakpoints
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from the event points for each edge pair. For D;(x) of type T3 or T4, its deter-
minators never change for an edge pair (e(z),e(f(x))) by Lemma 2. Thus, for
each edge pair we find candidates of the determinators of D;(z) of type T3 or
T4 in O(logn) time.

For D;(x) of type T1 or T2, we find the event points of ccw(z) of a(x, h(vy)),
and the event points of cw(f(x)) of a(h(vy), f(x)). Consider an edge pair
(u'u,vv") in ROT such that f(z) € v’ for some = € w'u. The edge pair (u'u,vv’)
may have O(n) event points at which ccw(z) of af(x,h(vy)) or cw(f(x)) of
a(h(vy), f(x)) changes, while the total number of event points is O(n). We find
the event points of ccw(z) of a(x, h(v1)) represented in a binary search tree
using I(u, h(v1)) in O(logn) time. Thus, we can find the event points of ccw(x)
of a(xz,h(vy)) for all edge pairs in O(logn) parallel steps using O(n) proces-
sors. For two consecutive event points of ccw(z) of a(x, h(v1)), we compute the
corresponding event points of cw(f(z)) of a(h(v1), f(z)) in O(logn) time. For
a segment T such that e(x), cew(z) of a(z,h(v1)), e(f(x)), and cw(f(x)) of
a(h(vy), f(x)) remain the same for any « € T, we compute f(z).

Lemma 8. Given r € (r1,72], we can compute f(x) for all x € OP such that
(e(z),e(f(x))) is an edge pair in ROI, represented as a binary search tree of
height O(logn) consisting of O(n) nodes, in O(logn) parallel steps using O(n)
processors, after O(nlogn)-time preprocessing.

Now, we have f(x) and g(x) within ROI, each represented as a binary search
tree of height O(logn) and size O(n). For two consecutive breakpoints ¢ and ¢’
of f(z), we find the corresponding combinatorial structures of g(¢) and g(t').
Then we determine whether there exists z € ¢’ such that f(z) > g(z) for all
combinatorial structures of g(x). Since f(z) and g(x) have O(n) breakpoints by
Lemma 5, we can determine whether two disks of radius r cover P in O(logn)
parallel steps using O(n) processors, after O(nlogn)-time preprocessing. There-
fore, using Lemma 8, we get the following theorem.

Theorem 2. Given a real value r, we can determine whether r > r* in O(logn)
parallel steps using O(n) processors, after O(nlogn)-time preprocessing.

We use Cole’s parametric search technique [16] to compute the optimal radius
r*. For a sequential decision algorithm of running time 7Ts and a parallel decision
algorithm of parallel running time T using N processors, we can apply Cole’s
parametric search to compute 7* in O(NTp + Ts(Tp + log N)) time. To apply
Cole’s parametric search, the parallel decision algorithm must satisfy a bounded
fan-in/bounded fan-out requirement. Our parallel decision algorithm satisfies
such requirement. In our case, Ts = O(n), Tp = O(logn), and N = O(n).
Therefore, by applying Cole’s technique, r* can be computed in O(nlogn) time.

Theorem 3. Given a convex polygon with n vertices in the plane, we can find
in O(nlogn) time two congruent disks of minimum radius whose union covers
the polygon.
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