
A Hamilton Cycle in the k-Sided Pancake
Network

B. Cameron1, J. Sawada1(B), and A. Williams2

1 University of Guelph, Guelph, Canada
jsawada@uoguelph.ca

2 Williams College, Williamstown, USA

Abstract. We present a Hamilton cycle in the k-sided pancake network
and four combinatorial algorithms to traverse the cycle. The network’s
vertices are coloured permutations π = p1p2 · · · pn, where each pi has an
associated colour in {0, 1, . . . , k − 1}. There is a directed edge (π1, π2) if
π2 can be obtained from π1 by a “flip” of length j, which reverses the first
j elements and increments their colour modulo k. Our particular cycle
is created using a greedy min-flip strategy, and the average flip length
of the edges we use is bounded by a constant. By reinterpreting the
order recursively, we can generate successive coloured permutations in
O(1)-amortized time, or each successive flip by a loop-free algorithm. We
also show how to compute the successor of any coloured permutation in
O(n)-time. Our greedy min-flip construction generalizes known Hamilton
cycles for the pancake network (where k = 1) and the burnt pancake
network (where k = 2). Interestingly, a greedy max-flip strategy works
on the pancake and burnt pancake networks, but it does not work on the
k-sided network when k > 2.

1 Introduction

Many readers will be familiar with the story of Harry Dweighter, the harried
waiter who sorts stacks of pancakes for his customers. He does this by repeatedly
grabbing some number of pancakes from the top of the stack, and flipping them
over. For example, if the chef in the kitchen creates the stack , then Harry
can sort it by flipping over all four pancakes , and then the top two .

This story came from the imagination of Jacob E. Goodman [9], who was
inspired by sorting folded towels [24]. His original interest was an upper bound on
the number of flips required to sort a stack of n pancakes. Despite its whimsical
origins, the problem attached interest from many mathematicians and computer
scientists, including a young Bill Gates [12]. Eventually, it also found serious
applications, including genomics [11].

A variation of the original story involves burnt pancakes. In this case, each
pancake has two distinct sides: burnt and unburnt. When Harry flips the pan-
cakes, the pancakes involved in the flip also turn over, and Harry wants to sort
the pancakes so that the unburnt sides are facing up. For example, Harry could
sort the stack by flipping all four , then the top two , and the top
c© Springer Nature Switzerland AG 2021
P. Flocchini and L. Moura (Eds.): IWOCA 2021, LNCS 12757, pp. 137–151, 2021.
https://doi.org/10.1007/978-3-030-79987-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79987-8_10&domain=pdf
https://doi.org/10.1007/978-3-030-79987-8_10

138 B. Cameron et al.

one . Similar lines of research developed around this problem (e.g. [6,11]).
The physical model breaks down beyond two sides, however, many of the same
applications do generalize to “k-sided pancakes”.

1.1 Pancake Networks

Interconnection networks connect single processors, or groups of processors,
together. In this context, the underlying graph is known as the network, and
classic graph measurements (e.g. diameter, girth, connectivity) translate to dif-
ferent performance metrics. Two networks related to pancake flipping are in
Fig. 1.

The pancake network G(n) was introduced in the 1980s [1] and various
measurements were established (e.g. [14]). Its vertex set is the set of permu-
tations of {1, 2, . . . , n} in one-line notation, which is denoted P(n). For example,
P(2) = {12, 21}. There is an edge between permutations that differ by a prefix-
reversal of length �, which reverses the first � symbols. For example, (3421, 4321)
is the � = 2 edge between and . Goodman’s original problem is finding
the maximum shortest path length to the identity permutation. Since G(n) is
vertex-transitive, this value is simply its diameter.

The burnt pancake network G(n) was introduced in the 1990s [6]. Its vertex
set is the set of signed permutations of {1, 2, . . . , n}, which is denoted P(n). For
example, P(2) = {12, 12̄, 1̄2, 1̄2̄, 21, 21̄, 2̄1, 2̄1̄} where overlines denote negative
symbols. There is an edge between signed permutations that differ by a sign-
complementing prefix-reversal of length �, which reverses the order and sign of
the first � symbols. For example, (2̄1̄34, 1234) is the � = 2 edge between and

.
The k-sided pancake network Gk(n) is a directed graph that was first stud-

ied in the 2000s [15]. Its vertex set is the set of k-coloured permutations of
{1, 2, . . . , n} in one-line notation, which is denoted Pk(n). For example, P3(2) is
illustrated below, where colours the 0, 1, 2 are denoted using superscripts, or in
black, red, blue.

P3(2) = {12,12,12,12,12,12,12,12,12,21,21,21,21,21,21,21,21,21}
= {1020, 1021, 1022, 1120, 1121, 1122, 1220, 1221, 1222, 2010, . . . , 2211, 2212}.

There is a directed edge from π1 ∈ Pk(n) to π2 ∈ Pk(n) if π1 can be transformed
into π2 by a colour-incrementing prefix-reversal of length �, which reverses the
order and increments the colour modulo k of the first � symbols. For example,
(2134,1234) = (21123040, 10223040) is a directed � = 2 edge.

Notice that G(n) and G1(n) are isomorphic, while G(n) and G2(n) are iso-
morphic, so long as we view each undirected edge as two opposing directed edges.
It also bears mentioning that Gk(n) is a (connected) directed Cayley graph, and
its underlying group is the wreath product of the cyclic group of order k and the
symmetric group of order n.

A Hamilton Cycle in the k-Sided Pancake Network 139

Fig. 1. Hamilton cycles in a pancake network and a coloured pancake network. The
highlighted cycles start at 12 · · · n (or 1020 · · · n0) and are constructed by the greedy
min-flip strategy. The colours 0, 1, 2 in (b) correspond to black, red, and blue. (Color
figure online)

When the context is clear, or the distinction is not necessary, we use the term
flip for prefix-reversal (when k = 1), sign-complementing prefix-reversal (when
k = 2), and colour-incrementing prefix-reversal (when k > 2).

1.2 (Greedy) Hamilton Cycles

In this paper, we are not interested in shortest paths in pancake networks, but
rather Hamilton cycles. There are myriad ways that researchers attempt to build
Hamilton cycles in highly-symmetric graphs, and the greedy approach is perhaps
the simplest (see Williams [26]). This approach initializes a path at a specific
vertex, then repeatedly extends the path by a single edge. More specifically,
it uses the highest priority edge (according to some criteria) that leads to a
vertex that is not on the path. The path stops growing when the current vertex
is only adjacent to vertices on the path. A Hamilton cycle has been found if
every vertex is on the path, and there is an edge from the final vertex to the first
vertex. Despite its simplicity, the approach is known to work on many well-known
graphs [26].

We show that the greedy approach works for the coloured pancake net-
work Gk(n) when we prioritize the edges by shortest flip length. More specif-
ically, we start a path at 1020 · · · n0 ∈ Pk(n), then repeatedly extend it to a
new vertex along the edge that corresponds to the shortest colour-incrementing
prefix-reversal. We refer to this as the greedy min-flip construction, denoted
GreedyMink(n), and it is illustrated in Fig. 1. When k = 1, the cycle that we
create is identical to the one given by Zaks [27], and when k = 2, our cycle in
the burnt pancake network was previously produced by Suzuki, N. Sawada, and

140 B. Cameron et al.

Kaneko [16]; however, both of these papers describe their cycles recursively. The
greedy construction of the cycles in the pancake and burnt pancake networks
was previously given by J. Sawada and Williams [10,20].

1.3 Combinatorial Generation

Ostensibly, the primary contribution of this paper is the Hamiltonicity of k-sided
pancake networks. However, the authors’ primary motivation was not in finding
a Hamilton cycle, but rather in investigating its contributions to combinato-
rial generation. Combinatorial generation is the research area devoted to the
efficient and clever generation of combinatorial objects. By efficient we mean
that successive objects can be generated in amortized O(1)-time or worst-case
O(1)-time, regardless of their size. The former is known as constant amortized
time (CAT), while the latter is known as loop-free. By clever we mean that
non-lexicographic orders are often desirable. When describing these alternate
orders, the authors make liberal use of the term Gray code—in reference to the
eponymous binary reflected Gray code patented by Frank Gray [13])—and we
refer to our Hamilton cycle as a colour-incrementing prefix-reversal Gray code
for coloured permutations. Informally, it is a flip Gray code.

There are dozens of publications on the efficient generation of permuta-
tion Gray codes. In fact, comprehensive discussions on this topic date back to
Sedgewick’s survey in 1977 [22], with more modern coverage in Volume 4 of
Knuth’s The Art of Computer Programming [17]. However, to our knowledge,
there are no published Gray codes for coloured permutations. This is surprising
as the combinatorial [4,5,8,18,19] and algebraic [2,3,23] properties of coloured
permutations have been of considerable interest. Work on the latter is due to
the group theoretic interpretation of Pk(n) as the wreath product of the cyclic
and symmetric group, Zk � Sn. We find our new Gray code of interest for two
additional reasons.

1. Other greedy approaches for generating P(n) do not seem to generalize to
Pk(n).

2. Flips are natural and efficient operations in certain contexts.

To expand on the first point, consider the Steinhaus-Johnson-Trotter (SJT)
order of permutations, which dates back to the1600s [17]. In this order, successive
permutations differ by an adjacent-transition (or swap) meaning that adjacent
values in the permutations change place. In other words, the order for P(n) traces
a Hamilton path in the permutohedron of order n. For example, SJT order for
n = 4 appears below

1234, 1243, 1423, 4123,4132, 1432, 1342, 1324, 3124, 3142, 3412, 4312,

4321, 3421, 3241,3214, 2314, 2341, 2431, 4231,4213, 2413, 2143,2134.

A Hamilton Cycle in the k-Sided Pancake Network 141

The symbols that are swapped to create the next permutation are underlined,
and the larger value is in bold. The latter demarcation shows the order’s under-
lying greedy priorities: Swap the largest value. For example, consider the fourth
permutation in the list, 4123. The largest value 4 cannot be swapped to the left
(since it is in the leftmost position) or the right (since 1423 is already in the
order), so the next option is to consider 3, and it can only be swapped to the
left, which gives the fifth permutation 4132. If this description is perhaps too
brief, then we refer the reader to [26].

Now consider greedy generalizations of SJT to signed permutations. The most
natural generalization would involve the use of sign-complementing adjacent-
transpositions which swap and complement the sign of two adjacent values.
Unfortunately, any approach using these operations is doomed to fail. This is
because the operation does not change the parity of positive and negative values.
The authors experimented with other types of signed swaps—complementing
the leftmost or rightmost value in the swap, or the larger or small value in the
swap—without success.

More surprising is the fact that our greedy min-flip strategy works for
coloured permutations, but the analogous max-flip strategy does not. For exam-
ple, the max-flip strategy creates the following path in G3(2) before getting
stuck.

1020, 2111, 1222, 2010, 1121, 2212, 2012, 1021, 2211, 1220, 2110, 1122, E

The issue is that the neighbors of last coloured permutation in the path are
already on the path. More specifically, a flip of length one transforms 1122 into
1222, and a flip of length two transforms 1122 into 2012, both of which appear
earlier. The failure of the max-flip strategy on coloured permutations is surpris-
ing due to the fact that it works for both permutations and signed-permutations
[10,20].

To expand on the second point, note that the time required to flip a prefix
is proportional to its length. In particular, if a permutation over {1, 2, . . . , n} is
stored in an array or linked list of length n, then it takes O(m)-time to flip a
prefix of length m1. Our min-flip strategy ensures that the shortest possible flips
are used. In fact, the average flip length used in our Gray codes is bounded by
e = 2.71828 · · · when k = 1, and the average is even smaller for k > 1.

We also note that flips can be the most efficient operation in certain situa-
tions. For example, consider a brute force approach to the undirected travelling
salesman problem, wherein every Hamilton path of the n cities is represented by
a permutation in P(n). If we iterate over the permutations using a prefix-reversal
Gray code, then successive Hamilton paths differ in a single edge. For example,
the edges in 12345678 and 43215678 are identical, except that the former includes
(4, 5) while the latter includes (1, 5). Thus, the cost of each Hamilton cycle can be

1 Some unusual data structures can support flips of any lengths in constant-time [25].

142 B. Cameron et al.

updated from permutation to permutation using one addition and subtraction.
More generally, flip Gray codes are the most efficient choice when the cost (or
value) of each permutation depends on its unordered pairs of adjacent symbols.
Similarly, our generalization will be the most efficient choice when the cost (or
value) of each coloured permutation depends on its unordered pairs of adjacent
symbols and the minimum distance between their colours.

1.4 New Results

We present a flip Gray code for Pk(n) that corresponds to a Hamilton cycle in the
k-sided pancake network. We present the following four different combinatorial
algorithms for traversing the Hamilton cycle, each having unique and interesting
properties:

1. A greedy algorithm that is easy to describe, but requires an exponential
amount of memory.

2. A recursive algorithm, that reveals the structure of the listing and can be
implemented in O(1)-amortized time.

3. A simple successor rule approach that allows the cycle to start from any
vertex (coloured permutation) and takes on average O(1)-time amortized
over the entire listing.

4. A loop-free algorithm to generate the flip-sequence iteratively.

Before we present these algorithms in Sect. 3, we first present some notation
in Sect. 2. We conclude with a summary and related work in Sect. 4.

2 Notation

Let π = p1p2 · · · pn be a coloured permutation where each pi = vci
i has value

vi ∈ {1, 2, . . . , n} and colour ci ∈ {0, 1, . . . , k − 1}. Recall that Pk(n) denotes the
set of k-coloured permutations of {1, 2, . . . , n}. Observe that P1(n) corresponds
to regular permutations and P2(n) corresponds to signed permutations. For the
remainder of this paper, it is assumed that all permutations are coloured.

As mentioned earlier, a flip of a permutation π, denoted flipi(π), applies a
prefix-reversal of length i on π that also increments the colour of the flipped
elements by 1 (modulo k). As an example for k = 3:

flip4(7
0126150314121) = 51621071314121.

A pre-perm is any prefix of a permutation in Pk(n), i.e. p = p1p2 · · · pj

is a pre-perm if there exist pj+1, . . . pn such that p1p2 · · · pn is a permutation.
Note that if j = n, then the pre-perm is a permutation. Let p = p1p2 · · · pj be
an arbitrary pre-perm for given a k. For a given element pi = vci

i , let p+s
i =

v
(ci+s) (mod k)
i . For 0 ≤ i < k, let p+i denote p+i

1 p+i
2 · · · p+i

j , i.e. p with the

A Hamilton Cycle in the k-Sided Pancake Network 143

colour of each element incremented by i modulo k. Note, p+0 = p. Furthermore,
let ρ(p) = p+(k−1) · p+(k−2) · · ·p+0 = r1r2 · · · rm be a circular string of length
m = kj where · denotes the concatenation of symbols. Let ρ(p)i denote the
length j − 1 subword ending with ri−1.

Example 1 Consider a pre-perm p = 102032 where j = 3 and k = 4.
Then

ρ(p) = 132331 · 122230 · 112133 · 102032 and ρ(p)2 = 3213.

For any pre-perm p = p1p2 · · · pj , let ←−p denote the reverse of p. i.e. ←−p =
pjpj−1 · · · p2p1. Note that ←−p is not equivalent to applying a flip of length j to p
when k > 1 as the colours of each symbol do not change in ←−p . For the remainder
of this paper we will use p to denote a pre-perm, and when it is clear we will
use π to denote a permutation.

3 Constructions of a Cyclic Flip Gray Code for Pk(n)

In this section we present four different combinatorial algorithms for generat-
ing the same cyclic flip Gray code for Pk(n). We begin by studying the listing
of permutations generated by a greedy min-flip algorithm. We define the flip-
sequence of a listing of permutations as the sequence of the flip lengths used to
generate the listing beginning with the first permutation. By studying the under-
lying recursive structure of the greedy listing, we provide a recursive description
and its corresponding flip-sequence and prove it is equivalent to the flip-sequence
generated by the greedy algorithm. This proves that the greedy algorithm gener-
ates all permutations in Pk(n). We then present a successor-rule that determines
the successor of a given permutation in the greedy min-flip listing in expected
O(1)-time. We conclude by showing how the flip-sequence can be generated via
a loop-free algorithm.

3.1 Greedy Algorithm

Recall that GreedyMink(n) denotes the greedy algorithm on Pk(n) that starts at
permutation 1020 · · · n0 and prioritizes the neighbors of each permutation in the
k-sided pancake network by increasing flip length.

144 B. Cameron et al.

Example 2 The following listing (left of the vertical bar) denotes the output
of GreedyMin3(3) (read top to bottom, then left to right), where black, red and
blue correspond to the colours 0,1 and 2 respectively. This listing is exhaustive
and cyclic; the last permutation differs from the first permutation by a flip of
length n = 3. To the right of the vertical line is the flip length required to get
from the permutation in that position to its successor.

123 312 231 123 312 231 123 312 231 1 1 1 1 1 1 1 1 1
123 312 231 123 312 231 123 312 231 1 1 1 1 1 1 1 1 1
123 312 231 123 312 231 123 312 231 2 2 2 2 2 2 2 2 2
213 132 321 213 132 321 213 132 321 1 1 1 1 1 1 1 1 1
213 132 321 213 132 321 213 132 321 1 1 1 1 1 1 1 1 1
213 132 321 213 132 321 213 132 321 2 2 2 2 2 2 2 2 2
123 312 231 123 312 231 123 312 231 1 1 1 1 1 1 1 1 1
123 312 231 123 312 231 123 312 231 1 1 1 1 1 1 1 1 1
123 312 231 123 312 231 123 312 231 2 2 2 2 2 2 2 2 2
213 132 321 213 132 321 213 132 321 1 1 1 1 1 1 1 1 1
213 132 321 213 132 321 213 132 321 1 1 1 1 1 1 1 1 1
213 132 321 213 132 321 213 132 321 2 2 2 2 2 2 2 2 2
123 312 231 123 312 231 123 312 231 1 1 1 1 1 1 1 1 1
123 312 231 123 312 231 123 312 231 1 1 1 1 1 1 1 1 1
123 312 231 123 312 231 123 312 231 2 2 2 2 2 2 2 2 2
213 132 321 213 132 321 213 132 321 1 1 1 1 1 1 1 1 1
213 132 321 213 132 321 213 132 321 1 1 1 1 1 1 1 1 1
213 132 321 213 132 321 213 132 321 3 3 3 3 3 3 3 3 3

Observe that each column of permutations ends with the same element. Fur-
thermore, the last permutation in each column is a subword of the cyclic word
321321321.

Unlike the max-flip approach, we will prove that GreedyMink(n) exhaustively
generates all permutations in Pk(n) for all n, k ≥ 1. We also show that the last
permutation in the listing differs by a flip of length n from the first permutation,
so the listing is a cyclic flip Gray code. To prove this result, we study the under-
lying recursive structure of the resulting listings and examine the flip-sequences.

3.2 Recursive Construction

By applying the two observations made following the listing of GreedyMin3(3)
in Example 2, we arrive at the following recursive definition for a listing of pre-
perms, given a pre-perm p of a permutation in Pk(n):

Reck(p) = Reck(ρ(p)m) · rm, Reck(ρ(p)m−1) · rm−1, . . . , Reck(ρ(p)1) · r1, (1)

where Reck(px) = p+0
x , p+1

x , p+2
x , . . . , p

+(k−1)
x and ρ(p) = r1 · · · rm. Here, the

operation L · r denotes the listing L with r appended to every element in the
listing. We prove that Reck(1020 · · · n0) generates the same (exhaustive) listing
of permutations as GreedyMink(n).

A Hamilton Cycle in the k-Sided Pancake Network 145

Lemma 1. Let p = p1p2p3 · · · pj be a pre-perm of a permutation in Pk(n) for
some n ≥ j. Then the first and last pre-perms in the listing Reck(p) are p and←−−−−−
p+(k−1), respectively.

Proof. The proof proceeds by induction on j. When j = 1, we have p = ←−p = p1,

so Reck(p) = p,p+1, p+2, . . . , p+(k−1). Since p+(k−1) =
←−−−−−
p+(k−1) the claim

holds. Now for 1 ≤ j < n and any pre-perm p = p1p2 · · · pj of a permuta-
tion in Pk(n), suppose that the first and last pre-perms in Reck(p) are p and←−−−−−
p+(k−1) respectively. Let p = p1p2 · · · pjpj+1 be a pre-perm of a permutation
in Pk(n). By definition, the first pre-perm of Reck(p) is the first pre-perm of
Reck(ρ(p)m)·rm where m = (j+1)k. By definition of ρ(p) and ρ(p)m, it is clear
that rm = pj+1 and ρ(p)m = p1p2 · · · pj−1pj . Applying the inductive hypothe-
sis, the first pre-perm of Reck(p1p2 · · · pj−1pj) is p1p2 · · · pj−1pj . Therefore, the
first pre-perm of Reck(p) is p1p2 · · · pj−1pj · pj+1 = p. Similarly, the last pre-
perm of Reck(p) is the last pre-perm of Reck(ρ(p)1) · r1. Now, r1 = p

+(k−1)
1

and ρ(p)1 = p2p3 · · · pjpj+1 and, by the inductive hypothesis, the last pre-perm
in Reck(ρ(p)1) is p

+(k−1)
j+1 p

+(k−1)
j · · · p+(k−1)

2 . Therefore, the last pre-perm of

Reck(p) is
←−−−−−
p+(k−1). ��

Define the sequence σk,n recursively as

σk,n =

{
1k−1 if n = 1
(σk,n−1, n)kn−1, σk,n−1 if n > 1,

(2)

where given a sequence τ , τ j denotes j copies of τ concatenated together. We
will show that σk,n is the flip-sequence for both Reck(p) and GreedyMink(n).
This flip-sequence is a straightforward generalization of the recurrences for non-
coloured permutations [27] and signed permutations [20]. Note that σ3,3 is shown
to the right of the vertical bar in Example 2.

Lemma 2. For n ≥ 1 , k ≥ 1, and π ∈ Pk(n), the flip-sequence for Reck(π) is
σk,n.

Proof. By induction on n. In the base case Reck(p1) = p1, p
+1
1 , p+2

1 , . . . , p
+(k−1)
1

and the flip-sequence is σk,1 = 1k−1. For n ≥ 1 assume that the sequence of flips
used to create Reck(p1p2p3 · · · pn) is given by σk,n. Consider Reck(π) where
π = p1p2p3 · · · pn+1 ∈ Pk(n + 1). By the inductive hypothesis, it suffices to
show that the last permutation of Reck(ρ(π)i) · ri and the first permutation
of Reck(ρ(π)i−1) · ri−1 differ by a flip of length n + 1 for i = 2, 3, . . . ,m (=
k(n + 1)). By definition, ρ(π)i = ri−nri−(n−1) · · · ri−2ri−1 where the indices are
taken modulo m. Therefore, by Lemma 1, the last permutation in Reck(ρ(π)i) is
(ri−1ri−2 · · · ri−(n−1)ri−n)+(k−1). Applying a flip of length n + 1 to Reck(ρ(π)i)·
ri yields

r+1
i ri−nri−(n−1) · · · ri−2ri−1. (3)

146 B. Cameron et al.

By Lemma 1, the first permutation of Reck(ρ(π)i−1) is ri−(n+1)ri−n · · · ri−3ri−2.
By the definition of ρ(π), it follows that ri−(n+1) = r+1

i . Thus, from (3), it follows
that Reck(ρ(π)i) · ri and the first permutation of Reck(ρ(π)i−1) · ri−1 differ by
a flip of length n+1. By applying the inductive hypothesis, the flip-sequence for
Reck(π) is (σk,n, n + 1)k(n+1)−1, σk,n which is exactly σk,n+1. �

Theorem 1. For n ≥ 1, k ≥ 1, and π ∈ Pk(n), Reck(π) is a cyclic flip Gray
code for Pk(n), where the first and last permutations differ by a flip of length n.

Proof. From Lemma 2, the flip-sequence for Reck(π) is given by σk,n. Induc-
tively, it is easy to see that the length of the flip-sequence σk,n is knn! − 1 and
that each permutation of Reck(π) is unique. Thus, each of the knn! permutations
must be listed exactly once and, from Lemma 1, the first and last permutations
of the listing differ by a flip of length n, making Reck(π) a cyclic flip Gray code
for permutations. ��
Lemma 3. For n ≥ 1 and k ≥ 1, the flip-sequence for GreedyMink(n) is σk,n.

Proof. By contradiction. Suppose the sequence of flips used by GreedyMink(n)
differs from σk,n and let j be the smallest value such that the j-th flip used to
create GreedyMink(n) differs from the j-th value of σk,n. Let these flip lengths
be s and t respectively. Since GreedyMink(n) follows a greedy minimum-flip
strategy and because σk,n produces a valid flip Gray code for permutations
by Theorem 1 where no permutation is repeated, it must be that s < t. Let
π = p1p2p3 · · · pn denote the j-th permutation in the listing GreedyMink(n), i.e.
the permutation immediately prior to the j-th flip. Since σk,n is the flip-sequence
for Reck(1020 · · · n0) by Lemma 2, from the recursive definition it follows induc-
tively that all other permutations with suffix ptpt+1 · · · pn appear before π in
Reck(1020 · · · n0), since no permutations are repeated by Theorem 1. Since σk,n

and the sequence of flips used by GreedyMink(n) agree until the j-th value, all
other permutations with suffix ptpt+1 · · · pn appear before π in GreedyMink(n).
Therefore, flipping π by a flip of length s < t results in a permutation already vis-
ited in GreedyMink(n) before index j contradicting the fact that GreedyMink(n)
produces a list of permutations without repetition. ��

By definition, GreedyMink(n) starts with the permutation 1020 · · · n0 and
by Lemma 1, Reck(1020 · · · n0) also starts with 1020 · · · n0. Since they are each
created by the same flip-sequence by Lemma 2 and Lemma 3, we get the following
corollary.

Corollary 1. For n ≥ 1 and k ≥ 1, the listings GreedyMink(n) and
Reck(1020 · · · n0) are equivalent.

3.3 Successor Rule

In this section, we will generalize the successor rules found for non-coloured
permutations and signed permutations in [21] for GreedyMink(n) for k > 2. We

A Hamilton Cycle in the k-Sided Pancake Network 147

say a permutation in Pk(n) is increasing if it corresponds to a length n subword
of the circular string ρ(1020 · · · n0). For example if n = 6 and k = 4, then the
following permutations are all increasing:

233343536312 516110203040 102030405060 506013233343.

A permutation is decreasing if it is a reversal of an increasing permutation.
A pre-perm is increasing (decreasing) if it corresponds to a subsequence of an
increasing (decreasing) permutation (when the permutation is thought of as a
sequence). For example, 51612040 is an increasing pre-perm, but 51204060 and
12223140 are not. Given a permutation π2, let succ(π2) denote the successor of
π2 in Reck(π) when the listing is considered to be cyclic.

Lemma 4. Let π2 = q1q2 · · · qn be a permutation in the (cyclic) listing Reck(π),
where π = p1p2 · · · pn is increasing. Let q1q2 · · · qj be the longest prefix of π2 that
is decreasing. Then succ(π2) = flipj(π2).

Proof. By induction on n. When n = 1, the result follows trivially as only flips
of length 1 can be applied. Now, for n > 1, we focus on the permutations whose
successor is the result of a flip of length n and the result will follow inductively
by the recursive definition of Reck(π). By Lemma 2, the successor of π2 will
be flipn(π2) if and only if it is the last permutation in one of the recursive
listings of the form Reck(ρ(π)i) · ri. Recall that ri is the i-th element in ρ(π)
when indexed from r1 = p

+(k−1)
1 to rm = pn. As it is clear that at most one

permutation is decreasing in each recursive sublist, it suffices to show that the
last permutation in each sublist is decreasing to prove the successor rule holds
for flips of length n. By Lemma 1, the last permutation in Reck(ρ(π)i) · ri

is ←−s · ri where s = ρ(π)+(k−1)
i . Since π is increasing, it is clear that ρ(π)i is

increasing and therefore that s is increasing. Hence, ←−s is decreasing by definition.
Furthermore, by the definition of the circular word ρ(π), the element immediately
before r

+(k−1)
i−1−(n−1) in ρ(π) is ri (note the subscript i − 1 − (n − 1) is considered

modulo nk here). Therefore, ←−s · ri is decreasing. Therefore, the successor rule
holds for flips of length n and thus for flips of all lengths by induction. ��

Example 3 With respect to the listing Rec10(102030405060),

succ(382859491763) = flip4(3
82859491763) = 405029391763

and
succ(183726554362) = flip1(1

83726554362) = 193726554362.

By applying the previous lemma, computing succ(π2) for a permutation in the
listing Reck(π) can easily be done in O(n)-time as described in the pseudocode
given in Algorithm 1.

148 B. Cameron et al.

Algorithm 1. Computing the successor of π in the listing Reck(1020 · · · n0)
1: function Successor(π)
2: incr ← 0
3: for j ← 1 to n − 1 do
4: if vj < vj+1 then incr ← incr + 1

5: if incr = 2 or (incr = 1 and vj+1 < v1) then return flipj(π)

6: if k > 1 and vj < vj+1 and ((cj+1 − cj + k) mod k �= 1) then return
flipj(π)

7: if k > 1 and vj > vj+1 and (cj �= cj+1) then return flipj(π)

8: return flipn(π)

Theorem 2. Successor(π) returns the length of the flip required to obtain the
successor of π in the listing Reck(1020 · · · n0) in O(n)-time.

Though the worst case performance of Successor(π) is O(n)-time, on aver-
age it is much better. Let σk,n denote (σk,n, n), i.e. the sequence of flips used
to generate the listing Reck(π) with an extra flip of length n at the end to
return to the starting permutation. Our goal is to determine the average flip
length of σk,n, denoted avg(k, n). Note that our analysis generalize the results
for avg(1, n) [27] and avg(2, n) [20].

Lemma 5. For n ≥ 1 and k ≥ 1,

avg(k, n) =
n−1∑
j=0

1
kjj!

.

Moreover, avg(k, n) < k
√

e.

Proof. By definition of σk,n, it is not difficult to see that σk,n+1 is equivalent to
the concatenation of (n + 1)k copies of σk,n with the last element in every copy
of σk,n incremented by 1. Therefore, we have

avg(k, n + 1) =

(
1 +

∑
f∈σk,n

f

)
(n + 1)k

(n + 1)!kn+1

=

∑
f∈σk,nf

n!kn
+

1
n!kn

= avg(k, n) +
1

n!kn
.

Hence, with the trivial base case that avg(k, 1) = 1, we have

avg(k, n) =
n−1∑
j=0

1
kjj!

.

A Hamilton Cycle in the k-Sided Pancake Network 149

Therefore,

avg(k, n) <

∞∑
j=0

1
kjj!

= k
√

e

by applying the well-known Maclaurin series expansion for ex. ��
Observe that the Successor function runs in expected O(1)-time when the
permutation is passed by reference because the average flip length is bounded
above by the constant k

√
e as proved in Lemma 5. Thus, by repeatedly applying

the successor rule, we obtain a CAT algorithm for generating Reck(1020 · · · n0).

3.4 Loop-Free Generation of the Flip-Sequence σk,n

Based on the recursive definition of the flip-sequence σk,n given in (2), Algo-
rithm 2 will generate σk,n in a loop-free manner. The algorithm generalizes a
similar algorithm presented by Zaks for non-coloured permutations [27]. The
next flip length x is computed using an array of counters c1, c2, . . . , cn+1 initial-
ized to 0, and an array of flip lengths f1, f2, . . . , fn+1 with each fi initialized to i.
For a formal proof of correctness, we invite the readers to see the simple inductive
proof for the non-coloured case in [27], and note the primary changes required to
generalize to coloured permutations are in handling of the minimum allowable
flip lengths (when k = 1, the smallest allowable flip length is 2) corresponding
to lines 5–6 and adding a factor of k to line 8.

Algorithm 2. Loop-free generation of the flip-sequence σk,n

1: procedure FlipSeq
2: c1, c2, . . . , cn+1 ← 0, 0, . . . , 0
3: f1, f2, . . . , fn+1 ← 1, 2, . . . , n + 1
4: repeat
5: if k = 1 then x ← f2; f2 ← 2
6: else x ← f1; f1 ← 1

7: cx ← cx + 1
8: if cx = kx−1 then
9: cx ← 0

10: fx ← fx+1

11: fx+1 ← x + 1

12: Output(x)
13: until x > n

Theorem 3. The algorithm FlipSeq is a loop-free algorithm to generate the
flip-sequence σk,n one element at a time.

Since the average flip length in σk,n is bounded by a constant, as determined
in the previous subsection, Algorithm 2 can be modified to generate Reck(π)
by passing the initial permutation π as a parameter, outputting π at the start
of the repeat loop, and updating π ← flipx(π) at the end of the loop instead of
outputting the flip length.

150 B. Cameron et al.

Corollary 2. The algorithm FlipSeq can be modified to generate successive
permutations in the listing Reck(π) in O(1)-amortized time.

4 Summary and Related Work

We presented four different combinatorial algorithms for traversing a specific
Hamilton cycle in the k-sided pancake network. The Hamilton cycle corresponds
to a flip Gray code listing of coloured permutations. Given such combinatorial
listings, it is desirable to have associated ranking and unranking algorithms.
Based on the recursive description of the listing in (1), such algorithms are
relatively straightforward to derive and implement in O(n2)-time. A complete
C implementation of our algorithms is available on The Combinatorial Object
Server [7].

References

1. Akers, S., Krishnamurthy, B.: A group-theoretic model for symmetric interconnec-
tion networks. IEEE Trans. Comput. 38(4), 555–566 (1989)

2. Athanasiadis, C.A.: Binomial Eulerian polynomials for colored permutations. J.
Comb. Theory Ser. A 173, 105214 (2020)

3. Bagno, E., Garber, D., Mansour, T.: On the group of alternating colored permu-
tations. Electron. J. Comb. 21(2), 2.29 (2014)

4. Borodin, A.: Longest increasing subsequences of random colored permutations.
Electron. J. Comb. 6(13), 12 (1999)

5. Chen, W.Y.C., Gao, H.Y., He, J.: Labeled partitions with colored permutations.
Discret. Math. 309(21), 6235–6244 (2009)

6. Cohen, D.S., Blum, M.: On the problem of sorting burnt pancakes. Discret. Appl.
Math. 61(2), 105–120 (1995)

7. COS++: The Combinatorial Object Server. http://combos.org/cperm
8. Duane, A., Remmel, J.: Minimal overlapping patterns in colored permutations.

Electron. J. Comb. 18(2), 38 (2011). Paper 25
9. Dweighter, H.: Problem E2569. Am. Math. Mon. 82, 1010 (1975)

10. Essed, H., Therese, W.: The harassed waitress problem. In: Ferro, A., Luccio, F.,
Widmayer, P. (eds.) Fun with Algorithms. FUN 2014. Lecture Notes in Com-
puter Science, vol. 8496. Springer, Cham (2014). https://doi.org/10.1007/978-3-
319-07890-8 28

11. Fertin, G., Labarre, A., Rusu, I., Vialette, S., Tannier, E.: Combinatorics of
Genome Rearrangements. MIT Press, Cambridge (2009)

12. Gates, W.H., Papadimitriou, C.H.: Bounds for sorting by prefix reversal. Discret.
Math. 27(1), 47–57 (1979)

13. Gray, F.: Pulse code communication. U.S. Patent 2,632,058 (1947)
14. Heydari, M.H., Sudborough, I.H.: On the diameter of the pancake network. J.

Algorithms 25(1), 67–94 (1997)
15. Justan, M.P., Muga, F.P., Sudborough, I.H.: On the generalization of the pan-

cake network. In: Proceedings International Symposium on Parallel Architectures,
Algorithms and Networks. I-SPAN 2002, pp. 173–178 (2002)

16. Kaneko, K.: Hamiltonian cycles and Hamiltonian paths in faulty burnt pancake
graphs. IEICE - Trans. Inf. Syst. E90-D(4), 716–721 (2007)

http://combos.org/cperm
https://doi.org/10.1007/978-3-319-07890-8_28
https://doi.org/10.1007/978-3-319-07890-8_28

A Hamilton Cycle in the k-Sided Pancake Network 151

17. Knuth, D.E.: The Art of Computer Programming, volume 4: Combinatorial Algo-
rithms, Part 1. Addison-Wesley (2010)

18. Mansour, T.: Pattern avoidance in coloured permutations. Sém. Lothar. Combin.
46, B46g-12 (2001)

19. Mansour, T.: Coloured permutations containing and avoiding certain patterns.
Ann. Comb. 7(3), 349–355 (2003)

20. Sawada, J., Williams, A.: Greedy flipping of pancakes and burnt pancakes. Discret.
Appl. Math. 210, 61–74 (2016)

21. Sawada, J., Williams, A.: Successor rules for flipping pancakes and burnt pancakes.
Theoret. Comput. Sci. 609(part 1), 60–75 (2016)

22. Sedgewick, R.: Permutations generation methods. ACM Comput. Surv. 9(2), 137–
164 (1977)

23. Shin, H., Zeng, J.: Symmetric unimodal expansions of excedances in colored per-
mutations. Eur. J. Comb. 52(part A), 174–196 (2016)

24. Singh, S.: Flipping pancakes with mathematics. The Guardian (2013)
25. Williams, A.: O(1)-time unsorting by prefix-reversals in a boustrophedon linked

list. In: Boldi, P., Gargano, L. (eds.) FUN 2010. LNCS, vol. 6099, pp. 368–379.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13122-6 35

26. Williams, A.: The greedy gray code algorithm. In: Dehne, F., Solis-Oba, R., Sack,
J.-R. (eds.) WADS 2013. LNCS, vol. 8037, pp. 525–536. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40104-6 46

27. Zaks, S.: A new algorithm for generation of permutations. BIT 24(2), 196–204
(1984)

https://doi.org/10.1007/978-3-642-13122-6_35
https://doi.org/10.1007/978-3-642-40104-6_46

	A Hamilton Cycle in the k-Sided Pancake Network
	1 Introduction
	1.1 Pancake Networks
	1.2 (Greedy) Hamilton Cycles
	1.3 Combinatorial Generation
	1.4 New Results

	2 Notation
	3 Constructions of a Cyclic Flip Gray Code for Pk(n)
	3.1 Greedy Algorithm
	3.2 Recursive Construction
	3.3 Successor Rule
	3.4 Loop-Free Generation of the Flip-Sequence k,n

	4 Summary and Related Work
	References

