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Abstract Rainfall-runoff models that utilize reanalysis datasets as driving vari-
ables have been widely applied for generating hydrological responses in data-sparse
regions. Apparently, there are various requirements that affect the choice of a partic-
ular method of hydrologic investigation. In the present study, Soil andWater Assess-
ment Tool (SWAT) and precipitation-runoff (MIKE 11-NAM) models were selected
to simulate streamflows froma smallwatershedwith semi-arid climate, usingClimate
Forecast System Reanalysis (CFSR) as driving inputs. As such, models that provide
reliable streamflow predictions from regions with similar climate settings, whose
errors and uncertainties are within acceptable ranges, can be identified. The main
characteristics of performance criteria indicate that the SWAT model relatively
outperform the MIKE 11-NAMmodel. However, while most of the statistical evalu-
ations prove the acceptable performance of the SWATmodel, broad range of predic-
tion uncertainties during calibration and validation were also reflected. Among the
possible sources of errors, errors due to forcing data are most likely to be accounted
for the unsatisfactory portions of both models. Therefore, to minimize model uncer-
tainty and thereupon improve its performance, in-situ data collection need to be
incontestably boosted up. The study also highlights the need for further investiga-
tion on the possible mechanisms of proper application of CFSR that avoid erroneous
streamflow predictions from similar regions.

Keywords Eritrea · MIKE 11-NAM · Rainfall-runoff · Reanalysis datasets ·
Sensitivity analysis · Simulation · SWAT model

1 Introduction

Physically-based mathematical models are used to analyse and predict hydrolog-
ical and biogeochemical processes within river catchments, including the flow of
water, sediment, chemicals, nutrients, and microbial organisms, within watersheds,
as well as quantify the impact of human activities on these processes. Such models
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have been useful tools in underpinning our understanding about the dynamic inter-
actions between climate and land surface hydrology [1–3] and providing the missing
information as a basis for decision-making. As such, a broad spectrum of critical
environmental and water resources problems have been addressed with the support
of physically-based mathematical models. Nevertheless, a bulk of evidence demon-
strates that there are limitations in existingmodels due to lack of full representation of
the complex hydrologic systems and spatio-temporal variability of the hydrological
and meteorological components. As a result, recent studies [3–5] emphasized the
need for the development of watershed models that make use of the widest possible
information available and underpin the current practices of sustainable manage-
ment of river basins, as well as new techniques that integrate economic, social and
environmental perspectives.

Rainfall-runoff models are one of the extensively applied predictive tools for
generating hydrological responses. Whichever rainfall-runoff model we select for
whatsoever purpose it may be, it remains to be only an approximate representation
of the real processes. Despite the efforts put in to overcome the fundamental problem
of extensive difference in the spatial and time scales of hydrological models through
the application of downscaling of model outputs, selection of an appropriate hydro-
logic model is yet one of the critical issues. Conspicuously, the effectiveness of a
model largely depends on availability and reliability of historical ground information;
the efficacy of a model is lower and more uncertain in ungauged regions and vice-
versa. At global scale, river basins in many parts of the world are not only ungauged
but also experience a significant reduction in the ground hydrometric networks [3,
6–9]. Regional studies in East Africa1 [10] have shown that the political and socio-
economic situation in this part of the African continent has not been conducive
to conventional hydrological data collection. Moreover, these problems are enor-
mously exacerbated by the consequences of anthropogenic and climatic changes.
To overcome the gap in shortage of data from conventional hydrometric networks,
numerous researchers in the field [11–14] have investigated the application of remote
sensing-based information.

The use of global climate reanalysis datasets for modelling streamflow has shown
that the effectiveness of the model depends on the source and resolution of the
input datasets and climate of the region of interest. For example, the CFSR of the
National Centres for Environmental Prediction (USA) and ERA-Interim were used
to model daily and monthly streamflows using the SWAT model of a river basin,
located in the Sudan-Sahel region [15]. They found that the ERA-Interim datasets
generated better results compared to the former. Similarly, the use of SWAT and
MIKE 11-NAM in the conditions of South Africa [16] and Eritrea [11] showed low
statistical representativeness between precipitation data from the CFSR and field
rainfall measurements, as well as overall water imbalance. An assessment of the
applicability of CSFR for modelling hydrological processes within the boundaries
of five river basins with different hydrological and climatic conditions in Ethiopia

1 WMO and GWP, Integrated Drought Management Programme Handbook of Drought Indicators
and Indices, no. 1173. 2016.
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and the United States was carried out [13]. They found that the use of input variables
from the CFSR provides modelling of streamflow as good as the outputs from the
use of model inputs from ground-based weather stations. Thus, despite the fact that
conventional in-situ hydrometric data remain the most accurate and reliable sources
of input information, the use of reanalysis datasets as alternative source formodelling
runoff in ungauged or poorly gauged river basins has been proposed. One of the most
sophisticated and widely used models that make use of reanalysis datasets is SWAT
model. It is “a conceptual, continuous-time model developed to assist water resource
managers in assessing water supplies and non-point source pollution on watersheds
and large river basins” [17] and operates at a daily time step. The SWAT model has
got worldwide recognition. For example, SWAT and global climate models were
used to study the formation of streamflow in Russia [18], the United States [19], the
hydrological situation of Africa [20], including the impact of climate change on the
availability of fresh water on the African continent [21]. But, certain shortcomings
of SWAT model were noted [22], especially in terms of comparing the simulation
results with long-term in-situ data on daily runoff and/or discharge of pollutants.

The SWATmodel is complex with semi-distributed parameters, so its use requires
a large amount of input data, which makes it difficult to parameterize and calibrate.
For theSWATmodel, special computational algorithmswere created,which are based
on the method of multidimensional mathematical optimization, including the SWAT-
CUP software module [23, 24]. SWAT-CUP is designed for the purpose of auto-
calibration and uncertainty analysis for the SWATmodel and combines five different
optimization algorithms: sequential analysis of all possible sources of uncertainty
SUFI-2, the genetic algorithm of swarm intelligence (PSO), as well as methods of
general probabilistic uncertainty estimation (GLUE), parametric solution (ParaSol)
and Monte Carlo with Markov chains (MCMC), which allows us to use various
objective functions and criteria. The advantage of SWAT-CUP is that it combines
several calibration and uncertainty analysis procedures into a single interface,making
the model calibration procedure more understandable and faster.2 Despite the fact
that the SUFI-2 algorithm was quite effective for large-scale models, the equifinality
problem is still one of the most acute for the calibration of the parameters of the
hydrological model [25].

River basins in Eritrea are characterised by the spatial and temporal variability of
climate and geophysical characteristics, landuse and climate changes. The majority
of river basins do not have regular observation network, or characterized by a lack
of high-quality field data. Under such circumstances, the development of models
and schemes for water management planning remains to be a complex task [26]. A
recent survey shows that the management, collection and processing of hydrometric
networks at national level are declining. In the contrary, there are a lot of ongoing
nation-wide water resources related development projects [26, 27], including the
construction of reservoirs, diversion structures, expansion of agriculture and settle-
ments. Thus, given the lack of high-quality field observational data, on the one hand,

2 SWAT-CUP 2012: SWAT Calibration and Uncertainty Programs - A User Manual,” Sci. Technol.,
2014.
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and the ongoing intensive water management activities, on the other, the applica-
bility of satellite-based climate data becomes a timely, important and urgent task in
the region. As such, we recently evaluated the applicability of the conceptual model
“precipitation-runoff” (MIKE 11-NAM) for streamflow simulations from theMereb-
Gash river basin usingCFSR [11]. Nevertheless, the results failed to satisfy themodel
acceptance criterion and accordingly three tasks were suggested as future courses of
action: the transformation of CFSR information into a more realistic one; the evalua-
tion of reanalysis data from other sources at different time scales and resolutions; and
the study of the effectiveness of other software systems. Therefore, the objectives of
the study were as follows: (i) to use the SWAT to establish a hydrological model of
the Debarwa subbasin in the upper reaches of the Mereb-Gash River basin with a
monthly estimated time interval; and (ii) to evaluate the effectiveness of the SWAT
in comparison with MIKE 11-NAM for the purposes of modelling streamflow in the
conditions of the specified subbasin.

2 Materials and Methods

The major work of the study required physically-based SWAT and MIKE 11-NAM
models establishment in order to evaluate the various water balance components at
subbasin level and monthly time intervals. The latter model’s setup, details of the
procedures and working principles can be referred to the authors’ recent publication
[11]. Thus, the discussion of this section mainly focused on the SWATmodel. These
models were predominantly established using freely available data. Other than the
topographic, soil and landuse data, SWAT requires climatic data at daily or sub-
daily time steps. Major input data for SWAT include digital elevation model (DEM),
landuse, soil properties, and daily weather data. These data were complemented
by additional sources, provided by the Ministry of Land, Water and Environment,
Department of Water Resources, Eritrea. Finally, the findings of both models were
evaluated and intercompared using different statistical evaluation techniques, which
is presented in the ensuing section. Generally, the modelling procedures include
model setup, calibration, uncertainty analysis, sensitivity analysis, validation, and
analyses such as climate change, best management practices, risk analysis, etc.

Debarwa is a small watershed in the upper reaches of Mereb-Gash basin. The
location, landuse and other hydrologic features of the subbasin are depicted in Fig. 1.
The total area of the catchment is approximately 200 km2, with an altitudinal range
from 1905 to 2550 m above msl. It is a mountainous (50% of area has a slope greater
than 10%) covered by sparse shrubs and agriculture. The soil type in the area is
dominated by Eutric Nitosols of clay soils, followed by Humic Cambisols of clay-
loam. Both soil categories fall under the third hydrologic group (C); that is, the soils
have a slow infiltration and water transmission rates when thoroughly wetted, as well
as a layer that impedes downward movement of water or have moderately fine to fine
texture. The Debarwa watershed lies in moist highlands zone where temperature
varies from 0 °C to 32 °C and an average annual rainfall of 547 mm. Climate in
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Fig. 1 Location and landuse maps of the study area

the catchment can be characterized as moderate with December-January being the
coldest and March–April the hottest. Maximum precipitation occurs in the summer
season, specifically in the months of July and August with a monthly mean rainfall
of 185 mm and 175 mm, respectively. The watershed has one global weather station
and one flow measuring station at the outlet.

In the SWAT program, a watershed is divided into multiple subbasins, which are
then further subdivided into hydrologic response units (HRUs). HRUs are defined as
“landswith similar spatial datasets, namely topography, landuse, and soil types and all
the components of the soil water balance could be determined on an HRU basis, with
the assumption that similar HRUs would have similar hydrologic characteristics”
[24]. Simulation of watershed hydrology is done in the land phase, which controls
the amount of water, sediment, nutrient, and pesticide loadings to themain channel in
each subbasin, and in the routing phase, which is the movement of water, sediments,
etc., through the streams of the subbasins to the outlets. Besides, the soil processes
include lateral flow from the soil, return flow from shallow aquifers, and tile drainage,
which transfers water to the river; shallow aquifer recharge, and capillary rise from
shallow aquifer into the root zone, and finally deep aquifer recharge, which removes
water from the system. The climate-driven hydrological cycle provides moisture and
energy inputs. In this regard, global CFSR data from the National Centre for Atmo-
spheric Research (USA) was utilized. The QSWAT 2012 interface was used to set up
and parameterize themodel. On the basis ofDEMand the streamnetwork, a threshold
drainage area of 3 km2 was chosen to discretize the watershed into 13 subbasins,
which were further subdivided into 61 HRUs based on soil, landuse, and slope. Each
HRU is normally thought to be a uniform unit where water balance calculations are
made. A schematic representation of the model setup is shown in Fig. 2. The climate
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Fig. 2 Schematic representation of the Debarwa subbasin

variables based on the CFSR as well as data on daily and monthly water consump-
tion in the catchment area were entered into the model as input information. For the
estimated time period of the simulation, the interval from 1994 to 2010 was consid-
ered. Approximately two–thirds of the data was used for calibration and the rest for
validation. The initial and final runs were performed using SUFI-2. The calculations
didn’t consider point and distributed sources of pollution, bottom sediments, nitrogen
and phosphorus loads, reservoir regulations, and the spatial variability of some other
parameters.

The initial selection of parameters depends on the behaviour of the initial model
result before any calibration. The SWAT-CUP program has the provision of ten inde-
pendently evaluated objective functions and an additional multi-objective function—
a combination of two or more objective functions. As has been clearly articulated
in various literatures [23, 25], the outputs corresponding to each objective function
are normally unique, leading to the conditionality of objective functions. As such,
multi-objective function has been suggested to overcome the problem of condition-
ality. On the other hand, model uncertainty could be minimized if and only if we
clearly identify the sources of uncertainty. Possible sources of uncertainty in hydro-
logic modelling [11, 23, 24, 29] can be categorized as follows: (i) model input data;
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(ii) model assumptions and simplifications; (iii) the science underlying the model;
(iv) stochastic uncertainty also known as variability; and (v) code uncertainty, such
as numerical approximations and undetected software errors. It would be unrealistic
to expect a perfect model performance at the end because of the aforementioned
sources of errors as well as many activities that occur in the watershed.

Successful application of hydrological models largely depends on the calibra-
tion and sensitivity analysis of the parameters [23, 28]. Calibration and validation
procedures are effectively used only with field observations. The information about
the measured daily or monthly streamflow data is important for these procedures.
SUFI-2 in the SWAT-CUP module [30] was employed for calibration and validation
procedures. The SUFI-2 algorithm covers a wide range of parameter uncertainties
at the beginning of calculations, as a result of which the observational data initially
falls into the 95% uncertainty forecast (95PPU-confidence probability). 95PPU is
the interval between 2.5% and 97.5% of the total distribution of the output simu-
lated variable (water flow) obtained using an efficient Latin hypercube sampling
algorithm, excluding 5% of the worst simulations [30]. Then, with each iterative
step, the uncertainty interval narrows, and simultaneously two indices are checked
that determine the degree of agreement and uncertainty of the model: the P-factor
(the percentage of measurement results that fall into the 95PPU), ranging from 0
to 1, and the R-factor (the ratio of the average width of the 95PPU interval to the
standard deviation of the corresponding measured value). In an ideal situation, when
the simulation results are exactly (100%) consistent with the observational data, the
P-factor is 1. A P-factor value of 0.70 or higher is considered sufficient for the results
of streamflow modelling. The P-factor and R-factor of 1 are iterations that exactly
match the measurement results. The desired value of the R-factor, determined by
Eq. (1), is considered as acceptable if its value is less than 1.50 [30].

R − f actor j =
1
n j

∑n j

ti=1

(
xti ,97.5%s − xti ,2.5%s

)

σoj
(1)

where xti ,97.5%s and xti ,2.5%s are the upper and lower boundary of the 95PPUat time-step
t and simulation i, nj—the number of data points, and σ oj—the standard deviation
of the jth observed variable.

As has been discussed, the SUFI-2 optimization algorithm allows the use of
various objective functions, out of which the Nash and Sutcliffe efficiency (NS)
was used (NS = 1.0 being optimal value and 0.75 < NS ≤ 1 being acceptable). In
addition, the coefficient of determination (0.70 < R2 < 1.0), modified coefficient of
determination (bR2), per cent bias (PBIAS < ± 25), and ratio of the rootmean squared
error to the standard deviation of measured data (RSR ≤ 0.6), whose corresponding
equations are represented by Eqs. (2–6), were also additional criteria for statistical
model evaluations.
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R2 =
[∑

i

(
Qm,i − Qm

)(
Qs,i − Qs

)]2

∑
i

(
Qm,i − Qm

)2 ∑
i

(
Qs,i − Qs

)2 (2)

bR2 =
{ |b|R2 i f |b| ≤ 1

|b|−1R2 i f |b| > 1

}

(3)

NS = 1 −
∑

i (Qm − Qs)
2
i

∑
i

(
Qm,i − Qm

)2 (4)

PBI AS = 100 ×
∑n

i (Qm − Qs)i∑n
i Qm,i

(5)

RSR =
√

∑n

i=1
(Qm − Qs)

2
i /

√
∑n

i=1

(
Qm,i − Qm

)2
(6)

where Q—a variable (e.g., discharge); m and s—stand for observed and simu-
lated variables; b—slope of the regression line between the observed and simulated
variables; and i—the ith observed or simulated data.

3 Results and Discussion

Rainfall and corresponding simulated daily streamflow from SWAT model prior to
calibration in SWAT-CUP program, as well as observed streamflow at the outlet
of the watershed was analysed and evaluated. As such, absolute overlapping in the
seasonality of rainfall and corresponding simulated and observed streamflows were
noticed; a large amount of rainfall produced high flows and vice versa. However, a
considerable quantitativemismatch between the simulated and observed streamflows
(R2 = 0.10) was realized at this stage. This disparity was in fact a signal that our
calibration may not yield a perfect fit by all means possible.

During parameterization process, SWAT-CUP provides two different methods of
sensitivity analysis: one-at-a-time and global. In this study, the latter method was
applied, where all selected parameters change at a time and uses multi-regression
computation. The SUFI-2 program permits up to 1000 iterations for one complete
iterative run. The global sensitivity uses theP-value and t-stats for analysing the sensi-
tivity of selected parameters to prioritize them; large t-stat and lowerP-value indicate
higher parameter sensitivity and vice versa. The study area is a watershed character-
ized as ungauged or poorly gauged with a limited in-situ hydrometric data. Besides,
SWAT contains a large number of variable parameters involved in the calibration
process. In such conditions, calibration of all parameters causes great difficulties.
Therefore, first we need to select the most significant parameters, which are thought
to represent the hydrological processes, for the calibration procedure. To this end,
the sensitivity analysis of randomly selected 15 parameters was carried out within
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the SUFI-2 procedure (Table 1), out of which those that have the greatest influence
on the formation of streamflow in the study area are identified. After a series of
tests in SWAT-CUP, it was found that the top most sensitive parameters include CN,
SHALLST, and RCHRG_DP.

Considering the dynamics and radical uncertainty of daily flows, calibration was
limited to monthly flows. Accordingly, the performance of the best parameter sets
chosen during the sensitivity analysis was evaluated by two statistical evaluations:

Table 1 Parameter sensitivity analysis and calibrated monthly streamflow values

Parameter Description Sensitivity Simulated values

t-stat P-value Fitted Min Max

CN2* Soil conservation service
(SCS) curve number for
moisture condition II

−32.53 0.00 −0.29 −0.30 0.10

SHALLST Initial depth of water in
the shallow aquifer (mm
of H2O)

−7.69 0.00 3308 1000 5000

RCHRG_DP Deep aquifer percolation
fraction

−5.62 0.00 0.06 0.00 0.80

ALPHA_BF Baseflow alpha factor
(1/days)

−3.44 0.00 0.30 0.00 0.50

EPCO Plant uptake
compensation factor

−1.83 0.07 0.90 0.30 1.00

CH_N2 Manning’s “n” value for
the main channel

−1.30 0.20 0.24 −0.01 0.30

SURLAG Surface runoff lag
coefficient

−0.21 0.84 21.46 6.00 24.00

REVAPMN Threshold depth of water
in the shallow aquifer for
“revap” or percolation to
the deep aquifer to occur
(mm of H2O)

0.69 0.49 355.6 0.00 400

OV_N.hru Manning’s “n” value for
overland flow

0.82 0.41 0.54 0.10 1.00

GW_DELAY Groundwater delay time
(days)

1.49 0.14 468.85 150 500

CH_K2 Effective hydraulic
conductivity in main
channel alluvium
(mm/hour)

1.55 0.12 190.30 100 400

FFCB Initial soil water storage
expressed as a fraction of
field capacity water
content

2.22 0.03 0.38 0.20 1.00

(continued)
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Table 1 (continued)

Parameter Description Sensitivity Simulated values

t-stat P-value Fitted Min Max

ESCO Soil evaporation
compensation factor

2.40 0.02 0.25 0.20 1.00

GW_REVAP Groundwater “revap”
coefficient

4.73 0.00 0.09 0.02 0.20

GWQMN Threshold depth of water
in the shallow aquifer
required for return flow to
occur (mm of H2O)

6.58 0.00 4982.50 1500 5000

*The change is relative whereas the change in all other parameters is replacement with other value

(i) model prediction uncertainty and (ii) model performance evaluation. Uncertainty
analysis refers to the propagation of all model input uncertainties to model outputs,
which stem from the lack of knowledge of physicalmodel inputs tomodel parameters
and model structure. Identification of all acceptable model solutions in the face of all
input uncertainties can provide us with model uncertainty in SWAT-CUP as 95PPU.
Once the model is parameterized and the ranges are assigned, the model is normally
run some 300–1000 times [23]. After all simulations are completed, the provision
of post-processing option in SWAT-CUP calculates the objective function and the
95PPU for all observed variables in the objective function. The prediction uncertainty,
which is represented by the shaded regions for the calibration (Fig. 3) and validation
(Fig. 4) processes, is expressed by the 95PPU in SUFI-2. As a result, P-factor values
were estimated to be 0.34 and 0.43 for calibration and validation, respectively (Table
2). In other words, only 34% and 43% of the observed streamflows are bounded by
the 95PPU during calibration (1997–2001 and 2007–2010) and validation periods
(2002–2006), respectively. On the other hand, the R-factor values are also equal
to 2.56 and 3.48 for calibration and validation periods, respectively (Table 2). The

Fig. 3 Comparison of observed and simulated monthly streamflows during calibration period
(1997–2001 and 2007–2010)
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Fig. 4 Comparisonof observed and simulatedmonthly streamflowsduringvalidationperiod (2002–
2006)

Table 2 Summary of statistics for calibration and validation procedures

Process Uncertainty prediction Objective function

P-factor R-factor R2 bR2 NS PBIAS RSR

Calibration 0.34 2.56 0.80 0.79 0.73 −42.0 0.52

Validation 0.43 3.48 0.32 0.18 0.12 −9.8 0.94

calibrated and validated values of P-factor and R-factor are clearly outside of the
recommended ranges [30], i.e., P-factor > 0.70 and R-factor < 1.50.

Five model performance indicators were employed, out of which NS was used
as the major objective function as has been described above. The other four perfor-
mance indices include R2, bR2, PBIAS, and RSR. Results as tabulated in Table 2
clearly show that all the performance indicators for the calibration period (R2, bR2,
and NS > 0.70, and RSR < 0.60) are in fairly acceptable ranges. In other words, the
statistical indices indicate that there is a good agreement between the observed and
simulated streamflows. On the contrary, the corresponding model performance indi-
cators for validation (R2 and bR2 < 0.40, NS < 0.50, and RSR > 0.70) are evaluated
as unsatisfactory. PBIAS measures the average tendency of the simulated data to be
larger or smaller than their observed counterparts. Positive values represent model
underestimation bias and negative values indicate model overestimation bias [31].
So, PBIAS values-based model performance during calibration could be evaluated as
unsatisfactory (PBIAS > ± 25), whereas that of validation is evaluated as acceptable
(PBIAS < ± 10).PBIAS-values showmodel overestimation by 42% and 9.8% during
calibration and validation, respectively.

To understand the issue of conditionality, an investigation on the effect of objective
function choice on the model performance was explored by running SUFI-2 post-
processing alone. This procedure does not require the running of the SWAT model
again. Accordingly, three objective functions were tested, namely NS, PBIAS and R2

against other indicators. The graphical visualization (Fig. 5) and model performance
indicators (Table 3) clearly illustrate how the choice of objective function affects the



560 D. Kozlov and A. Ghebrehiwot

Fig. 5 Effect of objective function selection on calibration solutions

Table 3 Effect of choice of objective function on calibration solutions

Type of function Uncertainty prediction Objective function

P-factor R-factor R2 NS bR2 PBIAS RSR

NS 0.21 2.03 0.71 -1.41 0.44 -225.4 1.55

PBIAS 0.05 0.48 0.76 -3.14 0.33 -185.39 -0.58

R2 0.05 0.35 0.76 -3.31 0.32 -193.37 -0.61

calibration solution.While each objective function produced unique solutions, which
was also reported by many researchers [23, 25], overestimation of simulated flows,
especially peak flow and baseflow, could be clearly detected in all of the outputs in
this particular case.

In the preceding section, we realized that overall performance of the SWATmodel,
verifiedby theuse of statistical evaluations,was unsatisfactory.Unsatisfactory perfor-
mance of the SWAT model was specifically magnified during the analysis of model
prediction uncertainty in calibration and validation processes (Table 2). At this stage,
it was necessary to think of possible sources of errors and uncertainties. Accordingly,
we arrived at the conclusion that errors due to input climate data (e.g., precipitation)
had considerable influence on the unacceptablemodel outputs. Because, considerable
overestimation of the CFSR-based precipitation as compared to field observations
had been reported in the authors’ recent works [10, 11]. This situation directed us to
compare the outputs from physically process-based distributed SWAT with a semi-
distributed MIKE 11-NAM so as to come up with a model with relatively better
performance. While the former is discussed in the preceding sections, the latter’s
analyses are briefly discussed in the ensuing paragraph.
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MIKE 11-NAMmodel has less number (9) of basic parameters than that of SWAT
model. The list of these parameters, their descriptions, lower and upper limits and
fitted values during calibration are presented in Table 4. The fitted values are the
optimal values thatwere obtained through iterative process andmanual and automatic
calibrations. Having seen these values, we were able to realize that some of them are
far beyond our realistic expectations (e.g., runoff coefficient, baseflow, etc.). Because,
Debarwa catchment is characterised by mountainous, low infiltration rate as a result
of poor soil conditions and vegetation cover. Besides, it remains dry for much of
the year due to its ephemeral nature. During rainy days, the watershed experiences
flash floods [26] with short durations of flows (time to peak, time base, time lag) and
lower or almost zero baseflows. Thus, a runoff coefficient of 0.10 and high values of
baseflows, in some cases, are deemed to be quite irrelevant. At this point in time, it
is very difficult to verify the other fitted values owing to the absence of field data.

The intercomparison between simulated monthly streamflows of SWAT and
MIKE 11-NAMmodels, as well as observed flows for calibration (Fig. 6 and Fig. 7)
and validation (Fig. 8), respectively, were analysed. Moreover, these outputs were
evaluated using various objective functions whose values for calibration and valida-
tion are summarized in Tables 5 and 6, respectively. All of the performance indicators
discernibly show that MIKE 11-NAM is far less satisfactory; the statistical indictors

Table 4 MIKE 11-NAM model basic parameters for calibration and validation procedures

Parameter Unit Description Fitted Lower bound Upper bound

Umax mm Upper limit of the amount of water in
the surface storage, representing
interception, depression, and surface
storages

20 10 20

Lmax mm Maximum water content in the lower
zone storage, representing the soil
moisture below the surface from which
plants draw water for transpiration

300 100 300

CQOF – Overland flow runoff coefficient that
determines the distribution of excess
rainfall into overland flow and
infiltration

0.10 0.10 1.00

CKIF hour Time constant for interflow from the
surface storage

967.46 500 1000

CK12 hour Time constant for overland flow and
interflow routing, routed through two
linear reservoirs in series

44.13 10 50

TOF – Threshold values for overland flow 0 0 0.99

TIF – Threshold values for interflow 0 0 0.99

TG – Threshold values for groundwater
recharge

0.98 0 0.99

CKBF hour Time constant for routing baseflow 4000 1000 4000



562 D. Kozlov and A. Ghebrehiwot

Fig. 6 Comparison of observed and simulated monthly streamflows during calibration

Fig. 7 Correlation between observed and simulatedmonthly streamflows during calibration: SWAT
(left) and MIKE 11-NAM (right)

Fig. 8 Comparison of observed and simulated monthly streamflows during validation

Table 5 Performance evaluation of selected models during calibration period

Type of model Objective function

R2 bR2 NS RSR PBIAS

SWAT 0.80 0.77 0.73 0.52 -42

MIKE 11-NAM 0.20 0.19 -1.62 1.61 188
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Table 6 Performance evaluation of selected models during validation

Type of model Objective function

R2 bR2 NS RSR PBIAS

SWAT 0.32 0.22 0.12 0.93 9.80

MIKE 11-NAM 0.17 0.05 -0.01 1.00 -64.10

are less than the allowable ranges and the visual graphical comparisons of observed
and simulated do not fairly coincide. In addition, Fig. 7 shows a better correlation
between observed and simulated streamflows in SWAT (R2 = 0.80) than MIKE 11-
NAM (R2 = 0.20). Therefore, based on the statistical evaluations and visual graphical
comparisons, it is fair to say that the SWAT model, without forgetting the issue of
uncertainty as has been described above, strikingly outperformed MIKE 11-NAM
during calibration and validation procedures.

Physically-based models play an important role in obtaining hydrological and
biogeochemical information in catchments that are not sufficiently studied from
a hydrological point of view in arid and semi-arid regions. While some models
are complex others are fairly simple. The former types of models normally require
significant amounts of reference information and have a large number of parameters,
whereas the latter require less reference information and have fewer parameters. The
effectiveness and suitability of physically-based models for hydrological predictions
in ungauged and/or poorly gauged river basins depends on numerous factors such as
data availability and computational facility, knowledge and experience of the user,
the type of the problem, and economics. It is understandable that a given approach
will seldom satisfy all of these requirements, and consequently one approach will
seldom be uniformly better than the other under all circumstances. Each model,
regardless of its complexity, has its own strengths and weaknesses. A choice among
approaches depends on their systematic evaluations, which, in turn, entails construc-
tion of an objective function, use of goodness-of-fit criterion, sensitivity analysis,
error analysis, and comparison and ranking.

In view of the above facts, physically-based models with semi-distributed and
lumped parameters, namely SWAT and MIKE 11-NAM, which are widely used for
hydrological response predictions in arid and semi-arid regions, were studied. As
noted earlier, to overcome the limitation of reference information, the technology
of using satellite climate reanalysis datasets (e.g., CFSR) has drawn the attention
of researchers in the field. However, these applications are mainly constrained by
lack of in-situ data for calibration and validation procedures and significant amounts
of model uncertainty. Thus, cautious application of reanalysis datasets has been
suggested. SWAT model, which uses reanalysis datasets as well as other databases,
which are available in the public domain as driving inputs without anymodifications,
was employed. To ascertain themodel efficiency and identifymodels with acceptable
uncertainty, it was necessary to intercompare with other models, out of which MIKE
11-NAM was selected. In this respect, based on the performance evaluations of
both models, promising results have been achieved. However, the current approach
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requires additional endeavours and verifications that ensure the required level of
certainty is attained. In this regard, some possible insights have been proposed.

Sensitivity analysis shows the portion of parameters in the model output uncer-
tainties. More sensitive parameters have a higher share of model uncertainties than
less sensitive ones in the model output if that parameter is left uncalibrated. There-
fore, sensitivity analysis is the first step that should be taken into consideration
in model calibration. However, not all sensitive parameters may be calibrated in
ungauged catchments. In this study, there were no measured parameters and hence,
it is recommended that further efforts should bemade to use all available data sources
of the catchment under study. This helps to exclude less sensitive parameters from
calibration and avoid unnecessary and arbitrary adjustments of parameters. Gener-
ally, the SWAT model uncertainty, represented by P-factor and R-factor, were found
to be outside of the acceptable limits for calibration and validation periods. Thus,
other approaches that intend to make CFSR and other reanalysis datasets suitable for
hydrologic and environmental investigations in the region need to be investigated.

4 Conclusion

The choice of a particular method of hydrologic investigation depends on various
requirements such as data availability, approach, economic, and the like. It is conceiv-
able that a given approach will seldom satisfy all of these requirements. This fact
was substantiated by our recent work [25] on simulation of streamflows fromMereb-
Gash river basin in Eritrea using MIKE 11-NAM model and reanalysis datasets as
model inputs. As such, a comparable research was necessary in order to identify the
most effective and suitable models for the conditions of the region under considera-
tion. SWAT and MIKE 11-NAM physically-based were applied to simulate stream-
flows from a Debarwa subbasin within the Mereb-Gash river basin. The reason for
focusing at subbasin level was to reduce the accumulated errors that we had expe-
rienced when the larger river basin was considered. Findings indicated that SWAT
relatively outperformedMIKE 11-NAM in terms of overall model efficiency. Never-
theless, while most of the objective functions proved the acceptable efficiency of the
former model, it also reflected a lot of uncertainties during calibration and valida-
tion procedures. Yet the uncertainties due to the use of SWAT model were greatly
decimated as compared to that of MIKE 11-NAM. Among the different sources of
model errors, we believe, errors due to forcing data are highly likely to be accounted
for lower performances. However, this does not mean that the plausible scenario that
the model’s performance could be influenced by other sources of errors is totally out
of consideration.

Even though reanalysis datasets have apparently great advantage over in-situ
observations in terms of their simplicity, the findings from this study underscored
the need for critical re-examination of the former. In this respect, we would like to
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suggest the following approaches. Firstly, to minimize model uncertainty and there-
upon improve its performance, ground data collection systems need to be strength-
ened as much as possible. Secondly, further investigation on the applicability of
CFSR datasets to simulate streamflows shall be carried out in the near future; for
example, downscaling or upscaling of the forcing datasets, depending on the overall
situation of projects, would be a possible option in this direction. This could be done
with the help of local hydrometric information, for example, long-term annual rain-
fall. Otherwise, using the CFSR datasets without any modifications are likely to end
up in erroneous predictions in semi-arid regions. Finally, an intercomparison of the
currently addressed models and other models, irrespective of their complexity, are
suggested as future course of work.
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