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Abstract The resolving equations for determining the stress–strain state of a rein-
forced concrete element undergoing the action of a bending moment and a longitu-
dinal force, taking into account the creep of concrete on the basis of a viscoelastic
model, are obtained. These equations allow for a known value of internal forces to
determine the stress–strain state in arbitrary sections of statically definable arches.
Internal forces in the arches are calculated analytically, and a step-by-step calculation
is used to determine the stresses. Also, the development of the finite element method
for the case of viscoelasticity of concrete for a reinforced concrete element has been
carried out. Comparison of the results obtained by means of numerical-analytical
calculation and FEM is performed. The calculation by the finite difference method
was carried out with the subsequent comparison of the results with the FEM.
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1 Introduction

Since the arches are small curvature bars, they can be calculated using the formulas
for eccentrically compressed reinforced concrete bars. We consider a reinforced
concrete element subjected to a bending moment and axial force.

The cross-section, as well as the design scheme are shown in Fig. 1. Tensile
stresses are assumed to be positive.

According to the hypothesis of flat sections, the total deformation of concrete
is the sum of the axial deformation ε0 and the deformation due to the change in
curvature:

εb = ε0 − yχ, (1)
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Fig. 1 To the calculation of a reinforced concrete element

where χ—is bar curvature change.
From the condition of the reinforcement and concrete work compatibility, we

write down the expressions for reinforcement deformations:

εS = ε0 + ySχ ε
′
S = ε0 − y

′
Sχ. (2)

Distances yS and y
′
S are substituted into the formula (2) by the absolute value.

According to the viscoelastic body model, the total concrete deformation is the
sum of elastic deformation εelb and creep strain ε∗

b [1]:

εb = σb

Eb
+ ε∗

b . (3)

From (3), the stresses in concrete are written in the form:

σb = Eb(εb − ε∗
b) = Eb

(
ε0 − yχ − ε∗

b

)
. (4)

Reinforcement stresses are determined as follows:

σS = ESεS = ES(ε0 + ySχ) , σ
′
S = ESε

′
S = ES

(
ε0 − y

′
Sχ

)
. (5)

Let us write the equation of the sum of moments about the axis z:

−M + σS AS yS − σ
′
S A

′
S y

′
S −

∫

A

σb y d A = 0. (6)

Having compiled the sum of the projections of all forces on the longitudinal axis
of the bar, we obtain:
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N = σS AS + σ
′
S A

′
S +

∫

A

σb d A. (7)

Substituting (4) and (5) to (6), for the symmetrical reinforcement case.
(AS = A

′
S, yS = y

′
S) we get:

χ = 1

E Ired

⎛

⎝M − Eb

∫

A

ε∗
b y d A

⎞

⎠, (8)

where E Ired = ES IS + Eb Ib—is the reduced bending stiffness of a cross section;

IS = ES

(
AS y2S + A

′
S

(
y

′
S

)2)
; Ib = bh3

12 .

Admeasurement ε0 is found from the Eqs. (4), (5), (7):

ε0 = 1

E Ared

⎛

⎝N + Eb

∫

A

ε∗
b d A

⎞

⎠, (9)

where E Ared = ES
(
AS + A

′
S

)+ EbAb—reduced stiffness of a cross-section under
axial tension (compression). The Eqs. (4), (5), (8), (9) can be used to calculate
the creep of statically definable arches. At the first stage, a static calculation is
performed—the internal force factorsM andN are determined. In statically definable
systems with constant external loads, they do not depend on time. The cross-section
in height is divided intom parts�y, and the time interval is n steps�t. For the given
cross-sections at each point, stresses in concrete are calculated without taking creep
into account.

If the creep law is given in differential form, then the calculated stresses can
be used to determine the growth rates of creep deformations ∂ε∗

b
∂t , as well as creep

deformation at time t + �t using linear approximation [2–5]:

ε∗
b(t + �t) = ε∗

b(t) + ∂ε∗
b

∂t
�t. (10)

Time intervals �τi may not be equal to each other. If the section of the arch is
rectangular, then the integrals entering into (8) and (9) are also calculated numerically
using the trapezoidal method:

∫

A

ε∗
b y d A = b

h
2∫

− h
2

ε∗
b(y)ydy = b�y

(
ε∗
b0y0 + ε∗

bm ym
2

+
m−1∑

i=1

ε∗
bi yi

)

. (11)
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2 Methods

Calculation of arches by the finite elementmethod.Derivation of resolving equations.
It is assumed that the behavior of a continuous curved beam is sufficiently

accurately characterized by the behavior of a broken bar composed of small recti-
linear elements. From physical considerations it follows that with a decrease in the
elements’ size, the solution should converge and, as experience shows, convergence
is observed [6].

At the same time, special attention should be paid to the method of specifying
the nodal loads: the distributed load is more correctly represented in the form of
statically equivalent concentrated nodal forces [7].

The calculations will use the bar finite element shown in Fig. 2. Each node of
this element has 3 degrees of freedom: 2 linear displacements u and v, as well as
a rotation angle ϕ. The vector of nodal displacements will be written as: {U } =
{
ui u j vi ϕi v j ϕ j

}T
.

The deflection of a finite element will be approximated as follows:

v(x) = α0 + α1x + α2x
2 + α3x

3 = {
1 x x2 x3

}{
α0 α1 α2 α3

}T

= {
1 x x2 x3

}{α} .
. (12)

The vector {α} can be found from the following condition:

v(0) = vi ; ϕ(0) = − dv

dx

∣∣∣∣
x=0

= ϕi ; v(l) = v j ; ϕ(l) = − dv

dx

∣∣∣∣
x=l

= ϕ j .

In matrix form, these conditions take the form:

Fig. 2 Bar finite element
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⎧
⎪⎪⎨

⎪⎪⎩

vi

ϕi

v j

ϕ j

⎫
⎪⎪⎬

⎪⎪⎭
=

⎡

⎢⎢
⎣

1 0 0 0
0 −1 0 0
1 l l2 l3

0 −1 −2l −3l2

⎤

⎥⎥
⎦ · {α} = [C] · {α}. (13)

Let us express the vector {α} from (13) by nodal movements:

{α} = [C]−1 · { vi ϕi v j ϕ j

}T

=

⎡

⎢⎢
⎣

0 0 1 0 0 0
0 0 0 −1 0 0
0 0 − 3

l2
2
l

3
l2

1
l

0 0 2
l3 − 1

l2 − 2
l3 − 1

l2

⎤

⎥⎥
⎦{U } = [F]{U }. (14)

Then the deflection function will be written as:

v(x) = {
1 x x2 x3

}
[F]{U }. (15)

And the second derivative of the deflection takes the form:

d2v

dx2
= χ = {

0 0 2 6x
}
[F]{U }. (16)

For axial displacements u, we take linear dependence on x :

u =
(
1 − x

l

)
ui + x

l
u j . (17)

Then the axial deformation ε0 will be defined as follows:

ε0 = du

dx
= {− 1

l
1
l 0 0 0 0

}{U }. (18)

The expressions for the stiffness matrix and the load vector will be obtained based
on theLagrange variational principle. The total energyE is the sumof the deformation
potential energy and the external forces work:

E = P + A. (19)

The potential energy of deformation is the sum of the concrete and reinforcement
potential energy:

P = Pb + PS + P
′
S. (20)

The potential energy of concrete is determined by the following expression:
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Pb = 1

2

∫

Vb

σbε
el
b dV, (21)

where εelb denotes elastic deformation of concrete, which is the difference between
total and creep deformation:

εelb = εb − ε∗
b . (22)

We will assume that the creep strain is independent of x within the element.
Substituting (1) in (22) and then (4) and (22) in (21), we get:

Pb = 1

2
Eb ∫

Vb

(
ε0 − y

d2v

dx2
− ε∗

b

)2

dV = 1

2
Eb

[

Ab ∫
(l)

ε20dx + Ib ∫
(l)

(
d2v

dx2

)2

dx

+ ∫
Vb

(ε∗
b)

2dV − 2 ∫
(l)

ε0dx ∫
A
ε∗
bd A + 2 ∫

(l)

d2v

dx2
dx ∫

A
ε∗
b yd A, (23)

where Ib = bh3

12 is the moment of concrete inertia; Ab = bh is the concrete section
area.

The potential deformation energy of the reinforcement located at the bottom face
can be found as follows:

PS = 1

2

∫

VS

σSεSdV = 1

2
ES AS

∫

(l)

(ε20 + 2ε0 yS
d2v

dx2
+ y2S

(
d2v

dx2

)2

) dx . (24)

For top edge reinforcement similarly:

P
′
S = 1

2

∫

V
′
S

σ
′
Sε

′
SdV = 1

2
ES A

′
S

∫

(l)

(ε20 − 2ε0y
′
S

d2v

dx2
+ (y

′
S)

2

(
d2v

dx2

)2

) dx . (25)

In the case of symmetrical reinforcement (AS = A
′
S , yS = y

′
S) for the potential

energy of all reinforcement deformation, we obtain:

PS + P
′
S = 1

2
ES

⎛

⎜
⎝AS, gen

∫

(l)

ε20dx + IS

∫

(l)

(
d2v

dx2

)2

dx

⎞

⎟
⎠, (26)

where IS = AS y2S + A
′
S

(
y

′
S

)2
is reinforcement inertia moment.
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Substituting (16) and (18) in (24) and (26), we obtain the following expression
for the potential energy of a reinforced concrete element:

P = 1

2
{U }[K ]{U } − {U }{F∗

b

}+ 1

2
Eb

∫

V

(ε∗
b)

2 dV, (27)

where [K ] =
[ [Kc]

[Ki ]
]
—stiffness matrix, which has a block structure;

{
F∗
b

}
—

contribution of concrete creep deformations to the vector of nodal loads;

[Kc] = E Ared

l

[
1 −1

−1 1

]
;

[Ki ] = E Ired

⎡

⎢⎢
⎣

12
l3 − 6

l2 − 12
l3 − 6

l2

− 6
l2

4
l

6
l2

2
l

− 12
l3

6
l2

12
l3

6
l2

− 6
l2

2
l

6
l2

4
l

⎤

⎥⎥
⎦;

{
F∗
b

} = Eb

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎝

∫

A

ε∗
bd A

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−1
1
0
0
0
0

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

+
∫

A

ε∗
b yd A

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0
0
0

−1
0
1

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎠

. (28)

The work of external forces is the product of the external nodal loads
{
Fq
}
vector

on the vector of nodal displacements: A = {U }T {Fq
}
.

From the condition of the total energy functional minimum, we obtain:

∂E

∂{U } = ∂P

∂{U } + ∂A

∂{U } = ∂

∂{U }
(
1

2
{U }[K ]{U } − {U }T {Fq

}

+1

2
Eb ∫

V
(ε∗

b)
2 dV

)
− ∂

∂{U }
({U }T {F∗

b

}) = 0.

Finally, the problem is reduced to a system of linear algebraic equations of the
form:

[K ]{U } = {
Fq
}+ {

F∗
b

}
. (29)

The calculation was performed for a three-pivot circular arch loaded with a
uniformly distributed load q. The design scheme is shown in Fig. 3.
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Fig. 3 Design scheme of the
arch

The equation for the arch axis outlined along the circular arc is:

y =
√

R2 −
(
L

2
− x

)2

− R + f ; R = f

2
+ L2

8 f
; (30)

sinϕ = L − 2x

2R
; cosϕ = y + R − f

R
.

Internal forces in the section K of the arch are calculated by the formulas:

k = Mδ
k − Hyk; Nk = −(Qδ

k sin ϕk + H cosϕk
)
, (31)

where Mδ
k , Qδ

k denote the moment and shear force in the section K in a beamwith a
similar span and load. In case of uniformly distributed load:Mδ

k = qx
2 (L − x); Qδ

k =
q
2 (L − 2x); H = qL2

8 f .

The problem was solved with the following initial data: q = 50 kN
m , arch span

L = 16m, elevation f = 3.2m, cross-sectional dimensions: b = 20 cm, h = 40 cm,

τ0 = 28 days, Eb(τ0) = 3×104 MP, ES = 2 · 105 MP, reinforcement ratio
μ = AS, gen

Ab
= 0.02, yS = y

′
S = 15 cm. Concrete aging was taken into account, i.e.,

the increase in its elasticity modulus over time. The time dependence of the concrete
elasticity modulus was taken as: Eb(t) = Eb(τ0) · [b1 + (1 − b1)e−b2(t−τ0)

]
, b1 =

1.282, b2 = 0.019.
The graph of the change in the concrete elasticity modulus is shown in Fig. 4.
The equation of the viscoelastic model of concrete hereditary aging was used in

the calculation and has the form:

εb(t) = σb(t)

Eb(t)
−

t∫

τ0

σb(τ )
∂C(t, τ )

∂τ
dτ. (32)

The Eq. (32) can also be represented in the form (3), introducing the following
notation:
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Fig. 4 The graph of the
change in the concrete
elasticity modulus

T, days 

ε∗
b = −

t∫

τ0

σb(τ )
∂C(t, τ )

∂τ
dτ. (33)

It is recommended to take the creep measure in [28] in the form:

C(t, τ ) = C
eαt − eατ

eαt − 1
+ B

(
e−γ τ − e−γ t

)
. (34)

To determine the creep deformations described by the expression (33), it is
possible to use the formula (11); however, if the creep measure is a sum of
exponentials, it is more convenient to represent the creep law in differential form.

Substituting (34) into (33), we get:

ε∗
b = − t∫

τ0

σb(τ )
∂

∂τ
(C

eαt − eατ

eαt − 1
+ B

(
e−γ τ − e−γ t )

)
dτ

= Cα

eαt − 1

t∫
τ0

σb(τ )eατdτ + Bγ
t∫
τ0

σb(τ )e−γ τdτ. (35)

We represent the concrete creep deformation as the sum of two components:

ε∗
b = ε∗

b1 + ε∗
b2;

ε∗
b1 = Cα

eαt − 1

t∫

τ0

σb(τ )eατdτ ; ε∗
b2 = Bγ

t∫

τ0

σb(τ )e−γ τdτ. (36)

The component ε∗
b1 characterizes hereditary creep properties, and ε∗

b2 char-
acterizes the influence of the growing environment on its deformative properties
[28].
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Let us find the time derivative of each component:

∂ε∗
b1

∂t
= ∂

∂t

(
Cα

eαt − 1

)
t∫
τ0

σb(τ )eατdτ + Cα

eαt − 1

∂

∂t

(
t∫
τ0

σb(τ )eατdτ

)

= − Cα2eαt

(eαt − 1)2
t∫
τ0

σb(τ )eατdτ + Cα

eαt − 1
σb(t)e

αt = αeαt

eαt − 1

(
Cσb(t) − ε∗

b1

);
(37)

∂ε∗
b2

∂t
= ∂

∂t

(
Bγ

t∫
τ0

σb(τ )e−γ τdτ

)
= Bγ σb(t)e

−γ t .. (38)

Using the expressions (37) and (38) together with (10), it is possible to determine
the components of creep deformation ε∗

b1 and ε∗
b2 at every moment of time.

The values of the rheological constants in the calculation were taken equal to:
α = 0.032, γ = 0.062, C = 3.77 · 10−5 MPa−1, B = 5.68 · 10−5 MPa−1.

3 Results and Discussion

For the calculations using the FEM, a software package was developed in the Matlab
complex. To check the correctness of the program operation, a test problem was
solved for a statically definable arch.

Figure 5 shows a graph of the change in stress in the reinforcement depending on
x and t.

The upper mesh surface corresponds to the stress σ
′
S in the reinforcement at the

upper edge.Bottomshaded surface corresponds to the stressesσS in the reinforcement
at the bottom edge.

Fig. 5 Reinforcement stress
change

x, cm 

M
Pa
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Fig. 6 Change in stresses in
concrete at y = h / 2 and y =
–h / 2

M
Pa

 

x, cm 

Figure 6 shows a graph of the change in stresses in concrete depending on x and
t.

The upper surface corresponds to the stresses at y = h/2, the lower corresponds
to the stresses at y = −h/2.

Figure 5 shows that, due to concrete creep, the stresses in the reinforcement in
absolute value increase. In concrete, stresses, on the contrary, decrease, as evidenced
by Fig. 6. The most significant redistribution occurs at the points where the bending
moments aremaximum (x ≈ 2.1 m and x ≈ 13.9m). Figure 7 shows the distribution
of stresses in concrete in the section x = 2.1 m at the beginning of the creep process
(dashed line) and at the end of the creep process (solid line). Figure 8 shows the
change in stresses σS in the reinforcement of the lower edge at x = 2.1 m.

Fig. 7 Stress distribution in
concrete in the section x =
2.1 m at the beginning and at
the end of the creep process

M
Pa

 

y, cm 
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Fig. 8 Change in stresses in
the reinforcement of the
lower edge with time in the
section x = 2.1 m

M
Pa

 

t, days 

Due to the creep of concrete, the compressive stresses in the reinforcement of
the lower face in the section with the maximum bending moment increased from
91.7 MPa to 173.1 MPa, i.e., 1.9 times.

In concrete, due to creep, the change in stresses is not so significant: for a more
compressed face at x = 2.1 m, the stresses decreased from 16.2 MPa to 13.6 MPa,
i.e., by only 20%. The distribution of stresses in concrete along the section height,
both at the beginning and at the end of the creep process, is linear.

Figure 9 shows the distribution of creep deformations ε∗
b depending on x and y at

t = 100 days. The greatest inelastic deformations are observed in the sections with
maximum bending moments.

Table 1 shows a comparison of stresses in concrete and reinforcement at the bottom
edge at x = 2.1 m at different points in time, obtained numerically-analytically, as
well as numerically using the FEM.

The table shows that the results practically coincide, which indicates the reliability
of the technique developed.

y, cm
x, cm

Fig. 9 Distribution of creep deformations depending on x and y at t = 100 days
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Table 1 Comparison of the results of numerical-analytical calculation with FEM

t, days 30 40 50 60 70 80 100

σb, MP Numerical-analytical
calculation

−
15.84

−
14.70

−
14.16

−
13.87

−
13.72

−
13.64

−
13.56

FEM −
15.81

−
14.67

−
14.17

−
13.87

−
13.71

−
13.62

−
13.54

σS, MP Numerical-analytical
calculation

−
102.8

−
137.7

−
154.6

−
162.7

−
167.8

−
170.4

−
173.2

FEM −
102.6

−
137.4

−
154.3

−
163.1

−
168.9

−
170.3

−
172.8

Summarizing the above-said, it can be noted that resolving equations have been
obtained to determine the stress–strain state of a reinforced concrete element expe-
riencing a bending moment and longitudinal force, taking into account the creep of
concrete on the basis of a viscoelastic model.

These equations allow for a known value of internal forces to determine the stress–
strain state in arbitrary sections of statically definable arches. Internal forces in the
arches are calculated analytically, and a step-by-step calculation is used to determine
the stresses.
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