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Abstract The article discusses the solution to the elastoplastic problem of the devel-
opment of the stress–strain state in an inhomogeneous thick-walled spherical shell.
It is assumed that the shell material is ideally plastic. The inhomogeneity of the
material consists in the change in the modulus of elasticity E and the yield stress σT

along the thickness of the radius, which is described by power functions with three
constants. The problem is solved in a centrally symmetric setting. Three options are
considered: (1) plastic deformations occur near the inner surface of the shell, (2)
plastic deformations occur between two surfaces of the shell, (3) an infinite array
with a spherical cavity is considered.
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1 Introduction

The issues of plasticity and elastic plasticity are described in many fundamental
studies, including [1–5], etc. Publications are devoted to the statement of problems
and calculations of axisymmetric and centrally symmetric elastoplastic bodies, of
which the works [6–8], etc. can be noted. Calculations of inhomogeneous bodies
constitute a special area of mechanics. Taking into account the dependence of
mechanical characteristics on coordinates, it is rather difficult to solve such prob-
lems by analytical methods, and the development of this direction began with the
emergence and development of computer technology and numerical methods. Some
of the initiators of the development of the mechanics of inhomogeneous bodies were
G. B. Kolchin, N. A. Rostovtsev, V. A. Lomakin, W. Olszak [9–13] and other scien-
tists. The reasons for the continuous inhomogeneity of bodies are various fields or
phenomena (high or low temperature, radiation, humidity, explosive effect [14–23],
etc.).
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The article deals with a one-dimensional problem of elastic and ideal-plasticity,
in which the modulus of elasticity and the yield point of the material can vary in a
wide range, which is the novelty of the work.

2 Statement of the Problem

Just as when considering the elastic problem for an inhomogeneous ball [13], when
solving an elastoplastic problem for this body, the equation describing its behavior,
solution methods and results are largely similar. A hollow thick-walled hollow ball
with inner and outer radii a and b, loaded from inside and outside by uniform
pressures pa and pb proportional to one parameter, is considered. The material is
considered to be ideally plastic, while the modulus of elasticity E and yield stress σT

are generally arbitrary functions of the radius. In addition, the material is considered
to be incompressible in both the plastic and elastic zones. For the first time the
formulation of such problems was given in [9, 20]. There are also solutions for the
simplest dependencies and, represented by power functions of the form Ark . This
article provides a solution for the more general Young’s modulus and yield strength
versus radius, allowing for some practical calculations.

The problem of calculating the ball is solved in a centrally symmetric setting.
Thus, all functions depend on one coordinate the radius.

3 Derivation of Resolving Equations

In the presence of central symmetry, from the equilibrium equations in spherical
coordinates, only the first remains, which, taking into account ∂

∂θ
= ∂

∂φ
= 0 and

σφ = σθ, and the absence of volume forces and forced deformations, takes the form:

dσr

dr
+ 2

r
(σr − σθ) = 0. (1)

The Cauchy relations taking into account v = w = 0 are simplified, as a result
we get:

εr = du

dr
; εθ = εϕ = u

r
, (2)

dεθ

dr
+ εθ − εr

r
= 0. (3)

The angular deformations are identically zero. Hooke’s law in spherical coordi-
nates takes the form:
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εr = 1

E
(σr − 2νσθ); εθ = εϕ = 1

E
[(1 − ν)σθ − νσr ]. (4)

Expressing σθ from (1) through σr , substituting σθ into (4), differentiating εθ with
respect to and using (3) we can come to the resolving equation

σ ′′
r + 1

r

(
4 − r

E ′

E
− ν ′r

1 − ν

)
σ ′
r − 1

r

(
2
1 − 2ν

1 − ν
· E

′

E
+ 4ν ′

1 − ν

)
σr = 0. (5)

In the elastic zone, the resolving Eq. (4) with allowance for ν0 = 0.5 can be
written in the form:

rσ ′′
re +

(
4 − r

E ′

E

)
σ ′
re = 0, (6)

where the index e denotes the solution for the elastic zone (in what follows, the index
p will be used for the plastic zone).

If we use the Huber-Mises plasticity criterion.

σθ − σr = χσT (r), χ = ±1. (7)

The Treska–Saint–Venant plasticity condition gives the same equality.
Then using the equilibrium Eq. (1), it is possible to obtain the resolving equation

for the plastic zone:

dσrp

dr
= 2χ

σT (r)

r
. (8)

The integrals of Eqs. (6) and (8) essentially depend on the form of the functions
E(r)andσT (r). Below is the calculation method for power functions E(r) and σT (r),
which allow approximating a very wide class of real dependences:

E(r) = E0 +
[
1 + (kE − 1)

(a
r

)mE
]
; (9)

σT (r) = σT 0

[
1 + (kσ − 1)

(a
r

)mσ
]
. (10)

Substituting (9) and (10) in (6) and (8) and integrating these equations, one can
obtain the general form of the solution in the elastic and plastic zones.

σre = C2 + C1

[
− a3

3r3
− kE − 1

mE + 3

(a
r

)mE+3
]
;

σθe = C2 + C1

[
a3

6r3
+ (kE − 1)(mE + 1)

2(mE + 3)

(a
r

)mE+3
]

.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(11)
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σrp = D + 2χσT 0

[
ln

r

a
− kT − 1

mσ

(a
r

)mσ

]
;

σθp = D + 2χσT 0

[
ln

r

a
+ 1

2
+ (kT − 1)(mσ − 2)

2mσ

(a
r

)mσ

]
.

⎫⎪⎪⎬
⎪⎪⎭

(12)

Before proceeding to the definition of arbitraryC1,C2 constants andD, it is neces-
sary to find the boundaries separating the zones of elastic and plastic deformations.
Calculating from (11) the difference between the principal stresses and satisfying
condition (7), we arrive at the equality

�(r) = C1

2χσT0

(a
r

)3 1 + (kE − 1)(a/r)mE

1 + (kσ − 1)(a/r)mσ
= 1 . (13)

Now it is easy to find an equation for determining the radius rT , where the first
plastic deformations occur. From the condition for the maximum of the function
�(r), we arrive at the equation

3 + (3 − mσ )(kσ − 1)

(
a

rT

)mσ

+ (3 + mE )(kE − 1)

(
a

rT

)mE

+(
3 + mE + mσ

)
(kσ − 1)(kE − 1)

(
a

rT

)mE+mσ

= 0.

(14)

Depending on the values kE , kσ , mE and mσ behavior of the function �(r) can
be significantly different.

Figure 1 shows several options for the behavior of the functional part �(r).
The dotted line shows the boundaries of the body, and note that if b → ∞,

then k2 = a
/
b → 0. It can be seen from the four graphs that �(r) may not have

a maximum (curve 1), and in the case of an extreme point, it can lie both within
the interval (a, b) (curve 3) and outside it (curves 2 and 4). In the last two cases,
obviously, plastic deformations occur either on the inner or outer surface of the body.
In the absence of a maximum (curve 1), the highest value of �(r) at r = a should
be determined. Functions with a minimum are also possible, for example, when
mE < −(mσ + 2). In this case, plastic deformations can occur sequentially on the
surfaces of the body and close with increasing loads.

Fig. 1 Change in the nature
of the function �(r) for
different values of the
parameters of inhomogeneity
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To determine the pressure difference at which plastic deformations appear for the
first time, one should find a constant for a completely elastic solution, after which,
from condition (14), we obtain

pT = (pa − pb)T =
[
1 − k32

3
+ kE − 1

mE + 3

(
1 − kmE+3

2

)]

· 2χσT0
[
1 + (kσ − 1)

(
a
/
rT

)mσ
]

[
1 + (kE − 1)

(
a
/
rT

)mE
](
a
/
rT

)3 . (15)

From the last equality, you can also determine χ , since the sign of the expression
in the first square brackets, given kE , mE and k2 is known. So, for example, when
mE > 0, χ = sign(pa − pb).

Depending on the placewhere plastic deformations occur, the further course of the
solution will be different. Two cases are considered below: rT = a and a < rT < b.
The rest of the cases will not differ significantly from those considered.

Before proceeding to the study of the development of plastic deformations, it is
necessary to write out the boundary conditions that must be satisfied by solutions
(11) and (12) for a ball. At the boundaries of the body, the stresses are:

r = a, σr = −pa; r = b, σr = −pb. (16)

In addition, at the boundaries (r = rT,i ) separating the elastic and plastic zones
(there can be one or two such boundaries), the following conditions must be met:

r = rT,i

⎧⎨
⎩

σre = σrp;
σθe − σre = χσT ;
ue = u p .

(17)

Here the second equality means the condition for the transition of the material
from an elastic state to a plastic one, and u– radial displacement.

4 The Appearance of Plastic Deformations on the Inner
Ball Surface (rT = a)

In this case, with an increase in the pressure difference p = (pa − pb), the plastic
zone extends into the depth of the ball wall. Let us denote the so far unknown radius
of the sphere separating the elastic and plastic zones through r0(Fig. 2). Substituting
solutions (11) and (12) into (16) and into the first two equalities (17), one can obtain
four relations for determining the constants C1,C2, D and r0, one of which will be
transcendental:
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Fig. 2 Layer radii

p

2χσT 0
= ln

r0
a

+ kσ − 1

mσ

[
1 −

(
a

r0

)mσ
]

+
{
1

3

[(
a

r0

)3

− k32

]
+

+ kE − 1

mE + 3

[(
a

r0

)mE+3

− kmE+3
2

]}
r30

[
1 + (kσ − 1)

(
a
/
r0

)mσ
]

a3
[
1 + (kE − 1)

(
a
/
r0

)mE
] .

(18)

Since Eq. (18) is resolved with respect to p = pa − pb, then, setting different
values r0 on the interval (a, b), it is possible to construct a dependence p(r0) from
which the required radius r0 is determined for any value. After that, the constants are
easily found C1,C2 and D:

C1 = 2χσT 0
(
r0

/
a
)3[

1 + (kσ − 1)
(
a
/
r0

)mσ
]

1 + (kE − 1)
(
a
/
r0

)mE
;

C2 = −pb + C1

(
k32
3

+ kE − 1

mE + 3
kmE+3
2

)
;

D = −pa + 2χσT0
kσ − 1

mσ

.

Thus, the stressed elastic–plastic state of a thick-walled cylinder and a ball in
the considered case (rT = a) can be determined without using the third boundary
condition from (17). It is necessary when determining the displacements, which are
equal ue = rεθe in the elastic zone, and εθe is determined from Hooke’s law. Having
done the appropriate calculations, we get:

ue = C1a3

4E0r2
.

In the plastic zone, integrating thematerial incompressibility condition 2 du
dr + u

r =
0, find displacement: u p = B/r2. The integration constant B is determined from the
third boundary condition (17):
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B = C1a3

4E0
, (19)

which allows you to write a unified formula for displacements in elastic and plastic
zones.

5 The Appearance of Plastic Deformation Inside the Ball
(a < rT < b)

With the formation of plastic deformations inside the wall, a further increase in the
pressure difference p leads to an expansion of the plastic zone in both directions, until
one of the boundaries of this zone coincides with one of the surfaces of the body, and
then until the body is completely transformed into the plastic state Denoting a smaller
radius of the plastic zone r1, and a larger one r2, (Fig. 3) and satisfying the boundary
conditions (16) and (17),one can find eight relations for determining the unknowns
C1 − C4, D, B, r1 and r2 d where C3 andC4 are the constants of the solution of the
type (11) for the outer elastic zone. It should be noted that, in contrast to the previous
case, it is not possible to find stresses here without considering displacements, since
otherwise for seven unknowns (excluding B) there will be only six boundary condi-
tions. The solution of a system of eight equations is somewhat more complicated
than in the case considered above, since, along with one transcendental equation,
another nonlinear relation appears that connects r1 and r2:

(
r1
r2

)3 1 + (kσ − 1)
(
a
/
r1

)mσ

1 + (kσ − 1)
(
a
/
r2

)mσ
= 1 + (kE − 1)

(
a
/
r1

)mE

1 + (kE − 1)
(
a
/
r2

)mE
.

Obviously, this equation is satisfied at r1 = r2, which corresponds to the moment
when plastic deformations appear (r = rT ). In addition, this equation must also have
solutions for a ≤ r1 ≤ rT and rT ≤ r2 ≤ b. By setting different values r1 on the
interval (a, rT ) (the value rT is determined in advance from (14)), the corresponding

Fig. 3 Layer radii
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value r2 can be numerically determined. If in this case the plastic zone reaches the
outer surface earlier, then r1 should be determined by value r2.

Each pair of values r1, r2 corresponds to a pressure difference p, which is
determined by the formula

p

2χσT0
= ln

r2
r1

+ kσ − 1

mσ

[(
a

r1

)mσ

−
(
a

r2

)mσ
]

+
{
1

3

[
1 −

(
a

r1

)3

+
(
a

r2

)3

− k32

]

+ kE − 1

mE + 3

[
1 −

(
a

r1

)mE+3

+
(
a

r2

)mE+3

− kmE+3
2

]

× r32
[
1 + (kσ − 1)

(
a
/
r2

)mσ
]

a3
[
1 + (kE − 1)

(
a
/
r2

)mE
]
}

.

Having built the dependence p(r1, r2), it is possible, knowingly paandpb, to deter-
mine the boundaries of the plastic zone. After that, the rest of the constants are
determined:

C1 = C3 = 2χσT 0
(
r1

/
a
)3[

1 + (kσ − 1)(a/r1)
mσ

]
1 + (kE − 1)(a/r1)

mE
;

C2 = −pa + C1

(
1

3
+ kE − 1

mE + 3

)
;C4 = −pb + C3

(
k32
3

+ kE − 1

mE + 3
kmE+3
2

)
;

D = C2 + C1

[
−1

3

(
a

r1

)3

− kE − 1

mE + 3

(
a

r1

)mE+3
]

− 2χσT0

[
ln

r1
a

− kσ − 1

mσ

(
a

r1

)mσ
]

.

The constant B is found from relations (19).

6 Results

Below are some of the results of calculations performed according to the above
method for various values of the ratio k2 = a

/
b and parameters of inhomogeneity

mE = mσ = 2. Figure 4 shows the graphs of the dependence on kE the place of
formation of the plastic zone in the ball for several values kσ at mE = mσ = 2.
With an increase kσ at a constant value kE , the place of formation of the plastic zone
shifts from the inner surface of the ball into the depth of the wall. An increase kE ,
on the contrary, leads to a decrease in the radius rT . These two facts become clear
from Fig. 5, which schematically shows the moment of the onset of the formation of
plastic deformations in accordance with condition (7).
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Fig. 4 Dependence of the
place of formation of the
plastic zone on kE and kσ in
the ball

Fig. 5 A qualitative
representation of the
conditions for the appearance
of plastic deformations:
—χσT (r), —σθ − σr

Fig. 6 Dependence the
parameters of elastic
inhomogeneity: a in a
thick-walled ball, b in an
infinite array with a spherical
cavity, ◦ − kE = k∗

E -
(formula 20)

For a plastically homogeneous and elastically inhomogeneous body, the condition
for the formation of plastic deformations on the inner surface of a cylinder or ball
can be expressed by the elementary relation:

kE ≥ k∗
E = mE

mσ + 3
. (20)
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Fig. 7 Dependence of the
size of the plastic zone on
the load

In Fig. 6 shows the dependences of the pressure difference pT = (pa − pb)T
corresponding to themoment of appearance of plastic deformations on the parameters
of elastic inhomogeneity for a thick-walled ball and for an infinite array with a
spherical cavity. It can be noted that the influence of the parametermE is ambiguous.
At values of kE close to zero, an increase in mE can lead to a decrease in pT , and at
higher kE < 1 values the opposite is true. In addition, in the region of small values
of kE , an increase in this parameter leads to a slight increase in pT . It is also seen
that, at kE < 1, the pressure at which plastic deformations arise can be significantly
higher than in the homogeneous case (at kE > 1, the opposite the opposite picture
is observed).

In Fig. 7 shows graphs that determine the change in the dimensions of the plastic
zone in the ball from the load, at kσ = 1; mE = 2; k2 = a

/
b = 0.5 and kE = 0.1.

Using this curve for a hollow sphere as an example, a method for determining the
boundaries of the plastic zone (radii r1 and r2) at a known load p∗ is shown.

In elastic–plastic problems, displacements are of considerable interest. Figure 8
shows the dependence on the pressure difference p = pa − pb of the dimen-
sionless displacement of the points of the inner contour of a thick-walled ball at
k2 = 0, 5;kσ = 1;mE = 2 for different values of kE that determine the degree of
elastic inhomogeneity of the material. With an increase in the pressure difference, all
the graphs merge, and the vertical asymptote corresponds to the complete transition
of the cylinder to the plastic state.

Figure 9 shows the dependences of the displacements of the points of the contour of
a spherical cavity in an infinite array loadedwith external pressure p. The calculations
took into account both elastic and plastic inhomogeneity of the massif material.

Fig. 8 Dependence of the
displacements of the inner
contour of the ball on
pressure 1 kE = 0.5; 2
kE = 0.3; 3 kE = 0.1
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Fig. 9 Dependence of
displacements spherical
cavity contourin the array
from pressure: 1 -kE = 0.5,
kσ = 0.5; 2 -kE = 0.1; kσ =
1; 3 -kE = 0.4, kσ = 1; 4 -kE
= 0.6, kσ = 1; 5 -kE = 1; kσ

= 1; 6 -kE = 0.5, kσ = 2

It can be noted that for a plastically homogeneous material (kσ = 1) with an
increase in pressure, the influence of elastic inhomogeneity, as in the case of a thick-
walled cylinder, decreases. This is explained by the fact that more and more of
the massif is involved in the work, and the relative fraction of the zone of elastic
heterogeneity, which are local, decreases.

In turn, plastic inhomogeneity has a more significant effect on displacement,
which is especially noticeable at high pressures. This fact is due to the fact that
displacements are highly dependent on the size of the plastic zone, i.e. on the radius
r0, and the latter essentially depends on the values of the parameters of the plastic
inhomogeneity kσ and mσ .

7 Conclusions

In conclusion, one should pay attention to the fact that the solution of elastoplastic
problems for elastically and plastically inhomogeneous bodies, or rather, the analysis
of the occurrence of plastic deformations in such bodies, is largely similar to the
solution of strength problems. Since the plasticity criteria of Tresk—Saint–Venant
and Huber–Mises are equivalent to twowidespread theories of strength, respectively,
the theory of maximum tangential stresses and the energy theory, determining the
place of occurrence of the first plastic deformations and the corresponding loads
allows solving the strength problem at variable values of ultimate stresses.
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