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Abstract. Software models in the Unified Modeling Language (UML) can been
created or automatically reverse-engineered andused for quickly gaining structural
insights into larger, legacy, or unfamiliar software. But as the size, structural com-
plexity, and interdependencies between software components in larger systems
grows, two-dimensional viewing and modeling has limitations, and new ways of
visualizing larger models and numerous associated diagrams of different types are
needed to intuitively convey structural and relational insights. To investigate the
feasibility of using Virtual Reality (VR) to create an immersive UML-based soft-
ware modeling experience, this paper contributes a VR solution concept for visu-
alizing, navigating, modeling, and interacting with software models using UML
notation. An implementation shows its feasibility while an empirical evaluation
highlights its potential.
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1 Introduction

Aristotle once stated “thought is impossible without an image,” and F. P. Brooks, Jr.
asserted that the invisibility of software remains an essential difficulty of software con-
struction - because the reality of software is not embedded in space [1]. Text-based
program comprehension remains the norm in our day, despite the obvious limitations
for this form of software comprehension, as evidenced in the low code review reading
rates of around 200 lines of code per hour [2].

In general, modeling provides an abstracted or simplified representation of a system
that can assist with understanding relationships between elements or concepts of interest.
Typically, views are used to address stakeholder concerns and portray relevant aspects of
amodel. For visualizing the structural design of a software system,UML [3] has provided
a unified and standard modeling notation. UML tools can support software developers
via visualization, diagramming,model-based code generation, reverse engineering (from
code to models), round-trip engineering, model transformation, and support for XML
Metadata Interchange (XMI) [4] for transferring models between tools.
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Commonly available 2D modeling depictions in standard modeling tools have limi-
tations, and one can lose insight into the interrelationships across views, diagrams, and
relevant model elements as the size of themodel and views grows. Evidence includes [5],
who concluded a network graph in VR was three times as good as a 2D diagram. For 3D
UML, X3D-UML [6] determined a clear and measurable benefit in 3D UML software
visualization, while a 3D UML tool case study [7] showed that a 3D perspective was
intuitive and improved model comprehension. A VisAr3D experimental study with 18
participants [8] showed positive evidence for 3D for UML model understanding when
many elements were present (and the third dimension’s contribution), while showing
that precision, efficacy, and time were not negatively affected.

VR could potentially assist with visualizing large and complex software models and
their interrelationships simultaneously while also providing an immersive experience in
the software models. VR is defined as a “real or simulated environment in which the
perceiver experiences telepresence” [9], a mediated visual environment which is created
and then experienced. VR has made inroads in various domains and become readily
accessible as hardware prices have dropped and capabilities improved, increasing the
accessibility and ubiquity of VR-based model visualization. VR-based visualization of
software models for insights could rejuvenate the interest with software models in gen-
eral and UML modeling in particular. In their study with 99 participants, [10] showed
that VR resulted in better overall learning performance and higher engagement than
textbook or video modes. A new approach via software model immersion could help
rejuvenate the software modeling area and help transition from source-code only com-
prehension to more integrative use of visual models where it makes sense. VR offers a
unique advantage in the unconstrained 3D space for visualizing, conveying, navigating,
and analyzing complex and heterogeneous models simultaneously. As software models
grow in complexity, an immersive environment could provide an additional visualization
capability to comprehend the “big picture” for structurally and hierarchically complex
and interconnected software diagrams, while providing an immersive experience for the
UML models in a 3D space viewable from different perspectives. The sensory immer-
sion of VR can support task focus during model comprehension while limiting the visual
distractions that typical 2D display surroundings incur.

In prior work, [11] demonstrated the use of various metaphors for a VR immersion
in software structures without the use of UML. VR-BPMN [12] described our solution
concept for visualizing Business Process Model and Notation (BPMN) [13] models in
VR. Next, VR-EA [14] presented a VR solution concept for visualizing, navigating,
annotating, and interacting with ArchiMate [15] Enterprise Architecture (EA) models,
while also describing our generalized VRmodeling framework (VR-MF). Subsequently,
VR-EAT [16] integrated EA tool visualizations into VR, in particular dynamically gen-
erated diagrams from the EA tool Atlas and its meta-model [17]. VR permits the extent
of large models to be depicted and navigated visually, while overall interrelationships
within and between heterogeneous elements, models, and diagrams can be indicated
and considered. This paper extends our prior contributions with our solution concept
VR-UML, which provides a way to visually depict and immersively navigate, model,
and interact with UML-based software models in VR, enhancing these diagrams with
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3D depth, color, and inter-diagram element followers, while supporting heterogenous
hypermodels in VR.

The remainder of this paper is structured as follows: Sect. 2 discusses related work.
Section 3 presents our solution concept VR-UML. Section 4 then provides details on
our prototype implementation that demonstrates its feasibility. In Sect. 5 VR-UML is
empirically evaluated, and a conclusion follows in Sect. 6.

2 Related Work

Work on combining VR and UML includes Ozkaya & Erata [18], who propose their
intent for a research framework of a conceptual modeling tool, Virtual Reality Unified
Modeling Language (VRUML), but no VR realization details could be found. That VR
features are not yet commonplace in UML tools is evidenced by Ozkaya [19], who sys-
tematically analyzed 58 different UML modeling tools without any mention of VR, and
Ozkaya & Erata [20] who surveyed 109 practitioners to determine their UML prefer-
ences without any mention of VR. Related 3D (non-VR) UML visualization includes
the aforementioned X3D-UML [6], VisAr3D [8], and the case study by Krolovitsch &
Nilsson [7].

As to VR-based non-UML software model visualization, besides our own aforemen-
tioned prior software modeling in VR [11, 12, 14, 16], various metaphors in VR have
been attempted. Schreiber & Misiak [21] and Nafeie & Schreiber [22] use an island
metaphor in VR to represent components, packages, classes, and dependencies. Vin-
cur et al. [23] applies a city metaphor to software analysis. Schreiber & Brüggemann
[24] use a modular electrical component system metaphor in VR to visualize software
components.

Regarding hypermodeling work, besides our own prior work, the survey by Bork
et al. [25] comprehensively analyzed eleven visual modeling languages, includingUML,
ArchiMate, and BPMN, revealing heterogeneity in the specified modeling language
concepts and techniques employed for concept specification. They found a lack of a
common visual metamodel across various visual modeling languages, incompleteness,
and thus difficulties in providing an overarchingmetamodel that could be used to simplify
the specification and interrelations between various model types.

In contrast, the VR-UML solution concept realizes a VR-centric visualization of and
immersive experience in UML models, providing automatic layout of views as stacked
3Dhyperplanes, visualizing the reality of inter-view relations and recurrence of elements,
and enabling interactive modeling in VR. Its support for hypermodeling, e.g., such that
UML, ArchiMate, BPMN, and EA tool (Atlas) models can be visualized simultaneously
in the same virtual space supports deeper cross-model analysis across various diagram
types and stakeholder concerns. This capability may grow in importance with increasing
digitalization as (automatically extracted) UML-based software models become more
relevant to the business and EA and text-based code analysis (by non-developers) is no
longer efficient or viable.
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3 Solution Concept

With the upcoming challenges that increasing digitalization and IT infrastructure will
bring to enterprise architecture, rather than viewing models in isolation and in separate
tools, we envision the future of (software) modeling as integrative and holistic, utilizing
and accessing various available models concomitantly. VR provides a unique medium
of unlimited space and an immersive environment to support this modeling vision. Thus,
the foundation for our VR-UML solution (shown in blue in Fig. 1) is our generalized
VR Modeling Framework (VR-MF) [14]. It provides a VR-based domain-independent
hypermodeling framework supporting multiple heterogeneous models while addressing
three primary aspects of modeling in VR: visualization, navigation, interaction, and data
retrieval.Relationships between elements canbe shown in 3Dspace, and related elements
can be grouped in 3D layers or views as appropriate. The capability to simultaneously
visualize multiple heterogenous models in VR is a key principle of our solution concept
as realized via VR-MF. As depicted in Fig. 1, prior work based on VR-MF addressed
enterprise architecture (EA) modeling with Archimate in VR called VR-EA [14], busi-
ness process modeling in VR called VR-BPMN [12], and integrated EA tool data and
visualizations demonstrated with VR-EAT [16] using the EA tool Atlas. ArchiMate
models use a graphical notation consisting of a collection of concepts (approximately
50) to portray a wide scope of EA elements and relationships. On the other hand, BPMN
models focus on business processes and consist of Business Process Diagrams (BPDs)
composed of graphical elements consisting of flow objects, connecting objects, swim
lanes, and artifacts. To meet commercial EA needs, Atlas, as a representative EA tool,
provides access to diverse EA-related data in a coherent repository and meta-model and
is not restricted to certain standards or notations. Thus, while UML is focused on model-
ing software structural aspects, ArchiMate, BPMN, and other EA models and views can
convey other non-software aspects that may also be of importance to various stakehold-
ers depending on their context and concern, especially as software becomes an integral
part of the overall digital organizations and their processes. Thus, our hypermodeling
principle as detailed in our prior work plays a fundamental role towards supporting
heterogenous VR model visualization with regard to our VR-UML solution concept.

Fig. 1. Solution concept showing our new VR-UML solution concept within our VR-MF
modeling framework, with VR-EAT, VR-EA, and VR-BPMN support.



44 R. Oberhauser

Visualization. UML models use a graphical notation consisting of a collection of con-
cepts to portray a wide scope of software elements and relationships. The diagram
types can be categorized as structural diagrams (Class, Component, Composite structure,
Deployment, Object, Package, and Profile) and behavioral diagrams (Activity, Commu-
nication, Interaction overview, Sequence, State, Timing, and Use case). These diagrams
can participate in views used to convey information addressing concerns of specific stake-
holders. While many visual options and metaphors can be considered for VR, diverging
too far from the 2D diagrams and UML notations familiar to UML tool users would
reduce diagram comprehension. Yet placing 2D UML images like flat screens in front
of users would provide little added value in the 3D VR space. For visualizing and differ-
entiating diagrams, planes are used to take advantage of the 3D space, with each plane
representing a diagram. Stacked hyperplanes support viewingmultiple diagrams at once,
while allowing the user to quickly see an overview of how many diagrams of what type
are available. Furthermore, stacked hyperplanes allow us to utilize the concept of a com-
mon transparent or invisible backplane to indicate common elements across diagrams
via multi-colored inter-diagram followers. Stacked diagrams are a scalable approach for
larger projects (compared to side-by-side) since the distance to the VR camera is shorter,
and multiple stacks can be used to group diagrams or delineate heterogeneous models.
Diagrams are of interest can be viewed side-by-side by moving them from the stack
via an affordance on a diagram corner we call anchor spheres, which can also hide or
collapse diagrams to reduce visual clutter.

To distinguish UML elements types, generic (customizable) UML icons are placed
on upper right and lower left of the top of the element. Rather than graphically modeling
each element type separately, this enables us to quickly support many different element
types using a common shallow box approach.

Due to the current lack of a common metamodel and/or inter-model specification
language that can be used when visualizing heterogenous models (cf. [25] in Sect. 2),
we resort to a pragmatic approach of providing a basic inter-model annotation capability
in VR.

Navigation. The immersion afforded by VR requires addressing how to intuitively
navigate the space while reducing the likelihood of potential VR sickness symptoms.
Two navigation modes are included in the solution concept: the default uses gliding
controls, enabling users to fly through the VR space and get an overview of the entire
model from any angle they wish. Alternatively, teleporting permits a user to select a
destination and be instantly placed there (i.e., by instantly moving the camera to that
position); this can be disconcerting but may reduce the likelihood of VR sickness that
can occur when moving through a virtual space for those prone to it.

Interaction. VR interaction with VR elements has not yet become standardized. In
our VR concept, user-element interaction is done primarily via the VR controllers and
a virtual tablet. The virtual tablet provides detailed element information with CRUD
(Create, Retrieve,Update,Delete) capabilities specific to each element aswell as a virtual
keyboard for text entry via laser pointer key selection. The aforementioned corner anchor
sphere affordance supports moving/hiding/displaying diagrams. Inter-diagram element
followers can be displayed, hidden, or selected (emphasized).
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4 Realization

The VR-UML implementation architecture for our prototype is shown in Fig. 2. Due to
its multi-platform support, direct VR integration, popularity, and cost, the Unity game
engine 2020.2.0b4 is used with the SteamVR plugin v2.6.0b4. As shown, Unity uses
various assets such as Models, Scenes, and Scripts, which in turn access external model
files via our plugin adapter interface that parses and converts various model file formats
(e.g., UML, BPMN, ArchiMate) to our internal generic object representation.

Fig. 2. VR-UML implementation architecture.

For text readability, an aspect that is irrelevant for 2D but whichVR needs to consider
is that the viewing angle from the user to the element (camera angle) can be dynamic
based on theVRcamera position in space (which iswhat is actuallymoved to “navigate”),
thus the recognition and readability of elements must be considered from various angles.
Thus, in VR-UML the diagrams and any elements they contain are raised slightly for a
3D effect and these visible side edges utilized for text placement to permit the text to
be read from all sides in addition to the top. To support element delineation in space,
rather than using clear elements with border outlines - as is typically done in 2D UML
representations, in VR-UML a texture/color/material is used on all sides of an element
to give it substance. However, in 3D space if the elements are opaque, then another
element or relation could become hidden (and the user unaware of this), so a certain
degree of transparency for diagram planes and for certain elements is used to ensure that
relations and elements do not completely “disappear” within or behind other elements.
Furthermore, a customizable color scheme, e.g., Coad et al. [26] or the colored layers
used in the ArchiMate specification can be used to help distinguish UML diagrams
and elements as models grow, since, in contrast to 2D, many elements can be depicted
visually in VR.

One unexpected challenge in the UML visualization area is support for a common
UML diagram interchange format between UML tools that contains positioning and
layout data. While a mechanism for UML model exchange had been specified for UML
1.x usingXMI, it only provides information on themodel elements while lacking support
for exchanging diagram and element positioning and layout information. This limitation
is due to theUMLmetamodel lacking a standardway of representing diagramdefinitions.
While UML Diagram Interchange (UMLDI) [27] was published in 2006, few UML tool
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vendors appear to implement and support it. At the time UML 2.0 was published in
2005, UMLDI was unavailable for another year, so vendors may have ignored it and
continuedwith their own proprietary format formaintaining diagram layout information.
Most web-based UML tools and various desktop tools we tried support exporting only
common image file formats, while some support exporting themodel inXMI but lack any
positional information. AsXMLcan readily be converted into a JSON format, rather than
relying on the older common XML format in UML, we wanted to investigate utilizing
the newer and more efficient JSON format for UML model files. Various popular UML
tools were analyzed to determine if they already used or supported a JSON format for
UML. As StarUML uses JSON in their MDJ model files, VR-UML uses its UML JSON
file format. In Unity, the JsonDotNet package was used in combination with quicktype
to parse the JSON model file.

As shown in Fig. 3, at the highest level, an MDJ model file contains a single object
of the type Project that includes the project name and ID as well as an array of the
next level of objects. This array contains all saved Model Objects inside the project.
These Model Objects contain another array of objects of different types, of which we
focus on three: Diagram Objects (objects in a diagram and their positional data), Model
Data Objects (objects and their model data including relations and Child Objects), and
Collaboration Objects (all diagram data for sequence diagrams). While further objects
for diagram types such as activity or flowchart would expand the types, they are similar
to the sequence diagram in another object tree branch.

Fig. 3. Model file structure in JSON format.
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To evaluate the practicality of the VR-UML solution concept and implementation
prototype, a case study was used. Support is initially limited to the common UML
diagram types: use case, class, sequence, and deployment. The travel agency example
project provided by UML Designer [28] was used as a UML model basis and then
imported to StarUML in order to get anMDJmodel in JSON format. Themodel provides
the basic UML diagram types known in the 4+1 view model [29]: a use case diagram
depicting requirements in the scenario view (Fig. 4 left), a sequence diagram (Fig. 4
right) depicting runtime behavior in the dynamic or process view, a class diagram for
depicting the internal structure in the logical view (Fig. 5), and a deployment diagram
(Fig. 6) for depicting the physical view.

Fig. 4. Travel agency use case (left) and sequence (right) diagrams in StarUML.

The VR_UML visualization of the travel agency model is shown in Fig. 7, depicting
stacked hyperplanes for this model. Colors help differentiate diagram types. Here the
top grey plane shows a sequence diagram, the second purple plan the use case diagram,
the third plane the deployment diagram in green, and the bottom a class diagram in
red. Random colored followers along the invisible backplane (currently closest to the
camera) are automatically generated between recurring elements across diagrams to
follow participating elements across views (e.g., Customer (purple), Reservation (aqua)
and Customer (light green), which recur in the class and sequence diagrams with details
shown later), and can be used to quickly recognize recurring elements in other diagrams.
Anchor spheres on the corner of each diagram act as affordances that supports expanding,
collapsing, and moving a diagram.
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Fig. 5. Travel agency class diagram in StarUML.

Fig. 6. Travel agency deployment diagram in StarUML.
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Fig. 7. VR-UML stacked hyperplane visualization of travel agency model.

A virtual tablet is provided in VR-UML to support interaction and modeling and to
provide detailed information about an element. We chose this method since tablet usage
is common and intuitive (less VR training needed), and other VR-based affordances are
not yet standardized for providing detailed context-specific information for an element.
Figure 8 shows the ability to add a new class to a diagram including a keyboard where
each key is picked via a virtual laser pointer. Figure 9 shows the interface for creating
a new relation and indicating the type of relation (e.g., association, aggregation, etc.)
and its multiplicity. Figure 10 shows the ability to edit class attributes, e.g., the type,
multiplicity, and visibility.

Fig. 8. VR-UML create class modeling support with virtual tablet and virtual keyboard.
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Fig. 9. VR-UML create relation modeling support with virtual tablet.

Fig. 10. VR-UML attribute modeling support via virtual tablet.

As exemplified in Fig. 11, visual clutter can be reduced via the anchor sphere
affordance to collapse (hide) a diagram (which then displays the hidden diagram type).

Figure 12 shows side-by-side and offset diagram placement via anchor spheres.
Figure 13 shows the VR-MF hypermodeling capability for heterogeneous models in

VR (e.g., here UML and ArchiMate); related elements can be annotated across models
to support analysis.

5 Evaluation

To assess VR-UML empirically, a convenience sample of seven computer science stu-
dents from sophomore through master students participated, despite the currently very
restrictive COVID-19 pandemic situation and university contact policies. While the
group is not large enough to be statistically significant, the results can provide insights
to inform and guide future research. The subjects used an HTC Vive room scale VR
set with a head-mounted display and two wireless handheld controllers tracked by two
base stations. Each subject worked individually with a supervisor who provided instruc-
tions and timed the tasks. A Likert five-point scale was used for range-based responses.
All had some familiarity with UML and had used Sparx Systems Enterprise Architect
before; only two had used StarUML, and all but one had used VR.
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Fig. 11. VR-UML stacked plane view with two hidden/collapsed diagrams.

Fig. 12. VR-UML side-by-side and offset diagram placement.

The hypotheses that guided our tasks and questions were: while VR-UMLwill likely
be less efficient than 2Dmodeling in general, (1) VR-UML is advantageous and efficient
for more complex and multi-diagram models; and (2) users will subjectively enjoy the
VR immersion experience in UML models more that the 2D models.
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Fig. 13. Hypermodeling example showing a VR-UML and VR-EA ArchiMate model.

5.1 Quantitative Analysis

The subjects were timed for the following tasks in non-VR (using StarUML) and VR-
UML:

1. Multi-diagram elements: which elements with the same name recur in multiple
diagrams and how often?

2. Change the attribute “email” in the Customer class from public to private.
3. Change the relation multiplicity between Customer to Shopping Cart to 1-1.
4. Create the Model-View-Controller (MVC) pattern in the class diagram in non-VR

(see Fig. 14) and VR-UML (Fig. 15). In non-VR a paper copy was accessible as a
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reference, in VR they had to remember or verbally ask questions while wearing the
headset.

Fig. 14. MVC pattern task example in StarUML.

Fig. 15. MVC pattern task example in VR-UML.

Figure 16 shows the task duration results. On average, VR took 344% longer for Task
1, 141% longer for Task 2, and 43% longer for Task 4. For Task 3, when dealing with
multi-diagram elements, VR was 14% more efficient on average - because VR-UML’s
ability to visualize multiple diagrams and highlight inter-diagram elements. We see this
result as providing support for hypothesis (1). Note that for Task 2, 3, and 4, the ranges
show a large degree of overlap, which can be interpreted that VR can perform better
than non-VR to depending on the user’s UML and VR competency.

Three possible reasons for the longerVR results are: 1) theVR interface ismore cum-
bersome to control for modeling vs. a 2Dmouse-based interface with which the subjects
have been trained, 2) text entry via virtual laser pointer keypad selection (resembling one
finger typing using a laser pointer) instead of the non-VR physical keyboard (enabling
touch typing), and 3) time spent in VR navigating through 3D space to see or interact
with the object of interest (vs. in 2D moving the mouse on a screen). As VR keyboards
become commonplace, this could reduce this factor’s efficiency influence.
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Fig. 16. VR and Non-VR task duration range and average (blue dot) in seconds. (Color figure
online)

Table 1. UML familiarity (1 to 5, 5 = very familiar, 1 = unfamiliar) vs. error frequency.

UML
familiarity

Non-VR errors VR errors Total errors

2 1 3 4

3 0 0 0

3 2 0 2

4 0 2 2

4 0 0 0

4 0 2 2

4 0 5 5

Table 1 shows the errorsmade.Wenote that in two cases no errorsweremade in either
mode, in one case fewer errors were made in VR, while in four cases errors increased in
VR. Since VR relied on subjects’ memory of the pattern and subjects could not compare
their model to a reference model on paper as they did in non-VR, we do not weight VR
errors strongly. Due to the relatively minor error rate differences, we interpret the results
to indicate that with additional training and familiarity with VR-UML, the error rate in
VR could be equivalent to that of 2D and that it is not inherently more error prone for
all cases and all subjects.

5.2 Qualitative Analysis

In the qualitative responses shown in Fig. 17, all agreed VR-UML to be intuitive and
43%more so than non-VR. 86% agreed that VR-UML provided a clear model structure.
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As to changing an element, 71% found them equivalent while 29% found non-VR easier.
For finding recurring elements across diagrams, 86% strongly agreed that it was easy in
VR-UML compared to 43% for non-VR. In general, VR did not fare worse than non-VR
on these qualitative aspects, and often even better.

Fig. 17. Qualitative comparison of VR and Non-VR.

Additionally, 71% stated that they liked VR-UML better than non-VR. We interpret
this as support for hypothesis (2). VR-UML advantages explicitly mentioned included:
VR provided a better overview of diagrams and how they relate to each other, the layered
3D hyperplane stack makes comprehension of architecture easier, better visualization
in general - and specifically for relations, VR is more intuitive, the VR user interface
simpler than a menu system, and VR provides better focus due to immersion. Disadvan-
tages mentioned included: efficiency to perform tasks, text input takes much longer via
virtual keyboard with laser pointer, and the potential for VR sickness for sensitive users.
Suggested improvements included: voice input or other text input alternative for VR.

5.3 Discussion

While our small sample size is not statistically significant, we believe there is still suf-
ficient value from the results to infer trends and to inform future research. The study
showed evidence that VR can indeed support modeling for certain scenarios.We hypoth-
esized that VR would be advantageous relative to 2D for more complex structures or
inter-diagram scenarios which VR can better depict simultaneously due to its 3D nature.
As shown in Fig. 16, recurring elements across multiple diagrams were indeed found
more quickly (16% on average), due primarily to our VR-based support for visually
depicting these same elements, supporting hypothesis (1).

Factors that affected our study included: the COVID-19 policies to reduce interac-
tions and interaction time, such that no preparation, training, or warm-up was given (no
VR training nor VR-UML app training). In contrast, all participants had used 2D UML
tools beforehand. Furthermore, VR app interaction and controls are not yet standard-
ized and familiar, so subjects may not automatically know how to achieve some goal
in VR – compared with professional 2D tools where common expectations exists as to
where one will likely find menu items to achieve some task. Another aspect is cognitive
stimulus: VR visualization takes up much more visual processing that is still relatively
new and unfamiliar as yet to these subjects and can be disconcerting or initially affect
efficiency (i.e., a new world to explore effect).
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Threats to validity include: the small convenience sample size; the self-assessedUML
competency (vs. a UML competency test); lack of experienced software developer UML
competency or certification; VR tasks were performed directly rather than after a VR
warm-up phase; users lacked aMVC reference image in VR (non-VR had a paper copy),
thus subjects had to recall the MVC pattern from memory - which some may be better
at than others - or verbally ask questions; lack of prior training with the VR-UML app,
leading to inefficiencies and errors that may not actually depend on VR as a medium,
but are caused by unfamiliarity with such an app and its interface (due to COVID-19 the
evaluation time was minimized and training time cancelled).

As to counter-scenarios, VR-UML is likely not suitable or recommended for small
and simple UML models or single-diagram models from and efficiency or effectiveness
perspective. However, despite this, VR-UML could provide qualitative improvements
which could possibly create (or rejuvenate) excitement for UML modeling.

In summary, we see various positive indicators from this study that VR-UML can
show advantages where more complex and multi-diagram models are involved (and by
inference hypermodeling); that the immersive experience of UML models in VR adds
qualitative aspects that users prefer; and that any task inefficiencies in VR are probably
tolerable (as shown be the task duration range overlap). VR-UML efficiency could be
improved with explicit VR-UML training and text entry alternatives.

6 Conclusion

With our VR-UML contribution we have provided an immersive UML model experi-
ence for visually depicting and navigating UML diagrams of software models in VR.
The solution concept and guiding principles were described, and its feasibility demon-
strated with a VR prototype, with which we empirically evaluated our solution. Based
on our VR hyperplane principle, it enhances UML diagrams with 3D depth, color, and
automatically generated inter-diagram element followers based on our backplane con-
cept. Modeling and interaction are supported via a virtual tablet and virtual keyboard.
By leveraging the unlimited space in VR, the overall extent of multiple diagrams and
large models can be depicted and navigated visually, while overall interrelationships
within and between heterogeneous elements, diagrams, and models can be indicated
and analyzed. Furthermore, our VR modeling framework VR-MF contributes a gener-
alized hypermodeling approach for loading and visualizing different model types in VR
whereby UML and EA-related models such as ArchiMate, BPMN, and Atlas can be
visualized and analyzed simultaneously. The sensory immersion of VR can support task
focus duringmodel comprehension and increasemodeling enjoyment, while limiting the
visual distractions that typical 2D display surroundings incur. Most subjects preferred
VR-UML overall.

Various UML tools support reverse-engineering models directly from the code
(Ozkaya 2019). By leveraging today’s processors and cloud computing, they can rapidly
provide just-in-time reverse-engineered models to document and visually convey the
real software model based on the actual codebase both efficiently and without model-to-
code inconsistencies. In combinationwithVR-UML, visualization, analysis, and immer-
sion in software models could rejuvenate UML-based software modeling in the face of
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rapidly evolving codebases and in support of software maintenance of legacy systems.
Future work includes adding support for additional UML diagram and elements types,
enhancing the VR interface, adding additional inter-model annotation and informational
capabilities, optimizing the model storage format, and a comprehensive empirical study.
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