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Abstract. The application of automated reasoning approaches to De-
scription Logic (DL) ontologies may produce certain consequences that
either are deemed to be wrong or should be hidden for privacy reasons.
The question is then how to repair the ontology such that the unwanted
consequences can no longer be deduced. An optimal repair is one where
the least amount of other consequences is removed. Most of the previ-
ous approaches to ontology repair are of a syntactic nature in that they
remove or weaken the axioms explicitly present in the ontology, and
thus cannot achieve semantic optimality. In previous work, we have ad-
dressed the problem of computing optimal repairs of (quantified) ABoxes,
where the unwanted consequences are described by concept assertions of
the lightweight DL EL. In the present paper, we improve on the results
achieved so far in two ways. First, we allow for the presence of termino-
logical knowledge in the form of an EL TBox. This TBox is assumed to
be static in the sense that it cannot be changed in the repair process. Sec-
ond, the construction of optimal repairs described in our previous work
is best case exponential. We introduce an optimized construction that
is exponential only in the worst case. First experimental results indicate
that this reduces the size of the computed optimal repairs considerably.

1 Introduction

Description Logics [3] are a well-investigated family of logic-based knowledge
representation languages, which are frequently used to formalize ontologies for
application domains such as biology and medicine [17]. As the size of ontolo-
gies grows, the likelihood of them containing errors increases as well. This is
particularly problematic if the data, stored in the ABox, are automatically ex-
tracted from text or other sources using natural language processing or machine
learning. The reasoning services of DL systems [22,12,33,15], which derive im-
plicit consequences from the explicitly represented knowledge, are not only useful
once an ontology is deployed, but can also be employed for debugging purposes
by exhibiting consequences that are not supposed to hold in the application
? funded by DFG in project number 430150274 and TRR 248 (cpec, grant 389792660).
c© The Author(s) 2021
A. Platzer and G. Sutcliffe (Eds.): CADE 2021, LNAI 12699, pp.
https://doi.org/10.1007/978-3-030-79876-5_18

Franz Baader , Patrick Koopmann , Francesco Kriegel , and

309–326, 2021.

Adrian Nuradiansyah

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79876-5_18&domain=pdf
https://doi.org/10.1007/978-3-030-79876-5_18
http://orcid.org/0000-0002-4049-221X
http://orcid.org/0000-0001-5999-2583
http://orcid.org/0000-0003-0219-0330
http://orcid.org/0000-0002-9047-7624


310 F. Baader, P. Koopmann, F. Kriegel, and A. Nuradiansyah

domain. Another reason why one might want to remove a consequence is that
it reveals private information that is supposed to be hidden [14,5]. Once such
an unwanted consequence is detected, it is often not easy to see how to repair
the ontology in order to get rid of this consequence. Classical repair approaches
based on axiom pinpointing [31,29,27,32,21,8] compute maximal subsets of the
ontology that do not have the consequence. The obtained result thus strongly
depends on the syntactic form of the axioms. For example, it is well-known that,
for expressive DLs, a finite set of terminological axioms can be expressed by a
single axiom. If the given terminology (TBox) is of this shape, then the only
possible classical repair is the empty TBox. To alleviate this problem, repair
approaches have been developed that replace certain axioms by weaker ones (in
the sense that they have less consequences) instead of removing them completely
[18,24,34,6]. However, these approaches usually do not produce optimal repairs.
In fact, it was shown in [6] that, even for the inexpressive DL EL, optimal repairs
need not exist. The abstract example given there can be rephrased as follows.
Assume that the TBox defines humans to be exactly those individuals that have
a human parent, and that the ABox says that Sam is a human. After we find
out that Sam is in fact not human [9], we want to get rid of the latter assertion,
but keep the (correct) consequences saying that Sam has an unbounded chain
of ancestors (of undetermined species). If the TBox is assumed to be fixed, then
there is no optimal repair of the ABox since we can add only a finite number of
parent assertions.

To avoid such problems, our previous work on computing optimal repairs (for-
mulated in the guise of achieving compliance with privacy policies) restricted the
attention to the case without TBox. In [5] the ABox was additionally restricted
to be a so-called instance store [19], i.e., an ABox without role assertions. The
privacy policy (specifying which consequences are to be removed) was given as
EL instance queries. In this setting, optimal repairs always exist and can be com-
puted in exponential time, which is optimal since there may be exponentially
many optimal repairs of exponential size.

In [7] these results were extended to ABoxes with role assertions. More
precisely, we considered quantified ABoxes in which some individuals are
anonymized by viewing them as existentially quantified variables. For example,
assume that the ABox contains the information that Ben has a parent, Jerry, that
is both rich and famous, and we want to remove the consequence

E

parent.(Richu
Famous)(BEN ). Classical repairs can be obtained by removing one of the asser-
tions Rich(JERRY ), Famous(JERRY ), and parent(BEN , JERRY ). If instead
we replace the first assertion with Rich(x) and parent(BEN , x) for an existen-
tially quantified variable x, then we retain more consequences. Note that we could
not have used an individual name (i.e., constant) ANNE instead of x since infor-
mation like Rich(ANNE) about Anne does not follow from the original ABox.
We show in [7] that in this setting all optimal repairs can be computed by an
exponential-time algorithm with access to an NP-oracle. The oracle is needed
since our algorithm first computes a superset of the set of optimal repairs, from
which non-optimal ones need to be removed using the (NP-complete) entail-
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ment test between (potentially exponentially large) quantified ABoxes. We also
consider a modified version of entailment (called IQ-entailment) in [7], where
quantified ABoxes are compared w.r.t. which EL instance relationships they
imply. Using this notion, no NP-oracle is needed for computing the set of all
IQ-optimal repairs since IQ-entailment can be decided in polynomial time.

In the present paper, we improve on these results in two respects. On the one
hand, we allow for the presence of terminological knowledge in the form of an
EL TBox, which is assumed to be correct, and thus is not changed by the repair.
To deal with a TBox, the approach from [7] for computing optimal repairs must
be extended in two ways. First, the ABox needs to be saturated w.r.t. the TBox
before applying our repair approach. The saturated ABox has the same conse-
quences as the original one has together with the TBox. In our Ben and Jerry
example, assume that the assertion Rich(JERRY ) does not belong to the original
ABox, but the TBox contains the axiom Famous v Rich. Then the ABox on its
own does not have the unwanted consequence

E

parent.(Rich u Famous)(BEN ),
but together with the TBox it does. Saturation adds the assertion Rich(JERRY )
to the ABox. For arbitrary TBoxes, saturation need not terminate. We consider
two ways to remedy this problem: either allow for arbitrary TBoxes, but con-
sider IQ-entailment, or use classical entailment, but consider cycle-restricted
TBoxes [1]. In both cases, saturation always terminates; in the former in poly-
nomial and in the latter in exponential time. One might be tempted to assume
that, after saturation, one can simply apply the repair approach of [7] unchanged.
This is not true, however, since the TBox may re-add assertions that have been
removed or replaced by the repair. In our example, where Rich(JERRY ) is re-
placed, but Famous(JERRY ) is left untouched in the repair, the repaired ABox
together with the TBox would still have the unwanted consequence. Thus, the
repair approach needs to be changed to take this possibility into account.

On the other hand, the construction of optimal repairs described in our pre-
vious work [5,7], and extended in this paper such that it can deal with TBoxes,
is best case exponential. The second contribution of this paper is the design of a
new construction, both for classical and IQ-entailment, that is exponential only
in the worst case. We also report on first experimental results, which indicate
that this reduces the size of the computed optimal repairs considerably.

Detailed proofs of our results can be found in [4].

2 Preliminaries

Throughout this paper, we assume that Σ is a signature, which is a disjoint
union of sets ΣO, ΣC, and ΣR of object names, concept names, and role names.
We use symbols t, u, v, w to denote object names, A,B to denote concept names,
and r, s to denote role names, all of them possibly with sub- or superscripts.

As in [7], a quantified ABox (qABox)

E

X.A over Σ consists of a finite subset
X of ΣO, the elements of which are called variables, and a matrix A, which is
a finite set of concept assertions A(u) where u ∈ ΣO and A ∈ ΣC, and of role
assertions r(u, v) where u, v ∈ ΣO and r ∈ ΣR. An non-variable object name in
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E

X.A is called an individual name, and the set of all these names is denoted as
ΣI(

E

X.A). We further set ΣO(

E

X.A) := ΣI(

E

X.A)∪X. Traditional DL ABoxes
are qABoxes where X = ∅; we then write A instead of

E

∅.A. The matrix of a
qABox is such a traditional ABox.

An interpretation I of Σ is a pair (∆I , ·I), where the domain ∆I is a non-
empty set and the interpretation function ·I maps each u ∈ ΣO to an element uI
of ∆I , each A ∈ ΣC to a set AI ⊆ ∆I , and each r ∈ ΣR to a binary relation rI
over ∆I . The interpretation I of Σ is a model of a qABox

E

X.A over Σ if there
is an interpretation J such that ∆I = ∆J , the interpretation functions ·I and
·J coincide on Σ \X, and uJ ∈ AJ for each A(u) ∈ A as well as (uJ , vJ ) ∈ rJ
for each r(u, v) ∈ A.

Following [7], we define EL atoms and EL concept descriptions over Σ by
simultaneous induction as follows. An EL atom is either a concept name A ∈ ΣC
or an existential restriction

E

r.C for some role name r ∈ ΣR and an EL concept
description C. An EL concept description is a conjunction

d
C where C is a

finite set of EL atoms. An EL concept inclusion is of the form C v D for EL
concept descriptions C and D, and an EL TBox is a finite set of such concept
inclusions. An EL concept assertion is an expression C(u), where C is an EL
concept description and u ∈ ΣO.

For each interpretation I of Σ, we extend the interpretation function ·I to
EL atoms and EL concept descriptions in the following manner:

– (

E

r.C)I := { δ | there exists some γ such that (δ, γ) ∈ rI and γ ∈ CI },
– (

d
C)I :=

⋂
{CI | C ∈ C } where

⋂
∅ = ∆I .

The interpretation I is a model of the concept inclusion C v D (the concept
assertion C(u)) if CI ⊆ DI (uI ∈ CI), and of the TBox T if it is a model of
each concept inclusion in T .

To make the syntax introduced above more akin to the one usually em-
ployed for EL, we denote the empty conjunction

d
∅ as > (top concept), single-

ton conjunctions
d
{C} as C, and conjunctions

d
C for |C| ≥ 2 as C1 u . . .uCn,

where C1, . . . , Cn is an enumeration of the elements of C in an arbitrary or-
der. Since we do not distinguish between the singleton conjunction

d
{C} and

the atom C, each atom is also a concept description. The set Sub(C) of sub-
concepts of an EL concept description C is defined as follows: Sub(A) := {A},
Sub(

E

r.C) := {

E

r.C} ∪ Sub(C), and Sub(
d
C) := {

d
C} ∪

⋃
{ Sub(D) | D ∈ C }.

The set Atoms(C) consists of all atoms contained in Sub(C). These two notions
are extended to TBoxes and sets of concept assertions in the obvious way.

Let α, β be qABoxes, concept inclusions, or concept assertions (possibly not
both of the same kind), and T an EL TBox. Then we write I |= α if the
interpretation I is a model of α. We say that α entails β w.r.t. T (written
α |=T β) if every model of α and T is a model of β. Furthermore, α and β
are equivalent w.r.t. T (written α ≡T β), if α |=T β and β |=T α. In case
T = ∅, we will sometimes write |= instead of |=∅. If

E

∅.∅ |=T C v D, then
we also write C vT D and say that C is subsumed by D w.r.t. T ; in case
T = ∅ we simply say that C is subsumed by D. Two EL concept descriptions are
equivalent w.r.t. T (written C ≡T D) if they subsume each other w.r.t. T . We
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write C @T D to indicate that C vT D, but C 6≡T D. If

E

X.A |=T C(a), then
a is called an instance of C w.r.t.

E

X.A and T . For EL, the subsumption and
the instance problem are decidable in polynomial time [2]. However, entailment
between qABoxes is NP-complete even w.r.t. the empty TBox [7].

We also use the reduced form Cr of EL concept descriptions C [23], which is
obtained by removing redundant subdescriptions (see [7] for details). Adapting
the results in [23], one can show that C ≡∅ Cr and that C ≡∅ D implies Cr = Dr.

3 A Tale of Two Entailments

DL-based ontologies are usually accessed through appropriate query languages,
where for the purpose of this paper it is sufficient to assume that a query lan-
guage is given by a fragment of first-order logic. Instead of comparing ontologies
w.r.t. the models they have, it thus makes sense to compare them w.r.t. the
answers to queries they entail [25]. Given such a query language QL and an EL
TBox T , we say that the qABox

E

X.A QL-entails the qABox

E

Y.B w.r.t. T
(written

E

X.A |=TQL

E

Y.B) if for each query ϕ(x1, . . . , xk) ∈ QL and each tu-
ple of individuals (a1, . . . , ak) we have that T ∧

E

Y.B |= ϕ(a1, . . . , ak) implies
T ∧

E

X.A |= ϕ(a1, . . . , ak), where we view the TBox and the ABox as first-order
formulae and |= is classical first-order entailment (see [25] for more details). We
say that two qABox are QL-equivalent w.r.t. T if they QL-entail each other
w.r.t. T , and denote this equivalence relation as ≡TQL.

For EL ontologies, one usually considers instance queries (IQ) or conjunc-
tive queries (CQ). The former are given by EL concept descriptions, viewed as
first-order formulae with one free variable. The latter are basically qABoxes of
the form

E

X.A, but with the elements of ΣI(

E

X.A) viewed as free variables.
Replacing these free variables with a tuple of individuals thus yields a qABox in
the sense introduced above. In particular, this means that CQ-entailment cor-
responds to entailment of the same qABoxes (see [7] for more details regarding
the connection between conjunctive queries and qABoxes).

3.1 Classical Entailment and CQ-Entailment

Due to the close connection between conjunctive queries and qABoxes men-
tioned above, it is easy to see that the classical entailment relation |=T between
qABoxes, as introduced in the previous section, actually coincides with CQ-
entailment |=TCQ. To keep the notation more uniform and to distinguish this
kind of entailment explicitly from IQ-entailment, we will usually talk about CQ-
entailment and write |=TCQ.

Whenever we compare two qABoxes

E

X.A and

E

Y.B, we assume without
loss of generality that they are renamed apart, which means that X is disjoint
with ΣO(

E

Y.B) and Y is disjoint with ΣO(

E

X.A), and we further assume that
the two qABoxes speak about the same set of individual names ΣI := ΣI(

E

X.A)∪
ΣI(

E

Y.B). For the case of an empty TBox, it was shown in [7] that

E

X.A |=∅CQE

Y.B iff there is a homomorphism from

E

Y.B to

E

X.A. A homomorphism from
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u-rule. If (C1 u · · · u Cn)(t) ∈ A, then remove this assertion from A, and add the
assertions C1(t), · · · , Cn(t) to A.E-rule. If (

E

r.C)(t) ∈ A, then remove this assertion from A, add the two assertions
r(t, x) and C(x) to A, and add x to X, where x is a fresh variable not occurring
in A or X.

v-rule. If t ∈ ΣO(

E

X.A), C v D ∈ T , A |= C(t), and A 6|= D(t), then add the
assertion D(t) to A.

The u-rule has highest priority and the v-rule has lowest priority.

Fig. 1: The CQ-saturation rules.

E

Y.B to

E

X.A is a mapping h : ΣO(

E

Y.B) → ΣO(

E

X.A) such that h(a) = a
for each a ∈ ΣI, A(h(u)) ∈ A for each A(u) ∈ B, and r(h(u), h(v)) ∈ A for each
r(u, v) ∈ B. In order to obtain a similar characterization of entailment for the
case of a non-empty TBox T , we need to saturate the given qABox w.r.t. T .

Basically, this saturation performs what is called the chase in the database
community [26,20,10]. Given an EL TBox T and a qABox

E

X.A, it extends the
ABox by new assertions that are implied by the TBox. The rules that realize
this are described in Fig. 1. Their rôle is two-fold: whereas the v-rule adds new
concept assertions that are implied by the ABox together with the TBox, the
other two rules break down the complex concept assertions added by this rule
into smaller parts.

In general, applying these rules need not terminate; e.g., if applied to the
qABox

E
∅.{A(a)} for the TBox {A v

E
r.A}. There are various sufficient con-

ditions that guarantee termination of the chase [13]. Here, we use a condition
introduced in [1] in the context of unification in EL.

Definition 1. The EL TBox T is cycle-restricted if there is no non-empty
sequence of role names r1, . . . , rk and EL concept description C such that
C vT

E

r1. · · ·

E

rk.C.

As shown in [1], it can be decided in time polynomial whether a given EL TBox
is cycle-restricted or not. For cycle-restricted TBoxes, CQ-saturation always ter-
minates.

Theorem 2. Let T be a cycle-restricted EL TBox and

E

X.A a qABox. Then
exhaustive application of the CQ-saturation rules terminates in exponential time
in the size of

E

X.A and T , and yields a qABox satTCQ(

E

X.A) such that the
following statements are equivalent for all qABoxes

E

Y.B:
– E

X.A |=TCQ

E

Y.B,
– satTCQ(

E

X.A) |=∅CQ

E

Y.B,
– there is a homomorphism from

E

Y.B to satTCQ(

E

X.A).

We can show that there are examples where the CQ-saturation of a qABox w.r.t.
a cycle-restricted TBox is of exponential size, and thus its computation must take
exponential time. Nevertheless, the entailment relation |=TCQ can still be decided
within NP by adapting results for conjunctive query answering in EL [30].
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u-rule. If (C1 u . . . u Cn)(t) ∈ A, then remove this assertion from A and add the
assertions C1(t), . . . , Cn(t) to A.E-rule. If (

E

r.C)(t) ∈ A, then remove this assertion from A, add the two assertions
r(t, xC) and C(xC) to A, and add xC to X if it is not already there.

v-rule. If t ∈ ΣO(

E

X.A), C v D ∈ T , A |= C(t), and A 6|= D(t), then add the
assertion D(t) to A.

The u-rule has higher precedence than the

E

-rule, and the latter has higher precedence
than the v-rule.

Fig. 2: The IQ-saturation rules.

3.2 IQ-Entailment

Recall that the qABox

E

X.A IQ-entails the qABox

E

Y.B w.r.t. the EL TBox T if
every concept assertion C(a) entailed w.r.t. T by the latter is also entailed w.r.t.
T by the former. In the following we assume again that these two qABoxes
are renamed apart. For the case of an empty TBox, it was shown in [7] thatE

X.A |=∅IQ

E

Y.B iff there is a simulation from

E

Y.B to

E

X.A. A simulation fromE

Y.B to

E

X.A is a relation S ⊆ ΣO(

E

Y.B)×ΣO(

E

X.A) such that (a, a) ∈ S
for each a ∈ ΣI and, for each (u, v) ∈ S, A(u) ∈ B implies A(v) ∈ A and
r(u, u′) ∈ B implies that there exists an object v′ ∈ ΣI∪X such that (u′, v′) ∈ S
and r(v, v′) ∈ A. Since checking the existence of a simulation can be done in
polynomial time [16], we conclude that IQ-entailment between qABoxes can be
decided in polynomial time for the case of an empty TBox.

To extend these results to the case of a non-empty TBox, we again need
to saturate the ABox w.r.t. the TBox. But now the saturation rules, given in
Fig. 2, are more parsimonious w.r.t. the introduction of new objects. To be more
precise, for each existential restriction

E

r.C ∈ Sub(T ), we assume that xC is
a fresh variable not contained in the initial qABox

E

X.A. When applying theE

-rule to an assertion of the form (

E

r.C)(t), we always use this variable for
the successor object. Due to this restriction, IQ-saturation always terminates,
i.e., it is not necessary to impose any restrictions on the TBox. Also note that
IQ-saturation basically generates a qABox representation of what is called the
canonical model in [25, Section 5.2].

Theorem 3. Let T be an EL TBox and

E

X.A a qABox. Then exhaustive ap-
plication of the IQ-saturation rules terminates in polynomial time in the size ofE

X.A and T , and yields a qABox satTIQ(

E

X.A) such that the following state-
ments are equivalent for all qABoxes

E

Y.B:
– E

X.A |=TIQ

E

Y.B,
– satTIQ(

E

X.A) |=∅IQ

E

Y.B,
– there is a simulation from

E

Y.B to satTIQ(

E

X.A).

Since satTIQ(

E

X.A) can be computed in polynomial time and the existence of a
simulation can be decided in polynomial time, this shows that the entailment
relation |=TIQ can be decided in polynomial time.
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4 Canonical Repairs

We specify what is to be repaired by a finite set of EL concept assertions, which
we call a repair request. A repair is a qABox that does not have any of these
assertions as a consequence. This generalizes previous repair approaches [6] in
that more than one consequence specified as unwanted is removed in one step.
It also encompasses the notion of a privacy policy, as introduced in [7], which
specifies forbidden concepts, with the meaning that one should not be able to
derive that any of the individuals occurring in the qABox is an instance of such
a concept. We assume that the TBox is static (i.e., may not be changed by the
repair) and consider both CQ- and IQ-entailment for comparing qABoxes.

Definition 4. Let T be an EL TBox and QL ∈ {CQ, IQ}.

– An EL repair request is a finite set of EL concept assertions.
– Given a qABox

E

X.A and an EL repair request R, a QL-repair of

E

X.A for
R w.r.t. T is a qABox

E

Y.B such that

E

X.A |=TQL

E

Y.B and

E

Y.B 6|=T C(a)
for all C(a) ∈ R.

– Such a repair

E

Y.B is optimal if there is no QL-repair

E

Z.C of

E

X.A for
R w.r.t. T such that

E

Z.C |=TQL

E

Y.B and

E

Z.C 6≡TQL

E

Y.B.

Intuitively, a repair is a qABox that has no new consequences of the specified
type (instance relationships or answers to conjunctive queries), and no longer
has the consequences forbidden by the repair request. In an optimal repair, a
minimal amount of consequences of the specified type is lost. Since there are
different options for what to change when repairing a qABox, there may exist
several non-equivalent optimal repairs.

In the following, let QL ∈ {CQ, IQ} and let T be a fixed TBox, which is
assumed to be cycle-restricted if QL = CQ. In addition, let R be a repair request
and

E

X.A be the qABox to be QL-repaired for R w.r.t. T . We assume that
R does not contain an assertion of the form C(a) such that > vT C since
the presence of such an assertions would preclude the existence of a repair. If R
satisfies this restriction, then the empty qABox

E

∅.∅ is always a repair. However,
as mentioned in the introduction, this does not imply that there is an optimal
repair. We will show that, for the case of IQ-entailment, optimal repairs always
exist. For CQ-entailment, this is the case if the TBox T is cycle-restricted. In
both cases, the set of optimal repairs covers all repairs in the sense that each
repair is entailed by some optimal repair.

As mentioned in the introduction, to deal with TBoxes, the approach for
computing so-called canonical repairs from [7] needs to be adapted in two ways.
First, one needs to QL-saturate the given qABox w.r.t. the TBox. Second, when
computing canonical repairs from satTQL(

E

X.A), the construction needs to ensure
that the TBox does not reintroduce consequences that have been removed by
the repair. The main idea underlying the construction of canonical repairs is to
introduce variables as copies of the objects occurring in satTQL(

E

X.A). Such a
variable is of the form yu,K, where the first component of the subscript says that
this is a copy of the object u. The second component K is a set of atoms, with
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the intuitive meaning that yu,K must not be an instance of any element of K. To
avoid introducing unnecessary copies, certain restrictions were imposed in [7] on
the sets K. We add a further restriction that takes care of the TBox.

To be more precise, let Sub(R, T ) be the set of subconcepts of concept de-
scriptions occurring inR or T , and let Atoms(R, T ) be the set of atoms occurring
in Sub(R, T ). The set K in a variable yu,K must be a repair type for u.

Definition 5. Let

E

Y.B := satTQL(

E

X.A) and let u be an object name occurring
in B. A repair type for u is a subset K of Atoms(R, T ) that satisfies the following:

1. B |=∅ C(u) for each atom C ∈ K,
2. if C,D are distinct atoms in K, then C 6v∅ D,
3. K is premise-saturated w.r.t. T , i.e., for all C ∈ Sub(R, T ) with B |=∅ C(u)

and C vT D for some D ∈ K, there is E ∈ K such that C v∅ E.

The first two conditions coincide with the ones in [7]. Basically, 1. says that
we only need to remove instance relationships explicitly if they are really there.
Condition 2. corresponds to the fact that preventing D(yu,K) as a consequence
also prevents C(yu,K) if D subsumes C, and thus C ∈ K would be redundant if
D ∈ K. Condition 3. ensures that instance relationships that are removed due to
K cannot be re-introduced by the TBox. It is easy to see that the set of repair
types for u can be computed in exponential time.

Similarly to the approach in [7], canonical repairs are induced by seed func-
tions. Such a function determines, for each individual, which instance relation-
ships should be prevented in order to obtain a repair.

Definition 6. A repair seed function is a function s that maps each individual
name b ∈ ΣI(

E

X.A) to a repair type s(b) for b that satisfies the following:

– if C(b) ∈ R and satTQL(

E

X.A) |= C(b), then s(b) contains an atom D such
that C v∅ D.

Using our general assumption that the repair request R does not contain a
concept assertion C(a) with > vT C, we can show that there is always at least
one repair seed function. Each repair seed function induces a repair as follows.

Definition 7. Given a repair seed function s, we define the canonical QL-repair
repTQL(

E

X.A, s) induced by s as the qABox

E

Y.B where

1. the set Y consists of the variables yu,K for all object names u occurring in
satTQL(

E

X.A) and all repair types K for u, except for the case where u is an
individual name and K = s(u), and

2. the matrix B consists of the following assertions, where we use yb,s(b) as a
synonym for the individual name b:
– A(yu,K) ∈ B for each concept assertion A(u) in satTQL(

E

X.A) such
that A 6∈ K,

– r(yu,K, yv,L) ∈ B for each role assertion r(u, v) in satTQL(

E

X.A) such
that the following holds for each

E

r.C ∈ K: if the matrix of satTQL(

E

X.A)
entails C(v), then the set L contains an atom that subsumes C.
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Our construction of canonical repairs based on seed functions is sound and
complete in the following sense.

Proposition 8. For each repair seed function s, the induced canonical repair
repTQL(

E

X.A, s) is a QL-repair of

E

X.A for R w.r.t. T . Conversely, if

E

Y.B is
a QL-repair of

E

X.A for R w.r.t. T , then there is a repair seed function s such
that repTQL(

E

X.A, s) |=TQL

E

Y.B.

We define the set of all canonical QL-repairs of

E

X.A for R w.r.t. T as

RepairsTQL(

E

X.A,R) := { repTQL(

E

X.A, s) | s is a repair seed function }.

As an easy consequence of Proposition 8 we obtain that RepairsTQL(

E

X.A,R)
contains all optimal repairs (up to equivalence). However, as in the case with-
out a TBox, it may also contain non-optimal repairs [7]. To compute the set
of optimal repairs, one thus needs to remove such non-optimal elements from
RepairsTQL(

E

X.A,R). Since the entailment test required for this is NP-complete
for QL = CQ and polynomial for QL = IQ, we obtain the following theorem.

Theorem 9. There is a (deterministic) algorithm that computes the set of all
optimal QL-repairs of

E

X.A for R w.r.t. T and runs in exponential time. If
QL = CQ, then this algorithm needs access to an NP oracle, whereas no such
oracle is required for QL = IQ.

5 Optimized Repairs

The construction of the canonical repair induced by a seed function described in
the previous section usually introduces an exponential number of copies for the
objects occurring in the saturated qABox. The following example demonstrates
that this is not always necessary to obtain an optimal repair.

Example 10. Let T := ∅ and consider the repair request {(

E

r.(A1u. . . uAn))(a)}
for the qABox

E

{x}.{r(a, x), A1(x), . . . , An(x)}. There is only one repair seed
function s, which assigns {

E

r.(A1 u . . . u An)} to a. Both for the CQ and the
IQ case, the canonical repair induced by s contains 2n copies of x, namely all
the variables yx,K for K ⊆ {A1, . . . , An}. However, most of these copies are
redundant. In fact, we will see below that there are optimal repairs equivalent
to the canonical one that contain only linearly many variables in n, both for the
CQ and the IQ case.

The idea is now to construct, for a given seed function, a set of variables that
is a (hopefully small) subset of the set Y introduced in Definition 7, which is
nevertheless sufficient to obtain a repair equivalent to the canonical one. Note,
however, that in general an exponential blow-up cannot be avoided, as already
shown in [5] for the case of EL instance stores. Throughout this section, we
assume that QL, T , R, and

E

X.A satisfy the properties assumed in the previous
section. In addition, we assume that the repair request R is reduced, i.e., every
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concept occurring in a concept assertion in R is reduced, and if R contains C(a)
and D(a) for distinct concept descriptions C,D, then C 6v∅ D, and we further
assume that each concept occurring in the TBox T is reduced. Before we can
describe our construction of the set of relevant variables, we must introduce some
notation and show an auxiliary result.

Given two sets of concept descriptions K and L, we say that L covers K
(written K ≤ L) if each concept in K is subsumed by some concept in L.

Now, let s be a repair seed function and set

E

Y.B := repTQL(

E

X.A, s).
Recall that, according to Definition 7, a role assertion r(yt,K, yu,L) belongs
to the matrix B iff the saturation satTQL(

E

X.A) contains the role assertion
r(t, u) and the repair type L covers the set Succ(K, r, u) := { C |

E

r.C ∈
K and the matrix of satTQL(

E

X.A) entails C(u) }.
If L does not satisfy this requirement, there might be another repair type

L′ such that the canonical repair contains the assertion r(yt,K, yu,L′), and thus
our optimized repair needs to contain an appropriate variable to which yu,L′ can
be mapped by a homomorphism or simulation. We generate such variables by
looking for repair types M that cover both L and Succ(K, r, u). The set of all
such repair types can effectively be computed, though it might be empty. For
our purposes, it is sufficient to use only the ones that are minimal w.r.t. the
cover relation ≤.

Lemma 11. The set of all ≤-minimal repair types for u that cover L ∪
Succ(K, r, u) can be computed in exponential time.

In general, this computation may produce exponentially many repair types, but
this is not always the case. For instance, consider a = ya,s(a) and yx,∅ in Exam-
ple 10. We have Succ(s(a), r, x) = {A1u. . .uAn} and thus the assertion r(a, yx,∅)
is not in B since ∅ clearly does not cover Succ(s(a), r, x). The ≤-minimal repair
types covering Succ(s(a), r, x) are exactly the sets {Ai} for i = 1, . . . , n.

In the following, we construct a sequence Y0, Y1, . . . , Ym of subsets Yi of Y
such that

E

Y.B is QL-equivalent to its sub-qABox

E

Ym.Bm where Bm contains
only those assertions in B involving object names in ΣI ∪Ym. Recall that we use
ya,s(a) as synonyms for the individuals a ∈ ΣI.

We start with the set Y0, which is empty if QL = IQ, and equal to the set
{ yt,∅ | t is an object name occurring in satTCQ(

E

X.A) } if QL = CQ.
The subsequent sets are obtained by exhaustively applying one of the follow-

ing rules, depending on whether QL = CQ or QL = IQ.
CQ-construction rule. If yt,K and yu,L are elements of ΣI ∪ Yi, the satu-

ration satTCQ(

E

X.A) contains the role assertion r(t, u), the repair type L
does not cover Succ(K, r, u), and M is a ≤-minimal repair type for u that
covers L ∪ Succ(K, r, u), but yu,M is not contained in ΣI ∪ Yi, then set
Yi+1 := Yi ∪ {yu,M}.

IQ-construction rule. If yt,K is an element of ΣI ∪ Yi, the saturation
satTIQ(

E

X.A) contains the role assertion r(t, u), and M is a ≤-minimal
repair type for u that covers Succ(K, r, u), but yu,M is not contained in
ΣI ∪ Yi, then set Yi+1 := Yi ∪ {yu,M}.
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The sets Yi are all subsets of the set Y of variables in the canonical repair. Since
each rule application adds a variable, the exhaustive application of rules must
terminate after finitely many steps with a set of variables Ym ⊆ Y .

Let us illustrate this construction using Example 10, first for the IQ case.
We have a = ya,s(a) ∈ ΣI and the assertion r(a, x) belongs to the saturation,
which is equal to the original qABox. As mentioned above, the ≤-minimal repair
types covering Succ(s(a), r, x) are exactly the sets {Ai} for i = 1, . . . , n. Thus,
repeated applications of the IQ-construction rule add the variables yx,{Ai}, and
the construction ends with Y IQ

m = { yx,{Ai} | i = 1, . . . , n }. In the CQ case, the
initial set of variables is Y CQ

0 = {ya,∅, yx,∅}. In this example, the CQ-construction
rule then generates the same variables as the IQ rule, though this need not be
the case in general. We end up with the final set Y IQ

m ∪ Y CQ
0 .

Definition 12. Let s be a repair seed function and Ym ⊆ Y be the set of
variables obtained by an exhaustive application of the QL-construction rule.
The optimized QL-repair of

E

X.A for R w.r.t. T induced by s, denoted by
orepTQL(

E

X.A, s), is the qABox

E

Ym.Bm where the matrix Bm contains all as-
sertions in B involving only object names in ΣI ∪ Ym.

Note that, to compute Bm, we need not compute the larger matrix B first.
Instead, we just apply the definition of the matrix in Definition 7 to the object
names in ΣI ∪ Ym.

In our example, the optimized IQ-repair is the qABox

E

Y IQ
m .Bm with

Bm = { r(a, yx,{Ai}) | 1 ≤ i ≤ n } ∪ {Aj(yx,{Ai}) | j 6= i and 1 ≤ i, j ≤ n }.

In the optimized CQ-repair, the quantifier prefix additionally contains the
variables ya,∅ and yx,∅, and the matrix additionally contains the assertions
r(ya,∅, yx,∅) and Ai(yx,∅) for i = 1, . . . , n. Note that, without these assertions,
the positive answer to the Boolean conjunctive query

E

y, z.(r(y, z) ∧ A1(z) ∧
. . . ∧An(z)) would be lost.

Coming back to the general case, we first observe that the canonical QL-
repair induced by s QL-entails the optimized QL-repair induced by s due to the
inclusion relationship between these two qABoxes. The entailment in the other
direction also holds, but this is harder to show, in particular for QL = CQ.

Proposition 13. For each repair seed function s, the optimized QL-repair in-
duced by s QL-entails the canonical QL-repair induced by s.

Proof sketch. For QL = IQ, the proposition can be proved by showing that the
following relation S is a simulation from

E

Y.B to

E

Ym.Bm:

S := { (yt,K, yt,K′) | yt,K ∈ ΣO(

E

Y.B), yt,K′ ∈ ΣO(

E

Ym.Bm), and K′ ≤ K}.

For QL = CQ, we introduce a sequence of mappings h0, h1, . . . , hn : ΣO(

E

Y.B)→
ΣO(

E

Ym.Bm), starting with h0(yt,K) = yt,s(t) if t ∈ ΣI and s(t) ≤ K and
h0(yt,K) = yt,∅ otherwise. The initial mapping h0 need not be a homomorphism
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since role assertions may not be preserved. In the step-wise construction of the
mappings hi such defects are corrected, one by one. We can show that this con-
struction always terminates after finitely many steps, yielding a homomorphism
hn from

E

Y.B to

E

Ym.Bm. ut

Summing up, we have thus shown the following theorem, which implies that
the optimized repairs also satisfy the properties stated in Proposition 8.

Theorem 14. For each repair seed function s, the canonical QL-repair induced
by s and the optimized QL-repair induced by s are QL-equivalent.

6 Evaluation

To find out whether the repair approaches introduced in this paper are in prin-
ciple viable for non-trivial ontologies, we made experiments for both IQ and CQ-
repairs with a first, rather unoptimized implementation. In addition to checking
how often the implementation was able to compute a repair within a certain
timeout, we also compared the sizes of optimized repairs with those of canonical
repairs. We considered two different repair scenarios: repairing a single unwanted
consequence for a single individual (S1), and repairing a single unwanted conse-
quence for 10% of the individuals occurring in the ABox (S2). We report here
the main results—more details and discussions can be found in [4].

As corpus for our evaluation, we chose the ontologies used in the 2015 OWL
Reasoner Competition for the track OWL EL Realisation [28], since they contain
a substantial amount of ABox assertions. These 109 ontologies were converted
into pure EL by applying standard transformations and afterwards filtering out
unsupported axioms. From these ontologies, we kept those that had at most
100,000 axioms in total. The resulting corpus contained 80 ontologies.

We implemented our methods in Java, using the OWL-API1 for parsing
OWL ontologies, and ELK [22] for precomputing any subsumption relationships
entailed with and without the TBox potentially relevant for our repair approach.
The code is available online.2 All experiments were performed on an Intel(R)
Core(TM) i5-4590 CPU with 4 cores and 32 GB RAM, of which we assigned 16
GB as maximal heap space to the Java VM.

Since it is a precondition of our repair approach, we first saturated the on-
tologies using the IQ-saturation rules of Figure 2, and the CQ-saturation rules
of Figure 1. The CQ-saturation rules were implemented using the rule engine
VLog [11] through the Java facade Rulewerk.3 As CQ-saturation only termi-
nates for cycle-restricted TBoxes, we only considered those ontologies for the
CQ-saturation whose IQ-saturation did not introduce cycles between introduced
variables. We used a timeout of 60 minutes for every saturation. This way, we
successfully computed IQ-saturations of every ontology, and 62 CQ-saturations.
1 http://owlapi.sourceforge.net
2 https://github.com/de-tu-dresden-inf-lat/abox-repairs-wrt-static-tbox
3 https://github.com/knowsys/rulewerk

http://owlapi.sourceforge.net
https://github.com/de-tu-dresden-inf-lat/abox-repairs-wrt-static-tbox
https://github.com/knowsys/rulewerk
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The size of the saturated ABox was usually not much larger than that of the
original one, and always less than two orders of magnitude larger. Interestingly,
the successful CQ-saturations were rarely larger than the IQ-saturations, and
often even of the same size, because no variables were added.

Scenario S1 was about repairing a single faulty entailment A |=T C(a). Since
we did not have information about whether any entailments from the considered
ontologies are faulty, we generated such assertions randomly. For this, we looked
at entailments of the form A |=T C(a), where C ∈ Sub(T ). To make the repair
requests more interesting, we furthermore required that C is not of the form
A or

E

r.>, where A is a concept name. This requirement already ruled out 54
of the IQ-saturated ontologies, and 44 of the CQ-saturated ontologies, as they
did not have any complex entailments of the required form. For Scenario S2, we
randomly selected some concept C ∈ Sub(T ) which had at least one instance
(surprisingly, although C was not required to be complex, this ruled out 12 on-
tologies, including 4 of the CQ-saturated ones), together with a random selection
of 10% of the individuals in A, and built the repair request consisting of all as-
sertions C(a) where a ranges over the selected individuals. For both scenarios,
we selected a random seed function for the obtained repair request.

For each ontology, scenario, and QL ∈ {IQ,CQ}, we attempted to compute
optimised QL-repairs for 50 different repair requests. We also tried to compute
the set of objects that would be included in the canonical repairs, to get an idea
of the impact of our optimisation. For each such repair computation, we used a
timeout of 10 minutes. Since all repair requests used only concept descriptions
that were already in the input ontology, the number of objects in the canoni-
cal repair was independent of the repair request. We thus performed the latter
computation only once for each ontology. The success rates were as follows:

– The objects included in the canonical IQ- and CQ-repair could be computed
within the timeout and without memory exceptions for respectively only
52.9 % and 62.1 % of the ontologies.

– For S1, we could compute the optimized IQ-repair in 99.9 %, and the opti-
mised CQ-repair in 100.0 % of all attempts.

– For S2, 98.9 % of IQ-repairs and 99.9 % of CQ-repairs were successful.

This shows that the optimizations introduced in Section 5 have a very positive
impact on the viability of our repair approach.

Fig. 3 gives more information on the number of objects and assertions in the
computed repairs. On the left, we consider canonical and optimised IQ-repairs
for scenario S2: specifically, we look at the difference in numbers of individuals
occurring in the repair compared to the input ABox. In the middle and on the
right, we visualise the difference between the number of assertions in the opti-
mized IQ- and CQ-repairs, compared to the input ABoxes, for the scenarios S1
and S2, respectively. By construction, CQ-repairs cannot contain less assertions
than the input ontologies. Sometimes the CQ-repairs were smaller than the cor-
responding IQ-repairs, which is due to the different saturation methods: variables
introduced by the IQ-saturation could be connected to more individuals than for
the CQ-saturation.
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Fig. 3: Evaluation results. On the left, we show the difference of the number of ob-
ject names in the canonical IQ-repairs (purple triangle) with the same difference,
but restricted to objects occurring in assertions, for the optimised IQ-repairs (red
circle) for S2. The other two graphs consider optimised IQ- and CQ-repairs for
S1 and S2. In each graph, the x-axis shows the number of assertions in the input
ontology, and the y-axis the observed difference.

7 Conclusion

This paper presents approaches for repairing DL-based ontologies, in the sense
that they allow to get rid of unwanted consequences. In contrast to most of the
other work on ontology repair, our goal is to compute optimal repairs, i.e., ones
that lose the least amount of other consequences. As relevant consequences to
be preserved, we consider both answers to conjunctive queries (CQ) and answers
to EL instance queries (IQ). The presented results improve on our previous work
in this direction in two respects. First, we allow for the presence of a TBox,
which is assumed to be static (i.e., cannot be changed by the repair), whereas
before we assumed that the TBox is empty. Second, we develop a more efficient
construction of optimal repairs, which is exponential only in the worst case. Our
experimental results show that this optimization makes our repair approach
viable also for fairly large ontologies, at least for the IQ case.

One question for future research is how to lift the restriction to cycle-
restricted TBoxes in the CQ case. Since optimal repairs need not longer ex-
ist then, one can ask whether the existence question is decidable, and how to
compute optimal repairs if they exist. We have already noticed in our first at-
tempts to tackle this problem that optimal repairs may then become larger than
single-exponential.

In this and in our previous work, we have assumed that unwanted conse-
quences are specified as EL instance relationships. Another interesting open
question is whether our results can be generalized to a setting where unwanted
consequences are specified as answers to conjunctive queries, as e.g. in [14].4

4 Note that no TBox is considered in [14], and the notion of optimality used there is
different from ours (see the introduction of [7] for a discussion of the differences).
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