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HEK293 Human embryonic kidney-293
Hs3st1 Heparan sulphate 3-O-sulfotransferase 1
HSC60 Heat shock protein 60 kDa
HSC70 Heat shock protein 70 kDa
HT High titre
IFN-γ interferon gamma
IgG Immunoglobulin G
iPSC Induced pleuripotent stem cells
LC-MS/MS Liquid chromatography with tandem mass spectrometry
lncRNA Long non-coding RNA
LT Low titre
MAARGE Multiplexable activation of artificially repressed genes
mAbs Monoclonal antibodies
MDH Malate dehydrogenase
MFA Metabolic flux analysis
miRNA/miR microRNA
MPC1/2 Mitochondrial pyruvate carrier 1 and 2
MS Mass spectrometry
mTOR Mechanistic target of rapamycin
NDST2 N-deacetylase/N-sulfotransferase
NeoR Aminoglycoside phosphotransferase, neomycin resistance protein
NSD Nucleotide sugar donor
PAGE Polyacrylamide gel electrophoresis
PC Pyruvate carboxylase
PCA Principal component analysis
RI Random integration
RNA-seq RNA sequencing
SEAP Secreted alkaline phosphatase
siRNA Small-interference RNA
SSI Site-specific integration
ST6GAL α-2,6-syalyltransferase
TALEN Transcription activator-like effector nuclease
TCA Tricarboxylic acid cycle
TFRE Transcription factor regulatory elements
UTR Untranslated region
VCP Valosin-containing protein
ZFN Zinc-finger nuclease

1 Introduction

Mammalian cells have successfully served as industrial platforms for manufacturing
different types of biopharmaceuticals that are critical therapies for the treatment of
complex chronic diseases (e.g., cancer, autoimmune disorders). These biopharma-
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Fig. 1 Impact of the evolution of biopharmaceuticals on the manufacturability. This figure
illustrates the exponential growth in the complexity (X-axis) of biopharmaceuticals, where
complex molecular design, novel action mechanisms and manufacturing difficulties result in
significantly increased product price (Y-axis)

ceuticals, including recombinant proteins (e.g., monoclonal antibodies) and viral
particles (e.g., adeno-associated virus vectors, AAV), are largely produced using
mammalian cell factories, with Chinese hamster ovary (CHO) and human embry-
onic kidney-293 (HEK293) cells as the predominant platforms. While the sector has
managed to substantially improve cell densities, product yields and quality through
trial and error (“brute force”) approaches the capacity of these cell lines to turn
recombinant genes into life-changing drugs is limited by intracellular processes
(transcription, translation, processing, secretion). These intrinsic constraints are
exacerbated by the development of a new generation of biopharmaceuticals, with
novel designs and increased complexity for industrial manufacturing (e.g., multi-
specific mAbs, complex fusion proteins, functional AAV vectors) (Fig. 1). The
emergence of coronavirus disease 2019 (COVID-19) has highlighted the urgent need
for production platforms that enable the rapid manufacturing of biotherapeutics on
demand.

Even though we (as a community of scientists and industrialists) are aware of
the cellular limitations, for productivity or product quality, we are less aware of the
specific molecular events occurring within these cell factories that drive ‘good’ or
‘bad’ outcomes. Today, high-throughput omics technologies provide vast amounts
of information of the cellular events, that increased our fundamental understanding
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Fig. 2 Overview of the potential of omics technologies to increase the fundamental under-
standing of biological systems and to optimise cell factories and bioprocesses. This figure
shows how omics technologies offers the potential to elucidate the intricate network of processes
occurring within biological systems and to provide the rationale for cellular and process interven-
tions that improve the product yields and quality

of these biological systems (enlighten the ‘black box’) and will change the paradigm
by which cell factories can be engineered (Fig. 2). This Chapter focuses on the
current state-of-the-art technologies that may be applied for designing engineering
strategies for mammalian cell lines. These include the key lessons learnt from
omics analysis on factors that corelate with productivity and product quality and
how the combination of molecular and computational tools with ‘omics data
can rationalise intervention with mammalian cell factories and bioprocesses for
enhanced production of biopharmaceuticals.

2 Molecular Approaches for Engineering Mammalian Cell
Factories

2.1 Overexpression of Target Regulatory Genes

With the identification of gene targets for improving biotherapeutic production
(Sect. 3), the overexpression of these genes is one of the most exploited approaches
to improve mammalian cell lines. Similar to the method used to express recombinant
proteins, the overexpression of gene targets is achieved through the delivery of an
expression vector containing a codon-optimised version of a gene’s cDNA under the
control of a potent viral/cellular promoter and the presence of enhancer sequences.
Incorporation of a selection marker (i.e., gene coding for antibiotic resistant or
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lacking metabolic enzyme) under the control of a week promoter allows the
genomic integration of multiple copies of plasmid DNA and the generation of cell
lines (pools) with heterogeneous expression of the recombinant gene (extensively
reviewed by Gupta et al. [1]). The use of synthetic promoters to mediate gene
expression in the host cell it has been also presented as an alternative engineering
strategy [2]. While these approaches have been extensively used to overexpress
several genes with beneficial consequences to the performance of mammalian
cells, a single cell cloning process is needed to obtain cell lines with a desired
phenotype and a homogenous expression of the specific target. To overcome these
limitations and to target insertion for homogeneous expression, the use of semi-
targeted transposase-based integration systems has been proposed [3, 4], allow
transposition at a specific site of the genome or other expression systems. Several
transposon systems have been designed for use in mammalian cells lines including
piggyBac, Tol2 and Sleeping Beauty (Table 1).

An alternative to delivery of potential regulatory genes in standard DNA vectors
is presented by the use of artificial chromosome expression (ACE), a technology
that provides the potential to deliver a large genetic payload stable in the host cell
without the need of genomic integration [10]. A series of studies have successfully
used the ACE systems for expressing high levels of recombinant genes [11, 30,
31]. The capacity of ACE systems to incorporate multiple gene sequences (i.e.,
whole metabolic or signalling pathways) has opened the possibility to tailor-
made cell factories, with desirable characteristics and phenotypes that allow for
enhanced cellular performance [32]. While the generation of custom-built microbial
factories have proven effective [33–35], this technology still needs to be evaluated
in mammalian cells.

The emergence of CRISPR/Cas9 systems has provided a powerful and flexible
tool for interventions of cellular genome. While often used as a genome-editing tool
(Sect. 2.2), this system can be modified to genome incorporation and expression of
a specific target genes. The generation of nuclease-null Cas9 (dCas9) combined
with transcriptional activators (also known as CRISPR-based gene activation or
CRISPRa) has been used to increase the endogenous expression of specific genes
in mammalian cell hosts [36, 37]. Applications of CRISPRa in mammalian cell
factories have focused on the upregulation of silenced glycosyltransferases [5]
and UPR markers and anti-apoptotic genes [38]. Recently, Eisenhut et al. (2018)
introduced a promising technology known as multiplexable activation of artificially
repressed genes (or MAARGE), a sophisticated CRISPR/Cas9-based targeted
integration system that enables the incorporation of multiple genes into the genome
without laborious single cell cloning and screening process. However, additional
efforts need to be undertaken to increase the expression of transgenes in order to
make this novel mammalian expression system more robust.

An alternative method for expressing transgenes in mammalian cell hosts is
via the direct transfection of in vitro transcribed mRNA, a technology that allows
the gene target delivery without the undesired effects of plasmid-integration into
the target genome. Despite the lower structural stability of mRNA compared to
plasmid DNA [39], this delivery system brings forward several advantages, such
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as considerably higher molar amounts of mRNA per transfection [40], no overload
of the transcriptional machinery to avoid genetic and epigenetic controls and no
requirements for nuclear translocation [41]. However, it may impose a significant
load of the translational and post-translational machinery within cells. While this
technology has been extensively used for the generation of induced pluripotent
stem cells (iPSCs) [42], transient modification of cell phenotypes [43] and the
development mRNA-vaccines [44], it has just recently been used in mammalian cell
hosts for biopharmaceutical production [45–48]. Its large-scale implementation to
enhance biopharmaceutical production by mammalian cells needs exploration [49].

2.2 Knock-Out of Gene Targets

In contrast to overexpressing genes, gene knock-out offers the possibility to delete
disadvantageous targets from the host genome. The technologies for deleting spe-
cific genes have evolved from chemical- or physical-induced random mutagenesis
to precise genome editing systems. The migration to targeted genome engineering
has been promoted by the development of highly-specific technologies, such as
involving the use of zinc-finger nucleases (ZFNs), transcription activator-like effec-
tor nucleases (TALENs) or CRISPR/Cas9 system [16–18]. These technologies have
been used in mammalian cells to delete metabolic enzymes [50–53], glycosylation
enzymes [54–57] and signalling molecules [58–60]. Amongst these techniques,
CRISPR/Cas9 system has dominated investigations of the re-design of mammalian
cell lines due to its rapid, cost-effective and easy-to-apply methodology, thus
increasing the possibilities of alternatives engineering strategies (Sect. 2.1).

2.3 Knock-Down of Gene Targets

An alternative to gene knock-outs is gene silencing (or knock-down), an approach
that decreases the amount of specific mRNA species without affecting the genome
integrity. The most common technology used for gene silencing involves small-
interference RNAs (siRNAs), small double-stranded RNA molecules (~20–24 bp
length) that exhibit the complementary sequence of the target mRNA. The inter-
action between the small non-coding RNA with the specific mRNA target leads to
degradation of the mRNA [19, 61]. Specific siRNAs have been used successfully
to decrease the expression of metabolic enzymes or signalling proteins, resulting
in enhanced culture performance of mammalian cells [20, 62–64]. However, due to
high specificity, the application of siRNAs is limited to single targets [65].

Another technology based on RNA involves the use of microRNAs (miRNAs),
small nucleotide molecules (~19–25 bp length) that bind to the 3′ untranslated
region (3′UTR) of target gene transcripts by imperfect base-pairing interactions
(only a section of the miRNA molecule binds to the target) that can inhibit
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translation of the target mRNA [65]. The lack of specificity in miRNAs enables
their interaction with multiple gene targets (via common 3′UTRs). This generates
the scenario on modulation of entire metabolic/signalling pathways, bringing
forward the hypothesis of miRNAs as cellular tools to maintain homeostasis of,
and integrate, multiple processes within cells [61]. Introduction of miRNAs into
mammalian cells has led to improvements of cell growth, apoptosis and recombinant
protein production [66–68]. However, given that the resulting interactions remain
difficult to predict, the use of this technology may lead to undesired phenotypes
beyond the original intention. Along the same line, several studies have proposed
the applications of long non-coding RNAs (lncRNAs, ~200 bp) as regulatory tools
to modulate the expression of multiple cellular events in mammalian cells. While
lncRNAs have been correlated with growth and productivity in mammalian cells
[22], there is a need for a broader understanding of the mechanisms that underpin
the potential for lncRNA’s to be used as cell engineering tools.

2.4 Directed Evolution of Cellular Phenotype

An alternative method to develop mammalian cell hosts is through ‘directed
evolution’ methodologies. The aim of directed evolution is to reprogram cellu-
lar characteristics by altering genetic circuits and metabolic/signalling pathways
underpinning a complex functional phenotype in a rapid and cost-effective manner.
Applications of this methodology in mammalian cells include the adaptation to
suspension growth under serum-free media [26, 69, 70], optimizing nutrient feed
[71, 72], rapid proliferation [73], decreased production of metabolic waste-product
(e.g. Lactate and ammonia) [27, 74, 75], hyperosmolarity [28], or cold-adapted cell
lines [76, 77].

3 Lessons Learnt from ‘Omics’ Characterisation of CHO
Cell Bioprocessing

3.1 Lesson I: Phenotype Instability Is an Inherent Feature
of Mammalian Cells

Mammalian cells present an inherent genomic plasticity that may lead to
unfavourable phenotypes and loss of the recombinant gene expression with negative
effects on cellular productivities (known as production instability) [78–81]. As a
tool to evaluate these phenotypic changes, extended cell line stability studies (2–
3 months) are performed during the recombinant CHO cell line development (CLD)
processes to ensure that the selected clone maintains overall product yields and
quality along the manufacturing process [82]. This long and laborious procedure
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has promoted the identification of markers and molecular events (from genome
and epigenome dynamics) correlated with production instability in mammalian
cell factories. Initial genome drafts revealed that CHO cells undergo continuous
changes in genome structure (e.g., chromosomal rearrangement, other karyotype
variations) and sequence alterations (i.e., copy number variation) during routine
cultivations [83, 84]. In particular, inherent genomic plasticity and multiple
cell lineages with unique genomic landscapes have promoted researchers to
continuously update of CHO-K1 and Chinese hamster genomes [85, 86], and
sequence multiple industrially-relevant CHO cell variants, such as CHO-DG44,
CHO-S and CHO-DXB11 [87–89]. Researchers have also taken cell line- and
organelle-specific approaches to develop insights into the genetic diversity amongst
CHO cell lines and their response to, and interaction, with the culture environment
[90–95]. These data indicated that there is no single cause to explain production
instability, but rather it arises as a consequence of a series of DNA sequence
and genomic structure mutations because of continuous selection pressure (i.e.,
enriched medium for rapid cell growth, antibiotic/metabolic selection, different
cultivation environment/scales). Omics studies have also evaluated epigenetic
modifications (e.g., post-translational histone modifications, or DNA methylation)
that have implications for DNA arrangement and gene accessibility. CHO cell
lines are prone to large epigenetic changes during continuous cultivation (both
in routine maintenance culture and in production batches) and exposure to
different environmental conditions, affecting both the stability of recombinant gene
expression, metabolism and cellular phenotype [73, 93, 96–99]. Specific changes
in DNA methylation profile can switch on/off gene expression and the extent
(and positioning) of methylation correlates with transcriptional activity [100], thus
providing an explanation for the diverse production phenotypes of CHO cells.
There is very significant interest in the application of genomic and epigenomic
information to identify highly stable expression loci for the generation of new CHO
cell hosts.

3.2 Lesson II: Post-translational Events Within Secretory
Pathways Limit Cellular Productivity

Secretion of functional proteins with complete processing requires the coordinated
action of multiple chaperones/enzymes within the secretory pathways, a long road
with several compartments and regulatory checkpoints that have been proposed
as limiting factors for the production of recombinant proteins [101, 102]. In
this context, transcriptomic and proteomic studies have been powerful tools for
development of fundamental understanding of the biology underpinning cellular
productivity. A large number of studies have used different gene (e.g., microarrays,
RNA-seq) and protein (e.g., 2D-DIGE, LC-MS/MS) profiling technologies to gain
insights into mammalian cell factories during production of biopharmaceuticals.
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Comparison between high and low producer cell lines (often at one single point
during the exponential phase) has been used frequently to identify molecular
components correlated with high productivities [103–107]. Other studies have
focused on the effects of productivity enhancers, either molecules (e.g., sodium
butyrate, DMSO) or environmental conditions (e.g., media/feeds, low temperature,
hyperosmolarity), on the transcriptome/proteome profile [76, 108–111]. These
studies have identified protein folding/secretion and cytoskeletal architecture as
key biological functions correlated with high productive phenotypes across a
diverse range of mammalian cell lines. Desirable qualities (in terms of cell growth,
productivity and product quality) have been shown (via transcriptome and proteome
profiling) to be correlated with the status of the secretory pathway, influencing
the assembly, folding and processing of recombinant proteins. Therefore, many
genes and proteins associated with post-translational events (from translocation to
secretion) have provided the focus for potential targets for cell line engineering, with
the caveat that these potential strategies remain cell- and protein- specific making
them difficult to extrapolate to other cell factories.

Whilst transcriptome and proteome data have been used to provide mechanistic
understanding of productivity of CHO cells, these profiling approaches have
limitations for holistic explanation of the systems-level molecular events that set
desirable cellular performance. This is particularly relevant for the study of the
secretory pathways, orchestrated by specific transcriptional regulators and multiple
enzyme and chaperones, whose expression varies dynamically according to the cell
line and the surroundings [112, 113]. This limitation has been addressed with the
development of computational tools and genome-scale models that are designed to
allow the integration of multiple data sets of different nature (e.g., transcriptomic,
proteomic, metabolomics) [114, 115]. Use of a multi-omics approaches aims to pro-
vide a more robust molecular description that takes into consideration the dynamic
interplay between different levels of cellular integration. Recently, a genome-scale
reconstruction of the secretory pathway highlighted the relevance of the post-
translational events in the cellular productivity, delineating the metabolic costs and
cellular machinery burden of each secreted protein in CHO, mouse and human cell
lines [116]. The authors showed that highly secretory cells undergo a global adap-
tation that resulted in the decreased expression and secretion of energy-expensive
host cell proteins, and provided a platform for simulating cellular interventions
(knock-out/down) with the aim of enhancing performance of mammalian cells. In
the context of rational design of mammalian cell factories, the combination of high-
throughput ‘omics data with computational tools has the potential to revolutionise
cell line development and opens possibilities for defining multiplex cell engineering
strategies that target the secretory pathway (and essential ancillary reactions and
cellular components), producing a systems-level shift towards a desired cellular
phenotype.
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3.3 Lesson III: Efficient Metabolism Makes Mammalian Cell
Factories More Effective

Cellular metabolism encompasses the summation of all the biochemical reactions
occurring within cells that support biological processes, by supplying biosynthetic
building blocks (for biomass or protein production) and energy currency (in the
form of ATP) as well as acting as regulatory elements in signalling pathways
(e.g., mTOR, AMPK) [117]. While there is a generalised consensus about the
relevance of cellular metabolism towards the performance of mammalian cell
factories, we are still challenged by the metabolic definitions/signatures of a ‘good’
or ‘optimal’ bioprocess. Mass spectrometry (MS)-based metabolomics have become
the tool of choice to analyse changes in concentration of (specific) metabolites both
within cells and in the surrounding medium, thus providing substantial amount of
information regarding the interaction of mammalian cell with their environment
(culture medium) and characterisation of cell metabolism [118, 119]. Extracellular
metabolite profiling monitors the main components of the culture medium (i.e., main
carbon and energy sources, metabolic by-products, vitamins) that are critical for
maintenance of growth and productivity [79, 118, 120–126]. The combination of
this data with multivariate statistical analysis (e.g., principal component analysis
[PCA] or partial least squares [PLS] variants) and/or stoichiometric metabolic
modelling (e.g., metabolic flux analysis [MFA] or flux balance analysis [FBA])
has led to the identification of metabolic signatures, reflective of bioprocess status
[127–134]. Particular interest has focused on the analysis of (specific) by-products
of glucose metabolism (e.g., lactate, glycerol) and/or amino acid (e.g., ammonia,
phenyl lactic acid, 2-hydroxybutyric acid, indole-3-carboxylate) metabolism that
reveals catabolic imbalances that can impair the performance of mammalian cell
cultures (extensively reviewed by Pereira et al. [135]). These valuable insights have
promoted diverse process and cell engineering strategies focused on optimising cell
metabolism using customised media/feeds or targeting the expression of metabolic
enzymes.

Intracellular metabolite profiling offers insights of the physiological state on
cells in culture via profiling metabolites indicative of energy metabolism, redox
state, nucleotide synthesis and regulatory aspects of metabolic pathways [27, 70,
124, 136–138]. Additionally, the specific focus on lipids (lipidomics) has provided
insights into regulatory control of cell growth, robustness and morphological status
[139]. Some ‘good’ metabolic features (in terms of bioprocessing effectiveness)
are emerging. For example, oxidative metabolic signatures (i.e., increased TCA
cycle flux, favourable NADPH/NADP and GSH/GSSG ratios) underpin high-energy
supply that leads to enhanced cellular specific productivity and prolonged culture
lifespan. In contrast, a glycolytic metabolic signature sustains rapid growth of
mammalian cells, but with an associated “cost” of high production of metabolic by-
products (e.g., lactate) that may be detrimental to cell viability and product quality
[124, 127, 128]. Extension to this type of knowledge will be crucial for identifying
‘good’ performance of clones during cell line development and scale-up processes.
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However, there remains a gulf between defining metabolic signatures and clone
selection or setting environmental conditions to support the desired equilibrium
between high cell growth and productivity. We require further improvements in the
metabolism monitoring technologies to increase our capacity to precisely assess
and control metabolic processes and to design new cell lines with optimal metabolic
signatures for biopharmaceuticals production.

3.4 Lesson IV: Product Quality Depends on an Intricate
Network of Enzymes

Glycosylation (particularly N- and O-linked) is a hallmark for all secreted proteins
and is a critical quality attribute (CQA) for biopharmaceuticals affecting their
functioning and immunogenicity as therapeutics. The emergence of MS-based tech-
nologies has allowed the precise characterisation of glycan composition, indicating
that CHO cells generate heterogeneous profiles of N- and O-linked glycosylation,
with the precise profile being dependent on CHO cell variant [140], cell clone
[141], culture medium/feed (e.g., glucose/glutamine levels, galactose/mannose sup-
plementation) [142–144] and culture environment (e.g., pH, temperature, ammonia
concentration) [143, 145–149]. Although glycan characterisation provides valuable
information about the structure and quality of an expressed protein, the resultant
heterogeneous glycosylation profile lacks the capacity to provide information about
cellular pathways or culture conditions that lead to specific glycosylation profiles.
Attachment and maturation of glycans are part of a complex biosynthesis/processing
pathway involving a series of organelle-specific reactions that start within the endo-
plasmic reticulum (ER) and mature in the Golgi apparatus, via the action of multiple
sequential and/or parallel processing enzyme pathways [150]. This complexity of
potential reactions imposes a significant challenge for prediction of glycosylation
profile or the extent of heterogeneity in the final product during bioprocessing.
Therefore, global approaches will be necessary for a deeper understanding of the
glycosylation machinery, an understanding that will need to integrate different
layers of information (i.e., transcriptomics, proteomics, metabolomics, labelled-
microscopy). Multi-omic approaches have been used to analyse the expression,
activity and specificity of glycosyl transferases and hydrolases [151–153], to
develop an understanding of the co-localisation enzymes and substrates (precursors)
within compartments of the ER and the Golgi [154, 155] and to combine metabolic
data into computational algorithms [146, 156]. In particular, the use of genome-
scale and/or kinetic models in combination with process and cellular information
have greatly contributed to a better understanding of the glycosylation machinery
and set correlations and predictive systems that enable the association of inputs
and outputs [116, 157–160]. With these resources, the intricacy of the glycoprotein
processing network is being developed and, in turn, this is providing direction
towards cellular/process engineering strategies to generate specific glycan structural
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profiles on the surface of recombinant proteins (an outcome that is particularly
relevant for the manufacture of biosimilar and biobetter therapeutics) [161].

4 The Application of Data-Driven Approaches
to Mammalian Cell Engineering

Omics technologies have been used to understand the biology of mammalian cells
and to gain a better understanding of host cells and bioprocesses used to manufacture
biopharmaceuticals. Earlier Sections have highlighted the types of engineering
technologies and omics’ studies, this Section focuses on examples where the lessons
learnt from omics’ studies have been translated into improved host cell systems
and/or increased biopharmaceutical production through engineering approaches
(summarised in Table 2).

4.1 Approach I: Increasing Stability of the Recombinant Gene
Expression

The availability of detailed genome sequences and transcriptomic/epigenomic
profiling, has enabled production instability of industrial mammalian cell lines to
be addressed by use of site-specific integration (SSI), that targets recombinant gene
incorporation to specific genomic loci with high expression, stability and desired
epigenetic properties (also called hotspots or safe-harbours) [170]. Initial attempts
to use SSI relied on the specific locus identified using genome and gene expression
through screening of mammalian cell lines transfected with random integration (RI)
protocols. These approaches have generated cell lines with high product yields using
a single copy SSI, leading to comparable results to traditional random integration
(RI) protocols [171, 172]. However, many potential genomic hot-spots still need
to be experimentally validated in industrial settings [173]. Recent studies have
searched for novel safe-harbours through systematic evaluation of the epigenetic
signatures of mammalian cells, an approach that provides a clearer overview of
gene transcription control within the context of the “living nucleus” and a potential
map for identifying integration sites with maximum transgene production [93, 100].
Hilliard and Lee (2020) combined epigenomics and transcriptomics to analyse
changes in the epigenome that occur during CHO cell line development and which
can be related to different gene expression profiles in both host and recombinant
CHO cell lines. The authors found that only 10% of the CHO genome contained
transcriptionally permissive 3D chromatin structures with the enhanced genetic
and epigenetic stabilities required for a desirable SSI [174]. These results provide
a critical step towards further cellular interventions that increase the potential of
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SSI systems for generation of cell lines with high stability and expression of the
transgenes.

A further application of omic technologies to increase recombinant gene expres-
sion utilises transcriptional information to design novel promoters. Johari et al.,
(2019) identified genes within the CHO genome that displayed high transcriptional
activity under these different bioprocess environmental conditions. From these data,
transcription factor regulatory elements (TFREs) were identified in the upstream
regions of differentially-expressed genes and a specific subset of TFREs were
functionally screened and were shown to support enhanced recombinant gene
transcription in response to a switch to mild hypothermic growth conditions. Using
such elements, the study generated novel synthetic promoters that were able to drive
increased expression of recombinant genes in CHO cells, with an overall increase
to cell productivity (up to 2.5-fold) [2]. This study exemplifies how omics enables
re-design/tailored expression systems to develop improved manufacturing systems
and processes.

4.2 Approach II: Enhancing Productivity by Targeting
Secretory Pathways

Secretory pathways that convey recombinant proteins towards the extracellular
environment consist of multiple intracellular compartments and are integrated
by the action of several chaperones/enzymes that may limit post-translational
events and overall production (Sect. 3.2). Transcriptomics and proteomics have
provided great understanding of these events and suggest potential targets for
enhancement of the overall process. For instance, Baik et al. (2011) investigated
the intracellular proteome of recombinant CHO cells expressing Erythropoietin
(EPO) in serum-supplemented and serum-free media. Proteomic profiling via 2D-
PAGE and mass spectrometry analysis identified two chaperones, heat shock
protein 70 kDa (HSC70) and 60 kDa (HSP60), as more highly expressed under
serum-free conditions than in serum-containing medium, therefore directed them
as potential cell engineering targets. Subsequent overexpression of HSC70 and
HSP60, separately or together, led to an increased cell density (between 10%
and 15%) and a decreased time for CHO cell adaptation to serum-free conditions
[69]. Another study, using proteomic analysis of recombinant CHO cells, identified
actin cytoskeleton regulator cofilin (CFL1) as a limiting factor for cell specific
productivity of recombinant SEAP [62]. In a later study, the authors used siRNA
to knockdown of CFL1 in CHO cells, resulting in an increase (80%) in recombinant
protein specific productivity [63].

Comparative transcriptome analysis of recombinant CHO cells showing differen-
tial specific productivities has also suggested potential targets for cell engineering.
For instance, transcriptomic analysis of CHO-K1 derived cell lines identified 32
potential target genes that were up-regulated in high producing clones – these
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candidates were involved in a variety of cell functions including signalling, protein
folding, cytoskeleton organization, and cell survival [168]. Directed overexpression
of two of the potential target genes in the ER (Erp27 and Erp57, which are
chaperones that bind to unfolded proteins or are involved in di-sulphide bond
formation, respectively) increased the cell density and culture viability. In addition,
the production of a ‘difficult-to-express’ recombinant protein (interferonβ) was
increased significantly, interpreted as a result of enhanced folding activity during
processing and secretion [168]. An alternative strategy from the same study was
overexpression of Foxa1 which was able to induce multiple metabolic changes to
improve protein yields, decrease oxidative stress and improve cell growth.

At translational level, recombinant gene transcripts will compete with endoge-
nous cellular transcripts at the level of the ribosome and this represents a potential
molecular site for control of both recombinant gene expression and normal cellular
regulatory events. Kallehauge et al. (2017) described a genome-wide study of
protein translation (translatome) using ribosome profiling and an associated tran-
scriptomic study (RNA-seq) for an antibody-producing CHO cell line. Whilst other
studies have focused on global changes in translation, analysis of the translation
of recombinant targets remains largely unexplored. This study showed that the
recombinant mRNA sequestered up to 15% of actively translating ribosomes.
Combined with transcriptomic analysis, the authors showed that the amount of
transcript of the recombinant target influenced the cell-specific productivity. Using
the associated datasets, the study examined the effects of limiting the expression of
the NeoR resistance marker, defining how much the load of an associated selection
marker gene could have on recombinant gene expression. Knockdown of the NeoR

gene via siRNA increased cell growth and antibody production (18% increase
in antibody yield). This work has generated an important paradigm surrounding
the balance of translation for yields of the desired protein and sets an exemplar
study to illustrate that shifting the transcriptional and translational capacity away
from ‘unnecessary’ transcripts can increase the cellular ability to channel resources
towards recombinant protein production [64]. Such studies combining genome-wide
screening and multi-omics analysis provide a global view of the cell status and a
powerful tool to identify how best to engineer the balance in cellular profiles to
increase the capacity to produce biopharmaceuticals.

With the application of multi-omics analysis coupled with genome-scale mod-
elling, researchers have shown the cellular burden that the secreted proteins impose
on CHO cells and, specifically, to identify host cell proteins with increased
metabolic costs [116]. This knowledge led to the design of a multiplex cell engi-
neering strategy that created cell systems that are better producers and contain fewer
process-related impurities such as host cell proteins. Kol et al., (2020) proposed
eliminating host cell proteins would allow cellular resources to be channelled
towards protein secretion, in particular recombinant protein production, whilst
decreasing host-cell protein contamination in downstream processes. Their study
a generated a series of 6, 11 and 14 protein knock-out clones via CRISPR/Cas9-
mediated multiplex gene disruption, which resulted in between 40–70% decreased
HCP content. Consequently, an improvement in antibody titre, quality and purity
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was observed [53]. Potentially this concept of modelling and gene editing can be a
powerful approach to make better CHO cell factories with desirable consequences
on the production and quality of biotherapeutics.

4.3 Approach III: Making Cell Metabolism More Efficient
Through Metabolic Engineering

With the aim of improving the efficiency of cell metabolism to generate an enhanced
manufacturing system, strategies have been suggested around channelling more
metabolic intermediates into the mitochondria (for the TCA cycle) to enhance
carbon utilisation and energy production. For instance, Chong et al., (2010)
identified a potential bottleneck in the CHO cell TCA cycle from the accumulation
of malate in culture medium, indicating a limitation in the conversion of malate
to oxaloacetate (a reaction catalysed by malate dehydrogenase II [MDHII]). Over-
expression of MDHII in CHO cells led to increased viable cell density, antibody
production, higher amounts of intracellular ATP and NADH and decreased lactate
production per cell [27]. Other approaches to increase TCA cycle activity have
targeted the handling of pyruvate, a recognised metabolic bottleneck in CHO cells.
Overexpression of pyruvate carboxylase (PC), which catalyse the conversion of
pyruvate to oxaloacetate, significantly improved recombinant protein production
and decreased lactate formation [175–177]. As an alternative, Bulté et al. [178]
overexpressed mitochondrial pyruvate carriers (MPC1 and MPC2) in CHO cells,
a strategy that resulted in an increased TCA cycle flux, decreased lactate production
and increased r-protein production.

Metabolomics studies have identified several metabolic by-products that indicate
loss of carbon from the inefficient catabolism of glucose and amino acids [135]. This
knowledge has opened the possibilities of targeting specific enzymes to increase the
efficiency of CHO cell metabolism. The most well-described exemplar by-products
are lactate and ammonia, metabolites that present toxic effects during bioprocesses
[179, 180]. The application of different process and metabolic engineering strategies
have been applied successfully with resultant decreases in the production of these
metabolites and improved culture performance of CHO cells [64, 74, 181–189].
Additionally, a series of intermediates or by-products of amino acid metabolism,
have been identified as growth inhibitors of CHO cell growth [190]. The identifi-
cation of these growth-inhibiting metabolites has promoted the development of a
metabolic engineering strategy that completely eliminated the production of these
compounds and enhanced cell growth and productivities in fed-batch cultures [191].

Analysis of culture limitations has led to the rational design of medium supple-
mentation strategies or the design of nutrient feeds to overcome bottlenecks and
boost cell culture performance [70, 72, 164]. Such strategies have proven to be
effective and easily employed compared to genetic engineering approaches. Sellick
et al. (2011) developed a nutrient feed based around four key amino acids (Table 2)
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which were observed to be depleted prior to the onset of the stationary phase. Use
of the feed led to an increase in cell biomass and antibody titre [70]. Other studies
have used multiple omics technologies to study cell culture processes, identified
metabolic bottlenecks and designed feeds/supplements as a result. Blondeel et al.,
(2016) utilised both metabolomics and proteomic analysis to assess nutrient deple-
tion and waste product accumulation following stable expression of a monoclonal
antibody in CHO cell cultures. Subsequently, a nutrient feed was tailored to their
specific process with 8 metabolites that were observed to be depleted in culture and
use of this feed regime resulted in increased cell growth (∼75% increase in peak
cell density) [72].

Schaub et al. (2010) compared two fed-batch processes with an IgG-producing
CHO cell line, one process was labelled as high titre (HT) and the other as low
titre (LT). Transcriptomic analysis showed differences in gene expression between
both processes over the time course of the fed-batch culture. In particular, gene
expression of lipid metabolism pathways was upregulated in the HT process. In
their study, the transcriptomic dataset led to design of a medium with increased lipid
concentration, which, when added, resulted in a 20% increase in antibody titre [162].
Further, metabolomics studies using NMR measured and monitored intracellular
and extracellular CHO cell metabolites and the data from that study directed
the development of a proprietary growth medium which supported increased cell
productivity and the protein quality [71]. The authors also showed a link between
the depletion of histidine and decreased cell productivity.

Another study [163], applied a model to the metabolic data to identify limiting
amino acids or those that significantly impact the recombinant target. The metabolic
model was integrated and validated with transcriptomic analyses. Huang et al.
(2020) described a genome-scale metabolic model to further understand their
bioprocesses alongside transcriptomic analysis via RNA-sequencing. Using these
models, strategies to optimise the culture medium were employed and verified
experimentally. Such modelling and simulations aid in understanding processes and
enable the development of new strategies to overcome limitations and minimise
experimental testing of different combinations. In this case, the feed design
strategies led to increased cell productivity [164]. Together these studies report an
increase in cell growth and/or protein yields through medium deign and targeted
nutrient feeds. Some overlap with the identified amino acids was seen between
studies. However, no universal strategy was apparent potential due to different
cell systems and recombinant proteins imposing different metabolic demands
and consequent requirement for specific feeding regimes to achieve an efficient
bioprocess.
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4.4 Approach IV: Developing Specific Glycosylation Profiles
Through Glycoengineering and Medium Design

Protein glycosylation status has proven to be a dynamic process during cell cultures,
where the amounts of mannose and galactose species vary in a time-depending
manner [157]. Sumit et al. (2019) undertook an integrative approach that employs
multi-dimensional omics analyses (transcriptomic, metabolomics and glycomics)
to analyse the glycosylation dynamics in recombinant CHO cells. The authors
showed that changes to cellular metabolism (including central carbon metabolism
and nucleotide sugar donor, NSD, biosynthesis) led to temporal bottlenecks in the
addition of galactose and sialic acid. This knowledge enabled improvements in gly-
cosylation heterogeneity by use of feeds with customised compositions of galactose,
ManNAc and GlcNAc to bypass the impairment to biosynthetic pathways for NSDs
[192]. For a refined control of glycosylation profiles, a synthetic biology approach
has been used to redesign the glycosylation machinery. Chang et al. (2019) knocked
out two glycosyltransferase genes and reintroduced synthetic glycosyltransferase
genes under constitutive or inducible promoters. This allowing the production
of antibodies with defined fucosylation (0–97%) and galactosylation (0–87%)
contents [193]. These examples illustrate the possibilities for precise modification
of N-glycosylation through process and genetic approaches that generate protein
therapeutics with customised critical quality attributes.

CHO-based transcriptome analysis is a powerful approach for identification of
the relationship between undesired product quality and the expression of specific
metabolic/glycosylation enzymes. For instance, the lack of expression of α-2,6-
syalyltransferase (ST6GAL) in CHO cells limited the production of recombinant
protein with appropriate human glycosylation profile (sialic acid content) (Jenkins
et al., 1996). Several groups have addressed this limitation by overexpressing
ST6GAL in CHO cells that allowed these cell lines to generate the α-2,6-syalylated
glycan residue [194–197]. Another example is associated with the lack or minimal
expression of metabolic enzymes, N-deacetylase/N-sulfotransferase (NDST2) and
heparan sulphate 3-O-sulfotransferase 1 (Hs3st1), critical for the synthesis and
function of the anti-coagulant heparin [167]. This data led to engineered CHO cell
systems overexpressing both enzymes, a strategy that resulted in the production of
heparin with improved quality compared to previous efforts [167, 198].

4.5 Approach V: Improvement of Cell Growth Characteristics
by Targeting Engineering of Apoptotic Pathways

Many studies have sought to improve cell growth and culture viability. One
such study used a combination of transcriptomic and proteomic analysis of cell
cultures with high and low growth rates to identify a panel of potential engineering
candidates [20]. siRNA knockdown of these targets identified Valosin-containing
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Protein (VCP) as having the biggest effect on cell culture growth and viability.
Transient VCP overexpression resulted in increased cell growth and no impact on
viability, further knockdown of this target had an adverse effect on culture growth
validating the earlier observations that VCP was a key gene target to influence cell
growth [20]. Stable overexpression of this target could potentially result in a better
host cell phenotype with increased cell growth. Further, Wong et al. (2006a) reported
that engineering of anti-apoptotic genes in CHO cell cultures delayed the onset
of cell death and increased recombinant protein titres. Transcriptomic analysis of
batch and fed-batch CHO cell cultures identified four differentially expressed genes
(Fadd, Faim, Alg-2, and Requiem) [199]. In a later study, by the same group, the
consequences of overexpression or knockdown of these genes were examined in a
recombinant CHO cell line expressing human interferon gamma (IFN-γ) [165]. The
data showed that targeting these anti-apoptotic genes conferred apoptosis resistance
and enable prolonged cell cultures, improved cell viability and increased IFN-γ
production and quality. However, the applicability of this strategy to other cell types
and recombinant targets remains to be seen.

CHO-S cells grown in either fresh chemically-defined medium or nutrient-
depleted were profiled by transcriptomic analysis [169]. In the depleted medium,
cells showed increased caspase-3/7 activity, lowered culture viability and active
apoptosis. Transcriptomic profiling via microarrays identified that 70 miRNAs
were differentially expressed between medium types. In particular, mmu-miR-
466 h, was identified as highly up-regulated in the depleted medium conditions
and overexpression of mmu-miR-466 h decreased the amount of mRNA encoding
several anti-apoptotic genes. Following analysis of the omics data set, the cells were
transfected with an anti-miR-466 h which led to ~15% higher cell viability and
decreased activation of caspase-3/7.

Another example was the identification of microRNA-7 (miR-7) as a potential
target which promoted the development of a cell engineering strategy based of
miR-7 overexpression that increased cell productivities [166]. However, using this
strategy a decrease in cell growth was observed in response to miR7-overexpression
suggesting that miR-7 expression may impact other processes such as protein
translation or secretion in a temperature-dependent manner (Sect. 3.2). The use
stable miRNA expression has gained attention to improve cell growth and produc-
tivity of CHO cell lines. Through a genome-wide miRNA screen, Strotbek et al.,
(2013) identified 9 miRNAs which correlated with an increase in IgG1 production.
Expression of two of these identified miRNAs, miR-557 and miR-1287 increased
viable cell density, protein titre and cell specific productivity [68]. Application of
array analysis identified potentially unannotated miRNA sequences or those with
unknown function. These example shows how omics can be used to identify the
roles of miRNAs and how these can be engineered to overcome limitations on cell
growth phenotypes and cell productivity.



An Omic’s Data-Driven Approach Towards Engineering Mammalian Cell. . . 115

5 Future Perspectives

‘Omics datasets, coupled with engineering technologies presented here, are power-
ful tools for better understanding of cellular profiles and can be used to improve
bioprocesses and increase biopharmaceutical production and quality. The use of
omics has allowed researchers to gain large data sets that report on different CHO
host cell backgrounds, distinct industrial bioprocesses, the impact of recombinant
protein production on cell cultures and/or to better understand specific molecular
events on a larger-scale at multiple cellular levels compared to previous technolo-
gies.

The methodologies used for omics analytics have improved vastly over recent
years and the generation of data is no longer limiting. Currently, the ‘bottleneck’
mainly lies in the data interpretation using the databases and bioinformatic tools
available and in the identification of the extent to which observations, amongst the
very sizable amounts of data acquired, have functional significance or present viable
targets for rewarding engineering. This step is often time-consuming, requiring
follow-up studies to screen and validate potential markers and may well not bring
the hoped-for rewards. The genomic databases used for bioinformatic analysis
of CHO cells were initially limited and/or poorly annotated compared to other
cell types e.g. Human cell lines. This restricted the certainty of interpretations.
Technologies have advanced and CHO genome tools continue to be updated leading
to a significant increase in our understanding of the predictability of engineering
efforts.

Despite these limitations, many have sought to analyse and interpret omics data
in CHO cells in response to different stimuli, but few studies have translated these
observations into process development changes and/or increased biopharmaceutical
production. To date the translation of omics analysis remains restricted and little
is published in this area, compared to the significant number of papers that report
omics data from CHO cells. Whilst there may be proprietary challenges in reporting
the application of information to direct manufacturing outcome, it is also clear that
we are moving to an era where the increased robustness of data and improved
interpretation, along with technology to allow selective gene manipulation, is likely
to generate improved translation of data to outcome.

The emergence of systems biology approaches to generate genome-wide models
is proving to be a powerful resource to study cellular changes, identify potential
limitations and guide engineering strategies to push expression hosts cells further
to make ‘super-producers”. With the advancing technologies, the use of omics is
becoming more accessible for researchers to use. Therefore, the field will benefit
from bioinformatic tools that seamlessly compare and integrate multi-omic analyses
such as genomic, transcriptomic, proteomic and metabolomic data. This will pro-
vide a holistic view of the cell and/or culture status and allow modelling/predictions
of scenarios that would result in a more efficient process without the need for
rigorous empirical screening and validation.

As we move towards increased innovation in biopharmaceutical production,
as therapies become more complex with changing modes of manufacturing, this
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will challenge existing expression systems in different ways. The use of omics
will prove to be a dominant force in order to characterise and understand these
specific processes and develop methodologies with greater efficiency. With greater
accessibility to such technologies and bioinformatic tools we anticipate further
expansion in this area and greater application of this data into bioprocesses to create
better and smarter platforms for biopharmaceutical production.
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