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Abstract. Reversible programming languages have been a focus of
research for more than the last decade mostly due to the work of Glück,
Yokoyama, Mogensen, and many others. In this paper, we report about
our recent activities to compile code written in the reversible language
Janus to reversible static-single-assignment form RSSA and to three-
address-code, both of which can thereafter be compiled to C. In particu-
lar, this is – to our knowledge – the first compiler from Janus to RSSA. In
addition, we have implemented a novel technique for a reversible compiler
by executing the code generator itself in reverse. Our compiler provides
the basis for optimizations and further analysis of reversible programs.

Keywords: Reverse computing · Reversible programming languages ·
Janus · Reversible static-single-assignment

1 Introduction

Reverse computing, although the initial ideas can be traced back to the
1960s [10], has been a major research area over the last decade. With the growing
importance of sustainability and reduced energy consumption, reverse comput-
ing promises contributions by avoiding the waste of energy through deletion of
information [5].

More than twenty years after the first creation of a reversible language called
Janus [11], the papers of the Copenhagen group [17] brought new life into the area
of reversible languages by formally defining and extending Janus. Interpretation
and partial evaluation [12] as well self-interpretation [18] were studied and in [4]
Axelsen published his results on the compilation of Janus. In [19] a reversible
flowchart language as a foundation for imperative languages is described and
its r-Turing-completeness, i.e. their ability to compute exactly all injective com-
putable functions, is proved.

Whilst it was now possible to execute programs forwards and backwards,
there seem to be no results about the optimization of Janus programs. Opti-
mization in this regard refers to improving the execution time of programs or
their memory consumption [14].

It is well known from the discipline of compiler construction that optimiza-
tion can most effectively be performed on some intermediate representation of
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the source rather than the source code itself or its abstract syntax tree. Such
intermediate representations include three-address-code [1] and static-single-
assignment [16].

In 2015, Mogensen published his work on RSSA, which is a special form of
static-single-assignment that can be executed forwards and backwards [13]. We
are going to describe the major concepts of RSSA in Sect. 2.2. However, we are
not aware of any work to connect the dots between Janus and RSSA.

In this paper, we report on a new Janus compiler, called rc3 (reversible com-
puting compiler collection) with multiple backends including RSSA. The com-
piler is available at https://git.thm.de/thm-rc3/release. and has been written
with two intentions:

– Provide the ability to execute Janus programs forwards and backwards.
– Establish the basis for further research on the optimization of reversible lan-

guages.

Based on the Janus definition in [17], we developed a compiler front-end focusing
on the semantic analysis required for a reversible language. The compiler allows
for pluggable back-ends with currently three of them in place (see Fig. 1 for an
overview):

1. Interpreter: Instead of generating code, the interpreter back-end directly
allows the execution of Janus programs forwards or backwards.

2. Three-Address Code: This backend will generate intermediate code in form
of non-reversible three-address code that can be translated to a “forwards”
as well as a “backwards” C-program including all necessary declarations and
function definitions to be able to compile the code on any platform.

3. RSSA: This backend will firstly generate RSSA-code, and at the same time
also construct building blocks and a program graph (in order to be able to use
these for further analysis of control and data flow). To be able to verify the
RSSA code, the RSSA code can be translated into C-code, as well. In addition,
we have created a virtual machine for RSSA that allows direct execution of
RSSA code.

In summary, this paper describes two important new aspects for the compi-
lation of reversible languages:

– Whilst optimization techniques such as dead code elimination, common sub-
expression elimination, and many more are very well understood for “tradi-
tional” languages, no results are known for reversible languages. These opti-
mizations are typically implemented on some low-level intermediate code. Our
compiler is – to our knowledge – the first compiler from Janus to reversible
static-single-assignment intermediate code and work to implement optimiza-
tions is already underway.

– In addition, we have implemented a novel technique to let the code generator
itself operate “in reverse”. For instance, the Janus language provides stack
primitives such as push and pop. We have implemented only the former,
whereas the code for pop is automatically created by inverting the code for
push.

https://git.thm.de/thm-rc3/release
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We will start by briefly explaining Janus as well as RSSA in order to provide
a basis for the description of our compiler in Sect. 3. This chapter forms the
main part of the paper and contains detailed descriptions and examples of our
code generation schemes. Lastly, we will provide insights into the “reverse code
generator”, followed by an outlook on current achievements on optimization of
RSSA.

2 Preliminaries – Janus and RSSA

2.1 Janus

The procedural and reversible programming language Janus has originally been
proposed in 1982 [11]. Since then, Yokoyama and Glück have formalized the
language [18], and together with Axelsen, have considerably extended Janus and
shown that it is Turing-complete [17]. We specifically use the extended version
as defined in [17].

In this version, a Janus program consists of a main-procedure followed by a
sequence of additional procedure declarations. Procedures represent a parame-
terized list of statements, which are the smallest reversible building blocks of a
Janus program. Statements can change the state or control flow of the execution
by inspecting and manipulating variables. All variables are defined locally, either
as an integer, an array of integers, or a stack of integers. While the size of an
array must be known at compile-time, stacks can grow arbitrarily at runtime.

A statement is either a reversible assignment, one of the reversible control
flow operators (conditional, loop), a procedure invocation, one of the stack oper-
ations (push, pop), a local variable block, or an empty skip statement. Each
of those statements has a well-defined inverse, which is used during backwards
execution. To change the execution direction, procedure invocations are used.
In addition to the destination of a procedure invocation, the call direction must
be specified using either the call or uncall keyword. If the uncall keyword
is used, the invoked procedure is executed in reverse execution direction. Since
the keywords call and uncall interchange their meanings in reverse execution
direction, it is possible to restore the original execution direction.

For a program to be reversible, all information must be preserved during run-
time. To ensure that no information is lost when exiting the scope of a variable,
all local variables are restricted to the body of a local variable block. In these
blocks, variables are allocated and deallocated in a structured way that preserves
information. For the same reason, parameters for procedures are passed by ref-
erence so that the information stored in the parameters is preserved when the
procedure ends.
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2.2 The Reversible Intermediate Code RSSA

Reversible static-single-assignment (RSSA) was firstly introduced by Mogensen
[13] as a reversible variant of SSA (Static-Single-Assignment), which in turn is
an intermediate language to facilitate data-flow analysis and was proposed by
Alpern, Wegman, and Zadek in 1988 [2]. SSA forms an intermediate represen-
tation in which each variable has only one definition and new “versions” of the
variables are used for each assignment to it. This is often accomplished by insert-
ing Φ-functions to merge potentially different versions occurring due to branches
in the control flow.

RSSA uses variables and constants defined as atoms. A memory location
can be accessed in the form M [a] where M [a] represents the location to which
an atom a points. Atoms and memory accesses can be used in conditions. If a
variable is used on both sides of an assignment, a new version of the variable,
a so-called fresh variable, must be created on the right side of the expression so
that it can not be defined and used simultaneously [13].

In RSSA, a program is a set of basic blocks, each consisting of a sequence
of assignments or a call. Each block is enclosed by an entry and an exit point.
Entry and exit points use labels, which must be utilized at exactly one entry
and exit point. Valid RSSA programs need to entail one entry point begin main
and a corresponding exit point end main [13]. Entry and exit points may occur
in a conditional or unconditional form. Conditional entry points are used in
the following manner, L1(x, . . . )L2 ← C. Depending on whether it is entered
through a jump to L1 or L2, the condition C will be evaluated to either true or
false. Conditional exit points are used in a similar manner using the form C →
L1(y, . . . )L2. The condition C is evaluated and depending on the evaluation,
a jump to either L1 or L2 is performed [13]. These conditional entry and exit
points are an alternative means to implement the Φ-functions in RSSA [13], and
are used because Φ − functions use two inputs to compute one output, and
would thus prohibit reversibility. RSSA defines a set of reversible instructions,
that can be used to compose reversible programs. The most important ones –
as shown in Table 1 – are assignments, call, and uncall instructions, as well as
entry and exit points. Operands for these instructions are separated into atoms
or memory locations.

Table 1. Important RSSA instructions

Assignment: x := y ⊕ (a � b)

Call: (x1, ...) := call p (y1, ...)

Uncall: (x1, ...) := uncall p (y1, ...)

Uncond. Entry: L(x1, ...) <-

Cond. Entry: L1(x1, ...)L2 <- c

Uncond. Exit: -> L(x1, ...)

Cond. Exit: c -> L1(y1, ...)L2
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Similar to statements in the programming language Janus, every instruction
has a well-defined inverse. Therefore a whole program can be inverted by invert-
ing every single instruction in it and the order in which those instructions appear
in. Since RSSA is reversible, every subroutine should be runnable in a forwards
and backwards manner. Running a subroutine backwards is performed by calling
the inverted form of the subroutine [13].

3 Our Compiler

This section briefly explains the structure and implementation of our compiler’s
front-end and back-ends. Our approach to implement the compiler in Java largely
resembles the approach for a classical multi-pass compiler [3]. The backends
are pluggable, such that adding new backends is easy. The next version of the
compiler includes an additional layer to optimize the RSSA code.

Interpreter 3-Address-Code RSSA

Front-End

sample.ja

Compiler

future 
back-endsBack-Ends

sample.c sample.rssa

gcc

sample
(forwards &
backwards)

gcc

sample
(forwards &
backwards)

sample.c

Fig. 1. Overview of our compiler

3.1 Compiler Front-End

The front-end consists of a dedicated scanner and parser, which are generated
using the scanner generator JFlex [9] and the parser generator CUP [7] respec-
tively. The scanner performs the lexical analysis, converting the input characters



Compiling Janus to RSSA 69

into a sequence of tokens. These tokens are then passed to the parser, which per-
forms the syntactic analysis and constructs an abstract syntax tree. After the
construction of an abstract syntax tree, it is passed to the semantic analysis.

With the implementation of the semantic analysis, the particularities arising
from the properties of a reversible language become clear: As in a conventional
language, Janus defines rules for the visibility of identifiers and restrictions on
types of variables and expressions. In addition to classical analysis passes, that
enter declarations into a symbol table and check the visibility and types of used
variables and expressions, another pass has to be defined, the aim of which is to
check the reversibility of individual instructions.

Even though Janus specifically defines reversible variants of classical state-
ments, it is possible to construct a statement that cannot be reversed. In total,
there are four different variants of assignments, that may not be reversible at
runtime, but can be recognized at compile time. In [17] these are mentioned as a
“syntactic rule”. We have chosen to split them into four cases which are checked
during the semantic analysis.

x �= x+ k (1)

M [e1] �= M [e2] + k (2)

x �= M [x] + k (3)

M [M [e1] + k] �= e2 (4)

Fig. 2. Four variants of non-reversible assignments

Figure 2 shows these different variants, where x is an integer variable, M is
an array variable, and ei as well as k are expressions. Variants (1) and (2) are
not reversible, since both sides of the assignment can point to the same memory
location. In this case, the result of the assignment is the result of modifying a
value with itself, which potentially leads to a constant result, causing information
to be destroyed. Variants (3) and (4) are not reversible, since the assignment may
modify the index, that is used to access an array as part of the assignment. After
the index has been modified, it is no longer possible to deterministically identify
the values needed to reverse the assignment.

Since we need to compare the identifiers of variables to identify the variants
above, it is crucial that two identifiers cannot refer to the same memory location
at runtime to guarantee reversibility of assignments at runtime. This so-called
aliasing can occur when the same variable is passed more than once as an argu-
ment to a procedure. Because parameters are passed by reference, the names
of the parameters would then refer to the same memory location. This check is
part of the semantic analysis, too.
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3.2 Compiler Back-End

In this chapter, we are going to explain the translation for the most impor-
tant Janus elements to RSSA, followed by some remarks on the translation
from RSSA to C. To our knowledge, this is the first compiler not only handling
reversible languages but also itself using reverse code.

Since Janus’ semantics requires the reversal of code for some language fea-
tures – for instance, to destroy all local variables with the inverse function used
for the construction of these – we have chosen to build our compiler in a way
that allows for the code generator to also emit inverse code in reverse order.
Thus, for the language constructs requiring reversal, we have only implemented
the forwards translation and let the code generator itself create the inverse code.
A good example is the translation of the Janus’ stack operations push and pop,
where we only have implemented push and let the compiler work backwards
when a pop operation occurs. In [18] a similar idea is described, but for an
interpreter for Janus written in Janus itself.

More details will be provided below after the explanation of the basics of
code generation.

3.3 Assignments and Expressions

Janus assignments to simple variables are of the form V ⊕ = E, where ⊕ is
a reversible operator. We will come to assignments to arrays in Subsect. 3.7.
Mogensen defines assignments in RSSA in a similar fashion and allows ⊕ = to
be either + =, − =, ̂=. Hence, such assignments are reversible: + = and − =
are the inverse of each other, and ̂= is inverse to itself.

While the translation of simple expressions such as constants and simple vari-
ables is straightforward, composite expressions with multiple operators require
a split into multiple assignments to temporary variables as shown in Fig. 3. This
is due to the fact that temporary variables will need to be destroyed again with
a finalizer (see the fourth line in the example) to avoid producing garbage. As
explained in the section about RSSA, we need to ensure that we use “fresh”
versions of the variables to ensure that there is always at most one assignment
to a variable. Hence, we append version numbers to the names of the variables
– see the example depicted in Fig. 3 with the Janus code on the left- and the
RSSA code on the right-hand side.

procedure main ( )
i n t n
i n t m

n += 1+2 3
m += n+1

begin main (n0 , m0)
T0 := 0 ˆ (2 3)
n1 := n0 + (1 + T0)
0 := T0 ˆ (2 3)
m1 := m0 + (n1 + 1)

end main (n1 , m1)

Fig. 3. Example for translation of simple expressions
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Note: While RSSA uses only a limited set of arithmetic operators, we have
chosen to add the remaining Janus operators, too.

Janus also provides primitives to manipulate stacks and their translation will
be shown in Subsect. 3.7.

3.4 If-Then-Else

The only means in RSSA for expressing conditions is via entry points and exit
points: An exit point C → L1(Y, . . . )L2 firstly evaluates the condition C, and
if true, jumps to L1, or to L2 otherwise. Similarly, a conditional entry point
L1(Y, . . . )L2 ← C consists of two labels L1 and L2. Via the Y s parameters can
be passed from an exit to an entry point. As previously explained, Φ-functions
can thus easily be implemented in RSSA.

The parameters in the entry point will always have a higher version number
than the corresponding parameters in the exit points to ensure proper SSA form.

Hence, for a Janus if-then-else statement if C then S1 else S2 fi E , we first
evaluate the Boolean expression C and use it in a conditional exit point to
label L1 (if the condition was evaluated to true) or L2 otherwise.

We then create the label L1(. . . ) as an unconditional entry point, followed
by the translation of S1 and a jump to L3. Now comes the else-part starting
with label L2 and ending in a jump to L4. Lastly, we join both branches with
the conditional entry point L3(. . . )L4 ← E – see Fig. 4.

i f (n=0)
then n+=1
e l s e n =1

f i (n=1)

n0 == 0 > L1(n0 )L2
L1( n1 ) <
n2 := n1 + (1 ˆ 0)
> L3(n2 )
L2( n3 ) <
n4 := n3 (1 ˆ 0)
> L4(n4 )
L3( n5 )L4 < n5 == 1

Fig. 4. Example for translation of if-then-else statements

3.5 Loops

The translation of a loop from C do S1 loop S2 until E into RSSA basically
follows the same rules as for the conditional statement. Firstly, we will uncon-
ditionally jump to L1, which is used to mark the entry point of the loop. The
condition is evaluated and used in a conditional entry point L1(. . . )L3 followed
by the translation of the body S1. Now, according to the semantics of Janus,
we have to evaluate the end-condition E and conditionally jump to L4, respec-
tively L2.
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Label L2 marks the body S2 and thereafter, we jump back to the start of
the loop at L3. Lastly, we emit label L4, which will be reached should the end-
condition E evaluate to true.

Figure 5 shows a procedure that sums up all numbers from 0 to n and returns
the result in r.

procedure sum( i n t n , i n t r )
l o c a l i n t k = 0

from k = 0 do
r += k

loop
k += 1

un t i l k = n

de l o c a l i n t k=n

begin sum(n0 , r0 )
k0 := 0 ˆ (0 ˆ 0)
> L1(n0 , k0 , r0 )
L1(n1 , k1 , r1 )L3 < k1 == 0
r2 := r1 + ( k1 ˆ 0)
k1 == n1 > L4(k1 , n1 , r2 )L2
L2( k2 , n2 , r3 ) <
k3 := k2 + (1 ˆ 0)
> L3(n2 , k3 , r3 )
L4( k4 , n3 , r4 ) <
0 := k4 ˆ ( n3 ˆ 0)

end sum(n3 , r4 )

Fig. 5. Example for translation of loops

3.6 Procedure Calls

Procedure calls can easily be translated to RSSA, since RSSA provides a call
mechanism, too. Janus’ procedure calls have already been designed in a careful
way that avoids problems with reversibility. That is, call-by-reference is the only
parameter-passing mode, there are no global variables, and it is not possible to
use a variable multiple times in the same procedure call to prohibit aliasing.
Hence, we can use the RSSA call statement (y, . . . ):=call l(x, . . . ) where l will
be the name of the called procedure, the x’s are the parameters, which will
be destroyed after the call in case they are variables. The final values of the
parameters after the call will be copied into the y’s. An example is shown in
Fig. 6.

3.7 Arrays and Stacks

Arrays and stacks are the only type constructors available in Janus. Arrays
provide, as one would expect, random access to a defined number of integers
only in one dimension.

Since access to memory locations using M[A] is restricted to specific operands
and instructions in RSSA, code has to be generated to manage the memory used
for arrays and stacks, as well as code to implement array access and operations
on the stack. Suppose a has been declared as an array of 10 integer values, the
RSSA code to access an array element a[index] will contain the evaluation of
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procedure inc ( i n t n , i n t r e s )
r e s += n
re s += 1

procedure main ( )
i n t i
i n t x
i += 10
c a l l i n c ( i , x )

begin inc (n0 , r e s0 )
r e s1 := re s0 + (n0 ˆ 0)
r e s2 := re s1 + (1 ˆ 0)

end inc (n0 , r e s1 )

begin main ( i0 , x0 )
i 1 := i 0 + (10 ˆ 0)
( i2 , x1 ) := c a l l i n c ( i1 , x0 )

end main ( i2 , x1 )

Fig. 6. Example for translation of a procedure call

the index expression, add the result to the base address, e.g. aref + index and
assign it to a temporary variable T . After accessing the memory at address T , we
need to destroy T with a finalizer. Lastly, we compute the reverse of the index
expression (see Sect. 3.3).

In addition to arrays, Janus provides the feature to declare stacks as data
structures. As usual, stacks can be manipulated using empty, top, push, and pop
operations.

We have to add a remark here: The language definition of Janus [17] is – to
our minds – not entirely clear about whether stacks can be assigned to each other,
and what the semantics are (deep copy vs. shallow copy), e.g. local stack s1=s2.
We have chosen to allow these kinds of assignments and apply deep copies. The
implementation of this behaviour is encapsulated in a separate class and could
easily be adapted to different semantics.

Please note that in RSSA M is not an identifier denoting the name of an
array, rather M is fixed and stands for “memory”, but can be addressed “like”
an array.

Hence, the generated code for a stack s contains two variables sref and stop
with sref being the base address of the stack in memory and stop pointing to
the next free element of the stack.

A push(n,s) operation (n being a variable and s being a stack) will be trans-
lated into multiple RSSA commands: Firstly, we have to compute the address of
the memory location where the value to be pushed will be stored, i.e. sref +stop.
Due to the limitations of RSSA, this address needs to be stored in a tempo-
rary variable T0. Now, M [T0] needs to be updated with the current value of n.
Moreover, the semantics of Janus is that the variable n will be “zero-cleared”
thereafter. Hence, we use the special assignment n1 := M [T0] := n as defined
in RSSA, which will set the top-most element of the stack to n, destroy n, and
store the former value into n1, i.e. the next version of n. In the subsequent RSSA
instruction, it will be verified that n1 is zero. Lastly, we have to undo the com-
putation of the temporary variable T0 with the inverse of its computation, and
increment s top.

As mentioned before, we have not defined the translation scheme for pop, rather
we instruct the code generator towork backwards, i.e., theRSSAcommandswill be
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emitted in reverse order and each command will be inverted, that is, in an assign-
ment left- and right-hand side are switched, plus becomes minus, etc.

The Java code for the implementation of the reverse code generator is remark-
ably small and itself uses a stack to intermediately store “forward” RSSA com-
mands. Figure 7 shows an example.

procedure main ( )
s tack s
i n t n
i n t m

push (n , s )
pop (m, s )

begin main ( s r e f 0 , s top0 , n0 , m0)
// push (n , s )
T0 := 0 + ( s r e f 0 + s top0 )
n1 := M[T0 ] := n0
0 := 0 ˆ ( n1 ˆ 0)
0 := T0 ( s r e f 0 + s top0 )
s top1 := s top0 + (1 ˆ 0)
// pop (m, s )
s top2 := s top1 (1 ˆ 0)
T1 := 0 + ( s r e f 1 + s top2 )
0 := 0 ˆ (m0 ˆ 0)
m1 := M[T1 ] := m0
0 := T1 ( s r e f 1 + s top2 )

end main ( s r e f 1 , s top2 , n1 , m1)

Fig. 7. Example for translation of stacks

3.8 Implementation

The translations, which are part of the RSSA backend, have been implemented
as a syntax-directed translation, using the well-known visitor pattern [6].

For each of Janus’ constructs, we have defined a translation scheme as
explained above. When given the abstract syntax-tree of an input program, our
backend traverses this tree and generates instructions according to the scheme.
Statements are translated into a series of instructions, while expressions are
mainly translated as operands. If it is not possible to translate an expression
directly into a single operand, we need to emit instructions, which bind the value
of the expression to a temporary variable and destroy this variable afterwards.

The output of our code generator is a list of the generated instructions. When
an instruction is emitted during code generation, it is appended to the list.

As mentioned earlier, our code generator is capable of reverse code genera-
tion. This behavior is provided by a single method, that accepts an unparame-
terized lambda expression, whose body may contain arbitrary Java statements.
Before these Java statements are executed, the internal state of the code genera-
tor is changed so that emitted instructions are no longer appended to the output
list but rather to a temporary data structure. The Java statements passed to
this method are then executed, which are able to emit instructions without
being aware of the inverted generation direction. After the Java statements have
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been executed, the temporary data structure holds all instructions emitted by
these statements. These instructions are then retrieved in reverse order and are
inverted according to the rules described in [13] before they are emitted by the
code generator.

Using this technique we were able to considerably reduce the amount of Java
code in the code generator as opposed to the former code generator with “hand-
crafted” reverse code.

4 Results

We have described rc3, consisting of a frontend for Janus as well a set of backends
with RSSA being the most important of them.

Since the compiler developed by Axelsen [4] was not available to us, we
used the online Janus interpreter (“Janus playground”) [15] by Copenhagen
University to compare the results of the execution of Janus test programs against
our interpreter, RSSA, and Three-Address-Code back-ends.

Some results for sample Janus programs are shown in Table 2.

Table 2. Experiments

Sample Program original optimized

feistelcipher.ja Janus loc 211

rssa instructions (loc) 598 531

executed rssa instructions 61355 59152

C Exec average c execution time in clocks 159 156

Janus-to-RSSA average compile time in ms 189 228

Janus-to-RSSA-to-C average compile time in ms 271 244

teax.ja Janus loc 88

rssa instructions (loc) 632 418

executed rssa instructions 30957 20513

C Exec average c execution time in clocks 101 92

Janus-to-RSSA average compile time in ms 163 191

Janus-to-RSSA-to-C average compile time in ms 191 189

njvm-v4.ja + simple.bin Janus loc 544

rssa instructions (loc) 2369 2109

executed rssa instructions 24203 22440

C Exec average c execution time in clocks 105 91

Janus-to-RSSA average compile time in ms 573 671

Janus-to-RSSA-to-C average compile time in ms 680 661

Feistelcipher and Teax are both programs implementing encryption schemes;
NJVM is a virtual machine for a small imperative language. Lines of code are
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excluding empty lines as well as lines with comments only. As you can see, the
time required for compilation even for the largest program is well below one
second. For instance, the Feistelcipher Janus program is compiled to a program
of 598 RSSA instructions. Running this program executes 61335 instructions
in the version further compiled to C, requiring 159 microseconds. In case of the
Teax program, the speedup through optimization (see Table 2) is 33%, measured
in the number of RSSA instructions executed. All tests were executed on a Linux
computer with an AMD Ryzen 5 processor with a clock speed of 3600 Mhz using
GCC 10.2.0 to create executables from the generated C-code.

Due to the “classic” implementation of the compiler in multiple phases, it is
easy to add more language features to Janus, as well as to add further backends.

The ability to translate Janus and RSSA each to two non-reversible C-
programs has also been proven to be extremely helpful as it facilitates quick
regression testing of the compiler.

The compiler including all three backends comprises roughly 12.500 lines
of Java code (excluding the generated lexer and parser). As you can see, the
generated RSSA code is typically 3–7 times longer than the original Janus code,
mostly due to the split of complex expressions into SSA’s and the insertion of
finalizers.

The C-Code generated from the RSSA code is considerably longer, mainly
due to the insertion of C-functions for memory management, and of course
because C-code is generated twice (forwards and backwards).

5 Conclusions and Outlook

We have shown a scheme for compiling reversible Janus programs into reversible
RSSA code including the novel method for reverse code generation. The compiler
has been implemented and is being extended to be able to optimize the generated
RSSA code. In addition, a virtual machine for RSSA has been created that
includes a debugger with a GDB-like CLI, allowing to step through the program
forwards and backwards.

Mogensen [13] provides some suggestions on potential optimizations, further
work or implementations of these are currently not known to us.

As per the time of writing of this paper, we have implemented local com-
mon subexpression elimination and constant propagation/folding (i.e., within a
building block) using a directed acyclic multigraph. Work is underway to explore
data-flow analysis of RSSA – however, the inherent requirements of reversible
computing seem to require extensions of “traditional” algorithms to be able to
apply them to reversible languages: Traditional data flow analysis determines IN
and OUT sets either in a forwards manner, i.e. stepping from one basic block
to its successors or vice versa. But, in a reversible world, “forwards” and “back-
wards” in terms of the direction of execution are not distinguishable, making
the application of these well-known algorithms by Kildall [8] and others quite
difficult.

A report on first optimizations (local common-subexpression elimination and
constant propagation/folding) on the generated RSSA code will be presented at
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ACM SOAP 2021. Future work will also include the formalization of the code
generation scheme from Janus to RSSA, as well as a more detailed description
of the compiler techniques applied for the reverse code generator.

The current state of the work looks very promising and should be helpful to
gain further insights into reversible programming languages and compilers.

Acknowledgements. We would like to thank the reviewers who had provided valu-
able feedback and suggestions for improvement.
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