
Reversible Functional Array
Programming

Torben Ægidius Mogensen(B)

DIKU, University of Copenhagen, Universitetsparken 5,
2100 Copenhagen O, Denmark

torbenm@di.ku.dk

Abstract. Functional array programming is a style of programming
that enables massive parallelism through use of combinators (such as
map and reduce) that apply functions to whole arrays. These can be
readily parallelised when the functions these combinators are applied to
are pure and, in some cases, also associative.

We introduce reversible variants of well-known array combinators and
show how these can be implemented in parallel using only reversible oper-
ations and without accumulating garbage.

We introduce a simple reversible functional array programming lan-
guage, Agni, and show some examples of use.

1 Introduction

The world of computing is becoming more and more parallel. This is seen in the
exploding number of cores in general-purpose processors but even more clearly
in the increasing use of highly parallel vector processors such as graphics proces-
sors. Graphics processors are known to be power hungry, so the potentially much
lower energy requirements of reversible logic could be a way of reducing power
use of highly parallel programming. Reversibility adds extra constraints to pro-
gramming, but graphics processors already have significant constraints to their
programming, so users may be more willing to accept the constraints of reversible
programming in this setting than for general-purpose programming. Languages,
such as Futhark [2], are being developed to provide a machine-independent high-
level abstraction on top of graphics processors without significantly impacting
performance, often through functional array programming.

Functional array programming typically uses a predefined set of parallelisable
combinators such as map and reduce. A typical set includes combinators like
those shown in Fig. 1. You can combine these to make more complex parallel
functions, and a compiler can use fusion to optimise nested combinators to reduce
the overhead and exploit parallelism better than if the combinators are applied
one at a time.

The combinators shown in Fig. 1 are not all reversible, nor are the functions
that are passed to map, filter, scan, or reduce typically reversible, so we need to
modify these to a reversible setting, and we need to create a reversible language
c© Springer Nature Switzerland AG 2021
S. Yamashita and T. Yokoyama (Eds.): RC 2021, LNCS 12805, pp. 45–63, 2021.
https://doi.org/10.1007/978-3-030-79837-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79837-6_3&domain=pdf
https://doi.org/10.1007/978-3-030-79837-6_3

46 T. Æ. Mogensen

map : ∀(′a, ′b).(′a → ′b) → [′a] → [′b]
If ys = map f xs, then ys[i] = f(xs[i]).
filter : ∀ ′a.(′a → bool) → [′a] → [′a]
If ys = filter f xs, then ys contains exactly the elements xs[i] where
f(xs[i]) = true in the same order that these elements appear in xs.
reduce : ∀ ′a.(′a × ′a → ′a) → [′a] → ′a
reduce f [] is undefined,
reduce f [x] = x
reduce f [x0, x1, . . . , xn] = f(x0, f(x1, f(. . . , xn))), if n > 0.
If f is associative, reduce can be parallelised. If f has a neutral element i,
reduce f [] can be defined to be equal to i.
scanl : ∀ ′a.(′a × ′a → ′a) → [′a] → [′a]
If ys = scanl f xs, then ys[0] = xs[0] and ys[i + 1] = f(ys[i], xs[i + 1]).
If f is associative, scanl can be parallelised.
zip : ∀(′a, ′b, m).[′a]m × [′b]m → [′a × ′b]m

If zs = zip (xs ys), then zs[i] = (xs[i], ys[i]).
unzip : ∀(′a, ′b).[′a × ′b] → [′a] × [′b]
If (ys, zs) = unzipxs, then (ys[i], zs[i]) = xs[i].
iota : int → [int]
If ys = iotam, then ys[i] = i for 0 ≤ i < m.

Fig. 1. Typical array combinators

that can use the modified combinators. We also need to argue that this language
can realistically be implemented on future reversible computers that combine
reversible general-purpose processors and reversible vector processors.

2 Modifying for Reversibility

We will indicate reversible functions by using an alternative function-space
arrow: �. Combinators like map are not fully reversible – you can’t get both
a function and a list back by applying map in reverse, but a partial application
of map to a reversible function is reversible. So we will use the following type
signature for map:

map : ∀(′a, ′b).(′a � ′b) → [′a] � [′b]

The “normal” function arrow → indicates an irreversible function space where
� indicates a reversible function space. [′a] indicates an array with elements of
type ′a, which is a type variable. To run map backwards, we need to supply both
a function of type a � b and an array of type [b] for some types a and b.

That reversible languages contain irreversible elements should not be surpris-
ing: Janus [4] allows arbitrary irreversible expressions in reversible updates, for
example x += y mod 2 is allowed in Janus, even though the expression y mod 2
is not reversible: There is no way to get from the result (0 or 1) to the value of y.
This is allowed in Janus because, after the update to x (which is reversible), the

Reversible Functional Array Programming 47

expression can be “uncomputed”. Generally, if we retain the values of all vari-
ables in an expression, we can reversibly compute the value of the expression, use
the value in a reversible operation, and then uncompute the expression, leaving
no net garbage. We will exploit this to a larger degree than in Janus: We will
allow local variables and functions to be defined using irreversible expressions,
as long as these can be uncomputed at the end of their scope.

Other array combinators are clearly reversible: zip and unzip are inverses of
each other, and iota is inverted by a function that takes an array [0, 1, . . . , m−1]
and returns m (and is undefined on inputs that do not have this form). Equally
obviously, filter and reduce are not reversible: filter discards any number of
elements, and reduce can, for example, reduce an array of numbers to their sum
or their maximum, which throws away a lot of information about the original
array. Also, reduce and scanl use functions of type ′a × ′a → ′a, which are
not usually reversible.

We first take a stab at scanl, modifying its type to (′a × ′a � ′a × ′a) →
[′a] � [′a], so it takes a reversible function as argument. We then define

scanl f [] = []
scanl f [x] = [x]
scanl f ([x1, x2]@xs) = [y1]@(scanl f ([y2]@xs)) where (y1, y2) = f (x1, x2)

where @ is concatenation of arrays. Note that this sequential definition does not
imply that the work has to be sequential – a traditional scan can be parallelised
if the operator is associative, and with suitable restrictions on the function argu-
ment, the reversible version can too. We will explore parallelising the reversible
scanl and other reversible combinators in Sect. 3.

If we define reversible addition by ++(x, y) = (x, x + y) (with the inverse --
defined by --(x, y) = (x, y −x)), we see that scanl ++ [1, 2, 3, 4] = [1, 3, 6, 10],
so this works as we would expect a traditional scan using addition to do.

A reversible reduce will have to return an array as well as the reduced value,
as it would rarely be possible to restore the original array from the reduced value
alone. Letting reduce return its argument alongside the reduced value seems the
most natural choice. We can define a reversible reduce by

reduce f [x] = (x, [x])
reduce f ([x]@xs) = (z1, [z2]@ys)

where (y, ys) = reduce f xs and (z1, z2) = f (x, y)

Note that this is undefined on empty lists, as we would otherwise need a default
value. reduce ++xs will return (sumxs, xs). Note that, since we use x twice in
the first rule, the inverse of reduce is only defined if these are equal.

We, additionally, need combinators to combine and split arrays: concat :
∀ ′a.[′a]×[′a] � int×[′a] concatenates two arrays and returns both the size of the
first array and the concatenated array. The inverse splitAt : ∀ ′a.int × [′a] �
[′a] × [′a] splits an array into two such that the first has the size given by a
parameter. If the array is smaller than this size, the result is undefined.

48 T. Æ. Mogensen

copy : ∀ ′a.[′a] ⇀↽ [′a] × [′a]
copyx = (x, x)
uncopy : ∀ ′a.[′a] × [′a] ⇀↽ [′a]
uncopy (x, x) = x. If x[i] �= y[i] for any i, then uncopy (x, y) is undefined.
map : ∀ ′a, ′b.(′a ⇀↽ ′b) → [′a] ⇀↽ [′b]
If ys = map f xs, then ys[i] = f(xs[i]).
zip : ∀(′a, ′b).[′a] × [′b] ⇀↽ [′a × ′b]
If zs = zip (xs ys), then zs[i] = (xs[i], ys[i]). If xs and ys have different sizes,
the result is undefined.
unzip : ∀ ′a, ′b.[′a × ′b] ⇀↽ [′a] × [′b]
If (ys, zs) = unzipxs, then (ys[i], zs[i]) = xs[i].
iota : int ⇀↽ [int]
iotam = [0, 1, . . . , m−1]
atoi : [int] ⇀↽ int

atoi [0, 1, . . . , m−1] = m. It is undefined on inputs not having this form.
scanl : ∀ ′a.(′a × ′a ⇀↽ ′a × ′a) → [′a] ⇀↽ [′a]
See definition in Section 2.
reduce : ∀ ′a.(′a × ′a ⇀↽ ′a × ′a) → [′a] ⇀↽ ′a × [′a]
See definition in Section 2.
concat : ∀ ′a.[′a] × [′a] ⇀↽ int × [′a]
If (m, zs) = concat (xs, ys), then m = |xs|, |zs| = m + |ys|, and xs[i] = zs[i]
if i < m, and zs[i] = xs[i] if i < m, and zs[i] = ys[i − m] otherwise.
splitAt : ∀ ′a.int × [′a] ⇀↽ [′a] × [′a]
If (xs, ys) = splitAt (m, zs), then m = |xs|, |zs| = m+ |ys|, and xs[i] = zs[i]
if i < m, and ys[i] = zs[i + m] otherwise. If m is greater than the size of zs,
the result is indefined.
reorder : ∀ ′a.[int × ′a] ⇀↽ [int × ′a]
If ys = reorderxs and xs[i] = (j, v), then ys[j] = (i, v).

Fig. 2. Reversible array combinators

Lastly, we might want to reorder the elements of an array. reorder :
∀ ′a.[int × ′a] � [int × ′a] takes a list of pairs of indices and values, and cre-
ates a new array where each element is at the given index, and the elements are
paired with their old indices. It is its own inverse. If there are duplicated indices
or any index is outside the array, the result is undefined. For example, reorder
[(2,17), (1,21), (0,13)] = [(2,13), (1,21), (0,17)]. reorder is simi-
lar to the gather operation in normal array programming.

We will omit an explicit filter combinator, as this can not be made reversible.
We will in the examples later show how you can code something similar to a filter
using the other combinators.

The set of reversible array combinators and their types is shown in Fig. 2.

Reversible Functional Array Programming 49

3 Parallel Implementation

We choose a simple model of vector-parallel reversible computers. We use Janus-
like reversible updates [4], procedures with call-by-reference parameters (as in
Janus), and add a parallel loop parloop that when given a variable i, a number
n, and some reversible code that uses i, in parallel executes the code for i being
equal to all numbers from 0 to n−1. It is assumed that the loop “iterations” are
independent: No two iterations write to the same location, and if one iteration
writes to a location, no other iteration may read from this location.

A function f : a � b is implemented as a procedure f ′ that takes references to
argument and result locations, and as a net effect clears the argument location,
and puts the result in the result location (not necessarily in this order). A cleared
array variable is a null pointer, a cleared number has the value 0, and a cleared
pair has two cleared components. Some functions g : a � a can be implemented
in-place: g′ returns its result in the location in which the argument was given.
We do not allow aliasing of the parameters. A function h : c → a � b is
implemented by a procedure h′ that takes three arguments, where the first is
a read-only pointer (typically to a procedure) and the other two are handled
as above. We assume access to a reversible memory allocation procedure alloc
that allocates a zero-initialised array of a given size, and its inverse that frees an
array that is assumed to be all zeroes. Such an allocator is described in earlier
literature [1]. We subscript malloc with the element type, as that affects the
size of the allocation.

3.1 The Simple Cases

y = map f x; where f : a � b can be implemented in parallel using parloop.
procedure map’(f : a � b, x : [a], y : [b])

local t : int; t += size(x); call allocb(y,t);
parloop i t { call f ′(x[i], y[i]); }
uncall alloca(x,t); t -= size(y);

end

If a = b, we can reuse the space for x instead of allocating new space:

procedure mapInPlace’(f ′ : a � a, x : [a])
local t : int; t += size(x);
parloop i t { local u : a; u <-> x[i]; call f ′(u, x[i]); }
t -= size(x);

end

Note that we need a local variable u to avoid aliasing in the call to f ′ and to
obey the invariant that the second parameter to f ′ is initially clear and that
the first will be cleared as a result of applying f ′. If f ′′ is an in-place procedure
implementing f , we can simplify even further:

50 T. Æ. Mogensen

procedure mapInPlace2’(f ′′ : a � a, x : [a])
local t : int; t += size(x);
parloop i t { call f ′′(x[i]); }
t -= size(x);

end

(y, z) = copy x, where x : [a] is similarly implemented:

procedure copy’(x : [a], yz : [a] × [a])
local t : int, z : [a]; t += size(x);
call alloca(z,t);
parloop i t { z[i] += x[i]; }
t -= size(x); call makePair(x,z,yz)

end

Note that we reuse x for y. makePair(x, z,yz) is procedure that creates in yz a
pair of x and z and resets x and z to zero.

z = zip (x, y); where x : [a] and y : [b] can be implemented by

procedure zip’(x : [a], y : [b], z : [a × b])
local t : int; t += size(x); call alloca×b(z,t);
parloop i t { z[i].0 <-> x[i]; z[i].1 <-> y[i]; }
uncall alloca(x,t); uncall allocb(y,t); t -= size(z);

end

where z[i].0 and z[i].1 are the first and second components of the pair z[i].
Note that we assume the sizes of the arrays x and y to be the same.

x = iota n can be implemented as

procedure iota’(n : int, x : [int])
call allocint(x,n);
parloop i n { x[i] += i; }
n -= size(x)

end

(n, z) = concat (x, y), where x : a can be implemented as

procedure concat’(x : [a], y : [a], nz : int × [a])
local t : int, u : int; t += size(x); u += size(y);
call alloca(nz.1,t+u);
parloop i t { nz.1[i] <-> x[i]; }
parloop i u { nz.1[i+t] <-> y[i]; }
uncall alloca(x,t); uncall alloca(y,u);
u -= size(nz.1) - t; nz.0 <-> t; end

y = reorder x, where x : [int × a] can be implemented as

Reversible Functional Array Programming 51

procedure reorder’(x : [int × a], y : [int × a])
local t : int; t += size(x) allocint×a(y,t);
parloop i t {
local j : int;

j += x[i].0; y[j].0 += i;
y[j].1 <-> x[i].1; j -= x[i].0;

}
parloop i t {
local j : int;

j += y[i].0; x[j].0 -= i; j -= y[i].0;
}
freeint×a(x,t); t -= size(y)

end

The first parloop gives y its correct values and clears the second component of
each pair in the x array. We need a second parloop to clear the first components
of the pairs in the x array. Note that if j takes on the same value in different
iterations of the parallel loop, there may be race conditions that makes the result
undefined.

3.2 reduce

In the irreversible case, reduce can be parallelised if the reduction operator
⊕ : a × a→a is associative. In the reversible case, we work with functions of the
type f : a×a � a×a, so we need to find conditions on such functions that allow
parallel implementation. The method below works if f is the identity in its first
parameter and associative in its second parameter, i.e., f(m, n) = (m, m ⊕ n),
where ⊕ is an associative operator. An example is ++, as ++(m, n) = (m, m+n).

(v, x) = reduce f x (note that we reuse x in the output) is implemented by
the procedure reduce’ in Fig. 3. It takes as arguments f ′, which is an imple-
mentation of f , v which is a location for the result, and x, which is the array to
be reduced.

If the size of x is 1, we just copy the sole element of x into v. This is the base
case of our induction. Otherwise, we allocate space for an intermediate array y
of half the size of x. In the first parloop, we compute f ′ on pairs of consecutive
elements of x, putting the identity part of the result back into x (leaving every
other element as 0) and the sum part into y, so x[2i] = x0[2i], x[2i+ 1] = 0, and
y[i] = x0[2i] ⊕ x0[2i + 1], where x0 is the original x array before the updates.
We then call reduce’ recursively on y, which (by induction) leaves y unchanged
and stores the result of the reduction in v. We now need to uncompute y and
restore x to its original values. We do that in the second parloop which is the
reverse of the first. The conditional after the second parloop handles odd-sized
arrays: The last element of x is “added” to v. Finally, we free the y array.

We illustrate this by an example: applying reduce ++ to an array x =
[x0, x1, x2, x3, x4, x5]. After the parloop and before the first recursive call, we
have x = [x0, 0, x2, 0, x4, 0] and y = [x0 +x1, x2 +x3, x4 +x5]. In the recursive

52 T. Æ. Mogensen

procedure reduce’(f ′ : a × a ⇀↽ a × a, v : a, x : [a])
local t : int, y : [a];
t += size(x);
if t == 1 then

v += x[0];
else {

call alloca(y, �(t/2)�;
parloop i �(t/2)� {

local u : a × a, w : a × a;
u.0 <-> x[2*i]; u.1 <-> x[2*i+1];
call f ′(u, w);
w.0 <-> x[2*i]; w.1 <-> y[i];

}
call reduce’(f ′, v, y);
parloop i �(t/2)� {

local u : a × a, w : a × a;
w.1 <-> y[i]; w.0 <-> x[2*i];
uncall f ′(u, w);
u.1 <-> x[2*i+1]; u.0 <-> x[2*i];

}
if t%2 != 0 then {

local u : a × a, w : a × a;
u.0 <-> x[t-1]; u.1 <-> v;
call f ′(u, w);
w.0 <-> x[t-1]; w.1 <-> v;

}
fi t%2 != 0
uncall alloca(y, �(t/2)�);

}
fi t == 1;
t -= size(x);

end

Fig. 3. Parallel implementation of reduce

invocation, we have x = [x0 + x1, x2 + x3, x4 + x5]. After the parloop, we have
x = [x0 + x1, 0, x4 + x5] and y = [x0 + x1 + x2 + x3]. In the next recursive call,
the array size is 1, so it will return v = x0 + x1 + x2 + x3 and y unchanged.
The second parloop is the inverse of the first, so it returns x to [x0 + x1, x2 +
x3, x4 + x5] and clear y. Since t is odd, we enter the conditional and modify v
to x0 +x1 +x2 +x3 +x4 +x5. When we return, we have x = [x0, 0, x2, 0, x4, 0],
y = [x0 + x1, x2 + x3, x4 + x5], and v = x0 + x1 + x2 + x3 + x4 + x5. The second
parloop restores x to [x0, x1, x2, x3, x4, x5] and clears y. Since t is even, we
skip the conditional and return v = x0 + x1 + x2 + x3 + x4 + x5 along with the
original x.

3.3 scanl

In the irreversible setting, scans of associative operators can be parallelised using
a method called parallel scan or prefix sum. We use a variant of this that shares
some structure with the implementation of reduce above and also requires that
the reversible function used in the scan is identity in its first parameter and

Reversible Functional Array Programming 53

procedure scanl’(f ′ : a × a ⇀↽ a × a, x : [a])
local t : int, y : [a];
t += size(x);
if t < 2 then

skip;
else

call alloca(y, �(t/2)�;
parloop i �(t/2)� {

local u : a × a, w : a × a
u.0 <-> x[2*i]; u.1 <-> x[2*i+1];
call f ′(u, w);
w.0 <-> x[2*i]; w.1 <-> y[i];

}
call scanl’(f ′, y);
parloop i �((t-1)/2)� {

local u : a × a, w : a × a
u.0 <-> y[i]; u.1 <-> x[2*i+2];
call f ′(u, w);
w.0 <-> x[2*i+1]; w.1 <-> x[2*i+2];

}
if t%2 == 0 then

x[t-1] <-> y[t/2-1]; fi t%2 == 0;
uncall alloca(y, �(t/2)�);

fi t < 2;
t -= size(x);

end

Fig. 4. Parallel implementation of scanl

associative in its second parameter. We output the result in the same array as
the input. A procedure scanl’ that implements x := scanl(f, x) can be seen in
Fig. 4. It takes as arguments f ′, which is an implementation of f and the array
x, which is updated in place.

The base case is an array x of size less than two, which is left unchanged. In
the general case, we allocate an array y of half the size of x. The first parloop is
as in reduce’, and computes f ′ on pairs of consecutive elements of x, putting the
identity part of the result back into x (leaving every other element as 0) and the
sum part into y, so x[2i] = x0[2i], x[2i+1] = 0, and y[i] = x0[2i]⊕x0[2i+1], where
x0 is the original x array before the updates. We then call scanl’ recursively
on y, which by induction makes y the scan of the original y. The elements of
this y are the odd-indexed elements of the reduced x0. The odd elements of x
are currently 0, so we can just swap the elements of y with the odd-indexed
elements of x. The even-indexed elements of x contain the original values of the
even-indexed elements of x0. The first of these is correct, but the subsequent
ones needs to be added to the preceding element of x. We do this in the second
parloop with calls to f ′ and suitable swaps. Again, we need to do some fix-up to
handle odd-sized arrays, where the last element of x (which is currently 0) is
swapped with the last element of y (which contains the “sum” of all elements of
x0). Finally, y, which is now cleared, is freed.

We use scanl ++x, where x = [x0, x1, x2, x3, x4, x5] as an example. After
the parloop and before the first recursive call, we have x = [x0, 0, x2, 0, x4, 0]

54 T. Æ. Mogensen

and y = [x0 + x1, x2 + x3, x4 + x5]. In the recursive invocation, we have x =
[x0 + x1, x2 + x3, x4 + x5]. After the parloop, we have x = [x0 + x1, 0, x4 + x5]
and y = [x0 + x1 + x2 + x3]. The next recursive call will return y unchanged,
as its size is 1. t = 3, so we do one iteration of the second parloop, getting
x = [x0 + x1, x0 + x1 + x2 + x3, x0 + x1 + x2 + x3 + x4 + x5] and y = [0].
Since t is odd, we skip the conditional, free y, and return. At the return, we
get x = [x0, 0, x2, 0, x4, 0] and y = [x0 + x1, x0 + x1 + x2 + x3, x0 + x1 + x2 +
x3 + x4 + x5]. t = 6, so we do two iterations of the second parloop and get
x = [x0, x0 + x1, x0 + x1 + x2, x0 + x1 + x2 + x3, x0 + x1 + x2 + x3 + x4, 0] and
y = [0, 0, x0 +x1 +x2 +x3 +x4 +x5]. t is now even, so we enter the conditional
and get x = [x0, x0 + x1, x0 + x1 + x2, x0 + x1 + x2 + x3, x0 + x1 + x2 + x3 +
x4, x0 + x1 + x2 + x3 + x4 + x5] and y = [0, 0, 0], so we can free y and return.

The scan is not entirely in-place, as we use local arrays y, the total size
of which is almost that of the original. We could make it entirely in-place by
doubling the stride in each recursive call instead of copying to a new array of
half the size.

4 A Reversible Array Programming Language

We are now ready to define a reversible array programming language, which we
will call “Agni”, named after the two-faced Hindu god of fire. The syntax is
shown in Fig. 5. Note that <=> is an easier-to-type alternative notation for �.
→ is easily accessible on an international keyboard, so we have not replaced this
with the pure-ASCII alternative ->.

We work with both heap-allocated and stack-allocated variables Heap-
allocated variables are denoted HV ar in the grammar, and contain values that
are consumed nad produced by reversible operations. Stack-allocated variables
are denoted SV ar, and contain values or functions that are locally defined using
irreversible expressions and then uncomputed at the end of their scope. To dis-
tinguish these, heap-allocated variable names start with upper-case letters, while
stack-allocated variable and function names start with lower-case letters. Heap-
allocated variables have heap types (denoted HType) and stack-allocated vari-
ables have stack types (denoted SType).

A stack-allocated variable is introduced using a let-expression that initialises
it, allows multiple uses of the variable inside its body, and uncomputes its value
at the end. In reverse, the uncomputation and initialisation swap roles. The
expressions used by initialisation and uncomputation need not be reversible. This
is analogous to how reversible updates in Janus can use irreversible expressions.
A stack-allocated variable can not hold an array, but array elements and sizes
can be used in its initialisation and uncomputation expressions. An irreversible
expression is denoted Exp in the grammar.

Variables holding heap-allocated values are explicitly initialised using a
reversible initialisation. The heap-allocated variables on the right-hand side of
this initialisation are consumed and can no longer be used. In reverse, the vari-
ables on the left-hand side are consumed and those on the right are initialised.

Reversible Functional Array Programming 55

SType → int

SType → TypeV ar
SType → SType × SType
SType → SType → SType
SType → HType <=> HType

HType → int

HType → TypeV ar
HType → HType × HType
HType → [HType]

Rinit →
Rinit → HPattern := Rexp;
Rinit → Rinit Rinit
Rinit → let SPattern = Exp in Rinit end SPattern = Exp;
Rinit → def FunDef in Rinit end;

Rexp → HV ar
Rexp → SV ar
Rexp → (Rexp, Rexp)
Rexp → Fname Rexp
Rexp → uncall Fname Rexp
Rexp → Fname Svar Rexp
Rexp → uncall Fname Svar Rexp

Exp → IntConst
Exp → SV ar
Exp → HV ar[Exp]
Exp → size HV ar
Exp → (Exp, Exp)
Exp → Fname Exp
Exp → let SPattern = Exp in Exp
Exp → def FunDef in Exp

FunDef → Fname SPattern = Exp
FunDef → Fname HPattern = Rinit Rexp
FunDef → Fname SPattern HPattern = Rinit Rexp

HPattern → SV ar
HPattern → HV ar : HType
HPattern → (HPattern, HPattern)

SPattern → SV ar : SType
SPattern → (SPattern, SPattern)

Program → FunDef

Fig. 5. Syntax of Agni

56 T. Æ. Mogensen

A heap-allocated variable is in scope from its initialisation to its consumption,
and can in this scope be used in expressions that define stack-allocated variables.
Reversible initialisations are denoted Rinit in the grammar, and can in addition
to a simple initialisation be a (possible empty) sequence of initialisations or a
local definition of a function or stack-allocated variable that is locally used for
an initialisation.

Function definitions are defined using def-expressions, and have scope until
the end of the def-expression. A function definition can not consume heap-
allocated variables that are not given as parameters or initialised locally, and
all parameters or locally initialised variables that are heap-allocated must be
either consumed in the function body or returned as part of the result. In a
function type, parameters that appear in the function type before a � arrow
are heap allocated, whereas parameters (including function parameters) that
appear before a → arrow are stack-allocated. All stack-allocated parameters
must occur before heap-allocated parameters. The body of a reversible function
is an optional reversible initialisation followed by a reversible expression. The
body of an irreversible function is an irreversible expression. Note that func-
tion definitions can occur in both reversible initialisations and in irreversible
expressions with slightly different syntax.

A program is a single function definition that defines a reversible function,
so it must have type t1 � t2 for some types t1 and t2. Its body is a reversible
initialisation followed by a reversible expression.

A reversible expression is a variable, a pair of two reversible expressions, or
a (possibly inverse) reversible function application.

A reversible expression can be a stack-allocated variable. This will not be con-
sumed by the expression. Likewise, a reversible pattern can be a stack-allocated
variable (SV ar). This is not a defining instance (so no type needs to be given),
but when a heap-allocated value is matched against a stack-allocated variable, it
must have the same value as the variable, and is consumed by this. If the variable
does not match the value, the behaviour is undefined. When a heap-allocated
variable (HV ar) occurs in a pattern for heap-allocated values, it defines a new
variable, so a type is given.

The program is evaluated in a context that defines both a number of irre-
versible functions for use in initialisation and uncomputation of stack-allocated
variables and a number of reversible functions for defining heap-allocated vari-
ables. The latter includes the array combinators shown in Fig. 2. Note that “nor-
mal” addition + : int × int → int and similar operators are part of the set of
irreversible functions that can be used.

For simplicity, we do not have an explicit boolean type, so truth values are
represented as integers. Non-zero integers are considered true and 0 is considered
false. We have also omitted reals, as garbage-free reversible arithmetic on floating
point numbers is still an open issue.

Reversible Functional Array Programming 57

ρ, γ � k : int
γ X = [t]

ρ, γ � size X : int
γ X = [t] ρ, γ � e : int

ρ, γ � X[e] : t

ρ x = t
ρ, γ � x : t

ρ, γ � e1 : t1 ρ, γ � e2 : t2
ρ, γ � (e1, e2) : t1 × t2

ρ f = τ t1 → t2 = instantiate τ ρ, γ � e : t1
ρ, γ � f e : t2

ρ, γ � e1 : t1 ρ �S s1 � ρ1/t3 t1 = t3 ρ1, γ � e2 : t2
ρ, γ � let s1 = e1 in e2 : t2

ρ �S s � ρ1/t1 ρ1[f : t1 → t2], γ � e1 : t2
τ = generalize(t1 → t2, ρ) ρ[f : τ], γ � e2 : t3

ρ, γ � def f s = e1 in e2 : t3

ρ �S x : t � ρ[x : t]/t
ρ �S s1 � ρ1/t1 ρ1 �S s2 � ρ2/t1

ρ �S (s1, s2) � ρ2/(t1 × t2)

Fig. 6. Type rules for irreversible expressions and patterns

5 A Type System for Reversible Array Programming

We use different environments for stack-allocated variables and functions and
for heap-allocated variables. Evaluating an expression has no net effect on the
environment of stack-allocated variables and functions, but it may affect the
environment of heap-allocated variables, as some of these are consumed and
others initialised in a way that does not follow block structure. We use (possibly
subscripted) ρ for environments of stack-allocated variables and functions, and
γ for environments heap-allocated variables. When we evaluate an irreversible
expression, we can use variables (and functions) from both environments, but
modify none of them. When we evaluate a reversible expression, we can also use
both, but we may remove variables from γ, as these are used. When evaluating
a reversible initialisation, we can use variables from ρ and both remove and add
variables in γ.

We start by defining type rules for irreversible expressions and patterns in
Fig. 6. We use t to denote an SType, x to denote an SV ar, X to denote an
HV ar, and s to denote an SPattern. The rules are straightforward except the
function rule which uses implicit unification to allow recursive definitions, and
use generalisation and instantiation to implement parametric polymorphism. τ
denotes a polymorphic type. We omit descriptions of generalisation and instan-
tiation, but note that these are as in Hindley-Milner type inference. The two last
rules are for patterns, which both extend an environment with new bindings and
build a type for the pattern. We assume no variable occurs twice in a pattern.

58 T. Æ. Mogensen

Figure 7 shows rules for reversible expressions. T denotes an HType, and r
denotes an RExp. ↑ (t) transforms an Stype (excluding function types) to the
equivalent HType. Note how γ is threaded around in the rules.

ρ, γ[X : T] �R X : T/γ ρ[x : t], γ �R x :↑ (t)/γ

ρ, γ �R r1 : T1/γ1 ρ, γ1 �R r2 : T2/γ2

ρ, γ �R (r1, r2) : (T1 × T2)/γ2

ρ f = τ (T1 ⇀↽ T2) = instantiate τ ρ, γ �R r : T1/γ1

ρ, γ �R f r : T2/γ1

ρ f = τ (T1 ⇀↽ T2) = instantiate τ ρ, γ �R r : T2/γ1

ρ, γ �R uncall f r : T1/γ1

ρ f = τ (t → T1 ⇀↽ T2) = instantiate τ ρ x = t ρ, γ �R r : T1/γ1

ρ, γ �R f x r : T2/γ1

ρ f = τ (t → T1 ⇀↽ T2) = instantiate τ ρ x = t ρ, γ �R r : T2/γ1

ρ, γ �R uncall f x r : T1/γ1

Fig. 7. Type rules for reversible expressions

Figure 8 shows rules for reversible initialisations and patterns. Like reversible
expressions, reversible initialisations thread γ around, but they do not return
values. The most complicated rule is for let s1 = e1 in I end s2 = e2, where
s1 and s2 are required to contain the same variables so the variables that are
introduced in s1 are eliminated in s2. The rules for function definitions are similar
to those for irreversible expressions, except that they also include reversible
function definitions. Note that a reversible function definition starts and ends
with empty γs, as they can only consume their arguments and produce their
results with no remaining unconsumed RV ars.

Reversible patterns produce both a Htype and a new γ. The first rule states
that when using an SV ar in a pattern, its SType is converted to the equivalent
HType using the ↑ operator. Only non-functional STypes can be converted.

6 Examples

Since the reversible functional array programming language is limited compared
to irreversible array programming languages, we need to justify that it can be
used to solve real problems. We do so by showing some example programs.

6.1 Inner Product

An inner product of two vectors reduces these vectors to a single number, so we
need to return these vectors along with the result. The code is

Reversible Functional Array Programming 59

ρ, γ �I � γ
ρ, γ �I I1 � γ1 ρ, γ1 �I I2 � γ2

ρ, γ �I I1 I2 � γ2

ρ, γ �R r : T/γ1 ρ, γ1 �P p � γ2/T
ρ, γ �I p := r; � γ2

ρ, γ � e1 : t1 ρ �S s1 � ρ1/t3 t1 = t3 ρ, γ �I I � γ1

ρ, γ1 � e2 : t2 ρ �S s2 � ρ1/t4 t2 = t4
ρ, γ � let s1 = e1 in I end s2 = e2; � γ1

ρ �S s � ρ1/t1 ρ1[f : t1 → t2], γ � e1 : t2
τ = generalize(t1 → t2, ρ) ρ[f : τ], γ �I I � γ1

ρ, γ � def f s = e in I; � γ1

ρ, [] �P p � γ1/T1 ρ1[f : T1 ⇀↽ T2], γ1 �I I1 � γ2

ρ1, γ2 �R r : T2/[] τ = generalize(f : T1 ⇀↽ T2, ρ) ρ[f : τ], γ �I I2 � γ3

ρ, γ � def f p = I1 r in I2; � γ3

ρ �S s � ρ1/t ρ, [] �P p � γ1/T1 ρ1[f : t → T1 ⇀↽ T2], γ1 �I I1 � γ2

ρ1, γ2 �R r : T2/[] τ = generalize(f : t → T1 ⇀↽ T2, ρ) ρ[f : τ], γ �I I2 � γ3

ρ, γ � def f s p = I1 r in I2; � γ3

T =↑ (ρ x)
ρ, γ �P x � γ/T ρ, γ �P X : T � γ[X : T]

ρ, γ �P p1 � γ1/T1 ρ, γ1 �P p2 � γ2/T1

ρ, γ �P (p1, p2) � γ2/(T1 × T2)

Fig. 8. Type rules for reversible initialisations and patterns

fun inner (Xs: [int], Ys: [int]) =
(Xs: [int], Prods: [int]) := unzip (map ** (zip (Xs, Ys)));
(Ip: int, Prods: [int]) := reduce ++ Prods;
(Ip, unzip (map // (zip (Xs, Prods))))

We note that **(x, y) = (x, x ∗ y) and //(x,y) = (x, y/x), so they are inverses
and both undefined if x = 0.

We first zip the two vectors, map ** to get the product of each pair (while
retaining one operand), unzip to get separate arrays for the product and the
copies, reduce with ++ to get the inner product, and undo the multiplications to
get the original vectors back. Note that we redefine xs, but since the original xs
has already been consumed at this point, it leads to no ambiguity.

This is, admittedly, more cumbersome than doing inner product in a nor-
mal irreversible language. We could shorten it somewhat by adding a zipWith
combinator that combines map and zip.

60 T. Æ. Mogensen

6.2 Counting the Number of Elements that Satisfy a Predicate

We don’t have a separate boolean type, so we use zero/nonzero instead. A
reversible predicate has the type ′a � ′a × int for some type ′a and will
pair a value with the result of the predicate, which is 1 for true and 0 for false.
We can map this on an array, extract the numbers, add them using reduce, zip
the numbers back to the array, and map the inverse of the predicate (which is
done by uncalling map) to eliminate the numbers. The result is a pair of the
count and the original list.

count (p: ’a <=> ’{a}\times{int}) (Xs: [’a]) =
(Xs: [’a], Ps: [int]) := unzip (map p Xs);
(Count: int, Ps: [int]) := reduce ++ Ps;
Xs: [’a] := uncall map p (zip (Xs,Ps));
(Count, Xs)

Note that the third line is the inverse of the first line.

6.3 Separation by Predicate

As noted in Sect. 2, we don’t include a filter operator, but sometimes, we will need
to separate the elements where the predicate is true from the elements where it is
false. This can be used, e.g., for quicksort or radix sort. Such a separation is not
reversible, so we should expect some garbage output as well. In this example, this
garbage is two arrays of integers, each the size of the original array:

separate : (′a � ′a × int) → [′a] � [′a] × [′a] × [int] × [int]

The garbage can be reduced to a copy of the original array by calling separate,
copying the separated arrays, uncalling separate, and combining the separated
arrays with the original, as shown in the function separateClean below. The
separate function works in the following steps:

1. Map the predicate over the array, pairing each element with (1,0) if the pred-
icate is true and (0,1) if the predicate is false.

2. Use scanl twice to compute the number of true and false values before each
array element.

3. Extract the total number of true booleans tmax from the last element of the
new array.

4. Use map findLoc to compute the new location of each element, where
findLoc chooses between the number of previous true elements and the num-
ber of false elements + tmax depending on the predicate.

5. Use reorder to place elements in their new locations.
6. Split into true and false arrays.
7. Returns these array and the garbage arrays.

The code is shown in Fig. 9

Reversible Functional Array Programming 61

separate (p: ’a <=> ’a×int) (Xs: [’a]) =

let one: int = 1 in

def tf N: int = --(N,one) in

(Xs: [’a], Ps: [int]) := unzip (map p Xs);

(Ts: [int], Fs: [int]) := unzip (map tf Ps);

Tsbefore: [int] := scanl ++ Ts;

Fsbefore: [int] := scanl ++ Fs;

let tmax: int = Tsbefore[size Tsbefore - 1]) in

Bsbefore: [int×int] := zip (Tsbefore, Fsbefore);

Bsxs: [(int×int)×’a] := zip (Bsbefore, Xs);

def findLoc ((Tsb: int, Fsb: int), X: ’a) =

(X: ’a, P: int) := p X;

(tmax, Fsb1: int) := ++(tmax, Fsb);

(P: int, Loc: int, G: int) := cswap(P, Fsb1, Tsb);

Loc: int := dec Loc;

X: ’a := uncall p (X, P);

((Loc, X), G)

in

(Lsxs: [int×’a], G0: [int]) := unzip (map findLoc Bsxs);

end;

(G1: [int], Newxs: [’a]) := unzip (reorder Lsxs);

(Txs: [’a], Fxs: [’a]) := splitAt (tmax, Newxs);

end tmax = size Txs

end

end one: int = 1;

(Txs, Fxs, G0, G1)

separateClean (p: ’a <=> ’a×int) (Xs: [’a]) =

(Txs: [’a], Fxs: [’a], G0: [int], G1: [int]) := separate p Xs;

(Txs: [’a], Txs1: [’a]) := copy Txs;

(Fxs: [’a], Fxs1: [’a]) := copy Fxs;

Xs: [’a] := uncall separate p (Txs, Fxs, G0, G1);

(Txs1, Fxs1, Xs)

Fig. 9. Implementation of separate

Note that the uncomputation expression for the local variable tmax is differ-
ent from its initialisation expression. cswap is a predefined function that does a
conditional swap: It returns the first argument unchanged, and if this is nonzero,
returns the two other arguments swapped, otherwise unchanged. It can likely be
implemented by a single instruction on a reversible processor. dec is a prede-
fined reversible function that decrements its argument. We need to locally define
a variable to be equal to 1, because we can not use constants in patterns and
reversible expressions.

62 T. Æ. Mogensen

7 Conclusion and Future Work

We have presented reversible implementations of a number of reversible array
combinators, including reduce and scanl, and we have presented a reversible
functional array language, Agni, that uses these combinators. The reversible
implementations of the combinators are interesting in their own right, and can
be used for other languages.

Agni is, in its current form, somewhat limited, and it can be challenging
to code non-trivial functions in Agni, as witnessed by the complexity of the
separate function. We believe that the potential of getting highly parallel
reversible code will make it worthwhile. Adding extra combinators, for exam-
ple zipWith that combines zip and map, and map2 that combines zip, map,
and unzip, would also make coding easier and would also reduce the number
of intermediate values produced. A general fusion transformation that combines
several sequentially applied combinators to a single combinator would be an
useful optimisation. We have avoided conditionals (except conditional swap), as
conditional execution does not fit well with vector parallelisation.

We do not at the time of writing have an implementation of Agni, but we
have tested the reversible implementations of the array combinators using the
imperative reversible language Hermes [3], albeit with sequential loops rather
than parallel loops. If and when reversible vector processors become available,
we will certainly attempt to implement Agni on these. Until then, we will have
to do with implementations on classical hardware, where Agni has no obvi-
ous advantage over existing functional array programming languages, such as
Futhark [2]. Nevertheless, we plan in the future to make sequential and parallel
implementations of Agni on classical hardware. Experiences with this may spark
modifications to the language.

Speaking of Futhark, this language has an interesting type system where
arrays can be constrained by size (so you can, e.g., specify that a scan preserves
array size). It would be interesting to adapt this idea to Agni. It would also be
useful to add type inference, so many of the type declarations can be avoided.

References

1. Cservenka, M.H., Glück, R., Haulund, T., Mogensen, T.Æ.: Data structures and
dynamic memory management in reversible languages. In: Kari, J., Ulidowski, I.
(eds.) RC 2018. LNCS, vol. 11106, pp. 269–285. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-99498-7 19

2. Henriksen, T., Serup, N.G.W., Elsman, M., Henglein, F., Oancea, C.E.: Futhark:
purely functional GPU-programming with nested parallelism and in-place array
updates. In: Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2017, pp. 556–571. ACM, New York
(2017)

https://doi.org/10.1007/978-3-319-99498-7_19
https://doi.org/10.1007/978-3-319-99498-7_19

Reversible Functional Array Programming 63

3. Mogensen, T.Æ.: Hermes: a language for light-weight encryption. In: Lanese, I.,
Rawski, M. (eds.) RC 2020. LNCS, vol. 12227, pp. 93–110. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-52482-1 5

4. Yokoyama, T., Axelsen, H.B., Glück, R.: Principles of a reversible programming
language. In: Proceedings of the 5th Conference on Computing Frontiers, CF 2008,
pp. 43–54. ACM, New York (2008)

https://doi.org/10.1007/978-3-030-52482-1_5

	Reversible Functional Array Programming
	1 Introduction
	2 Modifying for Reversibility
	3 Parallel Implementation
	3.1 The Simple Cases
	3.2 reduce
	3.3 scanl

	4 A Reversible Array Programming Language
	5 A Type System for Reversible Array Programming
	6 Examples
	6.1 Inner Product
	6.2 Counting the Number of Elements that Satisfy a Predicate
	6.3 Separation by Predicate

	7 Conclusion and Future Work
	References

