
Reversibility of Executable Interval
Temporal Logic Specifications

Antonio Cau1(B) , Stefan Kuhn1 , and James Hoey2

1 School of Computer Science and Informatics, De Montfort University, Leicester, UK
{antonio.cau,stefan.kuhn}@dmu.ac.uk

2 School of Informatics, University of Leicester, Leicester, UK
jbh13@leicester.ac.uk

Abstract. In this paper the reversibility of executable Interval Tempo-
ral Logic (ITL) specifications is investigated. ITL allows for the reasoning
about systems in terms of behaviours which are represented as non-empty
sequences of states. It allows for the specification of systems at different
levels of abstraction. At a high level this specification is in terms of prop-
erties, for instance safety and liveness properties. At concrete level one
can specify a system in terms of programming constructs. One can exe-
cute these concrete specification, i.e., test and simulate the behaviour of
the system. In this paper we will formalise this notion of executability of
ITL specifications. ITL also has a reflection operator which allows for the
reasoning about reversed behaviours. We will investigate the reversibil-
ity of executable ITL specifications, i.e., how one can use this reflection
operator to reverse the concrete behaviour of a particular system.

Keywords: Interval Temporal Logic · Temporal reflection · Program
reversion · Reversible computing

1 Introduction

Formal methods have been used in computer science to verify desirable and
undesirable properties of programs. One type of formalism introduced is tem-
poral logic. A temporal logic allows to reason about properties over time, for
example “this resource will eventually be freed”. In this paper, we are dealing
with a particular temporal logic, Interval Temporal Logic (ITL).

Another strand of research is reversibility in computing. This is relevant
for reversing the effects of operations, for example if, after having performed a
number of operations, proceeding in the desired direction is not possible. This
could be because a resource is not available or because a result is outside the
allowed range of values. In such cases, a potential strategy is to roll back to a
safe state and continue operation from there.

Using the ITL notation (details of which will explained in Sect. 3), a program
consisting of two parts could be written as Good;Bad. The semantics (behaviour)

Supported by DMU.

c© Springer Nature Switzerland AG 2021
S. Yamashita and T. Yokoyama (Eds.): RC 2021, LNCS 12805, pp. 214–223, 2021.
https://doi.org/10.1007/978-3-030-79837-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79837-6_13&domain=pdf
http://orcid.org/0000-0002-3046-1217
http://orcid.org/0000-0002-5990-4157
https://doi.org/10.1007/978-3-030-79837-6_13

Reversibility of Executable Interval Temporal Logic Specifications 215

of both parts are sequences of states. Good and Bad are arbitrary names indi-
cating sections of the program which worked as expected respectively did not.
We now want to reverse the effect of Bad. This would require that we go back
to the last state of Good. This can be done by using an operator undo so that
we have Good ;Bad ; undo(Bad). This operator must ensure that the last state of
Good is the same as the last state of Good ; Bad ; undo(Bad).

We propose a solution for this problem, where we use the reflection operator r.
We show that this reverses the effects of a formula, i.e., reversing the sequence of
states of that formula. We also show that it can be applied to any formula that
can be specified in ITL. This operator can be used for propositional as well as
for first-order logic ITL. Therefore, we have a universal undo operation for these
formulae. We distinguish reflection, which indicates the possibility to reverse the
sequences of states, from reversibility. Reversibility indicates that an executable
formula, a program, can be reversed.

The outline of the paper is as follows: in Sect. 2 we discuss temporal logic in
general and compare ITL with other temporal logics. We also discuss reversibility
in general. In Sect. 3 we discuss ITL, i.e., intervals, syntax of basic and derived
constructs, and the reflection operator and the semantics of these constructs. In
Sect. 4, the notion of executability is formalised and show how this notion can
be used together with reflection to reverse the effects of bad computations.

An extended version of this paper can be found on arXiv.org at [3].

2 Background

Temporal logic can be used to describe reactive systems. After some cursory
mentions earlier, a first type of temporal logic was presented by N. Prior [13].
Based on this, other types of temporal logic were devised, including (LTL) [8,12].
The main operator of LTL is the until (U) while in ITL it is the chop (;).
f U g guarantees that g will eventually hold at some future state and that f
will continue to hold until then. In ITL, satisfaction of formulas is defined over
intervals (sequences of states with at least 1 state) rather than time points which
is used in LTL. f ;g denotes that the interval can be split into a prefix and a suffix
interval in such a way that f holds for the prefix interval and g holds for the
suffix interval. So the chop operator corresponds to the sequential composition
operator.

There has been increasing interest and research done in reversible computa-
tion, for example demonstrated by the COST action IC1405 [14]. We focus on
logical reversibility. This is all types of formalisms which allow reversing steps
done in order to get back to a previous state of the computation [2].

Any temporal logic models computations over time, and time is generally
irreversible, but computations can be reversible, as we have seen. Because of this,
it seems a logic extension of temporal logic to introduce a “time reversal”, which
undoes computations and therefore seemingly reverses time, whereas actual time
is progressing. [10] introduced this for ITL.

Reversibility and reflection of logic is related to reversibility of programming
languages. Many works have researched the process of reversing executions of

216 A. Cau et al.

traditional programming languages, most of which are typically irreversible as
information is lost throughout. One approach to reversing such executions is
to save this lost information as a program executes forward and later use it
to reconstruct previous states (reflection). This includes the Reverse C Com-
piler [11] and the works of Hoey and Ulidowski [5,6]. Any irreversible step of
an execution is made reversible via this saved information. Execution time and
memory usage are crucial aspects of these methods, with a forward execution
typically being slower and memory requirements being higher as information is
recorded. Such approaches including that described here minimise these over-
heads sufficiently. This differs from checkpointing approaches, where a snapshot
of the state is taken at regular intervals and used to restore to previous positions
[11]. Depending on the snapshot frequency, large amounts of information must
be recorded and forward re-execution is sometimes required.

A second approach is to use reversible languages such as Janus [7], where any
valid program written in such a language can be executed both forward and in
reverse. This is comparable to ITL programs whose reflections are executable.
Janus relies on the use of increment/decrement operators to ensure no old val-
ues of variables are lost, as well as post-conditions that allow correct expression
evaluation during a reverse execution. However the challenge of converting pro-
grams of a traditional language into that of a reversible language may limit its
widespread use.

3 Interval Temporal Logic

Interval Temporal Logic (ITL) is a flexible notation for both propositional and
first-order reasoning about periods of time found in descriptions of hardware
and software systems [4,15]. Unlike most temporal logics, ITL can handle both
sequential and parallel composition and offers powerful and extensible speci-
fication and proof techniques for reasoning about properties involving safety,
liveness and projected time. Timing constraints are expressible and furthermore
most imperative programming constructs can be viewed as formulas in ITL.
AnaTempura (available from [4]) provides an executable framework for develop-
ing and experimenting with suitable ITL specifications.

3.1 Interval

In this section we revisit the underlying semantic model of Interval Temporal
Logic (albeit restricted to the finite case). The key notion of ITL is an inter-
val. An interval σ is considered to be a non-empty, finite sequence of states
σ0, σ1 . . . , σn. A state is the union of an integer state Statee which is a map-
ping from the set of integer variables Vare to the set of integer values Val, and
a Boolean state Stateb which is a mapping from the set of propositional vari-
able Varb to the set of Boolean values Bool. Note: the embedding of ITL in
Isabelle/HOL is such that one can use any definable type in Isabelle/HOL as
type for an ITL variable. We have restricted the types to just integers and

Reversibility of Executable Interval Temporal Logic Specifications 217

Boolean in this paper. Let Σ+ denote the set of all finite intervals with at
least 1 state. The length of an interval σ is denoted by |σ| and is the num-
ber of states minus 1, i.e., an interval with one state has length zero. Let
σ = σ0σ1σ2 . . . σ|σ| be an interval then σ0 . . . σk (where 0 ≤ k ≤ |σ|) denotes
a prefix interval of σ, σk . . . σ|σ| (where 0 ≤ k ≤ |σ|) denotes a suffix interval of
σ, σk . . . σl (where 0 ≤ k ≤ l ≤ |σ|) denotes a sub interval of σ.

3.2 Syntax

We first discuss the basic constructs and then introduce derived constructs.
Syntax of Expressions (Boolean or Integer) in BNF e :: = z | g(e1, . . . , en) |

A | fin A | ©A where z is a constant, g an operator, and A , ©A and fin A are
temporal variables. Syntax of formulae in BNF f :: = true | h(e1, . . . , en) | ¬f |
f1 ∧ f2 | ∃V � f | skip | f1 ; f2 | f∗ where h is a Boolean predicate over integer
or Boolean expressions, and V is a Boolean or integer variable. The formula skip
denotes any interval of exactly two states. The formula f1 ; f2, where f1 and
f2 are ITL formulae denotes an interval which is the fusion of two intervals,
f1 holds over the first interval and f2 holds for the second interval. Fusion will
concatenate two intervals in such a way that the last state of the first interval and
the first state of the second interval are “fused” together. Fusion is only possible
when these states are the same. If these states are not the same the resulting
interval does not exist, i.e., is false. The formula f∗ where f is an ITL formula
denotes the fusion of a finite number of intervals, where for each interval f holds.
Zero times fusion will result in an interval with exactly one state irrespective of
f , i.e., false∗ is equal to empty. Temporal variables ©V and fin V denote the
value of variables at a particular point in an interval and are used to specify
assignment constructs. The temporal variable ©A denotes the value of A in the
next state. The expression fin A denotes the value of A in the last state. The
formula ∃V � f denotes the introduction of a local variable V .

Derived Constructs. The traditional Linear Temporal Logic (LTL) operators
©,♦ and � are defined as follows: The formula ©f � skip ; f denotes that f
holds from the next state. Note that ©f is different from temporal variable ©V ,
although the same © symbol is used, ©f is using the © symbol on formula f
whereas ©V is using the © on a variable V . ©f itself is a formula whereas
©V denotes a value. The formula ♦ f � true ; f (sometimes) denotes that there
exists a suffix interval for which f holds. The formula � f � ¬♦ ¬f (always)
denotes that for each suffix interval f holds. The formula more � ©true denotes
an interval with at least two states. The formula empty � ¬more denotes an
interval with only one state. Note that no interval will satisfy the formula false.
The formula ©w f � empty ∨ ©f (weak next) denotes either an interval of only
one state or f holds from the next state.

Semantics. We now define the semantics of ITL which is a mapping from
the syntactic constructs of Sect. 3.2 and the semantic model (intervals) defined

218 A. Cau et al.

in Sect. 3.1 to values (Boolean or integer). Let E�. . .�(. . .) be the “meaning”
(semantic) function from Expressions × Σ+ to Val and let σ = σ0σ1 . . . be an
interval. Let M�. . .�(. . .) be the “meaning” function from Formulae×Σ+ to Bool.
The detailed semantics of each basic ITL construct is available from [4]. A first
order ITL formula f is satisfiable denoted by � f if and only if there exists an
interval σ such that M�f�(σ) = tt. A first order ITL formula f is valid denoted
by � f if and only if for all intervals σ, M�f�(σ) = tt.

3.3 Reflection

We now discuss the notion of temporal reflection for ITL formulae as defined in
[10]. We first discuss the semantic notion of the reverse of a sequence of states
and then discuss the reflection operator and its corresponding semantics.

Let f be a formula, e an expression, and σ be an interval σ0 . . . σ|σ| then rev(σ)
denotes interval reversal and is defined as rev(σ) � σ|σ| . . . σ0. fr denotes tempo-
ral reflection of formula f and is defined as M�fr�(σ) � M�f�(rev(σ)). er denotes
temporal reflection of expression e and is defined as E�er�(σ) � E�e�(rev(σ)).

The Isabelle/HOL ITL library (available from [4]) has defined reflection laws
for all basic ITL operators. We need to add a new temporal variable ©– V to
make ITL closed under reflection. The temporal variable ©– V is the reflection of
©V and denotes the value of V in the pen-ultimate (previous) state. The formal
semantics is as follows: if |σ| > 0 then σ|σ|−1(V) else any value from the Val.
This leads to the following theorem

Theorem 1. ITL (extended with ©– V) is closed under reflection.

4 Executability, Reflection and Reversibility

In this section we will discuss the notion of executability. It is used to determine
whether an ITL formula represents a programming construct. We first formalise
the notion of forward executability of a formula which corresponds to generating
a sequence of states in a particular fashion: we first generate the first state
and then generate the next until the final state is generated. This sequence of
state constitutes the behaviour of the system described by the formula. We then
investigate the reflection of forward executable formula and this requires the
introduction of the notion of backward executability. This notion corresponds
to generating a sequence of states but now we first generate the final state and
then generate the previous state until we generate the first state. This sequence
corresponds to the reversed behaviour of the system described by the formula.
Forward and backward executability are related by the reflection operator.

4.1 Forward Executability

The intuition of an executable formula (specification) is that it corresponds to
a computation, i.e., in our case a sequence of states. Obviously any executable

Reversibility of Executable Interval Temporal Logic Specifications 219

formula needs to be satisfiable. But not every satisfiable formula is executable
because we further require it to be “deterministic”. We will give a formal defini-
tion what we mean by this. The executable formula corresponds to programming
constructs. The following definitions are used to determine whether a formula
is executable or not. First we define the notion of a value trace of a formula
wrt a list of variables. These variables are the “free variables” appearing in f ,
i.e., f constrains the values of these variables. Note: These definitions and all
subsequent theorems have been specified and verified in the Isabelle/HOL [1]
system (library available from [4]).

Definition 1. Let s be a state and let v denote a non-empty list of variables
v0, . . . , vn and let s(v) denote the corresponding list of values s(v0), . . . , s(vn) of
v in state s. Let Spec be a formula and σ be an interval and M�Spec�(σ) = tt
then the value trace of Spec wrt v is denoted by map (λs.s(v)) σ and defined as
σ0(v) σ1(v) . . . σ|σ|(v).

Example 1. The value trace for A = 0 ∧ A gets A+1 ∧ �(B = A∗2) wrt (A,B)
is (0, 0) (1, 2) (2, 4) (3, 6) (4, 8) . . . and it represents how A and B change, A is
increased by one and B equals twice A in every state.

The following definition is a constraint on the intervals which satisfy a formula.
Only intervals that share a common prefix of the value trace are allowed,

Definition 2. A formula Spec has a common prefix value trace wrt a list
of variables v denoted by ‡[Spec]v if and only if for all intervals σ and σ′ if
M�Spec�(σ) = tt and M�Spec�(σ′) = tt and |σ| ≤ |σ′| then (map (λs.s(v)) σ) =
(map (λs.s(v)) (σ′

0 . . . σ′
|σ|)).

In above definition we compare the value trace corresponding to σ with the prefix
(of length |σ|) of the value trace of corresponding to σ′. The intuition is that the
latter is a continuation of the first,i.e., the first value trace is a “beginning” of
the latter value trace. The following example illustrates this notion.

Example 2. The following are some formula that have a common prefix value
trace.

– ‡[A = 0 ∧ empty]A, there is only one possible value trace 0.
– ‡[A = 0 ∧ A gets A + 1]A, the possible value traces are 0; 0, 1; 0, 1, 2. Each

pair of value traces share a common prefix. The common prefix value trace
of pair 0 and 0, 1 is 0 and of pair 0, 1 and 0, 1, 2 is 0, 1. Note that in the latter
pair there is another shared prefix 0 but in the definition it states that we
are looking for a prefix that has a length equal to the “smallest” of the two.
Note we align on the left.

The following are some formula that have no common prefix value trace.

– not ‡ [(A = 0 ∨ A = 1) ∧ empty]A, we have two value traces 0 and 1, but
they do not share a common prefix.

220 A. Cau et al.

– not ‡ [A = 0 ∧ skip]A, we have for instance value traces 0, 0 and 0, 1 but when
their length are the same they ought to agree on all values and this does not
hold as they disagree in the second state.

– not ‡ [skip]A, A does not appear in the formula so values of A are not con-
strained at all, one has value trace 0, 0 and 1, 0 and these do not share a
common prefix.

The following theorem states that the combination of satisfiability with the
notion of common prefix value trace can be used to determine whether a formula
is executable or not, i.e., satisfiable and deterministic.

Theorem 2. Let Spec be a formula and v be a list of variables. If � Spec and
‡[Spec]v then for all k ≥ 0 #{(map (λs.s(v)) σ) |M�Spec�(σ) = tt and |σ| =
k} ≤ 1.

In above theorem we have that all satisfying intervals of length k will corresponds
to at most one value trace.

The notion of common prefix value trace corresponds to the notion of gen-
erating a satisfying interval for a formula but it “limits” how this is achieved,
i.e., one proceeds in a forward manner by extending at the right and therefore
no backtracking will be used. The following definition introduces the notion of
forward executability.

Definition 3. Let Spec be a formula and v a list of variables. Spec is forward
executable wrt v denoted by †[Spec]v if and only if � Spec and ‡[Spec]v.
In Tempura [9], the executable subset of ITL, a formula Spec is rewritten into
a normal form init w0 ∧©w Spec0. The init w0 represents the initial state and
©w Spec0 represents the behaviour of the system from the next state onward
but only if there is a next state. This process is repeated for formula Spec0,
i.e., it is rewritten to init w1 ∧©w Spec1. This process of rewriting into normal
form corresponds to our notion of forward executability. This is expressed in the
following theorem.

Theorem 3. Given formulae w and Spec and a list of variables v. If †[init w ∧
empty]v and †[Spec]v then †[init w ∧©w Spec]v.

In Example 2 we have seen that one needs to be careful in adding constructs
that limit the length of an interval. The following theorem gives conditions for
which it is safe to do so.

Theorem 4. Let Spec0 and Spec1 be formula and v be a list of variables. If
� Spec0 ∧ Spec1 and ‡[Spec0]v then †[Spec0 ∧ Spec1]v.

In this theorem formula Spec0 ensures that the values for v are deterministic and
formula Spec1 is used to put extra constraints on the intervals satisfying Spec0.
The � Spec0 ∧ Spec1 condition ensures that we have at least one such interval.
Examples of such Spec1 are len (k), ♦ init w and halt w. On their own these
formulae are not forward executable but combined with a forward executable
one they will be.

Reversibility of Executable Interval Temporal Logic Specifications 221

4.2 Backward Executability

We now investigate reversing executable specifications. Reflection relates the
notion of prefix intervals with that of suffix intervals. So we need to introduce
the “mirror image” of common prefix value traces, i.e. the notion of common
suffix value trace.

The following definition is a constraint on the intervals which satisfy a for-
mula. Only intervals that share a common suffix of the value trace are allowed.

Definition 4. A formula Spec has a common suffix value trace wrt a list of
variables v denoted by �[Spec]v if and only if for all intervals σ and σ′ if
M�Spec�(σ) = tt and M�Spec�(σ′) = tt and |σ| ≤ |σ′| then (map (λs.s(v)) σ) =
(map (λs.s(v)) (σ′

|σ′|−|σ| . . . σ
′
|σ′|)).

The following example illustrates this notion.

Example 3. The following are some formula that have a common suffix value
trace.

– �[(fin A) = 0 ∧ empty]A, there is only one value trace 0.
– �[�(A = 0)]A, the possible value traces are 0; 0, 0; 0, 0, 0. Each pair of value

traces share a common suffix.

The following are some formula that have no common suffix value trace.

– not �[(A = 0 ∨ A = 1) ∧ empty]A, we have two value traces 0 and 1, but they
do not share a common suffix.

– not �[(fin A) = 0 ∧ skip]A, we have for instance value traces 0, 0 and 1, 0 but
when their length are the same they ought to agree on all values and this
does not hold as they disagree in the first state.

– not �[skip]A, A does not appear in the formula so values of A are not con-
strained at all, one has value trace 0, 0 and 0, 1 and these do not share a
common suffix.

The following lemma states the relationship between common prefix, common
suffix and reflection.

Lemma 1. Let Spec be formula and v be a list of variables then
‡[Specr]v iff �[Spec]v and �[Specr]v iff ‡ [Spec]v.

For the notion of satisfiability we have the following lemma.

Lemma 2. Let Spec be a formula then (� Specr) iff (� Spec).

The following theorem states that the combination of satisfiability with the
notion of common suffix value trace can be used to determine whether a for-
mula is deterministic or not, i.e., is backward executable or not.

Theorem 5. Let Spec be a formula and v be a list of variables. If � Spec and
�[Spec]v then for all k ≥ 0 #{(map (λs.s(v)) σ) |M�Spec�(σ) = tt and |σ| =
k} ≤ 1.

222 A. Cau et al.

The notion of common suffix value trace corresponds to notion of generating a
satisfying interval for a formula but it ”limits” how this is achieved, i.e., one
proceeds in a backward manner. The following definition introduces the notion
of backward executability.

Definition 5. Let Spec be a formula and v a list of variables. Spec is backward
executable wrt to v denoted by �[Spec]v if and only if � Spec and �[Spec]v.

In Tempura we have unfortunately no rules for backward execution. But we can
define a mirror image of Theorem 3, i.e., the normal form would be fin w ∧©∼ Spec.
So we first generate the last state of the interval and then proceed to determine
the previous state if there is any.

Theorem 6. Given the formulae w and Spec and list of variables v. If �[fin w ∧
empty]v and �[Spec]v then �[fin w ∧©∼ Spec]v.

The following theorem is similar to Theorem 4.

Theorem 7. Let Spec0 and Spec1 be formula and v be a list of variables. If
� Spec0 ∧ Spec1 and �[Spec0]v then �[Spec0 ∧ Spec1]v.

4.3 Reversing the Effects of Bad Computations

In the introduction we have seen that we are interested in formulae of the form
Good ; Bad ; (Bad)r. We now investigate under which conditions can we forward
execute Bad ; Badr. The chop operator is non-deterministic if the length of Bad
is left unspecified, i.e., generally we have not † [Bad ; Badr]v. However, we can
use Theorem 4 to strengthen Bad to Bad ∧ len (k). We similarly strengthen
the Badr to Badr ∧ len (k) in order to ensure that we undone that specific
bad computation Bad ∧ len (k). Note that (Bad ∧ len (k))r is equivalent to
Badr ∧ len (k), this follows from the reflection laws. The following theorem gives
the conditions necessary to “undo” a bad computation.

Theorem 8. Let Spec be a formula and v be a list of variables. If � Spec ∧
len k and ‡[Spec]v and �[Spec]v then †[(Spec ∧ len (k)) ; (Specr ∧ len (k))]v and
�[(Specr ∧ len (k)) ; (Spec ∧ len (k))]v.

Notice that Spec needs to have both a common prefix value trace and a common
suffix value trace. In the first case we proceed in a forward manner while in the
second case in a backward manner.

5 Conclusion and Future Work

First order ITL is a flexible notation for specifying properties and behaviours of
systems. Most imperative programming constructs can be specified by formulae
in ITL. We have used the reflection operator for the specification of reversed
behaviour of systems. It is shown that ITL is closed under this reflection operator
which means that we can specify its reverse for any ITL formula. We have

Reversibility of Executable Interval Temporal Logic Specifications 223

presented an extensive list of reflection laws that help in the construction of the
reverse of an ITL formula. We have shown that when an ITL formula is forward
and backward executable then one can indeed reverse its behaviour.

Future work consists of adding the backward execution mechanism to the
Tempura tool. The reflection and reversal of event-based programs is another
area of interest. In an event-based program, a trigger event causes a chain of
reactions by a system. The occurrence of a trigger can not be reversed but the
reaction by the system can be reversed. However, this reaction might include
other triggers that will set off other chains of reactions. Determining this chain
of reactions and reversing its effects are some of the challenges that need to be
addressed.

References

1. The Isabelle Proof Assistant. https://isabelle.in.tum.de/. Accessed 26 Jan 2020
2. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–

532 (1973)
3. Cau, A., Kuhn, S., Hoey, J.: Executable interval temporal logic specifications.

https://arxiv.org/abs/2105.03375 (2021)
4. Cau, A., Moszkowski, B.: The ITL homepage. http://antonio-cau.co.uk/ITL/

(2019). Accessed 26 Jan 2020
5. Hoey, J., Ulidowski, I.: Reversible imperative parallel programs and debugging.

In: Thomsen, M.K., Soeken, M. (eds.) RC 2019. LNCS, vol. 11497, pp. 108–127.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21500-2 7

6. Hoey, J., Ulidowski, I., Yuen, S.: Reversing parallel programs with blocks and
procedures. EXPRESS/SOS 2018, 69–86 (2018)

7. Lutz, C.: Janus: a time-reversible language. A letter to Dr. Landauer (1986).
http://tetsuo.jp/ref/janus.pdf

8. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Sys-
tems: Specification. Springer, New York (1992). https://doi.org/10.1007/978-1-
4612-0931-7

9. Moszkowski, B.: Executing Temporal Logic Programs. Cambridge University Press,
Cambridge (1986)

10. Moszkowski, B.: Compositional reasoning using intervals and time reversal. Ann.
Math. Artif. Intell. 175–250 (2013). https://doi.org/10.1007/s10472-013-9356-8

11. Perumalla, K.: Introduction to Reversible Computing. CRC Press, Boca Raton
(2014)

12. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science (sfcs 1977), pp. 46–57, October 1977

13. Prior, A.N.: Diodoran modalities. Philos. Q. 5(20), 205–213 (1955)
14. Ulidowski, I., Lanese, I., Schultz, U.P., Ferreira, C. (eds.): RC 2020. LNCS, vol.

12070. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-47361-7
15. Zhou, S., Zedan, H., Cau, A.: Run-time analysis of time-critical systems. J. Syst.

Archit. 51(5), 331–345 (2005)

https://isabelle.in.tum.de/
https://arxiv.org/abs/2105.03375
http://antonio-cau.co.uk/ITL/
https://doi.org/10.1007/978-3-030-21500-2_7
http://tetsuo.jp/ref/janus.pdf
https://doi.org/10.1007/978-1-4612-0931-7
https://doi.org/10.1007/978-1-4612-0931-7
https://doi.org/10.1007/s10472-013-9356-8
https://doi.org/10.1007/978-3-030-47361-7

	Reversibility of Executable Interval Temporal Logic Specifications
	1 Introduction
	2 Background
	3 Interval Temporal Logic
	3.1 Interval
	3.2 Syntax
	3.3 Reflection

	4 Executability, Reflection and Reversibility
	4.1 Forward Executability
	4.2 Backward Executability
	4.3 Reversing the Effects of Bad Computations

	5 Conclusion and Future Work
	References

