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Abstract. This paper analyses the introduction of a non-reversible
mechanism in a reversible calculus (called Ωρπ), intended to be used
as an oracle which contains persistent memories of previously reversed
computation. As a second step, we introduce the notion of weak causal
consistency which relaxes the classical causal consistency by allowing
the backward semantics not to revert to a previous state, but to a state
related to a previous state and we show that Ωρπ is weakly causally
consistent. We finally present a practical application of this calculus.

1 Introduction

Motivations. Reversibility is the ability, for a system, to undo some actions
that were previously taken. We can approach this field from various perspectives
such as circuit design, quantum algorithms, automaton, etc. In this paper, we are
interested in the application of reversibility to concurrent systems. There already
exists multiple works in this context, for debugging [4], for fault tolerance [14,18],
for biological or chemical modelling [1,2,7,16], or even for reliable concurrent
programming abstraction [12].

In concurrent systems, the very notion of reversibility is not trivial. Indeed,
since reductions are not deterministic, defining the notion of predecessor is less
intuitive. For instance, consider the following CCS process [13]: a.0 | b.0. There
are two possible forward reductions: either a.0 | b.0 a→ b.0, or a.0 | b.0 b→ a.0, and
both reduce to 0: both a.0 and b.0 are predecessors of 0. Intuitively, reverting to
any of those states is acceptable, regardless of the forward sequence.

The standard property of a reversible system is causal consistent reversibil-
ity, which captures this intuition. Causal consistent reversibility states that a
backward reduction can undo an action, provided that its consequences (if any)
are undone beforehand.

There are works which intentionally break causal consistent reversibility.
Typical applications include reversible calculi to model chemical reactions with
catalyst: an example is a reaction between three molecules A, B, and C, where
the objective is to bind A and B together. For the reaction to happen, B first
have to bind with the catalyst C, to create molecule BC, which can in turn bind
with A, to create ABC. Finally, the first binding is reverted, which results in AB
and C apart. One can clearly see that such reduction is not causally consistent:
the first reaction is reverted while the second holds. Such reversibility is called
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out-of-causal-order reversibility. Calculi which model such chemical reactions
include [16] (which first explicitly mentions out-of-causal-order reversibility) and
Kuhn and Ulidowski’s Calculus of Covalent Bonding [6,7] (in which they distin-
guish CCB, which is not causally consistent, and CCBs a core calculus which is).
[5] compares in detail three out-of-causal-order reversible process calculi,
while [15] studies three forms of reversibility (backtracking, causal reversibil-
ity, and out-of-causal-order reversibility) in Petri nets.

Breaking causal consistency can also be motivated by practical applications.
For instance, in [8], Lanese et al. introduce the croll-π calculus, which is a
reversible π-calculus in which, when a memory is reinstalled in a revert sequence,
the original process is replaced by a continuation. Such approach is not causally-
consistent, stricto sensu1.

In this paper, we study the relation between algorithms based on trial and error
and reversibility. An example of such algorithm is a naive consensus algorithm, in
which each process tries its own value, and when it receives a smaller value from a
peer, it rolls back and tries again with this smaller value. Such algorithm converges
toward a state in which all processes agree on the same value.

Informally, we focus on a class of algorithms that behave in four steps: (i)
read the current state; (ii) improve it; (iii) store it; and (iv) start over. Among
those four steps, only the second depends on the algorithm. Standard reversible
process algebra, such as ρπ, implement the fourth one (or roll−π [9] for explicit
rollback control).

In this paper, our goal is to define a calculus which also covers steps (i)
and (iii). In particular, the stored state should not be reverted during backward
execution. Another way to view the mechanism is that processes can predict
information from the future state of the system. This is the reason why we call
the context an oracle.

Our second objective is to characterise the reversible nature of such calculus.
Intuitively, such calculus is not causally-consistent, since the state of the store
is not reverted. Therefore, we relax the notion of causal-consistency by intro-
ducing weak causal consistency. In a nutshell, weak causal consistency takes
as parameter a relation R, and allows backward reduction to reach new states
(thus breaking regular causal consistency), under the condition that there exists
a related state which is reachable using forward only reduction. In particular, for
our application, we are interested in a simulation relation. Taking the identity
as the parameter relation, our definition falls back on regular causal consistency.
We expect this property to be an intermediate point between strong causal con-
sistency and out-of-causal-order reversibility.

Another interesting aspect of this calculus is that the backward semantics is
partial, in the sense that its effects are confined to some parts of the term. This
notion of partial reversibility is barely discussed in this paper, but we think it is
important to explicit it for its potential practical applications.

1 Note that, actually, it still has some sort of causal consistency, in that backward seman-
tics undo the latter messages first. Therefore it is not possible to have an effect without
its cause, but the resulting state is not reachable without backward sequence.



Reversibility and Predictions 165

Approach. At first, we introduce a calculus (called Ωρπ) based on ρπ [10], to
which we add two primitives: inform〈·〉 and forecast(·) � ·. These two prim-
itives are used to interact with a context (which we call the oracle): sending
on inform〈·〉 stores a process in the context, and receiving from forecast(·) � ·
reads the context. The important aspect of the context is that it is preserved
through backward reductions.

Introducing these primitives prevents our calculus to be causally consistent:
it is possible to revert to the original configuration, but with a different con-
text. Nonetheless, we still have a notion of consistency: a configuration with an
uninitialised context can simulate any context. The second part of this work is
to characterise this weaker notion of causal consistency.

We finally conclude with a practical application: we implement a distributed
Sieve of Eratosthenes.

Contributions. The main contributions of this papers are: (i) a partially
reversible calculus Ωρπ, which adds two primitives to save a process across back-
ward reductions; (ii) the definition of weak causal consistency, which relaxes the
usual causal consistency; (iii) a proof that Ωρπ is weakly causally consistent;
and (iv) an application of Ωρπ, which illustrates the capabilities and limitations
of the calculus.

Outline. The paper is organised as follow: Sect. 2 introduces informally the ρπ
calculus, on which Ωρπ is based, and the notion of simulation which is latter
used. Section 3 defines the Ωρπ calculus. We explain how the calculus relates to
ρπ and we argue that the oracle behaves as expected. Section 4 is a small section
devoted to the introduction of weak causal consistency. Section 5 shows our main
result, which is that Ωρπ is weakly causally consistent. Section 6 contains the
application example. Finally, Sect. 7 concludes the paper.

2 Preliminary Considerations

In this first section, we present existing work on which the core of this paper is
based. In the first subsection, we informally present ρπ, a reversible variant of
the higher-order π-calculus. In the second subsection, we present the notion of
simulation, used in multiple works.

2.1 Informal Introduction to ρπ

The ρπ calculus is a reversible higher-order process calculus, first introduced
in [10]. In this section, we informally introduce the ρπ calculus, and we refer the
interested reader to Lanese’s paper for a more detailed presentation.

Terms of the ρπ calculus (whose syntax is shown in Fig. 1) are composed of
a configuration, built up from threads and memories. Threads are themself com-
posed of a process (which is similar to processes of the higher-order π-calculus))
and a tag, used as an identifier for the process.
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P, Q ::= 0 | X | νa.P | P | Q Process
| a〈P 〉 | a(X) � P

M, N ::= 0 | νu.M | M | N | κ : P | [μ; k] Configuration
κ ::= k | 〈h, h̃〉 · k Tag
μ ::= κ1 : a〈P 〉 | κ2 : a(X) � Q Memory content

Fig. 1. Syntax of ρπ

The basic building blocks of processes are the emission of a message P on
a name a (written a〈P 〉) and the reception of a message on a name a (written
a(X) � P ). When a message (for instance Q) is received, the free occurrences of
X in P are replaced by Q, and the resulting process is assigned a new fresh tag.
In addition, upon message exchange, a new memory is created, which contains
the state of the two processes prior to the message exchange. Informally, the
forward reduction rule is the following:

k1 : a〈P 〉 | k2 : a(X) � Q � νk.k : Q{P /X} | [k1 : a〈P 〉 | k2 : a(X) � Q; k]

In this forward rule, notice that the memory contains the tag of the resulting
process. This allows the backward execution of the configuration, by replacing a
process by the relevant memory:

k : P | [M ; k] � M

2.2 State Simulation

Given a set of states S and a reduction relation → over states of S, the notion
of simulation, originally defined in [17], formalises the statement “any reduction
of state S1 can be done by state S2”.

Definition 1 (Weak simulation). Given two states S1, S2 ∈ S, a state S2

simulates another state S1 (noted S1 � S2) if and only if:

∀S′
1 · S1 → S′

1 ⇒ ∃S′
2 · S2 →� S′

2 ∧ S′
1 � S′

2

where →� is the reflexive and transitive closure of →.

Notice that state simulation is reflexive and transitive.

Remark 1. In Sects. 5 and following of this paper, we use a stronger form of
simulation in which S2 → S′

2 and S1 → S′
1 using the same reduction rule.

3 The Ωρπ Calculus

In this first section, we present the Ωρπ calculus, which is built on top of the ρπ
calculus, itself built on top of the higher-order π calculus (HOπ).
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Processes of HOπ are composed of a multiple sequences of message sending
and receiving, with possible name restrictions. The semantics of HOπ is that when
a process sends a process P and, simultaneously, a process expects to receive a
process (variable X) on the same channel, then the second process replaces free
occurances of X by P . The ρπ calculus decorates HOπ processes in order to
allow reverse executions of message communications. The first subsection of this
section informally introduces ρπ.

In Ωρπ, we decorate ρπ configurations with a process. We say a decorated
ρπ configuration is a context. We obtain the semantics of contexts by lifting the
ρπ semantics to contexts. To interact with the context, we add two primitives
inform and forecast (which act as special channels) to write and read the
context.

3.1 Syntax

The syntax of the Ωρπ calculus is given in Fig. 2. Processes are similar to the
regular HOπ calculus, with the addition of the inform and forecast primitives.
Configurations, tags and memories are similar to those of ρπ (up to the addition
of the primitives).

Contrary to ρπ, configurations are not directly executed: there are embedded
in a context, which annotates the configuration with a process.

P, Q ::= 0 | X | νa.P | P | Q Process
| a〈P 〉 | a(X) � P
| inform〈P 〉 | forecast(X) � P

M, N ::= 0 | νu.M | M | N | κ : P | [μ; k] Configuration
C ::= M|P Context
κ ::= k | 〈h, h̃〉 · k Tag
μ ::= κ1 : a〈P 〉 | κ2 : a(X) � Q Memory content

| κ : forecast(X) � P

Fig. 2. Syntax of Ωρπ. The differences with ρπ are highlighted.

Let C be the set of contexts, M the set of configurations and P the set of
processes. We let P , Q and their decorated variants range over P; M , N and
their decorated variants range over M and C and its decorated variants range
over C. We say that a context C is initial when it does not contain memory.

Names a, b, . . . take their values from N, which does not contains forecast
and inform.

As in ρπ, h̃ denotes a vector of keys.

3.2 Semantics

The semantics of Ωρπ is defined in two successive parts: first we define the seman-
tics of configurations, as a labelled transition system, then we define the seman-
tics of contexts, using the semantics of configurations. Intuitively, the semantics
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of configurations acts as the semantics of ρπ (up to the required modifications),
and the labels of transitions expose the interactions with the oracle. The seman-
tics of contexts simply interprets the labels, updates the oracle accordingly, or
constraint the transitions that can be taken by the configurations.

Configuration Semantics. The configuration semantics is defined using two
reduction relations (a forward reduction relation �c and a backward reduc-
tion relation �c). As usual, we use a structural congruence relation (see Fig. 3),
which allows to reorder the processes.

M | N ≡ N | M (M1 | M2) | M3 ≡ M1 | (M2 | M3) M | 0 ≡ M νu.0 ≡ 0

νu.νv.M ≡ νv.νu.M (νu.M) | N ≡ νu.(M | N) u does not appear free in N

M =α N ⇒ M ≡ N k : νa.P ≡ νa.k : P

k : (
∏

1≤i≤n

Pi) ≡ νh̃.(
∏

1≤i≤n

〈hi, h̃〉 · k : Pi) h̃ = {h1, . . . , hn}

Fig. 3. Structural congruence for Ωρπ configurations.

We also use an evaluation context (see Fig. 4). Intuitively, an evaluation con-
text is a process with a hole.

E ::= · | νu.E | M | E

Fig. 4. Evaluation context

A relation R over configurations is evaluation-closed if it satisfies the two
inference rules in Fig. 5.

M R N

E [M ] R E [N ]
M ≡ M ′ M R N N ≡ N ′

M ′ R N ′

Fig. 5. Inference rules for evaluation-closed relations.

The configuration semantics is defined as the least evaluation-closed relation
that satisfies the rules in Fig. 6.

Reduction rules are heavily based to ρπ rules, with the following differences:
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(C.Fw) κ1 : a〈P 〉 | κ2 : a(X) � Q
τ�c νk.k : Q{P /X} | [κ1 : a〈P 〉 | κ2 : a(X) � Q; k]

(C.Bw) νk.k : P | [Q; k] τ�c Q

(C.Inf) κ : inform〈P 〉 P�c νk.k : 0 | [κ : inform〈P 〉; k]

(C.For) κ : forecast(X) � Q
P�c νk.k : Q{P /X} | [κ : forecast(X) � Q; k]

Fig. 6. Reduction rules of Ωρπ configuration semantics.

– transitions are labeled: reading a process P from the oracle labels the transi-
tion with P , setting the oracle to P labels it with P , and all other transitions
are labeled with the special symbol τ ; and

– memories created by the modification of the oracle do not contain a receiver
process.

Notice that the primitives seemingly act like regular channels.
The two rules (C.Fw) and (C.Bw) correspond to the forward and backward

rules of the regular ρπ calculus: the former perform the exchange of a message,
and creates an associated memory, and the backward rule replace a process by
the corresponding memory. Notice that, since those two rules do not interact
with the oracle, their label is τ .

Rule (C.Inf) allows a process to update the oracle. Since we are at the config-
uration level, and therefore the oracle is not visible here, this rule simply reduces
to an empty process, and emits a label P , where P is the new process stored in
the oracle.

On the other hand, with rule (C.For), a process forecast(X) � Q can read
a process P from the oracle, and substitute free occurrences of X by P in Q.
Since we are at the configuration level, the oracle is not visible, and the process
P read is not constrained at this point. Instead, a label P is emitted, which is
then used below to constraint the reduction.

Global Semantics. The global semantics is defined using two reduction relations:
a forward reduction relation (noted �) and a backward reduction relation (noted
�), defined according to the reduction rules given in Fig. 7.

Silent configuration transitions are simply lifted to the global semantics (rules
G.Fw and G.Bw). If the configuration transition exposes a Q label, then the
context is updated accordingly (rule G.Inform). Notice that we require the
newly stored process to simulates the previous one, which captures the intuition
of refinement of the stored value2. On the other hand, for forecast labels (P ),

2 We could generalize this rule by relaxing the constraint that Q � P , by introducing a
binary relation of processes R as parameter and requiring that 〈P, Q〉 ∈ R, and then
instantiating our semantics with � as R in this paper. However, the implications
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(G.Fw)
M

τ�c N

M |P � N |P (G.Bw)
M

τ�c N

M |P � N |P

(G.Inform)
M

Q
�c N Q � P

M |P � N |Q

(G.Forecast)
M

P�c N

M |P � N |P

Fig. 7. Reduction rules of Ωρπ global semantics.

the corresponding configuration transition is allowed only if the label matches
the context (rule G.Forecast).

We note → the semantics of Ωρπ, defined as →=� ∪ �. Also, →�, �� and
�� are the transitive and reflective closure of →, � and �.

A trace is a sequence of transitions σ = t1; . . . ; tn with ti = Ci−1 → Ci. When
C0 is initial, we call the trace initial. When t1; . . . ; ti are the only G.Inform
reduction of σ (i.e. if none of ti+1; . . . ; tn is a G.Inform reduction), we call σ
a forecast sequence (ti is called the last inform transition of the sequence). A
trace that contains only forward (resp. backward) transitions is called forward
trace (resp. backward trace). We note ε for an empty trace. Two traces t1; . . . ; tn
and t′1; . . . ; t

′
m are said coinitial if t1 = C1 → C and t′1 = C1 → C ′ and cofinal if

tn = C → Cf and t′m = C ′ → Cf .

Example. The example in Fig. 8 shows an execution of a Ωρπ context. The initial
context is c〈P1〉 | c〈P2〉. This context contains two processes to be read on c.
The configuration is composed of two threads. The first one (initially with tag
k1) reads the context, and then receives one of the two process on c (due to the
non-deterministic semantics, the choice is random), and runs it. Intuitively, it
launches one of the process at random. Notice, in particular, that if it rolls back
to the initial configuration, an other process can be selected during a second
attempt. The second process (initially with tag k2), performs a definitive choice.
Similarly to the first thread, it selects one of the possible process at random, but
contrary to the first thread, it modifies the context to store that choice.

In the example, first k1 reduces, and first chooses process P1, which is run
(the two first reductions). At this point, if the process rolls back and restarts, it
still has the choice (not shown). After, k2 reads the context, then selects P2, and
finally modifies the oracle (transitions 3, 4 and 5). At this point, the selection

of such generalization are not trivial, in particular with respect to the weak causal
consistency result presented latter in this paper. Therefore, for the sake of simplicity,
we restrict ourself to the restricted definition.
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is definitive3. A sequence of backward reduction revert the configuration in its
initial state, but with the context modified. Now, when the first two reduction
are replayed, k1 has no choice and selects P2.

3.3 Oracle Soundness

In this subsection, we argue that the oracle behaves as expected: we expect that,
looking at a trace, any reduction G.Forecast that occurs should forecast P ,
when the previous reduction G.Inform that occurs in the trace sets the oracle
with process P , regardless of any backward reduction in between (or with the
initial P if no G.Inform transition is taken).

More formally, given a trace σ, for any subtrace σij = ti; . . . ; tj of σ with
tk = M |P → N |Q the last inform transition of σij , for any t ∈ tk+1; . . . ; tj , t is
either G.Fw, G.Bw or G.Forecast with context Q.

To begin with, we show that the context does not change, except during
G.Inform transition.

Lemma 1. Given a trace σ such that the final context is M |P .
The last G.Inform reduction (if any) in σ is N |Q � N ′|P .

Proof. By induction on the length of σ. In the case σ is ε, then trivially, Q = P
and no reduction occurs.

In the case σ = σ′; t. Let N |R be the final context of the σ′ trace. Let t be
N |R → M |P . We proceed by case analysis of the transition t, the cases G.Fw,
G.Forecast and G.Bw are trivial. If t is G.Inform, then t = N |R � M |P ,
and it is the last G.Inform transition.

Using this fact, we show that G.Forecast reductions read the context set
by the previous G.Inform reduction4.

Lemma 2. Given a trace σ = t1; . . . ; tn with ti = M |P � M ′|Q being the last
G.Inform reduction of σ, then for any G.Forecast reduction t in the subtrace
ti+1; . . . ; tn, t = N |Q � N ′|Q.
Corollary 1 (Oracle soundness). Given a trace σ, for any G.Forecast
reduction M |P � M ′|P , the preceding G.Inform transition is N |Q � N ′|P .

4 Weak Causal Consistency

The Ωρπ calculus is not causally consistent: it is possible to inform the oracle
and then go back to the initial configuration (up to context), which is, obviously,
not reachable using only forward reductions (see Fig. 9: the modification of the
oracle happens after —in Lamport terms— the message exchange).
3 Notice that, due to the pending 〈k1

5 , k̃5〉 : c〈P1〉 that remains after the choice, if k1

reduces at this point, when reading c it could actually receive from this pending
process. For the sake of simplicity, we ignore this, since that garbage process is
cleaned up when k2 returns in its initial state.

4 The proof is trivial. Due to length constraints, we omit it.
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k1 : forecast(X) � (X | c(Y ) � Y ) | k2 : forecast(X) � (X | c(Y ) � inform〈c〈Y 〉〉)|c〈P1〉 | c〈P2〉
� G.Forecast

νk3.k3 : c〈P1〉 | c〈P2〉 | c(Y ) � Y | k2 : forecast(X) � (X | c(Y ) � inform〈c〈Y 〉〉)
| [k1 : forecast(X) � (X | c(Y ) � Y ); k3]|c〈P1〉 | c〈P2〉

� G.Fw

νk3.νk̃3.〈k1
3, k̃3〉 : c〈P1〉 | νk4.k4 : P2 | k2 : forecast(X) � (X | c(Y ) � inform〈c〈Y 〉〉)

| [k1 : forecast(X) � (X | c(Y ) � Y ); k3] | [〈k2
3, k̃3〉 : c〈P2〉 | 〈k3

3, k̃3〉 : c(Y ) � Y ; k4]|c〈P1〉 | c〈P2〉
� G.Forecast

νk3.νk̃3.〈k1
3, k̃3〉 : c〈P1〉 | νk4.k4 : P2 | νk5.k5 : c〈P1〉 | c〈P2〉 | c(Y ) � inform〈c〈Y 〉〉

| [k1 : forecast(X) � (X | c(Y ) � Y ); k3] | [〈k2
3, k̃3〉 : c〈P2〉 | 〈k3

3, k̃3〉 : c(Y ) � Y ; k4]

| [k2 : forecast(X) � (X | c(Y ) � inform〈c〈Y 〉〉); k5]|c〈P1〉 | c〈P2〉
� G.Fw

νk3.νk̃3.〈k1
3, k̃3〉 : c〈P1〉 | νk4.k4 : P2 | νk5.νk̃5.〈k1

5, k̃5〉 : c〈P1〉 | νk6.k6 : inform〈c〈P2〉〉
| [k1 : forecast(X) � (X | c(Y ) � Y ); k3] | [〈k2

3, k̃3〉 : c〈P2〉 | 〈k3
3, k̃3〉 : c(Y ) � Y ; k4]

| [k2 : forecast(X) � (X | c(Y ) � inform〈c〈Y 〉〉); k5]

| [〈k2
5, k5〉 : c〈P2〉 | 〈k3

5, k5〉 : c(Y ) � inform〈c〈Y 〉〉; k6]|c〈P1〉 | c〈P2〉
� G.Inform

νk3.νk̃3.〈k1
3, k̃3〉 : c〈P1〉 | νk4.k4 : P2 | νk5.νk̃5.〈k1

5, k̃5〉 : c〈P1〉 | νk6.νk7.k7 : 0

| [k1 : forecast(X) � (X | c(Y ) � Y ); k3] | [〈k2
3, k̃3〉 : c〈P2〉 | 〈k3

3, k̃3〉 : c(Y ) � Y ; k4]

| [k2 : forecast(X) � (X | c(Y ) � inform〈c〈Y 〉〉); k5]

| [〈k2
5, k5〉 : c〈P2〉 | 〈k3

5, k5〉 : c(Y ) � inform〈c〈Y 〉〉; k6] | [k6 : inform〈c〈P2〉〉; k7]|c〈P2〉
� G.Bw

νk3.νk̃3.〈k1
3, k̃3〉 : c〈P1〉 | νk4.k4 : P2 | νk5.νk̃5.〈k1

5, k̃5〉 : c〈P1〉 | νk6.k6 : inform〈c〈P2〉〉
| [k1 : forecast(X) � (X | c(Y ) � Y ); k3] | [〈k2

3, k̃3〉 : c〈P2〉 | 〈k3
3, k̃3〉 : c(Y ) � Y ; k4]

| [k2 : forecast(X) � (X | c(Y ) � inform〈c〈Y 〉〉); k5]

| [〈k2
5, k5〉 : c〈P2〉 | 〈k3

5, k5〉 : c(Y ) � inform〈c〈Y 〉〉; k6]|c〈P2〉
� G.Bw

νk3.νk̃3.〈k1
3, k̃3〉 : c〈P1〉 | νk4.k4 : P2 | νk5.k5 : c〈P1〉 | c〈P2〉 | c(Y ) � inform〈c〈Y 〉〉

| [k1 : forecast(X) � (X | c(Y ) � Y ); k3] | [〈k2
3, k̃3〉 : c〈P2〉 | 〈k3

3, k̃3〉 : c(Y ) � Y ; k4]

| [k2 : forecast(X) � (X | c(Y ) � inform〈c〈Y 〉〉); k5]|c〈P2〉
� G.Bw

νk3.νk̃3.〈k1
3, k̃3〉 : c〈P1〉 | νk4.k4 : P2 | k2 : forecast(X) � (X | c(Y ) � inform〈c〈Y 〉〉)

| [k1 : forecast(X) � (X | c(Y ) � Y ); k3] | [〈k2
3, k̃3〉 : c〈P2〉 | 〈k3

3, k̃3〉 : c(Y ) � Y ; k4]|c〈P2〉
� G.Bw

νk3.k3 : c〈P1〉 | c〈P2〉 | c(Y ) � Y | k2 : forecast(X) � (X | c(Y ) � inform〈c〈Y 〉〉)
| [k1 : forecast(X) � (X | c(Y ) � Y ); k3]|c〈P2〉

� G.Bw

k1 : forecast(X) � (X | c(Y ) � Y ) | k2 : forecast(X) � (X | c(Y ) � inform〈c〈Y 〉〉)|c〈P2〉
� G.Forecast

νk3.k3 : c〈P2〉 | c(Y ) � Y | k2 : forecast(X) � (X | c(Y ) � inform〈c〈Y 〉〉)
| [k1 : forecast(X) � (X | c(Y ) � Y ); k3]|c〈P2〉

Fig. 8. Example of a Ωρπ forward and backward execution. On each line, the part of
the term that takes the next transition is coloured in red. The result of the previous
transition is coloured in blue on the next line. When the result of the previous transition
also takes the next transition, it is coloured in green. (Color figure online)
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k1 : a〈P 〉 | k2 : a(X) � inform〈X〉|P | Q

� G.Fw

νk3.k3 : inform〈P 〉 | [k1 : a〈P 〉 | k2 : a(X) � inform〈X〉; k3]|P | Q

� G.Inform

νk3.νk4.k4 : 0 | [k3 : inform〈P 〉; k4] | [k1 : a〈P 〉 | k2 : a(X) � inform〈X〉; k3]|P
� G.Bw (twice)

k1 : a〈P 〉 | k2 : a(X) � inform〈X〉|P

Fig. 9. Example of a sequence of reductions which leads to a configuration that can
not be reached using only forward reductions.

However, our calculus still exhibits an almost causally consistent behaviour:
the embedded configuration is the same and the initial P | Q context is more
general than a specific context P , in the sense that any reduction with a context
P can be done by a context P | Q.

This section formalises this intuition, which we call weak causal consistency.
In this section, we consider a generic transition system, with a set of states S,
equipped with a forward transition relation � and a backward transition relation
� and a (general) transition relation →=� ∪ �.

R-weak Causal Consistency. Given a relation R ⊆ S×S, a reversible system is R-
weakly causally consistent is for each state Cf reachable from an initial state Ci,
there exists a related state C ′

f reachable using only forward transitions. We first
define the notion of initial state (a state that can only take forward reductions),
and we then formalise our notion of weak causal consistency.

Definition 2 (Initial state). A state Ci is initial (noted Ci ��) if and only if
there exists no C such that Ci � C.

Definition 3 (Weak causal consistency). A reversible transition system
Σ = 〈S,�,�〉 is weakly causally consistent (with respect to R) if and only
if:

∀Ci, Cf ∈ S · Ci �� ∧Ci →� Cf ⇒ ∃C ′
f ∈ S · Ci �� C ′

f ∧ 〈C ′
f , Cf 〉 ∈ R

This definition is intentionally very broad, depending on the chosen R. In
the rest of this paper, we will only consider some particular cases. As we will see
in the rest of this paper, we think interesting cases include preorder relations,
e.g. simulation relation, or other evaluation-closed relations.

Notice that this definition is close to the definition of reversibility developed
by Caires et al. in [3] (Definition 3.4).

Remark 2. Notice that if the relation R we consider is the identity, we fall back
on the definition of (strong) causal consistency. Therefore, weak causal consis-
tency is a conservative extension of causal consistency.
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5 Weak Causal Consistency of Ωρπ

In this section, we show that Ωρπ is �-weakly causally consistent. We can not
show weak causal consistency as causal consistency is usually shown (see for
instance the proof of causal consistency of the ρπ calculus [10], the details of
the proof are shown in Mezzina’s thesis [11]), since the loop lemma does not
hold in our calculus. Instead, we show the causal consistency in two steps: (i)
we show that, if an initial trace σ does not contain G.Inform reductions, then
there exists a coinitial and cofinal forward trace σ�, this is shown by relating
this particular trace to an equivalent one in ρπ and using the causal consistency
of ρπ; (ii) we show that, for every trace σ, there is a coinitial and cofinal trace
σs free of G.Inform. A summary of the proof is shown in Fig. 10.

Ci C′
f

Cf
σ

σs

�

fσs(Ci) fσs(Cm)

fσs fσs

σρπ
s

∃σρπ
�

∃σ�

Fig. 10. Summary of the causal consistence proof: for any trace σ (top) from Ci to Cf ,
it is possible to find a coinitial and cofinal trace σs. Aside, we show that any G.Inform
free trace (in particular σs) of the Ωρπ calculus can be played in ρπ calculus (σρπ

s ,
bottom left). We introduce a function fσs to do the conversion. Since ρπ is causally
consistent, there necessarily exists an equivalent forward sequence σρπ

� (middle left),
which can finally be played instead of σg (σ�, top left).

5.1 States Simulation

As we have seen in the previous section, weak causal consistency relies on states
simulating each other. Hence, we first exhibit some similar states we will rely on
in the subsequent sections.

First, a term with P in the context simulates any term composed of the same
configuration and a process Q such that P � Q in the context. This is trivial,
since � is evaluation closed.

Lemma 3. ∀M ∈ M, P,Q ∈ P · P � Q ⇒ M |P � M |Q
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Also, any κ : inform〈P 〉 simulates κ : 0. Surprisingly the rule is easy, but not
trivial, due to backward reductions.

Lemma 4. ∀M ∈ M, P, S ∈ P · M | κ : inform〈P 〉|S � M | κ : 0|S
Proof. We have to show that, for any C such that M | κ : 0|S → C, there exists
C ′ such that M | κ : inform〈P 〉|S → C ′.

We proceed by case analysis on the reduction rule used. Only G.Bw and
G.Inform are not trivial.

G.Bw: From the premisses of G.Bw and C.Bw, M | κ : 0 ≡ νk.k : P | [Q; k].
If κ is independent of k, then the result trivially holds.
If κ = 〈hi, h̃〉 · k, then M | κ : 0 ≡ M ′ | (νk.〈hj , h̃〉 · k : R | 〈hi, h̃〉 · k :
0) | [Q; k] ≡ M ′ | (νk.k : R | 0) | [Q; k] (notice that it is possible that
κ = k, in which case R = 0). Then the backward reduction that occurs is
M ′ | (νk.k : R | 0) | [Q; k]|S � M ′ | Q|S .
Finally, with the same reasoning, we have M | κ : inform〈P 〉 ≡ M ′ | (νk.k :
R | inform〈P 〉) | [Q; k], which can reduce using G.Bw: M ′ | (νk.k :
R | inform〈P 〉) | [Q; k]|S � M ′ | Q|S . The result holds by reflexivity of
�.

G.Inform: We suppose the inform〈·〉 that reduces is k : inform〈P 〉. In the case
it is an other inform〈·〉 in M , the result trivially holds.
From the premisses of G.Inform, M | k : inform〈P 〉|S reduces to M | νk′.k′ :
0 | [k : inform〈P 〉; k′]|P and P � S. We have to show that M | νk′.k′ : 0 | [k :
inform〈P 〉; k′]|P � M | k : 0|S . Only the case G.Forecast is relevant.
In that case, according to the premisses of G.Forecast and C.For, M ≡
M ′ | κ : forecast(X) � Q. Therefore, M | νk′.k′ : 0 | [k : inform〈P 〉; k′]|P
reduces to M ′ | νk′′.k′′ : Q{P /X} | [μ;κ] | νk′.k′ : 0 | [k : inform〈P 〉; k′]|P
and, similarly, M | k : 0|S reduces to M ′ | νk.k : Q{S/X} | [μ;κ] | k : 0|S .
Since P � S, M ′ | νk.k : Q{P /X} | [μ;κ] | νk′.k′ : 0 | [k : inform〈P 〉; k′]|P �
M ′ | νk.k : Q{S/X} | [μ;κ] | k : 0|S .

Corollary 2. ∀M ∈ M, P,R, S ∈ P · R � S ⇒ M | κ : inform〈P 〉|R � M | κ :
0|S
Proof. From Lemmas 3 and 4, M | κ : inform〈P 〉|R � M | κ : 0|R � M | κ : 0|S .
The result holds by transitivity of �.

5.2 Causal Consistency of the Traces Without G.INFORM Reductions

When a Ωρπ trace σ does not contain G.Inform reduction, there is a one-to-one
mapping between the global semantics of Ωρπ contexts, and the configuration
semantics of Ωρπ configurations. To clarify this paragraph, we will only work
with the configuration fragment of Ωρπ.

The configuration semantics is analogous to the regular ρπ semantics, except
for inform〈P 〉 and forecast(X) � Q primitives. Encoding the inform〈P 〉 prim-
itive in ρπ is easy: it acts like an oblivious channel and one just need to add
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a repeating inform(X) � 0 process (and, anyway, since σ does not contain
G.Inform reduction, we could even ignore them).

Encoding the forecast(X)�Q primitive is almost as simple. Since the trace
does not contain G.Inform reduction, the context is constant. Let P be the pro-
cess it contains. We only need to add enough forecast〈P 〉. To avoid any problem
with the key, we can simply add them under the same key than the forecast. That
is, we replace each κ : forecast(X)�Q, by κ : forecast(X)�Q | forecast〈P 〉.
Note that this replacement also includes occurrences in memories.

Definition 4. The function [[M |R]]=[[M ]]R encodes an Ωρπ context into a ρπ
configuration, where [[M ]]R is defined in Figs. 11 and 12.

[[0]]R = 0 [[νu.M ]]R = νu.[[M ]]R [[M | N ]]R = [[M ]]R | [[N ]]R

[[k : P ]]R = k : [[P ]]R [[[μ; k]]]R = [[[μ]]R; k]

Fig. 11. Rules to encode an Ωρπ configuration into a ρπ configuration.

[[0]]R = 0 [[X]]R = X [[νa.P ]]R = νa.[[P ]]R [[P | Q]]R = [[P ]]R | [[Q]]R

[[a〈P 〉]]R = a〈[[P ]]R〉 [[a(X) � P ]]R = a(X) � [[P ]]R

[[inform〈P 〉]]R = inform〈[[P ]]R〉 | inform(X) � 0

[[forecast(X) � P ]]R = forecast(X) � [[P ]]R | forecast〈R〉

Fig. 12. Rules to encode an Ωρπ process into a ρπ process.

Trivially, ignoring G.Inform transitions, an encoded Ωρπ configuration sim-
ulates the original configuration, and an Ωρπ configuration simulates the forward
reductions of its encoded counterparts, using only forward rules:

Lemma 5. For any Ωρπ contexts C1 and C2, [[C1]] � [[C2]] ⇒ C1 � C2. If
C1 � C2 without a G.Inform reduction, then [[C1]] � [[C2]]. If C1 � C2, then
[[C1]] � [[C2]].

Corollary 3. Ωρπ, without G.Inform reductions, is causally consistent.

Proof. Suppose Ci →� Cf , for Ci ��. Then there exists a ρπ reduction [[Ci]] →�

[[Cf ]].
Since ρπ is causally consistent, there exists a forward reduction [[Ci]] �� [[Cf ]].

Therefore there exists a forward reduction Ci �� Cf .
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5.3 Existence of a Trace Free of G.INFORM Reductions

We are given an initial trace σ = t1; . . . ; tn with Ci the initial configuration. Our
goal is to show that there exists a coinitial and cofinal trace σf ;σi such that
σf is free of G.Inform reductions. We proceed in two steps: (i) we consider
a forecast sequence σ′ and we show that we can move the (initial) G.Inform
reductions at the end of the trace (see Fig. 13); (ii) we consider an initial trace
and we show that we can then move all G.Inform reductions at the end of the
trace, by successively pushing the first G.Inform reductions toward the end of
the trace.

M |P N |Q

G.Inform

�

Fig. 13. Illustration of Lemma 6. If a configuration M |P reduces to N |Q using a
G.Inform reduction, then the initial configuration simulates the final configuration.

Lemma 6 (Inform removal). ∀M ∈ M · M |P → N |Q ⇒ M |P � N |Q
Proof. Since the transition changes the context, it is a G.Inform transition.
Thus, M = M ′ | κ : inform〈P 〉 and N = M ′ | κ : 0. From Lemma 4, we have that
M |P � N |P . From the premisses of rule G.Inform, P � Q. From Lemma 3, we
have that M |P � M |Q. Finally, from the transitivity of the simulation relation,
M |P � N |Q.

A corollary of this lemma is that for any sequence of reductions from Ci to
Cf , it is possible to remove all G.Inform reductions and reach a new C ′

f which
can simulate Cf .

Corollary 4. For all initial configuration Ci, for all configuration Cf such
that Ci →� Cf , there exists a configuration C ′

f such that Ci →� C ′
f without

G.Inform reduction and C ′
f � Cf .

Proof. Let σ = t1; . . . ; tn be the trace of the sequence of reduction Ci →� Cf .
By induction on the number of G.Inform reductions in σ. The base case (0

G.Inform reduction in σ) follows from the previous section.
For the inductive case, consider there are n G.Inform reductions in σ, let

tj = Cj−1 � Cj be the first one and tk = Ck−1 � Ck the second one. That is,
Cj →� Ck−1 without G.Inform reduction.

From Lemma 6, Cj−1 � Cj , there exists a C ′
k−1 such that Cj−1 →� C ′

k−1

and C ′
k−1 � Ck−1. Let σ1 be the trace of that sequence of reductions. From

Remark 1, σs does not contain G.Inform reduction.
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Also, since C ′
k−1 � Ck−1, there exists a C ′

f such that Ck−1 →� C ′
f and

C ′
f � Cf .

Finally, we have Ci →� C ′
k−1 →� C ′

f . This sequence contains one less
G.Inform reduction. Thus, from the induction hypothesis, there exists C ′′

f such
that Ci →� C ′′

f without G.Inform reduction and such that C ′′
f � C ′

f .
Finally, from the transitivity of simulation, C ′′

f � Cf .

6 Application: Sieve of Eratosthenes

Presentation. In this section, we informally discuss an example application of the
oracle introduced in Ωρπ. This example consists in a distributed implementation
of the Sieve of Eratosthenes algorithm to find prime numbers. Despite being
quite simple, it shows that partial reversibility of Ωρπ allows a notion of forward
progress, which is not the case in pure causally consistent reversible calculi.

For this example, for the sake of simplicity, we add integers, sets and tuples as
primitive values of our calculus, and we assume we have usual primitive functions
to manipulate those values.

The Sieve of Eratosthenes is a simple algorithm to find prime numbers under
a limit l. This algorithm begins with a set of integers from 2 to l, and iterate over
each integers i in the set, removing multiples of i. When a fixpoint is reached,
the set contains all prime numbers below l.

In our example, we adapt this algorithm for a distributed setting: instead of
iterating over i, we take a second set of integer between 2 and �√l�, from which
concurrent processes select a local i.

For our example, the oracle contains a tuple of two sets: the first is the set
of prime candidates, which we call the sieve and the second is the set of possi-
ble values for i (which we call values). Each thread reads this oracle, selects a
possible i and removes its multiples from the sieve. Figure 14 shows an imple-
mentation of this distributed variant of the Sieve of Eratosthenes. For the sake
of conciseness, we only show a single process, but one could choose an arbitrary
number of similar processes. Initially, the oracle contains the two sets {2, . . . , l}
and {2, . . . �√l�}. Notice that, once a possible i is tested, it is removed from the
set of possible values.

k1 : forecast(〈sieve, values〉)�
let i ∈ values in

inform〈〈sieve \ {j|j = k × i, k > 1}, values \ i〉〉|〈{2,...,l},{2,...�√
l�}〉

Fig. 14. A distributed implementation of the Sieve of Eratosthenes. This implemen-
tation has only one process, with tag k1, but it could contain an arbitrary number of
similar processes.
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Discussion. The term we show in Fig. 14 is safe, in the sense that when we
reach a configuration in which the oracle is 〈sieve, ∅〉, we know that sieve con-
tains only prime numbers. However, there is no guarantee that this state is
eventually reached. First, as with regular reversible calculi, we can loop in a
forward/backward reduction for ever (if the oracle is not updated in between,
there is no progress). We ignore this problem since it is common in reversible
calculi.

However, the primitives we introduced with the oracle introduce a new prob-
lem, which is that forecasts and informs are not atomic: if two receptions are done
concurrently, there is a possibility to have a read–modify–write inconsistency. The
second issue is deeper. To solve it, we would have to introduce standard atomic
primitives, such as compare-and-swap, to interact with the oracle.

Nonetheless, even with this drawback, this example is interesting. It shows
that we have a notion of progress, which can be used to implement standard
algorithms for concurrent programming.

7 Conclusion and Future Work

We presented Ωρπ, a reversible calculus in which process can be stored in an
oracle, which is preserved during backward reductions. This oracle is controlled
by two primitives which act as two channels inform and forecast. Until a
process is set, any process can be received from the forecast primitive (it acts
as a random process). Once a process P is sent to the inform channel, any
message received from the forecast channel is that process P (until a new
process Q is sent to inform) even if the configuration does backward reductions.

Our second main contribution is the definition of a notion of weak causal con-
sistency. Weak causal consistency states that for any reachable state, there must
exists a similar state reachable using only forward reductions. We think that, in
addition to the calculus presented here, this notion of weak causal consistency
may be suitable to study other reversible process calculi, for instance those in
which backward reductions introduce some garbage which should be ignored.

Future work could improve this paper on two directions.
First, our work can be extended by allowing the process stored in the context

to reduce as any other process, following standard HOπ semantics. Thus, terms
would have two parts: a reversible part (in the configuration) and a non-reversible
side (in the context). Our forecast and inform primitives would allow processes
to cross the boundary between the two sides. On a longer term, we could imagine
allowing reversible and non-reversible processes to communicate via standard
channels (and removing forecast and inform channel, which would become
useless). Such approach would result in a reversibility confined to some processes,
in a globally non-reversible process (or vice-versa).

On the other hand, we could try to relax the simulation constraint in the pre-
misses of rule G.Inform, which is an important practical limitation. Instead of
having a simulation constraint, we could allow a relation R, given as a parameter
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of the semantics. With sufficient constraints on this relation (typically reflexiv-
ity, transitivity and evaluation closure), we could try to prove the weak causal
consistency property of Ωρπ with respect to such R.

Finally, an underlying aspect of this work is to introduce some notion of
progress in the context of reversible computation. Usually, reversible computa-
tion loses this notion by the very nature of the computation: there is an initial
configuration, but no final one, as it is always possible to take backward and for-
ward steps; nor any notion of progress, as anything that is done can be undone.
Using oracles and contexts as presented in this paper can be used to reintro-
duce a notion of progress, for instance by having a convergence criterion on the
context.
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