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Preface

This volume contains the papers presented at the 13th Conference on Reversible
Computation (RC 2021), held online (due to the COVID-19 pandemic) during
July 7–8, 2021, and hosted by Nagoya University in Japan.

The RC conference brings together researchers from computer science, mathemat-
ics, engineering, and physics to discuss new developments and directions for future
research in the emerging area of Reversible Computation. This includes, for example,
reversible formal models, reversible programming languages, reversible circuits, and
quantum computing.

The conference received 21 submissions from authors in 13 countries. After careful
deliberations, the Program Committee selected 15 papers for presentation. In addition
to these papers, this volume contains the three invited talks: “How Can We Construct
Reversible Turing Machines in a Very Simple Reversible Cellular Automaton?” by
Kenichi Morita (Hiroshima University, Japan), “Decision Diagrams and Reversible
Computation” by Shin-ichi Minato (Kyoto University, Japan), and “Variational
Quantum Eigensolver and Applications to Specific Optimization Problems” by Atsushi
Matsuo (IBM Research - Tokyo, Japan).

When we started planning RC 2021, we thought the conference would be held in
person. Unfortunately, the COVID-19 pandemic has been having a strong impact on
society, and we decided to hold the conference online as with RC 2020. Of course, an
online meeting makes interaction much more difficult in general. Nevertheless, we
strongly believe that this online edition contributed to the research community like
previous editions of the Conference on Reversible Computation.

The conference would not have been possible without the enthusiasm of the
members of the Program Committee; their professionalism and their helpfulness were
exemplary. For the work of the Program Committee and the compilation of the pro-
ceedings, the extremely useful EasyChair conference management system was
employed. We thank Telecom Advanced Technology Research Support Center
(SCAT) for their financial support, and we also thank the Graduate School of Infor-
matics at Nagoya University, Japan, for providing various resources. Finally, we would
like to thank all the authors for their submissions, their willingness to continue
improving their papers, and their wonderful presentations during RC 2021.

May 2021 Shigeru Yamashita
Tetsuo Yokoyama



Organization

General Chair

Shoji Yuen Nagoya University, Japan

Program Committee Chairs

Shigeru Yamashita Ritsumeikan University, Japan
Tetsuo Yokoyama Nanzan University, Japan

Steering Committee

Rolf Drechsler University of Bremen, Germany
Robert Glück University of Copenhagen, Denmark
Ivan Lanese University of Bologna, Italy, and Inria, France
Irek Ulidowski University of Leicester, UK
Robert Wille Johannes Kepler University Linz, Austria

Program Committee

Gerhard Dueck University of New Brunswick, Canada
Michael P. Frank Sandia National Laboratories, USA
Robert Glück University of Copenhagen, Denmark
Eva Graversen Imperial College London, UK
James Hoey University of Leicester, UK
Jarkko Kari University of Turku, Finland
Jean Krivine CNRS, France
Ivan Lanese University of Bologna, Italy, and Inria, France
Martin Lukac Nazarbayev University, Kazakhstan
Claudio Antares Mezzina Università di Urbino, Italy
Claudio Moraga TU Dortmund, Germany
Keisuke Nakano Tohoku University, Japan
Luca Paolini Università degli Studi di Torino, Italy
Krzysztof Podlaski University of Lodz, Poland
Mariusz Rawski Warsaw University of Technology, Poland
Markus Schordan Lawrence Livermore National Laboratory, USA
Mathias Soeken École Polytechnique Fédérale de Lausanne,

Switzerland
Milena Stankovic University of Nis, Serbia
Himanshu Thapliyal University of Kentucky, USA
Michael Kirkedal Thomsen University of Copenhagen, Denmark
Irek Ulidowski University of Leicester, UK



Rodney Van Meter Keio University, Japan
Robert Wille Johannes Kepler University Linz, Austria

Additional Reviewers

Giovanni Fabbretti
Clément Aubert

viii Organization



Decision Diagrams and Reversible
Computation (Abstract of Invited Talk)

Shin-ichi Minato

Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan
minato@i.kyoto-u.ac.jp

http://www.lab2.kuis.kyoto-u.ac.jp/minato/

Abstract. Decision diagrams have attracted a great deal of attention for thirty
years in computer science and technology, because those data structures are
useful to efficiently manipulate many kinds of discrete structures, which are the
fundamental mathematical models for solving various practical problems. Also
for reversible computation systems, decision diagrams are sometimes used as
key techniques for solving problems. In this invited talk, we overview the
decision diagrams related to reversible computation. First we start with BDD
and ZDD as classical models of logic and set. Next we review QMDD
(Quantum Multiple-valued Decision Diagrams) and DDMF (Decision Diagrams
for Matrix Functions) for dealing with special logic functions computed by
quantum logic circuits. We then discuss pDD (Permutation Decision Diagrams)
for manipulating permutation, which is closely related to reversible computa-
tion. We review some previous work on reversible circuit design using pDDs,
and also show our recent work related to reversible computation.
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How Can We Construct Reversible
Turing Machines in a Very Simple
Reversible Cellular Automaton?

Kenichi Morita(B)

Hiroshima University, Higashi-Hiroshima 739-8527, Japan
km@hiroshima-u.ac.jp

Abstract. A reversible cellular automaton (RCA) is an abstract spa-
tiotemporal model of a reversible world. Using the framework of an RCA,
we study the problem of how we can elegantly compose reversible com-
puters from simple reversible microscopic operations. The CA model used
here is an elementary triangular partitioned CA (ETPCA), whose spatial
configurations evolve according to an extremely simple local transition
function. We focus on the particular reversible ETPCA No. 0347, where
0347 is an ID number in the class of 256 ETPCAs. Based on our past
studies, we explain that reversible Turing machines (RTMs) can be con-
structed in a systematic and hierarchical manner in this cellular space.
Though ETPCA 0347 is an artificial CA model, this method gives a new
vista to find a pathway from a reversible microscopic law to reversible
computers. In particular, we shall see that RTMs can be easily realized
in a unique method by using a reversible logic element with memory
(RLEM) in the intermediate step of the pathway.

Keywords: Reversible cellular automaton · Elementary triangular
partitioned cellular automaton · Reversible Turing machine ·
Reversible logic element with memory

1 Introduction

We investigate the problem of composing reversible Turing machines (RTMs),
a model of reversible computers, from a simple reversible microscopic law. In
particular, we study how simple the reversible microscopic law can be, and how
elegantly RTMs are designed in a given environment. For this purpose, we use a
reversible cellular automaton (RCA) as an abstract discrete model of a reversible
world. Here, we consider a special type of an RCA called a reversible elemen-
tary triangular partitioned cellular automaton (ETPCA) having only four simple
local transition rules. Thus, in this framework, the problem becomes how to con-
struct RTMs using only such local transition rules.

However, since the local transition rules are so simple, it is difficult to directly
design RTMs in this cellular space. One method of solving this problem is to

c© Springer Nature Switzerland AG 2021
S. Yamashita and T. Yokoyama (Eds.): RC 2021, LNCS 12805, pp. 3–21, 2021.
https://doi.org/10.1007/978-3-030-79837-6_1
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4 K. Morita

divide a pathway, which starts from a reversible microscopic law (i.e., local transi-
tion rules) and leads to reversible computers (i.e., RTMs), into several segments.
Namely, we put several suitable conceptual levels on the pathway, and solve a
subproblem in each level as in Fig. 1. Five levels are supposed here.

Fig. 1. A pathway from a reversible microscopic law to reversible computers

– Level 1: A reversible ETPCA, a model of a reversible world, is defined. Its
local transition rules are considered as a microscopic law of evolution.

– Level 2: Various experiments in this cellular space are done to see how con-
figurations evolve. By this, useful patterns and phenomena are found.

– Level 3: The phenomena found in the level 2 are used as gadgets to compose
a logical primitive. Here, we make a reversible logic element with memory
(RLEM), rather than a reversible logic gate, combining these gadgets.

– Level 4: Functional modules for RTMs are composed out of RLEMs. These
modules are constructed easily and elegantly by using RLEMs.

– Level 5: RTMs are systematically built by assembling the functional modules
created in the level 4, and then realized in the reversible cellular space.

In this way, we can construct RTMs from very simple local transition rules
in a systematic and modularized method. Though ETPCA 0347 is an artificial
CA model, it will give an insight to find a pathway even in a different situation.
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In particular, we can see that it is important to give intermediate conceptual
levels appropriately on the pathway to design reversible computers elegantly.

2 Reversible Cellular Automaton

In this section, using the framework of an RCA, a reversible microscopic law
of evolution is given, which corresponds to the level 1 in Fig. 1. After a brief
introduction to a CA and an RCA, we define a specific reversible ETPCA with
the ID number 0347. Note that formal definitions on CA, ETPCA, and their
reversibility are omitted here. See, e.g., [8] for their precise definitions.

2.1 Cellular Automaton and Its Reversibility

A cellular automaton (CA) is an abstract discrete model of spatiotemporal phe-
nomena. It consists of an infinite number of identical finite automata called
cells placed uniformly in the space. Each cell changes its state depending on
the states of its neighbor cells using a local function, which is described by a
set of local transition rules. Applying the local function to all the cells simul-
taneously, a global function that specifies the transition among configurations
(i.e., whole states of the infinite cellular space) is obtained. Figure 2 shows a
two-dimensional CA whose cells are square ones. In this figure each cell changes
its state depending on the states of its five neighbor cells (including itself).

)b()a(

Fig. 2. Two-dimensional cellular automaton with square cells. (a) Its cellular space,
and (b) its local transition rule

A reversible cellular automaton (RCA) is a CA whose global function is injec-
tive. Hence, there is no pair of distinct configurations that go to the same con-
figuration by the global function. However, it is generally difficult to design an
RCA if we use the standard framework of CAs. In particular, it is known that the
problem whether the global function of a given two-dimensional CA is injective
is undecidable [4]. In Sect. 2.2 we use a partitioned CA (PCA) [11], which is a
subclass of the standard CA, for designing an RCA.
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2.2 Triangular Partitioned Cellular Automaton (TPCA)

Hereafter, we use a triangular partitioned cellular automaton (TPCA) [3,9]. In
a TPCA, a cell is an equilateral triangle, and is divided into three parts, each of
which has its own state set. The next state of a cell is determined by the present
states of the three adjacent parts of the neighbor cells (not by the whole states
of the three adjacent cells) as shown in Fig. 3.

r

d

l � r′
d′
l′

)b()a(

Fig. 3. Triangular partitioned cellular automaton. (a) Its cellular space, and (b) its
local transition rule

A local function of a TPCA is defined by a set of local transition rules of the
form shown in Fig. 3(b). Applying the local function to all the cells the global
function of the TPCA is obtained.

The reason why we use a TPCA is as follows. First, since the number of
edge-adjacent cells of each cell is only three, its local function can be much
simpler than that of a CA with square cells. Second, the framework of PCA
makes it feasible to design a reversible CA, since it is easy to show Lemma 1.
Hence, TPCA is suited for studying the problem how simple a computationally
universal RCA can be.

Lemma 1. Let P be a PCA. Let f and F be its local and global functions,
respectively. Then, F is injective if and only if f is injective.

Note that this lemma was first shown in [11] for a one-dimensional PCA. The
lemma for TPCA was given in [8].

2.3 Elementary Triangular Partitioned Cellular Automaton
(ETPCA), in Particular, ETPCA 0347

An elementary triangular partitioned cellular automaton (ETPCA) is a subclass
of a TPCA such that each part of a cell has the state set {0, 1}, and its local
function is isotropic (i.e., rotation-symmetric) [3,9].

Figure 4 shows the four local transition rules of an ETPCA with the ID
number 0347, which is denoted by ETPCA 0347. Note that since an ETPCA is
isotropic, local transition rules obtained by rotating both sides of the rules by
a multiple of 60◦ are omitted here. Therefore, the local function is completely
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Fig. 4. Local function of ETPCA 0347 defined by the four local transition rules [9].
States 0 and 1 are indicated by a blank and •

determined by these four rules. Hereafter, we use ETPCA 0347 as our model of
a reversible world.

Generally, each ETPCA has an ID number of the form wxyz (w, z ∈ {0, 7},
x, y ∈ {0, 1, ..., 7}), and is denoted by ETPCA wxyz. Figure 5 shows how an ID
number corresponds to the four local transition rules. Note that w and z must
be 0 or 7, since an ETPCA is isotropic. Thus, there are 256 ETPCAs in total.

Fig. 5. Correspondence between the ID number wxyz and the four local transition rules
of ETPCA wxyz (w, z ∈ {0, 7}, x, y ∈ {0, 1, ..., 7}). Vertical bars indicate alternatives
of a right-hand side of each local transition rule

We can verify that the local function of ETPCA 0347 is injective, since there
is no pair of local transition rules that have the same right-hand side (see Fig. 4).
Therefore, its global function is injective, and thus ETPCA 0347 is reversible.
We can see every configuration of ETPCA 0347 has exactly one predecessor.

3 Useful Patterns and Phenomena in the Reversible
Cellular Space of ETPCA 0347

Here, we make various experiments in the cellular space of ETPCA 0347, and
look for useful patterns and phenomena. It corresponds to the level 2 in Fig. 1.
Note that most experiments described below were firstly done in [6,9].
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3.1 Useful Patterns in ETPCA 0347

A pattern is a finite segment of a configuration. It is known that there are three
kinds of patterns in ETPCA 0347 since it is reversible [9]. They are a periodic
pattern, a space-moving pattern, and an (eventually) expanding pattern. Here,
a periodic pattern and a space-moving pattern are important. As we shall see
below two periodic patterns called a block and a fin, and one space-moving
pattern called a glider are particularly useful.

A periodic pattern is one such that the same pattern appears at the same
position after p steps of time (p > 0). The minimum of such p’s is the period of
the pattern. The pattern that appears at time t (0 ≤ t ≤ p − 1) is called the
pattern of phase t. A periodic pattern of period 1 is called a stable pattern.

A block is a stable pattern shown in Fig. 6. We can verify that a block does
not change its pattern by the application of the local function given in Fig. 4.

••• •••• ••

Fig. 6. A stable pattern called a block in ETPCA 0347 [9]

A fin is a periodic pattern of period 6 given in Fig. 7. We can also verify that
a fin changes its pattern as shown in this figure.

t = 0

• ••

t = 1

•
••

t = 2

•
••

t = 3

•• •

t = 4

••
•

t = 5

••
•

t = 6

• ••

Fig. 7. A periodic pattern of period 6 called a fin in ETPCA 0347 [9]. It rotates around
the point indicated by ◦. The pattern at t (0 ≤ t ≤ 5) is called a fin of phase t

A space-moving pattern is one such that the same pattern appears at a dif-
ferent position after p steps of time. The minimum of such p’s is the period. The
pattern that appears at time t (0 ≤ t ≤ p − 1) is called the pattern of phase t.

A glider is a space-moving pattern shown in Fig. 8. It is the most useful
pattern. If we start with the pattern given at t = 0 in Fig. 8, the same pattern
appears at t = 6, and its position is shifted rightward. Thus, it swims like a fish
or an eel in the reversible cellular space. It will be used as a signal when we
implement a logic element in ETPCA 0347.
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t = 0

• • ••
••

t = 1

•
• •• ••

t = 2

•• •
•• •

t = 3

••
• • ••

t = 4

• •• ••
•

t = 5

• ••
• ••

t = 6

• • ••
••

Fig. 8. A space-moving pattern of period 6 called a glider in ETPCA 0347 [9]. It moves
rightward. The pattern at t (0 ≤ t ≤ 5) is called a glider of phase t

3.2 Interacting Patterns in ETPCA 0347 to Find Useful Phenomena

Next, we make various experiments of interacting a glider with blocks or a fin. By
this, we can find several phenomena that can be used as “gadgets” for composing
a logic element in Sect. 4.4.

It should be noted that despite the simplicity of the local function (Fig. 4)
time evolutions of configurations in ETPCA 0347 are generally very complex.
Therefore, it is very hard to follow evolution processes by paper and pencil.
We developed an emulator for ETPCA 0347 that works on a general-purpose
high-speed CA simulator Golly [15]. The emulator file and many pattern files
are available in [7] (though its new version has not yet been uploaded).

First, we create several gadgets for controlling the move direction of a glider.
Figure 9 shows a 60◦-right-turn gadget composed of two blocks. It is newly intro-
duced in this paper. Using several (rotated and unrotated) copies of this gadget,
the move direction of a glider is changed freely.

t = 0
••• •••• •• ••• •

• • ••
••• ••

••

t = 17
••• •••• •• ••• •

• •• ••
• ••

t = 18
••• •••• •• •••• •
• ••

••• ••

••

t = 19
••• •••• • ••• •

•• ••
• •

t = 20
••• ••••• •• •••• •
••

••• ••

••

t = 21
••• •••• • ••• •
• ••• ••

• ••

t = 22
••• ••••• •• ••• •
• ••• ••

•• ••

t = 23
••• •••• •• ••• •
• ••• ••

•• •
••

Fig. 9. 60◦-right-turn gadget for a glider composed of two blocks

We can make a 120◦-right-turn gadget as in Fig. 10. If we collide a glider with
a sequence of two blocks as shown in Fig. 10 (t = 0), it is first decomposed into
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a “body” (left) and a fin (right) (t = 56). The body rotates around the point
indicated by a small circle, and the fin goes around the blocks clockwise. Finally,
the body meets the fin, and a glider is reconstructed. The resulting glider moves
to the south-west direction (t = 334). A similar 120◦-right-turn gadget is also
possible by using a sequence of three blocks or five blocks.

t = 0

• • •• ••• • ••• •
•• ••• •• ••• ••

t = 56

•• •••••• ••• •
•• ••

•••••• ••• •• •
••

t = 334

••• • ••• •••• •• ••• ••

•• •
•

••

Fig. 10. 120◦-right-turn gadget for a glider composed of two blocks [9]

It should be noted that 120◦-right-turn is also realized by using two (rotated
and unrotated) copies of a 60◦-right-turn gadget. Furthermore, in the latter
implementation, right-turn is performed more quickly. Hence a 60◦-right-turn
gadget is more useful in this respect. However, a 120◦-right-turn gadget can be
used as an interface between a bidirectional signal path and unidirectional signal
paths as shown in Fig. 11. Such a gadget is necessary for constructing a logic
element in Sect. 4.4, since a fin-shifting (Fig. 14) uses a bidirectional path.

Input

Output

Bidirectional signal path ••• • ••• • ••• •••• •• ••• •• ••• ••

Fig. 11. Interface gadget between bidirectional and unidirectional signal paths [9]

Figures 12 and 13 show a backward-turn gadget and a U-turn gadget. A 120◦-
left-turn gadget is also given in [9], but it is omitted here. These gadgets are
needed when we want to shift the phase of a glider (see [9]).

Next, we make experiments of interacting a glider with a fin. Figure 14 shows
that shifting the position of a fin is possible if we collide a glider with the right
phase to it [6]. Thus, a fin can be used as a kind of memory, where memory
states (say 0 and 1) are distinguished by the positions of the fin. In this case,
change of the memory state can be done by shifting the fin appropriately.
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t = 0

• • •• ••• •
•• ••• ••

t = 97

•• ••• ••• • • ••• ••

Fig. 12. Backward-turn gadget for a glider [9]

t = 0

••• •
• • •• ••• •

••• ••

•• ••• •• •• •••
••• •

• •••
••• •• ••• •••• ••

t = 113

••• •
••• •

••• ••
••• •• •• •••

•• ••• •
• •••

•• • • ••• •• ••• •••• ••

Fig. 13. U-turn gadget for a glider [9]

t = 0

•• • • ••
•• •

t = 54

�

•• •• •
• • ••

(a)

t = 0
• ••

• • ••
••

t = 72

�•• • • ••
•• •

(b)

Fig. 14. Shifting a fin by a glider [6]. (a) Pulling, and (b) pushing
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4 Composing Reversible Logic Element with Memory

Using useful phenomena found in Sect. 3, a logic element is composed. It cor-
responds to the level 3 in Fig. 1. Here, a reversible logic element with memory,
rather than a reversible logic gate, is implemented in ETPCA 0347.

4.1 Reversible Logic Element with Memory (RLEM)

A reversible logic element with memory (RLEM) [8,12] is a kind of a reversible
finite automaton having both input and output ports, which is sometimes called
a reversible sequential machine of Mealy type. A sequential machine M is defined
by M = (Q,Σ, Γ, δ), where Q is a finite set of states, Σ and Γ are finite sets
of input and output symbols, and δ : Q × Σ → Q × Γ is a move function
(Fig. 15(a)). If δ is injective, it is called a reversible sequential machine (RSM).
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(b)
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Fig. 15. (a) A sequential machine, and (b) an interpretation of it as a module having
decoded input ports and output ports for utilizing it as a circuit module

To use an SM as a circuit module, we interpret it as the one with decoded
input/output ports (Fig. 15(b)). Namely, for each input symbol, there exists a
unique input port to which a signal (or a particle) is given. It is also the case
for the output symbols. Therefore, we assume signals should not be given to two
or more input ports at the same time. Its operation is undefined if such a case
occurs. Of course, it could be extended so that an SM can receive two or more
signals simultaneously. However, we do not do so, because we want to keep its
operation as simple as possible. Moreover, as described in Sect. 4.3, RSMs are
sufficiently powerful without such an extension.

An RLEM is an RSM that satisfies |Σ| = |Γ |. A 2-state RLEM (i.e., |Q| = 2)
is particularly important, since it is simple yet powerful (see Sect. 4.3). In the
following we shall use a specific 2-state 4-symbol RLEM No. 4-31.

Advantages of RLEMs over reversible logic gates are as follows. As described
above, an RLEM receives only one signal at the same time, while a logic gate
generally receives two or more signals simultaneously. Therefore, in the case of
a logic gate, some synchronization mechanism is necessary so that signals arrive
at exactly the same time at each gate. On the other hand, in the case of an
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RLEM, a signal can arrive at any time, since a signal interacts with a state
of the RLEM, not with another signal. An RLEM is thus completely different
from a logic gate in this respect. By this, realization of an RLEM and its circuit
becomes much simpler than that of a logic gate at least in an RCA. This problem
will be discussed again in Sect. 4.5.

4.2 RLEM 4-31

Here, we consider a specific 2-state 4-symbol RLEM 4-31 such that Q = {0, 1},
Σ = {a, b, c, d}, Γ = {w, x, y, z}, and δ is defined as follows:

δ(0, a) = (0, w), δ(0, b) = (0, x), δ(0, c) = (0, y), δ(0, d) = (1, w),
δ(1, a) = (1, x), δ(1, b) = (0, z), δ(1, c) = (1, z), δ(1, d) = (1, y).

In RLEM 4-31, “4” stands for “4-symbol,” and “31” is its serial number in the
class of 2-state 4-symbol RLEMs [8].

The move function δ of RLEM 4-31 is represented in a graphical form as
shown in Fig. 16(a). Two rectangles in the figure correspond to the two states
0 and 1. Solid and dotted lines show the input-output relation in each state.
If an input signal goes through a dotted line, then the state does not change
(Fig. 16(b)). On the other hand, if a signal goes through a solid line, then the
state changes (Fig. 16(c)).
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Fig. 16. RLEM 4-31, and its operation examples. (a) Two states of RLEM 4-31. (b)
The case that the state does not change, and (c) the case that the state changes

4.3 Universality of RLEMs

There are infinitely many 2-state RLEMs if we do not restrict the number of
input/output symbols. Hence, it is an important problem which RLEMs are
sufficiently powerful, and which are not. Remarkably, it is known almost all
2-state RLEMs are universal.

An RLEM E is called universal if any RSM is composed only of E. The fol-
lowing results on the universality are known. First, every non-degenerate 2-state
k-symbol RLEM is universal if k > 2 [12]. Second, among four non-degenerate
2-state 2-symbol RLEMs, three RLEMs 2-2, 2-3 and 2-4 have been proved to be
non-universal [14] (but the set {2-3, 2-4} is universal [5]). Figure 17 summarizes
these results. Note that the definition of degeneracy is given in [8,12].
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Every non-degenerate 2-state
k-symbol RLEM k-n (k > 2)

RLEM 2-17

RLEM 2-3 RLEM 2-4

RLEM 2-2

Universal

Non-universal

Fig. 17. Universality/non-universality of 2-state RLEMs [8,14]. Here, A → B (A �→ B,
respectively) indicates that A can (cannot) be simulated by B

4.4 Composing RLEM 4-31 in the Reversible ETPCA 0347

As we shall see in Sect. 5.2, a finite state control, and a memory cell, which
corresponds to one tape square, of a reversible Turing machine (RTM) can be
formalized as RSMs. Hence, any universal RLEM can be used to compose RTMs.

Here, we choose RLEM 4-31 for this purpose. The reason is as follows. First,
it is known that a finite state control and a memory cell can be composed of
RLEM 4-31 compactly [13]. Second, in RLEM 4-31, the number of transitions
from one state to another (i.e., the number of solid lines in a graphical repre-
sentation like Fig. 16) is only one in each state. By this, it becomes feasible to
simulate RLEM 4-31 in ETPCA 0347 using the phenomena found in Sect. 3.

Figure 18 shows the complete pattern realized in ETPCA 0347 that simulates
RLEM 4-31. Two circles in the middle of the pattern show possible positions of
a fin. In this figure, the fin is at the lower position, which indicates the state of
the RLEM 4-31 is 0. Many blocks are placed to form various turn gadgets shown
in Figs. 9, 10, 11, 12 and 13. They are for controlling the direction and the phase
of a glider.

In Fig. 18, a glider is given to the input port d. The path from d to the
output port w shows the trajectory of the glider. The glider first goes to the
north-east position. From there the glider moves to the south-west direction, and
collides with the fin. By this, the fin is pulled upward by the operation shown in
Fig. 14(a). Then the glider goes to the south-east position. From there, it pushes
the fin (Fig. 14(b)). By this, the fin moves to the position of the upper circle,
which means the state changes from 0 to 1. The glider finally goes out from the
port w. The whole process above simulates the one step move δ(0, d) = (1, w)
of RLEM 4-31. Other cases are also simulated similarly. Note that the pattern
in Fig. 18 is an improved version of the one given in [6] using the 60◦-right-turn
gadget in Fig. 9.
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Fig. 18. RLEM 4-31 module implemented in ETPCA 0347

4.5 Comparing with the Method that Uses Reversible Logic Gates

In [9] it is shown that a Fredkin gate [2], a universal reversible logic gate, can
be implemented in ETPCA 0347. There, a Fredkin gate is constructed out of
two switch gates and two inverse switch gates. Therefore, it is in principle pos-
sible to implement a reversible Turing machine in ETPCA 0347 using a Fredkin
gate. However, as stated in Sect. 4.1, it will become very complex since adjust-
ment of signal timings at each gate is necessary. Here, we realize RLEM 4-31
in ETPCA 0347 using reversible logic gates, and compare it with the “direct
implementation” given in Fig. 18.

Figure 19 shows two implementations of RLEM 4-31 simulated on Golly.
The upper pattern is the direct implementation of RLEM 4-31 (the same as
in Fig. 18), while the lower is constructed using four switch gates, two Fredkin
gates, and four inverse switch gates. The size and the period of the former pat-
tern are 82 × 163 and 6, and those of the latter are 462 × 1505 and 24216. Note
that the period of the former is 6, since it contains a fin to memorize the state
of RLEM 4-31. In the latter pattern, we need a circulating signal in the module
to memorize the state since it is composed only of logic gates that are memory-
less elements. This circulating signal determines the period 24216. Therefore, an
input signal must be given at time t that satisfies (t mod 24216) = 0.

These values, of course, give only upper-bounds of the complexities of these
two implementations. Hence they cannot be a proof for showing the advantage
of the direct implementation. However, empirically, they suggest that it is much
better not to use reversible logic gates in an RCA to make RTMs. Actually, if
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we compose a whole RTM using only reversible logic gates without introducing
the notion of an RLEM, the resulting pattern will become quite complex.

Fig. 19. Comparing the direct implementation of RLEM 4-31 (the upper pattern) with
the one using reversible logic gates (the lower pattern) simulated on Golly

5 Making Reversible Turing Machines in ETPCA 0347

Here we realize reversible Turing machines in the cellular space of ETPCA 0347.
To do it systematically, functional modules for RTMs are composed out of
RLEM 4-31, and then they are assembled to make circuits that simulate RTMs.
Finally the circuits are embedded in the space of ETPCA 0347. These steps
correspond to the levels 4 and 5 in Fig. 1.

5.1 Reversible Turing Machine

A one-tape Turing machine (TM) in the quintuple form is defined by a system
T = (Q,S, q0, F, s0, δ), where Q is a non-empty finite set of states, S is a non-
empty finite set of tape symbols, q0 is an initial state (q0 ∈ Q), F is a set of
final states (F ⊆ Q), and s0 is a blank symbol (s0 ∈ S). The item δ is a move
relation, which is a subset of (Q×S ×S ×{L,R}×Q), where L and R stand for
left-shift and right-shift of the head. An element of δ is a quintuple of the form
[p, s, t, d, q]. It means that if T is in the state p and reads the symbol s, then it
writes the symbol t, shifts the head to the direction d and goes to the state q.

A TM T is called deterministic, if the following holds for any pair of distinct
quintuples [p1, s1, t1, d1, q1] and [p2, s2, t2, d2, q2] in δ.

(p1 = p2) ⇒ (s1 �= s2)
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A TM T is called reversible, if the following holds for any pair of distinct quin-
tuples [p1, s1, t1, d1, q1] and [p2, s2, t2, d2, q2] in δ.

(q1 = q2) ⇒ (d1 = d2 ∧ t1 �= t2)

In the following we consider only deterministic TMs, and thus the word “deter-
ministic” will be omitted. A TM that is reversible and deterministic is now called
a reversible Turing machine (RTM). In an RTM, every computational configura-
tion of it has at most one predecessor. See, e.g., [8] for a more detailed definition
on RTMs.

Example 1. Consider the RTM Tparity = ({q0, q1, q2, qacc, qrej}, {0, 1}, q0, {qacc},
0, δparity). The set δparity consists of the following five quintuples.

[q0, 0, 1, R, q1], [q1, 0, 1, L, qacc], [q1, 1, 0, R, q2], [q2, 0, 1, L, qrej], [q2, 1, 0, R, q1]

It is a very simple example of an RTM. In Sect. 5.3 a configuration that simulates
it in ETPCA 0347 will be shown. It is easy to see that Tparity is deterministic
and reversible. Assume a symbol string 0 1n 0 (n = 0, 1, . . .) is given as an input.
Then, Tparity halts in the accepting state qacc if and only if n is even, and all
the read symbols are complemented. The computing process for the input string
0110 is as follows: q00110 
 1q1110 
 10q210 
 100q10 
 10qacc01. ��

It is known that any (irreversible) TM can be simulated by an RTM without
generating garbage information [1]. Hence, RTMs are computationally universal.
In the following, we consider only 2-symbol RTMs with a rightward-infinite tape,
since any RTM can be converted into such an RTM (see, e.g., [8]).

5.2 Functional Modules Composed of RLEM 4-31 for RTMs

We compose two kinds of functional modules out of RLEM 4-31. They are a
memory cell and a qi-module (or state module) for 2-symbol RTMs [13].

A memory cell simulates one tape square and the movements of the head.
It is formulated as a 4-state RSM, since it keeps a tape symbol 0 or 1, and
the information whether the head is on this tape square or not (its precise
formulation as a 4-state RSM is found in [13]). It has ten input symbols listed
in Table 1, and ten output symbols corresponding to the input symbols (for
example, for the input symbol W0, there is an output symbol W0′).

A memory cell is composed of nine RLEM 4-31’s as shown in Fig. 20(a). Its
top RLEM keeps a tape symbol. Namely, if the tape symbol is 0 (1, respectively),
then the top RLEM is in the state 0 (1). The position of the head is kept by
the remaining eight RLEMs. If all the eight RLEMs are in the state 1, then
the head is on this square. If they are in the state 0, the head is not on this
square. Figure 20(a) shows that the tape symbol is 1 and the head is not on
this square. The eight RLEMs also process the instruction/response signals in
Table 1 properly.
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Table 1. Ten kinds of input symbols of the memory cell [13]

Symbol Instruction/Response Meaning

W0 Write 0 Instruction of writing the tape symbol 0 at the head position.
By this instruction, read operation is also performed

W1 Write 1 Instruction of writing the tape symbol 1 at the head position.
By this instruction, read operation is also performed

R0 Read 0 Response signal telling the read symbol at the head is 0
R1 Read 1 Response signal telling the read symbol at the head is 1
SL Shift-left Instruction of shift-left operation
SLI Shift-left immediate Instruction of placing the head on this cell by shifting left
SLc Shift-left completed Response (completion) signal of shift-left operation
SR Shift-right Instruction of shift-right operation
SRI Shift-right immediate Instruction of placing the head on this cell by shifting right
SRc Shift-right completed Response (completion) signal of shift-right operation

Connecting an infinite number of memory cells in a row, we obtain a tape
unit. The read, write and head-shift operations are executed by giving an instruc-
tion signal to an input port of the leftmost memory cell. Its response signal comes
out from an output port of the leftmost one. Note that a read operation is per-
formed by the Write 0 (W0) instruction. Thus it is a destructive read. The details
of how these operations are performed in this circuit is found in [13].

A qi-module corresponds to the state qi of an RTM. It has five RLEM 4-
31’s as shown in Fig. 20(b), which is for a shift-right state. Since a module for
a shift-left state is similar, we explain only the case of shift-right below. It is
further decomposed into a pre-qi-submodule (left half), and a post-qi-submodule
(right-half). Note that only the post-qi-submodule is used for the initial state,
while only the pre-qi-submodule is used for a halting state.

The pre-qi-submodule is activated by giving a signal from the port 0Rqi or
1Rqi in the figure. Then, a write operation and a shift-right operation that should
be done before going to qi are performed. Namely, it first sends an instruction W0
or W1 to write a tape symbol 0 or 1. Here we assume the previous tape symbol
under scan is 0. Then it receives a response signal R0 (i.e., the read symbol is 0).
Next, it sends a shift-right instruction SR, and receives a completion signal SRc.
After that, it goes to the state qi, and activates the post-qi-submodule. The red
particle in the figure shows that it has become the state qi.

In the post-qi-submodule, a read operation is performed, which should be exe-
cuted just after becoming the state qi. By giving an instruction W0, a destructive
read operation of a tape symbol is executed. Thus it receives a response signal
R0 or R1, and finally a signal goes out from the port qi0 or qi1.

Let Q be the set of states of an RTM. For each qi ∈ Q prepare a qi-module
and place them in a row. If there is a quintuple [qi, s, t, d, qj ], then connect the
port qis of the post-qi-submodule to the port tdqj of the pre-qj-submodule. By
this, the operation of the quintuple [qi, s, t, d, qj ] is correctly simulated. Note that
such a connection is done in a one-to-one manner (i.e., connection lines neither
branch nor merge) since the TM is deterministic and reversible. In this way, a
circuit module for the finite state control of the RTM is composed.
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Fig. 20. (a) A memory cell, and (b) a qi-module composed of RLEM 4-31 for 2-
symbol RTMs [13]. The qi-module consists of a pre-qi-submodule (left half), and a
post-qi-submodule (right-half)

5.3 Constructing RTMs in ETPCA 0347

Assembling memory cells and qi-modules by the method described in Sect. 5.2,
we can compose any 2-symbol RTM. Figure 21 shows the whole circuit that
simulates Tparity given in Example 1. If a signal is given to the “Begin” port, it
starts to compute. Its answer will be obtained at “Accept” or “Reject” port.

Putting copies of the pattern of RLEM 4-31 given in Fig. 18 at the positions
corresponding to the RLEMs in Fig. 21, and connecting them appropriately, we
have a complete configuration of ETPCA 0347 that simulates Tparity in Exam-
ple 1. Figure 22 shows the configuration simulated on Golly. Giving a glider
to “Begin” port, its computation starts. Whole computing processes of RTMs
embedded in ETPCA 0347 can be seen on Golly using its emulator [7].
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Fig. 21. A circuit composed of RLEM 4-31 that simulates the RTM Tparity [13]

Fig. 22. A configuration of ETPCA 0347 in Golly that simulates the circuit of Fig. 21

6 Concluding Remarks

We studied the problem of how we can find a method of constructing reversible
computers from a simple reversible microscopic law. We put several conceptual
levels properly on the construction pathway as in Fig. 1. By this, the problem was
decomposed into several subproblems, and it became feasible to solve it. Here we
saw that it is possible to compose RTMs even from the extremely simple local
function of reversible ETPCA 0347 using RLEM 4-31 in the intermediate step
of the pathway.

Only the specific ETPCA 0347 is considered here, but there are many other
ETPCAs. In [10], this problem is studied using reversible ETPCA 0137. There,
observed phenomena in the level 2 and composing technics of RLEM 4-31 in
the level 3 are very different. However, also in this case, the systematic and
hierarchical method shown in Fig. 1 can be applied, and works effectively.
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Abstract. The Variational Quantum Eigensolver (VQE) algorithm is
attracting much attention to utilize current limited quantum devices.
The VQE algorithm requires a quantum circuit with parameters, called a
parameterized quantum circuit (PQC), to prepare a quantum state, and
the quantum state is used to calculate the expectation value of a given
Hamiltonian. Creating sophisticated PQCs is important from the perspec-
tive of the convergence speed. Thus, we propose problem-specific PQCs
of the VQE algorithm for optimization problems. Our idea is to dynami-
cally create a PQC that reflects the constraints of an optimization prob-
lem. With a problem-specific PQC, it is possible to reduce a search space
by restricting unitary transformations in favor of the VQE algorithm. As
a result, we can speed up the convergence of the VQE algorithm. Experi-
mental results show that the convergence speed of the proposed PQCs is
significantly faster than that of the state-of-the-art PQC.

Keywords: VQE algorithm · Optimization problem · Problem-specific
parameterized quantum circuit

1 Introduction

Many companies have been competing to develop quantum computers recently.
Quantum computing promises advantages in solving certain tasks, e.g., integer
factorization [30] and database search [6]. However, the number of errors in cur-
rent quantum devices cannot be ignored, and they do not yet have the capability
of the error correction. Thus, they have the limitation of the size of quantum
circuits that can be executed [26]. Due to this limitation, we cannot yet execute
quantum circuits for such complicated tasks.

To utilize such limited quantum devices, variational quantum algorithms have
emerged and have attracted the attention [3,16]. Variational quantum algorithms
use both quantum and classical computers. By effectively combining quantum
and classical computers, it is expected that variational quantum algorithms can
achieve quantum advantage with even current limited quantum devices. Many
kinds of variational quantum algorithms are proposed for problems in various
c© Springer Nature Switzerland AG 2021
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fields so far such as chemistry [1,11,23], optimization [2,5,7,18,33], machine
learning [8,17,29], quantum gate synthesis [10,13], and so on.

The Variational Quantum Eigensolver (VQE) algorithm is a kind of varia-
tional quantum algorithms and it has been studied intensively [12,16,22,23,32]
among them. The VQE algorithm is an algorithm to find the minimal eigen-
value and its eigenvector of a given Hamiltonian. It consists of two parts like
other variational quantum algorithms. One is executed on quantum computers,
and the other on classical computers. The part executed on quantum computers
has a shallow quantum circuit with parameters called a parameterized quantum
circuit (PQC). A PQC prepare a quantum state from an initial state, and it can
also prepare various quantum states by changing the parameters. With the cre-
ated quantum state, the expectation value of a given Hamiltonian is calculated
by sampling outcomes. Since the VQE algorithm uses the variational method
based on the results of sampling, making sophisticated PQCs is important from
the perspective of the convergence speed.

The VQE algorithm can also be used to solve optimization problems by cre-
ating the corresponding Hamiltonian for an optimization problem [2,18]. Formu-
lations of the Hamiltonian for many NP-complete and NP-hard problems have
been discussed in [14]. A converged expectation value corresponds to a solution to
the optimization problem. Also, a quantum state for the converged expectation
value corresponds to an assignment of variables for the optimization problem.

Although the VQE algorithm is being studied intensively and PQCs of the
VQE algorithm are important, there are a few researches considering PQCs of
the VQE algorithm for optimization problems. Hence, we would like to point
out two problems in known PQCs. (1) Only a few types of PQCs are known.
Even the state-of-the-art library for quantum computers [27] has only four types
of PQCs such as Ry, RyRz, SwapRz and UCCSD. They are all general PQCs
with static structures and can be used for any problems. (2) Existing PQCs do
not take into account the feasibility of output solutions, and they often output
infeasible solutions. We need to ensure that results are feasible solutions to corre-
sponding optimization problems when using the VQE algorithm for optimization
problems.

In this paper, we propose novel PQCs for the traveling salesman problem that
is a well-know optimization problem. In the proposed PQCs, we pay attention
to the constraints of an optimization problem, and we dynamically create a
PQC that reflects those constraints of the optimization problem. We call such
a PQC for the specific problem as a problem-specific PQC [15]. Since problem-
specific PQCs reflect the constraints of optimization problems, they naturally
take into account the feasibility of output solutions. With problem-specific PQCs,
it is possible to reduce search spaces significantly. Thus, we can speed up the
convergence of the VQE algorithms.

The rest of the paper is organized as follows. Section 2 covers the background
on quantum circuits and the VQE algorithm. In Sect. 3, we explain the proposed
problem-specific PQCs for the optimization problems. Section 4 summarizes the
experimental results of the proposed PQCs. Finally, Sect. 5 concludes the paper.
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Fig. 1. An example of a quantum circuit

2 Background

In this section, we introduce the basics of quantum circuits and the VQE algo-
rithm.

2.1 Quantum Circuits

A quantum circuit is a model of quantum computation [21] and contains qubits
and a sequence of quantum gates. It represents a sequence of operations applied
to qubits graphically. Figure 1 shows an example of a quantum circuit. The hor-
izontal wires in Fig. 1 represent qubits q1 and q2. Each diagram in the quantum
circuit represents quantum gates.

In quantum computation, we use qubits instead of bits. A bit in classical
computers has to be either zero or one. However, a qubit can be |0〉, |1〉, or the
superposition state. The superposition state is a linear combination of |0〉 and
|1〉 such as α |0〉 + β |1〉, where α, β ∈ C and |α|2 + |β|2 = 1. These α and β
are called amplitudes of the corresponding bases. We also represent an n-qubit
state as |ψ〉 =

∑
k∈{0,1}n αk |k〉, where αk ∈ C and

∑
k∈{0,1}n |αk|2 = 1. It is

represented with a 2n-dimensional state vector such as (α0, α1, ..., α2n−1)T .
We apply quantum operators to state vectors and change state vectors to

calculate tasks in quantum computation. Each quantum gate has the function-
ality corresponding to the particular unitary operator. With qubits, a quantum
gate represents what unitary operator is applied to which qubits. A quantum
gate is represented with a 2n × 2n unitary matrix. Thus, we repeatedly multi-
ply between a 2n × 2n unitary matrix and a 2n-dimensional state vector in a
quantum circuit. We explain the details of quantum gates used in the proposed
PQCs in Sect. 3.

2.2 The VQE Algorithm

The VQE algorithm is an algorithm to find the minimal eigenvalue and its
eigenvector of a given Hamiltonian. To do this, the VQE algorithm uses the
Rayleigh-Ritz variational principle as shown in Eq. (1). H and |ψ〉 represent a
given Hamiltonian and a quantum state, respectively in Eq. (1). λmin represents
the minimal eigenvalue of H.

λmin ≤ 〈ψ|H|ψ〉 (1)
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Fig. 2. An overview of the VQE algorithm

The variational principle holds for an arbitrary quantum state. Thus, for an
arbitrary quantum state, |ψ〉, the expectation value, 〈ψ|H|ψ〉, is greater than or
equal to the minimal eigenvalue of H.

Figure 2 shows an overview of the VQE algorithm. The VQE algorithm con-
sists of two parts. One is executed on quantum computers, and the other one is
on classical computers. As we mentioned, the part executed on quantum com-
puters has a shallow quantum circuit with parameters called a PQC. A PQC
prepare a quantum state (often called an ansatz ), |ψ(θ)〉, from an initial state.
It can prepare various quantum state by changing the parameters, θ. With the
created quantum state, the expectation values of each term in a given Hamil-
tonian are obtained by sampling outcomes. Then, classical computers calculate
the total of the expectation values by summing those of each term. After that,
classical computers determine the next parameters for the PQC by using classi-
cal optimization algorithms such as the Nelder–Mead algorithm [20], the Powell
algorithm [24], and many more [9,19,25,31]. The PQC creates a new quan-
tum state with new parameters, and the expectation values of each term in the
given Hamiltonian are obtained by sampling outcomes again with the new quan-
tum state. Note that expectation value 〈ψ(θ)|H|ψ(θ)〉 is always greater than or
equal to minimal eigenvalue of H for any θ based on the Rayleigh-Ritz varia-
tional principle. This process is repeated until the expectation value of the given
Hamiltonian converges.

3 The Proposed Problem-Specific PQCs

3.1 Overview of the Problem-Specific PQC

In this subsection, first, we introduce the general idea of the problem-specific
PQC. After mapping binary variables xi to qubits qi, we pay attention to the
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constraints of an optimization problem. As always, constraints restrict the set
of feasible answers for the optimization problem. We utilize the constraints to
dynamically construct a problem-specific PQC that reflects those constraints
of the optimization problem. Therefore, we can restrict a unitary transforma-
tion that is provided by the problem-specific PQC while taking constraints into
account. Then, it is possible to reduce the set of the bases of a state vector that
is the output of the problem-specific PQC. As a result, we can make the search
space smaller.

For example, suppose that a constraint of an optimization problem is∑
i xi = 1. The constraint represents that exactly one of the variable has to

be one, while the other variables have to be zero. This type of constraint often
appears in optimization problems, e.g., the traveling salesman problem and the
job scheduling problem. Constraint

∑
i xi = 1 restricts the set of the feasible

answers to the set of the bases of the corresponding W state. A W state is
a superposition of states that exactly one of the qubits is |1〉 while the other
qubits are |0〉 with equal amplitudes. A W state of n qubits is represented as
|W 〉 = 1√

2n
(|10...0〉 + |01...0〉 + |00...1〉). Each base of |W 〉 exactly corresponds

to an assignment of variables that satisfies
∑

i xi = 1. We do not need to con-
sider other bases since all of them are obviously infeasible due to the constraint∑

i xi = 1.
The basic concept of the problem-specific PQC is as follows. Let Sall be the

set of all the bases of n qubits, so |Sall| is 2n. Then, let Sfeasible the a set of bases
corresponding the feasible answers of an optimization problem after mapping
variables to qubits. Sall includes Sfeasible from the definition. For example, when
one of the feasible answers is x0 = 1, x1 = 0 and x2 = 0, the corresponding base
is |q0q1q2〉 = |100〉. Thus, |100〉 is in Sfeasible. With the problem-specific PQC, we
consider set Sproposed that includes Sfeasible, but the size of the set is smaller than
|Sall|. The relation between each set is described as Sfeasible ⊆ Sproposed ⊆ Sall.
By using such Sproposed, the basic concept of the problem-specific PQC is written
as Eq. (2). Uproposed represents a unitary transformation that is provided by a
problem-specific PQC. |0〉 represents a base whose index is all zeros. We use
|0〉 as an initial state for the problem-specific PQC. αi represents an amplitude
of |ψi〉. These amplitudes are controlled by parameters of the problem-specific
PQC. With a proper problem-specific PQC, we can change only αi while keeping
the amplitudes of the other states not included in Sproposed 0. We explain how
the problem-specific PQC works with examples later.

Uproposed |0〉 =
∑

i

αi |ψi〉 , |ψi〉 ∈ Sproposed (2)

Usually, an optimization problem has more than one constraint. For such
cases, we create multiple problem-specific parameterized quantum sub-circuits
each of which reflects the corresponding constraint. Then, by combining those
sub-circuit properly, even though the optimization problem has more than one
constraint, it is still possible to create a problem-specific PQC and reduce the
search space.
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3.2 Problem-Specific PQCs for the TSP

In this subsection, we introduce problem-specific PQCs for the traveling salesman
problem (TSP). The TSP is a well-known NP-hard problem in combinatorial
optimization problems. The traveling salesman goes from city to city to sell
products, and the objective is to find the shortest path that the salesman can
visit all the cities once and return to his starting point. With an undirected
graph G = (V,E), we can formulate the TSP as follows. Each edge (u, v) ∈ E in
the graph has weight Wu,v, then find the Hamiltonian cycle such that the sum
of the weights of each edge in the cycle is minimized. Let N = |V | and let us
label the vertices 1, ..., N . For a linear program, we use N2 variables xv,p where
v represents the vertex and p represents its order in a prospective cycle. Then,
the linear program of the TSP is formulated as Eq. (3). Note that N + 1 should
be read as 1 in Eq. (3).

Minimize
∑

(u,v)∈E

Wu,v

N∑

p=1

xu,pxv,p+1

Subject to
N∑

v=1

xv,p = 1, p = 1...N

N∑

p=1

xv,p = 1, v = 1...N

xv,p ∈ {0, 1}

(3)

In this paper, we propose four PQCs for the TSP. Each of them has different
characteristics such as the types of the constraints considered, the number of
quantum gates, and the number of parameters. Their details will be explained
in Sect. 3.2, Sect. 3.2, Sect. 3.2, and Sect. 3.2, respectively.

PQCs Satisfying only the Constraints on the First Line. For the first
proposed PQC, we take into account only the constraints on the first line. In
each constraint of Eq. (3), exactly one variable has to be one while the other
variables have to be zero. As we have already explained in this paper, this type
of constraint restricts the set of the feasible answers to the set of the bases of
the corresponding W state. The total number of the constraints represented by
the first line in the constraints,

∑N
v=1 xv,p = 1, is N since we have a constraint

for each p = 1, ..., N . Thus, after mapping binary variables to qubits, with the
tensor product of the corresponding N W states, we can restrict a search space
to

⊗N
p=1 |Wp〉. We do not need to consider other bases, not in

⊗N
p=1 |Wp〉, since

they do not satisfy
∑N

v=1 xv,p = 1, p = 1...N . Note that we do not consider
constraints represented by the second line in the constraints. Thus, some bases
in Sproposed may not satisfy these constraints in the second line of constraints.
However, the relation between each set, Sfeasible ⊆ Sproposed ⊆ Sall, still holds,
and we can reduce the search space.
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Therefore, we need to create quantum circuits that create W states. The
deterministic methods for creating W states of arbitrary sizes are discussed in
previous studies [4,28]. However, a conventional W state has equal amplitudes
for each base. For the VQE algorithm, we need to control the amplitudes of each
base with parameters as shown in Eq. (4), and optimize them with a classical
optimizer to find the minimum eigenvalue.

|W (φ)〉 =
∑

i

αi(φ) |ψi〉 ,

∑

i

|αi(φ)|2 = 1, |ψi〉 ∈ {|10...0〉 , |01...0〉 , |00...1〉}
(4)

In Eq. (4), |ψi〉 represents one of the bases in the corresponding W state where
the i-th qubit is |1〉 while other qubits are |0〉. An amplitude αi has the set of
parameters, φ, to change its value. Note that φ can have multiple parameters
such as {θ1, θ2, ...} ∈ φ. We call this |W (φ)〉 in Eq. (4) as a parameterized W
state.

Let us introduce quantum gates before explaining how to create a quantum
circuit for a parameterized W state. An X gate and a Ry(θ) gate act on a single
qubit while a Controlled Z (CZ ) gate and a Controlled NOT (CNOT ) gate act
on two qubits. A two-qubit gate has the control bit and the target bit. If the
control bit of a two-qubit gate is |1〉, the two-qubit gate applies a particular
operation to its target bit. If the control bit of a two-qubit gate is |0〉, the two-
qubit gate does not apply any operations to its target bit. For example, in the
case of a CNOT gate, if the control bit of the CNOT gate is |1〉, it applies an X
gate to its target bit. If its control bit is |0〉, it does not apply any operations to
its target bit. A Controlled SWAP (CSWAP) gate is a three-qubit gate, which
acts on the control qubit and the two target qubits. If the control qubit is |1〉,
then the two target qubits are swapped.

The unitary matrices of each gate are as follows.

X ≡
[
0 1
1 0

]

, (5)

Ry(θ) ≡
[
cos θ

2 − sin θ
2

sin θ
2 cos θ

2

]

, (6)

CZ ≡

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎤

⎥
⎥
⎦ , (7)

CNOT ≡

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤

⎥
⎥
⎦ , (8)
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CSWAP ≡

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (9)

Note that a Ry(θ) gate has a parameter θ and its matrix elements can be
changed dynamically by θ. On the other hand, the matrix elements of an X
gate, a CZ gate, and a CNOT gate do not change. We sometimes use an index
for a gate to represent which qubit the gate was applied. For example, an Xi

gate means an X gate for qi. For a Ry(θ) gate, we also use an index for its
parameter. A Ryi

(θp) gate means a Ry(θ) gate for qi where its parameter is θp

Since two-qubit gates have control bits and target bits, we use two numbers for
their index. The left number in an index represents the control bit of a two-qubit
gate, and the right number represents its target bit. For example, a CNOTi,j

gate means a CNOT gate whose control bit is qi and target bit is qj . Note that
which qubit is the control bit or the target bit of a CZ gate is not important
since CZi,j = CZj,i. CSWAPi,j,k represents a CSWAP gate whose control bit is
qi and target bits are qj and qk. Note that the target qubits in a CSWAP gate
is permutation invariant, i.e. CSWAPi,j,k = CSWAPi,k,j

We use the above gates to create such parameterized W states and use exist-
ing methods [28] as the base. However, we do not determine the parameters of
Ry(θ) gates yet for parameterized W states. For ease of explanation, we consider
a case with three qubits, q1, q2, and q3. We explain an algorithm for arbitrary
sizes of qubits later. The initial state is |q1q2q3〉 = |000〉. Firstly, we apply an X
gate to q1. Then, the state will change as X1 |000〉 = |100〉. Then we apply two
Ry(θ) gates and a CZ gate in the following order.

1. Apply a Ry2(θ1) gate.
2. Apply a CZ1,2 gate.
3. Apply a Ry2(−θ1) gate. Note that the same parameter θ1 is used in 1) and

3), but with a different sign.

Fig. 3. A quantum circuit for a parameterized W state of three qubits
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After that, we apply two Ry(θ) gates and a CZ gate in the same order. However,
at this time, we apply a Ry3(θ2) gate, a CZ2,3 gate, and a Ry3(−θ2) gate. The
state will be as Eq. (10).

α1(φ) |100〉 + α2(φ) |110〉 + α3(φ) |111〉 ,

3∑

i=1

|αi(φ)|2 = 1,

α1(φ) = cos θ1, α2(φ) = − sin θ1 cos θ2, α3(φ) = sin θ1 sin θ2

(10)

Amplitude αi(φ) depends on the values of θ1 and θ2. Then, we apply a
CNOT2,1 gate and a CNOT3,2 gate. After applying CNOT gates, the final state
will be as Eq. (11).

α1(φ) |100〉 + α2(φ) |010〉 + α3(φ) |001〉 ,

3∑

i=1

|αi(φ)|2 = 1,

α1(φ) = cos θ1, α2(φ) = − sin θ1 cos θ2, α3(φ) = sin θ1 sin θ2

(11)

This state is the same as a parameterized W state of three qubits. Figure 3
shows a quantum circuit for a parameterized W state of three qubits. The text
in the boxes of each quantum gate represents its unitary matrix. The leftmost
gate in Fig. 3 represents that an X gate is applied to q1. The second gate from
the left in Fig. 3 represents that a Ry(θ) gate is applied to q2 with parameter θ1.
The third gate from the left in Fig. 3 represents that a CZ gate is applied to q1
and q2, and its control bit is q1 and its target bit is q2. The rightmost gate in
Fig. 3 represents a CNOT gate is applied to q2 and q3, and its control bit is q3
and its target bit is q2.

By combining quantum circuits to create parameterized W states, we can
create a problem-specific PQC of the VQE algorithm for the TSP. As mentioned
above, a linear program of the TSP is represented as Eq. (3). For the VQE
algorithm, we need to map these variables to qubits. To do this, we prepare N2

qubits qv,p and map each variable xv,p to the corresponding qubit qv,p. Note that
N is the number of vertices. We use N independent quantum circuits to create
parameterized W states of N qubits. For qubits q1,1, q1,2, ..., q1,N , we insert the
first quantum circuit to create a parameterized W state of N qubits. Then, for
qubits q2,1, q2,2, ..., q2,N , We insert the second one. In the same manner, we keep
inserting quantum circuits to create parameterized W states. The last one will be
for qN,1, qN,2, ..., qN,N . After that, we obtain a quantum circuit as shown in Fig. 4.
Each box represents a quantum circuit to create a parameterized W state with
the set of parameters φi for the corresponding qubits. Each |Wi(φi)〉 (i = 1, ..., N)
on the right in Fig. 4 represents the output of the corresponding circuit. Note
that each |Wi(φi)〉 (i = 1, ..., N) has the different set of parameters. With the
circuit in Fig. 4, we can create a tensor product of the parameterized W states⊗N

p=1 |Wp(φp〉
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Fig. 4. A problem-specific PQC of the VQE algorithm for the TSP

PQCs Satisfying an L-Shaped Constraint with CNOT Operations. For
the second PQC, we take into account not only the first line but also taking into
account constraint

∑N
p=1 x1,p = 1 in the second line of the constraints of Eq. 3

to further reduce the search space, as is shown in Fig. 5(b). Unlike the first
PQC, the situation requires more “correlations” among qubits being mapped
from variables, since variables x1,p, p = 1 . . . N appear in both the first and
the second line; it is no longer possible to realize the constraints by a tensor
product of N quantum states. Hence, we utilize CNOT gates together with the
parameterized W state gates to create such a quantum circuit.

The protocol of creating the PQC follows two steps. First, we construct a
quantum circuit satisfying both two constraints,

∑N
p=1 x1,p = 1 and

∑N
v=1 xv,1 =

1, which we call”an L-shaped constraint” because the involved variables form
L-shape in Fig. 5(b). In the L-shaped constraint, one variable in each set of

Fig. 5. Schematic of the constraints considered for each case; (a) only the first line, (b)
a constraint in the second line as well as the first line and (c) all constraints. The blue
box represents a constraint in the first line, while the red box indicates a constraint in
the second line of constraints of Eq. 3. (Color figure online)
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{x1,p′ |p′ = 2 . . . N} and {xv′,1|v′ = 2 . . . N} has to be one if x1,1 is zero, while
all variables in {x1,p′ |p′ = 2 . . . N} and {xv′,1|v′ = 2 . . . N} are zeros if x1,1

is one. According to this, one can easily understand that the corresponding
unitary operations on the initialized qubits qi,j being mapped from variables
xi,j is realized by applying parameterized W state gates to each set of qubits
{q1,p′ |p′ = 2 . . . N} and {qv′,1|v′ = 2 . . . N} if |0〉q1,1

, and applying identity gates
if |1〉q1,1

. Thus, the PQC can be created with CNOT gates and parameterized W
state gates, as depicted in Fig. 6(a). In a quantum circuit of Fig. 6(a), the left-
most Ry gate with the trainable parameter φ0 and the following two CNOT
gates, CNOTq1,1,q1,2 and CNOTq1,1,q2,1 , determine whether |0〉q1,1

or |1〉q1,1
,

and whether W state gates or identity gates are applied to each set of qubits
{q1,p′ |p′ = 2 . . . N} and {qv′,1|v′ = 2 . . . N} depending on the condition of q1,1,
respectively. Note that we here use the fact that a parameterized W state gate
is exactly an identity gate if an X gate is applied to the first qubits beforehand,
which can be checked readily by looking into Fig. 3. As a result, the quantum
circuit can create the desired quantum state expressed as

cos
φ0

2
|0〉q1,1

|W (φp′)〉{q1,p′ |p′=2...N} |W (φv′)〉{qv′,1|v′=2...N}

+ sin
φ0

2
|1〉q1,1

|0〉⊗n−1
{q1,p′ |p′=2...N} |0〉⊗n−1

{qv′,1|v′=2...N} ,

(12)

where φs are all trainable parameters.

Fig. 6. A PQC for the second case; (a) a quantum circuit for an L-shaped constraint,
(b) a quantum circuit corresponding to the constraint,

∑N
v=1 xv,p′ = 1 and (c) a whole

picture of the PQC for the second case.
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Second, we apply unitary operations for the remaining constraints,∑N
v=1 xv,p′ = 1, p′ = 2 . . . N , to a resultant quantum state in Eq. 12. Here, since

the qubits corresponding to the variables {x1,p′ |p′ = 2 . . . N} in the constraints
have already been determined, the constraints can be read in the similar way to
the first step as follows; if x1,p′ is one, all variables {xv′,p′ |v′ = 2 . . . N} are zeros,
while if x1,p′ is zero one variable in {xv′,p′ |v′ = 2 . . . N} has to be one. As we have
seen in the first step, the corresponding unitary operation can be realized by a
CNOTq1,p′ ,q2,p′ gate followed by parameterized W state gates on the set of qubits
{qv′,p′ |v = 2 . . . N} as represented in Fig. 6(b). Thus, using N − 1 CNOT gates
and N −1 circuits for parameterized W sates, we can create the unitary operators
that create a quantum state satisfying the remaining constraints.

Following the above two steps, we can create the problem-specific PQC in
Fig. 6(c).

PQCs Satisfying an L-Shaped Constraint with Parameter Sharing. For
the third PQC, we modify the second PQC to reduce the cost of the implemen-
tation for the current quantum processors [26]. Since current noisy devices suffer
from an exponential decay of quantum coherence, deep circuits would be prob-
lematic. In the second case, the circuit becomes deep due to the dependence
in its own structure; firstly, a quantum circuit for an L-shaped constraint is
constructed, and then other gates are applied for the remaining constraints.

To remedy this issue, we introduce the technique, parameter sharing, which
makes the circuit shallower with fewer CNOT gates. The main point of this
technique is as follows; CNOT gates (and also X gates in parameterized W state
gates) used in Fig. 5 are replaced with Ry gates with the shared parameters such

Fig. 7. A PQC with N = 3 for the third case. To create the PQC, the top-left circuit
appearing in the quantum circuit of the second case is replaced with the top-right circuit.
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that the probability of obtaining |1〉q1,p′ is equal to that of |0〉⊗N−1
{qv′,p′ |v′=2...N}. To

demonstrate the parameter sharing in detail, we provide a simple example of the
quantum circuit with N = 3 in Fig. 7. In this scenario, parameters φ0 and φ2

are used for not only q1,1 and q1,2, but also q2,2 and q3,2 in unique ways such as
2 arccos (cos φ0/2 cos φ2). Indeed, the trigonometric functions inside the inverse
trigonometric function, cosφ0/2 cos φ2 and − cos φ0/2 sinφ2 are the amplitudes
of |1〉q1,2

and |1〉q1,3
, respectively. Therefore, the amplitude of |00〉{qv,2|v=2,3} is

always the same as that of |1〉q1,2
by the parameter sharing (similarly, this is true

to q1,3, q2,3, and q3,3). Note that this technique can be easily extended for PQCs
with arbitrary N since the probability of obtaining |1〉q1,p′ for all p′ = 2 . . . N is
analytically calculated in the similar way as shown in Eq. (11).

By utilizing such “classical correlation”, we can create a shallower PQC sat-
isfying the constraints in Fig. 5(b), which is expected to be more suitable for
current noisy devices. However, the technique has a limitation on the ability to
restrict the set of bases compared to the second case. As we can see in Fig. 7, the
quantum state created by the PQC is not fully entangled, i.e. it can be written as
the tensor product of small quantum states. Consequently, the set of the bases of
the quantum state includes the bases that are not in the second case. However,
the probability to obtain such extra bases is at most a half. This characteristic
contributes to interesting results which we will discuss in Sect. 4

Fig. 8. A PQC with N = 2 for the fourth case.

PQCs Satisfying All Constraints. For the fourth PQC, we consider all
constraints of Eq. 3 to completely exclude the infeasible answers as shown in
Fig. 5(c). Thus, the set of the bases of the quantum states includes only feasible
answers , i.e. Scase 4 = Sfeasible.

Such a PQC for arbitrary N can be constructed in a recursive manner. After
a quantum circuit with N = 2 is exemplified, we will demonstrate that the PQC
with N = k can be constructed using the quantum circuit with N = k − 1.
The basic idea is that the assignments of feasible answers on the 2D grid as
shown in Fig. 5(c) can be interpreted as permutation matrices. It is due to the
fact that the constraints of Eq. (3) are exactly the same as the definition of
permutation matrices. Note that a permutation matrix is a square matrix, every
row and column of which has only one entry, 1 while the other entries are 0.
Hence, with the equivalence of permutation matrices and the assignment of the
feasible answers on the 2D grid, we construct the quantum circuit.
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Firstly, we show the PQC with N = 2. For the number of city N = 2, two

feasible answers exist, as there are two 2 × 2 permutation matrices,
[

1 0
0 1

]

and
[

0 1
1 0

]

. Thus, a quantum state we want to create can be described by the super-

position of two bases, |0110〉 and |1001〉 with the order of qubits |q1,1q2,1q1,2q2,2〉.
A quantum circuit for N = 2 can be created as shown in Fig. 8, where the quan-
tum state is represented as cos φ |1001〉 − sin φ |0110〉.

Secondly, we show that the PQCs with N = k can be constructed by using
the quantum circuit with N = k − 1. The conceptual overview to create PQCs
for the forth case is as shown in Fig. 9.

Fig. 9. The conceptual overview to create PQCs for the forth case. (a) illustrates
the property of permutation matrices, which is used for constructing PQCs. (b) is a
schematic view to create the desired quantum state for N = k by using a quantum
state for N = k − 1.
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Fig. 10. A PQC with N = 3 for the fourth case.

Suppose that we have all the permutation matrices of size k − 1, so the
total number of the permutation matrices is (k − 1)!. Then one can obtain k!
permutation matrices of size k in the following way.

1. Pad the additional zeros to all the (k − 1) × (k − 1) permutation matrices to
form k × k square matrices.

2. Set the top right element in each of the matrices as 1 to make them permu-
tation matrices.

3. Permute the k-th and the j-th column of the matrices for all j = 1 . . . k − 1.

Note that we here use the fact that exchanging the i-th and the j-th column
of a permutation matrix results in also a permutation matrix. Consequently,
with (k − 1)! permutation matrices in the second step and k(k − 1)! permu-
tation matrices in the third step, we can obtain k! permutation matrices of
size k by the above steps. In analogous to the case of permutation matrices,
we construct a quantum circuit with N = k. Let |Ψk−1〉 be a quantum state
whose bases are all feasible answers for N = k − 1 with the order of qubits
|q1,1...q1,k−1q2,1 . . . q2,k−1 . . . qk−1,1 . . . qk−1,k−1〉. Then, in a similar way, we can
create the desired quantum states as follows;

1. Prepare the initialized 2k−1 qubits, labeled as qk,p′ , p′ = 2 . . . k and qv,k, v =
1 . . . k.

2. Apply a parameterized W state gate to the set of qubits, {qv,k|v = 1 . . . k}.
3. Apply CSWAP gates to the corresponding qubits in |Ψk−1〉,

|Wk(ψ)〉{qv,k|v=1...k}, and |0〉⊗k−1
{qk,p′ |p′=1...k−1}; the set of CSWAP operations,

{CSWAPqv′,k,qk,p′ ,qv′,p′ |p′ = 1 . . . k − 1} are applied for all v′ = 1 . . . k − 1.

In this procedure, the parameterized W state gate is used to represent the addi-
tional k-th row of k × k matrix, which can be regarded as the permutation
inside the k-th row. Then, CSWAP gates are used to serve as the permuta-
tion of the remaining rows depending on the state of k-th row; the states of
{qk,p′ |p′ = 1 . . . k − 1} and {qv,p′ |p′ = 1 . . . k − 1} are exchanged if |1〉qv,k

, while
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Table 1. The comparison of necessary parameters and gates among the proposed
problem-specific PQCs and a Ry PCQ for the TSP with n qubits

Necessary resources Ry Proposed 1 Proposed 2 Proposed 3 Proposed 4

# of Parameters (D + 1)n n − √
n n − √

n − 1 n − √
n − 1 1

2n − 1
2
√

n

# of one-qubit gates (D + 1)n 2n − √
n 2n − √

n − 4 2n − √
n − 4 n − 1

# of two-qubit gates D(n − 1) 2n − 2
√

n 2n − √
n − 3 2n − 2

√
n − 2 n − √

n + 2

# of CSWAP gates — — — — 1
3n

√
n − 1

2n + 1
6
√

n − 1

the states of {qk,p′ |p′ = 1 . . . k −1} and {qv,p′ |p′ = 1 . . . k −1} remain unchanged
if |0〉qp,k

. As a demonstration, we give a simple example of the PQC with N = 3
for the forth case as shown in Fig. 10.

Then the corresponding quantum state is represented as Eq. (13), with the
order of qubits |q1,1q2,1q3,1q1,2q2,2q3,2q1,3q2,3q3,3〉, which is exactly the superpo-
sition of bases of six feasible answers.

|Ψk−1〉 = − cos φ0 sin φ1 cos φ2 |100001010〉
+ cos φ0 sin φ1 sin φ2 |001100010〉
+ cos φ0 sin φ1 sin φ2 |100010001〉
− sin φ0 sin φ1 cos φ2 |010100001〉

+ cos φ0 cos φ1 |001010100〉
− sin φ0 cos φ1 |010001100〉

(13)

Therefore, we can construct the PQC for arbitrary N by recursively performing
the procedure explained in the above starting from the quantum circuit with
N = 2.

4 Experimental Results

We conducted simulation experiments to compare the convergence speed of each
proposed PQCs and the Ry PQCs using Python. Qiskit Aqua 0.7.5 was used
to convert optimization problems to the corresponding Ising Hamiltonians. We
run the VQE algorithm in Qiskit with the QASM simulator for the TSP. The
number of the shots of the QASM simulator used in each experiments was 1024.
We conduct 10 trials with different initial parameters for each PQC except the
Ry PQCs. The COBYLA algorithm [25] was used as the classical optimizing
algorithm of the VQE algorithm for the TSP. For the experiments of the TSP, we
used a complete graph with four nodes as the graph of the TSP. The experiments
were conducted on a MacBook Pro with 2.9 GHz Intel Core i5 and DDR3 8 GB
memory running macOS 10.14.6.

Figure 11 shows the comparison between each proposed problem-specific
PQC and Ry PQCs with depth one, two, and three. Proposed 1, Proposed 2,
Proposed 3, and Proposed 4 correspond to the PQCs in Sect. 3.2, Sect. 3.2,
Sect. 3.2, and Sect. 3.2, respectively. As we can see, the convergence of the
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Fig. 11. The comparison between each proposed problem-specific PQC and the Ry
PQCs with depth one, two, and three for the TSP with four cities.

proposed PQCs is significantly faster than that of the Ry PQCs. The average
execution time of Proposed 1, Proposed 2, Proposed 3, and Proposed 4 was 98
sec, 78 sec, 101 sec, and 22 sec. The execution time of Ry PQCs with depth 1,
2, and 3 was 3606 sec, 4941 sec, and 8732 sec. The expectation values of the
proposed PQCs are rapidly decreased in the first 60 iterations compared to the
Ry PQCs. Also, the initial expectation values of the proposed PQCs are remark-
ably lower than that of the Ry PQCs. A graph in Fig. 12 is extracted from the
graph in Fig. 11 to focus the experimental results of the proposed PQCs more.
The order of the convergence speed was Proposed 4 < Proposed 2 < Proposed
3 < Proposed 1 < Ry. This is closely related to the set of the bases |S|, i.e.
Sfeasible = SProposed 4 ⊆ SProposed 2 ⊆ SProposed 1 ⊆ SProposed 3 ⊆ Sall. Note that
the convergence speed of Proposed 3 was faster than Proposed 1 despite the
fact the Proposed 3 has more bases than Proposed 1. It is because that the
probability to obtain extra infeasible answers (bases) is at most a half due to
the parameter sharing as we explained in Sect. 3.2. By utilizing such “classical
correlation”, the convergence speed of Proposed 3 is faster than Proposed 1 even
though Proposed 3 has more bases than Proposed 1.

We also analyzed whether each PQC can reach to the global minimum. The
result is as follows; For proposed 4, every trial reached to the global minimum
while others did not. Proposed 1, 2, and 3 could find the feasible answers and they
could sometime reach to the global minimum. More specifically, More specifically,
Proposed 1, 2, and 3 reached to the global minimum forth, four times, four times,
and two times, respectively. Ry PQCs didn’t converge well and they produced
infeasible answers even after 400 iterations. Of course, whether we can reach the
global minimum depends on not only the PQCs, but also different factors such as
problem configurations, the types of classical optimizers, and initial parameters.



Variational Quantum Eigensolver and Its Applications 39

Fig. 12. A graph extracted from the graph in Fig. 11 for the comparison between each
proposed problem-specific PQC.

We will continue to study the convergence to the global minimum as our future
work.

Table 1 shows the number of necessary gates and parameters for each PQC.
In Table 1, the # of Parameters row, the # of one-qubit gates row, the # of
two-qubit gates columns, and the # of CSWAP gates row correspond to the
number of independent parameters used in Ry(θ) gates, the total number of X
gates and Ry(θ) gates, the total number of CZ gates and CNOT gates, and the
total number of CSWAP gates, respectively. D in the Ry column corresponds
to the depth of Ry PQCs. From the experimental results, we observed that the
Proposed 4 is the best in terms of the convergence speed and the convergence to
the global minimum. However, it requires a lot of CSWAP gates that realizing
a CSWAP gate is expected to be difficult on current noisy devices. More specif-
ically, a CSWAP gate requires 9 one-qubit gates and 8 two-qubit gates to be
realized. Thus, the total number of the required one-qubit gates and two-qubit
gates will be larger than other proposed PQCs. This will lead to challenges in
the implementation on current noisy devices. To tacke this issue, we are con-
sidering to combine the parameter sharing and excitation preserving gates to
replace high-cost CSWAP gates.

Each amplitude is not completely independent in the proposed problem-
specific PQCs. They have slight correlation between each other. However, it
ensures that amplitudes of the bases that correspond to the answer of optimiza-
tion problems can be 1. We need to carefully examine the relationship between
the proposed method for the VQE algorithm and existing methods for classical
computers.
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5 Conclusions

In this paper, we proposed the problem-specific PQCs of the VQE algorithm
for the TSP. In the proposed PQCs, we pay attention to the constraints of an
optimization problem, and we dynamically create a PQC that reflects those con-
straints of the optimization problem. By doing this, it is possible to significantly
reduce search spaces. As a result, we can speed up the convergence of the VQE
algorithms. We conducted the simulation experiments to compare the proposed
PQCs and the state-of-the-art PQC. In experiments, the proposed PQCs could
reduce the search spaces, and the convergence of the proposed PQCs was signif-
icantly faster than that of the state-of-the-art PQC.
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Abstract. Functional array programming is a style of programming
that enables massive parallelism through use of combinators (such as
map and reduce) that apply functions to whole arrays. These can be
readily parallelised when the functions these combinators are applied to
are pure and, in some cases, also associative.

We introduce reversible variants of well-known array combinators and
show how these can be implemented in parallel using only reversible oper-
ations and without accumulating garbage.

We introduce a simple reversible functional array programming lan-
guage, Agni, and show some examples of use.

1 Introduction

The world of computing is becoming more and more parallel. This is seen in the
exploding number of cores in general-purpose processors but even more clearly
in the increasing use of highly parallel vector processors such as graphics proces-
sors. Graphics processors are known to be power hungry, so the potentially much
lower energy requirements of reversible logic could be a way of reducing power
use of highly parallel programming. Reversibility adds extra constraints to pro-
gramming, but graphics processors already have significant constraints to their
programming, so users may be more willing to accept the constraints of reversible
programming in this setting than for general-purpose programming. Languages,
such as Futhark [2], are being developed to provide a machine-independent high-
level abstraction on top of graphics processors without significantly impacting
performance, often through functional array programming.

Functional array programming typically uses a predefined set of parallelisable
combinators such as map and reduce. A typical set includes combinators like
those shown in Fig. 1. You can combine these to make more complex parallel
functions, and a compiler can use fusion to optimise nested combinators to reduce
the overhead and exploit parallelism better than if the combinators are applied
one at a time.

The combinators shown in Fig. 1 are not all reversible, nor are the functions
that are passed to map, filter, scan, or reduce typically reversible, so we need to
modify these to a reversible setting, and we need to create a reversible language
c© Springer Nature Switzerland AG 2021
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map : ∀( ′a, ′b).( ′a → ′b) → [ ′a] → [ ′b]
If ys = map f xs, then ys[i] = f(xs[i]).
filter : ∀ ′a.( ′a → bool) → [ ′a] → [ ′a]
If ys = filter f xs, then ys contains exactly the elements xs[i] where
f(xs[i]) = true in the same order that these elements appear in xs.
reduce : ∀ ′a.( ′a × ′a → ′a) → [ ′a] → ′a
reduce f [] is undefined,
reduce f [x] = x
reduce f [x0, x1, . . . , xn] = f(x0, f(x1, f(. . . , xn))), if n > 0.
If f is associative, reduce can be parallelised. If f has a neutral element i,
reduce f [] can be defined to be equal to i.
scanl : ∀ ′a.( ′a × ′a → ′a) → [ ′a] → [ ′a]
If ys = scanl f xs, then ys[0] = xs[0] and ys[i + 1] = f(ys[i], xs[i + 1]).
If f is associative, scanl can be parallelised.
zip : ∀( ′a, ′b, m).[ ′a]m × [ ′b]m → [ ′a × ′b]m

If zs = zip (xs ys), then zs[i] = (xs[i], ys[i]).
unzip : ∀( ′a, ′b).[ ′a × ′b] → [ ′a] × [ ′b]
If (ys, zs) = unzipxs, then (ys[i], zs[i]) = xs[i].
iota : int → [int]
If ys = iotam, then ys[i] = i for 0 ≤ i < m.

Fig. 1. Typical array combinators

that can use the modified combinators. We also need to argue that this language
can realistically be implemented on future reversible computers that combine
reversible general-purpose processors and reversible vector processors.

2 Modifying for Reversibility

We will indicate reversible functions by using an alternative function-space
arrow: �. Combinators like map are not fully reversible – you can’t get both
a function and a list back by applying map in reverse, but a partial application
of map to a reversible function is reversible. So we will use the following type
signature for map:

map : ∀( ′a, ′b).( ′a � ′b) → [ ′a] � [ ′b]

The “normal” function arrow → indicates an irreversible function space where
� indicates a reversible function space. [ ′a] indicates an array with elements of
type ′a, which is a type variable. To run map backwards, we need to supply both
a function of type a � b and an array of type [b] for some types a and b.

That reversible languages contain irreversible elements should not be surpris-
ing: Janus [4] allows arbitrary irreversible expressions in reversible updates, for
example x += y mod 2 is allowed in Janus, even though the expression y mod 2
is not reversible: There is no way to get from the result (0 or 1) to the value of y.
This is allowed in Janus because, after the update to x (which is reversible), the
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expression can be “uncomputed”. Generally, if we retain the values of all vari-
ables in an expression, we can reversibly compute the value of the expression, use
the value in a reversible operation, and then uncompute the expression, leaving
no net garbage. We will exploit this to a larger degree than in Janus: We will
allow local variables and functions to be defined using irreversible expressions,
as long as these can be uncomputed at the end of their scope.

Other array combinators are clearly reversible: zip and unzip are inverses of
each other, and iota is inverted by a function that takes an array [0, 1, . . . , m−1]
and returns m (and is undefined on inputs that do not have this form). Equally
obviously, filter and reduce are not reversible: filter discards any number of
elements, and reduce can, for example, reduce an array of numbers to their sum
or their maximum, which throws away a lot of information about the original
array. Also, reduce and scanl use functions of type ′a × ′a → ′a, which are
not usually reversible.

We first take a stab at scanl, modifying its type to ( ′a × ′a � ′a × ′a) →
[ ′a] � [ ′a], so it takes a reversible function as argument. We then define

scanl f [] = []
scanl f [x] = [x]
scanl f ([x1, x2]@xs) = [y1]@(scanl f ([y2]@xs)) where (y1, y2) = f (x1, x2)

where @ is concatenation of arrays. Note that this sequential definition does not
imply that the work has to be sequential – a traditional scan can be parallelised
if the operator is associative, and with suitable restrictions on the function argu-
ment, the reversible version can too. We will explore parallelising the reversible
scanl and other reversible combinators in Sect. 3.

If we define reversible addition by ++(x, y) = (x, x + y) (with the inverse --
defined by --(x, y) = (x, y −x)), we see that scanl ++ [1, 2, 3, 4] = [1, 3, 6, 10],
so this works as we would expect a traditional scan using addition to do.

A reversible reduce will have to return an array as well as the reduced value,
as it would rarely be possible to restore the original array from the reduced value
alone. Letting reduce return its argument alongside the reduced value seems the
most natural choice. We can define a reversible reduce by

reduce f [x] = (x, [x])
reduce f ([x]@xs) = (z1, [z2]@ys)

where (y, ys) = reduce f xs and (z1, z2) = f (x, y)

Note that this is undefined on empty lists, as we would otherwise need a default
value. reduce ++xs will return (sumxs, xs). Note that, since we use x twice in
the first rule, the inverse of reduce is only defined if these are equal.

We, additionally, need combinators to combine and split arrays: concat :
∀ ′a.[′a]×[′a] � int×[′a] concatenates two arrays and returns both the size of the
first array and the concatenated array. The inverse splitAt : ∀ ′a.int × [′a] �
[′a] × [′a] splits an array into two such that the first has the size given by a
parameter. If the array is smaller than this size, the result is undefined.
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copy : ∀ ′a.[ ′a] ⇀↽ [ ′a] × [ ′a]
copyx = (x, x)
uncopy : ∀ ′a.[ ′a] × [ ′a] ⇀↽ [ ′a]
uncopy (x, x) = x. If x[i] �= y[i] for any i, then uncopy (x, y) is undefined.
map : ∀ ′a, ′b.( ′a ⇀↽ ′b) → [ ′a] ⇀↽ [ ′b]
If ys = map f xs, then ys[i] = f(xs[i]).
zip : ∀( ′a, ′b).[ ′a] × [ ′b] ⇀↽ [ ′a × ′b]
If zs = zip (xs ys), then zs[i] = (xs[i], ys[i]). If xs and ys have different sizes,
the result is undefined.
unzip : ∀ ′a, ′b.[ ′a × ′b] ⇀↽ [ ′a] × [ ′b]
If (ys, zs) = unzipxs, then (ys[i], zs[i]) = xs[i].
iota : int ⇀↽ [int]
iotam = [0, 1, . . . , m−1]
atoi : [int] ⇀↽ int

atoi [0, 1, . . . , m−1] = m. It is undefined on inputs not having this form.
scanl : ∀ ′a.( ′a × ′a ⇀↽ ′a × ′a) → [ ′a] ⇀↽ [ ′a]
See definition in Section 2.
reduce : ∀ ′a.( ′a × ′a ⇀↽ ′a × ′a) → [ ′a] ⇀↽ ′a × [ ′a]
See definition in Section 2.
concat : ∀ ′a.[ ′a] × [ ′a] ⇀↽ int × [ ′a]
If (m, zs) = concat (xs, ys), then m = |xs|, |zs| = m + |ys|, and xs[i] = zs[i]
if i < m, and zs[i] = xs[i] if i < m, and zs[i] = ys[i − m] otherwise.
splitAt : ∀ ′a.int × [ ′a] ⇀↽ [ ′a] × [ ′a]
If (xs, ys) = splitAt (m, zs), then m = |xs|, |zs| = m+ |ys|, and xs[i] = zs[i]
if i < m, and ys[i] = zs[i + m] otherwise. If m is greater than the size of zs,
the result is indefined.
reorder : ∀ ′a.[int × ′a] ⇀↽ [int × ′a]
If ys = reorderxs and xs[i] = (j, v), then ys[j] = (i, v).

Fig. 2. Reversible array combinators

Lastly, we might want to reorder the elements of an array. reorder :
∀ ′a.[int × ′a] � [int × ′a] takes a list of pairs of indices and values, and cre-
ates a new array where each element is at the given index, and the elements are
paired with their old indices. It is its own inverse. If there are duplicated indices
or any index is outside the array, the result is undefined. For example, reorder
[(2,17), (1,21), (0,13)] = [(2,13), (1,21), (0,17)]. reorder is simi-
lar to the gather operation in normal array programming.

We will omit an explicit filter combinator, as this can not be made reversible.
We will in the examples later show how you can code something similar to a filter
using the other combinators.

The set of reversible array combinators and their types is shown in Fig. 2.
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3 Parallel Implementation

We choose a simple model of vector-parallel reversible computers. We use Janus-
like reversible updates [4], procedures with call-by-reference parameters (as in
Janus), and add a parallel loop parloop that when given a variable i, a number
n, and some reversible code that uses i, in parallel executes the code for i being
equal to all numbers from 0 to n−1. It is assumed that the loop “iterations” are
independent: No two iterations write to the same location, and if one iteration
writes to a location, no other iteration may read from this location.

A function f : a � b is implemented as a procedure f ′ that takes references to
argument and result locations, and as a net effect clears the argument location,
and puts the result in the result location (not necessarily in this order). A cleared
array variable is a null pointer, a cleared number has the value 0, and a cleared
pair has two cleared components. Some functions g : a � a can be implemented
in-place: g′ returns its result in the location in which the argument was given.
We do not allow aliasing of the parameters. A function h : c → a � b is
implemented by a procedure h′ that takes three arguments, where the first is
a read-only pointer (typically to a procedure) and the other two are handled
as above. We assume access to a reversible memory allocation procedure alloc
that allocates a zero-initialised array of a given size, and its inverse that frees an
array that is assumed to be all zeroes. Such an allocator is described in earlier
literature [1]. We subscript malloc with the element type, as that affects the
size of the allocation.

3.1 The Simple Cases

y = map f x; where f : a � b can be implemented in parallel using parloop.
procedure map’(f : a � b, x : [a], y : [b])

local t : int; t += size(x); call allocb(y,t);
parloop i t { call f ′(x[i], y[i]); }
uncall alloca(x,t); t -= size(y);

end

If a = b, we can reuse the space for x instead of allocating new space:

procedure mapInPlace’(f ′ : a � a, x : [a])
local t : int; t += size(x);
parloop i t { local u : a; u <-> x[i]; call f ′(u, x[i]); }
t -= size(x);

end

Note that we need a local variable u to avoid aliasing in the call to f ′ and to
obey the invariant that the second parameter to f ′ is initially clear and that
the first will be cleared as a result of applying f ′. If f ′′ is an in-place procedure
implementing f , we can simplify even further:
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procedure mapInPlace2’(f ′′ : a � a, x : [a])
local t : int; t += size(x);
parloop i t { call f ′′(x[i]); }
t -= size(x);

end

(y, z) = copy x, where x : [a] is similarly implemented:

procedure copy’(x : [a], yz : [a] × [a])
local t : int, z : [a]; t += size(x);
call alloca(z,t);
parloop i t { z[i] += x[i]; }
t -= size(x); call makePair(x,z,yz)

end

Note that we reuse x for y. makePair(x, z,yz) is procedure that creates in yz a
pair of x and z and resets x and z to zero.

z = zip (x, y); where x : [a] and y : [b] can be implemented by

procedure zip’(x : [a], y : [b], z : [a × b])
local t : int; t += size(x); call alloca×b(z,t);
parloop i t { z[i].0 <-> x[i]; z[i].1 <-> y[i]; }
uncall alloca(x,t); uncall allocb(y,t); t -= size(z);

end

where z[i].0 and z[i].1 are the first and second components of the pair z[i].
Note that we assume the sizes of the arrays x and y to be the same.

x = iota n can be implemented as

procedure iota’(n : int, x : [int])
call allocint(x,n);
parloop i n { x[i] += i; }
n -= size(x)

end

(n, z) = concat (x, y), where x : a can be implemented as

procedure concat’(x : [a], y : [a], nz : int × [a])
local t : int, u : int; t += size(x); u += size(y);
call alloca(nz.1,t+u);
parloop i t { nz.1[i] <-> x[i]; }
parloop i u { nz.1[i+t] <-> y[i]; }
uncall alloca(x,t); uncall alloca(y,u);
u -= size(nz.1) - t; nz.0 <-> t; end

y = reorder x, where x : [int × a] can be implemented as
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procedure reorder’(x : [int × a], y : [int × a])
local t : int; t += size(x) allocint×a(y,t);
parloop i t {
local j : int;

j += x[i].0; y[j].0 += i;
y[j].1 <-> x[i].1; j -= x[i].0;

}
parloop i t {
local j : int;

j += y[i].0; x[j].0 -= i; j -= y[i].0;
}
freeint×a(x,t); t -= size(y)

end

The first parloop gives y its correct values and clears the second component of
each pair in the x array. We need a second parloop to clear the first components
of the pairs in the x array. Note that if j takes on the same value in different
iterations of the parallel loop, there may be race conditions that makes the result
undefined.

3.2 reduce

In the irreversible case, reduce can be parallelised if the reduction operator
⊕ : a × a→a is associative. In the reversible case, we work with functions of the
type f : a×a � a×a, so we need to find conditions on such functions that allow
parallel implementation. The method below works if f is the identity in its first
parameter and associative in its second parameter, i.e., f(m, n) = (m, m ⊕ n),
where ⊕ is an associative operator. An example is ++, as ++(m, n) = (m, m+n).

(v, x) = reduce f x (note that we reuse x in the output) is implemented by
the procedure reduce’ in Fig. 3. It takes as arguments f ′, which is an imple-
mentation of f , v which is a location for the result, and x, which is the array to
be reduced.

If the size of x is 1, we just copy the sole element of x into v. This is the base
case of our induction. Otherwise, we allocate space for an intermediate array y
of half the size of x. In the first parloop, we compute f ′ on pairs of consecutive
elements of x, putting the identity part of the result back into x (leaving every
other element as 0) and the sum part into y, so x[2i] = x0[2i], x[2i+ 1] = 0, and
y[i] = x0[2i] ⊕ x0[2i + 1], where x0 is the original x array before the updates.
We then call reduce’ recursively on y, which (by induction) leaves y unchanged
and stores the result of the reduction in v. We now need to uncompute y and
restore x to its original values. We do that in the second parloop which is the
reverse of the first. The conditional after the second parloop handles odd-sized
arrays: The last element of x is “added” to v. Finally, we free the y array.

We illustrate this by an example: applying reduce ++ to an array x =
[x0, x1, x2, x3, x4, x5]. After the parloop and before the first recursive call, we
have x = [x0, 0, x2, 0, x4, 0] and y = [x0 +x1, x2 +x3, x4 +x5]. In the recursive
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procedure reduce’(f ′ : a × a ⇀↽ a × a, v : a, x : [a])
local t : int, y : [a];
t += size(x);
if t == 1 then

v += x[0];
else {

call alloca(y, �(t/2)�;
parloop i �(t/2)� {

local u : a × a, w : a × a;
u.0 <-> x[2*i]; u.1 <-> x[2*i+1];
call f ′(u, w);
w.0 <-> x[2*i]; w.1 <-> y[i];

}
call reduce’(f ′, v, y);
parloop i �(t/2)� {

local u : a × a, w : a × a;
w.1 <-> y[i]; w.0 <-> x[2*i];
uncall f ′(u, w);
u.1 <-> x[2*i+1]; u.0 <-> x[2*i];

}
if t%2 != 0 then {

local u : a × a, w : a × a;
u.0 <-> x[t-1]; u.1 <-> v;
call f ′(u, w);
w.0 <-> x[t-1]; w.1 <-> v;

}
fi t%2 != 0
uncall alloca(y, �(t/2)�);

}
fi t == 1;
t -= size(x);

end

Fig. 3. Parallel implementation of reduce

invocation, we have x = [x0 + x1, x2 + x3, x4 + x5]. After the parloop, we have
x = [x0 + x1, 0, x4 + x5] and y = [x0 + x1 + x2 + x3]. In the next recursive call,
the array size is 1, so it will return v = x0 + x1 + x2 + x3 and y unchanged.
The second parloop is the inverse of the first, so it returns x to [x0 + x1, x2 +
x3, x4 + x5] and clear y. Since t is odd, we enter the conditional and modify v
to x0 +x1 +x2 +x3 +x4 +x5. When we return, we have x = [x0, 0, x2, 0, x4, 0],
y = [x0 + x1, x2 + x3, x4 + x5], and v = x0 + x1 + x2 + x3 + x4 + x5. The second
parloop restores x to [x0, x1, x2, x3, x4, x5] and clears y. Since t is even, we
skip the conditional and return v = x0 + x1 + x2 + x3 + x4 + x5 along with the
original x.

3.3 scanl

In the irreversible setting, scans of associative operators can be parallelised using
a method called parallel scan or prefix sum. We use a variant of this that shares
some structure with the implementation of reduce above and also requires that
the reversible function used in the scan is identity in its first parameter and
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procedure scanl’(f ′ : a × a ⇀↽ a × a, x : [a])
local t : int, y : [a];
t += size(x);
if t < 2 then

skip;
else

call alloca(y, �(t/2)�;
parloop i �(t/2)� {

local u : a × a, w : a × a
u.0 <-> x[2*i]; u.1 <-> x[2*i+1];
call f ′(u, w);
w.0 <-> x[2*i]; w.1 <-> y[i];

}
call scanl’(f ′, y);
parloop i �((t-1)/2)� {

local u : a × a, w : a × a
u.0 <-> y[i]; u.1 <-> x[2*i+2];
call f ′(u, w);
w.0 <-> x[2*i+1]; w.1 <-> x[2*i+2];

}
if t%2 == 0 then

x[t-1] <-> y[t/2-1]; fi t%2 == 0;
uncall alloca(y, �(t/2)�);

fi t < 2;
t -= size(x);

end

Fig. 4. Parallel implementation of scanl

associative in its second parameter. We output the result in the same array as
the input. A procedure scanl’ that implements x := scanl(f, x) can be seen in
Fig. 4. It takes as arguments f ′, which is an implementation of f and the array
x, which is updated in place.

The base case is an array x of size less than two, which is left unchanged. In
the general case, we allocate an array y of half the size of x. The first parloop is
as in reduce’, and computes f ′ on pairs of consecutive elements of x, putting the
identity part of the result back into x (leaving every other element as 0) and the
sum part into y, so x[2i] = x0[2i], x[2i+1] = 0, and y[i] = x0[2i]⊕x0[2i+1], where
x0 is the original x array before the updates. We then call scanl’ recursively
on y, which by induction makes y the scan of the original y. The elements of
this y are the odd-indexed elements of the reduced x0. The odd elements of x
are currently 0, so we can just swap the elements of y with the odd-indexed
elements of x. The even-indexed elements of x contain the original values of the
even-indexed elements of x0. The first of these is correct, but the subsequent
ones needs to be added to the preceding element of x. We do this in the second
parloop with calls to f ′ and suitable swaps. Again, we need to do some fix-up to
handle odd-sized arrays, where the last element of x (which is currently 0) is
swapped with the last element of y (which contains the “sum” of all elements of
x0). Finally, y, which is now cleared, is freed.

We use scanl ++x, where x = [x0, x1, x2, x3, x4, x5] as an example. After
the parloop and before the first recursive call, we have x = [x0, 0, x2, 0, x4, 0]
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and y = [x0 + x1, x2 + x3, x4 + x5]. In the recursive invocation, we have x =
[x0 + x1, x2 + x3, x4 + x5]. After the parloop, we have x = [x0 + x1, 0, x4 + x5]
and y = [x0 + x1 + x2 + x3]. The next recursive call will return y unchanged,
as its size is 1. t = 3, so we do one iteration of the second parloop, getting
x = [x0 + x1, x0 + x1 + x2 + x3, x0 + x1 + x2 + x3 + x4 + x5] and y = [0].
Since t is odd, we skip the conditional, free y, and return. At the return, we
get x = [x0, 0, x2, 0, x4, 0] and y = [x0 + x1, x0 + x1 + x2 + x3, x0 + x1 + x2 +
x3 + x4 + x5]. t = 6, so we do two iterations of the second parloop and get
x = [x0, x0 + x1, x0 + x1 + x2, x0 + x1 + x2 + x3, x0 + x1 + x2 + x3 + x4, 0] and
y = [0, 0, x0 +x1 +x2 +x3 +x4 +x5]. t is now even, so we enter the conditional
and get x = [x0, x0 + x1, x0 + x1 + x2, x0 + x1 + x2 + x3, x0 + x1 + x2 + x3 +
x4, x0 + x1 + x2 + x3 + x4 + x5] and y = [0, 0, 0], so we can free y and return.

The scan is not entirely in-place, as we use local arrays y, the total size
of which is almost that of the original. We could make it entirely in-place by
doubling the stride in each recursive call instead of copying to a new array of
half the size.

4 A Reversible Array Programming Language

We are now ready to define a reversible array programming language, which we
will call “Agni”, named after the two-faced Hindu god of fire. The syntax is
shown in Fig. 5. Note that <=> is an easier-to-type alternative notation for �.
→ is easily accessible on an international keyboard, so we have not replaced this
with the pure-ASCII alternative ->.

We work with both heap-allocated and stack-allocated variables Heap-
allocated variables are denoted HV ar in the grammar, and contain values that
are consumed nad produced by reversible operations. Stack-allocated variables
are denoted SV ar, and contain values or functions that are locally defined using
irreversible expressions and then uncomputed at the end of their scope. To dis-
tinguish these, heap-allocated variable names start with upper-case letters, while
stack-allocated variable and function names start with lower-case letters. Heap-
allocated variables have heap types (denoted HType) and stack-allocated vari-
ables have stack types (denoted SType).

A stack-allocated variable is introduced using a let-expression that initialises
it, allows multiple uses of the variable inside its body, and uncomputes its value
at the end. In reverse, the uncomputation and initialisation swap roles. The
expressions used by initialisation and uncomputation need not be reversible. This
is analogous to how reversible updates in Janus can use irreversible expressions.
A stack-allocated variable can not hold an array, but array elements and sizes
can be used in its initialisation and uncomputation expressions. An irreversible
expression is denoted Exp in the grammar.

Variables holding heap-allocated values are explicitly initialised using a
reversible initialisation. The heap-allocated variables on the right-hand side of
this initialisation are consumed and can no longer be used. In reverse, the vari-
ables on the left-hand side are consumed and those on the right are initialised.
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SType → int

SType → TypeV ar
SType → SType × SType
SType → SType → SType
SType → HType <=> HType

HType → int

HType → TypeV ar
HType → HType × HType
HType → [HType]

Rinit →
Rinit → HPattern := Rexp;
Rinit → Rinit Rinit
Rinit → let SPattern = Exp in Rinit end SPattern = Exp;
Rinit → def FunDef in Rinit end;

Rexp → HV ar
Rexp → SV ar
Rexp → (Rexp, Rexp)
Rexp → Fname Rexp
Rexp → uncall Fname Rexp
Rexp → Fname Svar Rexp
Rexp → uncall Fname Svar Rexp

Exp → IntConst
Exp → SV ar
Exp → HV ar[Exp]
Exp → size HV ar
Exp → (Exp, Exp)
Exp → Fname Exp
Exp → let SPattern = Exp in Exp
Exp → def FunDef in Exp

FunDef → Fname SPattern = Exp
FunDef → Fname HPattern = Rinit Rexp
FunDef → Fname SPattern HPattern = Rinit Rexp

HPattern → SV ar
HPattern → HV ar : HType
HPattern → (HPattern, HPattern)

SPattern → SV ar : SType
SPattern → (SPattern, SPattern)

Program → FunDef

Fig. 5. Syntax of Agni
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A heap-allocated variable is in scope from its initialisation to its consumption,
and can in this scope be used in expressions that define stack-allocated variables.
Reversible initialisations are denoted Rinit in the grammar, and can in addition
to a simple initialisation be a (possible empty) sequence of initialisations or a
local definition of a function or stack-allocated variable that is locally used for
an initialisation.

Function definitions are defined using def-expressions, and have scope until
the end of the def-expression. A function definition can not consume heap-
allocated variables that are not given as parameters or initialised locally, and
all parameters or locally initialised variables that are heap-allocated must be
either consumed in the function body or returned as part of the result. In a
function type, parameters that appear in the function type before a � arrow
are heap allocated, whereas parameters (including function parameters) that
appear before a → arrow are stack-allocated. All stack-allocated parameters
must occur before heap-allocated parameters. The body of a reversible function
is an optional reversible initialisation followed by a reversible expression. The
body of an irreversible function is an irreversible expression. Note that func-
tion definitions can occur in both reversible initialisations and in irreversible
expressions with slightly different syntax.

A program is a single function definition that defines a reversible function,
so it must have type t1 � t2 for some types t1 and t2. Its body is a reversible
initialisation followed by a reversible expression.

A reversible expression is a variable, a pair of two reversible expressions, or
a (possibly inverse) reversible function application.

A reversible expression can be a stack-allocated variable. This will not be con-
sumed by the expression. Likewise, a reversible pattern can be a stack-allocated
variable (SV ar). This is not a defining instance (so no type needs to be given),
but when a heap-allocated value is matched against a stack-allocated variable, it
must have the same value as the variable, and is consumed by this. If the variable
does not match the value, the behaviour is undefined. When a heap-allocated
variable (HV ar) occurs in a pattern for heap-allocated values, it defines a new
variable, so a type is given.

The program is evaluated in a context that defines both a number of irre-
versible functions for use in initialisation and uncomputation of stack-allocated
variables and a number of reversible functions for defining heap-allocated vari-
ables. The latter includes the array combinators shown in Fig. 2. Note that “nor-
mal” addition + : int × int → int and similar operators are part of the set of
irreversible functions that can be used.

For simplicity, we do not have an explicit boolean type, so truth values are
represented as integers. Non-zero integers are considered true and 0 is considered
false. We have also omitted reals, as garbage-free reversible arithmetic on floating
point numbers is still an open issue.
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ρ, γ � k : int
γ X = [t]

ρ, γ � size X : int
γ X = [t] ρ, γ � e : int

ρ, γ � X[e] : t

ρ x = t
ρ, γ � x : t

ρ, γ � e1 : t1 ρ, γ � e2 : t2
ρ, γ � (e1, e2) : t1 × t2

ρ f = τ t1 → t2 = instantiate τ ρ, γ � e : t1
ρ, γ � f e : t2

ρ, γ � e1 : t1 ρ �S s1 � ρ1/t3 t1 = t3 ρ1, γ � e2 : t2
ρ, γ � let s1 = e1 in e2 : t2

ρ �S s � ρ1/t1 ρ1[f : t1 → t2], γ � e1 : t2
τ = generalize(t1 → t2, ρ) ρ[f : τ ], γ � e2 : t3

ρ, γ � def f s = e1 in e2 : t3

ρ �S x : t � ρ[x : t]/t
ρ �S s1 � ρ1/t1 ρ1 �S s2 � ρ2/t1

ρ �S (s1, s2) � ρ2/(t1 × t2)

Fig. 6. Type rules for irreversible expressions and patterns

5 A Type System for Reversible Array Programming

We use different environments for stack-allocated variables and functions and
for heap-allocated variables. Evaluating an expression has no net effect on the
environment of stack-allocated variables and functions, but it may affect the
environment of heap-allocated variables, as some of these are consumed and
others initialised in a way that does not follow block structure. We use (possibly
subscripted) ρ for environments of stack-allocated variables and functions, and
γ for environments heap-allocated variables. When we evaluate an irreversible
expression, we can use variables (and functions) from both environments, but
modify none of them. When we evaluate a reversible expression, we can also use
both, but we may remove variables from γ, as these are used. When evaluating
a reversible initialisation, we can use variables from ρ and both remove and add
variables in γ.

We start by defining type rules for irreversible expressions and patterns in
Fig. 6. We use t to denote an SType, x to denote an SV ar, X to denote an
HV ar, and s to denote an SPattern. The rules are straightforward except the
function rule which uses implicit unification to allow recursive definitions, and
use generalisation and instantiation to implement parametric polymorphism. τ
denotes a polymorphic type. We omit descriptions of generalisation and instan-
tiation, but note that these are as in Hindley-Milner type inference. The two last
rules are for patterns, which both extend an environment with new bindings and
build a type for the pattern. We assume no variable occurs twice in a pattern.
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Figure 7 shows rules for reversible expressions. T denotes an HType, and r
denotes an RExp. ↑ (t) transforms an Stype (excluding function types) to the
equivalent HType. Note how γ is threaded around in the rules.

ρ, γ[X : T ] �R X : T/γ ρ[x : t], γ �R x :↑ (t)/γ

ρ, γ �R r1 : T1/γ1 ρ, γ1 �R r2 : T2/γ2

ρ, γ �R (r1, r2) : (T1 × T2)/γ2

ρ f = τ (T1 ⇀↽ T2) = instantiate τ ρ, γ �R r : T1/γ1

ρ, γ �R f r : T2/γ1

ρ f = τ (T1 ⇀↽ T2) = instantiate τ ρ, γ �R r : T2/γ1

ρ, γ �R uncall f r : T1/γ1

ρ f = τ (t → T1 ⇀↽ T2) = instantiate τ ρ x = t ρ, γ �R r : T1/γ1

ρ, γ �R f x r : T2/γ1

ρ f = τ (t → T1 ⇀↽ T2) = instantiate τ ρ x = t ρ, γ �R r : T2/γ1

ρ, γ �R uncall f x r : T1/γ1

Fig. 7. Type rules for reversible expressions

Figure 8 shows rules for reversible initialisations and patterns. Like reversible
expressions, reversible initialisations thread γ around, but they do not return
values. The most complicated rule is for let s1 = e1 in I end s2 = e2, where
s1 and s2 are required to contain the same variables so the variables that are
introduced in s1 are eliminated in s2. The rules for function definitions are similar
to those for irreversible expressions, except that they also include reversible
function definitions. Note that a reversible function definition starts and ends
with empty γs, as they can only consume their arguments and produce their
results with no remaining unconsumed RV ars.

Reversible patterns produce both a Htype and a new γ. The first rule states
that when using an SV ar in a pattern, its SType is converted to the equivalent
HType using the ↑ operator. Only non-functional STypes can be converted.

6 Examples

Since the reversible functional array programming language is limited compared
to irreversible array programming languages, we need to justify that it can be
used to solve real problems. We do so by showing some example programs.

6.1 Inner Product

An inner product of two vectors reduces these vectors to a single number, so we
need to return these vectors along with the result. The code is
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ρ, γ �I � γ
ρ, γ �I I1 � γ1 ρ, γ1 �I I2 � γ2

ρ, γ �I I1 I2 � γ2

ρ, γ �R r : T/γ1 ρ, γ1 �P p � γ2/T
ρ, γ �I p := r; � γ2

ρ, γ � e1 : t1 ρ �S s1 � ρ1/t3 t1 = t3 ρ, γ �I I � γ1

ρ, γ1 � e2 : t2 ρ �S s2 � ρ1/t4 t2 = t4
ρ, γ � let s1 = e1 in I end s2 = e2; � γ1

ρ �S s � ρ1/t1 ρ1[f : t1 → t2], γ � e1 : t2
τ = generalize(t1 → t2, ρ) ρ[f : τ ], γ �I I � γ1

ρ, γ � def f s = e in I; � γ1

ρ, [] �P p � γ1/T1 ρ1[f : T1 ⇀↽ T2], γ1 �I I1 � γ2

ρ1, γ2 �R r : T2/[] τ = generalize(f : T1 ⇀↽ T2, ρ) ρ[f : τ ], γ �I I2 � γ3

ρ, γ � def f p = I1 r in I2; � γ3

ρ �S s � ρ1/t ρ, [] �P p � γ1/T1 ρ1[f : t → T1 ⇀↽ T2], γ1 �I I1 � γ2

ρ1, γ2 �R r : T2/[] τ = generalize(f : t → T1 ⇀↽ T2, ρ) ρ[f : τ ], γ �I I2 � γ3

ρ, γ � def f s p = I1 r in I2; � γ3

T =↑ (ρ x)
ρ, γ �P x � γ/T ρ, γ �P X : T � γ[X : T ]

ρ, γ �P p1 � γ1/T1 ρ, γ1 �P p2 � γ2/T1

ρ, γ �P (p1, p2) � γ2/(T1 × T2)

Fig. 8. Type rules for reversible initialisations and patterns

fun inner (Xs: [int], Ys: [int]) =
(Xs: [int], Prods: [int]) := unzip (map ** (zip (Xs, Ys)));
(Ip: int, Prods: [int]) := reduce ++ Prods;
(Ip, unzip (map // (zip (Xs, Prods))))

We note that **(x, y) = (x, x ∗ y) and //(x,y) = (x, y/x), so they are inverses
and both undefined if x = 0.

We first zip the two vectors, map ** to get the product of each pair (while
retaining one operand), unzip to get separate arrays for the product and the
copies, reduce with ++ to get the inner product, and undo the multiplications to
get the original vectors back. Note that we redefine xs, but since the original xs
has already been consumed at this point, it leads to no ambiguity.

This is, admittedly, more cumbersome than doing inner product in a nor-
mal irreversible language. We could shorten it somewhat by adding a zipWith
combinator that combines map and zip.
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6.2 Counting the Number of Elements that Satisfy a Predicate

We don’t have a separate boolean type, so we use zero/nonzero instead. A
reversible predicate has the type ′a � ′a × int for some type ′a and will
pair a value with the result of the predicate, which is 1 for true and 0 for false.
We can map this on an array, extract the numbers, add them using reduce, zip
the numbers back to the array, and map the inverse of the predicate (which is
done by uncalling map) to eliminate the numbers. The result is a pair of the
count and the original list.

count (p: ’a <=> ’{a}\times{int}) (Xs: [’a]) =
(Xs: [’a], Ps: [int]) := unzip (map p Xs);
(Count: int, Ps: [int]) := reduce ++ Ps;
Xs: [’a] := uncall map p (zip (Xs,Ps));
(Count, Xs)

Note that the third line is the inverse of the first line.

6.3 Separation by Predicate

As noted in Sect. 2, we don’t include a filter operator, but sometimes, we will need
to separate the elements where the predicate is true from the elements where it is
false. This can be used, e.g., for quicksort or radix sort. Such a separation is not
reversible, so we should expect some garbage output as well. In this example, this
garbage is two arrays of integers, each the size of the original array:

separate : ( ′a � ′a × int) → [ ′a] � [ ′a] × [ ′a] × [int] × [int]

The garbage can be reduced to a copy of the original array by calling separate,
copying the separated arrays, uncalling separate, and combining the separated
arrays with the original, as shown in the function separateClean below. The
separate function works in the following steps:

1. Map the predicate over the array, pairing each element with (1,0) if the pred-
icate is true and (0,1) if the predicate is false.

2. Use scanl twice to compute the number of true and false values before each
array element.

3. Extract the total number of true booleans tmax from the last element of the
new array.

4. Use map findLoc to compute the new location of each element, where
findLoc chooses between the number of previous true elements and the num-
ber of false elements + tmax depending on the predicate.

5. Use reorder to place elements in their new locations.
6. Split into true and false arrays.
7. Returns these array and the garbage arrays.

The code is shown in Fig. 9
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separate (p: ’a <=> ’a×int) (Xs: [’a]) =

let one: int = 1 in

def tf N: int = --(N,one) in

(Xs: [’a], Ps: [int]) := unzip (map p Xs);

(Ts: [int], Fs: [int]) := unzip (map tf Ps);

Tsbefore: [int] := scanl ++ Ts;

Fsbefore: [int] := scanl ++ Fs;

let tmax: int = Tsbefore[size Tsbefore - 1]) in

Bsbefore: [int×int] := zip (Tsbefore, Fsbefore);

Bsxs: [(int×int)×’a] := zip (Bsbefore, Xs);

def findLoc ((Tsb: int, Fsb: int), X: ’a) =

(X: ’a, P: int) := p X;

(tmax, Fsb1: int) := ++(tmax, Fsb);

(P: int, Loc: int, G: int) := cswap(P, Fsb1, Tsb);

Loc: int := dec Loc;

X: ’a := uncall p (X, P);

((Loc, X), G)

in

(Lsxs: [int×’a], G0: [int]) := unzip (map findLoc Bsxs);

end;

(G1: [int], Newxs: [’a]) := unzip (reorder Lsxs);

(Txs: [’a], Fxs: [’a]) := splitAt (tmax, Newxs);

end tmax = size Txs

end

end one: int = 1;

(Txs, Fxs, G0, G1)

separateClean (p: ’a <=> ’a×int) (Xs: [’a]) =

(Txs: [’a], Fxs: [’a], G0: [int], G1: [int]) := separate p Xs;

(Txs: [’a], Txs1: [’a]) := copy Txs;

(Fxs: [’a], Fxs1: [’a]) := copy Fxs;

Xs: [’a] := uncall separate p (Txs, Fxs, G0, G1);

(Txs1, Fxs1, Xs)

Fig. 9. Implementation of separate

Note that the uncomputation expression for the local variable tmax is differ-
ent from its initialisation expression. cswap is a predefined function that does a
conditional swap: It returns the first argument unchanged, and if this is nonzero,
returns the two other arguments swapped, otherwise unchanged. It can likely be
implemented by a single instruction on a reversible processor. dec is a prede-
fined reversible function that decrements its argument. We need to locally define
a variable to be equal to 1, because we can not use constants in patterns and
reversible expressions.
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7 Conclusion and Future Work

We have presented reversible implementations of a number of reversible array
combinators, including reduce and scanl, and we have presented a reversible
functional array language, Agni, that uses these combinators. The reversible
implementations of the combinators are interesting in their own right, and can
be used for other languages.

Agni is, in its current form, somewhat limited, and it can be challenging
to code non-trivial functions in Agni, as witnessed by the complexity of the
separate function. We believe that the potential of getting highly parallel
reversible code will make it worthwhile. Adding extra combinators, for exam-
ple zipWith that combines zip and map, and map2 that combines zip, map,
and unzip, would also make coding easier and would also reduce the number
of intermediate values produced. A general fusion transformation that combines
several sequentially applied combinators to a single combinator would be an
useful optimisation. We have avoided conditionals (except conditional swap), as
conditional execution does not fit well with vector parallelisation.

We do not at the time of writing have an implementation of Agni, but we
have tested the reversible implementations of the array combinators using the
imperative reversible language Hermes [3], albeit with sequential loops rather
than parallel loops. If and when reversible vector processors become available,
we will certainly attempt to implement Agni on these. Until then, we will have
to do with implementations on classical hardware, where Agni has no obvi-
ous advantage over existing functional array programming languages, such as
Futhark [2]. Nevertheless, we plan in the future to make sequential and parallel
implementations of Agni on classical hardware. Experiences with this may spark
modifications to the language.

Speaking of Futhark, this language has an interesting type system where
arrays can be constrained by size (so you can, e.g., specify that a scan preserves
array size). It would be interesting to adapt this idea to Agni. It would also be
useful to add type inference, so many of the type declarations can be avoided.
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Abstract. Reversible programming languages have been a focus of
research for more than the last decade mostly due to the work of Glück,
Yokoyama, Mogensen, and many others. In this paper, we report about
our recent activities to compile code written in the reversible language
Janus to reversible static-single-assignment form RSSA and to three-
address-code, both of which can thereafter be compiled to C. In particu-
lar, this is – to our knowledge – the first compiler from Janus to RSSA. In
addition, we have implemented a novel technique for a reversible compiler
by executing the code generator itself in reverse. Our compiler provides
the basis for optimizations and further analysis of reversible programs.

Keywords: Reverse computing · Reversible programming languages ·
Janus · Reversible static-single-assignment

1 Introduction

Reverse computing, although the initial ideas can be traced back to the
1960s [10], has been a major research area over the last decade. With the growing
importance of sustainability and reduced energy consumption, reverse comput-
ing promises contributions by avoiding the waste of energy through deletion of
information [5].

More than twenty years after the first creation of a reversible language called
Janus [11], the papers of the Copenhagen group [17] brought new life into the area
of reversible languages by formally defining and extending Janus. Interpretation
and partial evaluation [12] as well self-interpretation [18] were studied and in [4]
Axelsen published his results on the compilation of Janus. In [19] a reversible
flowchart language as a foundation for imperative languages is described and
its r-Turing-completeness, i.e. their ability to compute exactly all injective com-
putable functions, is proved.

Whilst it was now possible to execute programs forwards and backwards,
there seem to be no results about the optimization of Janus programs. Opti-
mization in this regard refers to improving the execution time of programs or
their memory consumption [14].

It is well known from the discipline of compiler construction that optimiza-
tion can most effectively be performed on some intermediate representation of
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the source rather than the source code itself or its abstract syntax tree. Such
intermediate representations include three-address-code [1] and static-single-
assignment [16].

In 2015, Mogensen published his work on RSSA, which is a special form of
static-single-assignment that can be executed forwards and backwards [13]. We
are going to describe the major concepts of RSSA in Sect. 2.2. However, we are
not aware of any work to connect the dots between Janus and RSSA.

In this paper, we report on a new Janus compiler, called rc3 (reversible com-
puting compiler collection) with multiple backends including RSSA. The com-
piler is available at https://git.thm.de/thm-rc3/release. and has been written
with two intentions:

– Provide the ability to execute Janus programs forwards and backwards.
– Establish the basis for further research on the optimization of reversible lan-

guages.

Based on the Janus definition in [17], we developed a compiler front-end focusing
on the semantic analysis required for a reversible language. The compiler allows
for pluggable back-ends with currently three of them in place (see Fig. 1 for an
overview):

1. Interpreter: Instead of generating code, the interpreter back-end directly
allows the execution of Janus programs forwards or backwards.

2. Three-Address Code: This backend will generate intermediate code in form
of non-reversible three-address code that can be translated to a “forwards”
as well as a “backwards” C-program including all necessary declarations and
function definitions to be able to compile the code on any platform.

3. RSSA: This backend will firstly generate RSSA-code, and at the same time
also construct building blocks and a program graph (in order to be able to use
these for further analysis of control and data flow). To be able to verify the
RSSA code, the RSSA code can be translated into C-code, as well. In addition,
we have created a virtual machine for RSSA that allows direct execution of
RSSA code.

In summary, this paper describes two important new aspects for the compi-
lation of reversible languages:

– Whilst optimization techniques such as dead code elimination, common sub-
expression elimination, and many more are very well understood for “tradi-
tional” languages, no results are known for reversible languages. These opti-
mizations are typically implemented on some low-level intermediate code. Our
compiler is – to our knowledge – the first compiler from Janus to reversible
static-single-assignment intermediate code and work to implement optimiza-
tions is already underway.

– In addition, we have implemented a novel technique to let the code generator
itself operate “in reverse”. For instance, the Janus language provides stack
primitives such as push and pop. We have implemented only the former,
whereas the code for pop is automatically created by inverting the code for
push.

https://git.thm.de/thm-rc3/release
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We will start by briefly explaining Janus as well as RSSA in order to provide
a basis for the description of our compiler in Sect. 3. This chapter forms the
main part of the paper and contains detailed descriptions and examples of our
code generation schemes. Lastly, we will provide insights into the “reverse code
generator”, followed by an outlook on current achievements on optimization of
RSSA.

2 Preliminaries – Janus and RSSA

2.1 Janus

The procedural and reversible programming language Janus has originally been
proposed in 1982 [11]. Since then, Yokoyama and Glück have formalized the
language [18], and together with Axelsen, have considerably extended Janus and
shown that it is Turing-complete [17]. We specifically use the extended version
as defined in [17].

In this version, a Janus program consists of a main-procedure followed by a
sequence of additional procedure declarations. Procedures represent a parame-
terized list of statements, which are the smallest reversible building blocks of a
Janus program. Statements can change the state or control flow of the execution
by inspecting and manipulating variables. All variables are defined locally, either
as an integer, an array of integers, or a stack of integers. While the size of an
array must be known at compile-time, stacks can grow arbitrarily at runtime.

A statement is either a reversible assignment, one of the reversible control
flow operators (conditional, loop), a procedure invocation, one of the stack oper-
ations (push, pop), a local variable block, or an empty skip statement. Each
of those statements has a well-defined inverse, which is used during backwards
execution. To change the execution direction, procedure invocations are used.
In addition to the destination of a procedure invocation, the call direction must
be specified using either the call or uncall keyword. If the uncall keyword
is used, the invoked procedure is executed in reverse execution direction. Since
the keywords call and uncall interchange their meanings in reverse execution
direction, it is possible to restore the original execution direction.

For a program to be reversible, all information must be preserved during run-
time. To ensure that no information is lost when exiting the scope of a variable,
all local variables are restricted to the body of a local variable block. In these
blocks, variables are allocated and deallocated in a structured way that preserves
information. For the same reason, parameters for procedures are passed by ref-
erence so that the information stored in the parameters is preserved when the
procedure ends.
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2.2 The Reversible Intermediate Code RSSA

Reversible static-single-assignment (RSSA) was firstly introduced by Mogensen
[13] as a reversible variant of SSA (Static-Single-Assignment), which in turn is
an intermediate language to facilitate data-flow analysis and was proposed by
Alpern, Wegman, and Zadek in 1988 [2]. SSA forms an intermediate represen-
tation in which each variable has only one definition and new “versions” of the
variables are used for each assignment to it. This is often accomplished by insert-
ing Φ-functions to merge potentially different versions occurring due to branches
in the control flow.

RSSA uses variables and constants defined as atoms. A memory location
can be accessed in the form M [a] where M [a] represents the location to which
an atom a points. Atoms and memory accesses can be used in conditions. If a
variable is used on both sides of an assignment, a new version of the variable,
a so-called fresh variable, must be created on the right side of the expression so
that it can not be defined and used simultaneously [13].

In RSSA, a program is a set of basic blocks, each consisting of a sequence
of assignments or a call. Each block is enclosed by an entry and an exit point.
Entry and exit points use labels, which must be utilized at exactly one entry
and exit point. Valid RSSA programs need to entail one entry point begin main
and a corresponding exit point end main [13]. Entry and exit points may occur
in a conditional or unconditional form. Conditional entry points are used in
the following manner, L1(x, . . . )L2 ← C. Depending on whether it is entered
through a jump to L1 or L2, the condition C will be evaluated to either true or
false. Conditional exit points are used in a similar manner using the form C →
L1(y, . . . )L2. The condition C is evaluated and depending on the evaluation,
a jump to either L1 or L2 is performed [13]. These conditional entry and exit
points are an alternative means to implement the Φ-functions in RSSA [13], and
are used because Φ − functions use two inputs to compute one output, and
would thus prohibit reversibility. RSSA defines a set of reversible instructions,
that can be used to compose reversible programs. The most important ones –
as shown in Table 1 – are assignments, call, and uncall instructions, as well as
entry and exit points. Operands for these instructions are separated into atoms
or memory locations.

Table 1. Important RSSA instructions

Assignment: x := y ⊕ (a � b)

Call: (x1, ...) := call p (y1, ...)

Uncall: (x1, ...) := uncall p (y1, ...)

Uncond. Entry: L(x1, ...) <-

Cond. Entry: L1(x1, ...)L2 <- c

Uncond. Exit: -> L(x1, ...)

Cond. Exit: c -> L1(y1, ...)L2
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Similar to statements in the programming language Janus, every instruction
has a well-defined inverse. Therefore a whole program can be inverted by invert-
ing every single instruction in it and the order in which those instructions appear
in. Since RSSA is reversible, every subroutine should be runnable in a forwards
and backwards manner. Running a subroutine backwards is performed by calling
the inverted form of the subroutine [13].

3 Our Compiler

This section briefly explains the structure and implementation of our compiler’s
front-end and back-ends. Our approach to implement the compiler in Java largely
resembles the approach for a classical multi-pass compiler [3]. The backends
are pluggable, such that adding new backends is easy. The next version of the
compiler includes an additional layer to optimize the RSSA code.

Interpreter 3-Address-Code RSSA

Front-End

sample.ja

Compiler

future 
back-endsBack-Ends

sample.c sample.rssa

gcc

sample
(forwards &
backwards)

gcc

sample
(forwards &
backwards)

sample.c

Fig. 1. Overview of our compiler

3.1 Compiler Front-End

The front-end consists of a dedicated scanner and parser, which are generated
using the scanner generator JFlex [9] and the parser generator CUP [7] respec-
tively. The scanner performs the lexical analysis, converting the input characters
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into a sequence of tokens. These tokens are then passed to the parser, which per-
forms the syntactic analysis and constructs an abstract syntax tree. After the
construction of an abstract syntax tree, it is passed to the semantic analysis.

With the implementation of the semantic analysis, the particularities arising
from the properties of a reversible language become clear: As in a conventional
language, Janus defines rules for the visibility of identifiers and restrictions on
types of variables and expressions. In addition to classical analysis passes, that
enter declarations into a symbol table and check the visibility and types of used
variables and expressions, another pass has to be defined, the aim of which is to
check the reversibility of individual instructions.

Even though Janus specifically defines reversible variants of classical state-
ments, it is possible to construct a statement that cannot be reversed. In total,
there are four different variants of assignments, that may not be reversible at
runtime, but can be recognized at compile time. In [17] these are mentioned as a
“syntactic rule”. We have chosen to split them into four cases which are checked
during the semantic analysis.

x �= x+ k (1)

M [e1] �= M [e2] + k (2)

x �= M [x] + k (3)

M [M [e1] + k] �= e2 (4)

Fig. 2. Four variants of non-reversible assignments

Figure 2 shows these different variants, where x is an integer variable, M is
an array variable, and ei as well as k are expressions. Variants (1) and (2) are
not reversible, since both sides of the assignment can point to the same memory
location. In this case, the result of the assignment is the result of modifying a
value with itself, which potentially leads to a constant result, causing information
to be destroyed. Variants (3) and (4) are not reversible, since the assignment may
modify the index, that is used to access an array as part of the assignment. After
the index has been modified, it is no longer possible to deterministically identify
the values needed to reverse the assignment.

Since we need to compare the identifiers of variables to identify the variants
above, it is crucial that two identifiers cannot refer to the same memory location
at runtime to guarantee reversibility of assignments at runtime. This so-called
aliasing can occur when the same variable is passed more than once as an argu-
ment to a procedure. Because parameters are passed by reference, the names
of the parameters would then refer to the same memory location. This check is
part of the semantic analysis, too.
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3.2 Compiler Back-End

In this chapter, we are going to explain the translation for the most impor-
tant Janus elements to RSSA, followed by some remarks on the translation
from RSSA to C. To our knowledge, this is the first compiler not only handling
reversible languages but also itself using reverse code.

Since Janus’ semantics requires the reversal of code for some language fea-
tures – for instance, to destroy all local variables with the inverse function used
for the construction of these – we have chosen to build our compiler in a way
that allows for the code generator to also emit inverse code in reverse order.
Thus, for the language constructs requiring reversal, we have only implemented
the forwards translation and let the code generator itself create the inverse code.
A good example is the translation of the Janus’ stack operations push and pop,
where we only have implemented push and let the compiler work backwards
when a pop operation occurs. In [18] a similar idea is described, but for an
interpreter for Janus written in Janus itself.

More details will be provided below after the explanation of the basics of
code generation.

3.3 Assignments and Expressions

Janus assignments to simple variables are of the form V ⊕ = E, where ⊕ is
a reversible operator. We will come to assignments to arrays in Subsect. 3.7.
Mogensen defines assignments in RSSA in a similar fashion and allows ⊕ = to
be either + =, − =, ̂=. Hence, such assignments are reversible: + = and − =
are the inverse of each other, and ̂= is inverse to itself.

While the translation of simple expressions such as constants and simple vari-
ables is straightforward, composite expressions with multiple operators require
a split into multiple assignments to temporary variables as shown in Fig. 3. This
is due to the fact that temporary variables will need to be destroyed again with
a finalizer (see the fourth line in the example) to avoid producing garbage. As
explained in the section about RSSA, we need to ensure that we use “fresh”
versions of the variables to ensure that there is always at most one assignment
to a variable. Hence, we append version numbers to the names of the variables
– see the example depicted in Fig. 3 with the Janus code on the left- and the
RSSA code on the right-hand side.

procedure main ( )
i n t n
i n t m

n += 1+2 3
m += n+1

begin main (n0 , m0)
T0 := 0 ˆ (2 3)
n1 := n0 + (1 + T0)
0 := T0 ˆ (2 3)
m1 := m0 + (n1 + 1)

end main (n1 , m1)

Fig. 3. Example for translation of simple expressions
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Note: While RSSA uses only a limited set of arithmetic operators, we have
chosen to add the remaining Janus operators, too.

Janus also provides primitives to manipulate stacks and their translation will
be shown in Subsect. 3.7.

3.4 If-Then-Else

The only means in RSSA for expressing conditions is via entry points and exit
points: An exit point C → L1(Y, . . . )L2 firstly evaluates the condition C, and
if true, jumps to L1, or to L2 otherwise. Similarly, a conditional entry point
L1(Y, . . . )L2 ← C consists of two labels L1 and L2. Via the Y s parameters can
be passed from an exit to an entry point. As previously explained, Φ-functions
can thus easily be implemented in RSSA.

The parameters in the entry point will always have a higher version number
than the corresponding parameters in the exit points to ensure proper SSA form.

Hence, for a Janus if-then-else statement if C then S1 else S2 fi E , we first
evaluate the Boolean expression C and use it in a conditional exit point to
label L1 (if the condition was evaluated to true) or L2 otherwise.

We then create the label L1(. . . ) as an unconditional entry point, followed
by the translation of S1 and a jump to L3. Now comes the else-part starting
with label L2 and ending in a jump to L4. Lastly, we join both branches with
the conditional entry point L3(. . . )L4 ← E – see Fig. 4.

i f (n=0)
then n+=1
e l s e n =1

f i (n=1)

n0 == 0 > L1(n0 )L2
L1( n1 ) <
n2 := n1 + (1 ˆ 0)
> L3(n2 )
L2( n3 ) <
n4 := n3 (1 ˆ 0)
> L4(n4 )
L3( n5 )L4 < n5 == 1

Fig. 4. Example for translation of if-then-else statements

3.5 Loops

The translation of a loop from C do S1 loop S2 until E into RSSA basically
follows the same rules as for the conditional statement. Firstly, we will uncon-
ditionally jump to L1, which is used to mark the entry point of the loop. The
condition is evaluated and used in a conditional entry point L1(. . . )L3 followed
by the translation of the body S1. Now, according to the semantics of Janus,
we have to evaluate the end-condition E and conditionally jump to L4, respec-
tively L2.
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Label L2 marks the body S2 and thereafter, we jump back to the start of
the loop at L3. Lastly, we emit label L4, which will be reached should the end-
condition E evaluate to true.

Figure 5 shows a procedure that sums up all numbers from 0 to n and returns
the result in r.

procedure sum( i n t n , i n t r )
l o c a l i n t k = 0

from k = 0 do
r += k

loop
k += 1

un t i l k = n

de l o c a l i n t k=n

begin sum(n0 , r0 )
k0 := 0 ˆ (0 ˆ 0)
> L1(n0 , k0 , r0 )
L1(n1 , k1 , r1 )L3 < k1 == 0
r2 := r1 + ( k1 ˆ 0)
k1 == n1 > L4(k1 , n1 , r2 )L2
L2( k2 , n2 , r3 ) <
k3 := k2 + (1 ˆ 0)
> L3(n2 , k3 , r3 )
L4( k4 , n3 , r4 ) <
0 := k4 ˆ ( n3 ˆ 0)

end sum(n3 , r4 )

Fig. 5. Example for translation of loops

3.6 Procedure Calls

Procedure calls can easily be translated to RSSA, since RSSA provides a call
mechanism, too. Janus’ procedure calls have already been designed in a careful
way that avoids problems with reversibility. That is, call-by-reference is the only
parameter-passing mode, there are no global variables, and it is not possible to
use a variable multiple times in the same procedure call to prohibit aliasing.
Hence, we can use the RSSA call statement (y, . . . ):=call l(x, . . . ) where l will
be the name of the called procedure, the x’s are the parameters, which will
be destroyed after the call in case they are variables. The final values of the
parameters after the call will be copied into the y’s. An example is shown in
Fig. 6.

3.7 Arrays and Stacks

Arrays and stacks are the only type constructors available in Janus. Arrays
provide, as one would expect, random access to a defined number of integers
only in one dimension.

Since access to memory locations using M[A] is restricted to specific operands
and instructions in RSSA, code has to be generated to manage the memory used
for arrays and stacks, as well as code to implement array access and operations
on the stack. Suppose a has been declared as an array of 10 integer values, the
RSSA code to access an array element a[index] will contain the evaluation of
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procedure inc ( i n t n , i n t r e s )
r e s += n
re s += 1

procedure main ( )
i n t i
i n t x
i += 10
c a l l i n c ( i , x )

begin inc (n0 , r e s0 )
r e s1 := re s0 + (n0 ˆ 0)
r e s2 := re s1 + (1 ˆ 0)

end inc (n0 , r e s1 )

begin main ( i0 , x0 )
i 1 := i 0 + (10 ˆ 0)
( i2 , x1 ) := c a l l i n c ( i1 , x0 )

end main ( i2 , x1 )

Fig. 6. Example for translation of a procedure call

the index expression, add the result to the base address, e.g. aref + index and
assign it to a temporary variable T . After accessing the memory at address T , we
need to destroy T with a finalizer. Lastly, we compute the reverse of the index
expression (see Sect. 3.3).

In addition to arrays, Janus provides the feature to declare stacks as data
structures. As usual, stacks can be manipulated using empty, top, push, and pop
operations.

We have to add a remark here: The language definition of Janus [17] is – to
our minds – not entirely clear about whether stacks can be assigned to each other,
and what the semantics are (deep copy vs. shallow copy), e.g. local stack s1=s2.
We have chosen to allow these kinds of assignments and apply deep copies. The
implementation of this behaviour is encapsulated in a separate class and could
easily be adapted to different semantics.

Please note that in RSSA M is not an identifier denoting the name of an
array, rather M is fixed and stands for “memory”, but can be addressed “like”
an array.

Hence, the generated code for a stack s contains two variables sref and stop
with sref being the base address of the stack in memory and stop pointing to
the next free element of the stack.

A push(n,s) operation (n being a variable and s being a stack) will be trans-
lated into multiple RSSA commands: Firstly, we have to compute the address of
the memory location where the value to be pushed will be stored, i.e. sref +stop.
Due to the limitations of RSSA, this address needs to be stored in a tempo-
rary variable T0. Now, M [T0] needs to be updated with the current value of n.
Moreover, the semantics of Janus is that the variable n will be “zero-cleared”
thereafter. Hence, we use the special assignment n1 := M [T0] := n as defined
in RSSA, which will set the top-most element of the stack to n, destroy n, and
store the former value into n1, i.e. the next version of n. In the subsequent RSSA
instruction, it will be verified that n1 is zero. Lastly, we have to undo the com-
putation of the temporary variable T0 with the inverse of its computation, and
increment s top.

As mentioned before, we have not defined the translation scheme for pop, rather
we instruct the code generator towork backwards, i.e., theRSSAcommandswill be
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emitted in reverse order and each command will be inverted, that is, in an assign-
ment left- and right-hand side are switched, plus becomes minus, etc.

The Java code for the implementation of the reverse code generator is remark-
ably small and itself uses a stack to intermediately store “forward” RSSA com-
mands. Figure 7 shows an example.

procedure main ( )
s tack s
i n t n
i n t m

push (n , s )
pop (m, s )

begin main ( s r e f 0 , s top0 , n0 , m0)
// push (n , s )
T0 := 0 + ( s r e f 0 + s top0 )
n1 := M[T0 ] := n0
0 := 0 ˆ ( n1 ˆ 0)
0 := T0 ( s r e f 0 + s top0 )
s top1 := s top0 + (1 ˆ 0)
// pop (m, s )
s top2 := s top1 (1 ˆ 0)
T1 := 0 + ( s r e f 1 + s top2 )
0 := 0 ˆ (m0 ˆ 0)
m1 := M[T1 ] := m0
0 := T1 ( s r e f 1 + s top2 )

end main ( s r e f 1 , s top2 , n1 , m1)

Fig. 7. Example for translation of stacks

3.8 Implementation

The translations, which are part of the RSSA backend, have been implemented
as a syntax-directed translation, using the well-known visitor pattern [6].

For each of Janus’ constructs, we have defined a translation scheme as
explained above. When given the abstract syntax-tree of an input program, our
backend traverses this tree and generates instructions according to the scheme.
Statements are translated into a series of instructions, while expressions are
mainly translated as operands. If it is not possible to translate an expression
directly into a single operand, we need to emit instructions, which bind the value
of the expression to a temporary variable and destroy this variable afterwards.

The output of our code generator is a list of the generated instructions. When
an instruction is emitted during code generation, it is appended to the list.

As mentioned earlier, our code generator is capable of reverse code genera-
tion. This behavior is provided by a single method, that accepts an unparame-
terized lambda expression, whose body may contain arbitrary Java statements.
Before these Java statements are executed, the internal state of the code genera-
tor is changed so that emitted instructions are no longer appended to the output
list but rather to a temporary data structure. The Java statements passed to
this method are then executed, which are able to emit instructions without
being aware of the inverted generation direction. After the Java statements have
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been executed, the temporary data structure holds all instructions emitted by
these statements. These instructions are then retrieved in reverse order and are
inverted according to the rules described in [13] before they are emitted by the
code generator.

Using this technique we were able to considerably reduce the amount of Java
code in the code generator as opposed to the former code generator with “hand-
crafted” reverse code.

4 Results

We have described rc3, consisting of a frontend for Janus as well a set of backends
with RSSA being the most important of them.

Since the compiler developed by Axelsen [4] was not available to us, we
used the online Janus interpreter (“Janus playground”) [15] by Copenhagen
University to compare the results of the execution of Janus test programs against
our interpreter, RSSA, and Three-Address-Code back-ends.

Some results for sample Janus programs are shown in Table 2.

Table 2. Experiments

Sample Program original optimized

feistelcipher.ja Janus loc 211

rssa instructions (loc) 598 531

executed rssa instructions 61355 59152

C Exec average c execution time in clocks 159 156

Janus-to-RSSA average compile time in ms 189 228

Janus-to-RSSA-to-C average compile time in ms 271 244

teax.ja Janus loc 88

rssa instructions (loc) 632 418

executed rssa instructions 30957 20513

C Exec average c execution time in clocks 101 92

Janus-to-RSSA average compile time in ms 163 191

Janus-to-RSSA-to-C average compile time in ms 191 189

njvm-v4.ja + simple.bin Janus loc 544

rssa instructions (loc) 2369 2109

executed rssa instructions 24203 22440

C Exec average c execution time in clocks 105 91

Janus-to-RSSA average compile time in ms 573 671

Janus-to-RSSA-to-C average compile time in ms 680 661

Feistelcipher and Teax are both programs implementing encryption schemes;
NJVM is a virtual machine for a small imperative language. Lines of code are
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excluding empty lines as well as lines with comments only. As you can see, the
time required for compilation even for the largest program is well below one
second. For instance, the Feistelcipher Janus program is compiled to a program
of 598 RSSA instructions. Running this program executes 61335 instructions
in the version further compiled to C, requiring 159 microseconds. In case of the
Teax program, the speedup through optimization (see Table 2) is 33%, measured
in the number of RSSA instructions executed. All tests were executed on a Linux
computer with an AMD Ryzen 5 processor with a clock speed of 3600 Mhz using
GCC 10.2.0 to create executables from the generated C-code.

Due to the “classic” implementation of the compiler in multiple phases, it is
easy to add more language features to Janus, as well as to add further backends.

The ability to translate Janus and RSSA each to two non-reversible C-
programs has also been proven to be extremely helpful as it facilitates quick
regression testing of the compiler.

The compiler including all three backends comprises roughly 12.500 lines
of Java code (excluding the generated lexer and parser). As you can see, the
generated RSSA code is typically 3–7 times longer than the original Janus code,
mostly due to the split of complex expressions into SSA’s and the insertion of
finalizers.

The C-Code generated from the RSSA code is considerably longer, mainly
due to the insertion of C-functions for memory management, and of course
because C-code is generated twice (forwards and backwards).

5 Conclusions and Outlook

We have shown a scheme for compiling reversible Janus programs into reversible
RSSA code including the novel method for reverse code generation. The compiler
has been implemented and is being extended to be able to optimize the generated
RSSA code. In addition, a virtual machine for RSSA has been created that
includes a debugger with a GDB-like CLI, allowing to step through the program
forwards and backwards.

Mogensen [13] provides some suggestions on potential optimizations, further
work or implementations of these are currently not known to us.

As per the time of writing of this paper, we have implemented local com-
mon subexpression elimination and constant propagation/folding (i.e., within a
building block) using a directed acyclic multigraph. Work is underway to explore
data-flow analysis of RSSA – however, the inherent requirements of reversible
computing seem to require extensions of “traditional” algorithms to be able to
apply them to reversible languages: Traditional data flow analysis determines IN
and OUT sets either in a forwards manner, i.e. stepping from one basic block
to its successors or vice versa. But, in a reversible world, “forwards” and “back-
wards” in terms of the direction of execution are not distinguishable, making
the application of these well-known algorithms by Kildall [8] and others quite
difficult.

A report on first optimizations (local common-subexpression elimination and
constant propagation/folding) on the generated RSSA code will be presented at
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ACM SOAP 2021. Future work will also include the formalization of the code
generation scheme from Janus to RSSA, as well as a more detailed description
of the compiler techniques applied for the reverse code generator.

The current state of the work looks very promising and should be helpful to
gain further insights into reversible programming languages and compilers.

Acknowledgements. We would like to thank the reviewers who had provided valu-
able feedback and suggestions for improvement.
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Abstract. Debugging concurrent programs is an interesting applica-
tion of reversibility. It has been renewed with the recent proposal by
Giachino et al. to base the operations of a concurrent debugger on a
causal-consistent reversible semantics, and subsequent work on CauDEr,
a causal-consistent debugger for the Erlang programming language. This
paper extends CauDEr and the related theory with the support for dis-
tributed programs. Our extension allows one to debug programs in which
processes can run on different nodes, and new nodes can be created at
runtime. From the theoretical point of view, the primitives for distributed
programming give rise to more complex causal structures than those aris-
ing from the concurrent fragment of Erlang handled in CauDEr, yet we
show that the main results proved for CauDEr still hold. From the prac-
tical point of view, we show how to use our extension of CauDEr to find
a non trivial bug in a simple way.

Keywords: Debugging · Actor model · Distributed computation ·
Reversible computing

1 Introduction

Debugging concurrent programs is an interesting application of reversibility. A
reversible debugger allows one to explore a program execution by going forward –
letting the program execute normally –, or backward – rolling back the program
execution by undoing the effect of previously executed instructions. Several works
have explored this idea in the past, see, e.g., the survey in [6], and reversible
debugging is used in mainstream tools as well [21]. It is only recently, however,
that the idea of a causal-consistent debugger has been proposed by Giachino et
al. in [10]. The key idea in [10] was to base the debugger primitives on a causal-
consistent reversible semantics for the target programming language. Causal

The work has been partially supported by French ANR project DCore ANR-18-CE25-
0007.
I. Lanese—partially supported by INdAM – GNCS 2020 project Sistemi Reversibili
Concorrenti: dai Modelli ai Linguaggi.

c© Springer Nature Switzerland AG 2021
S. Yamashita and T. Yokoyama (Eds.): RC 2021, LNCS 12805, pp. 79–95, 2021.
https://doi.org/10.1007/978-3-030-79837-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79837-6_5&domain=pdf
http://orcid.org/0000-0003-3002-0697
http://orcid.org/0000-0003-2527-9995
http://orcid.org/0000-0003-1373-7602
https://doi.org/10.1007/978-3-030-79837-6_5


80 G. Fabbretti et al.

consistency, introduced by Danos and Krivine in their seminal work on reversible
CCS [5], allows one, in reversing a concurrent execution, to undo any event
provided that its consequences, if any, are undone first. On top of a causal-
consistent semantics one can define a rollback operator [15] to undo an arbitrary
past action. It provides a minimality guarantee, useful to explore concurrent
programs which are prone to state explosion, in that only events in the causal
future of a target one are undone, and not events that are causally independent
but which may have been interleaved in the execution.

The CauDEr debugger [11,17,18] builds on these ideas and provides a
reversible debugger for a core subset of the Erlang programming language [3].
Erlang is interesting for it mixes functional programming with a concurrency
model inspired by actors [1], and has been largely applied since its initial uses
by Ericsson1, to build distributed infrastructures.

This paper presents an extension of CauDEr to take into account distribution
primitives which are not part of the core subset of Erlang handled by CauDEr.
Specifically, we additionally consider the three Erlang primitives called start, to
create a new node for executing Erlang processes, node, to retrieve the identifier
of the current node, and nodes, which allows the current process to obtain a list
of all the currently active nodes in an Erlang system. We also extend the spawn
primitive handled by CauDEr to take as additional parameter the node on which
to create a new Erlang process.

Adding support for these primitives is non trivial for they introduce causal
dependencies in Erlang programs that are different than those originating from
the functional and concurrent fragment considered in CauDEr, which covers,
beyond sequential constructs, only message passing and process creation on the
current node. Indeed, the set of nodes acts as a shared set variable that can be
read, checked for membership, and extended with new elements. Interestingly,
the causal dependencies induced by this shared set cannot be faithfully repre-
sented in the general model for reversing languages introduced in [14], which
allows for resources that can only be produced and consumed.

The contributions of the current work are therefore as follows: (i) we extend
the reversible semantics for the core subset of the Erlang language used by
CauDEr with the above distribution primitives; (ii) we present a rollback seman-
tics that underlies primitives in our extended CauDEr debugger; (iii) we have
implemented an extension of the CauDEr debugger that handles Erlang pro-
grams written in our distributed fragment of the language; (iv) we illustrate on
an example how our CauDEr extension can be used in capturing subtle bugs in
distributed Erlang programs. Due to space constraints, we do not detail in this
paper our extended CauDEr implementation, but the code is publicly available
in the dedicated GitHub repository [8].

The rest of this paper is organized as follows. Section 2 briefly recalls the
reversible semantics on which CauDER is based [19]. Section 3 presents the
Erlang distributed language fragment we consider in our CauDEr extension, its

1 erlang-solutions.com/blog/which-companies-are-using-erlang-and-why-mytopdogsta
tus.html.

https://www.erlang-solutions.com/blog/which-companies-are-using-erlang-and-why-mytopdogstatus.html
https://www.erlang-solutions.com/blog/which-companies-are-using-erlang-and-why-mytopdogstatus.html


Causal-Consistent Debugging of Distributed Erlang Programs 81

module ::= fun1 . . . funn

fun ::= fname = fun (X1, . . . , Xn) → expr
fname ::= Atom/Integer

lit ::= Atom | Integer | Float | [ ]
expr ::= Var | lit | fname | [expr1|expr2] | {expr1, . . . , exprn}

| call expr (expr1, . . . , exprn) | apply expr (expr1, . . . , exprn)
| case expr of clause1; . . . ; clausem end
| let Var = expr1 in expr2 | receive clause1; . . . ; clausen end
| spawn(expr, [expr1, . . . , exprn]) | expr1 ! expr2 | self()

clause ::= pat when expr1 → expr2
pat ::= Var | lit | [pat1|pat2] | {pat1, . . . , patn}

Fig. 1. Language syntax

reversible semantics and the corresponding rollback semantics. Section 4 briefly
describes our extension to CauDEr, and presents an example that illustrates bug
finding in distributed Erlang programs with our extended CauDEr. Section 5 dis-
cusses related work and concludes the paper with hints for future work. Due to
space constraints we omit some technicalities, for further details we refer the
interested read to the companion technical report [9] or to the master thesis of
the first author [7].

2 Background

We recall here the main aspects of the language in [19], as needed to understand
our extension. We refer the interested reader to [19] for further details.

2.1 The Language Syntax

Figure 1 shows the language syntax. The language depicted is a fragment of Core
Erlang [2], an intermediate step in Erlang compilation. A module is a collection of
function definitions, a function is a mapping between the function name and the
function expression. An expression can be a variable, a literal, a function name, a
list, a tuple, a call to a built-in function, a function application, a case expression,
or a let binding. An expression can also be a spawn, a send, a receive, or a self, which
are built-in functions. Finally, we distinguish expressions, patterns and variables.
Here, patterns are built from variables, tuples, lists and literals, while values are
built from literals, tuples and lists, i.e., they are ground patterns. When we have
a case e of . . . expression we first evaluate e to a value, say v, then we search for
a clause that matches v. When one is found, if the guard when expr is satisfied
then the case construct evaluates to the clause expression, otherwise the search
continues with the next clause. The let X = expr1 in expr2 expression binds
inside expr2 the fresh variable X to the value to which expr1 reduces.

As for the concurrent features, since Erlang implements the actor model,
there is no shared memory. An Erlang system is a pool of processes that interact
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by exchanging messages. Each process is uniquely identified by its pid and has
its own queue of incoming messages. Function spawn (expr, [expr1, . . . , exprn])
evaluates to a fresh process pid p. As a side-effect, it creates a new process with
pid p. Process p will apply the function to which expr evaluates to the arguments
to which the expressions expr1, . . . , exprn evaluate. As in [19], we assume that
the only way to introduce a new pid is through the evaluation of a spawn. Then,
expr1 ! expr2 allows a process to send a message to another one. Expression expr1
must evaluate to a pid (identifying the receiver process) and expr2 evaluates
to the content of the message, say v. The whole function evaluates to v and,
as a side-effect, the message will eventually be stored in the receiver queue.
The counterpart of message sending is receive clause1, . . . , clausen end. This
construct traverses the queue of messages searching for the first message v that
matches one of the n clauses. If no message is found then the process suspends.
Finally, self evaluates to the current process pid.

2.2 The Language Semantics

This subsection provides key elements to understand the CauDEr semantics. We
start with the definition of process.

Definition 1 (Process). A process is denoted by a tuple 〈p, θ, e, q〉, where p
is the process’ pid, θ is an environment, i.e. a map from variables to their actual
value, e is the current expression to evaluate, and q is the queue of messages
received by the process.

Two operations are allowed on queues: v : q denotes the addition of a new
message on top of the queue and q\\v denotes the queue q after removing v (note
that v may not be the first message).

A (running) system can be seen as a pool of running processes.

Definition 2 (System). A system is denoted by the tuple Γ ;Π. The global
mailbox Γ is a multiset of pairs of the form (target process pid, message),
where a message is stored after being sent and before being scheduled to its
receiver. Π is the pool of processes, denoted by an expression of the form

〈p1, θ1, e1, q1〉 | . . . | 〈pn, θn, en, qn〉

where “ |” is an associative and commutative operator. Γ ∪ {(p, v)}, where ∪ is
multiset union, is the global mailbox obtained by adding the pair (p, v) to Γ . We
write p ∈ Γ ;Π when Π contains a process with pid p.

We highlight a process p in a system by writing Γ ; 〈p, θ, e, q〉|Π. The presence
of the global mailbox Γ , which is similar to the “ether” in [24], allows one to
simulate all the possible interleavings of messages. Indeed, in this semantics the
order of the messages exchanged between two processes belonging to the same
runtime may not be respected, differently from what happens in current Erlang
implementations. See [24] for a discussion on this design choice.



Causal-Consistent Debugging of Distributed Erlang Programs 83

The semantics in [19] is defined in a modular way, similarly to the one pre-
sented in [4], i.e., there is a semantics for the expression level and one for the
system level. This approach simplifies the design of the reversible semantics since
only the system one needs to be updated. The expression semantics is defined
as a labelled transition relation of the form:

{Env,Expr} × Label × {Env,Expr}

where Env represents the environment, i.e., a substitution, and Expr denotes
the expression, while Label is an element of the following set:

{τ, send(v1, v2), rec(κ, cln), spawn(κ, a/n, [vn]), self(κ)}

The semantics is a classical call-by-value semantics for a first order language.
Label τ denotes the evaluation of a (sequential) expression without side-effects,
like the evaluation of a case expression or a let binding. The remaining labels
denote a side-effect associated to the rule execution or the request of some
needed information. The system semantics will use the label to execute the
associated side-effect or to provide the necessary information. More precisely, in
label send(v1, v2), v1 and v2 represent the pid of the sender and the value of a
message. In label rec(κ, cln), cln denotes the n clauses of a receive expression.
Inside label spawn(κ, a/n, [vn]), a/n represents the function name, while [vn] is
the (possibly empty) list of arguments of the function. Where used, κ acts as a
future: the expression evaluates to κ, then the corresponding system rule replaces
it with its actual value.

For space reasons, we do not show here the system rules, which are available
in [19]. We will however show in the next section how sample rules are extended
to support reversibility.

2.3 A Reversible Semantics

The reversible semantics is composed by two relations: a forward relation ⇀ and
a backward relation ↽. The forward reversible semantics is a natural extension
of the system semantics by using a typical Landauer embedding [13]. The idea
underlying Landauer’s work is that any formalism or programming language can
be made reversible by adding the history of the computation at each state. Hence,
this semantics at each step saves in an external device, called history, the previous
state of the computation so that later on such a state can be restored. The
backward semantics allows us to undo a step while ensuring causal consistency [5,
16], indeed before undoing an action we must ensure that all its consequences
have been undone.

In the reversible semantics each message exchanged must be uniquely iden-
tified in order to allow one to undo the sending of the “right” message, hence
we denote messages with the tuple {λ, v}, where λ is the unique identifier and v
the message body. See [19] for a discussion on this design choice.

Due to the Landauer embedding the notion of process is extended as follows.



84 G. Fabbretti et al.

(Spawn)
θ, e

spawn(κ,a/n,[vn])−−−−−−−−−−−→ θ′, e′ p′ is a fresh identifier
Γ ; 〈p, h, θ, e, q〉 | Π ⇀ Γ ; 〈p, spawn(θ, e, p′) : h, θ′, e′{κ �→ p′}, q〉

| 〈p′, [ ], id, apply a/n(vn), [ ]〉 | Π

(Spawn) Γ ; 〈p, spawn(θ, e, p′) : h, θ′, e′, q〉 | 〈p′, [ ], id, e′′, [ ]〉 | Π ↽ Γ ; 〈p, h, θ, e, q〉 | Π

Fig. 2. An example of a rule belonging to the forward semantics and its counterpart.

Definition 3 (Process). A process is denoted by a tuple 〈p, h, θ, e, q〉, where
h is the history of the process. The other elements are as in Definition 1. The
expression op(. . .) : h denotes the history h with a new history item added on
top. The generic history item op(. . .) can span over the following set.

{τ(θ, e), send(θ, e, {λ, v}), rec(θ, e, {λ, v}, q), spawn(θ, e, p), self(θ, e)}
Here, each history item carries the information needed to restore the previous

state of the computation. For rules that do not cause causal dependencies (i.e.,
τ and self) it is enough to save θ and e. For the other rules we must carry
additional information to check that every consequence has been undone before
restoring the previous state. We refer to [19] for further details.

Figure 2 shows a sample rule from the forward semantics (additions w.r.t. the
standard system rule are highlighted in red) and its counterpart from the back-
ward semantics. In the premises of the rule Spawn we can see the expression-level
semantics in action, transitioning from the configuration (θ, e) to (θ′, e′) and the
corresponding label that the forward semantics uses to determine the associ-
ated side-effect. When rule Spawn is applied the system transits in a new state
where process p′ is added to the pool of processes and the history of process p
is enriched with the corresponding history item. Finally, the forward semantics
takes care of updating the value of the future κ by substituting it with the pid
p′ of the new process.

The reverse rule, Spawn, can be applied only when all the consequences of
the spawn, namely every action performed by the spawned process p′, have been
undone. Such constraint is enforced by requiring the history of the spawned
process to be empty. Since the last history item of p is the spawn, and thanks
to the assumption that every new pid, except for the first process, is introduced
by evaluating a spawn, we are sure that there are no pending messages for p′.
Then, if the history is empty, we can remove the process p′ from Π and we can
restore p to the previous state.

3 Distributed Reversible Semantics for Erlang

In this section we discuss how the syntax and the reversible semantics introduced
in the previous section have been updated to tackle the three distribution prim-
itives start, node and nodes. Lastly, we extend the rollback operator introduced
in [19,20], which allows one to undo an arbitrary past action together with all
and only its consequences, to support distribution.
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3.1 Distributed System Semantics

The updated syntax is like the one in Fig. 1, with the only difference that now
expr can also be start(e), node() and nodes(), and spawn takes an extra argument
that represents the node where the new process must be spawned.

Let us now briefly discuss the semantics of the new primitives. First, in
function start, e must evaluate to a node identifier (also called a nid), which is
an atom of the form ‘name@host’. Then, the function, as a side-effect, starts a
new node, provided that no node with the same identifier exists in the network,
and evaluates to the node identifier in case of success or to an error in case of
failure. Node identifiers, contrarily to pids which are always generated fresh, can
be hardcoded, as it usually happens in Erlang. Also, function node evaluates to
the local node identifier. Finally, function nodes evaluates to the list (possibly
empty) of nodes to which the executing node is connected. A formalization of
the intuition above can be found in [7]. Here, we assume that each node has an
atomic view of the network, therefore we do not consider network partitioning.

Notions of process and system are updated to cope with the extension above.

Definition 4 (Process). A process is denoted by a tuple 〈nid, p, θ, e, q〉, where
nid is an atom of the form name@host, called a node identifier (nid), pointing
to the node on which the process is running. For the other elements of the tuple
the reader can refer to Definition 1.

The updated definitions of node and network follow.

Definition 5 (Node and network). A node is a pool of processes, identified
by a nid. A network, denoted by Ω, is a set of nids. Hence, nids in a network
should all be distinct.

Now, we can proceed to give the formal definition of a distributed system.

Definition 6 (Distributed system). A distributed system is a tuple Γ ;Π;Ω.
The global mailbox Γ and the pool of running processes Π are as before (but
processes now include a nid). Instead, Ω represents the set of nodes connected
to the network. We will use ∪ to denote set union.

3.2 Causality

To understand the following development, one needs not only the operational
semantics informally discussed above, but also a notion of causality. Indeed,
backward rules can undo an action only if all its causal consequences have
been undone, and forward rules should store enough information to both decide
whether this is the case and, if so, to restore the previous state.

Thus, to guide the reader, we discuss below the possible causal links among
the distribution primitives (including spawn). About the functional and concur-
rent primitives, the only dependencies are that a message receive is a conse-
quence of the scheduling of the same message to the target process, which is a
consequence of its send2.
2 For technical reasons the formalization provides an approximation of this notion.
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(SpawnS)
θ, e

spawn(κ,nid′,a/n,[vn])−−−−−−−−−−−−−−→ θ′, e′ p′ is a fresh pid nid′ ∈ Ω

Γ ; 〈nid, p, h, θ, e, q〉 | Π;Ω ⇀ Γ ; 〈nid, p, spawn(θ, e, nid′, p′) : h, θ′, e′{κ �→ p′}, q〉
| 〈nid′, p′, [ ], id, apply a/n(vn), [ ]〉 | Π;Ω

(SpawnF )
θ, e

spawn(κ,nid′,a/n,[vn])−−−−−−−−−−−−−−→ θ′, e′ p′ is a fresh pid nid′ /∈ Ω

Γ ; 〈nid, p, h, θ, e, q〉 | Π;Ω ⇀ Γ ; 〈nid, p, spawn(θ, e, nid′, p′) : h, θ′, e′{κ �→ p′}, q〉 | Π;Ω

(StartS)
θ, e

start(κ,nid′)−−−−−−−→ θ′, e′ nid′ /∈ Ω

Γ ; 〈nid, p, h, θ, e, q〉 | Π;Ω ⇀
Γ ; 〈nid, p, start(θ, e, succ, nid′) : h, θ′, e′{κ �→ nid′}, q〉 | Π; {nid′} ∪ Ω

(StartF )
θ, e

start(κ,nid′)−−−−−−−→ θ′, e′ nid′ ∈ Ω err represents the error
Γ ; 〈nid, p, h, θ, e, q〉 | Π;Ω ⇀ Γ ; 〈nid, p, start(θ, e, fail, nid′) : h, θ′, e′{κ �→ err}, q〉 | Π;Ω

(Node)
θ, e

node(κ)−−−−→ θ′, e′

Γ ; 〈nid, p, h, θ, e, q〉 | Π;Ω ⇀ Γ ; 〈nid, p, node(θ, e) : h, θ′, e′{κ �→ nid}, q〉 | Π;Ω

(Nodes)
θ, e

nodes(κ)−−−−−→ θ′, e′

Γ ; 〈nid, p, h, θ, e, q〉 | Π;Ω ⇀
Γ ; 〈nid, p, nodes(θ, e, Ω) : h, θ′, e′{κ �→ list(Ω \ {nid})}, q〉 | Π;Ω

Fig. 3. Distributed forward reversible semantics

Intuitively, there is a dependency between two consecutive actions if either
they cannot be executed in the opposite order (e.g., a message cannot be sched-
uled before having been sent), or by executing them in the opposite order the
result would change (e.g., by swapping a successful start and a nodes the result
of the nodes would change).

Beyond the fact that later actions in the same process are a consequence of
earlier actions, we have the following dependencies:

1. every action of process p depends on the (successful) spawn of p;
2. a (successful) spawn on node nid depends on the start of nid;
3. a (successful) start of node nid depends on previous failed spawns on the same

node, if any (if we swap the order, the spawn will succeed);
4. a failed start of node nid depends on its (successful) start;
5. a nodes reading a set Ω depends on the start of all nids in Ω, if any (as

discussed above).

3.3 Distributed Forward Reversible Semantics

Figure 3 shows the forward semantics of distribution primitives, which are
described below. The other rules are as in the original work [19] but for the
introduction of Ω.
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(SpawnS)
Γ ; 〈nid, p, spawn(θ, e, nid′, p′) : h, θ′, e′, q〉 | 〈nid′, p′, [ ], id, e′′, [ ]〉 | Π;Ω

↽p,spawn(p′),{s,spp′ } Γ ; 〈nid, p, h, θ, e, q〉 | Π;Ω

(SpawnF )
Γ ; 〈nid, p, spawn(θ, e, nid′, p′) : h, θ′, e′, q〉 | Π;Ω
↽p,spawn(p′),{s,spp′ } Γ ; 〈nid, p, h, θ, e, q〉 | Π;Ω

if nid′ /∈ Ω

(StartS)
Γ ; 〈nid, p, start(θ, e, succ, nid′) : h, θ′, e′, q〉 | Π;Ω ∪ {nid′}

↽p,start(nid′),{s,stnid′ } Γ ; 〈nid, p, h, θ, e, q〉 | Π;Ω
if spawns(nid′, Π) = [ ] ∧ reads(nid′, Π) = [ ] ∧ failed starts(nid′, Π) = [ ]

(StartF )
Γ ; 〈nid, p, start(θ, e, fail, nid′) : h, θ′, e′, q〉 | Π;Ω

↽p,start(nid′),{s} Γ ; 〈nid, p, h, θ, e, q〉 | Π;Ω

(Node) Γ ; 〈nid, p, node(θ, e) : h, θ′, e′, q〉 | Π;Ω ↽p,node,{s} Γ ; 〈nid, p, h, θ, e, q〉 | Π;Ω

(Nodes)
Γ ; 〈nid, p, nodes(θ, e, Ω′) : h, θ′, e′, q〉 | Π;Ω ↽p,nodes,{s} Γ ; 〈nid, p, h, θ, e, q〉 | Π;Ω

if Ω = Ω′

Fig. 4. Extended backward reversible semantics

The forward semantics in [19] has just one rule for spawn, since it can never
fail. Here, instead, a spawn can fail if the node fed as first argument is not part
of Ω. Nonetheless, following the approach of Erlang, we always return a fresh
pid, independently on whether the spawn has failed or not. Also, the history
item created in both cases is the same. Indeed, thanks to uniqueness of pids,
one can ascertain whether the spawn of p′ has been successful or not just by
checking whether there is a process with pid p′ in the system: if there is, the
spawn succeeded, otherwise it failed. Hence, the unique difference between rules
SpawnS and SpawnF is that a new process is created only in rule SpawnS.

Similarly, two rules describe the start function: rule StartS for a successful
start, which updates Ω by adding the new nid nid′, and rule StartF for a start
which fails because a node with the same nid already exists. Here, contrarily
to the spawn case, the two rules create different history items. Indeed, if two
or more processes had a same history item start(θ, e, nid), then it would not be
possible to decide which one performed the start first (and, hence, succeeded).

Lastly, the Nodes rule aves, together with θ and e, the current value of Ω.
This is needed to check dependencies on the start executions, as discussed in
Sect. 3.2. The Node rule, since node is a sequential operation, just saves the
environment and the current expression.

3.4 Distributed Backward Reversible Semantics

Figure 4 depicts the backward semantics of the distribution primitives.
The semantics is defined in terms of the relation ↽p,r,Ψ , where:

– p represents the pid of the process performing the backward transition
– r describes which action has been undone
– Ψ lists the requests satisfied by the backward transition (the supported

requests are listed in Sect. 3.5)
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These labels will come into play later on, while defining the rollback semantics.
We may drop them when not relevant.

As already discussed, to undo an action, we need to ensure that its conse-
quences, if any, have been undone before. When consequences in other processes
may exist, side conditions are used to check that they have already been undone.

Rule SpawnS is analogous to rule Spawn in Fig. 2. Rule SpawnF undoes a
failed spawn. As discussed in Sect. 3.2, we first need to undo, if any, a start of a
node with the target nid, otherwise the spawn will now succeed. To this end, we
check that nid′ /∈ Ω.

Then, we have rule StartS to undo the (successful) creation of node nid′.
Before applying it we need to ensure three conditions: (i) that no process is
running on node nid′; (ii) that no nodes has read nid′; and (iii) that no other
start of a node with identifier nid′ failed. The conditions, discussed in Sect. 3.2,
are checked by ensuring that the lists of pids computed by auxiliary functions
spawns, reads and failed starts are empty. Indeed, they compute the list of pids
of processes in Π that have performed, respectively, a spawn on nid′, a nodes
returning a set containing nid′, and a failed start of a node with identifier nid.
Condition (i) needs to be checked since nids are hardcoded, hence any process
could perform a spawn on nid′. The check would be redundant if nids would be
created fresh by the start function.

Rule StartF instead requires no side condition: start fails only if the node
already exists, but this condition remains true afterwards, since we do not have
primitives to stop a node. Rule Node has no dependency either.

To execute rule Nodes we must ensure that the value of Ω′ in the history
item and of Ω in the system are the same, as discussed in Sect. 3.2.

We now report a fundamental result of the reversible semantics. As most of
our results, it holds for reachable systems, that is systems that can be obtained
using the rules of the semantics from a single process with empty history.

Lemma 1 (Loop Lemma). For every pair of reachable systems, s1 and s2, we
have s1 ⇀ s2 iff s2 ↽ s1.

Proof. The proof that a forward transition can be undone follows by rule inspec-
tion. The other direction relies on the restriction to reachable systems: consider
the process undoing the action. Since the system is reachable, restoring the mem-
ory item would put us back in a state where the undone action can be performed
again (if the system would not be reachable the memory item would be arbi-
trary, hence there would not be such a guarantee), as desired. Again, this can
be proved by rule inspection. ��

Note that, as exemplified above, this result would fail if we allow one to undo
an action before its consequences.
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3.5 Distributed Rollback Semantics

Since undoing steps one by one may be tedious and unproductive for the devel-
oper, CauDEr provides a rollback operator, that allows the developer to undo
several steps in an automatic manner, while maintaining causal consistency. We
extend it to cope with distribution. Our definition takes inspiration from the for-
malization style used in [20], but it improves it and applies it to a system with
explicit local queues for messages. Dealing with explicit local queues is not triv-
ial. Indeed, without local queues, the receive primitive takes messages directly
from Γ . With local queues we use a rule called Sched to move a message from Γ
to the local queue of the target process, and the receive takes the message from
the local queue. A main point is that the Sched action does not create an item
in the history of the process receiving the message, and as a result it is concur-
rent to all other actions of the same process but receive. We refer to [19] for a
formalization of rule Sched and of its inverse. When during a rollback both a
Sched and another backward transition are enabled at the same time one has to
choose which one to undo, and selecting the wrong one may violate the property
that only consequences of the target action are undone.

We denote a system in rollback mode by ��S		{p,ψ}, where the subscript
means that we wish to undo the action ψ performed by process p and every
action which depends on it. More generally, the subscript of ��		, often depicted
with Ψ or Ψ ′ (where Ψ can be empty while Ψ ′ cannot), can be seen as a stack
(with : as cons operator) of undo requests that need to be satisfied. Once the
stack is empty, the system has reached the state desired by the user. We consider
requests {p, ψ}, asking process p to undo a specific action, namely:

– {p, s}: a single step back;
– {p, λ⇓}: the receive of the message uniquely identified by λ;
– {p, λ⇑}: the send of the message uniquely identified by λ;
– {p, λsched}: the scheduling of the message uniquely identified by λ;
– {p, stnid}: the successful start of node nid′;
– {p, spp′}: the spawn of process p′.

The rollback semantics is defined in Fig. 5 in terms of the relation �, selecting
which backward rule to apply and when. There are two categories of rules: (i)
U -rules that perform a step back using the backward semantics; (ii) rule Request
that pushes a new request on top of Ψ whenever it is not possible to undo an
action since its consequences need to be undone before.

Let us analyse the U -rules. During rollback, more than one backward rule
could be applicable to the same process. In our setting, the only possibility is
that one of the rules is a Sched and the other one is not. It is important to select
which rule to apply, to ensure that only consequences of the target action are
undone.

First, if an enabled transition satisfies our target, then it is executed and
the corresponding request is removed (rule U − Satisfy). Intuitively, since two
applications of rule Sched to the same process are always causally dependent, if
the target action is an application of Sched , an enabled Sched is for sure one of
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(U − Satisfy)
S ↽p,r,Ψ ′ S ′ ∧ ψ ∈ Ψ ′

		S

{p,ψ}:Ψ � 		S′

Ψ

(U − Sched)
S ↽p,r,{s,λ′sched} S ′ ∧ λ′sched �= λsched

		S

{p,λsched}:Ψ � 		S′

{p,λsched}:Ψ

(U − Unique)
S ↽p,r,Ψ ′ S ′ ∧ ψ /∈ Ψ ′ ∧ ∀r′′, Ψ ′′ S ↽p,r′′,Ψ ′′ S ′′ ⇒ S ′ = S ′′

		S

{p,ψ}:Ψ � 		S′

{p,ψ}:Ψ

(U − Act)
S ↽p,r,Ψ ′ S ′ ∧ ψ /∈ Ψ ′ ∧ λsched /∈ Ψ ′ ∧ ψ �= λsched ∀λ ∈ N

		S

{p,ψ}:Ψ � 		S′

{p,ψ}:Ψ

(Request)
S = Γ ; 〈nid, p, h, θ, e, q〉 | Π;Ω ∧ S �↽p,r,Ψ ′ ∧ {p′, ψ′} = dep(〈nid, p, h, θ, e, q〉, S)

		S

{p,ψ}:Ψ � 		S′

{p′,ψ′}:{p,ψ}:Ψ

Fig. 5. Rollback semantics

dep(< , , send( , , p′, {λ, v}) : h, , , >, ; ; ) = {p′, λsched}
dep(< , , nodes( , , Ω) : h, , , >, ;Π; {nid} ∪ Ω′) = {parent(nid, Π), stnid} if nid /∈ Ω
dep(< , , spawn( , , , p′) : h, , , >, ;Π; ) = {p′, s} if p′ ∈ Π
dep(< , , spawn( , , nid′, ) : h, , , >, ;Π; ) = {parent(nid′, Π), stnid′} if p′ /∈ Π
dep(< , , start( , , succ, nid′) : h, , , >, ;Π; ) = {fst(reads(nid′, Π)), s} if reads(nid′, Π) �= [ ]
dep(< , , start( , , succ, nid′) : h, , , >, ;Π; ) = {fst(spawns(nid′, Π)), s} if spawns(nid′, Π) �= [ ]
dep(< , , start( , , succ, nid′) : h, , , >, ;Π; ) = {fst(failed start(nid′, Π)), s}

Fig. 6. Dependencies operator

its consequences, hence it needs to be undone (rule U − Sched). Dually, if the
target is not a Sched and a non Sched is enabled, we do it (rule U − Act). If a
unique rule is applicable, then it is selected (rule U − Unique).

Rule Request considers the case where no backward transition in the target
process is enabled. This depends on some consequence on another process of
the action on top of the history. Such a consequence needs to be undone before,
hence the rule finds out using operator dep in Fig. 6 both the dependency and
the target process and adds on top of Ψ the corresponding request.

Let us discuss operator dep. In the first case, a send cannot be undone since
the sent message is not in the global mailbox, hence a request has to be made
to the receiver p′ of undoing the Sched of the message λ.

In case of multiple dependencies, we add them one by one. This happens,
e.g., in case nodes, where we need to undo the start of all the nodes which are in
{nid′} ∪ Ω′ but not in Ω. Adding all the dependencies at once would make the
treatment more complex, since by solving one of them we may solve others as
well, and thus we would need an additional check to avoid starting a computation
to undo a dependency which is no more there. Adding the dependencies one by
one solves the problem, hence operator dep nondeterministically selects one of
them. Notice also that the order in which dependencies are solved is not relevant.

In some cases (e.g., send) we find a precise target event, in others we use just
s, that is a single step. In the latter case, a backward step is performed (and its
consequences are undone), then the condition is re-checked and another back-
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ward step is required, until the correct step is undone. We could have computed
more precise targets, but this would have required additional technicalities.

Function parent(nid′,Π), used in the definition of dep, returns the pid of the
process that started nid′ while function fst(·) returns the first element of a list.

An execution of the rollback operator corresponds to a backward derivation,
while the opposite is generally false.

Theorem 1 (Soundness of rollback). If ��S		Ψ ′ �∗ ��S ′		Ψ then S ↽∗ S ′

where ∗ denotes reflexive and transitive closure.

Proof. The rollback semantics is either executing backward steps using the back-
ward semantics or executing administrative steps (i.e., pushing new requests on
top of Ψ), which do not alter the state of the system. The thesis follow. ��

In addition, the rollback semantics generates the shortest computation sat-
isfying the desired rollback request.

Theorem 2 (Minimality of rollback). If ��S		Ψ �∗ ��S ′		∅ then the backward
steps occurring as first premises in the derivation of ��S		Ψ �∗ ��S ′		∅ form the
shortest computation from S satisfying Ψ derivable in the reversible semantics.

A precise formalization and proof of this result is quite long, hence for space
reasons we refer to [7, Theorem 3.2].

4 Distributed CauDEr

CauDEr [11,17,18] is the proof-of-concept debugger that we extended to support
distribution following the semantics above. Notably, CauDEr works on Erlang,
but primitives for distribution are the same in Core Erlang and in Erlang, hence
our approach can be directly applied. CauDEr is written completely in Erlang
and bundled up with a convenient graphical user interface to facilitate the inter-
action. The usual CauDEr workflow is the following. The user selects the Erlang
source file, then CauDEr loads the program and shows the source code to the
user. Then, the user can select the function that will act as entry point, specify
its arguments, and the node identifier where the first process is running. The user
can either perform single steps on some process (both forward and backward),
or perform n steps in the chosen direction in an automatic manner (a scheduler
decides which process will perform each step), or use the rollback operator.

The interface (see Fig. 7) is organized as follow: CauDEr shows the source
code on the top left, the selected process’ state and history (log is not considered
in this paper) on the bottom left, and information on system structure and
execution on the bottom right. Execution controls are on the top right.

We illustrate below how to use CauDEr to find a non-trivial bug.
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Fig. 7. A screenshot of CauDEr.

Finding Distributed Bugs with CauDEr. Let us consider the following
scenario. A client produces a stream of data and wants to store them in a dis-
tributed storage system. A server acts as a hub: it receives data from the client,
forwards them to a storage node, receives a confirmation that the storage node
has saved the data, and finally sends an acknowledgement to the client. Each
storage node hosts one process only, acting as node manager, and has an id as
part of its name, ranging from one to five. Each node manager is able to store at
most m packets. Once the manager reaches the limit, it informs the server that
its capacity has been reached. The server holds a list of domains and an index
referring to one of them. Each domain is coupled with a counter, i.e., an inte-
ger, and each domain can host at most five storage nodes. Each time the server
receives a notification from a node manager stating that the node maximum
capacity has been reached, it proceeds as follows. If the id of the current storage
manager is five it means that such domain has reached its capacity. Then, the
server selects the next domain in the list, resets its counter and starts a new
node (and a corresponding storage manager) on the new domain. If the id of the
node is less than five then the server increases its counter and then starts a new
node (and storage manager) on the same domain, using the value of the counter
as new id. Each node should host at most one process.

Let us now consider the program distributed storage node.erl, available in the
GitHub repository [8], which shows a wrong implementation of the program
described above. In order to debug the program one has to load it and start the
system. Then, it is sufficient to execute about 1500 steps forward to notice that
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something went wrong. Indeed, by checking the Trace box (Fig. 7) one can see a
warning: a start has failed since a node with the same identifier already existed.
Then, since no check is performed on the result of the start, the program spawns
a new storage manager on a node with the same identifier as the one that failed
to start. Hence, now two storage managers run on the same node.

To investigate why this happened one can roll back to the reception of the
message {store, full} right before the failed start. Note that it would not be easy
to obtain the same result without reversibility: one would need to re-run the
program, and, at least in principle, a different scheduling may lead to a different
state where the error may not occur. After rolling back one can perform forward
steps on the server in manual mode since the misbehavior happened there. After
receiving the message, the server enters the case where the index of the storage
manager is 5, which is correct because so far we have 5 storage nodes on the
domain. Now, the server performs the start of the node (and of the storage
manager) on the selected domain and only afterwards it selects the new domain,
whereas it should have first selected a new domain and then proceeded to start
a new storage node (and a new storage manager) there. This misbehavior has
occurred because a few lines of code have been swapped.

5 Related Work and Conclusion

In this work we have presented an extension of CauDEr, a causal-consistent
reversible debugger for Erlang, and the related theory. CauDEr has been first
introduced in [17] (building on the theory in [19]) and then improved in [11]
with a refined graphic interface and to work directly on Erlang instead of Core
Erlang. We built our extension on top of this last version. CauDEr was able
to deal with concurrent aspects of Erlang: our extension supports also some
distribution primitives (start, node and nodes). We built the extension on top of
the modular semantics for Erlang described in [11,19]. Monolithic approaches
to the semantics of Erlang also exist [22], but the two-layer approach is more
convenient for us since the reversible extension only affects the system layer.

Another work defining a formal semantics for distributed Erlang is [4]. There
the emphasis is on ensuring the order of messages is respected in intra-node
communications but not in inter-node communications (an aspect we do not
consider). Similarly to us, they have rules to start new nodes and to perform
remote spawns, although they do not consider the case where these rules fail.

In the context of CauDEr also replay has been studied [20]. In particular
CauDEr supports causal-consistent replay, which allows one to replay the exe-
cution of the system up to a selected action, including all and only its causes.
This can be seen as dual to rollback. Our extension currently does not support
replay, we leave it for future work.

To the best of our knowledge causal-consistent debugging has been explored
in a few settings only. The seminal paper [10] introduced causal-consistent debug-
ging in the context of the toy language μOz. Closer to our work is Actoverse [23],
a reversible debugger for the Akka actor model. Actoverse provides message-
oriented breakpoints, which allow the user to stop when some conditions on
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messages are satisfied, rollback, state inspection, message timeline and session
replay, which allows one to replay the execution of a program given the log of a
computation, as well as the capacity to go back in the execution. While many
of these features will be interesting for CauDEr, they currently do not support
distribution.

Reversible debugging of concurrent programs has also been studied for imper-
ative languages [12]. However, differently from us, they force undoing of actions
in reverse order of execution, and they do not support distribution.

As future work it would be interesting to refine the semantics to deal with
failures (node crashes, network partitions). Indeed, failures are unavoidable in
practice, and we think reverse debugging in a faulty context could be of great
help to the final user. Also, it would be good to extend CauDEr and the related
theory to support additional features of the Erlang language, such as error han-
dling, failure notification, and code hot-swapping. Finally, it would be good to
experiment with more case studies to understand the practical impact of our
tool.
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Abstract. A unified language architecture for an advanced reversible
object-oriented language is described. The design and implementation
choices made for a tree-walking interpreter and source-language inverter
are discussed, as well as the integration with an existing monadic parser,
type checker and PISA compiler backend. A demonstration of the web
interface and the interactions required to interpret, compile and invert
reversible object-oriented programs is given. Our aim is that this platform
will make reversible programming approachable to a wider community.

1 Introduction

In this tool paper, we report on an integrated language architecture for the
reversible object-oriented language (ROOPL) [2,6], which aims to provide a
platform for the development and testing of reversible object-oriented programs.
The architecture provides a common framework including a parser and type-
checker, an interpreter, a compiler to reversible machine code (PISA), and a
program inverter. The Haskell implementation is designed as an open system for
experimental research and educational purposes that can be extended with fur-
ther components such as static analyzers and code-generators for reversible and
irreversible target machines. In particular, we describe the components of the
architecture and demonstrate the system. The complete system can be down-
loaded1 or used via the web interface2.

Reversible programming and algorithms are still a largely uncharted territory.
This tool integrates a reversible interpreter and compiler for the first time. These
combined tools allows a development cycle consisting of interpreting programs
for quicker development, testing, debugging and finally compiling programs to
machine instructions to be executed on target machines or simulators. It is our
aim that a unified architecture can help enable advances in several directions
1 Source code host: https://github.com/haysch/ROOPLPP.
2 Web interface: https://topps.di.ku.dk/pirc/roopl-playground.
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within the field of reversible computing including novel reversible algorithms on
complex data structures, a more advanced programming methodology, compila-
tion and optimization for reversible and irreversible machines, as well as language
development for advanced reversible object-oriented languages. This tool paper
complements our previous papers [2,6]. The reversible object-oriented languages
Joule [8] and ROOPL were recently described [7, Sect. 4].

Overview After a brief review of ROOPL (Sect. 2), we present the unified
language architecture (Sect. 3) and demonstrate the system (Sect. 4). Finally, we
discuss future work in the conclusion (Sect. 5). A complete program example is
provided for the interested reviewer (Appendix A).

2 ROOPL

The Reversible Object-Oriented Programming Language (ROOPL) is a reversible
programming languagewith built-in support for object-oriented programming and
user-defined types. ROOPL is statically typed and supports inheritance, encap-
sulation, dynamic memory management with reference counting and subtype-
polymorphism via dynamic dispatch. ROOPL is cleanly reversible, in the sense
that no computational history is required for backward execution. Rather, each
component of a program is locally invertible at no extra cost to program size.

Object-orientation enables rich reversible data structures (e.g., queues, trees,
graphs) through reversible dynamic memory management as well as subtype-
polymorphism. Existing reversible languages with simpler type systems such
as Janus (static integer arrays) [12], RWhile (Lisp-like lists and symbols) [4],
and RFun (tree-structured constructor terms) [11] have the same computational
power (r-Turing complete) but are not as expressive.

3 Design, Structure and Implementation

The present section gives an overview of the system architecture. We begin by
describing the phases of the compiler frontend followed by the compilation to
reversible machine code, the program inverters and finally providing the relevant
details about the JIT-inverting interpreter and the JSON encoded output.

3.1 System Architecture

An overview of the system architecture can be seen in Fig. 1. The figure shows
the four phases of the frontend as well as the compiler and interpreter backends.
The web interface provides an easy way to access the system and also includes
several program examples and direct access to the program inverter. Together
these components provide compilation, interpretation and source-level inversion
of the ROOPL language. The entire system is implemented in Haskell. The
components of the system are summarized in the follow subsections.
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Fig. 1. Unified language architecture for the reversible object-oriented language.

3.2 Frontend Structure

The frontend provides the infrastructure for syntactic and semantic analysis that
is shared by the compiler and interpreter backends. The frontend consists of four
separate phases:

1. Syntax Analysis. The parser transforms the input program from textual
representation to an abstract syntax tree using parser combinators.

2. Class Analysis. The class analysis phase verifies a number of properties
of the classes in the program: Detection of inheritance cycles, duplication of
method and field names and unknown base classes.

3. Scope Analysis. The scope analysis phase maps every occurrence of every
identifier to a unique variable or method declaration. The scope analysis phase
is also responsible for constructing the class virtual tables and the symbol
table.

4. Type Checking. The type checker uses the symbol table and the abstract
syntax tree to verify that the program satisfies the ROOPL type system.
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3.3 Compiler Structure

The ROOPL compiler (described in detail in [1,5]), targets the Pendulum
reversible machine architecture and its instruction set PISA [3,10]. The com-
piler backend consists of two separate phases:

1. Code Generation. The code generation phase translates the abstract syntax
tree to a series of PISA instructions.

2. Macro Expansion. The macro expansion phase is responsible for expanding
macros left in the translated PISA program after code generation and for final
processing of the output.

The resulting PISA code can be executed using the Pendulum virtual machine3.

3.4 Program Inverters

The ROOPL compiler includes a PISA inverter which operates on one instruction
at a time. This inverter is needed to generate semantically symmetric load/un-
load sequences and reversible function preludes in the target programs.

Since the compiler targets a reversible machine, it has no need for a source-
language inverter. Because the Pendulum reversible machine architecture sup-
ports inverted execution natively, the compiler can simply reverse the flow of
execution in the PISA output to invert whatever method was being uncalled.

For interpreters running on irreversible machines this is not the case. In order
to uncall a method, first the method must be inverted. Therefore a ROOPL
inverter is a required component of our interpreter. A method is inverted by the
interpreter on-demand whenever an uncall statement is executed (JIT inversion).
As each ROOPL statement has a unique inverse there is no need for a global
program analysis and the inversion can be done locally in time linear to the size
of the program text.

The inverter also serves a purpose as a standalone component in our sys-
tem. It is useful to be able to display the inverse of a given sequence of ROOPL
statements while developing reversible programs - thus the inverter is exposed
through our web interface. The inverter would also be an integral component
in any future optimization steps added to the compiler, of which there are cur-
rently none. Static analyses like data-flow analysis or liveness analysis would also
need inversion of methods to work out the propagation of data and the bidi-
rectional nature of the reversible control flow. Figure. 2 illustrates how whole-
program inversion of ROOPL proceeds class-by-class and method-by-method
and by extension how ROOPL is well-suited to just-in-time inversion of class
methods during interpretation.

3 Source code [3,10] rehosted at: https://github.com/TueHaulund/PendVM.

https://github.com/TueHaulund/PendVM
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Iclass

class c · · ·
method q1 ( . . . ) s1

...
method qn ( . . . ) sn

=

class c · · ·
method q1 ( . . . ) Istmt s1

...
method qn ( . . . ) Istmt sn

Iprog c1 · · · cn = Iclass c1 · · · Iclass cn

Fig. 2. Program inverter Iprog and class inverter Iclass for ROOPL. See [1] for the
definition of the statement inverter Istmt.

3.5 Interpreter Design

Like the compiler, the ROOPL interpreter operates on the AST produced by the
language frontend. At this point the program has been statically verified to be
syntactically correct as well as being well typed. The interpreter then walks the
AST and maintains the program state as it executes each statement.

The interpreter does not invert methods up front. Inverting an entire program
ahead-of-time produces unnecessary overhead in case none of the methods is
uncalled during the execution of the program. Inverting methods just-in-time
(JIT), the interpreter ensures that only the necessary methods are inverted. The
interpreter defines a cache for inverted methods, i.e. whenever a method has
been inverted, it is saved to the cache for later use, that is JIT inversion. Only
methods that are eventually uncalled will thus be inverted, avoiding the overhead
of inverting all methods up front.

Inverting all methods ahead-of-time allows methods to run in any direction
without performing inversions during execution. Each of the inversion techniques
is better suited to different scenarios. Providing inverted methods ahead-of-time
reduces compute runtime, whereas inverting just-in-time reduces pre-compute
runtime. Both inversion techniques produce inverted methods. Alternatively, the
AST can be organized in a way such that it can be efficiently walked backward
thereby allowing to inverse interpret the statements on the fly during an uncall.

Fig. 3. Binary tree

Program State. Before describing the object layout in
memory, it is important to define the terms, environment
and store. The store is a mapping from an identifier to a
value or an object. An environment is a mapping from a
class variable to a store. Every class defined in a ROOPL
program is translated to a scoped representation with
unique incremental identifiers by the scope analyzer, e.g. a
class Node defines variables value, left and right, which
are given identifiers 0, 1 and 2, respectively, and a class Tree defines a variable
root, which is given identifier 3. A global environment would assign duplicate
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identifiers to objects instantiated from the same class. For this reason, environ-
ments are defined for each instantiated object instead.

To illustrate the behavior of the interpreter store, a binary search tree exam-
ple is showcased to highlight these important aspects of mapping member vari-
able values to class instances references. Figure 4 shows the example store after
construction of the binary search tree show in Fig. 3 using the program from
Appendix A.

Fig. 4. Store after constructing binary search tree show in Fig. 3 using the program
from Appendix A

Error Handling. The PISA programs produced by the ROOPL compiler will
jump to an error state in case an error occurs. They are not however able to
provide any context about the erroneous circumstance or the memory state.

As the interpreter has access to the full AST of the program and the entire
program state, it is able to produce rich information about the cause of any given
error during runtime. For example, entry and exit conditions for a conditional
or a loop might not align due to programmer error or an object could have been
deleted before being called (a so-called use-after-free situation).

Being able to give detailed error reports eases development by providing
insight into the unexpected program state with a detailed stack trace. The stack
trace contains information about the statement that caused the error and the
program state at the given moment. As the environment values depend on the
object, the stack trace shows the statement trace and the current variables in
the object environment.

Program Output. The interpreter will serialize the final state of the program
to JSON. This format is both human and machine-readable and so the ROOPL
interpreter can be integrated with other systems for automated processing.

This is a significant improvement over the output produced by compiled
ROOPL programs, which needs to be extracted from the PendVM memory store
manually. Since JSON is an industry standard, there are a wealth of libraries
and tools available to process and display the output.
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4 Web Interface

The ROOPL compiler, inverter and interpreter are accessible through a web
interface which also provides an editor with syntax highlighting and detailed
error reporting.

Fig. 5. ROOPL interface computing the
fourth Fibonacci number

Fig. 6. ROOPL interface showing an error
and its stack trace

The web interface allows programmers to access the system from anywhere
via a browser2. The interface makes it possible to develop and test ROOPL
programs without having the system installed locally. The goal is to lower the
entry barrier for newcomers and to encourage the development of reversible
software. To provide some aesthetic familiarity, the interface is based on the
Janus interface4.

When interpreting or inverting a program, the output state is shown in a
separate pane, and when compiling a program the interface will download a file
containing compiled PISA instructions. Figure 5 shows a reversible Fibonacci
program. The output state in the bottom of the figure shows the result of finding
the fourth Fibonacci number. Furthermore, the interface also contains numer-
ous example programs. The Simple section showcases ROOPL syntax and the
Complex section contains implementations of several reversible algorithms.

As described in Sect. 3, the interpreter is capable of detailed error reporting.
Errors are displayed in the web interface alongside information about the root
cause, a stack trace and the corresponding state for each trace. Figure 6 shows
an error state due to calling a method on an uninitialized object.

4 https://topps.di.ku.dk/pirc/janus-playground
https://github.com/mbudde/jana.

https://topps.di.ku.dk/pirc/janus-playground
https://github.com/mbudde/jana
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5 Conclusion

Reversible computation is still an unfamiliar and emerging computing paradigm.
Reversible algorithms, programming techniques, and practical experiences with
the design and implementation of reversible systems are still not well established.
The aim of the work reported here is to provide a productive integrated platform
for the development and evaluation of reversible programs and algorithms, and
for educational purposes with a reversible object-oriented language.

We hope that this will also lower the barrier to entry for non-experts to
learn, experience and explore programming in an advanced reversible language
and make reversible computation more accessible to a wider community. It will
be interesting to investigate the design of dynamic reversible data structures,
practical programming techniques, and the development of the ROOPL language
design and debugging support.

Considering future work, our unified ROOPL architecture is open and other
backends can be added, targeting other reversible instruction set architectures
like Bob ISA [9] or irreversible mainstream architectures. One could consider
adding optimization steps to the compilation pipeline and static analyses to
improve reversible program quality. Additionally, providing access to an interface
for developing ROOPL programs, adding breakpoints and advanced debugging
techniques such as live debugging would provide a better development plat-
form. They can also take advantage of the trace-free reversibility when stepping
through a program. Finally, we propose exposing the Pendulum VM in the web
interface to allow for end-to-end compilation and execution of ROOPL programs.

A Binary Search Tree Example

The ROOPL example program in this appendix is provided for the interested
reader. It is based on a binary search tree example [2] and accessible in the
Examples tab of the web interface as Binary Tree using Array. A binary search
tree allows fast look up of data items given a node value (the key). The example
constructs a binary search tree by inserting new nodes while preserving the
invariant that all node values in a node’s left subtree are smaller and those in
the node’s right subtree are not smaller than the node’s value. In our example,
the node values are stored in an array and then iteratively inserted into the tree.
Given the node values 3, 4, 2, 1, the resulting tree can be seen in Fig. 3.

A.1 Example Program

Appendix A.2 contains the complete source code for the example program. The
class Program defines the main method of our program (lines 40–63). The method
main is the program’s entry point and creates a new binary search tree. A new
object of class Tree is created by statement new Tree tree, which sets variable
tree to the new object’s reference (line 46). Similarly, a new array nodeVals is
created and initialized with our four example values (lines 47–52).
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The iteration over the example array is performed by a reversible loop (lines
54–62). It asserts that the initial value of index variable x is 0 and its final
value is nodeCount. The control-flow operators in ROOPL are those of Janus;
e.g. see [12]. The paired statements local and delocal open and close the
scope of a variable by specifying its initial and final value, e.g. x has the initial
value 0 (line 53). All method calls and uncalls refer to an object, e.g. call
node::setValue(nodeVals[x]) sends method setValue to object node with a
parameter being the value of an element in array nodeVals (line 58).

Class Node defines a labeled node as containing an integer value and links
to the roots of its left and right subtree (lines 2–4). Usually, this class also
defines the variables for the data items stored in a node. If there is no subtree
then the corresponding link is nil. The class defines two methods: setValue
reversibly updates the label of a node and insertNode recursively inserts a new
node with a value newValue. The latter performs a recursive descent over the
left or right subtree depending on the node value to be inserted.

A reversible conditional has two predicates that are evaluated at run time: an
entry test at if (e.g., nodeValue < value at line 10) and an exit assertion at fi
(e.g., left != nil at line 17). After executing the then-branch, the assertion
must evaluate to true, and after executing the else-branch, it must evaluate to
false; otherwise, an error occurs and an exception is raised.

Finally, class Tree defines the root of a binary search tree and provides a
method for inserting nodes into the search tree. More variables can be added to
this class, e.g. the number of nodes in a tree. Which of the two insert methods
defined in the classes Node and Tree is invoked depends on the class of the object
to which it is sent (e.g. root::insertNode(...) vs. tree::insertNode(...)).

A.2 Source Code

1 class Node // Class: node of binary search tree
2 int value // Value of node
3 Node left // Root of left subtree
4 Node right // Root of right subtree
5
6 method setValue(int newValue)
7 value += newValue
8
9 method insertNode(Node node, int nodeValue)

10 if nodeValue < value then // Determine if we insert left or right
11 if left = nil & node != nil then left <=> node // put in left
12 else skip
13 fi left != nil & node = nil
14 // If current node has left, continue
15 if left != nil then call left::insertNode(node, nodeValue)
16 else skip
17 fi left != nil
18 else
19 if right = nil & node != nil then right <=> node // put in right
20 else skip
21 fi right != nil & node = nil
22 // If current node has right, continue
23 if right != nil then call right::insertNode(node, nodeValue)
24 else skip
25 fi right != nil
26 fi nodeValue < value
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27
28 class Tree // Class: binary search tree
29 Node root // Root of binary search tree
30
31 method insertNode(Node node, int value)
32 if root = nil & node != nil then root <=> node // set root
33 else skip
34 fi root != nil & node = nil
35 if root != nil then // If root exists, insert node
36 call root::insertNode(node, value)
37 else skip
38 fi root != nil
39
40 class Program // Class: main program
41 Tree tree // Binary search tree
42 int nodeCount // Number of example nodes
43 int[] nodeVals // Array for example values
44
45 method main()
46 new Tree tree // Create new tree object
47 nodeCount += 4 // Set number of example nodes
48 new int[nodeCount] nodeVals // Create array for example values
49 nodeVals[0] += 3 // Set array values
50 nodeVals[1] += 2
51 nodeVals[2] += 4
52 nodeVals[3] += 1
53 local int x = 0 // Open scope
54 from x = 0 do skip // Loop creates binary search tree
55 loop
56 local Node node = nil // Open scope
57 new Node node // Create new node
58 call node::setValue(nodeVals[x]) // Set node value
59 call tree::insertNode(node, nodeVals[x]) // Insert node in tree
60 delocal Node node = nil // Close scope
61 x += 1 // Increment index
62 until x = nodeCount
63 delocal int x = nodeCount // Close scope
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Abstract. Reversible CCS (RCCS) is a well-established, formal model
for reversible communicating systems, which has been built on top of
the classical Calculus of Communicating Systems (CCS). In its original
formulation, each CCS process is equipped with a memory that records
its performed actions, which is then used to reverse computations. More
recently, abstract models for RCCS have been proposed in the litera-
ture, basically, by directly associating RCCS processes with (reversible
versions of) event structures. In this paper we propose a detour: starting
from one of the well-known encoding of CCS into Petri nets we apply a
recently proposed approach to incorporate causally-consistent reversibil-
ity to Petri nets, obtaining as result the (reversible) net counterpart of
every RCCS term.

Keywords: Petri nets · Reversible CCS · Concurrency

1 Introduction

CCS [17] is a foundational calculus for concurrent systems. Typically, systems are
described as the parallel composition of processes (i.e., components) that com-
municate by sending and receiving messages over named channels. Processes are
then defined in terms of communication actions performed over specific channels:
we write a and a to respectively represent a receive and a send over the channel
a. Basic actions can be composed through prefixing (i.e., sequencing) ( . ), choice
( + ) and parallel ( ‖ ) operators. The original formulation of the semantics of
CCS adheres to the so called interleaved approach, which only accounts for the
executions that arise from a single processor; hence, parallelism can be reduced
to non-deterministic choices and prefixing. For instance, the CCS processes a ‖ b
and a.b + b.a are deemed equivalent, i.e., it does not distinguish a process that
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can perform a and b concurrently from one that sequentialises their execution in
any possible order (interleaving/schedule). Successive works have addressed the
problem of equipping CCS with true concurrent semantics in the style of Petri
nets and Event Structures. It has been shown that every CCS process can be
associated with a Petri net that can mimic its computations. Different flavours
of Petri nets have been used in the literature; for instance, occurrence nets [6],
a variant of Conditions/Events nets [5], and flow nets [3]. The works in [20]
and [3] have additionally shown that the computation of a CCS process can be
represented by using event structures.

Many efforts were made in the last decades to endow computation models
with reversible semantics [1,16] and, in particular, two different models have
been proposed for CCS: RCCS [4,9] and CCSK [19]. Both of them incorporate a
logging mechanism in the operational semantics of CCS that enables the undoing
of computation steps. Moreover, it has been shown that they are isomorphic [10]
since they only differ on the information that they log: while RCCS relies on
some form of memory/monitor, CCSK uses keys. Previous approaches have also
developed true concurrent semantics for reversible versions of CCS. For instance,
it has been shown that CCSK can be associated with reversible bundle event
structures [7,8]. However, we still lack a Petri net model for RCCS processes.
We may exploit some recent results that connect reversible occurrence nets with
reversible event structures [13–15] to indirectly recover a Petri net model from
the reversible bundle event structures defined in [7]. However, we follow a differ-
ent approach, which is somehow more direct :

1. we encode (finite) CCS processes into a generalization of occurrence nets,
namely unravel nets, in the vein of Boudol and Castellani [3];

2. we show that unravel nets can be made causally-consistent reversible by
applying the approach in [13];

3. we finally shows that the reversible unravel nets derived by our encoding are
an interpratation of RCCS terms.

An interesting aspect of the proposed encoding is that it highlights that all
the information needed for reversing an RCCS process is already encoded in
the structure of the net corresponding to the original CCS process, i.e., RCCS
memories are represented by the structure of the net. Concretely, if an RCCS
process R is a derivative of some CCS process P , then the encoding of R is
retrieved from the encoding of P , what changes is the position of the markings.
Consider the CCS process P = a.0 that executes a and then terminates. It can
be encoded as the Petri net on the left in Fig. 1 (the usage of the apparently
redundant places in the postset of a will be made clearer in Fig. 3).

The reversible version of P is R = 〈〉�a.0, where 〈〉 denotes an initially empty
memory. According to RCCS semantics, R evolves to R′ = 〈∗, a, 0〉 · 〈〉 � 0 by
executing a. The memory 〈∗, a, 0〉 · 〈〉 in R′ indicates that it can go back to the
initial process R by undoing a. Note that the net corresponding to P (on the left)
has already all the information needed to reverse the action a; morally, a can
be undone by firing it in the opposite direction (i.e., by consuming tokens from
the postset and producing them in its preset), or equivalently, by performing a



Towards a Truly Concurrent Semantics for Reversible CCS 111

a a

a

a

a

Fig. 1. Encoding of R = 〈〉 � a.0

reversing transition a that does the job, as shown in the net drawn in the middle
of Fig. 1. It should be noted that the net on the right of Fig. 1 corresponds to the
derivative R′. Consequently, the encoding of a CCS term as a net already bears
all the information needed for reversing it; which contrasts with the required
memories of RCCS. This observation gives an almost straightforward true con-
current representation of RCCS processes.

Organization of the Paper. After setting up some notation, we recall CCS and
RCCS (Sect. 2). In Sect. 3 we summarise the basics of Petri nets, unravel nets
and present their reversible counterpart. In Sect. 4, describe the encoding of CCS
into unravel nets and introduce the mapping from RCCS terms into reversible
unravel nets. In the final section we draw some conclusions and discuss future
developments.

Preliminaries. We denote with N the set of natural numbers. Let A be a set,
a multiset of A is a function m : A → N. The set of multisets of A is denoted by
∂A. We assume the usual operations on multisets such as union + and difference
−. We write m ⊆ m′ if m(a) ≤ m′(a) for all a ∈ A. For m ∈ ∂A, we denote with
[[m]] the multiset defined as [[m]](a) = 1 if m(a) > 0 and [[m]](a) = 0 otherwise.
When a multiset m of A is a set, i.e. m = [[m]], we write a ∈ m to denote that
m(a) 
= 0, and often confuse the multiset m with the set {a ∈ A | m(a) 
= 0} or
a subset X ⊆ A with the multiset X(a) = 1 if a ∈ A and X(a) = 0 otherwise.
Furthermore we use the standard set operations like ∩, ∪ or \. The multiset m
such that [[m]] = ∅ is denoted with abuse of notation as ∅.

2 CCS and Reversible CCS

Let A be a set of actions a, b, c, . . ., and A = {a | a ∈ A} the set of their co-
actions. We denote the set of all possible actions with Act = A ∪ A. We write
α, β for the elements of Actτ = Act ∪ {τ}, where τ /∈ Act stands for a silent
action. The syntax of (finite) CCS is reported in Fig. 2. A prefix (or action)
is either an input a, an output a or the silent action τ . A term of the form∑

i∈I αi.Pi represents a process that (non-deterministically) starts by selecting
and performing some action αi and then continues as Pi. We write 0, the idle
process, in lieu of

∑
i∈I αi.Pi when I = ∅ ; similarly, αi.P for a unitary sum in

which I is the singleton {i}. The term P ||Q represents the parallel composition
of the processes P and Q. An action a can be restricted so to be visible only
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(Actions) α ::= a | a | τ

(CCS Processes) P, Q ::=
∑

i∈I αi.Pi | (P ‖ Q) | P\a

Fig. 2. CCS Syntax

∑

i∈I

αi.P
αz−−→ Pz (act)

P
α−→ P ′

P ‖ Q
α−→ P ′ ‖ Q

(par-l)
Q

α−→ Q′

P ‖ Q
α−→ P ‖ Q′ (par-r)

P
α−→ P ′ Q

ᾱ−→ Q′

P ‖ Q
τ−→ P ′ ‖ Q′ (syn)

P
α−→ P ′ α /∈ {a, ā}

P\a
α−→ P ′\a

(r-res)

Fig. 3. CCS semantics

inside process P , written P\a. Restriction is the only binder in CCS: a occurs
bound in P\a.

We write n(P ) for the set of names of a process P , and, respectively, fn(P )
and bn(P ) for the sets of free and bound names. The set P denotes the set of
all CCS processes.

Definition 1 (CCS Semantics). The operational semantics of CCS is defined
as the LTS (P, Actτ ,→) where the transition relation → is the smallest relation
induced by the rules in Fig. 3.

Let us comment on rules of Fig. 3. Rule act transforms an action α into a
label. Rules par-l and par-r permit respectively the left and the right process
of a parallel composition to propagate an action. Rule syn regulates the syn-
crhonization allowing two process in parallel to handshake. Rule hide forbids a
restricted action to be further propagated.

Reversible CCS. Reversible CCS (RCCS) [4,9] is a reversible variant of CCS.
Processes in RCCS are equipped with a memory, in which a process keeps infor-
mation about its past actions. The syntax of RCCS is in Fig. 4, where CCS
processes are defined as in the original formulation. A reversible process is either
a monitored process m � P with m a memory and P a CCS process, the parallel
composition R||S of the reversible processes R and S, and the restriction R\a in
which a is restricted to R. A memory is a (possible empty) stack of events that
encodes the history of actions previously performed by a process; whose top-most
element corresponds to the very last action performed by the monitored process.
Memories can contain three different kinds of events1: partial synchronisations

1 In this paper we use the original RCCS semantics with partial synchronisation.
Later versions, e.g. [9], use communication keys to univocally identify actions.
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(CCS Processes) P, Q ::=
∑

i∈I αi.Pi | (P ‖ Q) | P\a

(RCCS Processes) R, S ::= m � P | (R ‖ S) | R\a

(Memories) m ::= 〈∗, α, Q〉 · m | 〈m, α, Q〉 · m′ | 〈1〉 · m | 〈2〉 · m | 〈〉

Fig. 4. RCCS syntax

〈∗, α,Q〉, full synchronisations 〈m,α,Q〉, and memory splits 〈1〉 and 〈2〉. The
action α and the process Q in a synchronisation (either partial or full) record
the selected action α of a choice and the discarded branches Q. The (technical)
distinction between partial and full synchronisation will be made clear when
describing the semantics or RCCS. Events 〈1〉 and 〈2〉 represent the split of a
process in two parallel ones. The empty memory is represented by 〈〉. Let us note
that in RCCS memories serves also as unique process identifiers.

As for CCS, the only binder in RCCS is restriction (at the level of both CCS
and RCCS processes). We extend functions n, fn and bn to RCCS processes and
memories accordingly. We define M the set of all the possible memories and PR

the set of all RCCS processes.

Definition 2 (RCCS Semantics). The operational semantics of RCCS is
defined as a pair of LTSs on the same set of states and set of labels: a forward
LTS (PR,M × Actτ ,→) and a backward LTS (PR,M × Actτ ,�). Transition
relations → and � are the smallest relations induced by the rules in Fig. 5 (left
and right columns, respectively). Both relations exploit the structural congruence
relation ≡, which is the smallest congruence on RCCS processes containing the
rules in Fig. 6. We define � = → ∪ �.

Let us comment on the forward rules (Fig. 5, left column). Rule r-act allows
a monitored process to perform a forward action. The action goes along with
the memory m of the process. Since at this point we do not know whether the
process will synchronise or not with the context a partial synchronisation event
of the form 〈∗, αz

z ,
∑

i∈I\z αi.Pi〉 is put on top of the memory. The ‘*’ will be
replaced by a memory, say, m1 if the process will eventually synchronise with a
process monitored by m1. Let us note that the discarded process Q is recorded in
the memory. Moreover, along with the prefix we also store its position ‘z’ within
the sum. This piece of information is redundant for RCCS, and indeed was not
present in the original semantics. However, it will be of help when encoding a
RCCS process into a net, and when proving the operational correspondence.
We remark that this simple modification does not intact the original semantics
of RCCS. Rules r-par-l and r-par-r propagate an action through a parallel
composition. Rule r-syn allows two parallel processes to synchronize. To do
so, they have to match both the action α and then the two partial synchro-
nisation of the two processes are updated to two full synchronisation through
the operator ‘@’. Let R be a monitored process and m1 and m2 two memories,
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m �
∑

i∈I

αi.Pi
m:αz−−−→ 〈∗, αz

z,
∑

i∈I\{z}
αi.Pi〉 · m � Pz (r-act)

〈∗, αz
z,

∑

i∈I\{z}
αi.Pi〉 · m � Pz

m:αz

m �
∑

i∈I

αi.Pi (r-act•)

(r-par-l)
R

m:α−−→ R′

R ‖ S
m:α−−→ R′ ‖ S

R
m:α

R′

R ‖ S
m:α

R′ ‖ S
(r-par-l•)

(r-par-r)
S

m:α−−→ S′

R ‖ S
m:α−−→ R ‖ S′

S
m:α

S′

R ‖ S
m:α

R ‖ S′
(r-par-r•)

(r-syn)
R

m1:α−−−→ R′ S
m2:ᾱ−−−→ S′

R ‖ S
m1,m2:τ−−−−−−→ R′

m2@m1 ‖ S′
m1@m2

R
m1:α

R′ S
m2:ᾱ

S′

R ‖ S
m1,m2:τ

R′ ‖ S′
(r-syn•)

(r-res)
R

m:α−−→ R′ α /∈ {a, ā}
R\a

m:α−−→ R′\a

R
m:α

R′ α /∈ {a, ā}
R\a

m:α
R′\a

(r-res•)

(r-equiv)
R ≡ R′ R′ m:α−−→ S′ S′ ≡ S

R
m:α−−→ S

R ≡ R′ R′ m:α
S′ S′ ≡ S

R
m:α

S
(r-equiv•)

Fig. 5. RCCS semantics

then Rm2@m1 stands for the process obtained from R by substituting all occur-
rences of 〈∗, α,Q〉·m1 by 〈m2, α,Q〉·m1. Rule r-res propagates actions through
restriction provided that the action is not on the restricted name. Rule r-equiv
allows one to exploit structural congruence of Fig. 6. Structural rule split allows
a monitored process with a top-level parallel composition to split into a left and
right branch, duplicating the memory. Structural rule res allows one to push
restriction outside monitored processes. Structural rule α allows one to exploit
α-conversion, denoted by =α.

Definition 3 (Initial Process and Coherent process). A RCCS process of
the form 〈〉 � P is called initial. Every process R derived from an initial process
is called coherent process.

3 Petri Nets, Unravel Nets and Reversible Unravel Nets

A Petri net is a tuple N = 〈S, T, F,m〉, where S is a set of places and T is a set
of transitions (with S ∩ T = ∅), F ⊆ (S × T ) ∪ (T × S) is the flow relation, and
m ∈ ∂S is called the initial marking.

Petri nets are depicted as usual: transitions are boxes, places are circles and
the flow relation is depicted using directed arcs. The presence of tokens in places
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(split) m � (P ‖ Q) ≡ 〈2〉 · m � P ‖ 〈1〉 · m � Q

(res) m � P\a ≡ (m � P )\a if a /∈ fn(m)

(α) R ≡ S if R =α S

Fig. 6. RCCS Structural laws

is signaled by a number of ‘•’ in it. The marking represents the state of the
distributed and concurrent system modeled by the net, and it is distributed.

Given a net N = 〈S, T, F,m〉 and x ∈ S∪T , we define the following multisets:
•x = {y | (y, x) ∈ F} and x• = {y | (x, y) ∈ F}. If x is a place then •x
and x• are (multisets) of transitions; analogously, if x ∈ T then •x ∈ ∂S and
x• ∈ ∂S. A transition t ∈ T is enabled at a marking m ∈ ∂S, denoted by
m [t〉 , whenever •t ⊆ m. A transition t enabled at a marking m can fire and
its firing produces the marking m′ = m − •t + t•. The firing of t at a marking
m is denoted by m [t〉m′. We assume that each transition t of a net N is such
that •t 
= ∅, meaning that no transition may fire spontaneously. Given a generic
marking m (not necessarily the initial one), the firing sequence (shortened as fs)
of N = 〈S, T, F,m, �〉 starting at m is defined as: (i) m is a firing sequence (of
length 0), and (ii) if m [t1〉m1 · · · mn−1 [tn〉mn is a firing sequence and mn [t〉m′,
then also m [t1〉m1 · · · mn−1 [tn〉mn [t〉m′ is a firing sequence. The set of firing
sequences of a net N starting at a marking m is denoted by RN

m and it is ranged
over by σ. Given a fs σ = m [t1〉σ′ [tn〉mn, start(σ) is the marking m, lead(σ) is
the marking mn and tail(σ) is the fs σ′ [tn〉mn. Given a net N = 〈S, T, F,m, �〉,
a marking m is reachable iff there exists a fs σ ∈ RN

m such that lead(σ) is
m. The set of reachable markings of N is MN = {lead(σ) | σ ∈ RN

m }. Given
a fs σ = m [t1〉m1 · · · mn−1 [tn〉m′, we write Xσ =

∑n
i=1 ti for the multiset

of transitions associated to fs, which we call an execution of the net and we
write E(N) = {Xσ ∈ ∂T | σ ∈ RN

m } for the set of the executions of N . Observe
that an execution simply says which transitions (and the relative number of
occurrences of them) has been executed, not their (partial) ordering. Given a fs
σ = m [t1〉m1 · · · mn−1 [tn〉mn · · · , with ρσ we denote the sequence t1t2 · · · tn · · · .
Definition 4. A net N = 〈S, T, F,m〉 is said to be safe if each marking m ∈
MN is such that m = [[m]].

The notion of subnet will be handy in the following. A subnet is obtained by
restricting places and transitions, and correspondingly the flow relation and the
initial marking.

Definition 5. Let N = 〈S, T, F,m〉 be a Petri net and let T ′ ⊆ T be a subset
of transitions and S′ = •T ′ ∪ T ′•. Then, the subnet generated by T ′ N |T ′ =
〈S′, T′, F′,m′〉, where F ′ is the restriction of F to S′ and T ′, and m′ is the
multiset on S′ obtained by m restricting to the places in S′.
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Unravel Nets. To define unravel nets we need the notion of causal net. A safe
Petri net N = 〈S, T, F,m〉 is a causal net (CA for short) when ∀s ∈ S. | •s| ≤ 1
and |s•| ≤ 1, F ∗ is acyclic, T ∈ E(N), and ∀s ∈ S •s = ∅ ⇒ m(s) = 1.
Requiring that T ∈ E(N) implies that each transition can be executed and F ∗

acyclic means that dependencies among transitions are settled. A causal net has
no isolated and unmarked places as ∀s ∈ S •s = ∅ ⇒ m(s) = 1.

Definition 6. An unravel net (UN for short) N = 〈S, T, F,m〉 is a safe net
such that for each execution X ∈ E(N) the subnet N |X is a causal net.

Unravel nets describe the dependencies among the transitions in the executions
of a concurrent and distributed device and are similar to flow nets [2,3]. Flow
nets are safe nets where, for each possible firing sequence, each place can be
marked just once. This requirement implies that the subnet obtained by the
transitions executed in the firing sequence is a causal net and also that all the
transitions t are such that •t 
= ∅.

In an UN conflicting pair of transitions t and t′ are those that are never
together in an execution, i.e. ∀X ∈ E(N). {t, t′} 
⊆ X. Given a place s in an
unravel net, if •s contains more than one transition, then the transitions in •s
are in conflict.

It is worthwhile to observe that the classical notion of occurrence net [18,20] is
indeed a particular kind of UN namely one where the conflict relation is inherited
along the transitive closure of the flow relation and it can can be inferred from
the structure of the net itself. A further evidence that unravel nets generalize
occurrence nets is implied also by the fact that flow nets generalize occurrence
nets as well [2].

An unravel net N = 〈S, T, F,m〉 is complete whenever ∀t ∈ T ∃st ∈ S.
•st = {t} ∧ st

• = ∅. Thus in a complete UN the execution of a transition t is
signaled by the marked place st. Given an UN N , it can be turned easily into a
complete one by adding for each transition the suitable place, without changing
the executions of the net, thus we consider complete UNs only. Completeness
comes handy when defining the reversible counterpart of an UN.

Reversible Unravel Nets. The definition of reversible unravel net follows the
one of reversible occurrence net [13] and generalize reversible occurrence nets as
unravel nets generalize occurrence nets.

Definition 7. A reversible unravel net (rUN for short) is a quintuple N =
〈S, T, U, F,m〉 such that

1. U ⊆ T and ∀u ∈ U . ∃! t ∈ T \ U such that •u = t• and u• = •t,
2. ∀t, t′ ∈ T . •t = •t′ ∧ t• = t′• ⇒ t = t′,
3.

⋃
t∈T ( •t ∪ t•) = S, and

4. N |T\U is a complete unravel net and 〈S, T, F,m〉 is safe one.

The transitions in U are the reversing ones; hence, we often say that a reversible
unravel net N is reversible with respect to U . A reversing transition u is associated
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with a unique non-reversing transition t (condition 1) and its effects are intended
to undo t. The second condition ensures that there is an injective mapping
h : U → T which in turn implies that each reversible transition has exactly one
reversing transition. The third requirement guarantees that there are no isolated
conditions and the final one states that the subnet obtained forgetting all the
reversing transitions is indeed an unravel net.

Along the lines of [13], we can prove that the set of reachable markings of
a reversible unravel net is not influenced by performing a reversing transition.
Let N = 〈S, T, U, F,m〉 be an rUN. Then MN = MN |

T\U
. A consequence of

this fact is that each marking can be reached by using just forward events. Let
N = 〈S, T, U, F,m〉 be an rUN and σ be an fs. Then, there exists an fs σ′ such
that Xσ′ ⊆ T \ U and lead(σ) = lead(σ′).

Given an unravel net and a subset of transitions to be reversed, it is straight-
forward to obtain a reversible unravel net.

Proposition 1. Let N = 〈S, T, F,m〉 be a complete unravel net and U ⊆ T the
set of transitions to be reversed. Define

−→
N U = 〈S′, T′, U′, F′,m′〉 where S = S′,

U ′ = U × {r}, T ′ = (T × {f}) ∪ U ′,

F ′ = {(s, (t, f)) | (s, t) ∈ F} ∪ {((t, f), s) | (t, s) ∈ F} ∪
{(s, (t, r)) | (t, s) ∈ F} ∪ {((t, r), s) | (s, t) ∈ F}

and m′ = m. Then
−→

N U is a reversible unravel net.

The construction above simply adds as many events (transitions) as transitions
to be reversed in U . The preset of each added event is the postset of the corre-
sponding event to be reversed, and its postset is the preset of the event to be
reversed. We write

−→
N instead of

−→
N T when N = 〈S, T, F,m〉, i.e., when every

transition is reversible.
In Fig. 7a we show a non-complete unravel net, whose complete version is

in Fig. 7b. The reversible unravel net obtained by reversing every transition is
depicted in Fig. 7c.

a b

c

(a) N

a b

c

(b) N ′

aa b b

cc

(c)
−→

N ′

Fig. 7. An UN N , its complete version N ′ and the associated rUN
−→

N ′
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0

(a) N (0)

b.0

b̂.0

b̂.b

b

(b) N (b.0)

a.b.0 â.b.0

â.a

â.b̂.0

â.b̂.b

a â.b

(c) N (a.b.0)

Fig. 8. Example of nets corresponding to CCS processes

4 CCS Processes as Unravel Nets

We now recall the encoding of CCS terms into Petri nets due to Boudol and
Castellani [3]. We just recall that originally the encoding was on proved terms
instead of plain CCS. The difference between proved terms and CCS is that
somehow in a proved term the labels carry the position of the process who
did the action. Hence, we will use decorated version of labels. For instance, â.b
denotes an event b which past was a. That is, if we want to indicate the event
b of the term a.b we will write â.b. Analogously, labels carry also information
about the syntactical structure of a term, actions corresponding to subterms of
a choice and of a parallel composition are also decorated with an index i that
indicates the subterm that performs the actions. An interesting aspect of this
encoding is that these information is reflected in the name of the places and
the transitions of the nets, which simplifies the formulation of the behavioural
correspondence of a term and its associated net. We write �( ) for the function
that removes decorations for a name, e.g., �(â.b̂.c) = c.

We now are in place to define and comment the encoding of a CCS term into
a net. The encoding is inductively defined on the structure of the CCS process.
For a CCS process P , its encoded net is N (P ) = 〈SP , TP , FP ,mP 〉. The net
corresponding to the inactive process 0, is just a net with just one marked place
and with no transition, that is:

Definition 8. The net N (0) = 〈{0}, ∅, ∅, {0}〉 is the net associated to 0 and it
is called zero.

To ease notation in the constructions we are going to present, we adopt following
conventions: let X ⊆ S ∪ T be a set of places and transitions, we write â.X for
the set {â.x | x ∈ X} containing the decorated versions of places and transitions
in X. Analogously we lift this notation to relations: if R is a binary relation on
(S ∪T ), then α̂.R = {(α̂.x, α̂.y) | (x, y) ∈ R} is a binary relation on (α.S ∪α.T ).

The net N (α.P ) corresponding to a process α.P extends N (P ) with two
extra places α.P and â.α and one transition α. The place α.P stands for the
process that executes the prefix α and follows by P . The place â.α is not in
the original encoding of [3]; we have add it to ensure that the obtained net
is complete, which is essential for the definition of the reversible net. This will
become clearer when commenting the encoding of the parallel composition. It
should be noted that this addition does not interfere with the behaviour of the
net, since all added places are final. Also a new transition, named α is created
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and added to the net, and the flow relation is updated accordingly. Figures 8a,
8b and 8c report the respectively the encoding of the inactive process, of the
process b.0 and a.b.0. Moreover the aforementioned figures systematically show
how the prefixing operator is rendered into Petri nets. As a matter of fact, the
net a.b.0 is built starting from the net corresponding to b.0 by adding the prefix
a. We note that also the label of transitions is affected by appending the label of
the new prefix at the beginning. This is rendered in Fig. 8c where the transition
mimicking the action b is labeled as â.b indicating that an a was done before b.
In what follows we will often omit such representation from figures.

Definition 9. Let P a CCS process and N (P ) = 〈SP , TP , FP ,mP 〉 be the asso-
ciated net. Then N (α.P ) is the net 〈Sα.P , Tα.P , Fα.P ,mα.P 〉 where

Sα.P = {α.P, α̂.α} ∪ α̂.SP

Tα.P = {α} ∪ α̂.Tp

Fα.P = {(α.P, α), (α, α̂.α)} ∪ {(α, α̂.b) | b ∈ m0P } ∪ α̂.FP

mα.P = {α.P}

For a set X of transitions we write ‖iX for {‖ix | x ∈ X}, which straightforwardly
lifts to relations.

The encoding of the parallel goes along the line of the prefixing one. Also in
this case we have to decorate the places (and transitions) with the position of
the term in the syntax tree. To this end, each branch of the parallel is decorated
with ‖i with i being the i-th position. Regarding the transitions, we have to add
all the possible synchronisations among the processes in parallel. This is why,
along with the transitions of the branches (properly decorated with ‖i) we have
to add extra transitions to indicate the possible synchronisation. Naturally a
synchronisation is possible when one label is the co-label of the other transition.
Figure 9a shows the net corresponding to the process a.b ‖ a.c. As we can see, the
encoding builds upon the encoding of a.b and a.c, by (i) adding to all the places
and transitions whether the branch is the left one or the right one and (ii) adding
an extra transition and place for the only possible synchronisation. We add an
extra place (in line with the prefixes) to mark the fact that a synchronisation has
taken place. Let us note that the extra places a, a and τ are used to understand
whether the two prefixes have been executed singularly (e.g., no synchronisation)
or they contributed to do a synchronisation. Suppose, for example, that the net
had not such places, and suppose that we have two tokens in the places ‖0 â.b and
‖1 ˆ̄a.b. Now, how can we understand whether these two tokens are the result of
the firing sequence a,a or they are the result of the τ transition? It is impossible,
but by using the aforementioned extra-places, which are instrumental to tell if
a single prefix has executed, we can distinguish the τ from the firing sequence
a,a and then reverse accordingly.
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‖0 a.b ‖1 a.c

‖0 â.b

a a

τ

b c

‖1 ˆ̄a.c

‖0 â.b̂ ‖1 ˆ̄a.ĉ

a

b

τ ā

c

(a) N (a.b ‖ ā.c)

+0a.b +1a.c

+0â.b +1ˆ̄a.c

+0â.b̂ +1ˆ̄a.ĉ

b c

a a

a

b

ā

c

(b) N (a.b + ā.c)

Fig. 9. Example of nets corresponding to CCS parallel and choice operator. We omit
the trailing 0

Definition 10. Let N (P1) and N (P2) be the net associated to the processes P1

and P2. Then N (P1‖P2) is the net 〈SP1‖P2 , TP1‖P2 , FP1‖P2 ,mP1‖P2〉 where

SP1‖P2 = ‖0SP1 ∪ ‖1SP2 ∪ {s{t,t′} | t ∈ TP1 ∧ t′ ∈ TP2 ∧ �(t) = �(t′)}
TP1‖P2 = ‖0TP1 ∪ ‖1TP2 ∪ {{t, t′} | t ∈ TP1 ∧ t′ ∈ TP2 ∧ �(t) = �(t′)}
FP1‖P2 = ‖0FP1 ∪ ‖1FP2 ∪ {({t, t′}, s{t,t′}) | t ∈ TP1 ∧ t′ ∈ TP2 ∧ �(t) = �(t′)}

∪{(‖is, (t1, t2)) | (s, ti) ∈ FPi
} ∪ {(‖is, (t1, t2)) | (s, ti) ∈ FPi

}
mP0‖P2 = ‖0mP0 ∪ ‖1mP1

The encoding of choice operator is similar to the parallel one. The only
difference is that we do not have to deal with possible synchronisations since the
branches of a choice operator are mutually exclusive. Figure 9b reports the net
corresponding to the process a.b + ā.c. As in the previous examples, the net is
built upon the subnets representing a.b and ā.c.

Definition 11. Let N (Pi) be the net associated to the processes Pi for i ∈ I.
Then +i∈IPi is the net 〈S+i∈IPi

, T+i∈IPi
, F+i∈IPi

,m+i∈IPi
〉 where:

S+i∈IPi = ∪i∈I+iSPi

T+i∈IPi = ∪i∈I+iTPi

F+i∈IPi = {(+ix, +iy) | (x, y) ∈ FPi} ∪ {(+js, +it) | s ∈ mPj ∧ •t ∈ mPi ∧ i �= j}
m+i∈IPi = ∪i∈I+imPi .

We write T a for the set {t ∈ T | nm(�(t)) = a}. The encoding of the hiding
operator simply removes all transitions whose labels corresponds to actions over
the restricted name.
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‖0 a.a

‖1 +0a

‖0 â.a

a

‖1 +0ˆ̄a a

b

τ

τ

‖0 â.â

a

‖1 +1b

‖1 +1b̂

a

a τ

τ

ā b

Fig. 10. A complex example: N (a.a ‖ a + b)

Definition 12. Let P a CCS process and N (P ) = 〈SP , TP , FP ,mP 〉 be the asso-
ciated net. Then N (P \ a) is the net 〈SP\a, TP\a, FP\a,mP\a〉 where

SP\a = \aSP

TP\a = \a(TP \ Ta)
FP\a = {(\as, \at) | (s, t) ∈ FP , t 
∈ T a

P } ∪ {(\at, \as) | (t, s) ∈ FP , t 
∈ T a
P }

mP\a = \amP .

Figure 10 shows a more complex example, the net corresponding to the pro-
cess a.a ‖ a+ b. In this case, the process on the right of the parallel composition
can synchronise with the one on the left one in two different occasions. This is
why there are two different transitions representing the synchronisation. Also,
since the right process of the parallel is a choice operator, it can happen that the
right branch of it is executed, thus interdicting the synchronisation. Let us note
that since the right branch of the parallel operator is a choice one, composed
by two branches, the encoding labels these branches with ‘‖1 +0’ and ‘‖1 +1’ to
indicate respectively the left and right branch of the choice operator, which is
the right branch of a parallel operator. The following proposition is instrumental
for our result.

Proposition 2. The nets defined in Definition 8, Definition 9, Definition 10,
Definition 11 and Definition 12 are complete unravel nets.

We are now in place to define what is the net corresponding to a RCCS process.
So far we have spoken about encoding CCS processes into nets. We remark that
since RCCS is built upon CCS processes, also the encoding of RCCS is built
upon the encoding of CCS. To do so, we first need the notion of ancestor, that
is the initial process from which an RCCS process is derived. Let us note that
since we are considering coherent RCCS processes (see Definition 3), an RCCS
process has always an ancestor. The ancestor ρ(R) of an RCCS process R can
be calculated syntactically from R, since all the information about the past are
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ρ(〈〉 � P ) = P

ρ(〈 , αz
z,

∑

i∈I\{z}
αi.Pi〉 · m � P ) = ρ(m �

∑

i∈I

αi.Pi)

ρ(〈i〉 · m � P ) = 〈i〉 · m � P

ρ(P1‖P2) = ρ(m � P ′
1‖P ′

2) where ρ(Pi) = 〈i〉 · m � P ′
i ∧ i ∈ {1, 2}

ρ(P \ a) = ρ(P ) \ a

Fig. 11. The ancestor of an RCCS process

stored into memories. The only point in which a process has to wait for its sibling
is when a memory fork 〈1〉 or 〈2〉 is met.

Definition 13. Given a coherent RCCS process R, its ancestor ρ(R) is induc-
tively defined as in Fig. 11.

The idea behind the ancestor process is that the encoding of an RCCS process
and of its ancestor should give the same net, what changes is the position where
the markings are placed. And such position is derived by the information stored
into memories. We then define the marking function μ(·) defined inductively as
follows:

μ(〈〉 � P ) = {P} μ(P0‖P1) = ‖0μ(P0) ∪ ‖1μ(P1) μ(P \ a) = \aμ(P1)

μ(〈m′, αi, Q〉 · m � P ) = μ(m � +iα̂.P ) ∪ {st,t′ | t = m � +iα ∧ t = m′ � +i
′α}

μ(〈∗, αi, Q〉 · m � P ) = μ(m � +iα̂.P ) ∪ μ(m � +iα)

We are now in place to define what is the reversible net corresponding to an
RCCS process:

Definition 14. Let R be an RCCS term with ρ(R) = P . Then
−−−→N (R) is the net

〈S, T, F, μ(R)〉 where N (P ) = 〈S, T, F,m〉.

Proposition 3. Let R be an RCCS term with ρ(R) = P . Then
−−−→N (R) is a

reversible unravel net.

In a few words Proposition 3 tells us that the reversible net corresponding to
a coherent RCCS R is that one of its ancestor. The contribution of R to the
construction of its net relies in the markings, that is the computational history
contained in R is what determines the markings. This is rendered in Figs. 12a
and 12b where the two nets are the same since the two processes R1 and R2

shares the same origin. What changes is the where markings are placed, since
R1 and R2 represents different computation from the origin process.

We can now state our main result in terms of bisimulation:
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‖0 a.b ‖1 a.c

‖0 â.b ‖1 ˆ̄a.c

‖0 â.b̂ ‖1 ˆ̄a.ĉ

a a

b c

τ

aa

bb

τ τ ā ā

c c

(a)
−−−−→N (R1)

‖0 a.b ‖1 a.c

‖0 â.b ‖1 ˆ̄a.c

‖0 â.b̂ ‖1 ˆ̄a.ĉ

a a

b c

τ

aa

bb

τ τ ā ā

c c

(b)
−−−−→N (R2)

Fig. 12. Example of nets corresponding to RCCS process R1 = 〈∗, a1,0〉 · 〈1〉 · 〈〉 � b
〈2〉 · 〈〉 � ā.c and R2 = 〈∗, b1,0〉 · 〈m2, a1,0〉 · 〈1〉 · 〈〉 � b
〈m1, a

1,0〉 · 〈2〉 · 〈〉 � c with mi = 〈i〉 · 〈〉

Theorem 1. Let P be a finite CCS process, then 〈〉 � P ∼ −−−→N (P ).

Proof sketch. It is sufficient to show that

R = {(R, 〈S, T, F, μ(R)〉) | ρ(R) = P,
−−−→N (P ) = 〈S, T, F,m〉}

is a bisimulation. Let us note that all the transitions in the generated net have a
unique name, which is the path from the root to the term in the abstract syntax
tree. There is a one to one correspondence between this path and the memory
of a process which can mimic the same action/transition.

5 Conclusions and Future Works

On the line of previous research we have equipped a reversible process calculus
with a non sequential semantics by using the classical encoding of process calculi
into nets. What comes out from the encoding is that the machinery to reverse a
process was already present in the encoding.

Our result relies on unravel nets, that are able to represent or -causality.
The consequence is that the same event may have different pasts. Unravel nets
are naturally related to bundle event structures [11,12], where the dependencies
are represented using bundles, namely finite subsets of conflicting events, and
the bundle relation is usually written as X �→ e. Starting from an unravel net
〈S, T, F,m〉, and considering the transition t ∈ T , the bundles representing the
dependencies are •s �→ t for each s ∈ •t, and the conflict relation can be easily
inferred by the semantic one definable on the unravel net. This result relies on the
fact that in any unravel net, for each place s, the transitions in •s are pairwise
conflicting. The reversible bundle structures add to the bundle relation (defined
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also on the reversing events) a prevention relation, and the intuition behind
this relation is the usual one: some events, possibly depending on the one to
be reversed, are still present and they prevent that event to be reversed. The
problem here is that in an unravel net, differently from occurrence nets, is not so
easy to determine which transitions depend on the happening of a specific one,
thus potentially preventing it from being reversed. An idea would be to consider
all the transitions in s• for each s ∈ t•, but it has to be carefully checked if
this is enough. Thus, which is the proper “reversible bundle event structure”
corresponding to the reversible unravel nets has to be answered, though it is
likely that the conditions to be posed on the prevention relations will be similar
to the ones considered in [7,8]. Once that also this step is done, we will have
the full correspondence between reversible processes calculi and non sequential
models.

References

1. Ulidowski, I., Lanese, I., Schultz, U.P., Ferreira, C. (eds.): RC 2020. LNCS, vol.
12070. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-47361-7

2. Boudol, G.: Flow event structures and flow nets. In: Guessarian, I. (ed.) LITP
1990. LNCS, vol. 469, pp. 62–95. Springer, Heidelberg (1990). https://doi.org/10.
1007/3-540-53479-2 4

3. Boudol, G., Castellani, I.: Flow models of distributed computations: three equiva-
lent semantics for CCS. Inf. Comput. 114(2), 247–314 (1994)

4. Danos, V., Krivine, J.: Reversible communicating systems. In: Gardner, P.,
Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292–307. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-28644-8 19

5. Degano, P., Nicola, R.D., Montanari, U.: A distributed operational semantics for
CCS based on condition/event systems. Acta Informatica 26(1/2), 59–91 (1988)

6. Goltz, U.: CCS and petri nets. In: Guessarian, I. (ed.) LITP 1990. LNCS, vol. 469,
pp. 334–357. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-53479-
2 14

7. Graversen, E., Phillips, I., Yoshida, N.: Event structure semantics of (controlled)
reversible CCS. In: Kari, J., Ulidowski, I. (eds.) RC 2018. LNCS, vol. 11106, pp.
102–122. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99498-7 7

8. Graversen, E., Phillips, I., Yoshida, N.: Event structure semantics of (controlled)
reversible CCS. J. Logic. Algebraic Methods Program. 121, 100686 (2021)

9. Krivine, J.: A verification technique for reversible process algebra. In: Glück, R.,
Yokoyama, T. (eds.) RC 2012. LNCS, vol. 7581, pp. 204–217. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-36315-3 17

10. Lanese, I., Medic, D., Mezzina, C.A.: Static versus dynamic reversibility in CCS.
Acta Informatica 58(1), 1–34 (2021)

11. Langerak, R.: Bundle event structures: a non-interleaving semantics for LOTOS.
In Formal Description Techniques, V. In: Proceedings of the IFIP TC6/WG6.1
FORTE 92, volume C-10 of IFIP Transactions, pp. 331–346. North-Holland (1992)

12. Langerak, R., Brinksma, E., Katoen, J.-P.: Causal ambiguity and partial orders
in event structures. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997.
LNCS, vol. 1243, pp. 317–331. Springer, Heidelberg (1997). https://doi.org/10.
1007/3-540-63141-0 22

https://doi.org/10.1007/978-3-030-47361-7
https://doi.org/10.1007/3-540-53479-2_4
https://doi.org/10.1007/3-540-53479-2_4
https://doi.org/10.1007/978-3-540-28644-8_19
https://doi.org/10.1007/3-540-53479-2_14
https://doi.org/10.1007/3-540-53479-2_14
https://doi.org/10.1007/978-3-319-99498-7_7
https://doi.org/10.1007/978-3-642-36315-3_17
https://doi.org/10.1007/3-540-63141-0_22
https://doi.org/10.1007/3-540-63141-0_22


Towards a Truly Concurrent Semantics for Reversible CCS 125

13. Melgratti, H., Mezzina, C.A., Phillips, I., Pinna, G.M., Ulidowski, I.: Reversible
occurrence nets and causal reversible prime event structures. In: Lanese, I., Rawski,
M. (eds.) RC 2020. LNCS, vol. 12227, pp. 35–53. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-52482-1 2

14. Melgratti, H.C., Mezzina, C.A., Pinna, G.M.: A distributed operational view of
reversible prime event structures. In: Proceedings of the 36rd Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2021. ACM (2021). (to appear)

15. Melgratti, H.C., Mezzina, C.A., Ulidowski, I.: Reversing place transition nets. Log.
Methods Comput. Sci. 16(4), (2020)

16. Mezzina, C.A., et al.: Software and reversible systems: a survey of recent activities.
In: Ulidowski, I., Lanese, I., Schultz, U.P., Ferreira, C. (eds.) RC 2020. LNCS,
vol. 12070, pp. 41–59. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
47361-7 2

17. Milner, R.: A Calculus of Communicating Systems. LNCS 92, 1980 (1980)
18. Nielsen, M., Plotkin, G., Winskel, G.: Petri nets, event structures and domains,

part 1. Theor. Comput. Sci. 13, 85–108 (1981)
19. Phillips, I.C.C., Ulidowski, I.: Reversing algebraic process calculi. J. Log. Algebraic

Methods Program. 73(1–2), 70–96 (2007)
20. Winskel, G.: Event structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)

ACPN 1986. LNCS, vol. 255, pp. 325–392. Springer, Heidelberg (1987). https://
doi.org/10.1007/3-540-17906-2 31

https://doi.org/10.1007/978-3-030-52482-1_2
https://doi.org/10.1007/978-3-030-52482-1_2
https://doi.org/10.1007/978-3-030-47361-7_2
https://doi.org/10.1007/978-3-030-47361-7_2
https://doi.org/10.1007/3-540-17906-2_31
https://doi.org/10.1007/3-540-17906-2_31


Forward-Reverse Observational
Equivalences in CCSK

Ivan Lanese1(B) and Iain Phillips2

1 Focus Team, University of Bologna/INRIA, Bologna, Italy
ivan.lanese@unibo.it

2 Imperial College London, London, England

Abstract. In the context of CCSK, a reversible extension of CCS, we
study observational equivalences that distinguish forward moves from
backward ones. We present a refinement of the notion of forward-reverse
bisimilarity and show that it coincides with a notion of forward-reverse
barbed congruence. We also show a set of sound axioms allowing one to
reason equationally on process equivalences.
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1 Introduction

Building concurrent systems is difficult and error-prone, since one has to reason
on a large number of possible interleavings; yet concurrency is a must in current
systems, such as the Internet, the Cloud, or parallel processors.

Reversible computing, allowing a system to execute both in the standard,
forward direction, as well as backwards, recovering past states, has a number
of interesting applications, including low-energy computing [18], simulation [6],
biological modelling [5,33] and program debugging [11,21,24]. Many of these
applications involve concurrent systems. Thus, a number of works have pro-
posed reversible extensions of concurrent formalisms, including CCS [9,30], π-
calculus [8], higher-order π [20], Petri nets [25], and the Erlang [22] programming
language. Given the relevance of analysis techniques for concurrent systems, also
a number of analysis techniques have been considered, e.g., following the session
types approach [3,7,27]. Notions of observational equivalence have also been
used in a few works, such as [1,2,26,30], yet the question of which notions of
observational equivalence are suitable for reversible processes, and how they can
be exploited to actually reason about them, has seldom been considered.

In this paper we tackle this issue. In particular, we consider a setting where
reversibility is observable, that is forward actions are observationally distin-
guishable from their undo. This means that we are interested in systems where
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reversibility is relevant, e.g., recovery protocols, reversible debuggers, and so on.
If instead one considers reversibility as an implementation detail only, then also
more abstract notions where forward moves can be matched by backward moves
and vice versa could be of interest. We leave this analysis for future work. Also,
we consider causal-consistent reversibility [9], which is currently the most used
notion of reversibility for concurrent systems. It states that any action can be
undone, provided that its consequences, if any, are undone beforehand. Among
its properties, it ensures that every reachable state is also reachable by forward
computation. This contrasts with other approaches, used, e.g., in biological mod-
elling [33], where causes can be undone without undoing their consequences, thus
leading to new states. This setting will be left for future work as well. Finally,
we will focus on strong equivalences, where internal steps need to be matched
by other internal steps. Weak equivalences, which abstract away from internal
steps, are of course also relevant, but before tackling them the strong setting
needs to be well understood, hence we leave also this analysis for future work.

In the setting of causal-consistent reversibility, we define and motivate a
notion of (strong) revised forward-reverse bisimilarity, also comparing it with
alternative formulations (Sect. 4). We support our proposal with two contri-
butions: (i) we show that it admits an equivalent formulation in terms of
forward-reverse barbed congruence (Sect. 5); (ii) we prove sound a number of
axioms which can be used to reason equationally about reversible systems
(Theorem 4.10).

From a technical point of view, we work on CCSK, which is the instance on
CCS of a general approach to reverse process calculi presented in [30]. The rea-
son for this design choice is that CCSK history representation as keys ensures,
differently from alternative approaches such as the one of RCCS [9], no redun-
dancy in process representation, and this is fundamental to have simple axioms.
We will come back to this point in the related work (Sect. 6), where we will also
contrast our proposal with other proposals in the literature.

For space reasons, most proofs are available only in the companion technical
report [23].

2 CCSK

As anticipated in the Introduction, we base our work on CCSK as defined in [30],
with a minor change that we will discuss in Remark 4.2. We recall below the
syntax and semantics of CCSK, referring to [30] for more details. CCSK is built
on top of CCS, adding a mechanism of keys to keep track of which part of the
process has already been executed. Hence, during forward computation, executed
actions are not discarded, but just labelled as already been executed.

We define the actions of CCS, representing communications over named chan-
nels, much as usual. Let A be a set of names, ranged over by a, b, . . .. Let a be
the complement of a ∈ A, let A = {a : a ∈ A}, and let Act be the disjoint
union of A, A and {τ}. Also, let a = a for a ∈ A ∪ A. Standard prefixes, ranged
over by α, β, . . ., are drawn from Act. Intuitively, names represent input actions,
co-names represent output actions, and τ is an internal synchronisation.
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CCS processes, which we shall also call standard processes, are given by:

P,Q := 0 | α.P | P + Q | P |Q | (νa)P

Intuitively, 0 is the inactive process, α.P is a process that performs action α and
continues as P , P + Q is nondeterministic choice, P |Q is parallel composition
and restriction (νa)P binds channel a (both occurrences in input actions and
in output actions) inside P . We do not consider renaming, adding it will not
change the results of the paper. A channel is bound if inside the scope of a
restriction operator, free otherwise. Function fn(P ) computes the set of free
names in process P .

CCSK adds to CCS the possibility of going backwards. In order to remember
which input interacted with which output while going forward, at each forward
step fresh keys are created, and the same key is used to label an input and the
corresponding output.

We denote the set of keys by Keys, ranged over by m,n, k, . . .. Prefixes,
ranged over by π, are of the form α[m] or α. The former denotes that α has
already been executed, the latter that it has not.

CCSK processes are given by:

X,Y := 0 | π.X | X + Y | X |Y | (νa)X

hence they are like CCS processes but for the fact that some prefixes may be
labelled with a key. In the following, we will drop trailing 0s.

We use predicate std(X) to mean that X is standard, that is none of its
actions has been executed, hence it has no keys. We assume function toStd(X)
that takes a CCSK process X and gives back the standard process obtained by
removing from X all keys. Finally, we consider function keys(X) which computes
the set of keys in CCSK process X.

In a CCSK process we distinguish free from bound keys.

Definition 2.1 (Free and Bound Keys). A key k is bound in a process X
iff it occurs either twice, attached to complementary prefixes, or once, attached
to a τ prefix. A key k is free if it occurs once, attached to a non-τ prefix.

Intuitively, all the occurrences of a bound key are inside the process, while a
free key has another occurrence in the environment.

Figure 1 shows the forward rules of CCSK. Backward rules in Fig. 2 are
obtained from forward rules by reversing the direction of transitions.

Rule (TOP) allows a prefix to execute. The rule generates a key m. Fresh-
ness of m is guaranteed by the side conditions of the other rules. Rule (PRE-
FIX) states that an executed prefix does not block execution. The two rules for
(CHOICE) and the two for (PAR) allow processes to execute inside a choice or a
parallel composition. The side condition of rule (CHOICE) ensures that at most
one branch can execute. Rule (SYNCH) allows two complementary actions to
synchronise producing a τ . The key of the two actions needs to be the same.
Rule (RES) allows an action which does not involve the restricted channel to
propagate through restriction.



Forward-Reverse Observational Equivalences in CCSK 129

(TOP)
std(X)

α.X
α[m]−−−→f α[m].X

(PREFIX)
X

β[n]−−→f X ′

α[m].X
β[n]−−→f α[m].X ′

m �= n

(CHOICE)
X

α[m]−−−→f X ′ std(Y )

X + Y
α[m]−−−→f X ′ + Y

Y
α[m]−−−→f Y ′ std(X)

X + Y
α[m]−−−→f X + Y ′

(PAR)
X

α[m]−−−→f X ′ m /∈ keys(Y )

X | Y α[m]−−−→f X ′ | Y
Y

α[m]−−−→f Y ′ m /∈ keys(X)

X | Y α[m]−−−→f X | Y ′

(SYNCH)
X

α[m]−−−→f X ′ Y
α[m]−−−→f Y ′

X | Y τ [m]−−−→f X ′ | Y ′
(α �= τ)

(RES)
X

α[m]−−−→f X ′

(νa)X
α[m]−−−→f (νa)X ′

α /∈ {a, a}

Fig. 1. Forward SOS rules for CCSK

The forward semantics of a CCSK process is the smallest relation −→f closed
under the rules in Fig. 1. The backward semantics of a CCSK process is the
smallest relation −→r closed under the rules in Fig. 2. The semantics is the union
of the two relations. We shall let μ range over transition labels α[m].

As standard in reversible computing (see, e.g., [30] or the notion of coherent
process in [9]), all the developments consider only processes reachable from a
standard process.

Definition 2.2 (Reachable Process). A process X is reachable iff there
exists a standard process P and a finite sequence of transitions from P to X.

We recall here a main result of reversible computing, useful for our develop-
ment: the Loop Lemma states that any action can be undone, and any undone
action can be redone.

Lemma 2.3 (Loop Lemma [30, Prop. 5.1]). X
α[m]−−−→f X ′ iff X ′ α[m]−−−→r X.

3 Syntactic Characterisation of Reachable Processes

In this paper we discuss relevant notions of observational equivalence for CCSK.
However, since, as described above, only reachable processes are of interest, we
need to understand the structure of reachable processes. Hence, as a preliminary
step, we propose in this section a sound and complete syntactic characterisation
of reachable processes. This result is interesting in itself, since a similar prelim-
inary step is needed for most of the reasonings on a calculus such as CCSK.
Notably, many works in the literature study properties that reachable processes
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Fig. 2. Reverse SOS rules for CCSK

satisfy, but they do not provide a complete characterisation, see, e.g., [20, Lemma
3]. We are not aware of any such characterisation for reversible CCS.

A main item in the characterisation of reachability is that keys should define
a partial order, thus given a process X we define a partial order ≤X on keys(X)
as follows.

Definition 3.1 (Partial Order on Keys). We first define a function ord(·)
that given a process computes a set of relations among its keys. The definition
is by structural induction on X.

ord(0) = ∅ ord(α.X) = ord(X)
ord(X + Y ) = ord(X) ∪ ord(Y ) ord(X |Y ) = ord(X) ∪ ord(Y )
ord(α[n].X) = ord(X) ∪ {n < k|k ∈ keys(X)}
ord((νa)X) = ord(X)

The partial order ≤X on keys(X) is the reflexive and transitive closure of
ord(X).

The definition above captures structural dependencies on keys. Combined
with the property that prefixes that interact have the same key (see rule
(SYNCH) in Fig. 1), it captures a form of Lamport’s happened-before rela-
tion [17] adapted to synchronous communication.

In order to characterise reachable processes we need to define contexts.

Definition 3.2 (Context). A CCSK context is a process with a hole, as gen-
erated by the grammar below:

C := • | π.C | C + Y | X + C | C |Y | X |C | (νa)C

We denote with C[X] the process obtained by replacing • with X inside C.
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We can now present our characterisation of reachable processes.

Definition 3.3 (Well-Formed Process). A process X is well-formed if all
the following conditions hold:

1. if X = C[α.Y ] then std(Y ), that is standard prefixes have standard continu-
ations;

2. if X = C[Y +Y ′] then std(Y )∨std(Y ′), that is in choices at most one branch
is non-standard;

3. each key occurs at most twice;
4. if a key occurs twice, then the two occurrences are attached to complementary

prefixes;
5. if a key n occurs twice, then there are C, Y , Y ′ such that X = C[Y |Y ′], and

both Y and Y ′ contain exactly one occurrence of n;
6. if X = C[(νa)Y ] and a key n occurs in a prefix on channel a inside Y , then

n occurs twice inside Y ;
7. ≤X is acyclic.

Thanks to conditions 3 and 4 each key is either free or bound.
Each well-formed process X is reachable from toStd(X).

Lemma 3.4. Let X be a well-formed process. Let k1, . . . , kn be a fixed total order

on keys(X) compatible with ≤X . Then there is a computation toStd(X)
α[k1]−−−→f

. . .
α[kn]−−−→f X.

The classes of reachable and well-formed processes coincide.

Proposition 3.5 (Reachable Coincides with Well-Formed). X is reach-
able iff it is well-formed.

The results above, enabled by the syntactic characterisation of reachable
processes, are needed for our development, but can also help in general in the
study of the theory of CCSK. Indeed, we can for instance derive as a corollary
the Parabolic Lemma [30, Lemma 5.12], which can be rephrased as follows.

Corollary 3.6 (Parabolic Lemma [30, Lemma 5.12]). Each reachable process
is forward reachable.

Proof. Thanks to Proposition 3.5 a reachable process is also well-formed. Hence,
it is forward reachable thanks to Lemma 3.4.

4 Revised Forward-Reverse Bisimilarity

In this section we move to the main aim of this work, namely the definition of
a strong observational equivalence for CCSK able to distinguish forward steps
from backward ones. We consider as starting point for our analysis the notion
of forward-reverse bisimulation introduced in the original CCSK paper [30, Def-
inition 6.5], and rephrased below.
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Definition 4.1 (Forward-Reverse Bisimulation). A symmetric relation R
is a forward-reverse bisimulation if whenever X R Y :

1. keys(X) = keys(Y );
2. if X

μ−→f X ′ then there is Y ′ such that Y
μ−→f Y ′ and X ′ R Y ′;

3. if X
μ−→r X ′ then there is Y ′ such that Y

μ−→r Y ′ and X ′ R Y ′.

We first notice that clause 1 is redundant. Indeed, given a reachable process
X we know that there is a computation toStd(X) −→∗

f X. Thanks to the Loop
Lemma, we also have a computation X −→∗

r toStd(X), whose labels exhibit all
the keys in keys(X). Thus, any process Y related to X by the bisimulation
should match these labels because of clause 3, hence it should have at least the
same keys. By symmetry, it should actually have exactly the same keys.

However, we claim that requiring to match all keys in the labels, as done
implicitly by clause 3, is too demanding. The intuition under this claim is that
keys are only a technical means to:

1. distinguishing executed from non-executed prefixes, and the choice of the key
is irrelevant for this purpose;

2. coupling together prefixes that synchronised (see rule (SYNCH) in Fig. 1):
in this case the choice of the key is irrelevant as well, but it is important
whether two occurrences refer to the same key (highlighting a performed
synchronisation) or to different keys (denoting independent actions).

As for item 2, keys can be safely α-renamed provided that all the occurrences
of a given key are renamed in the same way. Now, keys are linear in the sense
of [15], that is each key can occur at most twice because of condition 3 in the
characterisation of reachable processes (Definition 3.3, see also Proposition 3.5).
One can think of an occurrence attached to a τ prefix as two occurrences attached
to complementary actions. Now, a key k is bound (cfr. Definition 2.1) if both
its occurrences are in the considered process, hence k can be safely α-renamed
without affecting the context. For instance, we want to equate a[n] | a[n] and
a[m] | a[m]. If instead a key k is free in a process, then the other occurrence
can appear in the context: here α-equivalence needs to be disallowed to ensure
compositionality. Indeed, we cannot equate a[n] and a[m], since in a context such
as · | a[n] the former needs to synchronise to go back, while the latter does not.

We decided to embed α-conversion of bound keys in the semantics. Given
our choice of not observing bound keys, this is needed for compositionality rea-
sons. Indeed, otherwise one could distinguish processes such as a[n] | a[n] | b and
a[m] | a[m] | b since the former can take a forward transition with label b[m],
while the latter can not, due to the side condition of rule (PAR). Thanks to
α-conversion, the two processes can both take a forward transition with label
b[m], provided that the latter first α-converts m to a different key.

We will come back to this issue in the discussion after Proposition 4.9, show-
ing that dropping α-conversion of bound keys would break congruence of bisim-
ilarity. Note that such an issue does not occur in [15], since they never create
new linear prefixes, while we do create new keys.
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In the light of the discussion above, we extend the semantics of CCSK with
a structural equivalence, defined as the smallest equivalence relation (that is,
reflexive, symmetric, and transitive relation) closed under the following rule:

X ≡ X[n/m] m bound in X,n /∈ keys(X)

where [n/m] denotes the substitution of all the occurrences of key m with key n.
Notice that structural equivalence preserves well-formedness (this can be checked
by inspection of the conditions in Definition 3.3), but it is not a congruence, since,
e.g., τ [n] ≡ τ [m] but τ [n].τ [n] 	≡ τ [n].τ [m]. To avoid this issue we would need
explicit binders for keys, but we prefer to avoid them to stay as close as possible
to the original CCSK.

We also need to introduce rules enabling the use of structural equivalence in
the derivation of transitions:

(EQUIV)
Y ≡ X X

α[m]−−−→f X ′ X ′ ≡ Y ′

Y
α[m]−−−→f Y ′

(BK-EQUIV)
Y ≡ X X

α[m]−−−→r X ′ X ′ ≡ Y ′

Y
α[m]−−−→r Y ′

Due to the problem above, these rules can only be used as last rules in a
derivation.

Remark 4.2. The introduction of structural equivalence and of the related rules
is the only difference between our semantics of CCSK and the one in [30]. Note
that with a little abuse of notation from now on arrows

μ−→f ,
μ−→r and

μ−→ refer
to the semantics which includes structural equivalence.

Notice that the change to the semantics has no impact on well-formedness
and on Proposition 3.5.

Thanks to structural equivalence we can show that keys attached to τ labels
are irrelevant.

Proposition 4.3. For each X
τ [m]−−−→ X ′ and n not free in X we have X

τ [n]−−→ X ′′

with X ′′ ≡ X ′.

Proof. The proof is by induction on the derivation of X
τ [m]−−−→ X ′. The induction

is trivial if n /∈ keys(X). If n is bound then one can apply rule (EQUIV) or
(BK-EQUIV) to first convert n to any fresh key. 
�

Actually, by applying rule (EQUIV) or (BK-EQUIV) one can also obtain
X ′′ = X ′.

Given the result above, one could even use just label τ instead of τ [m]. We
prefer however not to do it so that all the labels feature a key. This is handy
when writing rules such as (RES).

We can revise the notion of forward-reverse bisimulation (Definition 4.1) as
follows:
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Definition 4.4 (Revised Forward-Reverse Bisimulation). A symmetric
relation R is a revised forward-reverse bisimulation (revised FR bisimulation
for short) if whenever X R Y :

1. if X
μ−→f X ′ then there is Y ′ such that Y

μ−→f Y ′ and X ′ R Y ′;
2. if X

μ−→r X ′ then there is Y ′ such that Y
μ−→r Y ′ and X ′ R Y ′.

The revised forward-reverse (FR) bisimilarity, denoted as ∼b, is the largest
revised FR bisimulation.

For uniformity, such a definition requires to match bound keys in labels,
however thanks to structural equivalence and Proposition 4.3 this does not allow
one to distinguish processes that only differ on bound keys. Indeed, structural
equivalence is a bisimulation.

Proposition 4.5 (Structural Equivalence is a Bisimulation). X ≡ Y
implies X ∼b Y .

Proof. The thesis follows by coinduction, using Proposition 4.3 to match labels
whose keys have been α-converted (and, as such, are bound, and can only be
attached to τ labels). 
�

We now use revised FR bisimilarity to show on an example that, as expected,
bound keys are not observable.

Example 4.6. We show that a[n] | a[n] ∼b a[m] | a[m]. To this end we need to
show that the relation:

R = {(a[n] | a[n], a[m] | a[m])} ∪ Id

where Id is the identity relation on reachable processes is a bisimulation.
This is trivial since the only possible transition is a backward τ [k] for any

key k (using rule (BK-EQUIV)), leading to a | a on both the sides. Any further
transition can be matched so to remain in the identity relation Id. Notice that
one can obtain the same result directly from Proposition 4.5.

We now show some properties of revised FR bisimilarity. They will also be
useful in the next section, to prove a characterisation of revised FR bisimilarity
as a barbed congruence.

First, two equivalent processes are either both standard or both non-
standard.

Lemma 4.7. If X ∼b Y then std(X) iff std(Y ).

Proof. A process is non-standard iff it can perform backward transitions. The
thesis follows. 
�

Also, equivalent processes have the same set of free keys.

Lemma 4.8. If X ∼b Y and key n is free in X then key n is free in Y as well.
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X | Y = Y | X (PAR-COMM)

X | (Y | Z) = (X | Y ) | Z (PAR-ASS)

X | 0 = X (PAR-UNIT)

X + Y = Y + X (CH-COMM)

X + (Y + Z) = (X + Y ) + X (CH-ASS)

X + 0 = X (CH-UNIT)

X + P = X iff toStd(X) = P (CH-IDEM)

(νa)(νb)X = (νb)(νa)X (RES-COMM)

(νa)(X | Y ) = X | (νa)Y iff a /∈ fn(X) (RES-PAR)

(νa)(X + Y ) = ((νa)X) + ((νa)Y ) (RES-CH)

(νa)π.X = π.(νa)X iff a /∈ fn(π) (RES-PREF)

(νa)0 = 0 (RES-DROP)

(νa)α.P = 0 iff a ∈ fn(α) (RES-LOCK)

(νa)X = (νb)X[b/a] iff b /∈ fn(X) (RES-ALPH)

Fig. 3. CCSK axiomatisation

We now show that revised FR bisimilarity is a congruence.

Proposition 4.9 (Revised FR Bisimilarity is a Congruence). X ∼b Y
implies C[X] ∼b C[Y ] for each C such that C[X] and C[Y ] are both reachable.

Note that α-conversion of bound keys is needed to prove congruence w.r.t.
parallel composition. Otherwise, processes a[n] | a[n] and a[m] | a[m] would be
distinguished by a parallel context performing a transition creating a new key
m, since this would be allowed only in the first case. Thanks to α-conversion, this
is possible in both the cases, by first α-converting m in a[m] | a[m] to a different
key.

We now study the axiomatisation of revised FR bisimilarity. While we are
not able to provide a sound and complete axiomatisation, we can prove sound
a number of relevant axioms. These allow one to reason equationally on CCSK
processes.

We consider the list of axioms in Fig. 3. Most axioms are standard CCS
axioms [28], extended to deal with non-standard prefixes. There are however a
few interesting differences. E.g., we notice the non-standard axiom (CH-IDEM).
Indeed, the left-hand side of the standard axiom X + X = X is not reachable
if X is not standard, and X + X = X is an instance of (CH-IDEM) if X is
standard. We also note that in rule (RES-LOCK) replacing α with π would be
useless since the resulting process would not be reachable.

Theorem 4.10. The axioms in Fig. 3 are sound w.r.t. revised FR bisimilarity.
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(νa)(a.P | a.Q) = τ.(νa)(P | Q) (RES-EXP)

(νa)(a[n].X | a[n].Y ) = τ [n].(νa)(X | Y ) (RES-EXP-BK)

τ | τ = τ.τ (TAU-EXP)

τ [n] | τ = τ [n].τ (TAU-EXP-BF)

τ [n] | τ [m] = τ [n].τ [m] (TAU-EXP-BK)

Fig. 4. Sample instances of the Expansion Law

Proof. For each axiom, instances of the axiom form a bisimulation, hence the
thesis follows. 
�

Probably the most relevant axiom in CCS theory is the Expansion Law [28],
which can be written as follows:

P1 |P2 =
∑

{α.(P ′
1 |P2) : P1

α−→ P ′
1} +

∑
{α.(P1 |P ′

2) : P2
α−→ P ′

2} +
∑

{τ.(P ′
1 |P ′

2) : P1
α−→ P ′

1, P2
α−→ P ′

2}

where
∑

is n-ary choice.
It is well-known [30] that the Expansion Law does not hold for reversible

calculi, and indeed we can falsify it on an example using revised FR bisimilarity.

Example 4.11. We show here that a | b 	∼b a.b+b.a. Indeed, a | b can take forward
actions a[n], b[m], and then undo a[n], while a.b + b.a cannot. Notably, also
a | a 	∼b a.a, since a | a can take forward actions a[n], a[m], and then undo a[n],
while a.a cannot.

This shows that classical CCS bisimilarity [28] is not as distinguishing, on
CCS processes, as revised FR bisimilarity. Indeed, as expected, revised FR bisim-
ilarity is strictly finer.

Proposition 4.12. P ∼b Q implies P ∼ Q where ∼ is classical CCS bisimilar-
ity [28], while the opposite implication does not hold.

Proof. Classical CCS bisimilarity corresponds to clause 1 in the definition
of revised FR bisimilarity. The failure of the other inclusion follows from
Example 4.11. 
�

We show below that even if the full Expansion Law does not hold, a few
instances indeed hold.

Proposition 4.13. The instances of the Expansion Law in Fig. 4 are sound
w.r.t. revised FR bisimilarity.

Proof. Instances of axioms (RES-EXP) and (RES-EXP-BK) form a revised FR
bisimulation. The last three axioms form a revised FR bisimulation as well. 
�
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5 Forward-Reverse Barbed Congruence

In order to further justify the definition of revised FR bisimilarity, we show it
to be equivalent to a form of forward-reverse barbed congruence.

As classically [14,34], an (open) barbed congruence is obtained by defining
a set of basic observables, called barbs, and then taking the smallest equivalence
on processes closed under contexts and under reduction requiring equivalent
processes to have the same barbs. In our setting of course reductions can be
both forwards and backwards. We start by defining barbs.

Definition 5.1 (Barbs). A process X has a forward output barb at a, written

↓a, iff X
a[n]−−→f X ′ for some n and X ′. A process X has a backward (input or

output) barb at α[n] (α 	= τ), written ↑α[n], iff X
α[n]−−→r X ′ for some X ′.

We notice some asymmetry in the definition. The issue here is that we want
to distinguish processes such as a[n] and b[n] (or a[n] and b[n]), but there is
no context undoing any of the prefixes such that both the compositions are
reachable. Hence, we need (backward) barbs distinguishing them. This issue does
not occur in forward transitions. Indeed, allowing one to observe also forward
input barbs or keys in forward barbs would not change the observational power.

We can now formalise the notion of forward-reverse barbed congruence.

Definition 5.2 (Forward-Reverse Barbed Congruence). A symmetric
relation R is a forward-reverse (FR) barbed bisimulation if whenever X R Y :

– X ↓a implies Y ↓a;
– X ↑α[n] implies Y ↑α[n];

– if X
τ [n]−−→f X ′ then there is Y ′ such that Y

τ [n]−−→f Y ′ and X ′ R Y ′;

– if X
τ [n]−−→r X ′ then there is Y ′ such that Y

τ [n]−−→r Y ′ and X ′ R Y ′.

Forward-reverse (FR) barbed bisimilarity, denoted as ∼bb, is the largest FR
barbed bisimulation. A forward-reverse (FR) barbed congruence is a FR barbed
bisimulation such that X R Y implies C[X] R C[Y ] for each C such that C[X]
and C[Y ] are both reachable. We denote as ∼c the largest FR barbed congruence.

As discussed above, we sometimes need barbs to require to match free keys,
e.g., to distinguish a[n] from b[n]. Indeed, in this case there exists no context
able to force the match such that both the compositions are reachable. Such a
context would need to include occurrences of both a[n] and b[n], but then any
composition involving such a context would not be reachable.

However, when such a context exists, processes which differ for free keys only
can be distinguished without the need for barbs, as shown by the example below.

Example 5.3. We show that a[n] 	∼c a[m] without relying on barbs. Indeed, if
we put the two processes in the context • | a[n] they behave differently:

a[n] | a[n]
τ [n]−−→r a | a while a[m] | a[n]

cannot perform any backward τ move. We remark that both the processes above
are reachable.
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However, bound keys are not observable, as shown in Example 4.6 for revised
FR bisimilarity. We will show that this holds as well for FR barbed congru-
ence, since actually revised FR bisimilarity coincides with FR barbed congru-
ence (Corollary 5.12). This can be seen as a justification of our choice of revised
FR bisimilarity. Revised FR bisimilarity, as usual for bisimilarities, is easier to
work with since it has no universal quantification over contexts. For instance, it
allowed us to easily prove the equivalence in Example 4.6.

First, revised FR barbed bisimilarity implies FR barbed congruence.

Theorem 5.4. X ∼b Y implies X ∼c Y .

Proof. It is trivial to show that ∼b is a FR barbed bisimulation. Congruence
follows from Proposition 4.9. 
�

We now move towards the proof of the other inclusion in the equivalence
between revised FR bisimilarity and FR barbed congruence.

To this end, we introduce below the notion of fresh process.

Definition 5.5 (Fresh Process). Given a process X, the corresponding fresh
process toFresh(X) is inductively defined as follows:

toFresh(0) = 0
toFresh(π.X) = fp

i .0 + π.(fs
i .0 + X)

toFresh(X + Y ) = toFresh(X) + toFresh(Y )
toFresh(X |Y ) = toFresh(X) | toFresh(Y )
toFresh((νa)X) = (νa)toFresh(X)

where, in the clause for prefix, i is the number of prefixes before π in a pre-visit
of the syntax tree of X. We call fp

i (where p stands for previous) and fs
i (where s

stands for subsequent) fresh names and the corresponding prefixes fresh prefixes.
A process is fresh if it is obtained by applying function toFresh(·) to some

reachable process X.

Note that all fresh names are pairwise different. Indeed the use of a pre-visit
of the syntax tree is just a way to generate fixed, pairwise different fresh names
for each prefix; any other algorithm with the same property would be fine as
well.

Example 5.6 (Function toFresh(·)). Consider the process X = a.b.0 | a.b.0. We
have toFresh(X) = fp

0 .0+ a.(fs
0 .0+ fp

1 .0+ b.(fs
1 .0+ 0)) | fp

2 .0+ a.(fs
2 .0+ fp

3 .0+
b.(fs

3 .0+0)). Note that, e.g., executing a will disable the forward barb at fp
0 and

enable the one at fs
0 .

Fresh processes are closed under reductions not involving fresh names.

Lemma 5.7. X
μ−→ Y iff toFresh(X)

μ−→ toFresh(Y ) and μ does not contain
a fresh name.
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Fresh processes obtained from reachable processes are reachable.

Lemma 5.8. Let X be a reachable process. Then toFresh(X) is reachable.

Proof. By inspection of the conditions in Definition 3.3. 
�
Intuitively, in a fresh process one is always able to distinguish which prefix

of the original process has been done or undone by checking which barbs have
been enabled or disabled. Indeed, using the names in the definition, performing
the i-th prefix enables the barb at fs

i and disables the one at fp
i , while undoing

π does the opposite.
This is formalised by the following lemma.

Lemma 5.9. If W is fresh, W
μ′
−→ W ′ and W

μ′′
−−→ W ′′, and W ′ and W ′′ have

the same barbs then there exists a substitution σ on keys such that μ′ = μ′′σ and
W ′ = W ′′σ. The substitution is the identity if the transition is backwards.

Next proposition shows that to check barbed congruence it is enough to
consider contexts which are parallel compositions with fresh processes.

Proposition 5.10. The relation

R = {(C[X], C[Y ]) | W |X ∼bb W |Y ∀ W fresh, C context
such that C[X], C[Y ],W |X,W |Y are all reachable}

is a barbed congruence.

We can now show that FR barbed congruence implies revised FR bisimilarity,
hence the two notions coincide.

Theorem 5.11. The relation R = {(X,Y ) | X ∼c Y } is a revised FR
bisimulation.

Corollary 5.12. ∼c and ∼b coincide.

Proof. By composing Theorem 5.4 and Theorem 5.11. 
�

6 Related Work

In [19], CCSK has been proved equivalent to RCCS [9], the first reversible process
calculus, thus, in principle, our results apply to RCCS as well. However, the
mechanism of memories used in RCCS introduces much more redundancy than
the key mechanism used in CCSK, hence a direct application of our results to
RCCS is not easy. Let us take as example [9, page 299] the process

R = 〈〈2〉, a, 0〉 · 〈1〉 � 0 | 〈〈1〉, a, 0〉 · 〈2〉 � 0

obtained by performing the synchronisation from 〈〉 � (a.0 | a.0). To apply com-
mutativity of parallel composition to R we need not only to swap the two sub-
processes, but also to exchange all the occurrences of 1 with 2 in the memories,
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otherwise the obtained process would not be reachable. This particular issue
has been solved in successive works on RCCS [16], yet similar issues remain
since, e.g., the history of a thread is duplicated every time a process forks, hence
the application of an axiom may impact many subprocesses which are possibly
syntactically far away. In such a setting it is not clear how to write axioms.

We now discuss various works which focus on observational equivalences with
backward transitions. The seminal paper [10] discusses bisimulations with reverse
transitions much before causal-consistent reversibility and CCSK or RCCS were
introduced, yet it briefly anticipates the notion of causal-consistent reversibility
but discards it in favour of a total order of actions. In this case the bisimilarity
coincides with CCS bisimilarity. A total order of actions is also considered in
in [26]. They study testing equivalences in a CCS with rollback and focus on
finding easier characterisations of testing semantics. As such, their results are
not directly related to ours.

It is shown in [29] that the process graphs of CCSK processes are so-called
prime graphs, which correspond to prime event structures. Due to the keys these
structures are ‘non-repeating’, i.e. no two events in a configuration can have the
same label. It is further shown [29, Theorem 5.4] that FR bisimilarity corresponds
to hereditary history-preserving bisimilarity [4,12] on non-repeating prime event
structures.

Equivalences for reversible CCS are also studied in [1,2] via encodings in con-
figuration structures. Their main aim is to show that the induced equivalence on
CCS coincides with hereditary history-preserving bisimilarity. Differently from
us, they work on RCCS instead of CCSK, and, unsurprisingly given the dis-
cussion above, they do not consider axiomatisations. In [2] no notion of barbed
congruence is considered, and their notions of bisimulations are triples instead
of pairs as in our case, since they additionally need to keep track of a bijection
among identifiers (which are close to our keys). Barbed congruence is consid-
ered in [1], but they only allow for contexts which are coherent on their own,
thus disallowing interactions between the context and the process in the hole
when going backwards. This has a relevant impact on the theory, as discussed
in [1] itself (see [1, Example 3]). Also, they consider only processes without
auto-concurrency and without auto-conflict [1, Remark 1].

A hierarchy of equivalences with backward transitions, including hereditary
history-preserving bisimilarity, was studied in the context of stable configura-
tion structures in [31]. A logic with reverse as well as forward modalities which
characterises hereditary history-preserving bisimilarity was introduced in [32].

CCSK has been given a denotational semantics using reversible bundle event
structures in [13]. Although equivalences are not discussed there, this opens the
way to defining an equivalence on CCSK processes based on an equivalence
between their denotations as reversible event structures.

7 Conclusion and Future Work

We have discussed strong observational equivalences able to distinguish forward
and backward moves in CCSK. As shown on many occasions, a main difference
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w.r.t. the theory of CCS is that in CCSK not all processes are reachable, and this
limits what contexts can observe. This motivates, e.g., the use of backward barbs
which are more fine-grained than forward ones in the definition of FR barbed
congruence. As anticipated in the Introduction, other forms of observational
equivalences, such as weak equivalences, are also of interest.

Other interesting directions for future work include comparing the equiva-
lence that our definitions induce on standard processes with known CCS equiv-
alences. We have shown that revised FR bisimilarity is finer than standard
CCS bisimilarity, and we conjecture it to be equivalent to hereditary history-
preserving bisimilarity [12], in line with the results in [1,2,29].

Finally, we have discussed how axiomatisation is easier in calculi such as
CCSK which have no redundancy in the history information. However, this app-
roach right now does not scale to more complex languages such as the π-calculus
or Erlang. Hence, it would be interesting to study alternative technical means to
represent their reversible extensions with no redundancy (while current versions
have high redundancy), so to allow for simple equational reasoning.
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1 School of Computer and Cyber Sciences, Augusta University, Augusta, USA
caubert@augusta.edu

2 Focus Team/University of Bologna, Inria, Sophia Antipolis, France

Abstract. Existing formalisms for the algebraic specification and rep-
resentation of networks of reversible agents suffer some shortcomings.
Despite multiple attempts, reversible declensions of the Calculus of Com-
municating Systems (CCS) do not offer satisfactory adaptation of notions
usual in “forward-only” process algebras, such as replication or context.
Existing formalisms disallow the “hot-plugging” of processes during their
execution in contexts with their own past. They also assume the existence
of “eternally fresh” keys or identifiers that, if implemented poorly, could
result in unnecessary bottlenecks and look-ups involving all the threads.
In this paper, we begin investigating those issues, by first designing a
process algebra endowed with a mechanism to generate identifiers with-
out the need to consult with the other threads. We use this calculus to
recast the possible representations of non-determinism in CCS, and as a
by-product establish a simple and straightforward definition of concur-
rency. Our reversible calculus is then proven to satisfy expected prop-
erties. We also observe that none of the reversible bisimulations defined
thus far are congruences under our notion of “reversible” contexts.

Keywords: Formal semantics · Process algebras and calculi · Context
for reversible calculi

1 Introduction: Filling the Blanks in Reversible Process
Algebras

Reversibility’s Future is intertwined with the development of formal mod-
els for analyzing and certifying concurrent behaviors. Even if the development
of quantum computers [30], CMOS adiabatic circuits [18] and computing bio-
chemical systems promise unprecedented efficiency or “energy-free” computers,
it would be a mistake to believe that whenone of those technologies—each with
their own connection to reversibility—reaches a mature stage, distribution of
the computing capacities will become superfluous. On the opposite, the future
probably resides in connecting together computers using different paradigms
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(i.e., “traditional”, quantum, biological, etc.), and possibly themselves heteroge-
neous (for instance using the “classical control of quantum data” motto [37]). In
this coming situation, “traditional” model-checking techniques will face an even
worst state explosion problem in presence of reversibility, that e.g. the usual
“back-tracking” methods will likely fail to circumvent. Due to the notorious dif-
ficulty of connecting heterogeneous systems correctly and the “volatile” nature
of reversible computers—that can erase all trace of their actions—, it seems
absolutely necessary to design languages for the specification and verification of
reversible distributed systems.

Process Algebras offer an ideal touch of abstraction while maintaining
implementable specification and verification languages. In the family of process
calculi, the Calculus of Communicating Systems (CCS) [35] plays a particu-
lar role, both as seminal work and as direct root of numerous systems (e.g.
π- [42], Ambient [33], applied [1] and distributed [23] calculi). Reversible CCS
(RCCS) [15] and CCS with keys (CCSK) [38] are two extensions to CCS pro-
viding a better understanding of the mechanisms underlying reversible concur-
rent computation—and they actually turned out to be the two faces of the
same coin [27]. Most [3,14,32,34]—if not all—of the later systems developed to
enhance the expressiveness with some respect (rollback operator, name-passing
abilities, probabilistic features) stem from one approach or the other. However,
those two systems, as well as their extensions, both share the same drawbacks,
in terms of missing features and missing opportunities.

An Incomplete Picture is offered by RCCS and CCSK, as they miss
“expected” features despite repetitive attempts. For instance, no satisfactory
notion of context was ever defined: the discussed notions [5] do not allow the
“hot-plugging” of a process with a past into a context with a past as well.
As a consequence, defining congruence is impossible, forbidding the study of
bisimilarities—though they are at the core of process algebras [41]. Also, recur-
sion and replication are different [36], but only recursion have been investi-
gated [22,25] or mentioned [15,16], and only for “memory-less” processes. Stated
differently, the study of the duplication of systems with a past has been left aside.

Opportunities Have Been Missed as previous process algebras are con-
servative extensions of restricted versions of CCS, instead of considering “a fresh
start”. For instance, reversible calculi inherited the sum operator in its guarded
version: while this restriction certainly makes sense when studying (weak) bisim-
ulations for forward-only models, we believe it would be profitable to suspend
this restriction and consider all sums, to establish their specificities and interests
in the reversible frame. Also, both RCCS and CCSK have impractical mecha-
nisms for keys or identifiers: aside from supposing “eternal freshness”—which
requires to “ping” all threads when performing a transition, creating a potential
bottle-neck—, they also require to inspect, in the worst case scenario, all the
memories of all the threads before performing a backward transition.
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Our Proposal for “yet” another language is guided by the desire to “com-
plete the picture”, but starts from scratch instead of trying to “correct” exist-
ing systems1. We start by defining an “identified calculus” that sidesteps the
previous limitations of the key and memory mechanisms and considers mul-
tiple declensions of the sum: 1. the summation [35, p. 68], that we call “non-
deterministic choice” and write �, [44], 2. the guarded sum, +, and 3. the internal
choice, �, inspired from the Communicating Sequential Processes (CSP) [24]—
even if we are aware that this operator can be represented [2, p. 225] in forward
systems, we would like to re-consider all the options in the reversible set-up,
where “representation” can have a different meaning.Our formalism meets the
usual criterion, and allows to sketch interesting definitions for contexts, that
allows to prove that, even under a mild notion of context, the usual bisimulation
for reversible calculi is not a congruence. As a by-product, we obtain a notion
of concurrency, both for forward and forward-and-backward calculi, that rests
solely on identifiers and can be checked locally.

Our Contribution tries to lay out a solid foundation to study reversible
process algebras in all generality, and opens some questions that have been
left out. Our detailed frame explicits aspects not often acknowledged, but does
not yet answer questions such as “what is the right structural congruence for
reversible calculi” [7]: while we can define a structural relation for our calculus,
we would like to get a better take on what a congruence for reversible calculi
is before committing. How our three sums differ and what benefits they could
provide is also left for future work, possibly requiring a better understanding
of non-determinism in the systems we model. Another direction for future work
is to study new features stemming from reversibility, such as the capacity of
distinguishing between multiple replications, based on how they replicate the
memory mechanism allowing to reverse the computation.

All proofs and some ancillary definitions are in the extended version [8].

2 Forward-Only Identified Calculus with Multiple Sums

We enrich CCS’s processes and labeled transition system (LTS) with identifiers
needed to define reversible systems: indeed, in addition to the usual labels, the
reversible LTS developed thus far all annotate the transition with an additional
key or identifier that becomes part of the memory. This development can be
carried out independently of the reversible aspect, and could be of independent
interest. Our formal “identifier structures” allows to precisely define how such
identifiers could be generated while guaranteeing eternal freshness of the iden-
tifiers used to annotate the transitions (Lemma 1) of our calculus that extends
CCS conservatively (Lemma 2).

1 Of course, due credit should be given for those previous calculi, that strongly inspired
ours, and into which our system can be partially embedded, cf. Sect. 3.3.
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2.1 Preamble: Identifier Structures, Patterns, Seeds and Splitters

Definition 1 (Identifier Structure and Pattern). An identifier structure
IS = (I, γ,⊕) is s.t.

– I is an infinite set of identifiers, with a partition between infinite sets of
atomic identifiers Ia and paired identifiers Ip, i.e. Ia ∪ Ip = I, Ia ∩ Ip = ∅,

– γ : N → Ia is a bijection called a generator,
– ⊕ : Ia × Ia → Ip is a bijection called a pairing function.

Given an identifier structure IS, an identifier pattern ip is a tuple (c, s) of
integers called current and step such that s > 0. The stream of atomic identifiers
generated by (c, s) is IS(c, s) = γ(c), γ(c + s), γ(c + s + s), γ(c + s + s + s), . . ..

Example 1. Traditionally, a pairing function is a bijection between N×N and N,
and the canonical examples are Cantor’s bijection and (m,n) �→ 2m(2n + 1) −
1 [40,43]. Let p be any of those pairing function, and let p−(m,n) = −(p(m,n)).

Then, IZ = (Z, idN,p−) is an identifier structure, with Ia = N and Ip = Z
−.

The streams IZ(0, 2) and IZ(1, 2) are the series of even and odd numbers.

We now assume given an identifier structure IS and use IZ in our examples.

Definition 2 (Compatible Identifier Patterns). Two identifier patterns ip1
and ip2 are compatible, ip1 ⊥ ip2, if the identifiers in the streams IS(ip1) and
IS(ip2) are all different.

Definition 3 (Splitter). A splitter is a function ∩ from identifier pattern to
pairs of compatible identifier patterns, and we let ∩1(ip) (resp.∩2(ip)) be its first
(resp. second) projection.

We now assume that every identifier structure IS is endowed with a splitter.

Example 2. For IZ the obvious splitter is ∩(c, s) = ((c, 2×s), (c+s, 2×s)). Note
that ∩(0, 1) = ((0, 2), (1, 2)), and it is easy to check that the two streams IZ(0, 2)
and IZ(1, 2) have no identifier in common. However, (1, 7) and (2, 13) are not
compatible in IZ, as their streams both contain 15.

Definition 4 (Seed (Splitter)). A seed s is either an identifier pattern ip,
or a pair of seeds (s1, s2) such that all the identifier patterns occurring in s1 and
s2 are pairwise compatible. Two seeds s1 and s2 are compatible, s1 ⊥ s2, if all
the identifier patterns in s1 and s2 are compatible.

We extend the splitter ∩ and its projections ∩j (for j ∈ {1, 2}) to functions
from seeds to seeds that we write [∩] and [∩j ] defined by

[∩](ip) = ∩(ip) [∩j ](ip) = ∩j(ip)
[∩](s1, s2) = ([∩](s1), [∩](s2)) [∩j ](s1, s2) = ([∩j ](s1), [∩j ](s2))

Example 3. A seed over IZ is (id × ∩)(∩(0, 1)) = ((0, 2), ((1, 4), (3, 4))).
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2.2 Identified CCS and Unicity Property

We will now discuss and detail how a general version of (forward-only) CCS can
be equipped with identifiers structures so that every transition will be labeled
not only by a (co-)name, τ or υ2, but also by an identifier that is guaranteed to
be unique in the trace.

Definition 5 (Names, Co-names and Labels). Let N = {a, b, c, . . . } be a
set of names and N = {a, b, c, . . . } its set of co-names. We define the set of
labels L = N ∪ N ∪ {τ, υ}, and use α (resp. μ, λ) to range over L (resp. L\{τ},
L\{τ, υ}). The complement of a name is given by a bijection · : N → N, whose
inverse is also written ·.
Definition 6 (Operators).

P,Q :=λ.P (Prefix)
P | Q (Parallel Composition)
P\λ (Restriction)

P � Q (Non-deterministic choice)
(λ1.P1) + (λ2.P2) (Guarded sum)
P � Q (Internal choice)

As usual, the inactive process 0 is not written when preceded by a prefix, and
we call P and Q the “threads” in a process P | Q.

The labeled transition system (LTS) for this version of CCS, that we denote
−−→α , can be read from Fig. 1 by removing the seeds and the identifiers. Now, to
define an identified declension of that calculus, we need to describe how each
thread of a process can access its own identifier pattern to independently “pull”
fresh identifiers when needed, without having to perform global look-ups. We
start by defining how a seed can be “attached” to a CCS process.

Definition 7 (Identified Process). Given an identifier structure IS, an iden-
tified process is a CCS process P endowed with a seed s that we denote s ◦ P .

We assume fixed a particular identifier structure IS = (I, γ,⊕,∩), and now
need to introduce how we “split” identifier patterns, to formalize when a pro-
cess evolves from e.g. ip ◦ a.(P | Q) that requires only one identifier pattern to
(ip1, ip2) ◦ P | Q, that requires two—because we want P and Q to be able to
pull identifiers from respectively ip1 and ip2 without the need for an agreement.
To make sure that our processes are always “well-identified” (Definition 10),
i.e. with a matching number of threads and identifier patterns, we introduce an
helper function.

2 We use this label to annotate the “internally non-deterministic” transitions intro-
duced by the operator �. It can be identified with τ for simplicity if need be, and as
τ , it does not have a complement.
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Definition 8 (Splitter Helper). Given a process P and an identifier pattern
ip, we define

∩?(ip, P ) =

{
(∩?(∩1(ip), P1),∩?(∩2(ip), P2)) if P = P1 | P2

ip ◦ P otherwise

and write e.g.∩?ip ◦ a | b for the “recomposition” of the pair ∩?(ip, a | b) =
(∩1(ip) ◦ a,∩2(ip) ◦ b) into the identified process (∩1(ip),∩2(ip)) ◦ a | b.

Note that in the definition below, only the rules act., + and � can “uncover”
threads, and hence are the only place where ∩? is invoked.

Definition 9 (ILTS). We let the identified labeled transition system between
identified processes be the union of all the relations −−−→i:α for i ∈ I and α ∈ L of
Fig. 1. Structural relation is as usual [8] but will not be used.

Example 4. The result of ∩?(0, 1)◦(a | (b | (c+d))) is ((0, 2), ((1, 4), (3, 4)))◦(a |
(b | (c + d)), and a (resp. b, c + d) would get its next transition identified with 0
(resp. 1, 3).

Definition 10 (Well-Identified Process). An identified process s◦P is well-
identified iff s = (s1, s2), P = P1 | P2 and s1 ◦ P1 and s2 ◦ P2 are both well-
identified, or P is not of the form P1 | P2 and s is an identifier pattern.

We now always assume that identified processes are well-identified.

Definition 11 (Traces). In a transition t : s ◦ P −−−→i:α s′ ◦ P ′, process s ◦ P is
the source, and s′ ◦ P ′ is the target of transition t. Two transitions are coinitial
(resp. cofinal) if they have the same source (resp. target). Transitions t1 and
t2 are composable, t1; t2, if the target of t1 is the source of t2. A sequence of
pairwise composable transitions is called a trace, written t1; · · · ; tn.

Lemma 1 (Unicity). The trace of an identified process contains any identifier
at most once, and if a transition has identifier i1 ⊕ i2 ∈ Ip, then neither i1 nor
i2 occur in the trace.

Lemma 2. For all CCS process P , ∃s s.t. P −−−→α1 · · · −−−→αn P ′ ⇔ (s ◦ P −−−−→i1:α1

· · · −−−−→in:αn s′ ◦ P ′).

Definition 12 (Concurrency and Compatible Identifiers). Two coinitial
transitions s ◦ P −−−−→i1:α1 s1 ◦ P1 and s ◦ P −−−−→i2:α2 s2 ◦ P2 are concurrent iff i1 and
i2 are compatible, i1 ⊥ i2, i.e. iff⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

i1 �= i2 if i1, i2 ∈ Ia

there is no i ∈ Ia s.t. i1 ⊕ i = i2 if i1 ∈ Ia, i2 ∈ Ip

there is no i ∈ Ia s.t. i ⊕ i2 = i1 if i1 ∈ Ip, i2 ∈ Ia

for i11, i
2
1, i

1
2 and i22 s.t. i1 = i11 ⊕ i21 and i2 = i12 ⊕ i22,

ij1 �= ik2 for j, k ∈ {1, 2} if i1, i2 ∈ Ip
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Fig. 1. Rules of the identified labeled transition system (ILTS)

Example 5. The identified process s ◦ P = ((0, 2), (1, 2)) ◦ a + b | a.c has four
possible transitions:

t1 : s ◦ P −−−→0:a ((2, 2), (1, 2)) ◦ 0 | a.c t3 : s ◦ P −−−→1:a ((0, 2), (3, 2)) ◦ a + b | c

t2 : s ◦ P −−−→0:b ((2, 2), (1, 2)) ◦ 0 | a.c t4 : s ◦ P −−−−−→0⊕1:τ ((2, 2), (3, 2)) ◦ 0 | c

Among them, only t1 and t3, and t2 and t3 are concurrent: transitions are con-
current when they do not use overlapping identifiers, not even as part of syn-
chronizations.
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Hence, concurrency becomes an “easily observable” feature that does not
require inspection of the term, of its future transitions—as for “the diamond
property” [29]—or of an intermediate relation on proof terms [11, p. 415]. We
believe this contribution to be of independent interest, and it will help sig-
nificantly the precision and efficiency of our forward-and-backward calculus in
multiple respect.

3 Reversible and Identified CCS

A reversible calculus is always defined by a forward calculus and a backward cal-
culus. Here, we define the forward part as an extension of the identified calculus
of Definition 9, without copying the information about the seeds for conciseness,
but using the identifiers they provide. The backward calculus will require to make
the seed explicit again, and we made the choice of having backward transitions
re-use the identifier from their corresponding forward transition, and to restore
the seed in its previous state. Expected properties are detailed in Sect. 3.2.

3.1 Defining the Identified Reversible CCS

Definition 13 (Memories and Reversible Processes). Let o ∈ {�,+,�},
d ∈ {L,R}, we define memory events, memories and identified reversible pro-
cesses as follows, for n � 0:

e :=〈i, μ, ((o1, P1, d1), . . . (on, Pn, dn))〉 (Memory event)
ms :=e.ms | ∅ (Memory stack)
mp :=[m,m] (Memory pair)
m :=ms | mp (Memory)

R,S :=s ◦ m � P (Identified reversible processes)

In a memory event, if n = 0, then we will simply write . We generally do
not write the trailing empty memories in memory stacks, e.g. we will write e
instead of e.∅.

Stated differently, our memory are represented as a stack or tuples of stacks,
on which we define the following two operations.

Definition 14 (Operations on Memories). The identifier substitution in a
memory event is written e[i � j] and is defined as substitutions usually are. The
identified insertion is defined by

〈i, μ, ((o1, P1, d1), . . .(on, Pn, dn))〉 ++j (o, P, d) ={
〈i, μ, ((o1, P1, d1), . . . (on, Pn, dn), (o, P, d))〉 if i = j

〈i, μ, ((o1, P1, d1), . . . (on, Pn, dn))〉 otherwise

The operations are easily extended to memories by simply propagating them to
all memory events.
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When defining the forward LTS below, we omit the identifier patterns to help
with readability, but the reader should assume that those rules are “on top” of
the rules in Fig. 1. The rules for the backward LTS, in Fig. 3, includes both the
seeds and memories, and is the exact symmetric of the forward identified LTS
with memory, up to the condition in the parallel group that we discuss later.
A bit similarly to the splitter helper (Definition 8), we need an operation that
duplicates a memory if needed, that we define on processes with memory but
without seeds for clarity.

Definition 15 (Memory Duplication). Given a process P and a memory
m, we define

δ?(m,P ) =

{
(δ?(m,P1), δ?(m,P2)) if P = P1 | P2

m � P otherwise

and write e.g. δ?(m) � a | b for the “recomposition” of the pair of identified
processes δ?(m,a | b) = (δ?(m,a), δ?(m, b)) = (m � a,m � b) into the process
[m,m] � a | b.

Definition 16 (IRLTS). We let the identified reversible labeled transition sys-
tem between identified reversible processes be the union of all the relations −−−→i:α

and ���→i:α for i ∈ I and α ∈ L of Figs. 2 and 3, and let �=→ ∪ �. Structural
relation is as usual [8] but will not be used.

In its first version, RCCS was using the whole memory as an identifier [15],
but then it moved to use specific identifiers [4,31], closer in inspiration to CCSK’s
keys [38]. This strategy, however, forces the act. rules (forward and backward)
to check that the identifier picked (or present in the memory event that is being
reversed) is not occurring in the memory, while our system can simply pick iden-
tifiers from the seed without having to inspect the memory, and can go backward
simply by looking if the memory event has identifier in Ia—something enforced
by requiring the identifier to be of the form γ−1(c). Furthermore, memory events
and annotated prefixes, as used in RCCS and CCSK, do not carry information
on whenever they synchronized with other threads: retrieving this information
require to inspect all the memories, or keys, of all the other threads, while our
system simply observes if the identifier is in Ip, hence enforcing a “locality”
property. However, when backtracking, the memories of the threads need to be
checked for “compatibility”, otherwise i.e. ((1, 2), (2, 2))◦[〈0, a, 〉, 〈0, a, 〉]�P | Q
could backtrack to ((1, 2), (0, 2))◦ [〈0, a, 〉, ∅]�P | a.Q and then be stuck instead
of (0, 1) ◦ ∅ � a.(P | Q).

3.2 Properties: From Concurrency to Causal Consistency
and Unicity

We now prove that our calculus satisfies typical properties for reversible pro-
cess calculi [13,15,26,38]. Notice that showing that the forward-only part of our



Explicit Identifiers and Contexts in Reversible Concurrent Calculus 153

Fig. 2. Forward rules of the identified reversible labeled transition system (IRLTS)

calculus is a conservative extension of CCS is done by extending Lemma 2 to
accommodate memories and it is immediate. We give a notion of concurrency,
and prove that our calculus enjoys the required axioms to obtain causal consis-
tency “for free” [28]. All our properties, as commonly done, are limited to the
reachable processes.

Definition 17 (Initial, Reachable and Origin Process). A process s◦m�P
is initial if s ◦ P is well-identified and if m = ∅ if P is not of the form P1 | P2,
or if m = [m1,m2], P = P1 | P2 and [∩j ](s) ◦ mj � Pj for j ∈ {1, 2} are initial.
A process R is reachable if it can be derived from an initial process, its origin,
written OR, by applying the rules in Figs. 2 and 3.
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Fig. 3. Backward rules of the identified reversible labeled transition system (IRLTS)

Concurrency. To define concurrency in the forward and backward identified
LTS is easy when both transitions have the same direction: forward transitions
will adopt the definition of the identified calculus, and backward transitions will
always be concurrent. More care is required when transitions have opposite direc-
tions, but the seed provides a good mechanism to define concurrency easily. In a
nutshell, the forward transition will be in conflict with the backward transition
when the forward identifier was obtained using the identifier pattern(s) that have
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been used to generate the backward identifier, something we call “being down-
stream”. Identifying the identifier pattern(s) that have been used to generate an
identifier in the memory is actually immediate:

Definition 18. Given a backward transition t : s ◦ m � P ���→i:α s′ ◦ m′ � P ′, we
write ipt (resp. ip1t , ip

2
t ) for the unique identifier pattern(s) in s′ such that i ∈ Ia

(resp. i1 and i2 s.t. i1 ⊕ i2 = i ∈ Ip) is the first identifier in the stream generated
by ipt (resp. are the first identifiers in the streams generated by ip1t and ip2t ).

Definition 19 (Downstream). An identifier i is downstream of an identifier
pattern (c, s) if{

i ∈ IS(c, s) if i ∈ Ia

there exists j, k ∈ Ia s.t. j ⊕ k = i and j or k is downstream of (c, s) if i ∈ Ip

Definition 20 (Concurrency). Two different coinitial transitions t1 : s◦m�
P −−−−→→i1:α1 s1 ◦ m1 � P1 and t2 : s ◦ m � P −−−−→→i2:α2 s2 ◦ m2 � P2 are concurrent iff

– t1 and t2 are forward transitions and i1 ⊥ i2 (Definition 12);
– t1 is a forward and t2 is a backward transition and i1 (or i11 and i21 if i1 =

i11 ⊕ i21) is not downstream of ipt2 (or ip1t2 nor ip2t2);
– t1 and t2 are backward transitions.

Example 6. Re-using the process from Example 5 and adding the memories,
after having performed t1 and t3, we obtain the process s ◦ [m1,m2] � 0 | c,
where s = ((2, 2), (3, 2)), m1 = 〈0, a, (+, b,R)〉 and m2 = 〈1, a, 〉, that has three
possible transitions:

t1 : s ◦ [m1,m2] � 0 | c −−−→3:c ((2, 2), (5, 2)) ◦ [m1, 〈3, c, 〉.m2] � 0 | 0

t2 : s ◦ [m1,m2] � 0 | c ���→1:a ((2, 2), (1, 2)) ◦ [m1, ∅] � 0 | a.c

t3 : s ◦ [m1,m2] � 0 | c ���→0:a ((0, 2), (3, 2)) ◦ [∅,m2] � a + b | c

Among them, t2 and t3 are concurrent, as they are both backward, as well as t1
and t3, as 3 was not generated by ipt3 = (0, 2). However, as 3 is downstream of
ipt2 = (1, 2), t1 and t2 are not concurrent.

Causal Consistency. We now prove that our framework enjoys causal consis-
tency, a property stating that an action can be reversed only provided all its
consequences have been undone. Causal consistency holds for a calculus which
satisfies four basic axioms [28]: Loop Lemma—“any reduction can be undone”—,
Square Property—“concurrent transitions can be executed in any order”—,
Concurrency (independence) of the backward transitions—“coinitial backward
transitions are concurrent”— and Well-foundedness—“each process has a finite
past”. Additionally, it is assumed that the semantics is equipped with the inde-
pendence relation, in our case concurrency relation.
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Lemma 3 (Axioms). For every reachable processes R, R′, IRLTS satisfies
the following axioms:

Loop Lemma: for every forward transition t : R −−−→i:α R′ there exists a backward
transition t• : R′ ���→i:α R and vice versa.

Square Property: if t1 : R −−−−→→i1:α1 R1 and t2 : R −−−−→→i2:α2 R2 are two coinitial
concurrent transitions, there exist two cofinal transitions t′2 : R1 −−−−→→i2:α2 R3

and t′1 : R2 −−−−→→i1:α1 R3.
Backward Transitions are Concurrent: any two coinitial backward transi-

tions t1 : R ����→i1:α1 R1 and t2 : R ����→i2:α2 R2 where t1 �= t2 are concurrent.
Well-Foundedness: there is no infinite backward computation.

We now define the “causal equivalence” [15] relation on traces allowing to
swap concurrent transitions and to delete transitions triggered in both directions.
The causal equivalence relation is defined for the LTSI which satisfies the Square
Property and re-use the notations from above.

Definition 21 (Causal Equivalence). Causal equivalence, ∼, is the least
equivalence relation on traces closed under composition satisfying t1; t′2 ∼ t2; t′1
and t; t• ∼ ε— ε being the empty trace.

Now, given the notion of causal equivalence, using an axiomatic approach [28]
and that our reversible semantics satisfies necessary axioms, we obtain that our
framework satisfies causal consistency, given bellow.

Theorem 1 (Causal Consistency). In IRLTS, two traces are coinitial and
cofinal iff they are causally equivalent.

Finally, we give the equivalent to the “unicity lemma” (Lemma 2) for IRLTS:
note that since the same transition can occur multiple times, and as backward
and forward transitions may share the same identifiers, we can have the exact
same guarantee that any transition uses identifiers only once only up to causal
consistency.

Lemma 4 (Unicity for IRLTS). For a given trace d, there exist a trace d′,
such that d′ ∼ d and d′ contains any identifier at most once, and if a transition
in d′ has identifier i1 ⊕ i2 ∈ Ip, then neither i1 nor i2 occur in d′.

3.3 Links to RCCS and CCSK: Translations and Comparisons

It is possible to work out an encoding of our IRLTS terms into RCCS and CCSK
terms [8]. Our calculus is more general, since it allows multiple sums, and more
precise, since the identifier mechanism is explicit, but has some drawbacks with
respect to those calculi as well.

While RCCS “maximally distributes” the memories to all the threads, our
calculus for the time being forces all the memories to be stored in one shared



Explicit Identifiers and Contexts in Reversible Concurrent Calculus 157

place. Poor implementations of this mechanism could result in important bot-
tlenecks, as memories need to be centralized: however, we believe that an asyn-
chronous handling of the memory accesses could allow to bypass this limita-
tion in our calculus, but reserve this question for future work. With respect to
CCSK, our memory events are potentially duplicated every time the δ? operator
is applied, resulting in a space waste, while CCSK never duplicates any memory
event. Furthermore, the stability of CCSK’s terms through execution—as the
number of threads does not change during the computation—could be another
advantage.

We believe the encoding we present to be fairly straightforward, and that it
will open up the possibility of switching from one calculus to another based on
the needs to distribute the memories or to reduce the memory footprint.

4 Contexts, and How We Do Not Have Congruences yet

We remind the reader of the definition of contexts C[·] on CCS terms P, before
introducing contexts C I[·] (resp. M [·], CR[·]) on identified terms I (resp. on mem-
ories M, on identified reversible terms R).

Definition 22 (Term Context). A context C[·] : P → P is inductively defined
using all process operators and a fresh symbol · (the slot) as follows (omitting
the symmetric contexts):

C[·] := λ.C[·] | P | C[·] | C[·]\λ | λ1.P + λ2.C[·] | P � C[·] | P � C[·] | ·

When placing an identified term into a context, we want to make sure that
a well-identified process remains well-identified, something that can be easily
achieved by noting that for all process P and seed s, (∪?∩?s) ◦ P is always
well-identified, for the following definition of ∪?:

Definition 23 (Unifier). Given a process P and a seed s, we define

∪?(ip, P ) = ip ◦ P

∪?((s1, s2), P ) =

{
(∪?(∩1(s1), P )) if s1 is not of the form ip1
(∩1(s1), P ) otherwise

Definition 24 (Identified Context). An identified context C I[·] : I → I is
defined using term contexts as C I[·] = (∪?∩?·) ◦ C[·].
Example 7. A term (0, 1) ◦ a + b, in the identified context (∪?∩?·) ◦ · | a, gives
the term ((0, 2), (1, 2)) ◦ a + b | a from Example 5. The term ((0, 2), (1, 2)) ◦ a | b
placed in the same context would give ((0, 4), (1, 4)), (2, 4)) ◦ (a | b) | a.

To study memory contexts, we write M for the set of all memories.



158 C. Aubert and D. Medić

Definition 25 (Memory Context). A memory context M [·] : M → M is
inductively defined using the operators and operations of Definitions 13, 14 and
15, an “append” operation and a fresh symbol · (the slot) as follows:

M [·] :=[M [·],m] | [m,M [·]] | e.M [·] | M [·].e | δ?M [·] | M [·][j � k]
| M [·] ++j (o, P, d) | ·

Where e.m = [e.m1, e.m2]and m.e = [m1.e,m2.e] if m = [m1,m2], and m.e =
m′.e.∅ if m = m′.∅.
Definition 26 (Reversible Context). A reversible context CR[·] : R → R is
defined using term and memory contexts as CR[·] = (∪?∩?·) ◦ M [·] � C[·]. It is
memory neutral if M [·] is built using only ·, [∅,M [·]] and [M [·], ∅].

Of course, a reversible context can change the past of a reversible process R,
and hence the initial process OR to which it corresponds (Definition 17).

Example 8. Let CR[·]1 = [∅, ·] � P | C[·] and CR[·]2 = δ?[·] � P | C[·]. Letting
R = (1, 1) ◦ 〈0, a, 〉 � b, we obtain CR[R]1 = ((1, 2), (2, 2)) ◦ [∅, 〈0, a, 〉] � P | b
and CR[R]2 = ((1, 2), (2, 2)) ◦ [〈0, a, 〉, 〈0, a, 〉] � P | b, and we have

CR[R]1 ���→0:a ((1, 2), (0, 2)) ◦ [∅, ∅] � P | a.b CR[R]2 ���→0:a (0, 1) ◦ ∅ � a.(P | b)

Note that not all of the reversible contexts, when instantiated with a
reversible term, will give accessible terms. Typically, the context [∅, ·] � · will be
“broken” since the memory pair created will never coincide with the structure
of the term and its memory inserted in those slots. However, even restricted
to contexts producing accessible terms, reversible contexts are strictly more
expressive that term contexts. To make this more precise in Lemma 5, we
use two bisimulations close in spirit to Forward-reverse bisimulation [39] and
back-and-forth bisimulation [10], but that leave some flexibility regarding iden-
tifiers and corresponds to Hereditary-History Preserving Bisimulations [6]. Those
bisimulations—B&F and SB&F [6,8]—are not congruences, not even under
“memory neutral” contexts.

Lemma 5. For all non-initial reversible process R, there exists reversible con-
texts CR[·] such OCR[R] is reachable and for all term context C[·], C[OR] and
OCR[R] are not B&F.

Theorem 2. B&F and SB&F are not congruences, not even under memory
neutral contexts.

Proof. The processes R1 = (1, 1) ◦ 〈0, a, 〉 � b + b and R2 = (1, 1) ◦
〈0, a, (+, a.b,R)〉�b are B&F, but letting CR[·] = ·� ·+c, CR[R1] and CR[R2] are
not. Indeed, it is easy to check that R1 and R2, as well as OR1 = (0, 1)◦∅�a.(b+b)
and OR2 = (0, 1)◦∅�(a.b)+(a.b), are B&F, but OCR[R1] = (0, 1)◦∅�a.((b+b)+c)
and OCR[R2] = (0, 1) ◦ ∅� (a.(b+ c))+ (a.b) are not B&F, and hence CR[R1] and
CR[R2] cannot be either. The same example works for SB&F.
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We believe similar reasoning and example can help realizing that none of
the bisimulations introduced for reversible calculi are congruences under our def-
inition of reversible context. Some congruences for reversible calculi have been
studied [5], but they allowed the context to be applied only to the origins of
the reversible terms: whenever interesting congruences allowing contexts to be
applied to non-initial terms exist is still an open problem, in our opinion, but
we believe our formal frame will allow to study it more precisely.

5 Conclusion

We like to think of our contribution as a first sketch enabling researchers to
tackle much more ambitious problems. It is our hope that our identified calculus
can at the same time help sidestepping some of the implementation issues for
reversible protocols [12], and can be re-used for RCCS or CCSK as a convenient
base, or plug-in, to obtain distributed and reliable keys or identifiers. We also
hope that the probabilistic choice [17]—whose representation requires to either
develop an auxiliary relation [17, p. 67], to make the transition system become
probabilistic as well [9], or to use Segala automata [44]—will be within the realm
of reversible protocols, as its implications and applications could be numerous.
The interleaving of the sums—for instance in the mixed choice [21], that offers
both probabilistic choice and nondeterministic choice—could then possibly be
unlocked and provides opportunities to model and study more complex behavior
without leaving the reversible frame.

It is known that CCS is not “universally expressive” [19,20], and we would
like to assess how universal the protocol detailed in this paper is. To that aim,
careful study of reversible and heterogeneous computing devices will be required,
that in turns could shed a new light on some of the questions we left unanswered.
Typically, this could lead to the development of “location-aware” calculi, where
the distribution of seeds and memory is made explicit, or to make progress in the
definition of “the right” structural congruence [7]. Last but not least, interesting
declensions of contexts were left out in this study, taking for instance a reversible
context ·�P that “throws away” the term under study but “steals” its memory.
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staw Informatyki PAN filia w Gdańsku (1991). http://www.ipipan.gda.pl/∼marek/
papers/historie.ps.gz

11. Boudol, G., Castellani, I.: Permutation of transitions: an event structure semantics
for CCS and SCCS. In: Linear Time, Branching Time and Partial Order in Logics
and Models for Concurrency, School/Workshop, Noordwijkerhout, The Nether-
lands, 30 May–3 June 1988, Proceedings. LNCS, vol. 354, pp. 411–427. Springer
(1988). https://doi.org/10.1007/BFb0013028

12. Cox, G.: SimCCSK: simulation of the reversible process calculi CCSK. Master’s
thesis, University of Leicester (4 2010). https://leicester.figshare.com/articles/
thesis/SimCCSK simulation of the reversible process calculi CCSK/10091681

13. Cristescu, I., Krivine, J., Varacca, D.: A compositional semantics for the reversible
p-calculus. In: LICS, pp. 388–397. IEEE Computer Society (2013). https://doi.
org/10.1109/LICS.2013.45

14. Cristescu, I., Krivine, J., Varacca, D.: Rigid families for CCS and the π-calculus. In:
Theoretical Aspects of Computing - ICTAC 2015. LNCS, vol. 9399, pp. 223–240.
Springer (2015). https://doi.org/10.1007/978-3-319-25150-9 14

15. Danos, Vincent, Krivine, Jean: Reversible communicating systems. In: Gardner,
Philippa, Yoshida, Nobuko (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292–307.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28644-8 19

16. Danos, V., Krivine, J.: Transactions in RCCS. In: Abadi, M., de Alfaro, L.
(eds.) CONCUR 2005. LNCS, vol. 3653, pp. 398–412. Springer, Heidelberg (2005).
https://doi.org/10.1007/11539452 31

17. Fischer, N., van Glabbeek, R.J.: Axiomatising infinitary probabilistic weak bisim-
ilarity of finite-state behaviours. J. Log. Algebr. Methods Program. 102, 64–102
(2019). https://doi.org/10.1016/j.jlamp.2018.09.006

https://doi.org/10.1145/3154979.3155004
https://doi.org/10.1145/3154979.3155004
https://doi.org/10.4204/EPTCS.189.7
https://doi.org/10.4204/EPTCS.189.7
https://doi.org/10.1016/j.jlamp.2016.08.004
https://doi.org/10.1016/j.jlamp.2016.08.004
https://doi.org/10.4230/LIPIcs.CONCUR.2020.13
https://doi.org/10.4230/LIPIcs.CONCUR.2020.13
https://hal.archives-ouvertes.fr/hal-02571597
http://www.discotec.org/2020/ice.html
https://hal.archives-ouvertes.fr/hal-03183053
https://hal.archives-ouvertes.fr/hal-03183053
https://doi.org/10.1017/S0960129599002984
http://www.ipipan.gda.pl/~marek/papers/historie.ps.gz
http://www.ipipan.gda.pl/~marek/papers/historie.ps.gz
https://doi.org/10.1007/BFb0013028
https://leicester.figshare.com/articles/thesis/SimCCSK_simulation_of_the_reversible_process_calculi_CCSK/ 10091681
https://leicester.figshare.com/articles/thesis/SimCCSK_simulation_of_the_reversible_process_calculi_CCSK/ 10091681
https://doi.org/10.1109/LICS.2013.45
https://doi.org/10.1109/LICS.2013.45
https://doi.org/10.1007/978-3-319-25150-9_14
https://doi.org/10.1007/978-3-540-28644-8_19
https://doi.org/10.1007/11539452_31
https://doi.org/10.1016/j.jlamp.2018.09.006


Explicit Identifiers and Contexts in Reversible Concurrent Calculus 161

18. Frank, M.P., Brocato, R.W., Tierney, B.D., Missert, N.A., Hsia, A.H.: Reversible
computing with fast, fully static, fully adiabatic CMOS. In: ICRC, Atlanta,
GA, USA, 1–3 December 2020, pp. 1–8. IEEE (2020). https://doi.org/10.1109/
ICRC2020.2020.00014

19. van Glabbeek, R.J.: On specifying timeouts. Electron. Notes Theor. Comput. Sci.
162, 173–175 (2006). https://doi.org/10.1016/j.entcs.2005.12.083
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Abstract. This paper analyses the introduction of a non-reversible
mechanism in a reversible calculus (called Ωρπ), intended to be used
as an oracle which contains persistent memories of previously reversed
computation. As a second step, we introduce the notion of weak causal
consistency which relaxes the classical causal consistency by allowing
the backward semantics not to revert to a previous state, but to a state
related to a previous state and we show that Ωρπ is weakly causally
consistent. We finally present a practical application of this calculus.

1 Introduction

Motivations. Reversibility is the ability, for a system, to undo some actions
that were previously taken. We can approach this field from various perspectives
such as circuit design, quantum algorithms, automaton, etc. In this paper, we are
interested in the application of reversibility to concurrent systems. There already
exists multiple works in this context, for debugging [4], for fault tolerance [14,18],
for biological or chemical modelling [1,2,7,16], or even for reliable concurrent
programming abstraction [12].

In concurrent systems, the very notion of reversibility is not trivial. Indeed,
since reductions are not deterministic, defining the notion of predecessor is less
intuitive. For instance, consider the following CCS process [13]: a.0 | b.0. There
are two possible forward reductions: either a.0 | b.0 a→ b.0, or a.0 | b.0 b→ a.0, and
both reduce to 0: both a.0 and b.0 are predecessors of 0. Intuitively, reverting to
any of those states is acceptable, regardless of the forward sequence.

The standard property of a reversible system is causal consistent reversibil-
ity, which captures this intuition. Causal consistent reversibility states that a
backward reduction can undo an action, provided that its consequences (if any)
are undone beforehand.

There are works which intentionally break causal consistent reversibility.
Typical applications include reversible calculi to model chemical reactions with
catalyst: an example is a reaction between three molecules A, B, and C, where
the objective is to bind A and B together. For the reaction to happen, B first
have to bind with the catalyst C, to create molecule BC, which can in turn bind
with A, to create ABC. Finally, the first binding is reverted, which results in AB
and C apart. One can clearly see that such reduction is not causally consistent:
the first reaction is reverted while the second holds. Such reversibility is called
c© Springer Nature Switzerland AG 2021
S. Yamashita and T. Yokoyama (Eds.): RC 2021, LNCS 12805, pp. 163–181, 2021.
https://doi.org/10.1007/978-3-030-79837-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79837-6_10&domain=pdf
https://doi.org/10.1007/978-3-030-79837-6_10


164 M. Vassor

out-of-causal-order reversibility. Calculi which model such chemical reactions
include [16] (which first explicitly mentions out-of-causal-order reversibility) and
Kuhn and Ulidowski’s Calculus of Covalent Bonding [6,7] (in which they distin-
guish CCB, which is not causally consistent, and CCBs a core calculus which is).
[5] compares in detail three out-of-causal-order reversible process calculi,
while [15] studies three forms of reversibility (backtracking, causal reversibil-
ity, and out-of-causal-order reversibility) in Petri nets.

Breaking causal consistency can also be motivated by practical applications.
For instance, in [8], Lanese et al. introduce the croll-π calculus, which is a
reversible π-calculus in which, when a memory is reinstalled in a revert sequence,
the original process is replaced by a continuation. Such approach is not causally-
consistent, stricto sensu1.

In this paper, we study the relation between algorithms based on trial and error
and reversibility. An example of such algorithm is a naive consensus algorithm, in
which each process tries its own value, and when it receives a smaller value from a
peer, it rolls back and tries again with this smaller value. Such algorithm converges
toward a state in which all processes agree on the same value.

Informally, we focus on a class of algorithms that behave in four steps: (i)
read the current state; (ii) improve it; (iii) store it; and (iv) start over. Among
those four steps, only the second depends on the algorithm. Standard reversible
process algebra, such as ρπ, implement the fourth one (or roll−π [9] for explicit
rollback control).

In this paper, our goal is to define a calculus which also covers steps (i)
and (iii). In particular, the stored state should not be reverted during backward
execution. Another way to view the mechanism is that processes can predict
information from the future state of the system. This is the reason why we call
the context an oracle.

Our second objective is to characterise the reversible nature of such calculus.
Intuitively, such calculus is not causally-consistent, since the state of the store
is not reverted. Therefore, we relax the notion of causal-consistency by intro-
ducing weak causal consistency. In a nutshell, weak causal consistency takes
as parameter a relation R, and allows backward reduction to reach new states
(thus breaking regular causal consistency), under the condition that there exists
a related state which is reachable using forward only reduction. In particular, for
our application, we are interested in a simulation relation. Taking the identity
as the parameter relation, our definition falls back on regular causal consistency.
We expect this property to be an intermediate point between strong causal con-
sistency and out-of-causal-order reversibility.

Another interesting aspect of this calculus is that the backward semantics is
partial, in the sense that its effects are confined to some parts of the term. This
notion of partial reversibility is barely discussed in this paper, but we think it is
important to explicit it for its potential practical applications.

1 Note that, actually, it still has some sort of causal consistency, in that backward seman-
tics undo the latter messages first. Therefore it is not possible to have an effect without
its cause, but the resulting state is not reachable without backward sequence.
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Approach. At first, we introduce a calculus (called Ωρπ) based on ρπ [10], to
which we add two primitives: inform〈·〉 and forecast(·) � ·. These two prim-
itives are used to interact with a context (which we call the oracle): sending
on inform〈·〉 stores a process in the context, and receiving from forecast(·) � ·
reads the context. The important aspect of the context is that it is preserved
through backward reductions.

Introducing these primitives prevents our calculus to be causally consistent:
it is possible to revert to the original configuration, but with a different con-
text. Nonetheless, we still have a notion of consistency: a configuration with an
uninitialised context can simulate any context. The second part of this work is
to characterise this weaker notion of causal consistency.

We finally conclude with a practical application: we implement a distributed
Sieve of Eratosthenes.

Contributions. The main contributions of this papers are: (i) a partially
reversible calculus Ωρπ, which adds two primitives to save a process across back-
ward reductions; (ii) the definition of weak causal consistency, which relaxes the
usual causal consistency; (iii) a proof that Ωρπ is weakly causally consistent;
and (iv) an application of Ωρπ, which illustrates the capabilities and limitations
of the calculus.

Outline. The paper is organised as follow: Sect. 2 introduces informally the ρπ
calculus, on which Ωρπ is based, and the notion of simulation which is latter
used. Section 3 defines the Ωρπ calculus. We explain how the calculus relates to
ρπ and we argue that the oracle behaves as expected. Section 4 is a small section
devoted to the introduction of weak causal consistency. Section 5 shows our main
result, which is that Ωρπ is weakly causally consistent. Section 6 contains the
application example. Finally, Sect. 7 concludes the paper.

2 Preliminary Considerations

In this first section, we present existing work on which the core of this paper is
based. In the first subsection, we informally present ρπ, a reversible variant of
the higher-order π-calculus. In the second subsection, we present the notion of
simulation, used in multiple works.

2.1 Informal Introduction to ρπ

The ρπ calculus is a reversible higher-order process calculus, first introduced
in [10]. In this section, we informally introduce the ρπ calculus, and we refer the
interested reader to Lanese’s paper for a more detailed presentation.

Terms of the ρπ calculus (whose syntax is shown in Fig. 1) are composed of
a configuration, built up from threads and memories. Threads are themself com-
posed of a process (which is similar to processes of the higher-order π-calculus))
and a tag, used as an identifier for the process.
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P, Q ::= 0 | X | νa.P | P | Q Process
| a〈P 〉 | a(X) � P

M, N ::= 0 | νu.M | M | N | κ : P | [μ; k] Configuration
κ ::= k | 〈h, h̃〉 · k Tag
μ ::= κ1 : a〈P 〉 | κ2 : a(X) � Q Memory content

Fig. 1. Syntax of ρπ

The basic building blocks of processes are the emission of a message P on
a name a (written a〈P 〉) and the reception of a message on a name a (written
a(X) � P ). When a message (for instance Q) is received, the free occurrences of
X in P are replaced by Q, and the resulting process is assigned a new fresh tag.
In addition, upon message exchange, a new memory is created, which contains
the state of the two processes prior to the message exchange. Informally, the
forward reduction rule is the following:

k1 : a〈P 〉 | k2 : a(X) � Q � νk.k : Q{P /X} | [k1 : a〈P 〉 | k2 : a(X) � Q; k]

In this forward rule, notice that the memory contains the tag of the resulting
process. This allows the backward execution of the configuration, by replacing a
process by the relevant memory:

k : P | [M ; k] � M

2.2 State Simulation

Given a set of states S and a reduction relation → over states of S, the notion
of simulation, originally defined in [17], formalises the statement “any reduction
of state S1 can be done by state S2”.

Definition 1 (Weak simulation). Given two states S1, S2 ∈ S, a state S2

simulates another state S1 (noted S1 � S2) if and only if:

∀S′
1 · S1 → S′

1 ⇒ ∃S′
2 · S2 →� S′

2 ∧ S′
1 � S′

2

where →� is the reflexive and transitive closure of →.

Notice that state simulation is reflexive and transitive.

Remark 1. In Sects. 5 and following of this paper, we use a stronger form of
simulation in which S2 → S′

2 and S1 → S′
1 using the same reduction rule.

3 The Ωρπ Calculus

In this first section, we present the Ωρπ calculus, which is built on top of the ρπ
calculus, itself built on top of the higher-order π calculus (HOπ).
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Processes of HOπ are composed of a multiple sequences of message sending
and receiving, with possible name restrictions. The semantics of HOπ is that when
a process sends a process P and, simultaneously, a process expects to receive a
process (variable X) on the same channel, then the second process replaces free
occurances of X by P . The ρπ calculus decorates HOπ processes in order to
allow reverse executions of message communications. The first subsection of this
section informally introduces ρπ.

In Ωρπ, we decorate ρπ configurations with a process. We say a decorated
ρπ configuration is a context. We obtain the semantics of contexts by lifting the
ρπ semantics to contexts. To interact with the context, we add two primitives
inform and forecast (which act as special channels) to write and read the
context.

3.1 Syntax

The syntax of the Ωρπ calculus is given in Fig. 2. Processes are similar to the
regular HOπ calculus, with the addition of the inform and forecast primitives.
Configurations, tags and memories are similar to those of ρπ (up to the addition
of the primitives).

Contrary to ρπ, configurations are not directly executed: there are embedded
in a context, which annotates the configuration with a process.

P, Q ::= 0 | X | νa.P | P | Q Process
| a〈P 〉 | a(X) � P
| inform〈P 〉 | forecast(X) � P

M, N ::= 0 | νu.M | M | N | κ : P | [μ; k] Configuration
C ::= M|P Context

κ ::= k | 〈h, h̃〉 · k Tag
μ ::= κ1 : a〈P 〉 | κ2 : a(X) � Q Memory content

| κ : forecast(X) � P

Fig. 2. Syntax of Ωρπ. The differences with ρπ are highlighted.

Let C be the set of contexts, M the set of configurations and P the set of
processes. We let P , Q and their decorated variants range over P; M , N and
their decorated variants range over M and C and its decorated variants range
over C. We say that a context C is initial when it does not contain memory.

Names a, b, . . . take their values from N, which does not contains forecast
and inform.

As in ρπ, h̃ denotes a vector of keys.

3.2 Semantics

The semantics of Ωρπ is defined in two successive parts: first we define the seman-
tics of configurations, as a labelled transition system, then we define the seman-
tics of contexts, using the semantics of configurations. Intuitively, the semantics
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of configurations acts as the semantics of ρπ (up to the required modifications),
and the labels of transitions expose the interactions with the oracle. The seman-
tics of contexts simply interprets the labels, updates the oracle accordingly, or
constraint the transitions that can be taken by the configurations.

Configuration Semantics. The configuration semantics is defined using two
reduction relations (a forward reduction relation �c and a backward reduc-
tion relation �c). As usual, we use a structural congruence relation (see Fig. 3),
which allows to reorder the processes.

M | N ≡ N | M (M1 | M2) | M3 ≡ M1 | (M2 | M3) M | 0 ≡ M νu.0 ≡ 0

νu.νv.M ≡ νv.νu.M (νu.M) | N ≡ νu.(M | N) u does not appear free in N

M =α N ⇒ M ≡ N k : νa.P ≡ νa.k : P

k : (
∏

1≤i≤n

Pi) ≡ νh̃.(
∏

1≤i≤n

〈hi, h̃〉 · k : Pi) h̃ = {h1, . . . , hn}

Fig. 3. Structural congruence for Ωρπ configurations.

We also use an evaluation context (see Fig. 4). Intuitively, an evaluation con-
text is a process with a hole.

E ::= · | νu.E | M | E

Fig. 4. Evaluation context

A relation R over configurations is evaluation-closed if it satisfies the two
inference rules in Fig. 5.

M R N

E [M ] R E [N ]
M ≡ M ′ M R N N ≡ N ′

M ′ R N ′

Fig. 5. Inference rules for evaluation-closed relations.

The configuration semantics is defined as the least evaluation-closed relation
that satisfies the rules in Fig. 6.

Reduction rules are heavily based to ρπ rules, with the following differences:
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(C.Fw) κ1 : a〈P 〉 | κ2 : a(X) � Q
τ�c νk.k : Q{P /X} | [κ1 : a〈P 〉 | κ2 : a(X) � Q; k]

(C.Bw) νk.k : P | [Q; k] τ�c Q

(C.Inf) κ : inform〈P 〉 P�c νk.k : 0 | [κ : inform〈P 〉; k]

(C.For) κ : forecast(X) � Q
P�c νk.k : Q{P /X} | [κ : forecast(X) � Q; k]

Fig. 6. Reduction rules of Ωρπ configuration semantics.

– transitions are labeled: reading a process P from the oracle labels the transi-
tion with P , setting the oracle to P labels it with P , and all other transitions
are labeled with the special symbol τ ; and

– memories created by the modification of the oracle do not contain a receiver
process.

Notice that the primitives seemingly act like regular channels.
The two rules (C.Fw) and (C.Bw) correspond to the forward and backward

rules of the regular ρπ calculus: the former perform the exchange of a message,
and creates an associated memory, and the backward rule replace a process by
the corresponding memory. Notice that, since those two rules do not interact
with the oracle, their label is τ .

Rule (C.Inf) allows a process to update the oracle. Since we are at the config-
uration level, and therefore the oracle is not visible here, this rule simply reduces
to an empty process, and emits a label P , where P is the new process stored in
the oracle.

On the other hand, with rule (C.For), a process forecast(X) � Q can read
a process P from the oracle, and substitute free occurrences of X by P in Q.
Since we are at the configuration level, the oracle is not visible, and the process
P read is not constrained at this point. Instead, a label P is emitted, which is
then used below to constraint the reduction.

Global Semantics. The global semantics is defined using two reduction relations:
a forward reduction relation (noted �) and a backward reduction relation (noted
�), defined according to the reduction rules given in Fig. 7.

Silent configuration transitions are simply lifted to the global semantics (rules
G.Fw and G.Bw). If the configuration transition exposes a Q label, then the
context is updated accordingly (rule G.Inform). Notice that we require the
newly stored process to simulates the previous one, which captures the intuition
of refinement of the stored value2. On the other hand, for forecast labels (P ),

2 We could generalize this rule by relaxing the constraint that Q � P , by introducing a
binary relation of processes R as parameter and requiring that 〈P, Q〉 ∈ R, and then
instantiating our semantics with � as R in this paper. However, the implications
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(G.Fw)
M

τ�c N

M |P � N |P (G.Bw)
M

τ�c N

M |P � N |P

(G.Inform)
M

Q
�c N Q � P

M |P � N |Q

(G.Forecast)
M

P�c N

M |P � N |P

Fig. 7. Reduction rules of Ωρπ global semantics.

the corresponding configuration transition is allowed only if the label matches
the context (rule G.Forecast).

We note → the semantics of Ωρπ, defined as →=� ∪ �. Also, →�, �� and
�� are the transitive and reflective closure of →, � and �.

A trace is a sequence of transitions σ = t1; . . . ; tn with ti = Ci−1 → Ci. When
C0 is initial, we call the trace initial. When t1; . . . ; ti are the only G.Inform
reduction of σ (i.e. if none of ti+1; . . . ; tn is a G.Inform reduction), we call σ
a forecast sequence (ti is called the last inform transition of the sequence). A
trace that contains only forward (resp. backward) transitions is called forward
trace (resp. backward trace). We note ε for an empty trace. Two traces t1; . . . ; tn
and t′1; . . . ; t

′
m are said coinitial if t1 = C1 → C and t′1 = C1 → C ′ and cofinal if

tn = C → Cf and t′m = C ′ → Cf .

Example. The example in Fig. 8 shows an execution of a Ωρπ context. The initial
context is c〈P1〉 | c〈P2〉. This context contains two processes to be read on c.
The configuration is composed of two threads. The first one (initially with tag
k1) reads the context, and then receives one of the two process on c (due to the
non-deterministic semantics, the choice is random), and runs it. Intuitively, it
launches one of the process at random. Notice, in particular, that if it rolls back
to the initial configuration, an other process can be selected during a second
attempt. The second process (initially with tag k2), performs a definitive choice.
Similarly to the first thread, it selects one of the possible process at random, but
contrary to the first thread, it modifies the context to store that choice.

In the example, first k1 reduces, and first chooses process P1, which is run
(the two first reductions). At this point, if the process rolls back and restarts, it
still has the choice (not shown). After, k2 reads the context, then selects P2, and
finally modifies the oracle (transitions 3, 4 and 5). At this point, the selection

of such generalization are not trivial, in particular with respect to the weak causal
consistency result presented latter in this paper. Therefore, for the sake of simplicity,
we restrict ourself to the restricted definition.
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is definitive3. A sequence of backward reduction revert the configuration in its
initial state, but with the context modified. Now, when the first two reduction
are replayed, k1 has no choice and selects P2.

3.3 Oracle Soundness

In this subsection, we argue that the oracle behaves as expected: we expect that,
looking at a trace, any reduction G.Forecast that occurs should forecast P ,
when the previous reduction G.Inform that occurs in the trace sets the oracle
with process P , regardless of any backward reduction in between (or with the
initial P if no G.Inform transition is taken).

More formally, given a trace σ, for any subtrace σij = ti; . . . ; tj of σ with
tk = M |P → N |Q the last inform transition of σij , for any t ∈ tk+1; . . . ; tj , t is
either G.Fw, G.Bw or G.Forecast with context Q.

To begin with, we show that the context does not change, except during
G.Inform transition.

Lemma 1. Given a trace σ such that the final context is M |P .
The last G.Inform reduction (if any) in σ is N |Q � N ′|P .

Proof. By induction on the length of σ. In the case σ is ε, then trivially, Q = P
and no reduction occurs.

In the case σ = σ′; t. Let N |R be the final context of the σ′ trace. Let t be
N |R → M |P . We proceed by case analysis of the transition t, the cases G.Fw,
G.Forecast and G.Bw are trivial. If t is G.Inform, then t = N |R � M |P ,
and it is the last G.Inform transition.

Using this fact, we show that G.Forecast reductions read the context set
by the previous G.Inform reduction4.

Lemma 2. Given a trace σ = t1; . . . ; tn with ti = M |P � M ′|Q being the last
G.Inform reduction of σ, then for any G.Forecast reduction t in the subtrace
ti+1; . . . ; tn, t = N |Q � N ′|Q.
Corollary 1 (Oracle soundness). Given a trace σ, for any G.Forecast
reduction M |P � M ′|P , the preceding G.Inform transition is N |Q � N ′|P .

4 Weak Causal Consistency

The Ωρπ calculus is not causally consistent: it is possible to inform the oracle
and then go back to the initial configuration (up to context), which is, obviously,
not reachable using only forward reductions (see Fig. 9: the modification of the
oracle happens after —in Lamport terms— the message exchange).
3 Notice that, due to the pending 〈k1

5 , k̃5〉 : c〈P1〉 that remains after the choice, if k1

reduces at this point, when reading c it could actually receive from this pending
process. For the sake of simplicity, we ignore this, since that garbage process is
cleaned up when k2 returns in its initial state.

4 The proof is trivial. Due to length constraints, we omit it.
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k1 : forecast(X) � (X | c(Y ) � Y ) | k2 : forecast(X) � (X | c(Y ) � inform〈c〈Y 〉〉)|c〈P1〉 | c〈P2〉
� G.Forecast

νk3.k3 : c〈P1〉 | c〈P2〉 | c(Y ) � Y | k2 : forecast(X) � (X | c(Y ) � inform〈c〈Y 〉〉)
| [k1 : forecast(X) � (X | c(Y ) � Y ); k3]|c〈P1〉 | c〈P2〉

� G.Fw

νk3.νk̃3.〈k1
3, k̃3〉 : c〈P1〉 | νk4.k4 : P2 | k2 : forecast(X) � (X | c(Y ) � inform〈c〈Y 〉〉)

| [k1 : forecast(X) � (X | c(Y ) � Y ); k3] | [〈k2
3, k̃3〉 : c〈P2〉 | 〈k3

3, k̃3〉 : c(Y ) � Y ; k4]|c〈P1〉 | c〈P2〉
� G.Forecast

νk3.νk̃3.〈k1
3, k̃3〉 : c〈P1〉 | νk4.k4 : P2 | νk5.k5 : c〈P1〉 | c〈P2〉 | c(Y ) � inform〈c〈Y 〉〉

| [k1 : forecast(X) � (X | c(Y ) � Y ); k3] | [〈k2
3, k̃3〉 : c〈P2〉 | 〈k3

3, k̃3〉 : c(Y ) � Y ; k4]

| [k2 : forecast(X) � (X | c(Y ) � inform〈c〈Y 〉〉); k5]|c〈P1〉 | c〈P2〉
� G.Fw

νk3.νk̃3.〈k1
3, k̃3〉 : c〈P1〉 | νk4.k4 : P2 | νk5.νk̃5.〈k1

5, k̃5〉 : c〈P1〉 | νk6.k6 : inform〈c〈P2〉〉
| [k1 : forecast(X) � (X | c(Y ) � Y ); k3] | [〈k2

3, k̃3〉 : c〈P2〉 | 〈k3
3, k̃3〉 : c(Y ) � Y ; k4]

| [k2 : forecast(X) � (X | c(Y ) � inform〈c〈Y 〉〉); k5]

| [〈k2
5, k5〉 : c〈P2〉 | 〈k3

5, k5〉 : c(Y ) � inform〈c〈Y 〉〉; k6]|c〈P1〉 | c〈P2〉
� G.Inform

νk3.νk̃3.〈k1
3, k̃3〉 : c〈P1〉 | νk4.k4 : P2 | νk5.νk̃5.〈k1

5, k̃5〉 : c〈P1〉 | νk6.νk7.k7 : 0

| [k1 : forecast(X) � (X | c(Y ) � Y ); k3] | [〈k2
3, k̃3〉 : c〈P2〉 | 〈k3

3, k̃3〉 : c(Y ) � Y ; k4]

| [k2 : forecast(X) � (X | c(Y ) � inform〈c〈Y 〉〉); k5]

| [〈k2
5, k5〉 : c〈P2〉 | 〈k3

5, k5〉 : c(Y ) � inform〈c〈Y 〉〉; k6] | [k6 : inform〈c〈P2〉〉; k7]|c〈P2〉
� G.Bw

νk3.νk̃3.〈k1
3, k̃3〉 : c〈P1〉 | νk4.k4 : P2 | νk5.νk̃5.〈k1

5, k̃5〉 : c〈P1〉 | νk6.k6 : inform〈c〈P2〉〉
| [k1 : forecast(X) � (X | c(Y ) � Y ); k3] | [〈k2

3, k̃3〉 : c〈P2〉 | 〈k3
3, k̃3〉 : c(Y ) � Y ; k4]

| [k2 : forecast(X) � (X | c(Y ) � inform〈c〈Y 〉〉); k5]

| [〈k2
5, k5〉 : c〈P2〉 | 〈k3

5, k5〉 : c(Y ) � inform〈c〈Y 〉〉; k6]|c〈P2〉
� G.Bw

νk3.νk̃3.〈k1
3, k̃3〉 : c〈P1〉 | νk4.k4 : P2 | νk5.k5 : c〈P1〉 | c〈P2〉 | c(Y ) � inform〈c〈Y 〉〉

| [k1 : forecast(X) � (X | c(Y ) � Y ); k3] | [〈k2
3, k̃3〉 : c〈P2〉 | 〈k3

3, k̃3〉 : c(Y ) � Y ; k4]

| [k2 : forecast(X) � (X | c(Y ) � inform〈c〈Y 〉〉); k5]|c〈P2〉
� G.Bw

νk3.νk̃3.〈k1
3, k̃3〉 : c〈P1〉 | νk4.k4 : P2 | k2 : forecast(X) � (X | c(Y ) � inform〈c〈Y 〉〉)

| [k1 : forecast(X) � (X | c(Y ) � Y ); k3] | [〈k2
3, k̃3〉 : c〈P2〉 | 〈k3

3, k̃3〉 : c(Y ) � Y ; k4]|c〈P2〉
� G.Bw

νk3.k3 : c〈P1〉 | c〈P2〉 | c(Y ) � Y | k2 : forecast(X) � (X | c(Y ) � inform〈c〈Y 〉〉)
| [k1 : forecast(X) � (X | c(Y ) � Y ); k3]|c〈P2〉

� G.Bw

k1 : forecast(X) � (X | c(Y ) � Y ) | k2 : forecast(X) � (X | c(Y ) � inform〈c〈Y 〉〉)|c〈P2〉
� G.Forecast

νk3.k3 : c〈P2〉 | c(Y ) � Y | k2 : forecast(X) � (X | c(Y ) � inform〈c〈Y 〉〉)
| [k1 : forecast(X) � (X | c(Y ) � Y ); k3]|c〈P2〉

Fig. 8. Example of a Ωρπ forward and backward execution. On each line, the part of
the term that takes the next transition is coloured in red. The result of the previous
transition is coloured in blue on the next line. When the result of the previous transition
also takes the next transition, it is coloured in green. (Color figure online)
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k1 : a〈P 〉 | k2 : a(X) � inform〈X〉|P | Q

� G.Fw

νk3.k3 : inform〈P 〉 | [k1 : a〈P 〉 | k2 : a(X) � inform〈X〉; k3]|P | Q

� G.Inform

νk3.νk4.k4 : 0 | [k3 : inform〈P 〉; k4] | [k1 : a〈P 〉 | k2 : a(X) � inform〈X〉; k3]|P
� G.Bw (twice)

k1 : a〈P 〉 | k2 : a(X) � inform〈X〉|P

Fig. 9. Example of a sequence of reductions which leads to a configuration that can
not be reached using only forward reductions.

However, our calculus still exhibits an almost causally consistent behaviour:
the embedded configuration is the same and the initial P | Q context is more
general than a specific context P , in the sense that any reduction with a context
P can be done by a context P | Q.

This section formalises this intuition, which we call weak causal consistency.
In this section, we consider a generic transition system, with a set of states S,
equipped with a forward transition relation � and a backward transition relation
� and a (general) transition relation →=� ∪ �.

R-weak Causal Consistency. Given a relation R ⊆ S×S, a reversible system is R-
weakly causally consistent is for each state Cf reachable from an initial state Ci,
there exists a related state C ′

f reachable using only forward transitions. We first
define the notion of initial state (a state that can only take forward reductions),
and we then formalise our notion of weak causal consistency.

Definition 2 (Initial state). A state Ci is initial (noted Ci ��) if and only if
there exists no C such that Ci � C.

Definition 3 (Weak causal consistency). A reversible transition system
Σ = 〈S,�,�〉 is weakly causally consistent (with respect to R) if and only
if:

∀Ci, Cf ∈ S · Ci �� ∧Ci →� Cf ⇒ ∃C ′
f ∈ S · Ci �� C ′

f ∧ 〈C ′
f , Cf 〉 ∈ R

This definition is intentionally very broad, depending on the chosen R. In
the rest of this paper, we will only consider some particular cases. As we will see
in the rest of this paper, we think interesting cases include preorder relations,
e.g. simulation relation, or other evaluation-closed relations.

Notice that this definition is close to the definition of reversibility developed
by Caires et al. in [3] (Definition 3.4).

Remark 2. Notice that if the relation R we consider is the identity, we fall back
on the definition of (strong) causal consistency. Therefore, weak causal consis-
tency is a conservative extension of causal consistency.
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5 Weak Causal Consistency of Ωρπ

In this section, we show that Ωρπ is �-weakly causally consistent. We can not
show weak causal consistency as causal consistency is usually shown (see for
instance the proof of causal consistency of the ρπ calculus [10], the details of
the proof are shown in Mezzina’s thesis [11]), since the loop lemma does not
hold in our calculus. Instead, we show the causal consistency in two steps: (i)
we show that, if an initial trace σ does not contain G.Inform reductions, then
there exists a coinitial and cofinal forward trace σ�, this is shown by relating
this particular trace to an equivalent one in ρπ and using the causal consistency
of ρπ; (ii) we show that, for every trace σ, there is a coinitial and cofinal trace
σs free of G.Inform. A summary of the proof is shown in Fig. 10.

Ci C′
f

Cf
σ

σs

�

fσs(Ci) fσs(Cm)

fσs fσs

σρπ
s

∃σρπ
�

∃σ�

Fig. 10. Summary of the causal consistence proof: for any trace σ (top) from Ci to Cf ,
it is possible to find a coinitial and cofinal trace σs. Aside, we show that any G.Inform
free trace (in particular σs) of the Ωρπ calculus can be played in ρπ calculus (σρπ

s ,
bottom left). We introduce a function fσs to do the conversion. Since ρπ is causally
consistent, there necessarily exists an equivalent forward sequence σρπ

� (middle left),
which can finally be played instead of σg (σ�, top left).

5.1 States Simulation

As we have seen in the previous section, weak causal consistency relies on states
simulating each other. Hence, we first exhibit some similar states we will rely on
in the subsequent sections.

First, a term with P in the context simulates any term composed of the same
configuration and a process Q such that P � Q in the context. This is trivial,
since � is evaluation closed.

Lemma 3. ∀M ∈ M, P,Q ∈ P · P � Q ⇒ M |P � M |Q
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Also, any κ : inform〈P 〉 simulates κ : 0. Surprisingly the rule is easy, but not
trivial, due to backward reductions.

Lemma 4. ∀M ∈ M, P, S ∈ P · M | κ : inform〈P 〉|S � M | κ : 0|S
Proof. We have to show that, for any C such that M | κ : 0|S → C, there exists
C ′ such that M | κ : inform〈P 〉|S → C ′.

We proceed by case analysis on the reduction rule used. Only G.Bw and
G.Inform are not trivial.

G.Bw: From the premisses of G.Bw and C.Bw, M | κ : 0 ≡ νk.k : P | [Q; k].
If κ is independent of k, then the result trivially holds.
If κ = 〈hi, h̃〉 · k, then M | κ : 0 ≡ M ′ | (νk.〈hj , h̃〉 · k : R | 〈hi, h̃〉 · k :
0) | [Q; k] ≡ M ′ | (νk.k : R | 0) | [Q; k] (notice that it is possible that
κ = k, in which case R = 0). Then the backward reduction that occurs is
M ′ | (νk.k : R | 0) | [Q; k]|S � M ′ | Q|S .
Finally, with the same reasoning, we have M | κ : inform〈P 〉 ≡ M ′ | (νk.k :
R | inform〈P 〉) | [Q; k], which can reduce using G.Bw: M ′ | (νk.k :
R | inform〈P 〉) | [Q; k]|S � M ′ | Q|S . The result holds by reflexivity of
�.

G.Inform: We suppose the inform〈·〉 that reduces is k : inform〈P 〉. In the case
it is an other inform〈·〉 in M , the result trivially holds.
From the premisses of G.Inform, M | k : inform〈P 〉|S reduces to M | νk′.k′ :
0 | [k : inform〈P 〉; k′]|P and P � S. We have to show that M | νk′.k′ : 0 | [k :
inform〈P 〉; k′]|P � M | k : 0|S . Only the case G.Forecast is relevant.
In that case, according to the premisses of G.Forecast and C.For, M ≡
M ′ | κ : forecast(X) � Q. Therefore, M | νk′.k′ : 0 | [k : inform〈P 〉; k′]|P
reduces to M ′ | νk′′.k′′ : Q{P /X} | [μ;κ] | νk′.k′ : 0 | [k : inform〈P 〉; k′]|P
and, similarly, M | k : 0|S reduces to M ′ | νk.k : Q{S/X} | [μ;κ] | k : 0|S .
Since P � S, M ′ | νk.k : Q{P /X} | [μ;κ] | νk′.k′ : 0 | [k : inform〈P 〉; k′]|P �
M ′ | νk.k : Q{S/X} | [μ;κ] | k : 0|S .

Corollary 2. ∀M ∈ M, P,R, S ∈ P · R � S ⇒ M | κ : inform〈P 〉|R � M | κ :
0|S
Proof. From Lemmas 3 and 4, M | κ : inform〈P 〉|R � M | κ : 0|R � M | κ : 0|S .
The result holds by transitivity of �.

5.2 Causal Consistency of the Traces Without G.INFORM Reductions

When a Ωρπ trace σ does not contain G.Inform reduction, there is a one-to-one
mapping between the global semantics of Ωρπ contexts, and the configuration
semantics of Ωρπ configurations. To clarify this paragraph, we will only work
with the configuration fragment of Ωρπ.

The configuration semantics is analogous to the regular ρπ semantics, except
for inform〈P 〉 and forecast(X) � Q primitives. Encoding the inform〈P 〉 prim-
itive in ρπ is easy: it acts like an oblivious channel and one just need to add
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a repeating inform(X) � 0 process (and, anyway, since σ does not contain
G.Inform reduction, we could even ignore them).

Encoding the forecast(X)�Q primitive is almost as simple. Since the trace
does not contain G.Inform reduction, the context is constant. Let P be the pro-
cess it contains. We only need to add enough forecast〈P 〉. To avoid any problem
with the key, we can simply add them under the same key than the forecast. That
is, we replace each κ : forecast(X)�Q, by κ : forecast(X)�Q | forecast〈P 〉.
Note that this replacement also includes occurrences in memories.

Definition 4. The function [[M |R]]=[[M ]]R encodes an Ωρπ context into a ρπ
configuration, where [[M ]]R is defined in Figs. 11 and 12.

[[0]]R = 0 [[νu.M ]]R = νu.[[M ]]R [[M | N ]]R = [[M ]]R | [[N ]]R

[[k : P ]]R = k : [[P ]]R [[[μ; k]]]R = [[[μ]]R; k]

Fig. 11. Rules to encode an Ωρπ configuration into a ρπ configuration.

[[0]]R = 0 [[X]]R = X [[νa.P ]]R = νa.[[P ]]R [[P | Q]]R = [[P ]]R | [[Q]]R

[[a〈P 〉]]R = a〈[[P ]]R〉 [[a(X) � P ]]R = a(X) � [[P ]]R

[[inform〈P 〉]]R = inform〈[[P ]]R〉 | inform(X) � 0

[[forecast(X) � P ]]R = forecast(X) � [[P ]]R | forecast〈R〉

Fig. 12. Rules to encode an Ωρπ process into a ρπ process.

Trivially, ignoring G.Inform transitions, an encoded Ωρπ configuration sim-
ulates the original configuration, and an Ωρπ configuration simulates the forward
reductions of its encoded counterparts, using only forward rules:

Lemma 5. For any Ωρπ contexts C1 and C2, [[C1]] � [[C2]] ⇒ C1 � C2. If
C1 � C2 without a G.Inform reduction, then [[C1]] � [[C2]]. If C1 � C2, then
[[C1]] � [[C2]].

Corollary 3. Ωρπ, without G.Inform reductions, is causally consistent.

Proof. Suppose Ci →� Cf , for Ci ��. Then there exists a ρπ reduction [[Ci]] →�

[[Cf ]].
Since ρπ is causally consistent, there exists a forward reduction [[Ci]] �� [[Cf ]].

Therefore there exists a forward reduction Ci �� Cf .
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5.3 Existence of a Trace Free of G.INFORM Reductions

We are given an initial trace σ = t1; . . . ; tn with Ci the initial configuration. Our
goal is to show that there exists a coinitial and cofinal trace σf ;σi such that
σf is free of G.Inform reductions. We proceed in two steps: (i) we consider
a forecast sequence σ′ and we show that we can move the (initial) G.Inform
reductions at the end of the trace (see Fig. 13); (ii) we consider an initial trace
and we show that we can then move all G.Inform reductions at the end of the
trace, by successively pushing the first G.Inform reductions toward the end of
the trace.

M |P N |Q

G.Inform

�

Fig. 13. Illustration of Lemma 6. If a configuration M |P reduces to N |Q using a
G.Inform reduction, then the initial configuration simulates the final configuration.

Lemma 6 (Inform removal). ∀M ∈ M · M |P → N |Q ⇒ M |P � N |Q
Proof. Since the transition changes the context, it is a G.Inform transition.
Thus, M = M ′ | κ : inform〈P 〉 and N = M ′ | κ : 0. From Lemma 4, we have that
M |P � N |P . From the premisses of rule G.Inform, P � Q. From Lemma 3, we
have that M |P � M |Q. Finally, from the transitivity of the simulation relation,
M |P � N |Q.

A corollary of this lemma is that for any sequence of reductions from Ci to
Cf , it is possible to remove all G.Inform reductions and reach a new C ′

f which
can simulate Cf .

Corollary 4. For all initial configuration Ci, for all configuration Cf such
that Ci →� Cf , there exists a configuration C ′

f such that Ci →� C ′
f without

G.Inform reduction and C ′
f � Cf .

Proof. Let σ = t1; . . . ; tn be the trace of the sequence of reduction Ci →� Cf .
By induction on the number of G.Inform reductions in σ. The base case (0

G.Inform reduction in σ) follows from the previous section.
For the inductive case, consider there are n G.Inform reductions in σ, let

tj = Cj−1 � Cj be the first one and tk = Ck−1 � Ck the second one. That is,
Cj →� Ck−1 without G.Inform reduction.

From Lemma 6, Cj−1 � Cj , there exists a C ′
k−1 such that Cj−1 →� C ′

k−1

and C ′
k−1 � Ck−1. Let σ1 be the trace of that sequence of reductions. From

Remark 1, σs does not contain G.Inform reduction.
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Also, since C ′
k−1 � Ck−1, there exists a C ′

f such that Ck−1 →� C ′
f and

C ′
f � Cf .

Finally, we have Ci →� C ′
k−1 →� C ′

f . This sequence contains one less
G.Inform reduction. Thus, from the induction hypothesis, there exists C ′′

f such
that Ci →� C ′′

f without G.Inform reduction and such that C ′′
f � C ′

f .
Finally, from the transitivity of simulation, C ′′

f � Cf .

6 Application: Sieve of Eratosthenes

Presentation. In this section, we informally discuss an example application of the
oracle introduced in Ωρπ. This example consists in a distributed implementation
of the Sieve of Eratosthenes algorithm to find prime numbers. Despite being
quite simple, it shows that partial reversibility of Ωρπ allows a notion of forward
progress, which is not the case in pure causally consistent reversible calculi.

For this example, for the sake of simplicity, we add integers, sets and tuples as
primitive values of our calculus, and we assume we have usual primitive functions
to manipulate those values.

The Sieve of Eratosthenes is a simple algorithm to find prime numbers under
a limit l. This algorithm begins with a set of integers from 2 to l, and iterate over
each integers i in the set, removing multiples of i. When a fixpoint is reached,
the set contains all prime numbers below l.

In our example, we adapt this algorithm for a distributed setting: instead of
iterating over i, we take a second set of integer between 2 and �√l�, from which
concurrent processes select a local i.

For our example, the oracle contains a tuple of two sets: the first is the set
of prime candidates, which we call the sieve and the second is the set of possi-
ble values for i (which we call values). Each thread reads this oracle, selects a
possible i and removes its multiples from the sieve. Figure 14 shows an imple-
mentation of this distributed variant of the Sieve of Eratosthenes. For the sake
of conciseness, we only show a single process, but one could choose an arbitrary
number of similar processes. Initially, the oracle contains the two sets {2, . . . , l}
and {2, . . . �√l�}. Notice that, once a possible i is tested, it is removed from the
set of possible values.

k1 : forecast(〈sieve, values〉)�
let i ∈ values in

inform〈〈sieve \ {j|j = k × i, k > 1}, values \ i〉〉|〈{2,...,l},{2,...�√
l�}〉

Fig. 14. A distributed implementation of the Sieve of Eratosthenes. This implemen-
tation has only one process, with tag k1, but it could contain an arbitrary number of
similar processes.
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Discussion. The term we show in Fig. 14 is safe, in the sense that when we
reach a configuration in which the oracle is 〈sieve, ∅〉, we know that sieve con-
tains only prime numbers. However, there is no guarantee that this state is
eventually reached. First, as with regular reversible calculi, we can loop in a
forward/backward reduction for ever (if the oracle is not updated in between,
there is no progress). We ignore this problem since it is common in reversible
calculi.

However, the primitives we introduced with the oracle introduce a new prob-
lem, which is that forecasts and informs are not atomic: if two receptions are done
concurrently, there is a possibility to have a read–modify–write inconsistency. The
second issue is deeper. To solve it, we would have to introduce standard atomic
primitives, such as compare-and-swap, to interact with the oracle.

Nonetheless, even with this drawback, this example is interesting. It shows
that we have a notion of progress, which can be used to implement standard
algorithms for concurrent programming.

7 Conclusion and Future Work

We presented Ωρπ, a reversible calculus in which process can be stored in an
oracle, which is preserved during backward reductions. This oracle is controlled
by two primitives which act as two channels inform and forecast. Until a
process is set, any process can be received from the forecast primitive (it acts
as a random process). Once a process P is sent to the inform channel, any
message received from the forecast channel is that process P (until a new
process Q is sent to inform) even if the configuration does backward reductions.

Our second main contribution is the definition of a notion of weak causal con-
sistency. Weak causal consistency states that for any reachable state, there must
exists a similar state reachable using only forward reductions. We think that, in
addition to the calculus presented here, this notion of weak causal consistency
may be suitable to study other reversible process calculi, for instance those in
which backward reductions introduce some garbage which should be ignored.

Future work could improve this paper on two directions.
First, our work can be extended by allowing the process stored in the context

to reduce as any other process, following standard HOπ semantics. Thus, terms
would have two parts: a reversible part (in the configuration) and a non-reversible
side (in the context). Our forecast and inform primitives would allow processes
to cross the boundary between the two sides. On a longer term, we could imagine
allowing reversible and non-reversible processes to communicate via standard
channels (and removing forecast and inform channel, which would become
useless). Such approach would result in a reversibility confined to some processes,
in a globally non-reversible process (or vice-versa).

On the other hand, we could try to relax the simulation constraint in the pre-
misses of rule G.Inform, which is an important practical limitation. Instead of
having a simulation constraint, we could allow a relation R, given as a parameter
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of the semantics. With sufficient constraints on this relation (typically reflexiv-
ity, transitivity and evaluation closure), we could try to prove the weak causal
consistency property of Ωρπ with respect to such R.

Finally, an underlying aspect of this work is to introduce some notion of
progress in the context of reversible computation. Usually, reversible computa-
tion loses this notion by the very nature of the computation: there is an initial
configuration, but no final one, as it is always possible to take backward and for-
ward steps; nor any notion of progress, as anything that is done can be undone.
Using oracles and contexts as presented in this paper can be used to reintro-
duce a notion of progress, for instance by having a convergence criterion on the
context.
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A Tangled Web of 12 Lens Laws
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Abstract. Bidirectional transformation has played important roles in
broad areas, database management, programming language, and model-
driven development after Foster et al. revisited view updating problems
introduced by Bancilhon and Spyratos. They introduced the concept of
(asymmetric) lens as a pair of a forward get and a backward put functions
to synchronize a source data and its view consistently. For the get and
put functions to be consistent, they should satisfy several lens laws such
as the (StrongGetPut), (GetPut), (PutGet) and (PutPut) laws.
By combining some of these lens laws, we can represent how consistent a
lens satisfying the laws is. Fischer et al. has introduced nine meaningful
weaker lens laws to give a “clear picture” of the laws where they show
relations among lens laws, for example, that one law implies another and
combination of two laws is equivalent to combination of the other three
laws. This paper gives more precise relationship among 12 lens laws that
have been presented in literature. The relationship makes an intertwined
implication diagram like a tangled web. The results can be used for easily
verifying the desirable lens laws.

Keywords: Bidirectional transformation · Asymmetric lens laws

1 Introduction

Bidirectional transformation has been called a lens after Foster et al. [7] revisited
a classic view updating problem introduced by Bancilhon and Spyratos [1]. It has
played an important role for maintaining consistency in many fields of applica-
tions, database management systems [2,6,16], algebraic data structure interface
on programming [13,17], and model-driven software development [4,18,19].

A lens is a pair of a forward function get and a backward function put which
are used for maintaining consistency between two related data, a source and
a view. Let S and V be sets of sources and views. The function get : S → V
generates a view from a given source data typically by extracting a part of the
source and arranging it in an appropriate way; the function put : S × V → S
returns a source for an updated view with assist of the original source because
views have less information than the corresponding sources in general.

To define a meaningful bidirectional transformation, two functions, get and
put , that form a lens should relate to each other. The relationship is characterized
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Fig. 1. Core lens laws

by equations for these functions called lens laws. Figure 1 shows four typical lens
laws introduced in [7].

The (StrongGetPut) law requires that a source can always be determined
by put only with an updated view independently of the original source. Under
this law, views are as informative as the corresponding sources. The (GetPut)

law is a weaker version of the (StrongGetPut) law. This law requires that put
returns the same source as original whenever the view has not been updated.
The (PutGet) law is about consistency of view updating. This law requires that
any updated source by put with an updated view yields the same view by get .
The (PutPut) law is a condition imposed only on the put function. This law
requires that a source updated twice (or possibly more) by put with different
views consecutively is the same as one obtained by put with the last view.

These core lens laws characterize three practical properties on lenses for
meaningful bidirectional transformation: bijective, well-behaved, and very-well-
behaved. A bijective lens must satisfy the (StrongGetPut) and (PutGet) laws.
A well-behaved lens must satisfy the (GetPut) and (PutGet) laws. A very-
well-behaved lens must satisfy the (GetPut), (PutGet) and (PutPut) laws.
Programmers defining lenses for bidirectional transformation need to select an
appropriate property for lenses according to their purpose and application and
check if a defined lens satisfies the corresponding lens laws.

One of the solutions is to use domain-specific languages for bidirectional
transformation. Many programming languages have been developed to make it
easy to define meaningful lenses under specific lens laws [7,14]. They basically
give a solution by either permitting to use limited primitives and their combina-
tions or imposing a strong syntactic restriction to write bidirectional programs.
If general-purpose languages are used for bidirectional programming, the con-
formance to the desirable lens laws should be checked for each program. The
problem of checking the conformance is, however, in general undecidable because
it involves a kind of functional equalities. This is why many bidirectional pro-
gramming languages have been proposed, where specific lens laws always hold
due to a careful design of the languages.

Fischer et al. [5] have shown that some combinations of weaker lens laws can
imply some of the core lens laws. They give a “clear picture” of lens laws by
investigating the relationships over the laws shown in Fig. 1 and Fig. 2 minus
(PutGetPut), (WeakPutGet), and (Undoability). The resulting relationships
show which combination of weaker laws can imply a core law.
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Fig. 2. Other lens laws

Implications among lens laws often help to find their unexpected interaction
and give a clear insight to bidirectional transformation. For example, every bijec-
tive lens, which satisfies the (StrongGetPut) and (PutGet) laws, is found to
be very-well-behaved (that is, to satisfy the (GetPut), (PutGet) and (PutPut)

laws) from the facts that the (PutGet) law implies (PutInjectivity) and the
conjunction of the (StrongGetPut) and (PutInjectivity) laws implies (Put-

Put). Fischer et al. introduced several implications to show that a well-behaved
lens can be uniquely obtained only from a put function as long as put satisfies
the (PutSurjectivity), (PutTwice) and (PutInjectivity) laws.

A major goal of this paper is to improve Fischer et al.’s clear picture of lens
laws. Specifically, we add three more lens laws, (PutGetPut), (WeakPutGet)

and (Undoability), which have been introduced for a practical use [3,10–12]
and find all Horn-clause-like implications among the 12 lens laws to identify
an essence of bidirectional transformation. The contribution of this paper is
summarized as follows:

– Relationship among 12 lens laws including the (PutGetPut), (WeakPutGet)

and (Undoability) laws is investigated and the laws are shown to be classified
based on the relation (Sect. 2 and Sect. 3).

– Horn-clause-like formulas among 12 lens laws are shown as many as possible
(Sect. 4). They are summarized by a complicated web structure shown in
Fig. 3 and Fig. 4.

Related Work. As mentioned earlier, the present work is an improvement
of a clear picture of lenses introduced by Fischer et al. [5]. They give only a
few implications among lens laws except (WeakPutGet) and (Undoability).
This paper covers much more implications some of which are not trivial. Hidaka
et al. [11] give a classification to bidirectional transformation approaches includ-
ing properties like lens laws required for well-behavedness. They just present
the properties independently of each other and do not mention anything about
their relationship. Stevens [20] gives implications among a few properties of sym-
metric lenses, in which sources and views are evenly treated and get takes two
arguments like put . Some of the implications she presents hold also for asymmet-
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ric ones as shown in this paper. It would be interesting to consider a complete
picture similar to ours for symmetric lens laws.

This paper extends the author’s short paper [15] in which some implications
among 10 lens laws are shown with no completeness. The present paper adds two
more laws, (PutGetPut) and (WeakPutGet), to discuss possible implications
among the 12 lens laws and proves completeness for each family of laws.

2 Summary of Lens Laws

We shall give a brief summary to all lens laws in Fig. 2 with tiny examples that
may be used for further discussions in this paper.

In the rest of this paper, S and V denote sets of sources and views, respec-
tively. For demonstrating examples of lenses, we will use sets Z, N and Q of inte-
gers, non-negative integers and rationals, respectively. For x ∈ Q, �x� denotes
the largest integer less than or equal to x. We write x�y to indicate the greatest
one among x, y ∈ Q and x mod d for the remainder after division of x ∈ Z by
d ∈ N \ {0} where x mod d = x − d �x/d�. Most of the examples presented here
may look elaborate so as not to satisfy the other lens laws as far as possible.

2.1 Laws to Relate the get and put Functions

The six lens laws, (StrongGetPut), (GetPut), (PutGet), (WeakPutGet),
(PutGetPut), and (Undoability), involve both the get and put functions, while
the others involve only the put function. We start with summarizing the six laws.

The (StrongGetPut) law indicates that the source is determined only by
the view even though the view has less information than the source in general.
If the view is given by get with a source, then the source is obtained by put
independently of the original source. Under this law, the get function is left-
invertible with the put function. For example where S = V = Z, a pair of the
get and put functions defined by get(s) = 2s and put(s, v) = �v/2� satisfies the
(StrongGetPut) law.

The (GetPut) law is literally a weakened version of the (StrongGetPut)

law. Under this law, the source is not changed if the view obtained from the
original source is not updated. For example where S = V = Z, a pair of the
get and put functions defined by get(s) = 2s and put(s, v) = v − s satisfies the
(GetPut) law but not the (StrongGetPut) law.

The (PutGet) law requires that all the information in the updated view
is reflected to the source so that the same view can be obtained from it. For
example where S = V = Z, a pair of the get and put functions defined by
get(s) = �s/2� and put(s, v) = 2v satisfies the (PutGet) law. A lens is said
to be bijective if it satisfies the (StrongGetPut) and (PutGet) laws. A lens is
said to be well-behaved if it satisfies the (GetPut) and (PutGet) laws. Note that
we only consider the case where all get and put functions are total. Although
the (PutGet) law has been relaxed for possibly-partial put functions in the
literature [3,5,7,9], such a case is left for future work.
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The (WeakPutGet) law is literally a weakened version of the (PutGet) law.
While the (PutGet) law requires the equality between the view corresponding to
the source obtained by an updated view (that is, get(put(s, v))) and the updated
view (that is, v), the (WeakPutGet) law requires the same equality up to the
further put operation with the original source. This law is practically important
because it allows tentative view updates that may be of an inappropriate form.
For example where S = Z and V = Z × Z, a pair of the get and put functions
defined by get(s) = 〈s, s〉 and put(s, 〈v1, v2〉) = v1 satisfies the (WeakPutGet)

law but not the (PutGet) law. Updating a view into 〈v1, v2〉 with v1 	= v2 breaks
the (PutGet) law because get(put(s, 〈v1, v2〉)) = 〈v1, v1〉 	= 〈v1, v2〉.

The (PutGetPut) law requires that the (GetPut) law holds under the con-
dition that the source is in the image of the put function. By replacing s with
put(s, v) in the (GetPut) law, we have the (PutGetPut) law. This law has been
first introduced by Hu et al. [12] and mentioned in [8] as a law that is required in
practical settings. For example where S = Z×Z and V = Z, a pair of get and put
functions defined by get(〈s1, s2〉) = |s1 − s2| and put(〈s1, s2〉 , v) = (s2 + |v| , s2)
satisfies the (PutGetPut) law but not the (GetPut) law. The source s = 〈0, 1〉
breaks even the (GetPut) law because put(s, get(s)) = 〈1, 2〉 	= s. This lens
breaks the (WeakPutGet) law as well.

The (Undoability) law implies that any source can be recovered with the
view obtained from the source itself no matter how source is updated by a
different view. For example where S = V = Z, a pair of the get and put func-
tions defined by get(s) = �s/2� and put(s, v) = 2v − s + 1 + 2 �s/2� satisfies
the (Undoability) law. It has been investigated in a few papers [3,9,11]1. The
(Undoability) law is weaker than the (StrongGetPut) law and stronger than
the (WeakPutGet) law as shown later.

2.2 Laws to Confine the put Function

The last law in Fig. 1 and the last five lens laws in Fig. 2 impose constraints
only on the put function. The (PutPut) law requires that the source obtained
by applying the put functions repeatedly with many views is that obtained by
applying put once with the last view. It plays an important role for state-based
lenses [7,11], that is, the history of updates can always be ignored. For example
where S = V = Z, put(s, v) = 5 �s/5�+(v mod 5) satisfies the (PutPut) law. A
lens is said to be very-well-behaved if it satisfies the (GetPut), (PutGet), and
(PutPut) laws.

The (PutTwice) law imposes “idempotency” of the put function applied with
the fixed view. This law is obviously a weakened version of the (PutPut) law.
For example where S = V = Z, put(s, v) = s � v satisfies the (PutTwice) law
but violates the (PutPut) law).

The (SourceStability) law requires every source to be stable for a certain
view. Defining the get function that returns the corresponding view for a given

1 In [3], a lens is said to be undoable when not only (Undoability) but also (PutGet)

hold in our terminology.
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source, the pair conforms the (GetPut) law. For example where S = V = Z,
put(s, v) = sv2 satisfies the (SourceStability) law for which there are infinitely
many choices of the get function to have the (GetPut) law.

The (PutSurjectivity) law requires literally surjectivity of the put function.
This law is a weakened version of the (SourceStability) law. For example where
S = V = Z, put(s, v) = 2s− 3v satisfies the (PutSurjectivity) law but not the
(SourceStability) law.

The (ViewDetermination) law indicates that there is no distinct pair of
views that generates the same source by the put function. Combining with
the (SourceStability) law, it guarantees existence and uniqueness of the get
function to form a well-behaved lens [5]. For example where S = V = Z,
put(s, v) = 2|s|(2v − 1) satisfies the (ViewDetermination) law.

The (PutInjectivity) law requires literally injectivity of the put function for
each source fixed. This law guarantees that there is no distinct pair of views
that leads the same source for the fixed original source. This law is a weakened
version of the (ViewDetermination) law. The three law combination of (Put-

Twice), (PutSurjectivity) and (PutInjectivity) is equivalent to the two law
combination of (SourceStability) and (ViewDetermination) [5]. For example
where S = V = Z, put(s, v) = s + v satisfies the (PutInjectivity) law but
violates the (ViewDetermination) law.

3 Three Families of Lens Laws

Lens laws are classified by implication relation among them. As we have seen
in the previous section, there are obvious implications between two lens laws,
e.g., (StrongGetPut) implies (GetPut), (PutGet) implies (WeakPutGet),
and (PutPut) implies (PutTwice). Investigating all the implications among the
12 lens laws in Fig. 1 and Fig. 2, we will find that the lens laws can be classified
into three families, which we call GetPut, PutGet, and PutPut. Every lens law
belongs exactly to one family except for the (WeakPutGet) law which belongs
to the GetPut and PutGet families as we will show later. In this section, all
implications between two lens laws are presented with their proofs to classify the
laws. It is also shown that there is no other implication between two lens laws
by giving counterexamples. In addition, possible implications that involve more
than two laws belonging the same family are discussed. In the rest of the paper,
we consider Horn-clause-like implications of the form L1 ∧ · · · ∧ Ln ⇒ L where
Li, L are lens laws. We say that an implication L1 ∧ · · · ∧ Ln ⇒ L is derivable
from a set I of implications if L is obtained by taking an implication closure
using I from {L1, . . . , Ln}. In addition, we assume that the set {L1, . . . , Ln}
is pairwise incomparable, that is, none of them can be derived from the others,
because the implication is otherwise reduced to that with a smaller n.
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Fig. 3. Three families of lens laws

3.1 GetPut Family

The GetPut family consists of seven lens laws all of which are entailment of
the (StrongGetPut) law2. This family makes an implication web as shown
in Fig. 3(a) where a double arrow =⇒ stands for an implication between the two
lens laws and a single arrow −→ from the ∧ symbol stands for an implication
from the conjunction of the two lens laws connected with ∧ to the lens law
pointed by the arrow head. The (WeakPutGet) belongs, conversely to what
one would expect from its name, to both the GetPut family and the PutGet
family as we will show later.

Every implication in the figure is shown later. Before that, lemmas about
non-implications among lens laws are shown, which will be used to disprove the
converse of implications. Each of them can be proved by a counterexample.

Lemma 1. The following non-implications hold.

(1-1) (GetPut) 	=⇒ (WeakPutGet)

(1-2) (Undoability) 	=⇒ (SourceStability) ∨ (PutGetPut)

(1-3) (SourceStability) 	=⇒ (PutGetPut)

(1-4) (PutGetPut) ∧ (WeakPutGet) 	=⇒ (PutSurjectivity)

(1-5)
(PutSurjectivity)∧(WeakPutGet) 	=⇒ (PutGetPut)∨(SourceStability)

(1-6) (Undoability) ∧ (GetPut) 	=⇒ (StrongGetPut)

(1-7) (WeakPutGet) ∧ (GetPut) 	=⇒ (Undoability)

Proof. The non-implication (1-1) is shown by an example of a lens on S = V = Z
given by get(s) = 2s and put(s, v) = v − s, which satisfies the (GetPut) law
2 We prefer a shorter name though it might be called the StrongGetPut family.
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but violates the (WeakPutGet) law. The non-implication (1-2) is shown by
an example of a lens on S = V = Z given by get(s) = s and put(s, v) = −s
satisfies the (Undoability) law but violates the (SourceStability) and (Put-

GetPut) laws. The non-implication (1-3) is shown by an example of a lens on
S = V = Z given by get(s) = s and put(s, v) = s + v, which satisfies the
(SourceStability) law but violates the (PutGetPut) law. The non-implication
(1-4) is shown by an example of a lens on S = Z × Z and V = Z given by
get(〈s1, s2〉) = |s1 − s2| and put(〈s1, s2〉 , v) = 〈s2 + |v| , s2〉, which satisfies the
(PutGetPut) and (WeakPutGet) laws but violates the (PutSurjectivity) law.
The non-implication (1-5) is shown by an example of a lens on S = V = Z given
by get(s) = s and put(s, v) = −s, which satisfies the (WeakPutGet) and (Put-

Surjectivity) laws but violates the (PutGetPut) and (SourceStability) laws.
The non-implication (1-6) is shown by an example of a lens on S = V = Z
given by get(s) = s + 1 and put(s, v) = s which satisfies the (Undoability)

and (GetPut) laws but violates the (StrongGetPut) law. The non-implication
(1-7) is shown by an example of a lens on S = V = Z given by get(s) = s and
put(s, v) = s � v which satisfies the (WeakPutGet) and (GetPut) laws but
violates the (Undoability) law. �
Note that two types of entailment of non-implications hold in general: P 	=⇒ Q
and P ⇒ R entail R 	=⇒ Q; P 	=⇒ Q and R ⇒ Q entail P 	=⇒ R. We will often
use them to prove non-implications in the rest of the paper.

Theorem 2. The GetPut family has the following proper implications.

(2-1) (StrongGetPut)
=⇒�⇐= (GetPut)

=⇒�⇐= (SourceStability)
=⇒�⇐=

(PutSurjectivity)

(2-2) (StrongGetPut)
=⇒�⇐= (Undoability)

=⇒�⇐= (PutSurjectivity)

(2-3) (GetPut)
=⇒�⇐= (PutGetPut)

(2-4) (Undoability)
=⇒�⇐= (WeakPutGet)

(2-5) (PutGetPut) ∧ (PutSurjectivity)
=⇒⇐= (GetPut)

(2-6) (SourceStability) ∧ (WeakPutGet)
=⇒�⇐= (GetPut)

Furthermore, no other implications hold among the GetPut family except for
the ones derivable from the implications above.

Proof. First all implications are illustrated without disproving their converse
except (2-5).

(2-1) The implications, (StrongGetPut) ⇒ (GetPut) and
(SourceStability) ⇒ (PutSurjectivity) are immediate. The implication
(GetPut) ⇒ (SourceStability) is shown by taking get(s) as v for (SourceS-

tability).
(2-2) The implication (StrongGetPut) ⇒ (Undoability) is immediate. The
implication (Undoability) ⇒ (PutSurjectivity) is obvious by taking s′ =
put(s, get(s)) and v = get(s).
(2-3) The implication (GetPut) ⇒ (PutGetPut) is immediate.
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(2-4) The implication (Undoability) ⇒ (WeakPutGet) is shown by

put(s, get(put(s, v)))
= put(put(put(s, v), get(s)), get(put(s, v))) by (Undoability)

= put(s, v) by (Undoability).

(2-5) The implication (PutGetPut) ∧ (PutSurjectivity) ⇒ (GetPut) is
shown by

put(s, get(s))

= put(put(s′, v′), get(put(s′, v′)))

by (PutSurjectivity) taking s′ and v′ such that put(s′, v′) = s

= put(s′, v′) by (PutGetPut)

= s by assumption on taking s′ and v′.

The converse is shown by (2-1) and (2-3).
(2-6) The implication (SourceStability) ∧ (WeakPutGet) ⇒ (GetPut) is
shown by

put(s, get(s))
= put(s, get(put(s, v)))

by (SourceStability) taking v such that put(s, v) = s

= put(s, v) by (WeakPutGet)

= s by assumption on taking v.

The skipped converse implications will be disproved together with the latter part
of the present statement.

Now we show that no other implications of the form L1 ∧ · · · ∧ Ln ⇒ L
hold with Li, L ∈ {(StrongGetPut), (GetPut), (Undoability), (PutGetPut),
(WeakPutGet), (SourceStability), (PutSurjectivity)} except for the ones
derived from the implications above. Since the set {L1, . . . , Ln} is pairwise
incomparable, the cases of n ≤ 3 suffice to show the statement.

In the case of n = 1, every implication L1 ⇒ L that is unknown from
the implications above can be disproved as follows. From (1-1), the cases of
(L1, L) in {(GetPut), (PutGetPut), (SourceStability), (PutSurjectivity)} ×
{(StrongGetPut), (Undoability), (WeakPutGet)} are disproved because of
(2-1), (2-3), and (2-4). From (1-2), the cases of (L1, L) in {(Undoability),
(WeakPutGet), (PutSurjectivity)} × {(StrongGetPut), (GetPut),
(SourceStability), (PutGetPut)} are disproved because of (2-1), (2-2), (2-3),
and (2-4). From (1-3), the cases of (L1, L) in {(SourceStability)}
× {(GetPut), (PutGetPut)} are disproved because of (2-3). From (1-
4), the cases of (L1, L) in {(WeakPutGet), (PutGetPut)} × {(GetPut),
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(SourceStability), (PutSurjectivity), (Undoability)} because of (2-1) and (2-
2). With a careful observation, we find that all cases are exhausted except the
derivable implications.

In the case of n = 2, we show that there is no combination (L1, L2, L) such
that L1 ∧L2 ⇒ L holds except for the derivable implications. From our assump-
tion, L1 and L2 are incomparable with respect to implication. Thus none of
them can be (StrongGetPut). In addition, L also cannot be (StrongGetPut)

because of (1-6) and the other implications. When one of L1, L2 is (GetPut),
another should be either (Undoability) and (WeakPutGet), and then all of
the cases are either derivable or disproved by (1-7). When one of L1, L2 is
(Undoability), another should be (PutGetPut) and (SourceStability). All
cases except for L = (StrongGetPut) are derivable because of the known impli-
cations. In the remaining cases, we do not need to consider L = (Undoability)

because of (1-7). When one of L1, L2 is (PutGetPut), another should be
(SourceStability), (WeakPutGet) and (PutSurjectivity). Those cases with
L 	= (StrongGetPut), (Undoability) are either derivable or disproved by (1-4).
All of the other cases for n = 2 are either derivable or disproved by (1-5).

In the case of n = 3, due to the assumption, one of (L1, L2, L3) cannot be
(StrongGetPut) and (GetPut). In addition, two of them cannot be selected
from (PutGetPut), (SourceStability), and (PutSurjectivity) because it is
equivalent to the single law (GetPut). Hence there are no cases needed to be
considered. �

As an immediate corollary of Theorem 2, the (GetPut) law is found to
have equivalent representations:

(GetPut)
=⇒⇐= (PutGetPut) ∧ (PutSurjectivity)

=⇒⇐= (PutGetPut) ∧ (SourceStability)

3.2 PutGet Family

The PutGet family consists of four lens laws all of which are entailment of the
(PutGet) law. This family makes a sequential structure as shown in Fig. 3(b).
Every implication in the figure will be later shown in Theorem 4. First some
non-implications are shown as done for the GetPut family.

Lemma 3. The following non-implications hold.

(3-1) (WeakPutGet) 	=⇒ (PutInjectivity)

(3-2) (ViewDetermination) 	=⇒ (WeakPutGet)

Proof. The non-implication of (3-1) is shown by a lens on S = V = Z given
by get(s) = s and put(s, v) = s which satisfies the (WeakPutGet) law but
violates the (PutInjectivity) law. The non-implication of (3-2) is shown by a
lens on S = V = Z given by get(s) = s + 1 and put(s, v) = v which satisfies the
(ViewDetermination) law but violates the (WeakPutGet) law. �



A Tangled Web of 12 Lens Laws 195

The following theorem covers all implications described in Fig. 3(b). Note
that the third implication of the theorem is not unidirectional unlike the others.

Theorem 4. The PutGet family has three inclusions.

(4-1) (PutGet)
=⇒�⇐= (ViewDetermination)

=⇒�⇐= (PutInjectivity)

(4-2) (PutGet)
=⇒�⇐= (WeakPutGet)

(4-3) (WeakPutGet) ∧ (PutInjectivity)
=⇒⇐= (PutGet)

Furthermore, no other implications hold among the PutGet family except ones
derivable from the implications above.

Proof. The implications of (4-1) and (4-2) are easy and their converses are dis-
proved later. The bidirectional implication of (4-3) is shown as follows. Sup-
pose that the (PutInjectivity) and (WeakPutGet) laws hold. Then we have
put(s, get(put(s, v))) = put(s, v) because of the (WeakPutGet) law. This equa-
tion implies get(put(s, v)) = v by the (PutInjectivity) law, hence we have the
(PutGet) law. The converse is immediate from (4-2) and (4-1).

Next, in a way similar to the proof of Theorem 2, we show that there
is no other implication of the form L1 ∧ · · · ∧ Ln ⇒ L with Li, L ∈
{(PutGet), (WeakPutGet), (ViewDetermination), (PutInjectivity)} except
for derivable ones. Since the set {L1, . . . , Ln} is pairwise incomparable, the cases
of n = 1 and n = 2 suffice to show the statement. In the case of n = 1, uncertain
combinations of (L1, L) are either ((WeakPutGet), l) or (l, (WeakPutGet))
with l ∈ {(ViewDetermination), (PutInjectivity)}. None of them satisfy L1 ⇒
L) from (3-1) and (3-2) together with the implications shown above. In the
case of n = 2, from the assumption, it suffices to consider the statement for
L1 = (WeakPutGet) and L2 ∈ {(ViewDetermination), (SourceStability)}.
From the implications above, L1 ∧L2 ⇒ (PutGet) holds, and thus L1 ∧L2 ⇒ L
is derivable for any L in the PutGet family. Therefore, there are no cases that
is needed to be considered when n = 2. �
As an immediate corollary of Theorem 4, the (PutGet) law is found to have
have equivalent representations:

(PutGet)
=⇒⇐= (WeakPutGet) ∧ (PutInjectivity)

=⇒⇐= (WeakPutGet) ∧ (ViewDetermination)

3.3 PutPut Family

The PutPut family consists of two lens laws which form a single entailment of
the (PutPut) law as shown in Fig. 3(c). The implication in this family is shown
in the following theorem.

Theorem 5. The PutPut family has the implication (PutPut)
=⇒�⇐= (PutTwice).

Proof. The implication (PutPut) ⇒ (PutTwice) is immediate. The converse is
shown to be false by a lens on S = V = Z given by put(s, v) = s � v, which
satisfies the (PutTwice) law but violates the (PutPut) law. �
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3.4 Separation of Three Families

We have seen all possible implications in each family so far. Now we show that
the three families are being separated in the sense that there is no implication
of the form L1 ∧ · · · ∧ Ln ⇒ L for lens laws L1, . . . , Ln in a family and a law L
not belonging to the family.

Theorem 6. No implication of the form L1 ∧ · · · ∧ Ln ⇒ L holds if L1, . . . , Ln

belong to a single family that L does not belong to.

Proof. First we show the case of n = 1, that is, L1 	=⇒ L holds for any pair
of lens laws L1, L that do not belong to the same family. Thanks to the known
implications inside each family, it suffices to show the non-implication between
the strongest law in one family and the weakest law in another, that is,

(6-1) (StrongGetPut) 	=⇒ (PutInjectivity) ∨ (PutTwice)

(6-2) (PutGet) 	=⇒ (PutGetPut) ∨ (PutSurjectivity) ∨ (PutTwice)

(6-3) (PutPut) 	=⇒ (PutSurjectivity) ∨ (PutInjectivity)

(6-4) (PutPut) 	=⇒ (PutGetPut) ∨ (WeakPutGet)

The non-implication (6-1) is shown by a lens on S = V = Z defined by
get(s) = 2s and put(s, v) = s(v mod 2)+ �v/2� which satisfies the (StrongGet-

Put) law and violates both the (PutInjectivity) and (PutTwice) laws. The non-
implication (6-2) is shown by a lens on S = V = Z defined by get(s) = �s/3� and
put(s, v) = 1− (s mod 2)+3v which satisfies the (PutGet) law and violates the
(PutGetPut), (PutSurjectivity), and (PutTwice) laws. The non-implication
(6-3) is shown by a lens on S = V = Z given by put(s, v) = 0, which satisfies the
(PutPut) law and violates both the (PutSurjectivity) and (PutInjectivity)

laws. The non-implication (6-4) is shown by a lens on S = V = Z given by
get(s) = s + 1 and put(s, v) = v which satisfies the (PutPut) law and violates
the (PutGetPut) and (WeakPutGet) law.

In the case of n ≥ 2, since the set {L1, . . . , Ln} is pairwise incomparable
and all the laws are belong to the same family, only the case with n = 2,
{L1, L2} = {(GetPut), (Undoability)}, needs to be considered because of
the known implications for each family. It suffices to show the following non-
implication

(6-5) (GetPut) ∧ (Undoability) 	=⇒ (PutInjectivity) ∨ (PutTwice)

since the other combinations have either implication from one to another or
an equivalent single law. The non-implication (GetPut) ∧ (Undoability) 	=⇒
(PutInjectivity)∨ (PutTwice) holds due to (6-1) and the known implications.

�

4 Association Beyond Families

We have seen that lens laws in a single family do not imply any lens law out of the
family. In this section, we investigate implications of the form L1 ∧ · · · ∧Ln ⇒ L
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with n ≥ 2 where Li and Lj belong to different families for some i 	= j. As shown
later, we only need implications of n = 2 since all the implications with n ≥ 3
are derivable from them.

First, possible implications of the form L1 ∧ L2 ⇒ L are studied where L1

and L belong to the same family and L ⇒ L1, and L2 does not belong to the
family. This type of implications indicates that L1 and L are equivalent under
L2, i.e., L1 ∧L2

=⇒⇐= L∧L2. Three implications of this types are found as shown
in the following theorem.

Theorem 7. The following unidirectional implications hold.

(7-1) (PutSurjectivity) ∧ (PutTwice)
=⇒�⇐= (SourceStability)

(7-2) (PutInjectivity) ∧ (PutTwice)
=⇒�⇐= (ViewDetermination)

(7-3) (ViewDetermination) ∧ (PutGetPut)
=⇒�⇐= (PutGet)

Proof. Note that each implication has the form L1 ∧ L2
=⇒�⇐= L where L2 and L

do not belong to the same family. From Theorem 6, we have L 	=⇒ L2, which
disproves the converse implication. Thereby it suffices to show L1 ∧ L2 ⇒ L for
each item.

(7-1) Suppose that the (PutSurjectivity) and (PutTwice) laws hold. For
s ∈ S, (PutSurjectivity) gives s′ ∈ S and v ∈ V such that put(s′, v) = s.
Then

put(s, v) = put(put(s′, v), v) put(s′, v) = s

= put(s′, v) by (PutTwice)

= s put(s′, v) = s,

hence the (SourceStability) law holds.
(7-2) Suppose that the (PutInjectivity) and (PutTwice) laws hold. If
put(s, v) = put(s′, v′), we have

put(put(s, v), v) = put(s, v) by (PutTwice)

= put(s′, v′) by the assumption
= put(put(s′, v′), v′) by (PutTwice)

= put(put(s, v), v′) by the assumption

This equation implies v = v′ by the (PutInjectivity) law, hence we have the
(ViewDetermination) law.
(7-3) Suppose that the (ViewDetermination) and (PutGetPut) laws hold.
By the (PutGetPut) law, we have put(put(s, v), get(put(s, v))) = put(s, v).
Since this equation implies get(put(s, v)) = v by the (ViewDetermination)

law, we have the (PutGet) law. �
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These implications and (2-6) give four equivalence relations in the same fam-
ily under a lens law belonging to another family, that is,

(SourceStability) ∧ (PutTwice)
=⇒⇐= (PutSurjectivity) ∧ (PutTwice)

(ViewDetermination) ∧ (PutTwice)
=⇒⇐= (PutInjectivity) ∧ (PutTwice)

(WeakPutGet) ∧ (PutGet)
=⇒⇐= (SourceStability) ∧ (PutGet)

(PutGetPut) ∧ (GetPut)
=⇒⇐= (ViewDetermination) ∧ (GetPut)

The following theorem shows an implication where two lens laws in the Get-
Put family are involved but, unlike the above ones, the two are not related by
inclusion. Nevertheless it leads their equivalence under another lens laws in a
different family as we will see later.

Theorem 8 ([3,9]). The implication (GetPut)∧ (PutPut)
=⇒�⇐= (Undoability)

holds.

Proof. Suppose that the (GetPut) and (PutPut) laws hold. Then we have the
(Undoability) law because put(put(s, v), get(s)) = put(s, get(s)) = s holds
by applying the (PutPut) and (GetPut) laws. Its converse is disproved by
Theorem 6. �

This theorem leads equivalence of the (GetPut) and (Undoability) laws
under (PutPut) law as follows:

(GetPut) ∧ (PutPut)

⇒ (Undoability) ∧ (PutPut) by Theorem 8

⇒ (Undoability) ∧ (PutSurjectivity) ∧ (PutTwice) ∧ (PutPut)

by (2-2) and Theorem 5

⇒ (WeakPutGet) ∧ (SourceStability) ∧ (PutPut) by (2-4) and (7-1)

⇒ (GetPut) ∧ (PutPut) by (2-6)

which indicates (GetPut) ∧ (PutPut)
=⇒⇐= (Undoability) ∧ (PutPut).

Next, possible implications of the form L1 ∧ L2 ⇒ L are studied where L1,
L2 and L belong to different families. Two implications of this type are found.

Theorem 9. The following unidirectional implications hold.

(9-1) (SourceStability) ∧ (ViewDetermination)
=⇒�⇐= (PutTwice)

(9-2) (StrongGetPut) ∧ (PutInjectivity)
=⇒�⇐= (PutPut)

(9-3) (PutGet) ∧ (PutGetPut)
=⇒�⇐= (PutTwice)

(9-4) (PutGet) ∧ (PutTwice)
=⇒�⇐= (PutGetPut)

(9-5) (PutGetPut) ∧ (PutPut)
=⇒�⇐= (WeakPutGet)
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Proof. It suffices to simply show these implications since their converses are
disproved by Theorem 6.

(9-1) Suppose that the (SourceStability) and (ViewDetermination) laws
hold. By the (SourceStability) law, we take v′ such that put(put(s, v), v′) =
put(s, v). The equation implies v′ = v by the (ViewDetermination) law.
Then we have

put(put(s, v), v) = put(put(s, v), v′) by v = v′

= put(s, v) by put(put(s, v), v′) = put(s, v)

which indicates the (PutTwice) law.
(9-2) Suppose that the (StrongGetPut) and (PutInjectivity) laws hold.
By the (StrongGetPut) law, we have put(put(s, v), get(put(put(s, v), v′))) =
put(put(s, v), v′). By applying the (PutInjectivity) law to this equation, we
have get(put(put(s, v), v′)) = v′. Then the (PutPut) law holds because

put(put(s, v), v′) = put(s, get(put(put(s, v), v′))) by (StrongGetPut)

= put(s, v′) by the equation.

(9-3) Suppose that the (PutGet) and (PutGetPut) laws hold. Then the
(PutTwice) law holds because

put(put(s, v), v) = put(put(s, v), get(put(s, v))) by (PutGet)

= put(s, v) by (PutGetPut).

(9-4) Suppose that the (PutGet) and (PutTwice) laws hold. Then the (Put-

GetPut) law holds because

put(put(s, v), get(put(s, v))) = put(put(s, v), v) by (PutGet)

= put(s, v) by (PutTwice).

(9-5) Suppose that the (PutGetPut) and (PutPut) laws hold. Then the
(WeakPutGet) law holds because

put(s, get(put(s, v))) = put(put(s, v), get(put(s, v))) by (PutPut)

= put(s, v) by (PutGetPut).

�
Combining all theorems among lens laws presented so far, we can obtain many

other implications. For example, the implication (StrongGetPut)∧(PutGet) ⇒
(PutPut), which shows that every bijective lens conforms to the (PutPut) law,
is obtained by

(StrongGetPut) ∧ (PutGet) ⇒ (StrongGetPut) ∧ (PutInjectivity) by (4-1)

⇒ (PutPut) by (9-2).
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Fig. 4. Implication among lens laws

In addition, the implication (GetPut) ∧ (PutGet) ⇒ (PutTwice), which
has been shown in [5], is obtained by

(GetPut) ∧ (PutGet)

⇒ (SourceStability) ∧ (ViewDetermination) by (2-4) and (4-1)
⇒ (PutTwice) by (9-1).

Similarly, we might have many other implications of the form L1 ∧ · · · ∧Ln ⇒ L
among lens laws.

All implications shown in this paper give a big web structure among 12
lens laws as shown in Fig. 4, where bidirectional implications, (GetPut)

=⇒⇐=

(PutGetPut) ∧ (PutSurjectivity) and (PutGet)
=⇒⇐= (WeakPutGet) ∧

(PutInjectivity), are represented by labelled round squares that contain two
laws.

This figure tells not only implications but equalities among lens laws and
their conjunctions. For example, the equivalence relation shown in [5, Theorem
2],

(SourceStability) ∧ (ViewDetermination)
=⇒⇐=

(PutSurjectivity) ∧ (PutTwice) ∧ (PutInjectivity),

can be concluded from this figure by checking that the conjunction of the
(SourceStability) and (ViewDetermination) laws entails the (PutSurjectiv-

ity), (PutTwice), and (PutInjectivity), and vice versa.
For another example, any lens satisfying the (SourceStability), (ViewDe-

termination), and either (WeakPutGet) or (PutGetPut) laws can be found
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to be well-behaved because the figure leads to the (GetPut) and (PutGet) laws
from the three laws. This holds even when the (PutInjectivity) law is satisfied
instead of (ViewDetermination).

The web in Fig. 4 is expected to be complete, that is, no implication of the
form L1 ∧ · · · ∧ Ln ⇒ L holds for any lens laws Li and L except derivable ones
from the implications in the web. The completeness is left for future work. What
this paper has shown is that the web for each family in Fig. 3 is complete and
the three families are separated each other as stated in Theorem 6.

5 Concluding Remark

A precise relationship among lens laws has been presented. Twelve lens laws
which have been introduced in the literature on bidirectional transformation are
found to relate to each other, one implies another and a combination of two
implies another. The implication graph which shows all the relationship might
be helpful to check lens laws and certify properties for a given bidirectional
transformation.

The web of lens laws tells us a kind of duality among laws. As found from
(2-1), (2-3), (2-5), (4-1), (4-2), and (4-3) the GetPut an PutGet families have sim-
ilar implications among four laws. The (GetPut), (SourceStability), (PutIn-

jectivity), and (PutGetPut) laws in the GetPut family correspond to the (Put-

Get), (ViewDetermination), (PutSurjectivity), and (WeakPutGet) laws in
the PutGet family. The implications (2-6), (7-1), (7-3), and (7-2) also strengthen
their duality. It would be interesting to investigate even more in detail duality, for
example, the counterpart of (StrongGetPut) and (Undoability) in the PutGet
family.

Our further goal is to give a “complete picture” of lens laws such that we can
derive from it all possible implications of the Horn-clause-like form L1∧· · ·∧Ln →
L with classes L1, . . . , Ln and L of lens laws. To achieve the goal, it would be
shown that every Horn-clause-like implication that cannot be obtained from the
implication graph has a counterexample. The complete picture will help us to
understand the essence of bidirectional transformation. In addition, it would be
practically helpful to consider the case where get and put are allowed to be
partial. The implication graph might have a different form from the graph in the
total case which has been discussed in the present paper.
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Abstract. Given a simple recursive function, we show how to extract
from it a reversible and an classical iterative part. Those parts can syn-
chronously cooperate under a Producer/Consumer pattern in order to
implement the original recursive function. The reversible producer is
meant to run on reversible hardware. We also discuss how to extend
the extraction to a more general compilation scheme.

1 Introduction

Our goal is to compile a class of recursive functions in a way that parts of
the object code produced can leverage the promised green foot-print of truly
reversible hardware. This work illustrates preliminary steps towards that goal.
We focus on a basic class of recursive functions in order to demonstrate its
feasibility.

Contributions. Let recF[p,b,h] be a recursive function defined in some pro-
gramming formalism, where p is a predecessor function, h a step function, and
b a base function. We show how to compile recF[p,b,h] into itFCls[b,h] and
itFRev[p,pInv] such that:

recF[p,b,h] � itFCls[b,h] ‖ itFRev[p,pInv] , (1)

where: (i) “�” stands for “equivalent to”; (ii) itFCls[b,h] is a classical for-loop
that, starting from a value produced by b, iteratively applies h; (iii) itFRev[p
,pInv] is a reversible code with two for-loops in it one iterating p, the other
its inverse pInv; (iv) “‖” is interpreted as an interaction between itFCls[b,h]
and itFRev[p,pInv], according to a Producer/Consumer pattern, where itFRev
[p,pInv] produces the values that itFCls[b,h] consumes to implement the ini-
tially given recursion recF[p,b,h]. In principle, itFRev[p,pInv] can drive a real
reversible hardware to exploit its low energy consumption features.

In this work we limit the compilation scheme (1) to use: (i) a predecessor
p such that the value p(x)-x is any constant Δp equal to, or smaller than, -1;
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(ii) recursion functions recF[p,b,h] whose condition identifying the base case
is x<=0 instead than the more standard x==0; this means that more than one
base non positive value for recF[p,b,h] exists in the interval [Δp + 1, 0]. This
slight generalization will require a careful management of the reversible behavior
of itFRev[p,pInv] and its interaction with itFCls[b,h] in order to reconstruct
recF[p,b,h].

Contents. Sect. 2 sets the stage to develop the main ideas about (1), restricting
recF[p,b,h] to a recursive function that identifies its base case by means of the
standard condition x==0; this ease the description of how itFRev[p,pInv] and
itFCls[b,h] interact. Section 3 extends (1) to deal with recF[p,b,h] having x<=
0, and not x==0, to identify its base case(s); this impacts on how itFRev[p,pInv]
must work. In both cases, the programming syntax we use can be interpreted
into the reversible languages SRL [3,4] and RPP [4–6], up to minor syntactic
details. Section 4 addresses future work.

Fig. 1. The recursive function recF.

Fig. 2. Iterative unfolding recF(3): the bottom-up part.

2 The Driving Idea

Let recF[p,b,h] in (1) have a structure as in Fig. 1 where b(x) is the base func-
tion, h(x,y) the step function, p(x) the predecessor x-1, and c(x) the condition
x==0 to identify a unique base case.
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Figure 2 details out h(3,h(p(3),h(p(p(3)), h(p(p(p(3))),b(p(p(p(3)))))))),
unfolding of recF(3). Every comment asserts a property of the values that x or y
stores. Lines 2–4 unfold an iteration that computes p(p(p(3))), which eventually
sets the value of x to 0. Line 5 starts the construction of the final value of recF(3)
by applying the base case of recF, i.e. b(x). By definition, let pInv denote the
inverse of p, i.e. pInv(p(z))==p(pInv(z))==z, for any z. Clearly, in our running
example, the function pInv(x) is x+1. Lines 6–13 alternate h(x,y), whose result y,
step by step, gets closer to the final value recF(3), and pInv(x), which produces
a new value for x.

Fig. 3. Iterative itF equivalent to recF.

Let us call itF the code in Fig. 3. It implements recF by means of finite
iterations only. Continuing with our running example, if we run itF here above
starting with x==3, then x==0 holds at line 8, just after the first for-loop; after
the second for-loop y==recF(3) holds at line 14.

The code of itF has two parts. Through lines 2–7 the variable g counts how
many times x remains positive, the variable e how many it stays equal to 0, and
the variable s how many it becomes negative. In this running example we notice
that x never becomes negative, because the iteration at lines 3–7 is driven by the
value of x which, initially, we can assume non negative, and which p(x) decreases
of a single unity. We shall clarify the role of s later. Lines 9–13 undo what lines
2–7 do by executing pInv(x), g--, e--, s--, i.e. the inverses, in reversed order,
of p(x), g++, e++, s++. So the correct values of x are available at lines 12, and
11, ready to be used as arguments of b(x) and h(x,y) to update y as in Fig. 3,
according to the results we obtain by the recursive calls to recF.

Now, let us focus on the main difference between Figs. 4 and 3.
Both x=b(x) and y=h(x,y) at lines 12, and 11 of Fig. 3 are missing from lines

12, and 11 of Fig. 4. Dropping them let Fig. 4 be the reversible side of itF; calling
b(x) and h(x,y) in it generates y, which is the result we need, so preventing
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Fig. 4. Reversible side of itF.

the possibility to reset the value of every variable dealt with in Fig. 4 to their
initial value. This is why we also need a classical side of itF that generates y
in collaboration with the reversible side in order to implement the initial recF
correctly.

Fig. 5. Classical side of itF: the consumer itFCls.

The previous observations lead to Fig. 5 which defines the classical side
itFCls of recF, and to Fig. 6 which defines the reversible side itFCRev of recF.

So, here below we can illustrate how itFCls and itFRev synchronously inter-
act, itFRev producing values, itFCls consuming them as arguments of b(x) and
h(x,y).

Line 2 of itFCls is the starting point of the synchronous interaction between
itFCls and itFRev; its comment:

/* Inject the current x at line 2 of itFRev to let it start */

describes what, in a fully implemented version of itFCls, we expect in that line
of code. The comment says that itFCls injects (sends, puts) its input value x to
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Fig. 6. Reversible side of itF updated to be the producer itFRev of the values that
the consumer itFCls needs.

line 2 of the reversible side itFRev (cf. Fig. 6). Once itFRev obtains that value
at line 2, as outlined by:

/* Inject here the value of x from line 2 of itFCls */

its for-loop at lines 4–8 executes.
After line 2, itFCls stops at line 3. It waits for itFRev to produce the number

of times that itFCls has to iterate line 7. Accordingly to:

/* Probe line 9 of itFRev to get the number of iterations to execute */

itFRev makes that value available in its variable g at line 9:

/* itFCls probes here g which has the number of iterations */ .

Once gotten the value in iterations, itFCls proceeds to line 5 and stops,
waiting for itFRev to produce the argument of b which is eventually available for
probing at line 14 of itFRev.

Once the argument becomes available b is applied, and itFCls enters its for
-loop, stopping at line 7 at every iteration. The reason is that itFCls waits for
line 12 in itFRev to produce the value of the first argument of h(x,y). This
interleaved dialog between line 7 of itFCls and line 12 of itFRev lasts iterations
times.

3 From Recursion to Iteration

We now generalize what we have seen in Sect. 2. Inside (1) we use recG of Fig. 7
instead than recF of Fig. 1. This requires to generalize Fig. 6.
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Fig. 7. The generic structure of recG.

From the introduction we recall that, given a predecessor p(x), we define
Δp = p(x)-x, which is a negative value. In this section Δp can be any constant
k <=-1, not only k ==-1; this requires to consider the slightly more general con-
dition x<=0 in recG. For example, let p(x) be x-2. The computation of recG(3)
is h(3,h(p(3),h(p(p(3)),b(p(p(3)))))) which looks for the least n of iterated
applications of p(x) such that p(...p(3)...)<=0; in our case we have 2==n <3.

Figure 8 introduces itG which generalizes itF in Fig. 3.

The scheme itG iteratively implements any recursive function whose structure
can be brought back to the one of recG. We remark that line 1 in Fig. 8 initializes
ancillae s, e, g, and w, like Fig. 3 initializes the namesake variables of itF, but
line 2 of itG has new ancillae z, predDivX, and predNotDivX.

We also assume an initial non negative value for x. The reason is twofold.
Firstly, it keeps our discussion as simple as possible, with no need to use the
absolute value of x to set the upper limit of every index i in the for-loops
that occur in the code. Second, negative values of x would widen our discussion
about what a classical recursive function on negative values is and about what
its reversible equivalent iteration has to be; we see this as a very interesting
subject connected to [1], which is much more oriented than us to optimization
issues of recursively defined functions.

We start observing that line 3 of itG sets w to the initial value of x; the reason
is that every for-loop, but the one at lines 10–12, has to last x+1 iterations, and
x changes in the course of the computation; so, w stores the initial value of x and
stays constant from line 4 through line 21. In fact it can change at lines 22–33.
We will see why, but w is eventually reset to its initial value 0 at line 36.

With the here above assumptions, given a non negative x, and in analogy
to itF, the for-loop at lines 4–8 of itG iterates the application of p(x) as many
times as w+1, i.e. the initial value of x plus 1. So, the value of x at line 9 is
equal to w+(w+1)*Δp which cannot be positive. In particular, all the values that
x assumes in the for-loop at lines 4–8 belong to the following interval:

I(w) � [w+(w+1)*Δp, w+w*Δp, . . . , w+Δp, w] (2)

from the least to the greatest; the counters g, e, s say how many elements of
I(x) are greater, equal or smaller than 0, respectively. Depending on 0 to belong
to I(x) determines the behavior of the reminder part of itG, i.e. lines 10–36.

We distinguish two cases in order to illustrate them.
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Fig. 8. The iterative function itG.

First Case. Let w%Δp == 0, i.e. the integer value Δp divides with no reminder
the initial value of x that we find in w. So, 0 ∈ I(x), which implies the following
relations hold at line 9:

e == 1 g == -
w

Δp
s == (w+1)-g-e . (3)
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Fig. 9. A possible replacement of lines 10–12 in Fig. 8.

Lines 10–12 execute exactly once, swapping predDivX and predNotDivX. As a
remark, we could have well used the if-selection in Fig. 9 (a construct of RPP)
in place of the for-loop at lines 10–12, but we opt for a more compact code.

Swapping predDivX and predNotDivX sets predDivX==1 and predNotDivX==0,
computationally exploiting that Δp divides w with no reminder: the for-loop
body at lines 15–19 becomes accessible, while lines 22–33, with for-loops among
them, do not. Lines 15–19 are identical to lines 10–16 of itF in Fig. 4 which
we already know to correctly apply b(x) and h(x,y) in order to simulate the
recursive function we start from.

As a Second Case. Let w%Δp != 0, i.e. the integer value Δp divides the initial
value of x that w stores, but with some reminder. So, 0 �∈ I(x), which imply:

e == 0 g == -

⌊
w

Δp

⌋
s == (w+1)-g-e (4)

hold at line 9. Lines 11–12 cannot execute, leaving predDivX and predNotDivX as
they are: lines 22–33 become accessible and the for-loop at lines 15–19 does not.
Line 22 increments w to balance the information loss that the rounding of g in
(4) introduces; line 33 recovers the value of w when the outer for-loop starts.
The if-selection at lines 25–32 identifies when to apply b(x), which must be
followed by the required applications of h(x,y). We know that 0 �∈ I(x), so x==0
can never hold. Clearly, s-- is executed until x>0. But the first time x>0 holds
true we must compute b(p(x)), because the base function b(x) must be used the
last time x assumes a negative value, not the first time it gets positive; lines
26–30 implement our needs. Whenever x>0 is true, the value of x is one step
ahead the required one: we get one step back with line 26 and, if it is the first
time we step back, i.e. z==0 holds, then we must execute line 28. If not, i.e. z!=0,
we must apply the step function at line 29. Line 30, restores the right value of
x. Finally, the for-loop at line 34 sets z to its initial value.

At this point, in order to obtain the fully reversible version of Fig. 8 we must
think of replacing the calls to h(x,y) and b(x) at lines in 28, and 29 by means of
actions that probe the value of x, in analogy to Fig. 6, lines 12 and 14. The full
details are in [7] which we look as a playground with Java classes that implement
Fig. 8 and Fig. 5 as synchronous and parallel threads, acting as a producer and
a consumer.
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4 Future Work

We have shown that we can decompose every classical recursive function, based
on a predecessor that decreases every of its input by a constant value, into
reversible and classical components that cooperate to implement the original
recursive functions under a Producer/Consumer pattern (see (1)).

Firstly, we plan to extend (1) to recursive functions recF based on predeces-
sors p not limited to a constant Δp not greater than -1. A predecessor p should
be at least such that:

1. Δp is not necessarily a constant. For example, Δp == -3 on even arguments,
and -2 on odd ones can be useful;

2. the predecessor can be an integer division x/k, for some given k>0, like in a
dichotomic search, which has k==2.

Secondly, we aim at generalizing (1) to a compiler �·�:
�p� = some implementation code

�pInv� = !�p�, i.e. implementation that inverts �p�

�recF[p,b,h]� = itFCls[�b�,�h�] ‖ itFRev[�p�,�pInv�].

(5)

The domain of �·� should be a class R of recursive functions built by means
of standard composition schemes, starting from a class of predecessors p1, p2,
. . . each of which must have the corresponding inverse function p1Inv, p2Inv, . . . .

In these lines we want to explore interpretations of || more liberal than the
essentially obvious synchronous Producer/Consumer that we implement in [7].
We shall very likely take advantage of parallel discrete events simulators as
described in [8,9] in order to get rid of any explicit synchronization between
the pairs of reversible-producer/classical-consumer that (5) would recursively
generate when applied to an element in R.

We also plan to follow a more abstract line of research. The compilation
scheme (5) recalls Girard’s decomposition A → B � !A � B of a classical
computation into a linear one that can erase/duplicate computational resources.
Decomposing recF[p,b,h] in terms of itFCls[b,h] and itFRev[p,pInv] suggests
that the relation between reversible and classical computations can be formalized
by a linear isomorphism An ˛ Bn between tensor products An, and Bn of A,
and B, in analogy to [2]. Then we can think of recovering classical computations
by some functor, say γ, whose purpose is, at least, to forget, or to inject replicas,
of parts of An, and Bn in a way that (γAn → γAn)� (γAn ← γAn) can be their
type. The type says that we move from a reversible computation to a classical
one by choosing which is input and which is output, so recovering the freedom
to manage computational resources as we are used to when writing classical
programs.
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Abstract. In this paper the reversibility of executable Interval Tempo-
ral Logic (ITL) specifications is investigated. ITL allows for the reasoning
about systems in terms of behaviours which are represented as non-empty
sequences of states. It allows for the specification of systems at different
levels of abstraction. At a high level this specification is in terms of prop-
erties, for instance safety and liveness properties. At concrete level one
can specify a system in terms of programming constructs. One can exe-
cute these concrete specification, i.e., test and simulate the behaviour of
the system. In this paper we will formalise this notion of executability of
ITL specifications. ITL also has a reflection operator which allows for the
reasoning about reversed behaviours. We will investigate the reversibil-
ity of executable ITL specifications, i.e., how one can use this reflection
operator to reverse the concrete behaviour of a particular system.

Keywords: Interval Temporal Logic · Temporal reflection · Program
reversion · Reversible computing

1 Introduction

Formal methods have been used in computer science to verify desirable and
undesirable properties of programs. One type of formalism introduced is tem-
poral logic. A temporal logic allows to reason about properties over time, for
example “this resource will eventually be freed”. In this paper, we are dealing
with a particular temporal logic, Interval Temporal Logic (ITL).

Another strand of research is reversibility in computing. This is relevant
for reversing the effects of operations, for example if, after having performed a
number of operations, proceeding in the desired direction is not possible. This
could be because a resource is not available or because a result is outside the
allowed range of values. In such cases, a potential strategy is to roll back to a
safe state and continue operation from there.

Using the ITL notation (details of which will explained in Sect. 3), a program
consisting of two parts could be written as Good;Bad. The semantics (behaviour)
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of both parts are sequences of states. Good and Bad are arbitrary names indi-
cating sections of the program which worked as expected respectively did not.
We now want to reverse the effect of Bad. This would require that we go back
to the last state of Good. This can be done by using an operator undo so that
we have Good ;Bad ; undo(Bad). This operator must ensure that the last state of
Good is the same as the last state of Good ; Bad ; undo(Bad).

We propose a solution for this problem, where we use the reflection operator r.
We show that this reverses the effects of a formula, i.e., reversing the sequence of
states of that formula. We also show that it can be applied to any formula that
can be specified in ITL. This operator can be used for propositional as well as
for first-order logic ITL. Therefore, we have a universal undo operation for these
formulae. We distinguish reflection, which indicates the possibility to reverse the
sequences of states, from reversibility. Reversibility indicates that an executable
formula, a program, can be reversed.

The outline of the paper is as follows: in Sect. 2 we discuss temporal logic in
general and compare ITL with other temporal logics. We also discuss reversibility
in general. In Sect. 3 we discuss ITL, i.e., intervals, syntax of basic and derived
constructs, and the reflection operator and the semantics of these constructs. In
Sect. 4, the notion of executability is formalised and show how this notion can
be used together with reflection to reverse the effects of bad computations.

An extended version of this paper can be found on arXiv.org at [3].

2 Background

Temporal logic can be used to describe reactive systems. After some cursory
mentions earlier, a first type of temporal logic was presented by N. Prior [13].
Based on this, other types of temporal logic were devised, including (LTL) [8,12].
The main operator of LTL is the until (U) while in ITL it is the chop (;).
f U g guarantees that g will eventually hold at some future state and that f
will continue to hold until then. In ITL, satisfaction of formulas is defined over
intervals (sequences of states with at least 1 state) rather than time points which
is used in LTL. f ;g denotes that the interval can be split into a prefix and a suffix
interval in such a way that f holds for the prefix interval and g holds for the
suffix interval. So the chop operator corresponds to the sequential composition
operator.

There has been increasing interest and research done in reversible computa-
tion, for example demonstrated by the COST action IC1405 [14]. We focus on
logical reversibility. This is all types of formalisms which allow reversing steps
done in order to get back to a previous state of the computation [2].

Any temporal logic models computations over time, and time is generally
irreversible, but computations can be reversible, as we have seen. Because of this,
it seems a logic extension of temporal logic to introduce a “time reversal”, which
undoes computations and therefore seemingly reverses time, whereas actual time
is progressing. [10] introduced this for ITL.

Reversibility and reflection of logic is related to reversibility of programming
languages. Many works have researched the process of reversing executions of
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traditional programming languages, most of which are typically irreversible as
information is lost throughout. One approach to reversing such executions is
to save this lost information as a program executes forward and later use it
to reconstruct previous states (reflection). This includes the Reverse C Com-
piler [11] and the works of Hoey and Ulidowski [5,6]. Any irreversible step of
an execution is made reversible via this saved information. Execution time and
memory usage are crucial aspects of these methods, with a forward execution
typically being slower and memory requirements being higher as information is
recorded. Such approaches including that described here minimise these over-
heads sufficiently. This differs from checkpointing approaches, where a snapshot
of the state is taken at regular intervals and used to restore to previous positions
[11]. Depending on the snapshot frequency, large amounts of information must
be recorded and forward re-execution is sometimes required.

A second approach is to use reversible languages such as Janus [7], where any
valid program written in such a language can be executed both forward and in
reverse. This is comparable to ITL programs whose reflections are executable.
Janus relies on the use of increment/decrement operators to ensure no old val-
ues of variables are lost, as well as post-conditions that allow correct expression
evaluation during a reverse execution. However the challenge of converting pro-
grams of a traditional language into that of a reversible language may limit its
widespread use.

3 Interval Temporal Logic

Interval Temporal Logic (ITL) is a flexible notation for both propositional and
first-order reasoning about periods of time found in descriptions of hardware
and software systems [4,15]. Unlike most temporal logics, ITL can handle both
sequential and parallel composition and offers powerful and extensible speci-
fication and proof techniques for reasoning about properties involving safety,
liveness and projected time. Timing constraints are expressible and furthermore
most imperative programming constructs can be viewed as formulas in ITL.
AnaTempura (available from [4]) provides an executable framework for develop-
ing and experimenting with suitable ITL specifications.

3.1 Interval

In this section we revisit the underlying semantic model of Interval Temporal
Logic (albeit restricted to the finite case). The key notion of ITL is an inter-
val. An interval σ is considered to be a non-empty, finite sequence of states
σ0, σ1 . . . , σn. A state is the union of an integer state Statee which is a map-
ping from the set of integer variables Vare to the set of integer values Val, and
a Boolean state Stateb which is a mapping from the set of propositional vari-
able Varb to the set of Boolean values Bool. Note: the embedding of ITL in
Isabelle/HOL is such that one can use any definable type in Isabelle/HOL as
type for an ITL variable. We have restricted the types to just integers and
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Boolean in this paper. Let Σ+ denote the set of all finite intervals with at
least 1 state. The length of an interval σ is denoted by |σ| and is the num-
ber of states minus 1, i.e., an interval with one state has length zero. Let
σ = σ0σ1σ2 . . . σ|σ| be an interval then σ0 . . . σk (where 0 ≤ k ≤ |σ|) denotes
a prefix interval of σ, σk . . . σ|σ| (where 0 ≤ k ≤ |σ|) denotes a suffix interval of
σ, σk . . . σl (where 0 ≤ k ≤ l ≤ |σ|) denotes a sub interval of σ.

3.2 Syntax

We first discuss the basic constructs and then introduce derived constructs.
Syntax of Expressions (Boolean or Integer) in BNF e :: = z | g(e1, . . . , en) |

A | fin A | ©A where z is a constant, g an operator, and A , ©A and fin A are
temporal variables. Syntax of formulae in BNF f :: = true | h(e1, . . . , en) | ¬f |
f1 ∧ f2 | ∃V � f | skip | f1 ; f2 | f∗ where h is a Boolean predicate over integer
or Boolean expressions, and V is a Boolean or integer variable. The formula skip
denotes any interval of exactly two states. The formula f1 ; f2, where f1 and
f2 are ITL formulae denotes an interval which is the fusion of two intervals,
f1 holds over the first interval and f2 holds for the second interval. Fusion will
concatenate two intervals in such a way that the last state of the first interval and
the first state of the second interval are “fused” together. Fusion is only possible
when these states are the same. If these states are not the same the resulting
interval does not exist, i.e., is false. The formula f∗ where f is an ITL formula
denotes the fusion of a finite number of intervals, where for each interval f holds.
Zero times fusion will result in an interval with exactly one state irrespective of
f , i.e., false∗ is equal to empty. Temporal variables ©V and fin V denote the
value of variables at a particular point in an interval and are used to specify
assignment constructs. The temporal variable ©A denotes the value of A in the
next state. The expression fin A denotes the value of A in the last state. The
formula ∃V � f denotes the introduction of a local variable V .

Derived Constructs. The traditional Linear Temporal Logic (LTL) operators
©,♦ and � are defined as follows: The formula ©f � skip ; f denotes that f
holds from the next state. Note that ©f is different from temporal variable ©V ,
although the same © symbol is used, ©f is using the © symbol on formula f
whereas ©V is using the © on a variable V . ©f itself is a formula whereas
©V denotes a value. The formula ♦ f � true ; f (sometimes) denotes that there
exists a suffix interval for which f holds. The formula � f � ¬♦ ¬f (always)
denotes that for each suffix interval f holds. The formula more � ©true denotes
an interval with at least two states. The formula empty � ¬more denotes an
interval with only one state. Note that no interval will satisfy the formula false.
The formula ©w f � empty ∨ ©f (weak next) denotes either an interval of only
one state or f holds from the next state.

Semantics. We now define the semantics of ITL which is a mapping from
the syntactic constructs of Sect. 3.2 and the semantic model (intervals) defined
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in Sect. 3.1 to values (Boolean or integer). Let E�. . .�(. . .) be the “meaning”
(semantic) function from Expressions × Σ+ to Val and let σ = σ0σ1 . . . be an
interval. Let M�. . .�(. . .) be the “meaning” function from Formulae×Σ+ to Bool.
The detailed semantics of each basic ITL construct is available from [4]. A first
order ITL formula f is satisfiable denoted by � f if and only if there exists an
interval σ such that M�f�(σ) = tt. A first order ITL formula f is valid denoted
by � f if and only if for all intervals σ, M�f�(σ) = tt.

3.3 Reflection

We now discuss the notion of temporal reflection for ITL formulae as defined in
[10]. We first discuss the semantic notion of the reverse of a sequence of states
and then discuss the reflection operator and its corresponding semantics.

Let f be a formula, e an expression, and σ be an interval σ0 . . . σ|σ| then rev(σ)
denotes interval reversal and is defined as rev(σ) � σ|σ| . . . σ0. fr denotes tempo-
ral reflection of formula f and is defined as M�fr�(σ) � M�f�(rev(σ)). er denotes
temporal reflection of expression e and is defined as E�er�(σ) � E�e�(rev(σ)).

The Isabelle/HOL ITL library (available from [4]) has defined reflection laws
for all basic ITL operators. We need to add a new temporal variable ©– V to
make ITL closed under reflection. The temporal variable ©– V is the reflection of
©V and denotes the value of V in the pen-ultimate (previous) state. The formal
semantics is as follows: if |σ| > 0 then σ|σ|−1(V ) else any value from the Val.
This leads to the following theorem

Theorem 1. ITL (extended with ©– V ) is closed under reflection.

4 Executability, Reflection and Reversibility

In this section we will discuss the notion of executability. It is used to determine
whether an ITL formula represents a programming construct. We first formalise
the notion of forward executability of a formula which corresponds to generating
a sequence of states in a particular fashion: we first generate the first state
and then generate the next until the final state is generated. This sequence of
state constitutes the behaviour of the system described by the formula. We then
investigate the reflection of forward executable formula and this requires the
introduction of the notion of backward executability. This notion corresponds
to generating a sequence of states but now we first generate the final state and
then generate the previous state until we generate the first state. This sequence
corresponds to the reversed behaviour of the system described by the formula.
Forward and backward executability are related by the reflection operator.

4.1 Forward Executability

The intuition of an executable formula (specification) is that it corresponds to
a computation, i.e., in our case a sequence of states. Obviously any executable
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formula needs to be satisfiable. But not every satisfiable formula is executable
because we further require it to be “deterministic”. We will give a formal defini-
tion what we mean by this. The executable formula corresponds to programming
constructs. The following definitions are used to determine whether a formula
is executable or not. First we define the notion of a value trace of a formula
wrt a list of variables. These variables are the “free variables” appearing in f ,
i.e., f constrains the values of these variables. Note: These definitions and all
subsequent theorems have been specified and verified in the Isabelle/HOL [1]
system (library available from [4]).

Definition 1. Let s be a state and let v denote a non-empty list of variables
v0, . . . , vn and let s(v) denote the corresponding list of values s(v0), . . . , s(vn) of
v in state s. Let Spec be a formula and σ be an interval and M�Spec�(σ) = tt
then the value trace of Spec wrt v is denoted by map (λs.s(v)) σ and defined as
σ0(v) σ1(v) . . . σ|σ|(v).

Example 1. The value trace for A = 0 ∧ A gets A+1 ∧ �(B = A∗2) wrt (A,B)
is (0, 0) (1, 2) (2, 4) (3, 6) (4, 8) . . . and it represents how A and B change, A is
increased by one and B equals twice A in every state.

The following definition is a constraint on the intervals which satisfy a formula.
Only intervals that share a common prefix of the value trace are allowed,

Definition 2. A formula Spec has a common prefix value trace wrt a list
of variables v denoted by ‡[Spec]v if and only if for all intervals σ and σ′ if
M�Spec�(σ) = tt and M�Spec�(σ′) = tt and |σ| ≤ |σ′| then (map (λs.s(v)) σ) =
(map (λs.s(v)) (σ′

0 . . . σ′
|σ|)).

In above definition we compare the value trace corresponding to σ with the prefix
(of length |σ|) of the value trace of corresponding to σ′. The intuition is that the
latter is a continuation of the first,i.e., the first value trace is a “beginning” of
the latter value trace. The following example illustrates this notion.

Example 2. The following are some formula that have a common prefix value
trace.

– ‡[A = 0 ∧ empty]A, there is only one possible value trace 0.
– ‡[A = 0 ∧ A gets A + 1]A, the possible value traces are 0; 0, 1; 0, 1, 2. Each

pair of value traces share a common prefix. The common prefix value trace
of pair 0 and 0, 1 is 0 and of pair 0, 1 and 0, 1, 2 is 0, 1. Note that in the latter
pair there is another shared prefix 0 but in the definition it states that we
are looking for a prefix that has a length equal to the “smallest” of the two.
Note we align on the left.

The following are some formula that have no common prefix value trace.

– not ‡ [(A = 0 ∨ A = 1) ∧ empty]A, we have two value traces 0 and 1, but
they do not share a common prefix.
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– not ‡ [A = 0 ∧ skip]A, we have for instance value traces 0, 0 and 0, 1 but when
their length are the same they ought to agree on all values and this does not
hold as they disagree in the second state.

– not ‡ [skip]A, A does not appear in the formula so values of A are not con-
strained at all, one has value trace 0, 0 and 1, 0 and these do not share a
common prefix.

The following theorem states that the combination of satisfiability with the
notion of common prefix value trace can be used to determine whether a formula
is executable or not, i.e., satisfiable and deterministic.

Theorem 2. Let Spec be a formula and v be a list of variables. If � Spec and
‡[Spec]v then for all k ≥ 0 #{(map (λs.s(v)) σ) |M�Spec�(σ) = tt and |σ| =
k} ≤ 1.

In above theorem we have that all satisfying intervals of length k will corresponds
to at most one value trace.

The notion of common prefix value trace corresponds to the notion of gen-
erating a satisfying interval for a formula but it “limits” how this is achieved,
i.e., one proceeds in a forward manner by extending at the right and therefore
no backtracking will be used. The following definition introduces the notion of
forward executability.

Definition 3. Let Spec be a formula and v a list of variables. Spec is forward
executable wrt v denoted by †[Spec]v if and only if � Spec and ‡[Spec]v.
In Tempura [9], the executable subset of ITL, a formula Spec is rewritten into
a normal form init w0 ∧©w Spec0. The init w0 represents the initial state and
©w Spec0 represents the behaviour of the system from the next state onward
but only if there is a next state. This process is repeated for formula Spec0,
i.e., it is rewritten to init w1 ∧©w Spec1. This process of rewriting into normal
form corresponds to our notion of forward executability. This is expressed in the
following theorem.

Theorem 3. Given formulae w and Spec and a list of variables v. If †[init w ∧
empty]v and †[Spec]v then †[init w ∧©w Spec]v.

In Example 2 we have seen that one needs to be careful in adding constructs
that limit the length of an interval. The following theorem gives conditions for
which it is safe to do so.

Theorem 4. Let Spec0 and Spec1 be formula and v be a list of variables. If
� Spec0 ∧ Spec1 and ‡[Spec0]v then †[Spec0 ∧ Spec1]v.

In this theorem formula Spec0 ensures that the values for v are deterministic and
formula Spec1 is used to put extra constraints on the intervals satisfying Spec0.
The � Spec0 ∧ Spec1 condition ensures that we have at least one such interval.
Examples of such Spec1 are len (k), ♦ init w and halt w. On their own these
formulae are not forward executable but combined with a forward executable
one they will be.
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4.2 Backward Executability

We now investigate reversing executable specifications. Reflection relates the
notion of prefix intervals with that of suffix intervals. So we need to introduce
the “mirror image” of common prefix value traces, i.e. the notion of common
suffix value trace.

The following definition is a constraint on the intervals which satisfy a for-
mula. Only intervals that share a common suffix of the value trace are allowed.

Definition 4. A formula Spec has a common suffix value trace wrt a list of
variables v denoted by �[Spec]v if and only if for all intervals σ and σ′ if
M�Spec�(σ) = tt and M�Spec�(σ′) = tt and |σ| ≤ |σ′| then (map (λs.s(v)) σ) =
(map (λs.s(v)) (σ′

|σ′|−|σ| . . . σ
′
|σ′|)).

The following example illustrates this notion.

Example 3. The following are some formula that have a common suffix value
trace.

– �[(fin A) = 0 ∧ empty]A, there is only one value trace 0.
– �[�(A = 0)]A, the possible value traces are 0; 0, 0; 0, 0, 0. Each pair of value

traces share a common suffix.

The following are some formula that have no common suffix value trace.

– not �[(A = 0 ∨ A = 1) ∧ empty]A, we have two value traces 0 and 1, but they
do not share a common suffix.

– not �[(fin A) = 0 ∧ skip]A, we have for instance value traces 0, 0 and 1, 0 but
when their length are the same they ought to agree on all values and this
does not hold as they disagree in the first state.

– not �[skip]A, A does not appear in the formula so values of A are not con-
strained at all, one has value trace 0, 0 and 0, 1 and these do not share a
common suffix.

The following lemma states the relationship between common prefix, common
suffix and reflection.

Lemma 1. Let Spec be formula and v be a list of variables then
‡[Specr]v iff �[Spec]v and �[Specr]v iff ‡ [Spec]v.

For the notion of satisfiability we have the following lemma.

Lemma 2. Let Spec be a formula then (� Specr) iff (� Spec).

The following theorem states that the combination of satisfiability with the
notion of common suffix value trace can be used to determine whether a for-
mula is deterministic or not, i.e., is backward executable or not.

Theorem 5. Let Spec be a formula and v be a list of variables. If � Spec and
�[Spec]v then for all k ≥ 0 #{(map (λs.s(v)) σ) |M�Spec�(σ) = tt and |σ| =
k} ≤ 1.
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The notion of common suffix value trace corresponds to notion of generating a
satisfying interval for a formula but it ”limits” how this is achieved, i.e., one
proceeds in a backward manner. The following definition introduces the notion
of backward executability.

Definition 5. Let Spec be a formula and v a list of variables. Spec is backward
executable wrt to v denoted by �[Spec]v if and only if � Spec and �[Spec]v.

In Tempura we have unfortunately no rules for backward execution. But we can
define a mirror image of Theorem 3, i.e., the normal form would be fin w ∧©∼ Spec.
So we first generate the last state of the interval and then proceed to determine
the previous state if there is any.

Theorem 6. Given the formulae w and Spec and list of variables v. If �[fin w ∧
empty]v and �[Spec]v then �[fin w ∧©∼ Spec]v.

The following theorem is similar to Theorem 4.

Theorem 7. Let Spec0 and Spec1 be formula and v be a list of variables. If
� Spec0 ∧ Spec1 and �[Spec0]v then �[Spec0 ∧ Spec1]v.

4.3 Reversing the Effects of Bad Computations

In the introduction we have seen that we are interested in formulae of the form
Good ; Bad ; (Bad)r. We now investigate under which conditions can we forward
execute Bad ; Badr. The chop operator is non-deterministic if the length of Bad
is left unspecified, i.e., generally we have not † [Bad ; Badr]v. However, we can
use Theorem 4 to strengthen Bad to Bad ∧ len (k). We similarly strengthen
the Badr to Badr ∧ len (k) in order to ensure that we undone that specific
bad computation Bad ∧ len (k). Note that (Bad ∧ len (k))r is equivalent to
Badr ∧ len (k), this follows from the reflection laws. The following theorem gives
the conditions necessary to “undo” a bad computation.

Theorem 8. Let Spec be a formula and v be a list of variables. If � Spec ∧
len k and ‡[Spec]v and �[Spec]v then †[(Spec ∧ len (k)) ; (Specr ∧ len (k))]v and
�[(Specr ∧ len (k)) ; (Spec ∧ len (k))]v.

Notice that Spec needs to have both a common prefix value trace and a common
suffix value trace. In the first case we proceed in a forward manner while in the
second case in a backward manner.

5 Conclusion and Future Work

First order ITL is a flexible notation for specifying properties and behaviours of
systems. Most imperative programming constructs can be specified by formulae
in ITL. We have used the reflection operator for the specification of reversed
behaviour of systems. It is shown that ITL is closed under this reflection operator
which means that we can specify its reverse for any ITL formula. We have
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presented an extensive list of reflection laws that help in the construction of the
reverse of an ITL formula. We have shown that when an ITL formula is forward
and backward executable then one can indeed reverse its behaviour.

Future work consists of adding the backward execution mechanism to the
Tempura tool. The reflection and reversal of event-based programs is another
area of interest. In an event-based program, a trigger event causes a chain of
reactions by a system. The occurrence of a trigger can not be reversed but the
reaction by the system can be reversed. However, this reaction might include
other triggers that will set off other chains of reactions. Determining this chain
of reactions and reversing its effects are some of the challenges that need to be
addressed.
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Abstract. Due to the significant progress made in the implementation
of quantum hardware, efficient methods and tools to design correspond-
ing algorithms become increasingly important. Many of these tools rely
on functional representations of certain building blocks or even entire
quantum algorithms which, however, inherently exhibit an exponential
complexity. Although several alternative representations have been pro-
posed to cope with this complexity, the construction of those represen-
tations remains a bottleneck. In this work, we propose solutions for effi-
ciently constructing representations of quantum functionality based on
the idea of conducting as many operations as possible on as small as pos-
sible intermediate representations—using Decision Diagrams as a rep-
resentative functional description. Experimental evaluations show that
applying these solutions allows to construct the desired representations
several factors faster than with state-of-the-art methods. Moreover, if
repeating structures (which frequently occur in quantum algorithms) are
explicitly exploited, exponential improvements are possible—allowing to
construct the functionality of certain algorithms within seconds, whereas
the state of the art fails to construct it in an entire day.

1 Introduction

Quantum computing promises to outperform classical computers in certain appli-
cations. While the theoretical background was already developed in the previous
century, it is today that actual physical devices are evolving to a point where first
experiments are performed that are suggested not to be easy on a classical com-
puter. However, having hardware without efficient tools to design correspond-
ing algorithms on it certainly presents an unsatisfactory situation. Accordingly,
researchers and engineers started to develop methods and tools for important
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tasks such as synthesis/compilation [1–5], (classical) simulation [6–8], and verifi-
cation [9–12]—leading to elaborate design flows and tool chains as realized, e.g.,
by IBM’s Qiskit [13], Google’s Cirq [14], and Microsoft’s QDK [15].

These tools and the corresponding design tasks, however, frequently rely on
representations of certain building blocks’ functionality or even the functionality
of an entire quantum algorithm. This poses a severe challenge since quantum
functionality is most generally described by matrices of exponential dimension
with respect to the size of the quantum system, i.e., 2n ×2n for a system consist-
ing of n qubits (the quantum analogue to bits). To date, industrial tool chains
like IBM’s Qiskit hardly offer efficient and scaleable solutions for constructing
and representing quantum functionality (as witnessed by the evaluations later
in Sect. 5).

Fortunately, different approaches have been proposed that try to deal with
this complexity, e.g., based on arrays [16–19], tensor networks [20–23], and Deci-
sion Diagrams [24–26]. Although we may be able to represent (i.e., store) the
overall functionality of certain building blocks or an entire quantum algorithm
using these techniques, we may not be able to construct this representation in
feasible time—which constitutes a severe bottleneck for many applications in
the domain of quantum computing. This is caused by the fact that, even though
individual quantum operations typically emit a sparse, tensor product structure,
their composition requires subsequent matrix-matrix multiplications—leading to
a potential decrease in sparsity and/or exploitable structure. Hence, many com-
putations on potentially large intermediate representations have to be conducted
in order to construct the overall functional representation.

In this paper, we propose two solutions to overcome this bottleneck—using
Decision Diagrams (DDs) as a representative functional description. First, a gen-
eral solution is presented which can be applied to arbitrary functionality and is
based on the idea to conduct as many operations as possible on as small as
possible intermediate representations. Besides that, another solution is proposed
which explicitly exploits the fact that many quantum algorithms contain repeat-
ing structures (e.g., Grover iterations, random walks, etc.). In both cases, the
complexity of constructing quantum functionality representations is substan-
tially reduced—in case of the second solution even an exponential improvement
is achieved.

Experimental evaluations eventually confirm the resulting benefits. They
show that the proposed solutions allow to construct the desired representa-
tions several factors faster than with the current state of the art. If additionally
repeating structures are exploited, representations for quantum algorithms and
building blocks can be constructed in a matter of seconds which, using the cur-
rent state of the art, could not be constructed in an entire day. The resulting
implementation is available as open source at https://github.com/iic-jku/qfr.

The rest of this paper is structured as follows: Sect. 2 reviews the necessary
basics on quantum computing and introduces the Quantum Fourier Transform,
which will be used as a running example in this paper. In Sect. 3, we show
the importance of the considered problem and review the state of the art—

https://github.com/iic-jku/qfr
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illustrating the current bottleneck. Then, Sect. 4 introduces and describes the
proposed solution which, afterwards, is evaluated in Sect. 5. Finally, Sect. 6 con-
cludes the paper.

2 Background

In this section, we briefly review the key concepts of quantum computing as well
as a typical building block for quantum algorithms which will serve as an example
over the course of this paper. While the respective reviews are kept brief, we refer
the interested reader to [27] for amore thorough treatment on quantumcomputing.

In classical computing, bits are used as the smallest computation unit—
attaining values from the discrete set B = {0, 1}. In the field of quantum
computing, these discrete values, denoted |0〉 and |1〉 using Dirac notation, are
chosen as basis elements spanning a two-dimensional complex Hilbert space H.
Consequently, the state |q〉 of a qubit (the quantum analogue to the bit) is
described by an element of this space, i.e., by a superposition of the basis
states |0〉 and |1〉. More specifically, |q〉 = α0|0〉 + α1|1〉 with αi ∈ C such that
|α|2 = |α0|2 + |α1|2 = 1.

A quantum system then consists of n qubits q0, . . . , qn−1 described by the 2n-
dimensional Hilbert space H ⊗ · · · ⊗ H. The state |q〉n of such a system is again
described by amplitudes αi ∈ C, where |q〉n =

∑
i∈{0,1}n αi|i〉 with |α|2 = 1.

However, the amplitudes αi of a quantum system are not directly observable.
Instead, performing a measurement probabilistically collapses the qubits’ state
to one of the basis states |i〉 (each with probability |αi|2).

The state of a quantum system is manipulated through unitary linear trans-
formations U : H ⊗ · · · ⊗ H → H ⊗ · · · ⊗ H, which are predominantly described
by their unitary 2n × 2n matrix representations1 in the computational basis
{|0〉, . . . , |2n − 1〉}. Usually, these quantum operations act only on a small subset
of a system’s qubits. Hence, their matrix representations have a sparse, tensor
product structure, where the tensor product of smaller “operation matrices” with
identity matrices is formed.

Example 1. Consider a quantum system consisting of n = 3 qubits. Then,
Fig. 1a, Fig. 1b, and Fig. 1c show a few common quantum operations using their
23 × 23 sparse matrix representations—namely the Hadamard operation as well
as the controlled-phase operations S and T , where ω = exp(2πi

8 ) =
√

i.

A quantum algorithm is described as a sequence of quantum operations
applied to a quantum system, i.e., G = g0, . . . , gm−1 denotes a quantum algo-
rithm consisting of m operations where each gi is described by a unitary matrix
Ui. Since the composition of unitary transformations is again unitary, the func-
tionality of a quantum algorithm may be interpreted as one unitary transforma-
tion itself. Consequently, the functionality is described by a unitary matrix U
which arises from the matrix-matrix multiplication of the individual operation

1 A complex-valued matrix U is unitary if U†U = UU† = I, where U† denotes the
conjugate transpose of U and I the identity matrix.
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Fig. 1. Common quantum operations and the QFT in a 3-qubit system

matrices Ui, i.e., U = Um−1 · · · U0. Quantum algorithms are usually visualized as
quantum circuit diagrams where wires indicate the individual qubits and oper-
ations (also called gates) are placed as boxes on these lines with corresponding
identifiers. Time is assumed to progress from left to right.

In the following, quantum algorithms and quantum circuit diagrams will be
illustrated by means of the Quantum Fourier Transform (QFT) [27]—a well-
known building block in many important quantum algorithms. Its most promi-
nent use probably is for period finding in Shor’s algorithm for integer factor-
ization [28] and many other group-theoretic problems (see Chapter 5 of [27]), at
which exponential speed-ups over the best classical methods are demonstrated.
QFT is also used in quantum approximate counting [29], which provides proven
polynomial speed-ups over the best classical methods, i.e., Monte-Carlo-type
estimators [30]. Such quantum Monte-Carlo algorithms are now popular candi-
dates to achieve quantum advantage with near-term quantum devices [31].

Example 2. Consider a 3-qubit system as already discussed in Example 1. Then,
Fig. 1d shows the quantum circuit for the 3-qubit Quantum Fourier Transform
consisting of m = 6 gates in total. This circuit will be used as a running example
for the further discussions throughout this work.

3 Representations for Quantum Algorithms

Working in the domain of quantum computing requires representations of certain
building blocks or even entire quantum algorithms. This is evident, e.g., for
typical tasks such as:

– Synthesis/Compilation [1–5], where an entire quantum algorithm is realized in
terms of elementary quantum operations supported by the addressed quantum
architecture. Without a proper representation of the algorithm’s functionality,
no synthesis/compilation approach can work.

– (Classical) Simulation [6–8], where a given quantum algorithm is “tested”
on a classical machine prior to actual execution on a quantum computer.
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Fig. 2. Decision Diagrams for operations shown in Fig. 1a—1c

While this can be done using consecutive matrix-vector multiplication on
the elementary gates, approaches based on emulation [32,33], which utilize
functional representations of entire building blocks, have been shown to be
much more efficient—provided the emulated functionality can be constructed
efficiently.

– Verification [9–12], where, e.g., for two quantum circuits G and G′ it should
be checked whether they realize the same function—also referred to as equiv-
alence checking. This obviously requires the construction of a functional rep-
resentation for both functionalities in order to compare them.

In all these cases, having a representation of the considered functionality is
essential. The first challenge resulting from that is that quantum functionality
in general is described in terms of matrices with exponential size, i.e., for a
functionality over n qubits, a matrix U of size 2n × 2n results. In previous
work, researchers already started to address this challenge, which led to different
approaches exploiting certain structural elements of the considered functionality
in order to reduce the exponential space complexity of its representation:

– Array-based approaches (such as proposed in [16–19]) heavily rely on the
sparsity of the involved matrices and try to distribute the workload over
several cores of supercomputers, which can often be done efficiently since the
matrix-multiplication itself is inherently parallelizable.

– Tensor Networks (such as proposed in [20–23]) capitalize on the tensor prod-
uct structure inherent to quantum operations—allowing to decompose the
whole matrix into many smaller parts. Their performance typically scales
with the degree of entanglement of the considered functionality.

– Decision Diagrams (DDs, such as proposed in [24–26]) recursively split the
considered functionality into equally sized sub-matrices until only complex
numbers remain. By identifying redundancies in these sub-parts and extract-
ing common factors, equal sub-functionality can be shared—frequently lead-
ing to a compact representation in terms of directed acyclic graphs with
edge-weights.

In the following, we will illustrate those endeavours using Decision Diagrams
as a representative. However, the observations and findings discussed in this
work apply to the other representations as well.
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Fig. 3. State-of-the-art DD composition sequence for 3-qubit QFT (see Fig. 1d)

Example 3. Consider again the quantum operations shown in Fig. 1. Their func-
tionalities can be represented efficiently in terms of Decision Diagrams as shown
in Fig. 2. As can be seen, they allow for a rather compact representation (3–5
nodes vs. 8–16 non-zero matrix entries).

Unfortunately, constructing those representations for certain building blocks
or even entire quantum algorithms can often not be conducted efficiently—even
if it is conceptionally simple2. In fact, as reviewed in Sect. 2, the functionality of a
quantum algorithm (given by a quantum circuit G = g0, . . . , gm−1) is described
by the matrix U = Um−1 · · · U0, with Ui being the matrix corresponding to
gate gi (for 0 ≤ i < m). Hence, since the individual matrices Ui can usually
be represented rather efficiently with either of the approaches reviewed above
(arrays, tensor networks, DDs), simply conducting multiplications on those rep-
resentations should allow for an efficient construction of the entire functional rep-
resentation. But the more quantum operations are multiplied together, the more
complex representations result—reducing the sparsity, increasing the degree of
entanglement, or eliminating existing redundancies—and, hence, significantly
slowing down the construction. Thus, while the multiplication operation itself
is realized rather efficiently in general (utilizing, e.g., specialized techniques for
sparse chain multiplication), the bottleneck arises from the consequences of con-
secutive multiplication.

Example 4. Consider again the circuit for the 3-qubit QFT from Fig. 1d. Con-
structing its functionality requires multiplying the individual representations of
all 6 gates. The multiplication of two Decision Diagrams (representing matrices
U and V ) is recursively broken down into sub-expressions according to

[
U00 U01

U10 U11

]

·
[
V00 V01

V10 V11

]

=
[
(U00V00 + U01V10) (U00V01 + U01V11)
(U10V00 + U11V10) (U10V01 + U11V11)

]

,

until only operations on complex numbers remain. That results in a complexity
which scales with the product of the number of nodes in the Decision Diagrams

2 The authors want to point out that this construction task is conceptionally different
from and should not be confused with the classical simulation of quantum circuits
which aims to calculate the resulting state vector for one particular input and not
the complete functionality.
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to be multiplied. Carrying out all multiplications results in the evolution of rep-
resentations as shown in Fig. 33. While, as already shown by means of Fig. 2,
the functionality of single operations can be represented compactly, the mul-
tiplication needed to construct the overall functionality quickly increases the
complexity. In fact, after two multiplications, further computations have to be
conducted on a representation as large as the final result.

Evaluations on larger examples than the one above confirm that, in many
cases, we may be able to represent (i.e., store) the overall functionality of certain
building blocks or an entire quantum algorithm (and use it for tasks such as
synthesis/compilation, simulation, or verification), but we may not be able to
construct this representation in feasible time. This constitutes a severe bottleneck
for many applications in the domain of quantum computing.

4 Proposed Approaches

In order to overcome the bottleneck discussed in the previous section, we propose
to approach the construction of functional representations for building blocks or
entire quantum algorithms with different strategies. We distinguish thereby two
use cases: First, a general construction scheme is presented which can be applied
for arbitrary functionality. Afterwards, we present a second scheme which is ded-
icated to repeating structures as they frequently occur in quantum algorithms
(e.g., by means of Grover iterations or quantum walks). The resulting schemes
allow to speed up the construction of the desired functional representation con-
siderably and even manage to complete the construction where existing methods
time out.

4.1 General Scheme

The observations from Sect. 3 show that the bottleneck emerges as a result of a
large number of matrix-matrix multiplications on rather large representations.
Hence, in order to avoid this, we propose to conduct as many of those mul-
tiplications on as small as possible representations, e.g., on the original gate
representations. Here, the fact that matrix multiplication is associative comes in
handy as it allows to conduct those multiplications in a different order.

More precisely, assume, for sake of simplicity, that the number m of oper-
ations of a given building block or quantum algorithm is a power of two, i.e.,
m = 2k (for some k ∈ N). Then, grouping the set of m operations into m/2
consecutive pairs, i.e.,

(Um−1 · Um−2) · . . . · (U3 · U2) · (U1 · U0) = U,

3 Different edge weights are indicated by dotted (≡ negative) and/or colored (≡ 1, i,
ω and ω3) lines. This suffices to illustrate the evolution of the Decision Diagrams’
size, i.e., their node count.
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Fig. 4. Proposed approach applied to 3-qubit QFT

and performing the pairwise multiplications (Ui+1 · Ui) = Ui+1,i, leaves m/2 =
2k−1 factors to be multiplied, i.e.,

Um−1,m−2 · . . . · U1,0 = U.

Recursively applying this idea eventually results in the construction of the full
functional representation U ≡ Um−1,...,0—requiring a total of k levels of pairwise
grouping and multiplication. In case m is not a power of two, in some levels a
pair may “degenerate” to a single operation.

Example 5. Consider again the circuit for the 3-qubit QFT from Fig. 1d. Con-
ducting the operations according to the proposed scheme results in the evolution
of representations as sketched in Fig. 4. As can be seen, this leads to a much more
efficient construction compared to the current state-of-the-art method illustrated
before in Example 4: While, thus far, the multiplications resulted in intermediate
representations with 4, 7, 7, 7, and 7 nodes (see Fig. 3), now the construction
results in Decision Diagrams with 4, 5, and 4 nodes (first level), 7 nodes (second
level), as well as 7 nodes (third level). While the total number of operations
(as well as the final result) is obviously the same, more matrix-matrix multipli-
cations are conducted on smaller representations. Furthermore, while, for small
examples as considered here, this difference might seem negligible, evaluations on
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larger quantum algorithms show that this change in the order of multiplications
has a substantial effect on the efficiency of the construction.

In general, employing the proposed scheme creates a tree-like hierarchy of
matrix compositions. In each level l ∈ {0, . . . , k}, at most 2l operations con-
tribute to a specific group of compositions. As a consequence, the intermediate
functionalities during the construction can frequently be represented in a much
more compact fashion (since these remain rather compact and/or sparse in many
cases)—leading to fewer multiplications involving large representations.

Clearly, associativity of matrix multiplication allows for partitioning schemes
beyond pairwise grouping. Determining an optimal partitioning scheme can be
related to finding an optimal contraction order of a tensor network (itself an
NP-hard problem [34]). In this sense, the proposed scheme can be viewed as one
possible heuristic of tackling the contraction problem for quantum circuits.

At a first glance, the proposed scheme merely trades runtime for space: many
operations can be conducted on rather small intermediate representations. But,
this requires to store a lot more intermediate results when compared to sequential
approaches—specifically in the first level of the multiplication hierarchy, where
m/2 Decision Diagrams have to be stored. However, as those “early” intermedi-
ate results correspond to circuits with very low depth, their representations are
rather compact and frequently contain redundant subparts that can be shared4.
Moreover, the proposed approach can be realized using a stack for the intermedi-
ate results containing at most O(logm) elements at any given time by proceeding
in a depth-first fashion.

4.2 Exploiting Repeating Structures

Besides the general scheme proposed above, the made observations and findings
can further be tailored to repeating structures in quantum algorithms—allowing
for even more improvements in the construction of functional representations.
This is described in the following section. To this end, recall that many quantum
algorithms rely on repeated building blocks realizing a certain kind of iteration,
e.g., Grover’s search algorithm [35], Quantum Random Walks [36], Amplitude
Estimation [29], or Phase Estimation [37]. Usually this type of algorithms con-
sists of an initialization phase and an iteration phase comprised of multiple (iden-
tical) iteration steps. Inspired by emulation techniques [32,33], the current state
of the art accelerates the construction of the corresponding functional represen-
tation by constructing a single initialization matrix Uinit followed by multiple
multiplications with an iteration matrix Uiter (which has to be constructed only
once), i.e., (Uiter · . . . · Uiter )Uinit = U .

This procedure can be drastically improved further by, first, efficiently con-
structing the individual representations for Uinit and Uiter using the general

4 Decision Diagram packages, e.g., typically employ a unique table where all nodes
are stored [26]. Thus, even when multiple different Decision Diagrams are stored
concurrently, sharing reduces the memory footprint considerably.
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Fig. 5. Proposed strategy applied to Grover’s algorithm

scheme proposed in Sect. 4.1 and, then, employing a binary exponentiation
scheme for the sequence of multiplications involving Uiter . Assume, for sake of
simplicity, that the number of iterations N is a power of two, i.e., N = 2k for
some k ∈ N. Then,

N
︷ ︸︸ ︷
(Uiter · · · Uiter )Uinit =

N/2
︷ ︸︸ ︷
(U2

iter · · · U2
iter )Uinit = . . . = UN

iterUinit = U.

More precisely, once the iteration matrix Uiter has been efficiently constructed,
it is sufficient to carry out only one multiplication U2l

iter · U2l

iter = U2l+1

iter

(squaring the current representation) at each level l ∈ {0, . . . , k − 1}, since all
other multiplications are going to have the same result. As a last step, the initial-
ization matrix Uinit is multiplied to UN

iter—yielding the desired representation U .
Hence, only k = log2(N) + 1 (instead of N) building block multiplications are
required to construct the representation—an exponential reduction. In case N is
not a power of two, at most one additional multiplication per level is necessary.
Thus, even in this case O(logN) building block multiplications are sufficient for
the construction. As a matter of fact, this does not just reduce the number of
multiplications exponentially, it also avoids many computations on potentially
large representations.

Example 6. In order to illustrate the idea we consider an application of Grover’s
algorithm [35]. The algorithm can be used to search for a specific item in an
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unstructured set of N items by only querying a given (problem-specific) oracle
O(

√
N) times—a quadratic speed-up over classical methods. To this end, it uses

log(N) + 1 qubits and consists of (1) a small initialization phase which puts all
qubits into an equal superposition (to be represented by Uinit) and (2) multiple
Grover iterations (to be represented by Uiter ). A single Grover iteration consists
of querying a given oracle and, afterwards, applying the diffusion operator—
effectively increasing the probabilities of states matching the search criterion
encoded in the oracle.

Now, consider for example the case N = 16. This entails log(N)+1 = 5 qubits
and approximately

√
16 = 4 Grover iterations. By first constructing the matrices

Uinit and Uiter (using the scheme described in Sect. 4.1) and, then, applying the
approach proposed above, an evolution of representations as shown in Fig. 5
results. Here, it can be seen that, at each level, only a single multiplication has
to be carried out (while the other multiplications are functionally equivalent and,
hence, can be cached/reused). Thus, only three building block multiplications are
required in total, while any sequential approach would need four multiplications.
Again, this might look negligible for this small example, but has substantial effect
once larger instances are considered.

5 Experimental Evaluations

In order to experimentally evaluate the proposed approaches, we implemented
them on top of the publicly-available JKQ-framework [38] which includes the
decision diagram package described in [26] and the state-of-the-art construc-
tion approach from [24] as reviewed in Sect. 3 and illustrated in Example 4.
The resulting implementation has been integrated into the framework and is
available at https://github.com/iic-jku/qfr. Afterwards, we used the resulting
implementation to construct representations for the functionality of

– the Quantum Fourier Transform, as a representative for a common building
block in quantum algorithms such as Shor’s algorithm for integer factoriza-
tion [28],

– Grover’s search algorithm [35], as a representative of an algorithm containing
repeated building blocks.

All computations have been performed on a machine with an Intel i7-6700K
processor and 16 GiB RAM running macOS 11.2. The obtained results have
been split into two parts and are shown in Table 1. In all tables, n and m denote
the number of qubits and the number of gates, respectively. Furthermore, the
runtime (in CPU seconds) as well as the total memory allocation (in GiB) needed
to construct the respective representation is listed for

– the current state-of-the-art approach [24],
– the respective proposed techniques, i.e., the general scheme from Sect. 4.1 in

Table 1a and the dedicated scheme for repeated structures from Sect. 4.2 in
Table 1b.

https://github.com/iic-jku/qfr
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Table 1. Experimental results

(a) Results for the QFT (b) Results for Grover’s algorithm

QFT State of the art [24] Prop. scheme Sect. 4.1 Grover State of the art [24] Prop. scheme 4.2

n m tsota memsota tprop memprop n m tsota memsota tprop memprop

12 84 0.03 0.07 0.01 0.07 12 1741 0.02 0.07 0.01 0.07

13 97 0.03 0.07 0.02 0.07 13 2614 0.02 0.07 0.01 0.07

14 112 0.05 0.08 0.02 0.07 14 3991 0.05 0.07 0.01 0.07

15 127 0.15 0.09 0.04 0.08 15 6076 0.09 0.08 0.01 0.07

16 144 0.37 0.09 0.09 0.09 16 9105 0.26 0.09 0.02 0.07

17 161 1.01 0.10 0.25 0.10 17 13686 0.34 0.08 0.03 0.07

18 180 3.79 0.11 1.35 0.12 18 20467 3.46 0.10 0.03 0.07

19 199 10.05 0.16 3.02 0.18 19 30572 3.84 0.10 0.04 0.07

20 220 14.72 0.20 4.08 0.23 20 45541 26.29 0.10 0.05 0.08

21 241 21.01 0.23 7.12 0.29 21 67558 68.50 0.10 0.05 0.08

22 264 27.04 0.27 10.79 0.33 22 100079 361.23 0.11 0.07 0.09

23 287 33.42 0.31 13.49 0.39 23 147960 >24.00 h — 0.08 0.09

24 312 39.83 0.34 14.58 0.39 24 218425 >24.00 h — 0.12 0.10

25 337 46.48 0.38 18.76 0.43 25 321726 >24.00 h — 0.15 0.12

n: Number of qubits m: Number of gates t: Runtime in CPU seconds [s]
mem: Total memory allocations [GiB]

The results for the QFT, which was used as a running example throughout
this paper, clearly show that, compared to the current state of the art, the pro-
posed method manages to construct the algorithm’s functionality 3.0× faster on
average (and up to 4.2× faster). On the one hand this shows that conducting as
many operations as possible on as small as possible intermediate representations
indeed pays off. On the other hand, it confirms the discussion from Sect. 4.1 that
although the proposed technique requires to store more representations at the
same time, possible redundancies/sharing can explicitly be exploited.

Drastic improvements can be achieved for quantum algorithms containing
repeated structures for which the dedicated approach from Sect. 4.2 can be used.
This is confirmed by the numbers provided in Table 1b: Here, the state-of-the-art
method required 6min to construct a representation for the Grover functional-
ity for n = 22 and failed to construct the functionality at all within 24 h for
larger instances. In contrast, the proposed approach managed to construct the
functionality in all these cases within fractions of a second.

In a final series of evaluations, we aimed to compare the proposed techniques
to IBM’s toolchain Qiskit [13], specifically the CPU backend of the Qiskit Aer
UnitarySimulator in version 0.7.1 which uses a multi-threaded array-based tech-
nique for constructing the functionality of a given circuit. The results for both the
QFT as well as the Grover benchmarks are shown in Table 2. Even for moderately
sized instances, we observed runtimes more than two orders of magnitude longer
when compared to the technique from [24] or the techniques proposed in this
paper. In addition, IBM’s approach requires exponential amount of memory—
leading to memory outs when considering more than 15 qubits while the proposed
techniques easily allow to construct the functionality of circuits with more than
20 qubits.
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Table 2. Comparison to IBM Qiskit [13]

QFT IBM qiskit Grover IBM qiskit
n m t mem n m t mem

12 84 1.80 0.25 10 731 16.70 0.09
13 97 7.90 1.04 11 1 112 98.90 0.19
14 112 36.00 3.92 12 1 741 996.38 0.28
15 127 146.00 15.97 13 2 614 11 336.69 1.03
16 144 — MemOut 14 3 991 >24.00 h 3.93
17 161 — MemOut 15 6 076 >24.00 h 15.94
18 180 — MemOut 16 9 105 — MemOut
19 199 — MemOut 17 13 686 — MemOut

n: Number of qubits m: Number of gates t: Runtime in CPU
seconds [s] mem: Total memory allocations [GiB]

6 Conclusion

In this work, we addressed the issue of constructing the functional representation
of certain building blocks or even entire quantum circuits. Existing approaches
for solving this task are severely limited by the rapidly growing size of intermedi-
ate representations during the construction. By conducting as many operations
as possible on as small as possible intermediate representations, the solutions
proposed in this paper manage to consistently outperform existing approaches—
allowing to construct the desired representations several factors faster than
with the state of the art. Moreover, in case repeating structures are explicitly
exploited, the construction of the representation for certain prominent quantum
algorithms can be completed within seconds, whereas state-of-the-art approaches
fail to construct it within an entire day. The comparison with IBM’s Qiskit has
shown that industrial tools for quantum computing are still in their infancy and
would greatly benefit from the integration of existing techniques for efficiently
constructing functional representations of quantum circuits—and even more so
the techniques proposed in this work.
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Abstract. Quantum computer architectures place restrictions on the
availability of quantum gates. While single-qubit gates are usually avail-
able on every qubit, multi-qubit gates like the CNOT gate can only be
applied to a subset of all pairs of qubits. Thus, a given quantum circuit
usually needs to be transformed prior to its execution in order to satisfy
these restrictions. Existing transformation approaches mainly focus on
using SWAP gates to enable the realization of CNOT gates that are not
natively available in the architecture. As the SWAP gate is a compo-
sition of CNOT and single-qubit Hadamard gates, such methods may
not yield a minimal solution. In this work, we propose a method to find
an optimal implementation of non-native CNOTs, i.e. using the minimal
number of native CNOT and Hadamard gates, by using a formulation
as a Boolean Satisfiability (SAT) problem. While straightforward rep-
resentations of quantum states, gates and circuits require an exponen-
tial number of complex-valued variables, the approach makes use of a
dedicated representation that requires only a quadratic number of vari-
ables, all of which are Boolean. As confirmed by experimental results,
the resulting problem formulation scales considerably well—despite the
exponential complexity of the SAT problem—and enables us to deter-
mine significantly improved realizations of non-native CNOT gates for
the 16-qubit IBM QX5 architecture.

1 Introduction

Quantum computers [10] promise to have enormous computational power and,
thus, to solve relevant problems significantly faster than their classical counter-
parts. In recent years, large efforts have been put on their development, but while
their mathematical foundations have been widely explored and are mostly quite
well understood, the physical realization currently provides the biggest obstacle
preventing the widespread use of quantum computers.

While more and more powerful quantum computer architectures have been
presented with increasing quantity and quality of the so-called qubits, the basic
computational entities in quantum computing, one of the physical constraints
that all these architectures have in common is the limited availability of quantum
operations/gates. Typically, multi-qubit gates are much harder to realize than
c© Springer Nature Switzerland AG 2021
S. Yamashita and T. Yokoyama (Eds.): RC 2021, LNCS 12805, pp. 242–255, 2021.
https://doi.org/10.1007/978-3-030-79837-6_15
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single-qubit gates and in many cases there is only one multi-qubit gate natively
available, namely the two-qubit controlled-NOT (CNOT) gate. As there are
several universal gate libraries consisting of the CNOT gate and single-qubit
gates only, e.g. the Clifford+T library [6], this still allows to perform arbitrary
quantum computations. However, in various architectures, the CNOT is only
available on a small subset of physically adjacent qubit pairs, which can make
computations that require CNOT operations on distant qubits quite complex.
Fortunately, there are ways to simulate these logical CNOTs at the physical level
and transform a quantum circuit that contains non-native CNOTs to a quantum
circuit containing only native gates and, thus, being ready for the execution on
the targeted quantum architecture.

Many approaches to find efficient CNOT implementations have been sug-
gested, e.g. in [3,4,15,17–19]. The underlying ideas of these solutions are to use
so-called SWAP gates in order to swap the qubits which the CNOT is to be
applied to, with ones that a CNOT is available for in the specific architecture,
or to use templates of pre-computed sequences of native gates. Since the under-
lying problem has been shown to be NP-complete in [5], it is not surprising that
most approaches do not aim to provide minimal solutions. In fact, only [17] aims
for solutions with a minimal number of SWAP and Hadamard gates, but SWAP
gates themselves are not elementary gates, but need to be realized as cascades
of CNOT and Hadamard gates.

In contrast, we propose an algorithm that determines an optimal implemen-
tation of arbitrary non-native CNOT gates using any combination of Hadamard
gates and CNOT gates that are native to the underlying architecture. To this
end, we formulate the problem as an instance of the Boolean Satisfiability (SAT)
problem. The algorithm makes use of the planning problem and constructs a
propositional formula which, if satisfiable, provides an implementation for a spe-
cific CNOT gate. While the SAT problem itself is NP-complete and straightfor-
ward representations of quantum states, gates and circuits require an exponential
number of complex-valued variables, the crucial trick here is to make use of a
dedicated representation borrowed from the stabilizer circuit formalism [2] that
requires only a quadratic number of Boolean variables.

Experimental evaluations of some quantum computer architectures show that
the resulting problem formulation scales considerably well—despite the expo-
nential complexity of the SAT problem. Our results indicate that SWAP-based
approaches indeed do not yield such optimal solutions for many CNOT gates, as
the proposed algorithm determined significantly more efficient implementations.

The remainder of this paper is structured as follows. The next section intro-
duces notations and preliminaries needed in this paper. Section 3 discusses the
considered problem and related work, followed by Sect. 4 presenting our approach
to determining optimal implementations of non-native CNOT gates. Experimen-
tal results are presented in Sect. 5. Finally, the paper is concluded in Sect. 6.
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Fig. 1. Swapping control and target of a CNOT using Hadamard gates.

2 Background and Preliminaries

To keep the paper self-contained, this section briefly introduces the basics of
quantum computation and the SAT problem.

2.1 Quantum States and Circuits

In contrast to classical bits which can only assume two discrete states, qubits
can represent any combination of the classical Boolean values 0 and 1. More
precisely, the state space of a qubit is a 2-dimensional Hilbert space such that
all possible states can be written as |ψ〉 = a|0〉 + b|1〉 =

(
a
b

)
where |0〉, |1〉

denote the computational basis states (associated with the classical Boolean
values) and a, b ∈ C are complex-valued numbers such that |a|2 + |b|2 = 1.
Analogously, the state space of an n-qubit quantum system has 2n basis states
(|0 . . . 00〉, |0 . . . 01〉, . . . , |1 . . . 11〉) and the state of such system can be described
by a 2n-dimensional complex-valued vector.

A quantum circuit is a model of quantum computation representing a
sequence of quantum operations [10]. Each operation is a unitary transformation
and is represented by a quantum gate. The operation of a quantum gate acting
on n qubits is uniquely determined by a 2n × 2n unitary matrix.

A stabilizer circuit is a quantum circuit consisting entirely of gates from the
Clifford group which contains controlled-NOT (CNOT ), Hadamard (H) and
Phase (S) gates, represented by the following matrices:

CNOT =

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞

⎟
⎟
⎠ , H =

1√
2

(
1 1
1 −1

)
, S =

(
1 0
0 i

)
.

A CNOT on two qubits α and β, denoted as CNOT(α, β), performs a NOT
operation on the target qubit β if, and only if, the control qubit α is in the
|1〉-state.

Example 1. The left-hand side of Fig. 1 shows the circuit notation of a CNOT.
Horizontal lines denote the qubits, the control qubit connection is indicated by
a small, filled circle and the target qubit is illustrated by ⊕. As shown on the
right-hand side, control and target of a CNOT can be swapped by applying
Hadamard gates before and after the CNOT gate.

A stabilizer state is any quantum state which can be obtained by applying a
stabilizer circuit to the initial state |0〉⊕n = |0 . . . 00〉. Stabilizer circuits are not
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universal, which means that they cannot conduct all quantum computations.
Nonetheless, stabilizer circuits are used in quantum error-correction and many
other applications (see [10, Section 10.5.1] for more information).

The advantage stabilizer circuits offer is their efficient simulation on a clas-
sical computer, according to the Gottesman-Knill theorem. As shown in [2], a
stabilizer state on n qubits as described above can be represented by n(2n + 1)
binary values, instead of 2n complex numbers representing the vector which fully
describes a quantum state. It can be visualized by a (2n+1)× 2n matrix, called
tableau, containing the Boolean variables xi,j , zi,j , and ri for all i ∈ {1, ..., 2n}
and j ∈ {1, ..., n} (as shown in Fig. 2).

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜⎜
⎝

x11 . . . x1n z11 . . . z1n r1
...

. . .
...

...
. . .

...
...

xn1 . . . xnn zn1 . . . znn rn
x(n+1)1 . . . x(n+1)n z(n+1)1 . . . z(n+1)n rn+1

...
. . .

...
...

. . .
...

...
x(2n)1 . . . x(2n)n z(2n)1 . . . z(2n)n r2n

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟⎟
⎠

Fig. 2. Tableau representing a stabilizer state [2]

Applications of quantum gates are conducted by updating these tableau
entries in polynomial time by means of the following Boolean formulae:

– For a CNOT from control α to target β:

∀i ∈ 1, ..., 2n : ri := ri ⊕ xiαziβ(xiβ ⊕ ziα ⊕ 1);
xiβ := xiβ ⊕ xiα; ziα := ziα ⊕ ziβ

– For a Hadamard gate on qubit α:

∀i ∈ 1, ..., 2n : ri := ri ⊕ xiαziα; xiα := ziα; ziα := xiα

– For a Phase gate on qubit α:

∀i ∈ 1, ..., 2n : ri := ri ⊕ xiαziα; ziα := ziα ⊕ xiα

This simulation is apparently much more efficient than a matrix-vector mul-
tiplication of the state vector with the transformation matrix of the given gate.

2.2 SAT and Planning

The Boolean Satisfiability Problem, abbreviated SAT, addresses the following:
Given a Boolean formula φ over n variables, does a mapping v from the

variables to the Boolean truth values {0, 1} exist, such that φ(v) = 1?
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Example 2. Consider the following Boolean formula given in Conjunctive Nor-
mal Form (CNF):

φ = (a ∨ ¬b ∨ c) ∧ (¬a ∨ b ∨ c) ∧ (¬a ∨ ¬c) ∧ ¬c

Because of the last clause ¬c, c must be 0 for φ to evaluate to 1. This means that
the third clause is also 1. We are now left with the sub-formula (a∨¬b)∧(¬a∨b),
which is 1 if a 	→ 1 and b 	→ 1, or if a 	→ 0 and b 	→ 0. Thus, φ is satisfiable and
v = {a 	→ 1, b 	→ 1, c 	→ 0} is one mapping that satisfies φ.

SAT is an NP-complete problem, as proven by [7] and many reasoning engines
have been developed in order to solve SAT for arbitrary Boolean formulae. One
application for SAT is the planning problem, which is described in [14]. An
instance π =<A, I,O,G> of the planning problem consists of the set of state
variables A, the initial state I, the operators O and the goal state G. In essence,
the problem is to find a sequence of operators that transform a system from
an initial state to a defined goal state. It can be expressed as a propositional
formula φ(t), so that φ is satisfiable if, and only if, there exists a sequence of
actions of length t, so that the system is transformed from the initial state to its
goal state. This allows us to conveniently solve the planning problem, by testing
φ for satisfiability.

3 Considered Problem

Finding optimal implementations for all CNOT gates of a given quantum com-
puter architecture is essential in order to improve the performance of algorithms
that are run on said hardware, as every additional gate increases execution time
and the probability of errors. If we define the cost of a CNOT gate to be the
number t of gates which are native to the architecture that have to be applied
in order to realize that gate, we can find an optimal implementation for a par-
ticular CNOT by determining the minimum value for t. For available gates like
Hadamard gates and native CNOT gates, this cost will obviously be 1, while oth-
ers will be far beyond that. For instance, the best-known realization of several
CNOTs in the IBM QX5 architecture have a cost of more than 50 gates as deter-
mined by [3]. One reason this is an important problem is that native/physical
CNOTs are only scarcely available in many quantum computer architectures.

Considering IBM’s QX5 architecture, which is part of the IBM Q project
available at [1], only 22 CNOTs are native to the architecture, as illustrated in
Fig. 3. More precisely, an arrow between two qubits indicates that the CNOT
gate whose control qubit is at the base of the arrow and whose target qubit is
at the tip of the arrow is natively available. For instance, CNOT(Q1, Q2), i.e. a
CNOT with control on Q1 and target on Q2 is available on QX5, but not vice
versa.

However, there are
(
16
2

) ·2 = 240 logical CNOTs for this 16-qubit system and(
n
2

) · 2 in the general case of an n-qubit system, which need to be emulated to
implement arbitrary quantum algorithms.
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Fig. 3. IBM QX5 architecture.

Fig. 4. SWAP gate realized by Clifford group gates.

Existing approaches for the efficient realization of non-native CNOTs have
mainly focused on inserting SWAP gates, which are compositions consisting of
CNOT and Hadamard gates as shown in Fig. 4. To illustrate this idea, consider
the realization of a CNOT(Q3, Q0) in IBM QX5. In order to implement this
non-native CNOT, one could simply swap Q3 with Q2 and Q2 with Q1 using
SWAP gates, transferring the state of Q3 to that of Q1, then apply the native
CNOT(Q1, Q0), and finally undo the SWAPs to restore the original positions
of Q1, Q2, and Q3. However, each SWAP introduces an additional cost of 7
gates (c.f. Fig. 4) resulting in a total cost of 4 · 7 + 1 = 29 gates, but complete
SWAPs may not be required. Almeida et al. [3] identified several movements of
control and target qubits which can be realized with reduced costs—resulting in
a realization of CNOT(Q3, Q0) using only 20 gates (shown in Fig. 5).

As proven in [5], the underlying problem, like SAT, is NP-complete, which
lead the authors of [17] to propose a SAT-based approach for determining the
minimal number of SWAP and Hadamard gates given that the Hadamard gates
are only used within SWAP gates or to invert the direction of a native CNOT.
On the one hand, this limitation simplifies the problem to a purely classical-
combinatorial problem and eliminates all aspects of quantum computations. On
the other hand, the optimized movements in [3] suggest that it is likely to obtain
further reductions if one allows for an unrestricted use of Hadamard and CNOT
gates. However, this generalization significantly increases the search space which
then also includes quantum circuits realizing true quantum operations and, thus,
poses severe obstacles to their representation and the formulation as a SAT
problem.

Luckily, CNOT and Hadamard gates do not unleash the full power of quan-
tum computation that would require exponentially large complex-valued vectors
and matrices to be dealt with, but only give rise to stabilizer circuits for which the
polynomial size tableau representation can be employed that consists of Boolean
variables only. As we will describe in the next section, this allows to use the plan-
ning problem as convenient way to express a quantum circuit as a propositional
formula φ(t) to be solved for satisfiability.
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Fig. 5. Realization of CNOT(Q3, Q0) in IBM QX5 according to [3].

4 SAT Formulation

To determine optimal implementations for non-native CNOTs, we formulate an
instance π =<A, I,O,G> of the planning problem and then convert it into
a propositional formula φ(t) for a given number t, as explained in [14]. This
formula shall be satisfiable if, and only if, there is a sequence of t native CNOT
and Hadamard gates that realizes the desired non-native CNOT.

In the context of the considered stabilizer circuits, the initial state I of the
planning problem is an arbitrary stabilizer state |ψ〉, an operator o ∈ O repre-
sents a single quantum gate and the goal state G is the state |ψ〉 is transformed
to after the application of the non-native CNOT for which we want to find an
optimal implementation. The set A of state variables contains all Boolean vari-
ables that make up the tableau for a stabilizer state as reviewed in Sect. 2.1,
namely xij , zij , and ri for i = 1, . . . , 2n and j = 1, . . . , n.

With the knowledge of how π can represent a stabilizer circuit in mind, we
can now construct φ by considering I, O and G individually.

Constructing the Initial State I. The initial state is simply encoded as the con-
junction over A0 in the initial state of the system:

∧
a∈A0 a. Note that the number

in the superscript represents the number of operators which have been applied
to the system so far, so A0 represents the initial state, where no operators have
been applied yet, while An represents the state after exactly n operators have
been applied. For our purposes, the standard initial tableau as defined in [2]
is used as the initial state, where x0

ij = 1 if i = j and 0 otherwise, z0ij = 1 if
i − n = j and 0 otherwise and all r0ij = 0 (c.f. Fig. 6a for the case n = 2).

Fig. 6. Tableaus for initial and goal state for n = 2 [2].
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Constructing the Operators O. The operators are identified by the effect they
have on a given state A to transform it into the successor state A′. These oper-
ators are the gates which are natively available in the specific architecture to
be used, so while Hadamards may be used on all qubits, only some CNOTs are
available. According to [14], any operator o is represented as follows:

τo = p ∧
∧

a∈A

[(EPCa(o) ∨ (a ∧ ¬EPC¬a(o))) ↔ a′]

where p represents the operator’s precondition, which needs to be 1 in order for
the operator to be applicable.

For our purposes, the only condition is that a single quantum gate is to be
applied by each action. In order to eliminate the possibility of two operators
being applied at the same time, let the precondition p of an operator o be
σo ∧ ∧

q∈{O\{o}} ¬σq, where the variable σo can later be used to identify which
operators have been used, if φ is satisfiable.

EPCa(o) is the effect precondition of o on the state variable a. It corresponds
to the formula which, if it evaluates to 1, sets the value of the literal a to
1. Since in our case the operators set a given state variable a to the binary
value they evaluate to, we can prove that ¬EPC¬a(o) = EPCa(o). To this end,
consider the effect the Hadamard gate on a qubit α has on the state variable ri:
∀i ∈ {1, ..., 2n} : ri := ri ⊕ xiαziα.

This means that for an arbitrary but fixed i, we have EPCri
(o) = ri ⊕xiαziα

and EPC¬ri
(o) = ¬(ri ⊕ xiαziα). We can deduce that:

¬(EPC¬ri
(o)) = ¬(¬(ri ⊕ xiαziα))

= ri ⊕ xiαziα

= EPCri
(o)

This obviously also holds for all combinations of operators and state variables
other than a Hadamard on qubit α and ri. With this knowledge we can simplify
the formula for τo:

τo = p ∧
∧

a∈A

[(EPCa(o) ∨ (a ∧ ¬EPC¬a(o))) ↔ a′]

= p ∧
∧

a∈A

[(EPCa(o) ∨ (a ∧ EPCa(o))) ↔ a′]

= p ∧
∧

a∈A

EPCa(o) ↔ a′

Note that for all state variables a which are unaffected by an operator o, EPCa(o)
simply corresponds to a, making the given sub-formula for a: a ↔ a′.

Inserting our precondition p, an arbitrary operator o may be encoded as:

τo = (σo ∧
∧

q∈{O\{o}}
¬σq) ∧ (

∧

a∈A

EPCa(o) ↔ a′)
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For any given step, the formula for choosing an operator to apply to a state
A is represented as:

T (A,A′) =
∨

o∈O

τo

Constructing the Goal State G. The goal state is again encoded as the conjunc-
tion over At:

∧
a∈At a. This is the tableau state which is created by applying the

CNOT to be implemented to the standard initial tableau. Since most entries are
0 in the initial tableau, this reduces to updating

xt
αβ := x0

αβ ⊕ x0
αα = 0 ⊕ 1 = 1 and

zt
(n+β)α := z0(n+β)α ⊕ z0(n+β)β = 0 ⊕ 1 = 1

for a CNOT gate on control qubit α and target qubit β. Figure 6b shows the
goal state tableau for the realization of a CNOT on control qubit 1 and target
qubit 2 for the standard initial tableau from Fig. 6a.

With all these representations defined, the complete propositional formula is
of the following form:

φ(t) = A0 ∧
t−1∧

i=0

T (Ai, Ai+1) ∧ At

where the operators and state variables are super-scripted with the step i they
belong to. φ(t) is satisfiable if, and only if, there is an implementation for the
given CNOT using t gates. The operators used are identified by the variables
σ; as for each i ∈ {1, . . . , t} there is only exactly one σo

i for which σo
i =

1, the operator used for step i can be identified unambiguously. This means
that if φ(t) is satisfiable, there is a sequence of operators o1, ..., ot which is an
implementation of the CNOT using t quantum gates. In order to determine
the cheapest implementation, the minimum value for t such that φ(t) is still
satisfiable has to be found.

A naive approach for finding a minimum t would be to start at t = 1 and
increment t until φ(t) is satisfiable. Alternatively, one may take previously sug-
gested minima as an upper bound and decrement t until φ(t) is no longer satisfi-
able. In fact, showing that no solution exists for some t implies that no solution
exists for any smaller t. This is because the Hadamard and CNOT gates are
self-inverse such that two consecutive gates on the same qubit(s) cancel out and
do not have an effect to the entire circuit functionality. Thus, proving that no
solution exists for t steps directly implies that there is no solution for t−2, t−4,
t− 6 steps and so on. In order to also cover the remaining cases t− 1, t− 3, etc.,
we allowed an identity operator in the last time step which has no effect to the
state tableau.
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Table 1. Feasibility study

Boolector Z3

Control Target t Result Run-time Result Run-time

Q1 Q3 3 UNSAT 9.2 UNSAT 1.2

Q1 Q3 4 SAT 14.5 SAT 2.0

Q1 Q4 7 UNSAT 24.2 UNSAT 7.2

Q1 Q4 8 SAT 29.3 SAT 10.0

Q0 Q2 8 UNSAT 28.5 UNSAT 4.0

Q0 Q2 9 UNSAT 37.5 UNSAT 10.7

Q0 Q2 10 SAT 45.0 SAT 16.3

Q0 Q4 17 UNSAT 429.1 UNSAT 141.3

Q0 Q4 18 SAT 355.3 SAT 36.6

Q8 Q13 23 UNSAT 774.0 UNSAT 716.0

Q8 Q13 24 SAT 564.2 SAT 149.8

5 Experimental Results

The algorithm above has been implemented in C++. It takes the number of
qubits of the considered architecture, a list of natively available CNOTs, and
the CNOT to be implemented as inputs and outputs the resulting instance of
the planning problem in the SMT-LIB v2 format [13] which can then be given
to any compatible SMT solver. We implemented direct interfaces to Boolector
3.2.1 [12] and Z3 4.8.8 [8]. All experiments were conducted on an Intel Core
i5-7200 machine with 32 GB of main memory running Linux 4.15.

5.1 Feasibility Studies

To start with, we performed some feasibility studies to check whether the con-
structed instances of the planning problem are solvable in reasonable run-time
and verify that the obtained quantum circuits indeed realize the desired non-
native CNOTs. For this purpose, we used the IBM QX5 architecture and some
non-native CNOTs for which a realization with less than 30 native gates was
known. The results are provided in Table 1 where the first two columns denote
the control and target qubit of the considered non-native CNOT, t denotes
the number of steps and the remaining columns denote the outcome (SAT or
UNSAT) and run-time in CPU seconds for the two considered SMT solvers
Boolector and Z3.

The numbers indicate that for smaller values of t the run-time does not
much depend on the result (SAT or UNSAT). For larger values of t, both solvers
require significantly more run-time to prove that no solution exists for t steps
than to determine one of the possible solutions. But still, the results clearly
demonstrate the power of the proposed approach since the search space contains
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Table 2. Experimental results for IBM QX5

Qubit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 – 5 10 14 18 28 32 38 54 44 34 30 24 20 10 5

1 1 – 1 4 8 18 22 28 38 54 32 28 22 18 8 10

2 10 5 – 1 4 14 18 24 34 38 28 24 18 14 4 5

3 14 8 5 – 1 10 14 20 30 34 24 20 14 10 1 8

4 18 12 8 5 – 5 8 14 24 28 18 14 8 5 10 12

5 24 18 14 10 1 – 5 10 20 24 14 10 5 10 14 18

6 28 22 18 14 4 1 – 1 10 14 4 1 10 14 20 22

7 38 32 28 24 14 10 5 – 5 8 1 10 14 20 24 32

8 44 38 34 30 20 16 10 1 – 5 4 14 18 24 28 38

9 40 42 38 34 24 20 14 4 1 – 1 10 14 20 24 34

10 34 42 32 28 18 14 8 5 8 5 – 5 8 14 18 28

11 30 32 28 24 14 10 5 10 14 10 1 – 5 10 14 24

12 20 22 18 14 4 1 10 14 18 14 4 1 – 1 4 14

13 16 18 14 10 1 10 14 20 28 24 14 10 5 – 1 10

14 10 12 8 5 10 14 24 28 32 28 18 14 8 5 – 5

15 1 10 1 4 8 18 22 28 38 34 24 20 14 10 1 –

(22+16)t different possible realizations of native gates to be ruled out in the case
of UNSAT. Overall, Z3 solver performed much quicker than Boolector and was
solely used for future runs. To verify the correctness of the determined stabilizer
circuits, we performed equivalence checking based on QMDDs [11].

5.2 Non-native CNOTs on IBM Q Architectures

Having confirmed the general feasibility and correctness of the proposed app-
roach, we turned to the problem of determining optimal implementations of
non-native CNOTs on IBM Q architectures.

For the 16-qubit QX5 architecture, we took the results from [3] as the starting
point and iteratively decremented the number of steps until the solver returned
UNSAT for some t which, as discussed at the end of Sect. 4, implies that there
is no realization with k ≤ t gates.

Tables 2 and 3 show the results for all CNOTs in QX5. In both tables,
the rows denote the control qubit and the columns denote the target qubit of
the CNOT. Each entry in Table 2 represents the cost of the implementation as
defined earlier, i.e., the total number of native gates required in order to realize
the CNOT, while Table 3 shows the absolute improvement over the best-known
constructions from [3]. Note that our cost metric differs from the one used in [3],
which expresses the overhead introduced by the implementation, making it less
by one in all cases. This difference has been accounted for in Table 3, but should
also be considered when comparing Table 2 to the results from [3].
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Table 3. Improvements compared to [3]

Qubit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 – 0 1 0 2 2 8 14 8 12 12 12 6 1 1 0

1 – – – 0 2 2 8 14 14 8 22 14 8 2 2 1

2 1 0 – – 0 0 6 12 12 18 18 12 6 0 0 0

3 6 0 0 – – 1 6 12 12 12 12 12 6 1 – 0

4 8 2 0 0 – 0 0 6 6 6 6 6 0 0 1 2

5 12 8 6 1 – – 0 1 1 0 0 1 0 1 0 6

6 18 12 6 0 0 – – – 1 0 0 – 1 0 6 12

7 18 12 6 0 0 1 0 – 0 0 – 1 6 4 12 12

8 24 18 12 6 6 7 1 – – 0 0 0 6 12 18 18

9 18 24 18 12 12 6 0 0 – – – 1 6 12 12 12

10 12 12 12 6 6 6 0 0 0 0 – 0 0 6 6 6

11 6 12 6 0 0 1 0 1 6 1 – – 0 1 0 0

12 6 12 6 0 0 – 1 0 6 0 0 – – – 0 0

13 7 8 6 1 – 1 6 4 6 0 0 1 0 – – 1

14 1 2 0 0 1 6 6 6 12 6 6 6 0 0 – 0

15 – 1 – 0 2 2 8 14 14 12 12 12 6 1 – –

Fig. 7. Implementation of CNOT(Q3, Q0) as calculated by our algorithm.

Exact minima have been determined for all CNOTs of the QX5 architecture.
Overall, there are 67 CNOTs between qubits with a maximum distance of 4
for which the constructions from [3] are indeed optimal, while for 50 CNOTs
our approach determined that they can be improved by at least 12 gates. For
instance, Fig. 7 shows an optimal realization of CNOT(Q3, Q0) requiring only
14 gates as compared to the realization from Fig. 5 using 20 gates which was
discussed in Sect. 3.

For the 20-qubit Q20 architecture [1], where all CNOTs are available in both
directions, we were able to prove the minimality of the construction proposed
in [9] using 4 ·(d−1) CNOTs where d is the distance between control and target.

5.3 Effect on Circuit Transformation

In order to evaluate the impact of the determined improvements on quantum
circuit transformation, we considered a suite of benchmarks taken from [16] and
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Table 4. Circuit Transformation for IBM QX5

Benchmark Transformation overhead

ID L [3] Proposed Δ

sym6 316 14 3015 2409 −20.10 %

rd53 311 13 3174 2507 −21.01 %

hwb5 53 6 6140 5240 −14.66 %

wim 266 11 6195 5049 −18.50 %

f2 232 8 6319 5198 −17.74 %

rd53 251 8 8976 7134 −20.52 %

cm42a 207 14 9045 7619 −15.77 %

dc1 220 11 10523 8891 −15.51 %

cm152a 212 12 15228 11610 −23.76 %

sym6 145 7 19688 16058 −18.44 %

z4 268 11 23280 18549 −20.32 %

hwb6 56 7 38747 30779 −20.56 %

the naive qubit mapping which maps i-th qubit of the circuit to qubit Qi in the
QX5 architecture.

The results are shown in Table 4. Here, the first two columns describe the
benchmark in terms of its name (ID) and its number of qubits (L). The next two
columns denote the overhead using the original constructions from [3] and the
improved/optimal CNOT implementations determined by the proposed app-
roach. The last column lists the relative improvement which is in the range
between 10% and 20%.

6 Conclusions

In this work, we proposed a method to determine optimal implementations of
non-native CNOTs based on a formulation as a SAT problem. This formulation
only becomes possible, since the considered gates (CNOT and Hadamard) are
part of the Clifford group library for which a dedicated tableau representation
can be employed that only requires O(n2) Boolean variables. While we restrict
to CNOT and Hadamard gates, the approach can steadily be extended to sup-
port all Clifford group gates. As confirmed by experimental results, the resulting
problem formulation scales considerably well and enabled us to determine sig-
nificantly improved realizations of non-native CNOT gates for the 16-qubit IBM
QX5 architecture, while for Q20 the known construction could be proven to be
minimal.
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Abstract. Predicting the optimum SWAP depth of a quantum circuit
is useful because it informs the compiler about the amount of necessary
optimization. Fast prediction methods will prove essential to the com-
pilation of practical quantum circuits. In this paper, we propose that
quantum circuits can be modeled as queuing networks, enabling efficient
extraction of the parallelism and duration of SWAP circuits. To provide
preliminary substantiation of this approach, we compile a quantum mul-
tiplier circuit and use a queuing network model to accurately determine
the quantum circuit parallelism and duration. Our method is scalable
and has the potential speed and precision necessary for large scale quan-
tum circuit compilation.

Keywords: Quantum circuit · Queuing network · Parallelism

1 Introduction

Compilation of quantum circuits has been investigated from different perspec-
tives. Only recently, with the advent of NISQ devices, did compilation methods
start to address optimality in the context of large scale circuits and hardware
topology constraints. One of the first works presenting a systematic method to
evaluate the performance of running a circuit compiled to a particular qubit
layout was [7] – it discusses ancilla qubit factories, interconnects and logical
computation units. The quantum arithmetic as a distributed computation per-
spective was presented in [9]. The analogy between quantum circuits and com-
munication networks has been presented for error-corrected CNOT circuits in
[8]. Some recent works on gate parallelism during compilation investigate how
the same device can be shared for multiple circuits [11], and how edge-coloring
and subgraph isomorphism are related to the parallel scheduling of gates [6].
Organizing qubits into specialized regions has been analyzed for ancillae by [5].
Exact and not scalable methods for the computation of optimal SWAP circuit
depths have been introduced by [14].

This work is motivated by the need to determine automatically, as fast and
precise as possible the average SWAP circuit depth when compiling to an arbi-
trary hardware layout (not necessary a regular 3D one like in the following). To
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the best of our knowledge, this is the first work in which the optimal SWAP
depth is predicted in order to support the circuit compiler. At the same time,
no work treated a complete circuit as a network of queues. We present a proof
of concept and investigate the feasibility of using queuing networks – we use the
analogy between SWAP depth and input-output mean response time.

We report preliminary results after testing our approach by compiling a mul-
tiplier [10] to a 3D hardware layout. Most quantum devices have 1D or 2D qubit
layouts, and 3D (e.g. neutral atom devices and photonic quantum technologies)
is not considered viable in the short-term. However, for the purpose of this work,
we chose a 3D qubit layout because we assumed that: a) routing the qubits in
3D may shorten the resulting depth; b) it is difficult for automated compilation
methods; c) it is useful for developing novel compilation heuristics.

Fig. 1. The multiplication circuit from [10] consists of three steps: 1) the Toffoli gates,
2) a sequence of controlled addition circuits; 3) the SWAP circuits occurring between
every controlled addition. The third step is not illustrated.

We treat our circuit as a network of single element queues inter-connecting
input and output queues. The multiplier has a highly regular structure, and we
chose to compile the circuit manually. The circuit can be divided into three steps:

1. a one-time application of Toffoli gates,
2. repeated controlled-additions on subsets of the qubit register, and
3. setting up for the next controlled-addition step (which occurs between every

controlled addition).

The goal is to determine how the coordinates (e.g. 2D or 3D) and properties of
the queues influence the compilation result. The SWAP depth of a (sub-)circuit
depends not only on the qubit layout but also on the structure of the previous
(sub-)circuits. We propose to use queuing network parameters (e.g. arrival rate
of the queues) to capture these aspects.

In the following, in order to build the intuition behind the formal approach,
we start by compiling the multiplier of Muñoz-Coreas et al. [10] to a 3D lattice
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of qubits. Qubit queues are conveniently placed next to the adder. The queues
are storing ancillae and partial product qubits. After compiling the controlled-
additions to 3D, the third step of the multiplier has a constant SWAP depth of
5 gates – irrespective of the number of qubits involved in the multiplication. All
qubits were swapped in parallel without delaying (blocking) each other.

We will not describe how we compiled the first two steps of the multiplier.
It suffices to say that we used known Toffoli gate decompositions that have a
3D-like Clifford+T decomposition, and we exploited the ripple-carry structure
of the controlled addition circuits.

Afterwards, we compare the prediction obtained from the queuing network
analysis with our manually compiled and optimized circuit. We formalize the
queuing network model of the circuit and perform a closed-form analysis to
illustrate the feasibility of our approach. The analysis method has a polynomial
complexity that depends on the number of network nodes. Finally, we conclude
that queuing network model analysis is a promising approach towards the com-
pilation and optimization of quantum circuits, and we formulate future work.

2 The Multiplication Circuit

The structure in Fig. 2 is designed to efficiently implement a multiplier [10] in
a 3D nearest-neighbor environment with a minimized SWAP gate depth. By
creating a single structure to implement a controlled-adder and connecting this
circuit to queues within which the qubit registers are stored, the total number
of qubits necessary to implement the circuit is kept small, while the SWAP
depth in the third step of the multiplier has a constant depth of 5 for any n-bit
multiplication.

There are four queues in the structure (cf. Fig. 1 and Fig. 2): The top left
queue, which stores used control qubits from the B register, the top right queue,
which stores calculated product bits from the P register, the bottom-most queue
which stores unused qubits from the P register (all initialized to |0〉), and the
queue in the final cube which stores unused control qubits from the B register.
At the beginning of the calculation the top two queues are empty and the bottom
two queues hold their corresponding values.

Note that the A register is the only register not stored in a queue; this is
because all of the A qubits are used for every controlled addition step, so they
are stored in constant positions along the structure. Additionally, the first n P
qubits and the first B qubit begin the computation already placed throughout
the structure as opposed to beginning in the queues, and at the end of the
computation the last n P qubits and the final B qubit are stored in the structure,
so at no point do any queues hold every qubit in a register. It should also be
noted that when a register is referred to as ‘empty’ that means it is filled with
ancilla initialized to |0〉. This is so that when a qubit is added to the queue
it can swap with such an ancilla which is necessary for the next step in the
computation.

Gates are initially performed in the topmost cube, followed by the one below
it and so on until the necessary gates have been applied to the bottom-most cube.
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Fig. 2. Mapping of multiplier circuit to an open queuing network of N = 15 nodes.
(LHS) The 3D qubit layout where the quantum circuit is mapped to; there are four
queues (two gray, one yellow and a red one) connected to the cuboid-like 3D layout;
(RHS) The QN with 15 nodes, out which 4 have a finite buffer size, whereas the others
(only circles with numbers 1 till 11) have a capacity of 1 (e.g. buffer size of zero). For
some of the transitions, their corresponding probability pij is shown. Jobs from outside
arrive only at Nodes 12 and 13, and depart from Nodes 14 and 15.

Due to the uncompute step, gates are then applied in the opposite direction,
beginning with the bottom-most cube and moving up to the top-most cube,
at which point a single controlled-addition step is complete. More importantly,
after each controlled-addition step a single value from both the B and P queues
will have moved from the bottom queues into the structure, and another value
from the B and P queues will have moved from within the structure into their
corresponding top queues.

The qubits are initially positioned to implement the first step of the multi-
plier, then SWAP gates are applied to prepare for repeated applications of the
second and third steps. After the application of the first step a single qubit from
both the P and B registers moves forward into the structure from the bottom
queues, and a single qubit from both registers also moves out from the structure
into the top queues in a manner identical to the end of each controlled addition
step.

For each moment in the calculation, every qubit value can swap with a single
neighboring qubit. In this structure, there are three positions which only have
two neighbors, n − 2 positions with three neighbors, and every other position
has four neighbors. So the majority of qubits can move in one of four different
directions at each moment, or choose not to move.
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3 A Blocking Queuing Network

To analyze the quantum multiplier circuit, we model it using a queuing net-
work. A queuing network (QN) consists of a set of queuing systems (also called
nodes in the following), where each such system is connected to the others with
some probabilities. We consider the network being open: jobs arrive from outside
(source), and after being serviced by different nodes, leave the network (sink).

For the purpose of this work, we use a small, open QN with 15 nodes (see
Fig. 2). We have chosen this simple structure because, as mentioned in the Intro-
duction, we knew where our qubits will be located after a controlled addition
circuit. The intermediate network which connects Nodes 1 to 11 includes nodes
which can hold at any time only one job (no buffer and have a capacity of 1).
Jobs from the outside arrive at two specific nodes namely Nodes 12 and 13.
We assume that those two nodes have a finite buffer size. Jobs after entering
the network from Nodes 12 and 13, are routed, through the nodes of the inter-
mediate network, to the sink Nodes 14 and 15. The sink nodes, have the same
characteristics in terms of buffer size as the source Nodes 12 and 13.

SWAP gate parallelism implies that qubit paths are independently running
through the hardware layout, but that the paths are not blocking at intersections:
a qubit does not need to wait for another qubit to cross a node (there are
no bottlenecks). In order to model qubit swapping, we use a blocking queuing
network. If the target nodes, to which the job needs to be transmitted after being
serviced by a queuing system i, are full, then the job at i is blocked until one of
the target nodes becomes free to process this job.

3.1 Modeling the Network

The open network model uses the following parameters: (1) The number of nodes
of the network N , (2) routing (or transition) probability pij of jobs from node i
to j, (3) probability p0i that arriving job enters the QN at node i, (4) probability
pi0 that job leaving node i also leaves the QN such that pi0 = 1 − ∑N

j=1 pij , (5)
arrival rate λ0i of jobs from the outside to node i such that the overall arrival
rate to QN is given by λ =

∑N
i=1 λ0i. The parameters determine the QN model

and, for example, the arrival rate λi for each node i can be derived using the
traffic equation such that λi = λ0i +

∑N
j=1 pjiλj .

This mathematical formulation allows us to carry out a closed-form analysis
(see below) for the steady-state probabilities. Our objective is to obtain the state
probability vector π = [π1, ..., π15] such that

∑15
i=1 πi = 1. Obtaining a closed-

form solution for such a network consisting of 15 nodes with each node having
at least 3 states (as we will see later) is not trivial: the state space size explodes
to 14 million (i.e. 315) states!

Therefore, we chose a product-form queuing network (PFQN) approach. Such
networks consist of a special type of nodes only, where the underlying state-space
does not have to be generated for evaluation:

π(S1, S2, ..., SN ) =
1
G

[π(S1) ∗ π(S2) ∗ · · · ∗ π(SN )]
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where G is a normalization constant, and Si is the specific state of node i.
We adopt the Jackson network model for PFQN, where in order to calculate
the steady-state probability of the whole network, it suffices to calculate the
marginal probability of each node:

π(S1, S2, ..., SN ) = π1(S1) ∗ π2(S2) ∗ · · · ∗ π2(SN ) (1)

3.2 Modeling the Nodes

The nodes of the circuit network are of two types: boundary and non-boundary.
Boundary nodes are where jobs arrive (Nodes 12 and 13) or leave (Nodes 14
and 15) the network. Non-boundary nodes belong to the intermediate network
(Nodes 1 till 11). All nodes are of the type M/M/1-FCFS: arrival and service
processes are [M]arkovian (e.g. inter-arrival and service times are exponentially
distributed), each node consists of one server, and jobs are processed in first-
come-first-served (FCFS) fashion [2].

The difference between the boundary and non-boundary nodes is that the
former have a capacity of K, and the latter have a capacity of one. Thus, the
nodes are either M/M/1/K-FCFS or M/M/1/1-FCFS systems.

To model and analyze a node (queuing system) named i, the following param-
eters are required: (1) The different states Si that the system can have, (2) the
arrival and service rates of jobs λi and μi respectively, (3) the number of servers
mi, and the size of the buffer Ki in case of a finite capacity queuing systems.
In this paper, the considered state-space of each queuing system is discrete and
the timing convention is continuous. These parameters are used to generate a
continuous-time Markov chain (CTMC). The CTMC allows us to produce the
square generator matrix Q which presents the transition rates between two states
l and m of the queuing system i under study, such that the diagonal elements
of the matrix qll = −∑

m,m �=l qlm.
A closed-form solution (see below) is obtained by solving a set of linear

global balance equations originating from πi ∗ Qi = 0, where πi is the vector of
the steady-state probabilities πi(l) such that

∑
l πi(l) = 1 for a given queuing

system i and its states l.

3.3 Non-boundary Nodes

We describe the states and the transitions of the non-boundary M/M/1/1-FCFS
nodes. Since these nodes have a capacity of one and only a single server, then
upon arrival of a new job to this node while its server is busy, this new job cannot
be buffered. To model and analyze the behavior of a job-blocking queuing system,
we model the states as a two-dimensional tuple of binary values.

Figure 3 shows all the possible states as well as their transitions and the
corresponding rates. The (0,0) is for the empty system. Upon the arrival of a
new job with an arrival rate of λi, the system transitions from state (0,0) to (1,0).
This indicates that there is a single job at the node i and that the job is being
serviced by a single server. After service, there are two possible transitions: (0,0)
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Fig. 3. A Markov chain for non-boundary nodes: three different states and the transi-
tions. The first and second dimensions of each state denote the number of jobs at the
service and if the job is blocked (1/0 = True/False).

or (0,1). The former case happens when the serviced job can leave the queuing
system i and enter the next neighboring one j in the network without being
blocked by j. Consequently, the corresponding system i becomes idle again and
in (0,0) with the service rate of μi(1 − Pb), where Pb is the probability that the
job after being serviced will be blocked by its neighboring node.

The transition from (1,0) to (0,1) indicates that the job after being serviced
with a service rate of μi will be blocked by its neighbor with a probability Pb.
The transition from (0,1) to (0,0) models the possibility of the blocked job at
the queuing system i to leave it and enter one of its neighboring nodes j. This
happens because one of the queuing system i’s neighbors can now process the
job. The queuing system i becomes idle again, and this transition happens with
a rate of μib (i.e. the unblocking rate of the jobs). The steady-state probability
for a full system in a finite capacity M/M/1/K-FCFS [4] is Eq. 2.

πi(K) = ρK
i

1 − ρi

1 − ρK+1
i

, where ρi =
λi

μi
(2)

3.4 Closed-Form Analysis

We focus on a single job running through the network, but assume that the
job can take exclusive ownership of a node (see Fig. 3). To determine the mean
response time of a an arbitrary job running between source and sink, we consider
that there is a non-zero probability of each node to be blocked at some point by
some other job that took exclusive ownership of it.

Performing a general analysis is a complex task. We make simplifying assump-
tions and tune some of the parameters to the circuit we would like to compile.
First, we assume that ρi = 1, Eq. 2. The result is that πi(K) = 1

K+1 , and consid-
ering that the non-boundary nodes are of type M/M/1/1-FCFS, it leads to the
conclusion that the probability of any neighboring node j of a another node i
being full (e.g. πj(1)) is 50%. We can derive the worst case blocking probability
Pb of a job as the probability that the next hop of j neighboring nodes is full:
Pb =

∑
j pijπj(1) = 0.5.

Second, we have to determine the rate at which jobs arrive in the queues at
nodes 12 and 13. The multiplication circuit consists of three steps (see Intro-
duction), and herein our goal is to determine the SWAP duration during the
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last step. Therefore, we need to select values for λ12, and λ13 which reflect the
structure of the previous two steps. After systematic trials necessary to select
values which reflect the gate depths of the previous two steps, we arrive at
λ = λ12 + λ13 = 0.15 + 0.1 = 0.25.

We use the PFQN to calculate the marginal probabilities of each node in the
intermediate network. We used SHARPE [13] to calculate the steady-state prob-
abilities from Table 2 with respect to the CTMC from Fig. 3 and the parameters
from Table 1. The utilization ρi = 1 − πi(0, 0), and the mean number of jobs K̄i

is the sum of the steady-state probabilities of (1,0) and (0,1). We observe that
all the nodes are occupied for more than 79.5% (e.g. πi(0, 0) < 20.5%) of the
time, and have blocked jobs between 60% and 69% (e.g. πi(0, 1)) of the time.

The mean response time T̄i is computed using Little’s law [3] which is the
ratio between the mean number of jobs K̄i to the arrival rate. The mean number
of jobs in the network is K =

∑11
i=1 K̄i

11 = 0.831. We calculate a mean response
time of T̄ = K

λ = 3.324. This result confirms that our depth 5 SWAP circuit is
close to the predicted optimal depth.

4 Discussion

Our method estimates average SWAP depths using a circuit modeled as a net-
work of queuing systems. In a nutshell, the average SWAP depth indicates intu-
itively for a packet (i.e. qubit) the number of steps it takes to traverse a network
between any pair of source and destination queues. There may be additional
constraints that the packet has to obey: for example, it should move between a
predetermined pair of queues (i.e. this the case for the qubits that arrive and exit
given queues). The value we observed in the previous Sect. 3.3, is for a packet
that moves between any pair of queues. The best value of 5 SWAPs is when
moving between a specific pair of queues.

We assumed that a single job traverses the network at a time, but the fact
that the nodes are blocking seems to be a good model for multiple non-blocking
SWAP qubit paths. Using the PFQN we observe that more than 3 hops are
required on average to traverse from one of the source nodes to one of the sink
nodes. This is not surprising and for the simple 3D layout that we have been
using could have been determined by visual inspection: there are two source-sink
routes, one of 5 hops and another one of 3 hops.

Our small example shows that the arrival rates at the source queues influ-
ence the optimality of the average SWAP depth estimation. Our approach can
prove valuable with respect to look-ahead compilation heuristics. Compilation
speedups and cost improvements may be achieved by tuning queue parameters
without being forced to consider the existing movement constraints. We showed
in [12] how queuing theory can be used for predicting when to start and stop
T-gate distillations. Similar look-ahead scheduling techniques can be applied to
the source queues (e.g. Nodes 12 and 13 in Fig. 2).

Our procedure can be generalized. Similar approaches are used for modeling
latency times and delays in communication networks [1]. In this work we focused
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Table 1. The parameter values to compute the steady-state probabilities

Node # 1 2 3 4 5 6 7 8 9 10 11

λi 0.94 0.94 0.936 0.88 1.644 1.596 1.02 1.6 1.18 1.42 0.86

μi 1 1 1 1 1 1 1 1 1 1 1

μib 0.136 0.136 0.13 0.144 0.17 0.142 0.124 0.173 0.175 0.195 0.143

Table 2. The steady-state probabilities and the calculated performance metrics.

Node # 1 2 3 4 5 6 7 8 9 10 11

πi(0, 0) 0.185 0.185 0.181 0.203 0.135 0.121 0.163 0.138 0.18 0.165 0.205

πi(1, 0) 0.174 0.174 0.169 0.178 0.219 0.194 0.166 0.221 0.213 0.234 0.178

πi(0, 1) 0.641 0.641 0.65 0.619 0.646 0.685 0.671 0.641 0.607 0.601 0.617

ρi 0.815 0.815 0.819 0.797 0.867 0.8783 0.837 0.862 0.82 0.835 0.795

K̄i 0.815 0.815 0.819 0.797 0.867 0.8783 0.837 0.862 0.82 0.835 0.795

T̄i 0.867 0.867 0.875 0.906 0.527 0.550 0.821 0.539 0.695 0.588 0.924

solely on multiplication circuits because these are building blocks of larger prac-
tical algorithms. The scale of those circuits is not a limiting factor: thousands
of qubits (nodes) should be within the reach of PFQN methods. This work has
been mostly to showcase and test the potential of our idea, and leave for future
work the extension of our method to larger circuit instances.

5 Conclusion

We presented empiric evidence that a simple blocking PFQN can be used to
model and predict the depth of SWAP circuits resulting during the compilation of
circuits. The closed-form analysis method has a polynomial complexity, because
it is based on solving a set of linear equations for πi and per node there are only
three states in the CTMC for intermediate network nodes.

The precision of our queuing network model is influenced by the arrival rates
at the source queues. We did not model the correlations between sub-circuits,
and leave this for future work. Another significant parameter is the per node
probability of (0, 0).

Queuing networks may be a useful approach towards steering the automated
compilation of very large scale quantum circuits to arbitrary (irregular) qubit
layouts. Future work will focus on automatically modeling queue arrival rates
and benchmarking larger and more diverse types of qubit layouts.
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Abstract. The paper introduces new Toffoli and Peres reversible gates, which
operate under disjunctive control, and shows their functionality based on the
Barenco et al. quantum model. Both uniform and mixed polarity are considered
for the controls. Rewriting rules are presented, which provide a reduction of the
number of gates and quantum cost of reversible (sub) circuits using standard Tof-
foli or Peres gates. It is shown that in most cases a reduction in the number of
CNOT gates is obtained, which is convenient when mapping reversible circuits to
IBM-QX quantum computers.

Keywords: Reversible gates · OR gates · Rewriting rules

1 Introduction

One of the earliest contributions to the development of reversible/quantum circuits is
due to T. Toffoli [16, 17], who proposed a functionally complete controlled reversible
circuit, that soon became known as “Toffoli gate”, distinguishing two control bits and a
target bit, preserving the control bits and inverting the target bit when the conjunction
of the control bits became true. This reversible gate has intensively been used ever
since and has received several “extensions”, like multi-controlled Toffoli gates and their
decomposition as V-shaped cascades of elementary Toffoli gates and ancillary bits [5], a
quantum realizationmodel [5].mixed polarity controlled Toffoli gates [14], andClifford-
T realizations [2, 3] as well as mappings to the IBM QX quantum computers [1, 3].
Together with the Toffoli gate, the NOT gate and CNOT (the controlled NOT gate), are
basic universal components of reversible circuits.

The realization of minimal (irreversible) binary circuits is NP-complete [18]. Due
to the constraints imposed by reversibility, like no feedback and no fan-out of gates,
the synthesis of minimal reversible/quantum circuits is NP-hard [12]. The synthesis
of reversible/quantum circuits is, therefore, mostly based on heuristics (see e.g. the
surveys [4, 13]). A fast transformation based synthesis system is presented in [15]. Post-
processing optimization of circuits has been applied, mainly using Templates [11] and
rewriting rules [14].

In the present paper Toffoli gates with disjunctive control [7, 8] will be disclosed,
including mixed polarity. Similarly, for the case of Peres reversible gates. These gates
will be simply called OR-Toffoli and OR-Peres gates. Rewriting rules will be developed
for the post-processing of circuits, allowing to replace, when applicable, sub-circuits
based on classical reversible gates by simpler circuits including OR- reversible gates.
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2 Formalisms

Definition 1: A disjunct controlled Toffoli gate has the following behavior: the target bit
will be inverted iff the disjunction of the binary control signals is true, i.e. if any or both
control bits have the value 1. The gate remains inhibited if both controls have the value
0 and behaves as an identity.

Its symbol, its quantum model under positive polarity, (similar to the Barenco et al.
[5] model) and its specification matrix [7, 8] are shown in Fig. 1, where the connection
between a control bit and the target inverter is represented by a triangular symbol ▼, (in
black when the expected control signal is 1), which is close to the disjunction sign

∨

of the Mathematical Logic. In the classical reversible gates, which are activated under
conjunctive control, the connection between a control bit and the target is represented by
a black dot if the activating control signal has the value 1 or a white dot if the activating
control signal has the value 0 [14]. The same color assignment will be used in the case
of OR-reversible gates. In what follows, as a matter of fairness, the quantum model will
be called Barenco model. This model shows that the OR-Toffoli gate, as the classical
Toffoli gate, has a quantum cost of 5. In the Barenco model, the matrix specification of
the V-gate is the square root of the matrix specification of the NOT gate [5]. Therefore
V·V = NOT.

It is simple to see in the Barenco model of Fig. 1 that if c1 has the value 1, (“c1
is 1”), and c2 has the value 0, (“c2 is 0”), the first V-gate will become active, and the
second one will be inhibited, thus behaving as the identity. Furthermore, c1 will activate
the CNOT gates, producing a “local 1” that will activate the third V-gate. Finally, the
cascade of the two active V-gates produce the expected NOT behavior. (Notice that the
last CNOT gate only recovers the original value of c2).

In the case that c1 is 0 and c2 is 1, the first V-gate and the CNOT gates will be
inhibited, whereas the second and the third V-gates will be activated and their product
will produce the expected NOT behavior.

Finally, if both c1 and c2 are 1, the two first V-gates become activated and produce
the expected NOT behavior. Since the CNOT gates will also become activated by c1
they will produce a local 0 by negating c2, inhibiting the third V-gate.

It is simple to see that if both c1 and c2 are 0, then all gates will be inhibited.
This analysis clearly shows that the OR-Toffoli gate becomes active, when the dis-

junction –(OR)– of the control signals is true. Furthermore, the target line of its Barenco
model contains onlyV-gates, whereas in the case of classical Toffoli gates the target line
contains two V-gates and one adjoint V-gate [5].

Figure 2 shows OR-Toffoli gates under mixed polarity, where if a 0 control signal is
meant to be effective, then awhite trianglewill be placed on the control line, in analogy to
the “white dots” of the conjunctive case (see e.g. [14]). The “=” sign in Fig. 2 refers to the
functionality, not to the structure of the gates. Furthermore, the Barenco type of quantum
models only illustrate the functionality of the gates. Prevailing “quantum technologies”
may not necessarily support negative control of elementary quantum gates.

The gates of Fig. 2 become active when at least one of the controls is effective, i.e.
when a white triangle is driven by 0 or a black triangle is driven by 1. The gates become
inhibited, when both controls are ineffective.
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Fig. 1. Symbol, Barenco quantummodel, andmatrix specification of the basic disjunct controlled
Toffoli gate.

Fig. 2. OR-Toffoli gates with mixed polarity and their Barenco functional quantum models.

As mentioned earlier, the role of the last CNOT gate of the Barenco models is the
recovering of the initial value of c2, but it does not affect the target output. If this gate
is deleted, the target will not be affected, but the output at the middle qubit will change.
It is simple to conclude that the modified gate has the behavior of a Peres gate [10], or
more precisely, that of an OR-Peres gate. Details of the OR-Peres gate, including mixed
polarity, may be found in [9], available from the author upon request.

Still an important structural aspect of OR-Toffoli gates has to be considered: the
scalability, i.e. the possibility of building multicontrolled OR-Toffoli gates. A direct
realization of an OR-Toffoli gate with 3 controls adapted from [8] is shown in Fig. 3,
where the boxes on the target line represent W-gates.W equals the fourth root of NOT:

W =1

2

[
1 + i1/2 1 − i1/2

1 − i1/2 1 + i1/2

]
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Fig. 3. Direct realization of an OR-Toffoli gate with 3 controls: t’ = t ⊕ (c1 ∨ c2 ∨ c3)

Table 1. Proof of correctness of the circuit of Fig. 3:

c1 1 0 1 0 1 0 1

c2 0 1 1 0 0 1 1

c3 0 0 0 1 1 1 1

Active
gates

1, 3
5, 7

2, 3
6, 7

1, 2
5, 6

4, 5
6, 7

1, 3
4, 6

2, 3
4, 5

1, 2
4, 7

From Table 1 it becomes apparent that for any combination of control signals such
that c1 ∨ c2 ∨ c3 �= 0, four W-gates will be active and their cascade –(product)– will
generate the expected 3-controlled NOT behavior. If all three control signals have the
value 0, then the OR-Toffoli gate will be inhibited.

3 Rewriting Rules

Rewriting rules comprise indications on how to move gates within a circuit and replace
sub-circuits with simpler ones. (See e.g. [14]). Templates [11] comprise pairs of sub-
circuits, where one has the inverse functionality of the other. (Their cascade leads to an
identity). The simpler will be used.

In the case of OR-Toffoli gates, most rewriting rules may be obtained based on
construction, considering that x

∨
y = x ⊕ y ⊕ xy = x ⊕ x̄ y = y ⊕ x ȳ and also that

x
∨

y = x̄ȳ. This is shown in Fig. 4, which, as the basic straight forward rewriting
rule, must be read according to the arrows.

          

Fig. 4. Basic straightforward rewriting rules:

c̄1c̄2 = c2 ⊕ c1c̄2 = c1 ⊕ c̄1c2 = c1 ∨ c2; c1 ⊕ c2 ⊕ c1c2 = c1 ∨ c2
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Rule 1:

c1 

c2 

t

Proof of equivalence:

c
′
1 = c1 ⊕ (c2 ∨ t) = c1 ⊕ c2 ⊕ t ⊕ c2t = c1 ⊕ c2 ⊕ c̄2t; c′

2 = c2

t′ = t ⊕ c
′
1c2 = t ⊕ (c1 ⊕ c2 ⊕ c̄2t) c2 = t ⊕ c1c2 ⊕ c2 = t ⊕ c̄1c2

However, if both sides of t′ = t ⊕ c̄1c2 are multiplied by c̄2, then.

c̄2t
′ = c̄2t and c

′
1 = c1 ⊕ c2 ⊕ c̄2t

′

The circuit based on an OR-Toffoli gate and a classical Toffoli gate gives the simpler
realization, where a CNOT gate is no longer needed.

Rule 2:

Proof of equivalence:

t′ = t ⊕ (c1 ∨ c2) = t ⊕ c1 ⊕ c2 ⊕ c1c2 = t ⊕ c2 ⊕ c1c̄2

c’1 = c1 ⊕ (
t′ ∨ c2

) = c1 ⊕ t’ ⊕ c2 ⊕ t′c2 = c1 ⊕ c2 ⊕ t′c̄2

Rule 3:

Proof of equivalence:

t′ = t ⊕ (c1 ∨ c̄2) = t ⊕ c1 ⊕ c̄2 ⊕ c1c̄2 = t ⊕ c̄2 ⊕ c1c2

c’1 = c1 ⊕ (
t′ ∨ c2

) = c1 ⊕ t′ ⊕ c2 ⊕ t’c2 = c1 ⊕ c2 ⊕ t’c̄2
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Rule 4:

Proof of equivalence:

t′ = t ⊕ (c1 ∨ c2) = t ⊕ c1 ⊕ c2 ⊕ c1c2 = t ⊕ c2 ⊕ c1c̄2

c’1 = c1 ⊕ (
t′ ∨ c̄2

) = c1 ⊕ t’ ⊕ c̄2 ⊕ t’c̄2 = c1 ⊕ c̄2 ⊕ t’c2

Rule 5:

Proof of equivalence:

t′ = t ⊕ (c1 ∨ c2) = t ⊕ c1 ⊕ c2 ⊕ c1c2 = t ⊕ c2 ⊕ c1c̄2; c′
2 = c2

c
′
1 = c1 ⊕

(
t′ ∨ c̄2

)
= c1 ⊕ t′ ⊕ c̄2 ⊕ t′c̄2 = c1 ⊕ c̄2 ⊕ t′c2

Rule 6:

Proof of equivalence: Let t0 = t ⊕ (c1 ∨ c2) = t ⊕ c1 ⊕ c2 ⊕ c1c2

c
′
1 = t0 ⊕ c1 = t ⊕ c1 ⊕ c2 ⊕ c1c2 ⊕ c1 = t ⊕ c̄1c2; t′ = t0 ⊕ c

′
1 = c1;

Notice that in the circuit at the right the first three CNOT gates swap c1 and t.
Further rules may be found in [9].
These few rewriting rules obviously do not cover all possible simplifications,

but should be considered as motivating examples offering new possibilities for post-
processing of prevailing Toffoli circuits. Notice that in these rewriting rules, all the
OR-circuits not only require less gates than the classical ones, but they also require less
CNOT gates, what will be positive in the context of processing in IBM/QX quantum
computers, where there is a limited number of so-called native CNOT gates in fixed
positions [1, 3].
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Example: The benchmark “mod5d1” has the following specification. A 5⨯5 reversible
circuit should be designed, where the input 5-tuple b4b3b2b1b0 represents the binary
coding of the integers 0, 1, 2,…, 31. For this sequence of input integers, the coded
output should be [0, 1, 3, 2, 5, 4, 7, 6,…, 27, 26, 29, 28, 30, 31], i.e. the integers 0, 1,
30 and 31 should be preserved at the output and the remaining even integers should be
swaped with the corresponding next odd integers. It is simple to see that only the b0 bit
will be affected. It is known [19] that an optimal solution is the following:

b0’ = b0 ⊕ [(b4 ⊕ b2) v (b3 ⊕ b1)].

b4
b3
b2
b1
b0‘ 

(a) (b)

b4
b3
b2
b1
b0

b4
b3
b2
b1
b0

b4
b3
b2
b1
b0‘ 

Fig. 5. (a) Classical solution [19], (b) Solution with an OR-Toffoli gate.

Notice that the realization with an OR-Toffoli gate saves two CNOT gates.
A next step may be the study of OR-gates at the level of their Clifford + T models.

This can rather easily be done taking advantage of the existence of Clifford + T gates
with optimal T-count of 7 and optimal T-depth of 4 for the realization of t ⊕ c1c̄2 and
for the realization of a classical Toffoli gate [2]. Adding at the input side of the first gate
a CNOT gate controlled by c2 realizes a Clifford + T OR-Toffoli (recall Fig. (4)) and
adding at the output side of the Toffoli gate a CNOT gate controlled by c1 produces an
OR-Peres gate.

4 Closing Remarks

OR-Toffoli and OR-Peres gates have been presented and their functionality introduced,
based on an adapted Barenco model for the classical Toffoli gate. A possible way of
using these gates to improve existing reversible/quantum Toffoli circuits in form of
rewriting rules, is discussed. Prevailing circuits may be improved with the rewriting
rules by reducing the number of gates –(particularly CNOT gates)- and quantum cost. An
example of the realization of a benchmark is given; Others may be found in [6]. Finally,
a possible Clifford-T realization of OR-Toffoli and OR-Peres gates with minimum T-
count, based on circuits presented in [2] is suggested, which may be considered when
optimized circuits are mapped to an IBM-QX quantum computer.
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