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Abstract

The past decade has seen the growing use of ab initio
methods to study theoretically not only the atomic and
electronic structure of semiconductors but also their
charge-transport properties. This chapter focuses on
“intrinsic” charge transport (limited by scattering with
phonons) and starts with a brief historical overview of
early work, mostly based at first on the deformation
potential theorem and, later, on empirical pseudopoten-
tials and on the rigid-ion approximation, to calculate
electron-phonon matrix elements in semiconductors.
This historical overview is followed by an outline of
the theoretical framework employed when using density
functional theory. Having described the full-band Monte
Carlo method to solve the Boltzmann transport equation,
the chapter presents examples of the use of ab initio
methods to study the low-field mobility, high-field
transport, and device performance in silicon, group-III
nitrides, and two-dimensional materials. Throughout the
discussion attention is paid to the limitations of ab initio
methods. Finally, the chapter discusses how ab initio
methods are used to study the dielectric response of solids
and charge transport in the quantum limit.

Keywords

Density functional theory · Dielectric screening ·
Electronic transport · Electron-phonon interaction ·
Quantum transport · Two-dimensional semiconductors

© Springer Nature Switzerland AG 2023
M. Rudan et al. (eds.), Springer Handbook of Semiconductor Devices,
https://doi.org/10.1007/978-3-030-79827-7_42

1515

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79827-7_42&domain=pdf
https://orcid.org/0000-0001-5926-0200
https://orcid.org/0000-0002-6717-5046
https://orcid.org/0000-0001-9179-6443
https://orcid.org/0000-0003-0067-8674
https://orcid.org/0000-0002-9493-2276
mailto:max.fischetti@utdallas.edu
mailto:william.vandenberghe@utdallas.edu
mailto:Maarten.VandePut@utdallas.edu
mailto:Gautam.Gaddemane@utdallas.edu
mailto:jingtian.fang@synopsys.com
https://doi.org/10.1007/978-3-030-79827-7_42


1516 M. V. Fischetti et al.

42.1 Introduction

Until recently, the theoretical study of charge transport in
semiconductors and semiconductor devices has been based
on some level of “empiricism.” The library of software
tools that constitute the technology computer-aided design
(TCAD) in this area may indeed range from simple – but
computationally efficient – models based on a drift-and-
diffusion approximation of the semiclassical Boltzmann
equation (BTE) [1], to models based on a hydrodynamic
approximation [2, 3] or even to full-band Monte Carlo
methods [4]. Yet, all of these models require some degree
of empirical information, such as models for the carrier
mobility as a function of doping and temperature, for the
energy and momentum relaxation times, or deformation
potentials to describe the strength of the interaction between
charge carriers and phonons.

This degree of empiricism has been possible – and highly
successful – thanks to the wealth of experimental information
that has become available, since the late 1940s, about charge
transport in silicon, germanium, and III–V compound semi-
conductors, materials used in the bulk of the micro- and nan-
otechnology products in logic, memory, and optoelectronics
offered by the very-large-scale integration industry (VLSI).
However, in the past decade or so, research has shifted to
novel materials that may possibly replace or augment these
“conventional” semiconductors, such as wide band gap semi-
conductors for power electronics (diamond, silicon carbide,
group-III nitrides, or gallia – Ga2O3), or the growing number
of two-dimensional (2D) materials that have attracted atten-
tion since the advent of graphene [5–8]. In many cases, little
information is available about these materials, often not even
their stability, and even less information is available about
their charge-transport properties (e.g., band gap, effective
mass, and carrier mobility).

The rise of these new materials has moved the old dream
of predicting the performance of an electronic device exclu-
sively from “first-principles” (or ab initio) from the realm of
a cultural and academic exercise to a necessity. Therefore,
it is perhaps a fortunate coincidence that at the same time
theoretical progress and improvement of the computational
hardware have rendered ab initio methods reliable and pre-
dictable almost to the point at which experimental informa-
tion is required not to build new empirical models but to
simply confirm the theoretical predictions. (The reasons why
we wrote almost will be evident below in Sect. 42.7.)

In the past, the use of first-principles methods has been re-
stricted to small systems, mainly focused on their structures,
total and formation energies, and bonding configurations but
had little or no connection to electronic transport. However,
the recent progress we have mentioned above has broad-
ened their range of applications, improved their accuracy,
and extended their scope to electronic transport [9, 10].

Density functional theory (DFT) is now routinely used to
predict the atomic and electronic structure of new materials,
thanks to the wide availability of computer packages, such
as the Vienna Ab initio Software Package (VASP) [11–14]
or Quantum ESPRESSO (QE) [15,16]. Even the strength of
the electron-phonon interaction can now be calculated using
DFT using either the finite ion displacements [17] or density
function perturbation theory (DFPT) [18, 19]. This consti-
tutes a dramatic improvement since the early “pioneering”
days in which the rigid-ion approximation [20] and empirical
pseudopotentials were painstakingly used to estimate defor-
mation potentials in Si, intervalley deformation potentials
in III-V compound semiconductors [21–24], and used in
Monte Carlo transport studies [25–28]. Even transport in
open systems has been studied using DFT [29], and such
an ab initio formalism has also been used to study dissi-
pative transport in the two-dimensional materials of current
interest [30].

In this chapter we present a birds-eye view of the historical
evolution of “first-principles” methods toward the present
state of art. Keeping in mind the scope of this chapter, we
shall limit our attention to the use of first-principles methods
in the study of electronic transport. Therefore, in this his-
torical overview, we shall pay attention to the deformation
potential theorem and the rigid-(pseudo)ion approximation,
approximations that are now replaced by genuine ab initio
methods, but that still play a huge role in research, thanks
to their computational efficiency and their sound physical
basis. Restricting our attention to density functional theory,
in Sect. 42.3 we shall briefly present a general formulation
of DFT and its application to the study of the electron-
phonon interaction. As important examples of application of
the theory, in Sect. 42.4 we shall consider silicon (obviously),
considering the electron-phonon scattering rates, both intra-
band and inter-band; the transport properties of group-III
nitrides and selected 2D materials (to follow the present
trend), employing DFT to compute the electron-phonon scat-
tering rates and their transport properties (low-field mobility,
velocity-field characteristics); and also device characteris-
tics (in some cases) obtained from full-band Monte Carlo
simulations based on the band structure and scattering rates
obtained from these ab initio calculations. We shall then
present, in Sect. 42.5, a different application of ab initio
methods, namely, the calculation of the dielectric response
of nanostructures, an important factor that controls the elec-
trostatics of devices as well as dielectric screening of several
perturbations. We shall present in Sect. 42.6 a brief overview
of the use of pseudopotentials to deal with quantum transport
in ultra-scaled devices, considering graphene nanoribbons as
examples. In our final section, Sect. 42.7, having assessed
the predictive power of ab initio methods, we shall consider
also their limitations and speculate on what the future may
promise.
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Throughout this discussion, we consider only the electron-
phonon interaction, since it is the subject that has received
more attention as it is an intrinsic element in determining
the charge-transport properties of electron devices. However,
additional scattering processes, such as Coulomb scattering
with ionized impurities and roughness at the semiconductor-
insulator interface, have also been addressed using ab initio
methods, as illustrated in Refs. [31, 32], for example. We
also refrain from discussing molecular devices, although also
in this case first-principles methods have been employed
successfully (see Refs. [33, 34], for example).

42.2 Historical Overview

It is hard to define precisely the term “first principles” or ab
initio. If we take a broad view and define a first-principles’
approach as a way of expressing a transport-related quantity
(such as the electron mobility, for example) in terms of
“higher-level” physical quantities that are not directly related
to transport (e.g., a change of the band structure in the pres-
ence of vibrations of the crystal, phonons), probably the first
example of such an ab initio approach is given by Bardeen’s
and Shockley’s “deformation potential” theorem [35].

As we shall see below, the interaction between electrons
and phonons can be expressed as the perturbation of the
electronic motion caused by the displacements of the ions
away from their equilibrium positions, displacements that
are associated with the thermal vibrations of the lattice.
Therefore, the Hamiltonian that describes this perturbation
can be written as:

̂Hep =
∫

�

dr δ̂Utot(r)ρ̂(r) , (42.1)

having indicated operators with a “hat.” The quantity δ̂Utot(r)
is the change of the total crystal potential at position r
due to the presence of phonons and ρ̂(r) is the electron
density (that is, ̂ψ†(r)̂ψ(r) in terms of the (second-quantized)
electron field ̂ψ). The term δ̂Utot(r) can be written explicitly
in terms of the displacement, δ̂R

(η)

l,α,q of each ion α in the
unit cell l caused by a phonon of wave vector q of branch
η (longitudinal or transverse, acoustic or optical):

δ̂Utot(r) =
∑

l,α,η,q

δEtot(r)
δRl,α

· δ̂R
(η)

l,α,q eiq·r . (42.2)

The quantity δEtot(r)/δRl,α represents the change of the total
energy of the crystal at position r when the ion α in cell l is
displaced from its equilibrium position by a shift δRl,α . (In
the following we shall express Rl,α as Rl + τ α , where τ α is
the position of ion α in the unit cell.) In second quantization,
the ionic displacement can be expressed in terms of the

phonon creation and annihilation operators ̂b(η)†
q and ̂b(η)

q ,
respectively:

δ̂R
(η)

l,α,q =
(

h̄

2ρxωq

)1/2

e(η)

q (̂b(η)†
q +̂b(η)

−q) , (42.3)

where h̄ is the reduced Planck’s constant and e(η)

q is the
phonon polarization vector. The use of first-order perturba-
tion theory is standard practice in our context. Therefore, the
matrix element for this process is given by (see Eq. (42.29)
below):

〈

n′,k + q
∣

∣δ̂Utot(r)
∣

∣ n,k
〉

, (42.4)

where for simplicity we have denoted by |n,k〉 a state in Fock
space that contains a (Bloch) electron in band n and with
wave vector k. We have also omitted to write explicitly the
phonons states, as we shall do in the following, since we shall
assume them to be at thermal equilibrium.

42.2.1 The Deformation Potential Theorem

In the early days of research of semiconductor physics
(around the late 1940s or 1950s), it was impossible to
calculate the matrix element given by Eq. (42.4). However,
Bardeen and Shockley viewed the nonpolar scattering of
electrons with acoustic phonons (the process that limits
the carrier mobility in Si and Ge), for example as caused
by the local change of the energy of the conduction band
minimum (or valence band maximum for the hole-phonon
process) due to the local strain wave associated with the
propagation of a phonon [35]. For example, under an
isotropic (hydrostatic) dilatation/compression of the lattice,
the lattice constant changes locally from a to a+u. This shifts
the energy of the conduction band minimum. Therefore, as
a dilatation/compression wave propagates in the crystal (i.e.,
an acoustic phonon), an electron sees a “scattering potential”:

	Ec = dEc

da
u . (42.5)

More generally, since a displacement u of the medium corre-
sponds to a local change 	� ≈ �∇ ·u, of the volume �, we
have (omitting the operator “hats” for simplicity):

δUtot(r) ∼ 	Ec(r)

= �
dEc

d�
∇ · u(r) ∼ 	ac q · uq eiq·r , (42.6)

where the last expression considers a single Fourier
component uqeiq·r of the displacement u(r). The quantity
	ac = �dEc/d� is called the “deformation potential”. From
Eq. (42.3) we see that the presence of an acoustic phonon
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of wavelength λ = 2π/q and frequency ωq (where q is the
phonon wave vector) implies a shift of the atomic positions
of magnitude:

uq ≈
(

h̄

2ρxωq

)1/2

, (42.7)

(where ρx is the crystal mass density). Thus, the scattering
potential becomes:

	Ec quq eiq·r ≈ 	Ecq

(

h̄

2ρxωq

)1/2

eiq·r , (42.8)

so that, for longitudinal phonons, the squared electron-
phonon matrix element can be approximated as:

|〈k + q|̂Hac|k〉|2 ≈ h̄	2
acq

2

2ρxωq

(

Nq + 1

2
± 1

2

)

, (42.9)

where the plus (minus) sign applies to emission (absorption)
processes andNq is the Bose-Einstein population of phonons
of momentum h̄q at thermal equilibrium. Therefore, consid-
ering that for small energies electrons emit or absorb only
small-q acoustic phonons, we can assume a linear phonon
dispersion with a slope given by the sound velocity υs, that
is, ωq = υsq. We can also assume that the phonon energy is
much smaller than the thermal energy kBT (where kB is the
Boltzmann constant), so that Nq ≈ kBT/(h̄υsq) � 1 and
scattering can be treated as an elastic process. Thus, finally,
the momentum relaxation rate becomes simply:

1

τac(E)
= 21/2	2

acm
∗3/2kBT

π h̄4ρxυ2
s

E1/2 , (42.10)

and the electron mobility can now be calculated with the only
unknown parameter 	ac that can be obtained experimentally
from measurements of the band gap of the crystal as a
function of hydrostatic compression. Therefore, a transport
quantity, the electron mobility, is now linked to a more
fundamental quantity, the deformation potential, which is not
directly related to charge transport.

In this oversimplified picture, electrons can couple only
to longitudinal acoustic (LA) phonons, since the anisotropy
of the band structure of silicon and germanium near the
band extrema has been ignored. A few years later, Herring
and Vogt [36] accounted for this effect and provided an
approximated form for the deformation potentials for the
interaction of electrons with LA and transverse acoustic (TA)
phonons in terms of the dilatation deformation potential, d,
of the uniaxial shear deformation potential, u, and of the
angle θq between the wave vector q of the phonon and the
longitudinal axis of the ellipsoidal equi-energy surfaces:

	LA ≈ d + u cos2 θq
	TA ≈ u sin θq cos θq .

(42.11)

42.2.2 The Rigid (Pseudo)ion

When Bardeen and Shockley presented their deformation
potential theorem, there was only scant and often incorrect
experimental information about both the band structure and
the transport properties of silicon and germanium. However,
in the mid-to-late 1960s, as more reliable experimental infor-
mation became available and computer technology continued
to progress, it became possible to perform full-band structure
calculations, empirical pseudopotentials being at the time the
preferred choice.

Developed for bulk semiconductors of the diamond and
zinc blende structure at first [37,38], the pseudopotential only
needs “form factors” for a small set of wave vectors coin-
ciding with reciprocal lattice G vectors. For nanostructures,
full functional forms Vαq were developed to study strained
materials and nanostructures that require larger “supercells,”
since in both cases knowledge of Vαq is required for arbitrary
values of q. Details about these functional forms for various
semiconductors, as well as details about their applications to
study electronic transport in nanostructures, can be found in
Refs. [39, 40].

These empirical pseudopotentials were used to calculate
the phonon-induced narrowing of the band gap at high tem-
peratures [41–44], finally giving a solid (if not ab initio)
justification of the empirical models that were in use (see,
e.g., Ref. [45]). This problem has been revisited recently
using methods that can be labeled genuine ab initio calcu-
lations [46]. However, this interesting problem falls outside
the scope of this chapter.

Moreover, and more to the point of our discussion, these
empirical pseudopotentials were used to improve upon the
deformation potential approximation: once the empirical
pseudopotential Vα(r) of an ion α is known, Eq. (42.2) can
be re-expressed in terms of the Fourier components of the
ionic pseudopotential, Vα,p, assuming that the ionic potential
shifts rigidly:

δ̂Utot(r)

≈
∑

l,α,η,q,p
i Vα,p eip·(r+Rl,α)p · δ̂R

(η)

l,α,q eiq·r . (42.12)

Using some semiempirical models to obtain the phonon
dispersion and polarization vectors, such as the valence shell
model [47, 48]), Zollner and Cardona were able to calculate
the scattering rates for intervalley scattering in several III–V
compound semiconductors [21–24], thus confirming the ex-
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perimental results obtained by sub-picosecond pump-probe
measurements [49].

At the same time, empirical pseudopotentials were begin-
ning to be used not only to calculate the electron-phonon
interaction (so, the electron dynamics) but also to extend
the validity of transport models to a range of high energy
in which the universally used effective mass approxima-
tion clearly failed. This was of tremendous practical interest
because of the reliability issues caused by hot electrons
in the ever-shrinking devices of the VLSI technology. The
major breakthrough occurred in 1981, when Shichijo and
Hess [50] developed a Monte Carlo approach to account for
the electron kinematics (energy and group velocity) using
the band structure of GaAs calculated using local empiri-
cal pseudopotentials. The electron-phonon scattering rates
were treated empirically starting from the Ansatz that their
energy dependence must reflect the density of (final) states,
an Ansatz whose validity has been confirmed recently (see
Ref. [51] and references therein). This “full-band” approach
was later extended by Tang and Hess to silicon [52, 53], by
Brennan and Hess to several other III–V compound semicon-
ductors [54] and by Fischetti and Laux to simulate not only
homogeneous transport but also inhomogeneous and realistic
semiconductor devices [4].

Obviously, silicon has been the subject of studies per-
formed by several groups also employing empirical pseu-
dopotentials and empirical “deformation potentials” fitted to
available experimental data on high-energy transport, such as
velocity-field characteristics at high fields [55, 56], impact
ionization [52, 55, 57–59], and injection into the SiO2 gate
insulator. Theoretical support for these semiempirical full-
band models has been obtained by using empirical pseu-
dopotentials (and Harris potentials) to calculate the electron-
phonon scattering rates in Si and other semiconductors within
the rigid-ion approximation [25–28], as discussed recently
in Ref. [51]. In Fig. 42.1 we show the total electron-phonon
scattering rates averaged over equi-energy surfaces and bands
plotted as a function of electron kinetic energy as calculated
using empirical deformation potentials [4, 55, 56] compared
to quasi-ab initio calculations using Harris potentials [26–
28,56] and empirical pseudopotential [25].

More recently, the rigid-(pseudo)ion method has been ex-
tended to 2D materials, specifically to calculate the electron-
phonon scattering rates in free-standing graphene [60]. Fig-
ure 42.2 shows the electron-phonon scattering rates calcu-
lated at 300 K for a free-standing sheet. The mobility and
velocity-field characteristics obtained using these results (as
reported in Ref. [60]) are in good agreement with avail-
able experimental data and show that even relatively poorly
known materials (at least, less known than Si) can be studied
successfully using these models.

The discussion presented so far can be viewed as a snap-
shot of the state of the art before DFT began to replace these
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Fig. 42.1 Electron-phonon scattering rates calculated using the rigid-
(pseudo)ion model and empirical pseudopotentials [25, 55] (labeled
“Fischetti-Higman” and “Kunikiyo et al.”), Harris potentials [27, 56]
(labeled “Higman-Hess” and “Yoder-Hess”) compared to rates calcu-
lated using empirically determined deformation potential calibrated to
reproduce known experimental data [4] (labeled “Fischetti-Laux”)

quasi-empiricalmethods.Most of the research has focused on
electron transport in silicon, and undeniably the empirical na-
ture of these models (via the calibrated pseudopotentials and
simple models for the phonon spectra and polarization) limits
their predictive power. Therefore, exploring novel materials
requires the more fundamental approach inherent to genuine
ab initiomethods that we discuss next. Nevertheless, the very
empirical nature of these pseudopotentials guarantees “by
definition” an accurate description of the excited spectrum of
semiconductors (viz., band gap and effective masses), as re-
quired when attempting to assess the performance of devices
based on “known” materials. Considering also their relative
numerical simplicity, these quasi-first-principles method are
still used in useful applications.

42.3 Theoretical Framework

In this chapter we restrict our discussion to plane-wave DFT
together with (self-consistent) pseudopotentials. However,
we should at least mention the fact that ballistic electronic
transport has been studied also using all-electron methods
[62, 63] by Polizzi’s group [64, 65], among others, thus
avoiding the need to “pseudize” the system. Moreover, at
least when studying relatively small molecules, all-electron
methods have also been used without resorting to approxi-
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(After M. V. Fischetti et al. [60], with permission from the Institute of
Physics ©2013 Institute of Physics)

mated exchange and correlation functionals but employing,
instead, the GW method (see Ref. [66], for example).

The maturity of DFT can be judged by the number of soft-
ware packages that are presently available. Most of them are
based on plane waves or projector-augmented plane waves
(VASP [11–14], Quantum ESPRESSO [15, 16], GPAW
[67, 68], CASTEP [69], ABINIT [70]), others on localized
orbitals (such as SIESTA [71, 72], or ATK [73, 74]). As we
had noted in the Introduction, DFT has been born with the
goal of studying the atomic and electronic structure of solids.
Only recently some of these computer packages have been
extended to handle electronic transport (such as TranSIESTA
[75] or QuantumWise-ATK [73,74] or EPW [76,77]). Here
we shall focus only in DFT based on a plane-wave basis and
look exclusively at electronic transport.

Modern DFT implementations start from the self-
consistent solution of the Kohn-Sham equation [14, 15,
78, 79]:

Heψi =
[

− h̄2

2m
∇2 + Veff(r)

]

ψi = Eiψi(r) , (42.13)

where He is the electron Hamiltonian whose first term rep-
resents the kinetic energy and Veff represents the effective
Kohn-Sham potential:

Veff = [Vion(r) + Vh(r) + Vxc(r)] . (42.14)

Here Vion(r) is the sum of the ionic potentials (−Zje2/(4πε0|
r − Rj|)) originating from all atoms, with valence Zj and
located at Rj, in the system. The second term is the Hartree
potential, capturing the effect of the interaction of all elec-
trons with each other:

Vh =
∫

e2

4πε0|r − r′|ρ(r′)dr′ , (42.15)

using SI units (e is the magnitude of the electron charge and
ε0 is the vacuum permittivity). The Hartree potential does not
fully capture the interaction of electrons with each other. This
is where DFT comes with the final term on the left-hand side,
the exchange-correlation potential:

Vxc(r) = ∂Exc[ρ]
∂ρ(r)

, (42.16)

where Exc[ρ(r)] is the exchange-correlation functional. The
final element required to generate a closed set of equations,
is the charge density eρ(r) which is simply calculated by
summing over all occupied Kohn-Sham wavefunctions:

ρ(r) = 2
N/2
∑

i

|ψi(r)|2 . (42.17)

The prefactor 2 accounts for spin degeneracy, and the sum
runs over N/2 wavefunctions where N is the total number of
electrons in the system.
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Equations (42.13–42.17) provide a set of equations which
can be solved for any atomic configuration, provided an
exchange-correlation functional is selected. Some minor and
major numerical issues appear in a practical implementa-
tion. Several approximations are generally in order. We dis-
cuss two important approximations that we use to study the
electron-phonon interaction in crystals.

First, we consider ideal crystals; this means that an infi-
nite number of atoms, arranged in a periodic configuration,
is present in the system under consideration. The periodic
system is described by a set of three basis vectors, spanning
the unit cell, and an additional set of vectors specifying the
location of all composing atomic species inside the unit cell,
τ α . In Eq. (42.17), we introduced i as a generic quantum
number. In a crystal, the ionic potential is periodic, and the
quantum number i actually consists of a wave vector k and
a band index n. The charge density is then determined by
summing over an appropriate k-space discretization, possibly
exploiting crystal symmetry, and a number of bands defined
by the number of electrons in the system. We also introduced
a second generic index j for the position of each atom;
however, from now on we will useRl,α to denote the position
of ion α in unit cell l.

Second, a numerical all-electron solution, solving
Eq. (42.14) directly, is possible but requires a very fine
discretization of the wavefunctions. To deal with systems
of sufficiently large size, an approximation needs to be
introduced that significantly reduces the computational
burden. The need for a very fine discretization stems from
the −Zje2/|r − Rl,α| contributions to the ionic potential,
which are singular at Rl,α . There are also a large number
of core electronic states, which remain identical regardless
of the crystal under consideration. A first simplification to
reduce the computational burden is to compute only the
charge density of the valence electrons, i.e., the electrons
which are not core electrons, and to incorporate the impact
of core electrons through a modification of the (bare) ionic
potential Vion(r). However, even when calculating only the
valence states, rapid wavefunction oscillations remain near
the center location of the ion Rl,α . To avoid these rapid
oscillations, a pseudopotential approximation is introduced.

We omit the details of the implementation of modern
pseudopotential-like approximations, such as the projector-
augmented wavefunction approach [80, 81], but the general
picture of these approaches is captured by a wavefunction
composed of plane waves:

ψpw(r) =
∑

G
cGeiG·r , (42.18)

where G are reciprocal lattice vectors. The number of re-
ciprocal lattice vectors G determines the size of the Hamil-
tonian in its numerical implementation. To realize maximal
computational efficiency, approaches try to minimize the

number of reciprocal lattice vectors while still faithfully
capturing the electronic behavior of the system. The plane-
wave wavefunctions are not actual wavefunctions and need
to be augmented to accurately capture the rapidly oscillating
nature of the actual wavefunction near the core. Overall, the
pseudopotential approach gives excellent results and limits
the number of plane waves required for an accurate solution
quite efficiently.

Once the Kohn-Sham wavefunctions are found, the
ground-state energy of the crystal is determined as:

E =
∑

i

〈ψi| − h̄2∇2

2m
|ψi〉

+ e2

2

∫ ∫

drdr′ ρ(r)ρ(r′)
4πε0|r − r′|

+
∫

dr Vion(r)ρ(r) + Exc[ρ] + Eions (42.19)

where the sum over i runs over all valence band states. This
ground-state energy is a function of the atomic positions and
is a measure of the stability of the structure under study, i.e.,
a lower energy means a more favorable atomic configuration.
The favorable/unfavorable nature of the configuration can be
quantified through the calculation of the force acting on each
atom:

Fl,α = − ∂E

∂Rl,α
. (42.20)

This force can be evaluated from the Kohn-Sham wavefunc-
tions using the Hellmann-Feynman theorem [82] and comes
at minimal computational cost once the Kohn-Sham equation
is solved.

This means that once an initial atomic configuration is
provided, the energy of the atomic configuration can be com-
puted as well as the force acting on each atom. Based on these
forces, a new atomic configuration can be constructed and
again the energy and the forces can be computed. Repeating
this process and using an optimization algorithm like the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [83],
the atomic configuration with minimal energy can be deter-
mined. This process is referred to as “structural relaxation,”
and at the end of relaxation, the crystal is in its minimal
energy configuration and the force acting on each atom
vanishes.

Next, we are interested in the possible lattice vibrations in
the system: the phonons. To determine the phonon spectrum,
the second-order force-constant tensor is required:

�lαl′α′ = ∂Fl,α
∂Rl′α′

(42.21)

to construct the dynamical matrix. Unfortunately, the calcula-
tion of the second-order force constants is much more expen-
sive compared to the calculation of the forces, i.e., the first-
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order force constants acting on each atom. The reason why
the evaluation of the first-order constants is computationally
cheap is because the ground-state energy minimizes the en-
ergy with respect to the charge density: ∂E[ρ(r)]/∂ρ(r) = 0.
This enables the evaluation of the first-order force constants
without computing 	ρ(r) = ∂ρ(r)/∂Rl,α . For the second-
order force constants on the other hand, 	ρ(r) has to be
computed.

Similarly, the final quantity of interest for the electron-
phonon interaction is the change in potential due to the
displacement of an atom:

∂(Vion + Vh + Vxc)

∂Rl,α
. (42.22)

Just like for the second-order force constants, more informa-
tion than is available from the solutions of the Kohn-Sham
equation is required and 	ρ(r) must be calculated.

Two methods are available to compute the second-order
force constants and the change in potential due to atomic
displacements: the density functional perturbation theory
(DFPT) method and the finite-displacement method. Both
methods are equivalent if implemented with sufficient accu-
racy; we give a brief overview of both methods next sections.

42.3.1 Density Functional Perturbation Theory

The density functional perturbation theory [16,84] approach
introduces a new set of equations that have to be solved
simultaneously to determine the change in the Kohn-Sham
wavefunctions 	ψn and the change in the energies 	En
under the application of a perturbation of the ionic potential
	Vion(r):

(He − En) |	ψn〉 = −(	Veff − 	En) |ψn〉 , (42.23)

	Veff(r) = 	Vion(r) + e2
∫

	ρ(r′)
4πε0|r − r′|dr

′

+ dvxc(ρ)

dρ

∣

∣

∣

∣

ρ=ρ(r)

	ρ(r) , (42.24)

where:
	ρ(r) =

∑

i

ψ∗
i (r)	ψi(r). (42.25)

These three equations have to solved simultaneously for
every displacement of every relevant perturbation of the ionic
potential under consideration. Assuming the computational
burden to solve the DFPT equations (42.23–42.25) is similar
to that of solving the Kohn-Sham equation (42.13–42.17);
computing the phonon spectrum and the electron-phonon
interaction strength is nominally 3NionNq more expensive

where Nion counts the number of ions in each unit cell
and Nq counts the number of phonon wave vectors of in-
terest. Computing the phonon dispersion (or spectrum) is
relatively straightforward for crystals with smaller unit cells,
especially when symmetry further reduces the computational
expense [85,86]. On the other hand, determining the phonon
spectrum of crystals with large unit cells quickly becomes
very expensive.

Having determined 	ρ(r) and 	Veff(r), the second-order
force constants as well as the change of the potential can be
determined, and we can proceed with the calculation of the
phonon spectrum or the electron-phonon matrix elements.
To save computational resources, interpolation methods [76]
can be used to interpolate calculated phonon energies and
electron-phonon matrix elements onto a finer grid of phonon
wave vectors.

42.3.2 Finite-Displacement Method

In the finite-displacement method [17,87], atoms are slightly
displaced away from their equilibrium position R(0)

l,α to a new

positionR(0)
l,α +δR. The whole procedure of solving the Kohn-

Sham equation (42.13–42.17) is repeated for a whole set
of displacements, and for every displacement the forces are
computed. The second-order force constants and the potential
change due to atom displacement can then be found using the
finite difference method.

For example, to determine the derivative of the total en-
ergy required to evaluate the electron-phonon matrix ele-
ments, the Kohn-Sham equation is solved when the atom lα
is slightly displaced from its equilibrium position R(0)

l′α′ along
the positive and negative j direction,Rl′α′ = R(0)

l′α′ ±εej, where
ej is a unit vector along the direction j and ε is a small number.
This gives us the total crystal energies, Ej+tot and E

j−
tot , after

the positive and negative displacement along the j Cartesian
direction. Repeating the procedure for the other two Carte-
sian directions and using the central difference scheme, the j
component of the quantity δEtot/δRl,α appearing in Eq. (42.2)
(or 	Veff in Eq. (42.27) below) can be approximated by the
expression:

δEtot

δRl,α

∣

∣

∣

∣

j

≈ Ej+tot − Ej−tot
2ε

. (42.26)

Moreover, the (j, j′) element of the second-order force
constant (i.e., the (j, j′) element of the dynamical matrix)
can be obtained in a similar way, although somewhat more
laboriously, by solving the Kohn-Sham equation when both
the atom lα and the atom l′α′ are slightly displaced from
their equilibrium position along the positive and negative
Cartesian axes, thus obtaining the second-order change,
	(2)Etotll′αα′ , which is central difference approximation to
the dynamical matrix �jlα,j′l′α′ , Eq. (42.21). In practice, such
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a cumbersome and time-consuming procedure is streamlined
by using the Hellmann-Feynman theorem, as mentioned
above.

One important consideration for the finite-displacement
method is the interaction between periodic images. When
displacing an atom in one unit cell in the simulation, the
equivalent atom in every unit cell is displaced in exactly
the same way in all other unit cells. This generates spurious
interactions between neighboring cells. To minimize these
spurious interactions, it is important to perform the calcula-
tions on a larger unit cell. For example, in the extreme case
of a crystal which has only one atom in its primitive unit
cell, no change in the energy will be observed when moving
the atom in the primitive unit cell. Instead, the primitive unit
cell has to be duplicated forming a supercell that is larger in
size by an integer factor γ in each direction. The supercell
now contains γ 3 atoms instead of 1. A larger γ will result
in reduced spurious interaction but will unfortunately also
rapidly increase computational memory requirements.

Both the finite-displacement method and the density func-
tional perturbation approach will give the same quantities,
provided calculations are performed with sufficient accuracy.
The choice of one method over the other may be motivated
by convenience or by a more efficient execution on the
available computational resources. The finite-displacement
method has the advantage that it only needs the solution
of the Kohn-Sham equation and only relies on the most
mature part of DFT codes. Parallelization is straightforward
in the finite-displacementmethod, and the calculation over all
displacements can be performed as parallel DFT calculations.
Interpolation onto a finer grid may also be more straight-
forward using the finite difference method compared to the
DFPT method. The DFPT approach may however be more
resource efficient and require fewer iterations than a new
solution of the Kohn-Sham equation for every displacement.

42.3.3 Electron-Phonon Interaction

The final object of interest is the electron-phonon interaction
Hamiltonian which is computed from 	Veff (which we can
identify with δ̂Utot; see Eqs. (42.1), (42.2), and (42.4)):

̂He-ph =
∫

dr ρ̂(r)	Veff(r) ≈

×
∫

dr ρ̂(r)
∑

l,α,η,q

δEtot(r)
δRl,α

· δ̂R
(η)

l,α,q eiq·r ,

(42.27)

where δ̂R
(η)

l,α,q is the ion displacement operator expressed in
Eq. (42.3) in terms of the annihilation and creation operators,
̂b(η)

q and̂b(η)†
q , for a phonon in branch ηwithwave vectorq and

frequencyω
(η)

q . Using a finite-volume normalization, here we

define the amplitude of the displacement d(η)

qα as:

d(η)

qα =
√

h̄

2NMαω
(η)

q
(42.28)

where Mα is the mass of ion α and N is the number of unit
cells in the lattice.

Consider an electron in band n with wave vector k that
makes a transition to band m with wave vector k+q while
emitting a phonon. For this electron, the matrix element
between states allowed by Pauli’s principle reads:

〈mk + q | ̂He−ph ̂b(η)†
q | nk〉 =

∑

l,α

d(η)

qαe
iq·Rl,αe(η)

qα

·
(∫

�

dr ψ∗
mk+q(r)

δEtot

δRl,α
ψnk(r)

)

. (42.29)

Invoking the Bloch theorem, ψnk(r) = unk(r)eik·r, and
for Eq. (42.29) to hold, the periodic part unk(r) must be
normalized on the unit cell.

Equation (42.29) is proportional to the square root of
the inverse of the phonon frequency (ω

η

q)−1/2 through the
magnitude of the displacement. A smoother quantity measur-
ing electron-phonon interaction strength is the deformation
potential which can be implicitly defined using:

〈mk + q | ̂He-ph ̂b(η)†
q | nk〉

= 1√
�

∑

η

DK(η)

nmkq

√

h̄

2ρω
(η)

q
, (42.30)

where we introduced the mass density ρx = Mcell/�cell and
the volume of the unit cell �cell. The volume of the crystal
� is then N�cell. Combining Eqs. (42.29) and (42.30), the
deformation potential is:

DK(η)

kqmn =
∑

α

Mmnkqα
· e(η)

qα

√

Mcell

Mα

, (42.31)

where

Mmnkqα
=

∫

�

dr u∗
mk+q(r)	Veffu

∗
nk(r)eiq·(τα−r) , (42.32)

where we should recall that τα is the position of ion α in the
unit cell.

One subtlety in the calculation and interpretation of de-
formation potentials arises when initial or final electronic
states are degenerate or when the phonon branches are de-
generate. In case of degeneracy, the band or branch index is
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not sufficient to uniquely determine the state and denoting
the deformation potential as “D(η)

nmkq” is ambiguous. For

example, this is the case for the threefold degenerate valence
band at � in many popular materials, e.g. silicon.

Similarly, many materials have twofold degenerate TA
and TO phonons. In the case of degeneracy, depending on
which linear combination of the valence band wavefunctions
is taken and the direction of the phonon displacement vectors,
different values for “D(η)

nmkq” are obtained. One simple way

to remove the ambiguity is to take the square root of the sum
of all squared deformation potentials for degenerate initial or
final electronic states, or degenerate phonons. An alternative
choice is the largest deformation potential upon rotation of
any wavefunctions or phonon displacement vectors within
the subspace of the degeneracy.

42.3.4 Ab initio Simulation of Electronic
Transport: TheMonte Carlo Method

The Monte Carlo method is the most accurate method to
study electron transport at the semiclassical level. It is a
well-established method, originally proposed by Kurosawa
in the context of semiconductors [88] that has been described
in detail in Refs. [89–91]. Its use in conjunction with a
description of the band structure of semiconductors obtained
from empirical pseudopotentials has been pioneered byHess’
group [50, 52, 53] and by the IBM group [4].

In the context of ab initio studies of charge transport, the
same numerical methods used in these latter references can
be used, the major difference consisting in the use of DFT
to obtain the band structure, of the electron-phonon scat-
tering rates obtained using the finite-displacement method
or DFPT. Moreover, the “exact” matrix elements given by
Eqs. (42.4) and (42.27) are used together with the full phonon
dispersion to select the final state after each collision.

Whereas a fully detailed presentation of the full-band
Monte Carlo method goes beyond the scope of this chapter,
here we present a brief outline.

We have employed the synchronous ensemble Monte
Carlo method since it is suitable to study time-dependent
transport in inhomogeneous systems, such as electron
devices. In this method, the motion of an ensemble of
particles (≈300 up to 50,000 particles, depending on whether
one considers homogeneous transport or transport in a
realistically large device), is simulated subjecting them
to the externally applied electric field (possibly obtained
self-consistently with Poisson equation) and to the given
scattering mechanisms. An initial state k, band n, and
position r are assigned to each particle stochastically. The
motion of each particle is then evolved for a constant duration
of time 	t (free flight) conforming to the equations of
motion: h̄dk/dt = ∓eF(r) (the sign depending on the type of

carriers under study, electrons of holes) and dr/dt = υn(k),
where F(r) is the electric field at position r and υn(k)

is the carrier group velocity in band n, ∇En(k)/h̄, En(k)

being the kinetic energy of the carrier. In synchronous
simulations, the duration of the free flight, 	t, is chosen
based on the maximum scattering rate in the energy interval
under consideration. At the end of their free flight, a random
scattering mechanism is chosen stochastically. Based on the
selected scattering mechanism, a new k state is also chosen
stochastically for the particles according to the probability
distribution given by the density of final states (calculated
using the Gilat-Raubenheimer algorithm [92, 93], obviously
modified to deal with transport in 2D materials [39])
multiplied by the squared matrix element of the scattering
process. This is then treated as the initial state for the next
free flight.

Quantities of interest, such as average velocity, energy,
carrier density, and currents at the contacts, are recorded
at the end of each Monte Carlo iteration. This process is
repeated until steady state is reached or until the end of a
transient (such as the turn-on of a transistor). In full-band
simulations, the energy and group velocity are calculated (in
our case, using DFT) on a discretized Brillouin zone, and
stored in look up tables, to solve the equations of motion in
free flight. The scattering rates are calculated and tabulated
on the same mesh.

Calculations performed assuming a homogeneous electric
field are usually performed to obtain information about the
“intrinsic” transport properties of amaterial, namely, the low-
field mobility and velocity-field characteristics. In order to
minimize the stochastic noise at low field (the drift velocity
being of the same order of magnitude of – or even much
smaller than – the thermal velocity), the low-field mobility,
μθ , is calculated from the diffusion constant, Dθ , along the
chosen direction θ , using the Einstein relation. We should
note that in the case of 2D materials with a Dirac-like
electron dispersion, μθ , has to be extracted from Dθ using
a generalization of the Einstein relation [60]:

μθ = eDθ

kBT

∫ ∞

0
dη

η eη−ηF

[1 + eη−ηF ]2

×
(∫ ∞

0
dη

η

[1 + eη−ηF ]

)−1

, (42.33)

where now ηF = EF/(kBT) denotes the Fermi energy in
thermal units. The diffusion constant is evaluated from the
Monte Carlo simulator:

Dθ = 1

2

d

dt

〈

(xθ − 〈xθ 〉)2
〉

, (42.34)
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where 〈xθ 〉 is the time-dependent ensemble-average position
along the direction θ of electrons initially at the origin, r = 0,
diffusing in the absence of an electric field.

The simulation of electronic transport in inhomogeneous
conditions, such as in a transistor, is performed in a similar
way. In this case the electric field F(r) is obtained from a
numerical solution of the Poisson equation. In “atomistic”
simulations, like those considered below in Sect. 42.6, the
problem arises of how to define dielectric interfaces (such as
the channel/gate insulator interface). In Sect. 42.5 we shall
provide an ab initio solution of this problem.

42.4 Silicon, Group-III Nitrides, and 2D
Materials

42.4.1 Silicon

It is of the utmost interest to show how electron-phonon scat-
tering rates calculated with the DFT method just discussed
compare with the semiempirical rates shown in Fig. 42.1 and
discussed in Sect. 42.2. Since these results have been verified
against a wealth of experimental data (see Ref. [51]), this
constitutes a stringent test for ab initio methods.

In Fig. 42.3 we show the results obtained using the Quan-
tum ESPRESSO DFT computer program [15, 16] with a
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Fig. 42.3 Electron-phonon scattering rates at 300 K calculated follow-
ing Refs. [76, 77] (EPW) compared to those obtained within the rigid-
ion approximation [25–28] and those employed in the Monte Carlo
simulations reported in Ref. [4]. The data represent an average over
all “initial” wave vectors (distributed on a uniformmesh in the Brillouin
zone) and bands at a given energy. The “noise” affecting the EPWdata is
the result of the coarser mesh used. The lines connecting the symbols are
only a guide to the eye. (AfterM. V. Fischetti et al. [51], with permission
from the American Institute of Physics ©2019 American Institute of
Physics)

kinetic energy cutoff of 35 Ry using the Perdew-Burke-
Ernzerhof (PBE) [94] generalized gradient approximation
(GGA) exchange-correlation functionals, norm-conserving
pseudopotentials [95], a uniform grid of 12×12×12 k-points
for the self-consistent charge density calculation, and of 6 ×
6× 6 q-points for the calculation of the phonon spectra. The
300 K electron-phonon scattering rates have been calculated
using the Wannier interpolation method implemented by the
EPW package [76] on a finer grid of 18 × 18 × 18 k-points
with a Gaussian smearing of 10meV.

When looking at Fig. 42.3, we should stress that the results
of Refs. [4,25–28] have been averaged over constant-energy
shells with weight given by the density of initial states using
the algorithm proposed by Gilat and Raubenheimer [92,93].
On the contrary, the EPW scattering rates shown here have
been “smoothed” by averaging the raw data over the k-
mesh described above over energy bins ∼27meV wide. This
permits a straightforward reproduction of these results.

The overall agreement is quite remarkable. However, as
we shall discuss in Sect. 42.7, electron transport is very
sensitive to variations of the band structure (such as effective
masses and energy of satellite valleys, when present) that are
usually considered “small errors” in DFT. For example, an
error of the order of kBT (≈25meV at room temperature) for
the energy of satellite valleys in some 2D TMDs may be con-
sidered negligible when looking at optical absorption spectra
but may cause very large errors in determining the electron
mobility if intervalley scattering dominates transport.

To assess the sensitivity of the computed mobility and
velocity-field characteristics to different choices of pseu-
dopotentials and exchange-correlation functionals, we have
calculated the mobility (i) using the GGA-PBE approxima-
tion and the less accurate local density approximation [95],
both using the same norm-conserving pseudopotentials [95],
and (ii) using the norm-conserving and ultrasoft pseudopo-
tentials [96], both within the PBE-GGA approximation.

The results of this exercise are shown in Fig. 42.4. A sig-
nificant spread of the data is quite evident. We shall discuss
below, also in Sect. 42.7, how numerical issues may affect the
results. This spread has been also discussed in Ref. [97] in
the case of black phosphorus monolayers (phosphorene) and
by Poncé et al. [77] in a general case. Accurate scattering
rates can be obtained only when employing an extremely
fine discretization of the Brillouin zone. This is certainly
possible when considering only the “low-energy pockets”
that are need to calculate the low-field carrier mobility, as
indeed done in Ref. [77]. However, a fine discretization
remains numerically challenging when considering the entire
Brillouin zone as required when studying high-energy (high-
field) transport. The practical need for a coarser discretization
results in an additional and significant numerical uncertainty
that affects the results. Therefore, at present we cannot yet
expect a perfect quantitative or conclusive agreement with
experimental data.
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Fig. 42.5 Deformation potentials in bulk silicon for an electron start-
ing at the valence band at �, transition to the conduction band along
one of the �-L or �-X symmetry lines. For BTBT, the values at 0.85
in the �-X direction are the relevant quantity, and we find DTA =
3.5×108eV/cm,DTO = 1.0×109eV/cm, andDLO = 2.3×109eV/cm.
(After W. G. Vandenberghe et al. [17], with permission from the
American Institute of Physics ©2015 American Institute of Physics)

As an another important example of deformation poten-
tials obtained from first principles, we consider the deforma-
tion potentials that determine the phonon-assisted inter-band
tunneling exploited in tunnel field-effect transistors (tFETs).
In this case, we have used the Vienna ab initio simulation

package (VASP) [13] to solve the Kohn-Sham equation. We
have used the finite-displacement method to find the phonon
frequencies, polarization vectors, and electron-phonon inter-
band matrix elements. The full details of the calculation can
be found in Ref. [17].

In Fig. 42.5 we exhibit the calculated deformation poten-
tial for an electron transitioning from the top of the valence
band to the first conduction band.We compute the interaction
with all phonon branches along the �-L and the �-X high
symmetry lines. Silicon has six phonon branches, but the
two transverse branches (TA and TO) are twofold degenerate.
Inspecting Fig. 42.5, we see that only the interaction with the
TA vanishes. Values of the deformation potentials are quite
large and measure up to 4 × 109eV/cm.

The deformation potentials relevant for BTBT are found
at 0.85 in the �−X direction, and their calculated values are
DTA = 3.5 × 108 eV/cm, DTO = 1.0 × 109 eV/cm, and
DLO = 2.3 × 109 eV/cm. These values are much larger than
previous theoretical estimates [98], but this is in line with
the recent experimental estimate DTO ≈ 10–13× 108 eV/cm
from Ref. [99].

These results are very relevant to many practical appli-
cations since inter-band tunneling determines the probabil-
ity of band-to-band transitions in silicon. In indirect-gap
semiconductors, such as Si, band-to-band transitions (BTBT)
are assisted by phonons and proceed from the valence band
maximum (�) to the conduction band minimum, located near
the X symmetry point.

42.4.2 Group-III Nitrides

Since wide band gap semiconductors are very important for
power electronics, it is important to study their transport
properties not just near thermal equilibrium, as it is assumed
when calculating the low-field carrier mobility. Studies need
to account for the high kinetic energy that electrons can reach
at the high electric fields that are present in high-voltage
devices. Group-III nitrides in the wurtzite phase constitute a
key family of semiconductors that are employed in power de-
vices. They have been investigated extensively theoretically
using full-band Monte Carlo simulations based on empirical
pseudopotentials and with electron-phonon scattering rates
calculated using constant deformation potentials calibrated
to experimental data, similarly to what had been done for Si
before the “advent” of DFT, as discussed in Sect. 42.2. As in
all empirical approaches, these studies – most notably those
described in Refs. [100, 101] – must rely on experimental
data that are often hard to obtain and interpret.

Most notably, the value of the all-important energy of the
satellite valleys at the symmetry point L in GaN plays a
crucial role in determining its high-field transport properties.
Experimental data [102] and theoretical calculations using
calibrated empirical pseudopotentials andDFT (VASP) [103]
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have resulted in vastly different values for this quantity
(0.8–1 eV experimentally, from Refs. [104,105], 2.1–2.3 eV
theoretically, from Refs. [106, 107]). This has resulted, in
turn, in diverging opinions regarding the role of Auger re-
combination in these devices, a process that plays a major
role at high injection levels in power devices. Therefore, it
is of utmost interest to investigate this issue theoretically,
coupling DFT and Monte Carlo studies to experimental data
and establish the correctness of the theory compared to ex-
periments. Here we shall not go into this controversial issue,
but we shall see how ab initio methods can be used in two
group-III nitrides of high interest in this context, GaN (with
a band gap of ∼3.4 eV at 300 K [108]) and AlN (with a band
gap of ∼6.026 eV at 300 K [109]).

The study has been performed obtaining the electronic
band structure and the phonon dispersion using Quantum
ESPRESSO [15,16] with norm-conserving pseudopotentials
[110] and the local density approximation (LDA) for the

exchange-correlation functional. The dynamical matrix de-
termined using DFPTwas used to obtain phonon spectra, and
the electron-phonon scattering rates have been calculated us-
ing the “electron-phonon coupling using Wannier functions”
(EPW) program [76, 111, 112]. The maximally localized
Wannier functions are obtained from theWannier90 software
package [113].

GaN
The band structure of wurtzite GaN along selected high sym-
metry lines is shown in Fig. 42.6a. We also list in Table 42.1
the energies of the satellite valleys compared with previous
results [100, 101, 104–107, 114, 115], (one should recall the
controversy we have mentioned above regarding the energy
of the satellite L-valleys.) Rather than relaxing the structure,

we have used the experimentally measured lattice constants
a = 3.215Å and c = 5.241Å [116].

Table 42.2 shows the ability of DFT to give reliable
values for the effective masses. These are extracted from
the curvature of the electron dispersion at the bottom of the
first-conduction band valleys. The effective mass at the �

point of the first conduction band computed from DFT is
0.2 m0 (where m0 is the free electron mass). This value is
in good agreement with the experimental values reported by
Drechsler [117] (0.2m0) andWitowski [118] (0.222m0). The
effective mass at the � point in the second conduction band
is only slightly larger, 0.28 m0.

Figure 42.6b shows the phonon dispersion of the wurtzite
GaN. The longitudinal and transverse sound velocities are
7930m/s and 3994m/s, respectively [125]. Note the rather
large energy of the highest-energy optical phonon, about
91.2meV at �. The calculated polar and nonpolar scattering
with optical and acoustic phonons are shown in Fig. 42.7a, b,
respectively. Note that the polar scattering rate with acoustic
phonons (i.e., piezoelectric scattering) has a strength that is
very similar to strength of the polar scattering with optical
phonons at low energies. This shows that DFT correctly con-
firms the well-known fact that piezoelectric scattering plays
an important role in determining the low-field electronmobil-
ity even at room temperature, unlike other III–V compound
semiconductors like GaAs or InAs. In these figures we show
also the scattering rates calculated with the analytical formu-
las presented in Ref. [90] to fit the first-principles scattering
rates. These “analytic” scattering rates have been calculated
using an effective mass of 0.2 m0, a nonparabolicity factor
of 0.58 eV−1, and an intravalley deformation potential in
the �-valley of ∼4.0 eV. For the nonpolar scattering rates
with optical phonons, we have used an optical deformation
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Table 42.1 The conduction band energies at different satellite valleys
(in units of eV) in wurtzite GaN and AlN

K U L A �3 M

GaN This work 2.82 1.95 2.23 2.25 2.23 2.84

LDA+G0W0 (Ref.
[107])

3.06 2.32 2.60 2.43 2.50 3.27

GW (Ref. [106]) 3.1 2.5 2.6 2.4 3.0

EPM(Ref. [114]) 1.59 1.34 2.14 1.87

EPM (Ref. [100]) 3.08 2.43 2.37 2.35 3.05

Expt. (Ref. [104]) 0.90± 0.08

Expt. (Ref. [105]) 0.97± 0.02

Expt. (Ref. [115]) 1.34

AlN This work 0.64 0.61 0.92 2.11 2.27 1.33

LDA+G0W0 (Ref.
[107])

0.84 0.67 0.99 2.28 2.65 1.57

GW (Ref. [106]) 0.9 1.1 2.5 2.5 1.6

EPM (Ref. [114]) 0.9 1.05 2.49 1.68

EPM (Ref. [100]) 1.26 1.32 2.33 2.46 1.95

After J. Fang et al. [133], with permission from the American Physical
Society ©2019 American Physical Society The conduction band energy
at the �-valley of the first conduction band is set as the zero reference
energy

Table 42.2 Electron effective mass (in units of the free electron mass
m0) along different crystalline directions at the first conduction band
of different valleys and acoustic phonons′ sound velocities (in units of
m/s) of GaN

This work Other work

m�
�(� → K) 0.20 0.18a, 0.36b

m�
K(K → �) 0.64 0.47c

m�
K(K → M) 0.65

m�
M(M → K) 0.21 0.565c

m�
M(M → �) 4.18

m�
�(� → M) 0.20 0.18a, 0.33b, 0.2c,

0.2d, 0.21e, 0.2283f,

0.2g, 0.23h

m�
�(� → A) 0.18 0.20a, 0.27b,

0.1846f , 0.19h

m�
A(A → �) –0.54

m�
A(A → H) 0.37

m�
U(U → L/M) 0.33 0.442a, 0.285b, 0.25c

m�
L(L → H) 0.32

m�
L(L → A) 1.02

m�
A(A → L) 0.37

cLAs (� → A) 7930 7641c, 6600i

cTAs (� → A) 3994 4110c, 2700i

After J. Fang et al. [133], with permission from the
American Physical Society ©2019 American Physical Society
aRef. [119], LDA
bRef. [120], LCAO
cRef. [114], EPM
dRef. [121]
eRef. [122]
fRef. [100], EPM
gRef. [117], Expt
hRef. [123], LMTO
iRef. [124]
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Fig. 42.7 Room-temperature (300 K) polar and nonpolar scattering
rates with optical (a) and acoustic phonons (b) in wurtzite GaN calcu-
lated from first principles. A fine q-mesh of 80×80×80 and a Gaussian
smearing of 0.1 eV are used in the calculations. The scattering rates
calculated using analytical formula are also shown in (a) and (b). The
fitting parameters are given in the text. (After J. Fang et al. [133],
with permission from the American Physical Society ©2019 American
Physical Society)

potential of 3.8×108 eV/cm. Such analytic expressions are a
convenient way to simplify transport calculations when one
wished to avoid the use of full-bandMonte Carlo simulations.
A similar analytic formula – that approximates quite well
the DFT results – can be found to approximate the polar
scattering rate with longitudinal optical (LO) phonons using
the conventional Fröhlich expression [126] assuming a static
relative dielectric constant of 8.9 and a high-frequency rela-
tive dielectric constant of 5.35 [127].

Figure 42.8 shows the low-field and high-field transport
characteristics along the �-K symmetry line in the basal
plane. These have been obtained by solving the Boltzmann
transport equation with the full-band Monte Carlo method
outlined in Sect. 42.3.4 with first-principles band structure
and electron-phonon scattering rates. Our simulation results
show a very high peak of the drift velocity of about 2.8 ×
107 cm/s. Figure 42.8 also shows the average electron en-
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ergies as a function of the homogeneous electric field. For
electric fields smaller than 150 kV/cm, the average electron
energies are close to the thermal energy. Above 150 kV/cm,
the average electron energy increases sharply. It increases
slowly again when the field strength exceeds 500 kV/cm. The
evolution of the particle valley occupancy is the underlying
reason for the trend. The trend shown here is similar to
the results from the multi-valley Monte Carlo simulation
results [124, 128].

The distribution of MC particles occupying the first and
the second conduction bands in the first Brillouin zone is
shown in Fig. 42.9 for a given electric field strength of
800 kV/cm. For particles (representing electrons) occupying
the first conduction band, most of the particles are located
around the �-valley with momenta exhibiting a noticeable
drift along the reverse direction of the applied electric field,
with a few particles located around the 12 satellite U-valleys.
For particles occupying the second conduction band, most
particles are distributed along the �-A symmetry line. Some
particles occupy also the L-valleys. The particle occupation
of the valleys is consistent with their energy splitting from
the conduction band minimum. A two-dimensional plot in
the (kx − ky) basal plane is given for the convenience.

AlN
As we have done in the case of GaN, we show in Fig. 42.10a
the band structure of the wurtzite AlN. Similarly, we list in
Table 42.1 the conduction band energies of several satellite
valleys. The experimental lattice constants of wurtzite AlN
used in the calculations are a = 3.110Å and c = 4.980Å
[127]. Table 42.3 lists the electron effective masses in dif-
ferent valleys of the lowest conduction band, compared with
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Fig. 42.8 Characteristics of the electric field versus average electron
kinetic energy (left axis) and versus drift velocity (right axis) for
wurtzite GaN and AlN along the �-K high symmetry line in the basal
plane. The data for GaN are plotted with solid black lines and the data
for AlN are plotted with dot-dashed red lines. (After J. Fang et al. [133],
with permission from the American Physical Society ©2019 American
Physical Society)

previous results [100, 119, 120, 123, 129]. Also in this case,
the results obtained from DFT are in satisfactory agreement
with the available experimental information. Note that for
the first conduction band at the �-point, the effective mass
is close to an isotropic value of 0.31 m0, the same value used
by Albrecht et al. [129]. From experimental measurements,
it has been estimated that the electron effective mass ranges
from 0.233 m0 to 0.336 m0 [130]. The effective mass for the
second conduction band at � is 0.36 m0.

Figure 42.10b illustrates the phonon dispersion. The LO
energy at �-valley is ∼110meV. The longitudinal and the
transverse acoustic-phonon sound velocities are 10,877m/s
and 5880m/s, respectively, listed in Table 42.3. Figure 42.11a
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Fig. 42.9 Simulated distribution of MC particles occupying the first
conduction band (a) and the second conduction band (b) of wurtzite
GaN shown in reciprocal space for an electric field strength of 800
kV/cm. (After J. Fang et al. [133], with permission from the American
Physical Society ©2019 American Physical Society)
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presents the first-principles scattering rates for polar and non-
polar scattering with optical phonons. Figure 42.11a presents
both polar and nonpolar scatteringwith acoustic phonons.We
have used a Gaussian smearing of 0.1 eV to deal with the
energy-conserving Dirac-delta functions. Interestingly, the
rate for polar scattering with acoustic phonons is of the same
order of magnitude as the rate for polar scattering with optical
phonons for electrons with energies below 110meV. Above
110meV, the polar scattering rate with optical phonons is
about ten times larger than the piezoelectric scattering rate.
The scattering rates calculated from the analytical formula
are also plotted in Fig. 42.11a, b. In order to fit these rates to
the DFT results, we have used a relative static dielectric con-
stant of 9.14 and a high-frequency relative dielectric constant
of 4.84 for polar scattering with optical phonons [131]. Using
a nonparabolicity factor of 0.35 eV−1, we have obtained an
“effective” nonpolar acoustic deformation potential of 7.0 eV
and a nonpolar optical deformation potential of 1.32×109

eV/cm.
The velocity-field and average carrier energy-field char-

acteristics are compared in Fig. 42.8 with those of GaN. An
electron mobility of ∼450 cm2/(V · s) at room temperature

Table 42.3 Electron effective mass (in units of the free electron mass
m0) along different crystalline directions at the first conduction band
of different valleys and acoustic phonons′ sound velocities (in units of
m/s) of AlN

This work
Other work

m�
�(� → K) 0.31 0.42a

m�
K(K → �) 0.64 0.54b, 0.488c

m�
K(K → M) 0.65 0.54b

m�
M(M → K) 0.25 0.629c

m�
M(M → �) 1.20

m�
�(� → M) 0.31 0.40a, 0.31b, 0.26c,

0.35d, 0.25e, 0.3433f

m�
�(� → A) 0.33 0.33a, 0.35b,

0.33e, 0.2938f

m�
A(A → �) −0.64

m�
A(A → H) 0.55

m�
U(U → L/M) 0.43 0.39a, 0.495c

m�
L(L → H) 0.40

m�
L(L → A) 0.89

m�
A(A → L) 0.55

cLAs (� → A) 10,877

cTAs (� → A) 5880

After J. Fang et al. [133], with permission from the
American Physical Society ©2019 American Physical Society
aRef. [120], LCAO
bRef. [129]
cRef. [114], EPM
dRef. [123], LMTO
eRef. [119], LDA
fRef. [100], EPM

is extracted from the low electric field region. Taniyasu et
al. have measured a room-temperature electron mobility of
426 cm2/(V · s) for n-type AlN with Si doping concentration
of 3 × 1017 cm−3 [132]. The peak drift velocity of AlN is
smaller than that of GaN, and the corresponding critical field
is larger. This is due to the heavier �-valley effective mass
of AlN and also the smaller U-valley minima. We show in
Fig. 42.12 the occupation of electrons at the first and the sec-
ond conduction bands in reciprocal space at the field strength
of 800 kV/cm. Particles populating the �-valley exhibit the
expected momentum shift along the reverse direction of the
electric field. The occupation of the satellite U- and K-valleys
is larger in AlN than in GaN, a result of the smaller energy
splitting from the conduction band minimum. The L-valleys
and the M-valleys in the second conduction band are also
occupied at large electric fields.

As “dry” as they may be, the approach and result that
we have presented in this section – discussed in more detail
in Ref. [133] – hopefully will shed some light on the still
open issue of the energy of the satellite L-valleys in GaN, on
the role of Auger recombination and its inverse process, im-
pact ionization, in power devices based on group-III/nitrides
semiconductors. The uncertainty (and controversy) we have
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Fig. 42.11 Room-temperature (300 K) polar and nonpolar scattering
rates with optical (a) and acoustic phonons (b) in wurtzite AlN cal-
culated from first principles. A fine q-mesh of 40 × 40 × 40 and a
Gaussian smearing of 0.1 eV are used in the calculations. (After J. Fang
et al. [133], with permission from theAmerican Physical Society ©2019
American Physical Society)

mentioned at the beginning of this section hints at a more
general issue that we shall discuss in Sect. 42.7, namely, the
accuracy and reliability of ab initio methods in guiding us
when dealing with electronic transport.

42.4.3 2DMaterials

Since the first isolation of graphene [5], two-dimensional
materials have attracted considerable interests not only for
the unusual physical properties that some of them exhibit
(topological properties, such as quantum spin Hall effect,
or superconductivity, for example) but also since extremely
thin channels are required in order to continue the never-
ending scaling of semiconductor devices. Therefore, in this
section we consider some of these 2D materials and see
what information ab initio methods can give us about their
charge-transport properties and assess which of them – if
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Fig. 42.12 For AlN, the distribution of MC particles on (a) the
first conduction band and (b) the second conduction band of AlN in
reciprocal space at an electric field strength of 800 kV/cm. (After J. Fang
et al. [133], with permission from the American Physical Society ©2019
American Physical Society)

any – could be used as the active channel material in ultra-
scaled transistors or which of their unique properties could
be exploited. We limit our attention mostly to homogeneous
electronic transport (low-field mobility and high-field ve-
locity and energy characteristics) in some of the popular
2D materials such as phosphorene, silicene, and germanene,
calculated by full-band synchronous ensemble Monte Carlo
method using the ab initio methods described above. We
shall consider devices only cursorily, looking at a 10 nm
gate-length phosphorene-based field-effect transistor (FET),
to show the final connection that it is now possible to make
between DFT and device characteristics.
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Fig. 42.13 The band structure of (a) monolayer phosphorene and (b) bilayer phosphorene calculated using VASP

Phosphorene
Phosphorene, mono- or few-layer black phosphorus, has
gainedwide interest due to high electronmobility observed in
its bulk counterpart [134,135]. In this section, we present the
results of low- and high-field electron/hole transport studies
in monolayer and bilayer phosphorene. Reference [97] pro-
vides a more detailed description on transport calculations
for phosphorene.

Single layers of black phosphorus, phosphorene, have a
puckered honeycomb structure with a rectangular Brillouin
zone. We show in Fig. 42.13 the electronic band structures
for monolayer and bilayer phosphorene, calculated using the
Vienna ab initio simulation package (VASP) [11–14], plotted
along symmetry lines. VASP uses using projector-augmented
wave (PAW) [136] pseudopotentials, and we have employed
the Perdew-Burke-Ernzerhof generalized gradient approxi-
mations (PBE-GGA) [94] for the exchange-correlation func-
tional. The relaxed lattice constants obtained are 4.62Å and
3.30Å for monolayers and 4.51Å and 3.30Å for bilayers. A
direct band gap of 0.91 eV and 0.51 eV at the � symmetry
point is obtained for mono- and bilayer. These values are
lower than experimental values [137–139]. This is to be
expected, since DFT is known to underestimate the band
gap. However, this is not going to affect significantly our
calculations since here we do consider inter-band transitions
between the valence and conduction bands. The band struc-
ture of phosphorene exhibits also two additional valleys,
the so-called Q and Y satellite valleys, along the � – Y
symmetry direction. At high fields and large doping densities,
electrons tend to populate these valleys. The calculated effec-
tive masses for both electrons and holes in monolayers and
bilayers at � are shown in Table 42.4. Both the valence and
the conduction bands are anisotropic with a smaller effective
mass along the armchair direction. The electron energy and

Table 42.4 Calculated effective masses, me
� and mh

� , in monolayer
and bilayer phosphorene

me
� mh

�

Armchair Zigzag Armchair Zigzag

ML 0.14 1.24 0.14 N/A

BL 0.10 1.33 0.09 3.08

After G. Gaddenane et al. [97], with permission from the American
Physical Society ©2018 American Physical Society

velocity are calculated on a fine mesh around the� symmetry
point (145×205 k points in the first quadrant) in order to
account for the anisotropy and nonparabolicity of the electron
dispersion.

We have calculated the phonon dispersion curves for
monolayer and bilayer phosphorene calculated using the
PHONOPY computer program [140]. In Fig. 42.14 we show
the resulting dispersion along symmetry lines. One feature
that is clearly evident in that figure – and that is common
to all 2D materials – is the parabolic dispersion of the out-of-
plane acoustic phonons, the flexural modes usually called ZA
phonons. The effect of these phonons on carrier transport is
detrimental in some of the 2D materials, such as silicene and
germanene, that lack horizontal mirror (σh) symmetry [141].
However, in the case of phosphorene, the electron/hole-ZA
phonon coupling is forbidden at the first order. Comparing
the phonon dispersion of bilayers (Fig. 42.14b) with that of
monolayers (Fig. 42.14a), we note the presence of low energy
optical modes in bilayers. These are interlayer mode which
are caused by weak interlayer coupling of entire unit cells
in different layers that oscillate out-of-phase along either the
in-plane (LO, TO) or out-of-plane (ZO) direction. Obviously,
their low energy is due to the heavy mass of the entire unit
cells that oscillate.
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Fig. 42.14 The phonon dispersion for (a) monolayer phosphorene and (b) bilayer phosphorene calculated using PHONOPY

Figure 42.15 shows the angular average of the
electron/hole-phonon scattering rate as a function of carrier
kinetic energy for monolayer and bilayer phosphorene.
The matrix elements are evaluated following the finite-
displacement method described above. These are calculated
on a very fine mesh to account for the angular dependence
and wavefunction overlap effects. This is a crucial
consideration, since failure to do so has shown to give
inaccurate scattering rates and to overestimate the carrier
mobility. Indeed, this is one of the main causes of the
large discrepancy (μe = 20–26,000 cm2V−1s−1) among the
mobility values present in the literature [97, 137, 142–145].
Such a strong angular dependence is shown in Fig. 42.16. As
we have just mentioned, in 2D materials with horizontal
mirror symmetry (σh-symmetric crystal), scattering of
electrons/holes with the ZA phonons is forbidden at first
order [141]. Therefore, this process can be ignored in the
case of phosphorene, a σh-symmetric crystal. In monolayers,
in-plane acoustic modes dominate the intravalley scattering
processes with a strong backward scattering for electrons
(Fig. 42.15a), and optical modes for holes (Fig. 42.15b).
For electrons, intervalley scattering between � and Q is
dominated by the 32meV optical phonon which has a rather
large deformation potential of 1.7× 109 eV/cm. On the
contrary, in bilayers in-plane acoustic modes and low-energy
interlayer optical phonons dominate the intravalley scattering
processes for both electrons and holes (Fig. 42.15c, d), and
the 32meV optical phonon dominates intervalley scattering
for electrons.We should remark that, due to the low energy of
these interlayer modes and to the numerous “band crossings”
among themselves and with acoustic modes, it is difficult to
separate clearly their contribution from the contribution of
the acoustic modes.

Table 42.5 lists the calculated low-field carrier mobility
for mono- and bilayer phosphorene in the armchair and

zigzag direction. When the electron/hole-phonon matrix el-
ements calculations are treated correctly by accounting the
angular dependence, including wavefunction overlap effects,
including scattering by all phonon modes and intra- and in-
tervalley processes, the mobility obtained is on the lower end
of the range of values present in the literature. In both mono-
and bilayers, the carrier mobility is larger along the armchair
direction compared to zigzag direction due to lower effective
mass along the armchair direction. The carrier mobility does
not change significantly going from monolayers to bilayers.
In fact, the hole mobility decreases slightly.

Figures 42.17 and 42.18 show the velocity-field and
energy-field characteristics for electrons and holes in
monolayer and bilayer phosphorene. The carrier mobility
for electrons and holes obtained from the velocity-field
characteristics along the armchair and zigzag directions is in
good agreement with the value obtained from the diffusion
constant. The saturated velocity for electrons in both mono-
and bilayers is relatively low (4× 106 cm/s in the armchair
direction and 1× 106 cm/s in the zigzag direction) because
of strong intervalley transfer of electrons from the � to
the Q and Y valleys (Fig. 42.19). For holes, the velocity
does not saturate in the zigzag direction even at high fields
due to extremely low hole mobility along that direction
(Figs. 42.17b and 42.17d). The average carrier energy for
electrons remains close to the thermal energy (≈25 meV)
up to a field of 105 V/cm for both monolayers and bilayers
(42.18). However, the Ohmic regime extends to higher fields,
especially in the case of holes accelerated along the zigzag
direction, because of extremely low mobility along that
direction (Fig. 42.18b, d).

Finally, we show in Fig. 42.20 the structure and current-
voltage characteristics of a double-gate FET with a phos-
phorene channel, a 10 nm gate length, assuming Al2O3 as
top and bottom oxide with an equivalent oxide thickness
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(EOT) of 0.7 nm. Despite the poor mobility we have calcu-
lated for free-standing intrinsic monolayers, the performance
of the device is satisfactory: an excellent Ion/Ioff ratio of
about 104, a transconductance gm exceeding 1600μS/μm at
VDD ≈ 0.5V, a subthreshold slope of 60–70mV/decade, and
a drain-induced barrier lowering (DIBL) of 10mV/V. Only
the on current fails tomeet the latest target of the International
Technology Roadmap for Semiconductor (ITRS) [146]. In-
deed, the mobility is only one of the many factors that
control the performance of a device, especially since at the
nanoscale transport approaches the ballistic limit. Moreover,
the mobility may increase at high carrier density, (thanks to
dielectric screening by the free carriers and Pauli blocking),

thus minimizing the negative effects of a high resistance in
the source and drain regions.

Silicene and Germanene
Monolayer silicon (silicene) and germanium (germanene)
have gained wide interest due to the tremendous role played
by these semiconductors in their bulk form in the semicon-
ductor industry in the last several decades. In this section we
present the results of electron transport in these materials in
monolayer form, following the procedure described above.
Reference [147] provides for a more detailed description
on how transport calculations have been performed to study
these materials using first-principles methods.
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Figures 42.21 and 42.22 show the electronic band
structure and phonon dispersion for ideal free-standing
silicene and germanene, calculated by DFT using the
VASP and PHONOPY packages. Similar to graphene, both
these materials exhibit a Dirac-like electronic dispersion.
However, the Fermi velocities we have obtained for silicene
(≈5.3× 107 cm/s) and germanene (≈5.3 × 107 cm/s) are
lower than in graphene (≈9.5 × 107 cm/s), and, unlike
graphene, their structures are buckled. The lattice and
buckling constants we have obtained are 3.86Å and
0.48Å for silicene and 4.05Å and 0.71Å for germanene,
respectively. Furthermore, our calculations were performed
by neglecting the contributions of spin-orbit (SO) coupling
for computational efficiency. This should not be a source
of any major concern, since it has been shown that the
SO interaction opens a rather small band gap in these
materials (about 1.5meV for silicene [148–150] and 25meV
for germanene [148, 149]). Given these small values, the
effect of the SO interaction on the transport properties
should be negligible for silicene and would result only in
a slight overestimation of the mobility and drift velocity in
germanene. We have chosen a supercell of size 5×5×1 unit-
cells when calculating the phonon spectra, in order to avoid
nonphysical “negative frequencies” (in reality, imaginary
frequencies) of the low-energy acoustic phonons. Often
these negative (square)frequencies are interpreted as a sign
of the thermodynamic instability of the crystal, but in many
cases they are simply the result of numerical artifacts when
cells of excessively small dimensions are used to speed up

Table 42.5 Calculated electron and hole mobility, μe and μh, in
monolayer and bilayer phosphorene

μe cm2V−1s−1 μh cm2V−1s−1

Armchair Zigzag Armchair Zigzag

ML 20 10 19 2.4

BL 14 7 12 2

Adapted from G. Gaddenane et al. [97], with permission from the
American Physical Society ©2018 American Physical Society

the calculations. In Fig. 42.22 the various phonon branches
are labeled only for convenience; such an identification
of the various branches (acoustic or optical, longitudinal
or transverse) should be interpreted with a grain of salt,
since these branches are often somewhat mixed, and such a
distinction is physically unjustified for wave vectors at the
edge of the Brillouin zone.

Figure 42.23 shows the electron-phonon scattering rates
for silicene and germanene calculated at 300 K. The lack of
horizontal mirror (σh) symmetry in these materials results
in a very strong coupling, in principle diverging, with the
long wavelength flexural (ZA) phonons [141]. This effect is
further enhanced by the Dirac-like dispersion which causes
strong back scattering, effect that is due to the degeneracy of
the valence and conduction band at the K symmetry point. In
the absence of a process which suppresses the ZA phonons,
the resulting mobility in these materials is extremely low
(10−3 to 10−2 cm2/V·s). In the calculations presented here,
we have assumed a long wavelength cutoff of 1 nm for the
ZA phonons to avoid the divergence. The cutoff is chosen
such that intravalley scattering is suppressed and intervalley
scattering is included. In both silicene and germanene, scat-
tering with ZA and LA phonons dominates the scattering, in
particular the K-K′ intervalley process.

Without delving too deeply into the extremely interesting
problem of assessing which mechanism may suppress, or
at least damp, the first-order interaction (one-phonon pro-
cesses) with the ZA modes (issue discussed in detail in Ref.
[141]), we should mention that, besides obvious effects like
the finite grain-size and the rippling or crumpling of the layer,
their anharmonic coupling to in-plane acoustic modes [151–
154] has been shown to renormalize their dispersion from a
square (quadratic) law to a power-law of the form qr, with
r being approximately 3/2. Moreover, in supported and/or
gated layers, Amorim and Guinea [155] have shown that
at long wavelengths the renormalized dispersion of the ZA
phonons, ω̃(ZA)(q), approaches a nonzero constant, taking the

form ω̃(ZA)(q) ∼
√

ω(ZA)(q)2 + ω2
0, where ω(ZA)(q) is the

dispersion in free-standing layers and ω0 ≈ √
g/ρ2D, ρ2D

being the mass density of the 2D layer and g is a measure
of the strength of the coupling between the layer and the
substrate (or gate insulator). Typically, h̄ω0 is of the order of
a few meV, small but nonzero, which is what matters. These
considerations, all derived in the continuum limit, solve the



1536 M. V. Fischetti et al.

107a

c

b

d

106

105

104

Armchair

ML electrons

Zigzag

D
ri

ft
 v

el
o
ci

ty
 (

cm
/s

)

107

106

105

104

103 104 105

Armchair

BL electrons

Field (V/cm)

Zigzag

106

D
ri

ft
 v

el
o
ci

ty
 (

cm
/s

)

103 104 105

Armchair

BL holes

Field (V/cm)

Zigzag

106

Armchair

ML holes

Zigzag

Fig. 42.17 Drift velocity vs field at 300 K for electrons (left frames, (a) and (c)) and holes (right frames, (b) and (d)), in monolayer phosphorene
(a) and (b), and bilayer phosphorene (c) and (d)

Mermin-Wagner puzzle[156] but do not necessarily result in
a negligible role of the ZA phonons in depressing the carrier
mobility. In particular, even accounting for the emergence
of a gap in supported and/or gated layers, the coupling with
the Rayleigh waves of the substrate and/or gate [155, 157]
may still play a huge role. Recently, Rudenko et al. [158]
have concluded that even in nonsymmetric materials with
a parabolic dispersion, the effect is small, amounting to no
more than a 35% reduction of the mobility due to second-
order interactions (two-phonon processes), arguing that even

in this case the first-order coupling of the carriers to the
acoustic flexural modes is forbidden by the rotational sym-
metry of the crystal. However, these conclusions are reached
by approximating the 2D layer as a membrane of zero thick-
ness, thus ignoring the “internal structure” of the membrane,
an effect that may result in the breaking of the rotational and
inversion symmetry of a non-σh-symmetric membrane. The
situation is even less clear in the case of non-σh-symmetric
materials with a Dirac-like electronic dispersion, like silicene
and germanene.
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Table 42.6 lists the electron mobility calculated along the
[01] direction (�-K) for various scattering processes from
the diffusion constant. With a 1 nm ZA phonon cutoff, the
calculated electron mobility is 701 cm2/V·s in silicene and
2327 cm2/V·s in germanene. When we neglect scattering by
ZA phonons completely, the mobility rises to 1296 cm2/V·s
and 4549 cm2/V·s, respectively. When intervalley scattering
processes assisted by both LA and ZA phonons are ignored,
the mobility increases by an order of magnitude.

Figure 42.24 shows the velocity-field and energy-field
characteristics for silicene and germanene for an electric field
applied along the [01] direction. The electron mobility ex-

tracted from the velocity-field characteristics is in agreement
with the value obtained from the evaluation of the diffusion
constant. At low fields, electrons remain thermal and exhibit
Ohmic behavior in both materials. However, at higher fields,
germanene exhibits negative differential mobility due to �-
K intervalley scattering. Lower scattering rates and a smaller
energy difference between the Dirac point K and the bottom
of the � valley in germanene result in a significant transfer of
electrons to the � valley, a lower velocity region. However,
in silicene, we observe no significant population of the �

valley due to large energy difference between the two valley
minima, andwe obtain a saturation velocity of≈8×106 cm/s.
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This difference can be seen in Fig. 42.25, which compares
the momentum distribution of electrons in silicene and ger-
manene at high fields.

In summary, at least judging from the DFT results we
have just reviewed, and at least in principle, silicene and
germanene may exhibit satisfactory properties. However,
understanding the role played by the acoustic flexural modes
in determining their charge-transport behavior remains an
open issue. Moreover, and probably more important, pro-
cessing these materials (growth/deposition of the layers, their
passivation, doping, and gating, formation of Ohmic contact,
etc.) could constitute a formidable challenge.

42.5 Dielectric Response of
Low-dimensional Materials

In Sect. 42.1, when outlining the content of this chapter, we
mentioned the need to use a position-dependent dielectric
constant (or function) when simulating nanoscale devices
using atomistic models. Indeed, looking at the top frame
of Fig. 42.20, a solution of Poisson equation requires the
knowledge of the location of the interface between the 2D
layers (for phosphorene a thin layer but still of a finite
thickness) and the top and bottom insulators. When using
conventional continuum models, approximating the location
of this interface, the straight line drawn in the diagram will
suffice. Not so when using atomistic models. In this case,
the smooth transition between the dielectric and the 2D layer
has to be resolved accurately. Moreover, a more intriguing
question is how to define the dielectric constants (in plane
and out of plane) of the 2D layer itself.

The case illustrated in Fig. 42.20 is only one example.
Indeed, devices based on the many low-dimensionality nano-
materials of present interest, such as graphene nanoribbons
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[159], carbon nanotubes [160], silicon nanowires [161],
graphene [5], silicene [162], phosphorene [163], and tran-
sition metal dichalcogenide (TMD) monolayers [164], all
require this knowledge. Indeed, their dielectric properties
determine macroscopic quantities, such as the gate capac-
itance and transconductance, and transport properties, as
affected by dielectric screening and by the coupling of col-
lective modes (plasmons) in the layers and insulators. How-
ever, the dielectric properties of these nanomaterials are not
well studied, either experimentally or theoretically, com-
pared with the bulk form of these materials. Different from
the bulk materials which can usually be characterized by a
single isotropic macroscopic dielectric constant if it has a
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cubic crystal structure, low-dimensional nanomaterials are
anisotropic by definition, and the study of their dielectric
properties is more complex. Anisotropic tensorial dielectric
properties are expected.

Here we shall outline how ab initio methods can provide
the missing information. To keep the treatment simple and
general, we shall consider only empirical pseudopotentials.
Whereas this may be viewed as not a “first-principles” ap-
proach, the formalism can be extended to self-consistent
pseudopotentials (DFT) in a straightforward way.

Several theoretical methods have been developed to study
either the macroscopic or the microscopic dielectric response
of nanosystems [165–176]. However, not much attention
has been paid to the microscopic dielectric tensor of low-
dimensionality nanomaterials. Therefore, here we present

the derivation of a microscopic Poisson equation based on
the density-density response function [177, 178] and its
application to the study of these systems. We consider the
particular case of the static dielectric properties of armchair-
edge graphene nanoribbons (aGNRs) and graphene, but the
method can be extended to other nanomaterials, such as
Si nanowires (NWs, as illustrated in Fig. 42.30) and TMD
monolayers (as recently reported by Laturia et al. using
DFT [179]).

42.5.1 Density-Density Response Function

In the static linear response theory [177, 178, 180], the
density-density response function, χ(r, r′), describes the
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Table 42.6 Electron mobility in silicene and germanene in the [01]
direction

Silicene (germanene)

(cm2V−1s−1)

1 nm ZA phonon cutoff 7.01 × 102(2.32 × 103)

Ignoring ZA phonons 1.29 × 103(4.55 × 103)

(intra- and intervalley)

Only intravalley 4.3 × 104(2.6 × 104)

with in-plane

acoustic phonons

Only intervalley 8.17 × 102(3.5 × 103)

with acoustic phonons

Only optical phonons 8.2 × 103(4.2 × 104)

(intra- and intervalley)

After G. Gaddenane et al. [147], with permission from the American
Institute of Physics ©2018 American Institute of Physics)

change of the charge density eδρ(r) when the external
potential undergoes a small change, δvext(r′), so that the
electric polarizability (or “susceptibility”) is χ(r,r′) =
eδρ(r)/δvext(r′). As an example, we first illustrate the
independent-particle density-density response function
χ0(r,r′) of an armchair-edge graphene nanoribbon with a
width given by seven atomic lines, here called a “7-aGNR.”
As mentioned above, in order to reduce the computational
effort, we employ the local empirical pseudopotentials
proposed by Kurokawa [181]. These pseudopotentials
surprisingly yield the correct band structure of both sp3-
coordinated C in the face-center cubic phase(diamond) as
well as sp2-coordinated C, such as graphene [60]. The band

structure of the ribbon has been calculated using a supercell
size of 1.72 × 0.85 nm in the nonperiodic directions and an
energy cutoff of 10 Rydberg, resulting in 2237 plane waves
in the basis set. The static independent-particle polarizability
matrix is then calculated as [180,182,183]:

χ0
GG′(q) = 4

�

∑

c,v,k

〈v,k|e−i(q+G)·r|c,k+q〉〈c,k+q|ei(q+G′
)·r′ |v,k〉

Ev

k − Eck+q
,

(42.35)

using the eigenvalues Enk (n = c, v for the conduction and va-
lence bands, respectively) and eigenfunctions |n,k〉 obtained
from the calculation of the band structure. In Eq. (42.35),
G and G′ are reciprocal lattice vectors, q and k are the 2D
vectors within the first Brillouin zone, and � denotes the
crystal volume. In Eq. (42.35), the sum over the indices c
and v denote the sum over all conduction and valence bands,
respectively. The real-space susceptibility χ0(r,r′) can be
obtained by transforming χ0

GG′(qz → 0):

χ0(r,r′) = 1

�cell

∑

GG′
eiG rχ0

GG′(qz → 0)e−iG′r′
, (42.36)

where �cell is the volume of the supercell.
The screened response function, P(r, r′), relates the in-

duced charge, eρind(r), to the total potential, ϕtot(r), through:
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eρind(r) = e2
∫

P(r,r′)ϕtot(r′)dr′, (42.37)

Within the random-phase approximation (RPA), χ0(r,r′),
obtainable as the Fourier-transform of the dielectric matrix, is
P(r, r′). The function χ0(r,r′), averaged along z, is shown in
Fig. 42.26 for a perturbation at r′, for r′ is at the ribbon center
(a) and at the bottom-left vacuum region (b), respectively.

Two important features of the density-density response
function are its exponential spatial decay, like the electron
density, and its scalar nature. The first feature enables us to
employ a small supercell – as long as it is sufficiently large to
guarantee the independence of the calculated band structure
on its size – to study the dielectric response. The second fea-
ture allows us to avoid unwanted complexity in constructing
the linear system of equations when solving the ‘ordinary’

Poisson equationwith tensorial dielectric constants, as shown
in the following.

42.5.2 Microscopic Poisson Equation

Of particular interest from the perspective of atomistic device
simulations is the possibility of deriving a microscopic
Poisson equation that accounts “exactly” for the position-
dependent polarization of the system without having to
employ any position-dependent “dielectric constant.” This
can be done by combining Gauss’s law, ∇ · Etot(r) =
eρtot(r)/ε0 = (eρext(r) + eρind(r)) /ε0, with the relation
between the electric field and electrostatic potential,
Etot(r) = −∇ϕtot, in the Coulomb gauge and using
Eq. (42.37), to express the induced charge as a function
of the total potential:

ε0∇2ϕtot(r) + e2
∫

P(r,r′)ϕtot(r′)dr′ = −eρext(r), (42.38)

where ε0 is the vacuum permittivity, ϕtot(r) is the total po-
tential, and eρext(r) is the external charge. Equation (42.38)
can be straightforwardly discretized and solved when Dirich-
let/Neumann/periodic boundary conditions are applied. As-
suming linear response and embracing the RPA, the solution
of this microscopic Poisson equation with the polarizability
χ0(r,r′) – calculated using the procedure outlined above and
either DFT of empirical pseudopotentials – provides the exact
total microscopic potential for any arbitrary distribution of
free charge.

In so doing, the total potential is obtained immediately, but
separating the distinct contributions of the external potential
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and of the induced (polarization) potential requires a brief
discussion. Since we have assumed that the aGNR (or any
other nanostructure) is embedded in vacuum, the polariza-
tion charge lies exclusively within the aGNR. This can be
calculated using Eq. (42.37). Once this is known, the induced
polarization potential can be obtained from:

ϕind(r) = e
∫

ρind(r′)
4πε0|r − r′|dr

′. (42.39)

In turn, having obtained the polarization potential, the applied
external potential (i.e., the bare unscreened perturbation) can
be obtained from the difference between the total potential
and the polarization potential. Finally, the external, polar-
ization, and total electric fields can be calculated from the
negative of the gradients of the corresponding potentials.

In two dimensions, averaging the charge distribution
along the out-of-plane direction z, one should use the two-
dimensional Green’s function of the Poisson equation. Thus,
the polarization potential is given by:

ϕind(r) = e
∫

ρind(r′) ln (|r − r′|/L)
2πε0

dr′, (42.40)
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Fig. 42.27 The total potential (a) and the induced charge density (b)
for a ‘horizontal’ parallel-plate capacitor when 1V is applied to the top
plate and −1V to the bottom plate. In response to the external field,
a dipole is formed. This counteracts the external electric field with a
polarization field. (After J. Fang et al. [245], with permission from the
American Physical Society ©2016 American Physical Society)

where L some arbitrary scaling length. In practice, to the
integration over the singularity of the Green’s function
ln (|r − r′|/L), we can instead calculate the polarization
potential by simulating the system using a larger region
and Fourier-transforming the polarization charge to obtain
eρind(r) → eρind(q). Then, the polarization potential is
finally obtained from ϕind(q) = eρind(q)/(ε0|q|2) → ϕind(r).

42.5.3 Microscopic Dielectric Tensor of 1D
Materials

To compute the microscopic dielectric tensor along the non-
periodic directions of 1D materials, Eq. (42.38) can be used
in the case of two nanocapacitors, a “horizontal” one with
plates parallel to the aGNR surface and a “vertical” one with
plates perpendicular to the aGNR surface. Since at qz → 0,
the net polarization cannot be built to screen the external
potential or electric field applied along the axial direction
of the 1D materials, the axial dielectric constant is unity.
For finite values of qz, Eq. (42.38) can be applied to study
the axial component of the dielectric tensor by assuming
a periodic external (perturbing) potential or electric field
and considering a nanocapacitor with length equal to the
(spatial) period of the external perturbation. Here we restrict
our attention to the simpler case of qz → 0.
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Fig. 42.28 The microscopic dielectric tensor of a 7-aGNR in vacuum. (a) and (d) show the diagonal components, and (b) and (c) show the off
diagonal components. (After J. Fang et al. [245], with permission from the American Physical Society ©2016 American Physical Society)

The perturbation is defined by applying 1V on the top
plate and −1V on the bottom plate of the horizontal nanoca-
pacitor. Note that periodic boundary conditions are applied
on the left and right boundaries and there are no free charges
inside the capacitor. The spatial variation of the total potential
and the induced charge, obtained by solving Eq. (42.38) in
the two-dimensional case, are shown in Fig. 42.27. In the top
frame, note the curvature of the potential distribution around
the nanoribbon; in the bottom frame, one can clearly see the
induced dipole. In the top frame, we can observe the curved
potential distribution around the nanoribbon region; in the
bottom frame, we can see the induced dipole. Although not
shown, it is easy to obtain the potential and induced charge
for the vertical nanocapacitor.

The microscopic external electric field and total electric
field for the horizontal (Ehor

ext/tot) and the vertical (Ever
ext/tot)

capacitor can be easily derived having obtained ϕtot(r) and
eρind(r). Themicroscopic dielectric tensor of a 1D nanostruc-
ture in the confined (x, y) plane (i.e., the transverse dielectric
tensor) is then evaluated as:

[

εxxr (r) ε
xy
r (r)

ε
yx
r (r) ε

yy
r (r)

]

=
[

Ehor
ext,x(r) Ever

ext,x(r)
Ehor
ext,y(r) Ever

ext,y(r)

] [

Ehor
tot,x(r) Ever

tot,x(r)
Ehor
tot,y(r) Ever

tot,y(r)

]−1

,

(42.41)

where Ehor/ver
ext/tot,x/y(r) is the x or y component of the external/to-

tal electric field for the horizontal/vertical nanocapacitor and
ε
ij
r (r) (i, j = x, y) is a component of the dielectric tensor

which indicates the dielectric response along the direction
i when the perturbing electric field is applied along the
direction j.

Microscopic Dielectric Tensor of a 7-aGNR
Using the empirical pseudopotentials of Ref. [181] for carbon
and the terminating H atoms, we have used the method just
outlined to calculate the microscopic dielectric tensor of a
7-aGNR. This is shown in Fig. 42.28. The anisotropy of the
microscopic dielectric properties can be observed. Observing
the distribution of both εxxr (r) and ε

yy
r (r), the ribbon region

exhibits a large microscopic dielectric constant whereas it
approaches ε0 in the vacuum region. Nevertheless, inside
the ribbon, εxxr (r) exhibits more pronounced microscopic
oscillations compared to ε

yy
r (r). The off-diagonal elements of

the microscopic dielectric tensor, ε
xy
r (r) and ε

yx
r (r), exhibit

the inversion symmetry of the aGNR. Macroscopically, the
off-diagonal elements of the microscopic dielectric tensor
vanish. This is because x and y are two of the three principal
axes of the nanosystem.

Ribbon-Width Dependence of the Dielectric
Permittivity
We have simulated also a 3-aGNR, a 5-aGNR and a 6-
aGNR. Using empirical pseudopotentials, we find for each
of these ribbons a band gap of 1.19 eV, 0.43 eV, and 1.03
eV, respectively, in contrast to the band gap of 1.70 eV for
the 7-aGNR. The variation of ε

yy
r (r) along the horizontal
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as shown in Fig. 42.31. (After J. Fang et al. [245], with permission from
the American Physical Society ©2016 American Physical Society)

plane of a 3-aGNR, a 5-aGNR, a 6-aGNR, and a 7-aGNR
is plotted in Fig. 42.29. The permittivity in the center of
all ribbons, except the 3-aGNR, is approximately 6 ε0, and
the permittivity at the edges of the ribbon shows similar
peaks and valleys oscillating around 7ε0. These features show
that ribbon size barely affects the out-of-plane microscopic
dielectric constant.

Microscopic Dielectric Tensor of a 3× 3 Silicon
Nanowire
To touch upon silicon, although only very briefly, in
Fig. 42.30 we show results obtained for the xx-component
of the dielectric tensor of a Si nanowire, εxxr (r), following
the same procedure and using the empirical local pseudopo-
tentials of Ref. [184]. Given the small cross section of the
nanowire (only 3 × 3 atoms) and the fact that it is free-
standing (surrounded by vacuum, it is not surprising to see
that the dielectric function inside the nanowire reaches only
a small value, less than 4. This is the result of extremely
small nanostructures inheriting the polarization (and, so,
the dielectric constant) of the surrounding vacuum or bulk
material.

42.5.4 Microscopic Dielectric Permittivity of
2DMaterials

Similar to the study of aGNRs, we construct a nanocapacitor
with graphene as dielectric and the capacitor plates are placed
parallel to the graphene surface. The potential perturbation
is applied by imposing a voltage on the plates and then
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Fig. 42.30 (a) variation on the cross-sectional plane of the calculated
diagonal xx component of the dielectric tensor of a small (3× 3 atom in
cross section) Si nanowire. (b) the same, but plotted along the dashed
line in the left figure, showing how the maximum value of the dielectric
constant in this very small nanostructure is affected by the surrounding
medium, vacuum in this case. Note also the smooth transition between
the semiconductor and the surrounding medium

we solve the microscopic Poisson equation. By solving the
microscopic Poisson equation, Eq. (42.38), we obtain the
induced charge density.

The induced charge density averaged on the (x, z) plane
is shown in Fig. 42.31. The long-range oscillations of the
induced charge are caused by local-field effects [171]. The
polarization profile along y can be calculated by applying
Gauss’s law in 1D [185]. This is also shown in Fig. 42.31. The
microscopic dielectric permittivity decays from 6.9 ε0 in the
carbon-atom plane to the vacuum permittivity within approx-
imately 0.1 nm. This shows that the out-of-plane dielectric
permittivity of the aGNRs resembles that of graphene. We
also evaluate the capacitance per unit area of the graphene
nanocapacitor as D/V , where D is the displacement field
and V is the applied voltage. We find a capacitance of
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the potential perturbation, a dipole is formed across the graphene plane,
as shown by the induced charge density. The microscopic dielectric
permittivity exhibits a peak value of 6.9ε0 on the carbon-atom plane
and decays to the vacuum permittivity about 0.1 nm away from the
carbon-atom plane, indicated by the dashed vertical line. (After J. Fang
et al. [245], with permission from theAmerican Physical Society ©2016
American Physical Society)

13.28 F/m2. Equivalently, attributing an effective dielectric
thickness, d, and a macroscopic dielectric constant, εmac, to
graphene, the capacitance can also be calculated as V/D =
d/εmac+(d0−d)/ε0 (d0 is the distance between the capacitor
plates) since graphene and vacuum are connected in series.
Assuming a macroscopic dielectric constant of 6.9ε0, the
effective dielectric thickness of graphene is about 0.22 nm.
This corresponds roughly to the distance of the center of the
respective induced charge layer comprising the dipole shown
in Fig. 42.31.

42.5.5 Discussion

We have demonstrated that a direct solution of the micro-
scopic Poisson equation incorporates all quantum effects on
the electrostatics. This offers a physical-sound avenue for
atomistic self-consistent quantum transport simulations in
nanotransistors [186] without knowledge of the dielectric
tensor of the nanosystems. This is different from the tradi-
tional treatment of the Poisson equation in atomistic device
simulations reported by Guo et al. in Refs. [187, 188] and
Fiori et al. in Ref. [189]. In these simulations the Poisson
equation is solved with macroscopic empirical approaches,
either using an arbitrarily assumed uniform dielectric permit-
tivity throughout the entire devices or by defining interfaces
as “straight ε-discontinuity lines,” lines arbitrarily drawn
among atoms. Thus, physical accuracy is not ensured.

42.6 Quantum Transport

In this final section, we deal with transport beyond the
semiclassical limit. Other chapters in this volume discuss
this issue in great detail from the perspective of the Wigner
function formalism (Chap. 43 by P. Dollfus) and of the
nonequilibrium Green’s function formalism (Chap. 44 by
S. Datta), as implemented using a tight-binding model for the
electronic dispersion (Chap. 45 by G. Klimeck). Therefore,
we give here only a brief introduction to the subject.

The discussion presented so far has been based implic-
itly on the idea that electronic transport can be described
correctly using semiclassical models, the BTE in particular.
However, as early as in 1950, doubts were raised regarding
the suitability of such a model to deal with transport at
electric fields and energies so large that the associated short
electron scattering times render the electronic Bloch states an
unacceptably poor approximation of the correct eigenstates
of the total Hamiltonian (i.e., that includes also the perturba-
tion). Bardeen and Shockley considered this problem for the
case of Si [190], concluding that a semiclassical approach is
satisfactory in most cases of practical technological interest.
However, the first full-band Monte Carlo study [50] was
performed to study impact ionization in GaAs, a process that
results in an electron lifetime, τ , as short as 1 fs. Capasso
et al. [191] argued that in such cases collisional broadening
renders the semiclassical BTE invalid, that is, the energy
broadening of the electronic state, 	E ∼ h̄/τ , becomes
comparable to – or even exceeds – the energy itself of the
state. This implies a failure of first-order perturbation theory
and Fermi’s golden rule. This problem had been already
investigated in the context of high-field transport in polar
insulators using Feynman path integrals [192]. However, the
daunting nature of this formulation prompted, instead, the
use of Monte Carlo simulations that account, somehow, for
these “broadening” effects [193], vaguely in the spirit of the
Barker and Ferry formulation [194]. However, Monte Carlo
simulations that employ scattering rates computed beyond
first-order perturbation theory soon proved to be affected
by serious artifacts due to violations energy conservation.
High-field transport was later studied by Jacoboni et al.
[195, 196] using the concept of Wigner paths. However, the
basic physical nature of this problem is so difficult that the
use of ab initio methods in this context remains completely
unexplored.

A second, and completely different, limitation of semi-
classical transport stems, instead, from the ultra-fast dynam-
ics of electrons coupled to elementary excitations of a crystal
when stimulated, for example, by ultrashort laser pulses in
pump/probe experiments. The eigenstates of the total Hamil-
tonian are now coupled modes, such as electron-phonon
modes, and the semiconductor Bloch equations (SBE), es-
sentially a density-matrix formulation handled by solving the
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Heisenberg equations of motion, have been successfully used
in the past (see, e.g., Ref. [197] for a comprehensive review).

A third, and final, limitation of the BTE is the limitation
that at present is raising the strongest concerns in devices
scaled at the nanometer length. This limitation is caused by
the small size of the structures that are used by the VLSI
technology. Quantum-size (or confinement) effects, which
historically originated from studies of the two-dimensional
electron gas (2DEG) that is formed in Si inversion layers
[198], does not present a particular problem: indeed, trans-
port must be studied in a reduced dimensionality (much as we
have seen here when dealing with 2D materials) but can still
be treated semiclassically, as long as the length of the active
layer (channel) of the device is much longer than the electron
wavelength or phase-coherence length. However, in devices
whose channels are as short as 10 nm or less, so dimensions
comparable to the wavelength of the charge carriers and of
their decoherence and scattering length, electrons (or holes)
may traverse the active region almost coherently (ballistic
transport), so that their full quantum mechanical behavior –
neglected by the BTE and in what we wrote so far – must be
included in any formulation of transport that we must use to
study these devices. Tunneling is another genuine and impor-
tant quantum mechanical effect that must be captured, since
it affects small devices via leakage through thin gate oxides
and source-to-drain tunneling and that may also be exploited
not only in electrical-erasable programmable random-access
memories (E2PROM and flash-EPROM) but also in tFETs
and interlayer tunneling between 2D materials [199]. While
tunneling has been modeled using semiclassical expressions,
this approach can fail for general nonuniform fields [200–
202].

A varied set of methods have been developed to tackle the
quantum mechanical description of electronic devices. This
variety is caused by the many choices and approximation
made:

1. The physics that is included in the (effective) Hamil-
tonian: Exchange and correlation, spin-orbit coupling,
magnetism, etc. Similarly to the historical evolution of
methods used to deal with semiclassical transport (as dis-
cussed in Sect. 42.2, empirical or semiempirical methods
have been used at first, notably empirical tight-binding
in the first computer program based on the nonequi-
librium Green’s function method, NEMO [203–205],
empirical pseudopotentials [39, 186, 206, 207], or linear
combination of atomic bands [208]. However, also in
this case the progress made on numerical methods and
hardware have begun to make it possible to consider first-
principles approaches. Indeed empirical tight-binding has
been replaced by its DFT counterpart [209, 210], and we
have already mentioned approaches based on all-electron
calculations [64, 65] and even earlier DFT itself [29].

2. The basis that is used to discretize the Hamiltonian: Lin-
ear combination of localized orbitals (LCAO) – as in
many tight-binding studies [211], plane waves, Bloch
waves, and Wannier functions. This choice affect also
first-principles formulations, as we have seen before.

3. The representation of the nonequilibrium state, that is,
the formulation of the quantum transport equations, such
as single particle wavefunctions, Landauer-Büttiker for-
mulation [212–214], density matrix [197, 215], Wigner
functions [196,216,217], or nonequilibriumGreen’s func-
tions (NEGF [218–220]). Even in the ballistic case, the
quantum-transmitting boundary method (QTBM) [221]
can be chosen in place of a (somewhat improperly termed
but highly popular) “ballistic NEGF” approach.

One additional crucial issue is constituted by inelastic
scattering, that is, collisions with scatterers with internal
degrees of freedom, so that memory of the phase of the
carriers is lost (phase decoherence). When using the Wigner
formulation, inelastic processes are often included in an
approximated way via a Boltzmann-like collisional integral,
since the “correct” formulation [222] is numerically in-
tractable. The NEGF formulation is equally daunting, unless
the scattering processes are “diagonalized” in some ad hoc
fashion (so, rendered local) or unless small systems are
considered, such as molecules [33,34]. Nevertheless, this last
method is arguably the method of choice, since, in principle,
it is valid over the entire range of device dimensions, from
long “semiclassical” channels to ultrashort “ballistic” de-
vices. In particular, numerical difficulties notwithstanding, it
can describe correctly the all-important intermediate regime,
in which the device length is comparable to the other charac-
teristic length-scales, namely, the electron wavelength, and
the scattering/decoherence length associated with the vari-
ous scattering processes, mainly, electron-phonon scattering,
scattering with impurities or surface roughness.

In this section, we limit our discussion to length-scales
short enough to render scattering processes a weak pertur-
bation, starting from the ballistic limit, and extending in a
natural way our methodology to include weak scattering pro-
cesses. We employ plane waves since we consider themmore
suitable than localized orbitals to treat extended conduction
states and we employ the simpler QTBM, rather than NEGF,
because of its better numerical efficiency in the ballistic limit,
a limit in which QTBM and NEGF are virtually identical
from a physical perspective.

When considering ab initio transport within the den-
sity functional theory (DFT) framework, two options are
available to approximate the Hamiltonian. The first option
is to use the full self-consistent Kohn-Sham Hamiltonian,
including exchange and correlation based on the nonequilib-
rium charge. However, since devices are large systems, self-
consistently solving the Kohn-Sham Hamiltonian is com-
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putationally expensive within the DFT framework. Since
transport properties are only determined by electron states
near the Fermi level, a second option is to use an effective
low-energy Hamiltonian that is computationally less expen-
sive. Such an effective Hamiltonian can be constructed from
ab initio simulations of representative systems. A further
benefit is that empirical data can supplement ab initio data
in the construction of the effective Hamiltonian to correct for
the deficiencies of DFT, such as underestimated band gaps
and incorrect effective masses. Therefore, here we describe
quantum electron transport within the pseudopotential ap-
proximation, using a plane-wave basis. However, the formu-
lation can be easily generalized to first-principles methods.
We first describe the ballistic transport formalism based on
the extended states. We then detail the numerical approach
based on envelope functions. Next, we introduce the addition
of scattering using the Pauli Master Equation. Finally, we
demonstrate our method by simulating highly scaled transis-
tors based on graphene nanoribbons and silicon nanowires.

42.6.1 Ballistic Transport

In the ballistic limit, electron dynamics is described by the
extended wavefunctions in the device and its infinitely long
contacts. The extended wavefunctions are the solutions of the
Schrödinger equation:

[

− h̄2∇2

2m
+ Vtot(r)

]

ψκν,E(r) = Eψκν,E(r) , (42.42)

where E is the energy of the electron injected from contact κ
and ν is a mode index. The potential energy Vtot(r) captures
all of the potential energy felt by an individual particle; this
includes the ionic potential, the mean-field Hartree potential
generated by the free charges, doping and electrostatic gates,
as well as exchange and correlation contributions. In the
contacts, the total potential is assumed to be lattice periodic,
yielding Bloch wave solutions with a well-defined wave
vector kκν .

We assume that the device’s contacts are connected to
large equilibrium reservoirs, each at a fixed chemical poten-
tialμκ .When a bias is applied to the device (between contacts
κ and κ ′), it is driven out of equilibrium by a relative change
in the Fermi level of the contacts, i.e., μκ − μκ ′ = Vbias.
To describe the statistics, we introduce the ballistic density
matrix, which is diagonal in the basis of the extended states:

ρ
(bal)
κνE,κ ′ν ′E′ = δκκ ′δνν ′δEE′ fFD(E − μκ) , (42.43)

where the Fermi-Dirac distribution is given by

fFD(E − μκ) =
[

1 − exp
(

E − μκ

kBT

)]−1

. (42.44)

Using this density matrix, the expressions for electron
density, as well as current density are readily obtained:

ρ(bal)(r) =
∑

κν

∫

dE

(

dEκν

dk

)−1

× ∣

∣ψκν,E(r)
∣

∣

2
fFD(E − μκ) , (42.45)

J(bal)(r) =
∑

κν

eh̄

m

∫

dE

(

dEκν

dk

)−1

× Im[ψκν,E(r)∇ψκν,E(r)]fFD(E − μκ) , (42.46)

where, since we have assumed that the injecting wavefunc-
tions have been δ-normalized in their respective contacts,
(dEκν/dk)

−1 is the density of states of mode ν contact κ .

42.6.2 Numerical Approach

In a numerical implementation, Eq. (42.42) needs to be dis-
cretized and the infinitely long contacts need to be truncated.
In a periodic system, Eq. (42.42) is readily discretized on
plane waves, ψκν,E = ∑

G uκν,E,GeiG·reikκν,E ·r using Bloch’s
theorem. Plane waves offer a mathematically complete basis
that can be tuned to very high accuracy through the kinetic
energy cutoff. By using the fast Fourier transform algorithm,
plane waves have a relatively low computational cost and
almost optimal scalability with system size. However, the ap-
plication of bias and gate potentials breaks the periodic nature
of the total potential in Eq. (42.42). This prevents the use of
Bloch’s theorem to express the electronic wavefunctions in
the device. To circumvent this problem, the envelope func-
tion approach was developed [39, 186, 206]. More recently
we developed a significantly more efficient method based
on Bloch waves [223]. Once discretized, the truncation of
the numerical domain is achieved by replacing the infinite
contacts with a self-energy contribution, regardless of the
chosen discretization.

While the Bloch wave method demonstrates significant
progress in numerical efficiency, the envelope function has
the benefit of conceptual clarity. For this reason, we highlight
here the envelope function approach and its associated self-
energies as an introduction to quantum transport simulations
using pseudopotentials. We advise the interested reader to
research advanced techniques, such as the Bloch wave-based
method [223].
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Envelope Functions
In the envelope-wavefunction approximation, we express the
full electronic wavefunction at a given energy E as:

ψκν,E(r) =
∑

G
φ

κν,E,G(r)eiG·r , (42.47)

where the envelope function in the periodic case eikκν,E ·r is
replaced by the more general envelope φ

κν,E,G. The depen-
dence of the envelope φ on r results indeed from the breaking
of the periodicity caused by the applied bias and doping.

Using the envelope expansion in Eq. (42.47) in the
Schrödinger equation (Eq. 42.42) yields an equation for
the envelope functions

∑

G′

{[

h̄2

2m
(−i∇ + G)2 + V̄tot(r)

]

δG,G′ + VG−G′

}

× φ
κν,E,G(r) = Eφ

κν,E,G(r) (42.48)

where we have separated the total potential Vtot(r) =
V̄tot(r) + ∑

G VGeiG·r into a slowly varying part V̄tot(r)
and the periodic lattice potential, captured by VG.

After discretization of the r coordinate, and using a finite
difference scheme for the gradient, we obtain a sparse matrix
equation:

Hφ = Eφ ⇔

⎡

⎢

⎢

⎢

⎢

⎣

· · · · · · ·
· T† Di−1 T 0 0 ·
· 0 T† Di T 0 ·
· 0 0 T† Di+1 T ·
· · · · · · ·

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

·
φ(ri−1)

φ(ri)
φ(ri+1)

·g

⎤

⎥

⎥

⎥

⎥

⎦

= E

⎡

⎢

⎢

⎢

⎢

⎣

·
φ(ri−1)

φ(ri)
φ(ri+1)

·

⎤

⎥

⎥

⎥

⎥

⎦

. (42.49)

where the explicit matrix structure is given for the one-
dimensional case, for which Di and T are block matrices of
size (NG×NG) [186]. The vector containing the discretized
envelope function contains sub-vectors of size NG:

φ(ri) = [φG1
(ri),φG2

(ri), . . . ,φGNG
(ri)]ᵀ . (42.50)

Self Energies
In order to solve Eq. 42.49 numerically, we truncate it to the
device region, i.e.:

φ = [φ(r1),φ(r2), . . . ,φ(rN)]ᵀ . (42.51)

This necessitates the introduction of boundary conditions
(the so-called quantum-transmitting boundary conditions) at
the contacts that can inject and absorb waves. Since we
have forced the potential in each contact to be periodic, the
solutions in the contacts are Bloch waves. Specifically, for
a given energy E, the envelope functions of the eigenmodes
ψ (c)

κ of a contact κ located at riκ are found, using Bloch’s
theorem, as:

[

T†e−ikκ	 + Diκ + Teikκ	
]

φ(c)
κ (riκ ) = Eφ(c)

κ (riκ ) , (42.52)

where the 	 is distance between riκ and riκ−1.
For each energy E, Eq. (42.52) admits 2NG solutions

(kκ ,φ
(c)
κ ). Classifying the contact solutions into incoming

and outgoing modes, we assemble the “Bloch matrices,”
[

φ(c)
κ

]

in and
[

φ(c)
κ

]

out, containing the respective solutions as
their columns. Using these Bloch matrices, we calculate the
contact self-energies directly as:

[�]κ = T′[φ(c)
κ

]

outdiag
[

eikκ	
]

out

[

φ(c)
κ

]−1

out, (42.53)

where diag
[

eikκ	
]

out is a diagonal matrix containing the phase
factors of their respective solutions in the Bloch matrices and
T′ is either T or T† depending on the position of the contact.
From right to left, the effect of the matrices in Eq. (42.53)
is to (1) project the envelope at the edge onto the basis of
contact solution, (2) propagate each solution one step (	)
inside the contact, (3) reassemble the envelope function,
and (4) apply the truncated part of the Hamiltonian. For a
detailed derivation of the various parts, we refer the reader to
Ref. [186].

With the definition of the self-energies [�]κ , the envelope
functions ψ obey the following linear system of differential
equations [186]:

(H − EI + [�]κ) φ = [r.h.s.]injκ , (42.54)

where I is the identity matrix and [r.h.s.]injκ is the contact in-
jection from contact κ that decides which mode gets injected.

Self-Consistency
At a given bias, we solve Eq. (42.54) for all electron in-
jection energies with a rough initial guess on the external
potential and obtain their respective envelope functions and
the spatial electronic wavefunctions. We calculate the car-
rier density using Eq. (42.45), summing over all the energy
states with their corresponding thermal occupation set by
the Fermi level of each contact. We then solve the (macro-
scopic or microscopic, see Sect. 42.5.2) Poisson equation, to
update the Hartree potential and, if accounted for, update
the exchange and correlation contributions. This procedure
is repeated using Newton-Rhapson iteration until the root-
mean-square potential-difference between two successive it-
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erations is smaller than a preset convergence criterion. To
accelerate convergence, we succesfully employed the direct
inversion of the iterative subspace (DIIS)method, also known
as Pulay mixing in the chemistry community [223]. After
convergence, we calculate the current density from the final
envelope functions.

42.6.3 Scattering—The Pauli Master Equation

In realistic small devices, the ballistic limit is rarely, if ever,
achieved. To account for scattering in short devices where
scattering is still relatively weak, we can use the Pauli Mas-
ter equation approach [39, 224–226]. In this approach, we
replace the noninteracting ballistic density matrix ρ(bal) with
the density matrix ρ for the interacting system.

By invoking the Van Hove limit, Fischetti [225] showed
that the time-dependence of the elements of the density
matrix is given by:

∂

∂t
ρκνE,κ ′ν ′E′(t) = − i

h̄
(E − E′)ρκνE,κ ′ν ′E′(t)

−
∑

κ ′′ν ′′E′′
[Wκ ′′ν ′′E′′,κνE+ Wκ ′′ν ′′E′′,κ ′ν ′E′ ] ρκνE,κ ′ν ′E′(t)

+
∑

κ ′′ν ′′E′′
δκνE,κ ′ν ′E′WκνE,κ ′′ν ′′E′′ρκ ′′ν ′′E′′,κ ′′ν ′′E′′(t) . (42.55)

Thanks to the Van Hove limit, where we assume the scat-
tering process completes much faster than the dynamics of
the electrons themselves, we can ignore memory effects and
phase information. The scattering rates W(κνE, κ ′ν ′E′) for
a perturbing potential V ′ are then obtained using Fermi’s
golden rule, in much the same way as for the semiclassical
Monte-Carlo approach:

W(κνE, κ ′ν ′E′) =
∣

∣

〈

κνE|V ′|κ ′ν ′E′〉∣
∣

2

|E − E′| . (42.56)

When considering small devices, where electrons scatter
only rarely before being absorbed by a contact, the off-
diagonal parts of the density matrix are negligible and the
Pauli Master equation reduces to:

∂

∂t
ρκνE,κνE(t)

=
∑

κ ′ν ′E′
[WκνE,κ ′ν ′E′ρκ ′ν ′E′,κ ′ν ′E′(t)

−Wκ ′ν ′E′,κνEρκνE,κνE(t)] . (42.57)

To account for the exchange of particles through the contact
reservoirs, Fischetti [224] introduced an empirical term:

(

∂

∂t
ρκνE,κνE(t)

)

res

= |AκνE|2 vκνE,⊥ [fFD(E − μκ) − ρκνE,κνE(t)] , (42.58)

where particles (waves) are injected from a contact κ that
is in equilibrium with chemical potential μκ with a group
velocity vκνE,⊥ normal to the contact. AκνE is the normal-
ization factor applied to the injected wavefunction such that
∫

�
d3r|ψκνE(r)|2 = 1, where � is the volume of the device.
For device transport we are mostly interested in the steady

state. In this case, the injection from the contacts needs to bal-
ance the scattering, i.e., the right-hand sides of Eqs. (42.57)
and (42.58) must be equal. The resulting linear matrix equa-
tion can be solved very efficiently using existing linear alge-
bra packages.

42.6.4 Example 1: Graphene Nanoribbon
Transistors

To study transport through graphene nanoribbons, we use the
empirical pseudopotentials from Ref. [181] with an energy
cutoff of 15 Ry. The atoms have been positioned in a perfect
sp2 lattice, without relaxation of the hydrogen atom positions.
We calculate the band structure of several armchair graphene
nanoribbons (aGNR), shown in Fig. 42.32a. In the given
energy range, 7-, 10-, 13-aGNRs show two conducting bands,
whereas the 6-aGNR shows only one conducting band. Fis-
chetti et al. have shown that the electron effective mass of
aGNRs at the conduction band minimum oscillates, so that,
for example, m∗

6 < m∗
7 < m∗

13 < m∗
10, where m

∗
n represents

the effective mass of the n-aGNR [60]. Figure 42.32b shows
the dispersion of the lowest conduction band for 3-, 6-, 9-,
and 12-aGNRs, and it indicates that m∗

12 < m∗
9 < m∗

6 <

m∗
3 [60]. The difference of the effective mass can result in

different transport behavior of each ribbon, especially in the
subthreshold region of device operation, as we will discuss
later.

Ribbons with different body widths exhibit different band
gaps, as shown in Fig. 42.32c [199]. The 3n-aGNRFETs and
(3n+1)-aGNRFETs with different channel lengths and dif-
ferent ribbon widths are simulated to investigate their device
performance. The (3n+2)-aGNRs are not of interest here,
since their small band gap results in a very poor subthreshold
leakage as a consequence of a high tunneling current.

Transport Characteristics of aGNRFETs
The IDS-VGS characteristics are presented in Fig. 42.33a,b.
Clearly, transistors with different widths show different trans-
fer characteristics. We show the ribbon width dependence
of the current at a gate overdrive, VGS-Vth = 0.25V, and
subthreshold swing in Fig. 42.35.
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Fig. 42.32 (a, b) Conduction band dispersion of several aGNRs in
a given energy range from ECBM, the conduction band minimum, to
ECBM + 10kBT (T = 300K). The energy of ECBM is set as zero. (c)
Body-size dependence of the band gap of aGNRs and [001]-oriented
silicon nanowires. The horizontal dashed line indicates the band gap
of bulk silicon, which is 1.1 eV. The index n is an integer which
characterizes the ribbon width. The lines connecting the symbols are
a guide to the eye. (After Ref. [206], with permission from IEEE)

Figure 42.32c illustrates the band gap of aGNRs with
different body size (i.e., ribbon width). For a ribbon wider
than 5 nm, the band gap approaches the vanishing band gap
of graphene. The band gap increases as the ribbon width de-
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Fig. 42.33 (a) Gate-length dependence of transfer characteristics for
3-aGNRFETs at VDS = 0.1V (taken as representative of VDD = 0.4V,
thanks to the saturation of the IDS − VDS curves for VDS > 0.1 V).
The device gate length, LG, ranges from 5.12 nm to 13.65 nm. (b) IDS-
VGS transfer characteristics at VDS = 0.1V for aGNRFETs with the
same gate length LG = 5.12 nm and with different widths. (c) IDS-
VGS transfer characteristics of four (3×3)-SiNWFETs with different
gate lengths (from 5.43 nm to 8.69 nm) and of a (5×5)-SiNWFET and
a (7×7)-SiNWFET both with a gate length of 5.43 nm, at VDS =
0.1V. The dotted lines extending to the threshold voltage have been
obtained by extrapolating the current calculated at higher gate bias using
the calculated subthreshold slope. The 60 mV/dec slope and the lines
connecting the symbols are a guide to the eye. (After Ref. [206], with
permission from IEEE)
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creases as a consequence of quantum confinement [227]. The
band gap for a ribbon with a width about 4 nm is about 0.4 eV,
whichmatches the experimental result reported in Ref. [228].
The gap of a 7-aGNR is also experimentally observed to
be ∼1.8 eV [229]. These facts highlight the accuracy of
band structure calculation based on empirical pseudopoten-
tials, while maintaining computational efficiency. The 3-
aGNRFETs with a body width Wbody = 0.25 nm and a
gate length LG ranging from 5.12 nm (12 cells along z) to
13.65 nm (32 cells along z) are simulated. The source and
the drain regions are both set as ∼6 nm, and we assume no
gate-channel overlap. Both the source and the drain regions
are doped as n-type with a density of 108 m−1, and the
channel region is doped as p-type with a density of 108 m−1.
Abrupt junctions are assumed. We use “vacuum” as a virtual
gate insulator in the transport model. The size of “vacuum,”
tvac, and its dielectric constant, ε, are related to the EOT as
tvac/ε = EOT/εSiO2 , where EOT is set as 0.43 nm and εSiO2

is the dielectric constant of silicon dioxide.
The current-voltage characteristics of these 3-aGNRFETs

are shown in Fig. 42.33a. We define here the threshold volt-
age, Vth, as the gate bias at which the drain current reaches a
preset value Ioff = 0.4μA/μm. This definition allows us to
compare various devices at the same Ioff and the same gate
overdrive VGS – Vth = 0.25V. Also we assume a power
supply voltage VDD = 0.4V [1]. Since IDS saturates for
VDS > 0.1V, we shall consider the on-state atVDS = 0.1V as
representative of the performance at VDS = VDD. When the
gate length is larger than 10 nm, the current at a given bias is
approximately independent of gate length. This is due to the
assumption of ballistic transport. This is in contrast with “the
linear model” or “the quadratic model” in traditional metal-
oxide-semiconductor field-effect transistors (MOSFETs) ac-
cording to which carriers can scatter within the device when
traveling along the channel. Thus, increasing the device
length will increase the channel resistance proportionally
and reduce the current (i.e., IDS ∝ 1/L) [230]. For devices
with a gate length below 10 nm, the current decreases with a
decrease of the gate length at the same given gate overdrive
due to the significant quantum-mechanical source-to-drain
tunneling effect that causes a very poor turn-off behavior and
thus threshold voltage shift for devices with a ultrashort gate
length [231].

This is shown as well in Fig. 42.34a which compares the
current for devices with different channel lengths at a given
gate overdrive,VGS−Vth = 0.25V. The current does not show
a strong dependence on the channel length when it is above
10 nm,whereas it decreases by two orders ofmagnitudewhen
the channel length is below 10 nm.

The subthreshold behavior is shown in Fig. 42.34b. The
subthreshold swing reaches the ideal performance of 60
mV/dec for traditional MOSFETs [232] when LG > 10 nm.
However, a shorter-channel device presents a degraded sub-

threshold swing due to the source-to-drain tunneling. Thus,
for a given power supply VDD, the Ion/Ioff current ratio de-
creases for a shorter device.

42.6.5 Example 2: Silicon Nanowire FETs

Gate-all-around SiNWFETs with square and smaller cross
sections are simulated as well. The SiNWs are with axis
along the [100] crystallographic (transport) direction and
with {100} surfaces since this yields a high ballistic conduc-
tance (at least in large cross-section NWs, Ref. [40], Fig.
7.34) while retaining a transport mass that for small cross-
section NWs is large enough [233] to minimize source-to-
drain tunneling. The band gap of [001]-oriented SiNWs with
a square cross section and different body sizes (i.e., NW
side lengths) is also shown in Fig. 42.32c. When the NW
side length is larger than 3.5 nm, the band gap approaches
the band gap of bulk silicon. The electron effective mass
at the conduction band minimum is 1.94m0, 0.88m0, and
0.73m0, respectively, for (3×3) SiNW, (5×5) SiNW, and
(7×7) SiNW. The (3×3) SiNWFETs with gate lengths rang-
ing from 5.43 nm (10 cells along z) to 8.69 nm (16 cells along
z) are simulated. All of these nanowires have three atomic
layers along each side of the cross section and thus have a
side length of 0.39 nm (Ref. [186], Fig. 3). The surfaces of the
NWs are hydrogen-terminated. The current-voltage transfer
characteristics of these devices are shown in Fig. 42.33c. The
current is the same at a given VDS and VGS for all gate lengths,
and thus they have the same threshold voltage. Thus, there
is no appreciable source-to-drain tunneling for a (3 × 3)
SiNWFETwith a∼5 nmgate length. Normalizing the current
at VGS−Vth ≈ 0.25V andVDS = 0.1V to the NW side length
(footprint), the current density reaches around 1000μA/μm,
which satisfies the performance requirement for continued
device scaling suggested by ITRS [146]. The subthreshold
swing is 66 mV/decade and Ion/Ioff ratio is ∼2 × 103.

In Fig. 42.34a we compare their performance with aG-
NRFETs in a similar range of gate lengths. It is obvious
that SiNWFETs have a much larger current than aGNRFETs
when the gate length is below 10 nm. Especially, at the 5 nm
gate length, (3×3) SiNWFET shows a current ∼25 times
larger than 3-aGNRFET.

Both a (5×5) SiNWFET and a (7 × 7) SiNWFET are
simulated to investigate the body-size effect of NWs on the
device performance. They both have a gate length of 5.43 nm
and a side length of 0.78 nm and 1.17 nm. These large cross-
section SiNWFETs show very similar current density with
the (3 × 3) SiNWFETs at the same gate overdrive.

The current at a gate overdrive of 0.25V and the sub-
threshold swing are illustrated in Fig. 42.35. In Fig. 42.34
we compare the performance of SiNWFETs with that of
aGNRFETs at different body sizes. The SiNWFETs show a
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current more than three times larger than aGNRFETs for the
same gate length of 5 nm. To sum the studies shown above,
SiNWFETs offer the avenue to scale transistors down to 5 nm
channel lengths.

42.7 Conclusions and Outlook

So far, we have shown how DFT can be used to calculate
electron-phonon scattering rates and transport properties of
several bulk and two-dimensional materials. Comparing the
power of these ab initio methods to what was possible as
recently as 20 years ago (as discussed in Sect. 42.2), we
can appreciate the enormous “cultural” value of the progress

made. We must also express optimism about the possibility
of investigating the transport properties of new materials
without having to wait for expensive and time-consuming
experiments that provide the information needed to assess the
performance of devices based on these materials.

However, in a few occasions, we have also hinted at some
uncertainty that still affects the accuracy and reliability of
results obtained using ab initio methods. Broadly speaking,
these difficulties originate from three causes: (i) the use of
unsatisfactory approximations to calculate the carrier mobil-
ity and other transport characteristics, (ii) numerical “short-
cuts” that reduce the computational efforts but introduce
unwanted artifacts and errors, and (iii) intrinsic limitations
of our knowledge of the basic physics.
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(i)Regarding the accuracy and correctness of the formula-
tions employed to compute transport characteristics, we have
discussed in Ref. [97] how several results, labeled ab initio,
rely on DFT calculations of the changes of the band structure
under strain (the “proper” deformation potentials) to estimate
the carrier mobility using oversimplified assumptions. To
summarize what we wrote in Ref. [97] (and as also discussed
in Refs. [234,235]), these assumptions consists in the use of
Takagi formula [236] to calculate the carrier mobility for a
two-dimensional electron gas (2DEG):

μ = eh̄3C2D

kBTm∗mdE2
1

, (42.59)

where m∗ and md are the conductivity and density-of-states
effective masses, respectively, C2D is the longitudinal or
transverse elastic constant of the 2D material, and E1 is
the “proper” deformation potential mentioned above and
calculated from the energy-shift, 	Ec,v, of the relevant band-
edge (conduction for electron transport, valence for holes),
under a relative change, 	a/a0, of the lattice constant a0:

E1 = a0
	Ec,v

	a
. (42.60)

This formula has been used to calculate extremely high val-
ues for the carrier mobility in silicene (≈2×105 cm2 V−1 s−1

for both electrons and holes [237]) and germanene (≈6 ×
105 cm2 V−1 s−1 for both electrons and holes [238]), ignoring
coupling to flexural acoustic modes [141]. Qiao et al. [137]
have also used Eq. (42.59) to obtain an equally impressive
electron and hole mobility in phosphorene. However, while
approximately correct in the context of Si inversion layers,
as originally intended by Takagi and coworkers, its validity
should be considered carefully when extending it to other
materials. Indeed, Eq. (42.59) accounts only for longitudinal
phonons (unless the shear deformation potential is also accu-
rately considered, as done in Ref. [144] for phosphorene),
it ignores scattering with optical phonons, intervalley pro-
cesses and ignores the anisotropy (i.e., the dependence on the
scattering angle) of the electron-phononmatrix element. This
anisotropy is extremely important when estimating the carrier
mobility, since it affects strongly the momentum relaxation
rate. This has been shown even in bulk Si [36], strained bulk
Si [239], and Si inversion layers [240]. Liao et al. [142]
and Gaddemane et al. [97] have shown how this is also of
paramount importance in monolayer phosphorene. Finally,
Eq. (42.59) ignores effects that may result from the overlap
integral of the initial and final wavefunctions, effects that
are instead captured by the finite-displacement method or
by DFPT. Therefore, the impressive values for the carrier
mobility reported in Refs. [137, 237], among others, should

Table 42.7 Theoretical calculations of the 300 K electron and hole
mobility, μe and μh, in monolayer and bilayer phosphorene

Reference μe (cm2V−1s−1) μh (cm2V−1s−1)

Armchair Zigzag Armchair Zigzag

Monolayers

Qiao et al.a 1100 80 640–700 10,000–26,000

Jin et al.b 210 40 460 90

Rudenko et al.c 738 114 292 157

Rudenko et al.d ∼700 ∼250

Trushkov et al.e 625 82

Liao et al.f 170 50 170 35

This workg 20 10 19 2.4

This workh 21 10 19 3

This worki 25 5

Bilayers

Qiao et al.a 600 140–160 2600–2800 1300–2200

Jin et al.b 1020 360 1610 760

This workg 14 7 12 2

After G. Gaddenane et al. [97], with permission from the
American Physical Society ©2018 American Physical Society
aRef. [137]
bRef. [143], Monte Carlo and DFT (DFPT)
cRef. [144], LA and TA, one-phonon processes
dRef. [144], LA and TA, one- and two-phonon processes
eRef. [145], LA and TA, at a density of 1013 electrons/cm2

fRef. [142], DFT (DFPT)
gMonte Carlo and DFT (finite differences), acoustic and optical
phonons
hMonte Carlo and DFT (DFPT)
iKubo-Greenwood, acoustic phonons only, elastic and equipartition
approximation

be regarded as no more than extremely optimistic upper
bounds.

We show in Table 42.7 (reproduced from Ref. [97])
the large discrepancies among the values of the electron
mobility in phosphorene calculated using several different
approximations or methods. As serious as the issue may
be, paradoxically we should consider it a “minor problem,”
since reliable methods to calculate the electron mobility are
available, such as the EPW computer package [77] and the
by-now “conventional” full-band Monte Carlo simulations
we have employed here.
(ii) Regarding numerical issues, we have also discussed

in them in Ref. [97], and we have mentioned above in
Sect. 42.4.1. These may be considered mundane issues, since
the use of a sufficiently fine discretization of the Brillouin
zone does not constitute an insurmountable conceptual ob-
stacle. Even if today’s hardware renders the task painful
and (perhaps) impossible when dealing with high-energy
transport, we are growing accustomed to ever-increasing
computer resources, in terms of both speed and memory.
(iii) Much more fundamental are the reasons causing the

dependence of the results on the choice of exchange-and-
correlation functionals and even (very surprising to us) of
the pseudopotentials used when performing ab initio calcula-
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Table 42.8 Calculated electron mobility in monolayer WS2

SSSP-
PBE
without
SO

ONCV-
PBE
without
SO

ONCV-
PBE with
SO

ONCV-
LDA
without
SO

ONCV-
LDA with
SO

Bandgap (eV) 1.81 1.835 1.56 1.99 1.66 (indi-
rect)

	EKQ (meV) 210 182 97 22 73

μ (cm2/(Vs)) 767 380 215 17 127

tions. In Sect. 42.4.3 we have already observed the surprising
wide range of values for the calculated electron mobility
in monolayer phosphorene that have been reported in the
literature. Unfortunately, a similar puzzling observation can
bemade for monolayer TMDs. A typical example is provided
by WS2. As shown in Tables 42.8, the electron mobility
calculated using DFT varies from a promising 767 cm2/(Vs)
to a disappointing 17 cm2/(Vs). Indeed, different values
are obtained when using different exchange and correlation
functionals (PBE [94] or LDA [95] ), different pseudopoten-
tials (“standard solid-state pseudopotentials,” SSSP [241] or
“optimized norm-conserving,” ONCV [242]) and depending
on whether or not one accounts for the spin-orbit (SO)
interaction.

The cause of this problem is twofold: first, the band
structure of monolayer WS2 shows conduction band minima
at the six K symmetry points (the doubly degenerate K
valleys) and local minima at a point along the �-K line
(the sixfold degenerate Q valleys). The energy separation,
	EKQ, between these two sets of valleys obtained choosing
different “flavors” of DFT using Quantum ESPRESSO
[15, 16] varies between 22 and 210meV. Since the K-Q
intervalley scattering rates calculated using EPW [76] are
quite strong, clearly different values of 	EKQ result in vastly
different values of the mobility. In this case, we may blame
the well-known inability of DFT – a ground-state theory
thanks to the Hohenberg-Kohn theorems [243] – to reproduce
the correct excitation spectrum with the accuracy required
when performing transport calculations. However, in some
sense, experimental information can guide us in choosing the
proper combination of exchange-correlation functionals and
pseudopotentials. In so doing, the problem is addressed very
pragmatically, so that we have to accept some compromises
in how we define the term “ab initio.”

A similar problem affects our understanding of high-field
electron transport in Si and GaN: regarding Si, Fig. 42.3
shows that DFT/EPW calculations yield peaks of the density
of states at energies that are slightly smaller than those
measured experimentally (and reproduced, by definition, by
empirical pseudopotentials). This “compression” of the con-
duction bands results in a larger density of states that, in
turn, results in scattering rates that are slightly larger than
those predicted by rigid-(pseudo)ion calculations based on

Table 42.9 Calculated electron mobility in monolayer TMDs

μ

(cm2/Vs)
SSSP-
PBE
without
SO

ONCV-
PBE
without
SO

ONCV-
PBE with
SO

ONCV-
LDA
without SO

ONCV-
LDA with
SO

MoS2 127 147 145 127 116

MoSe2 78 92 101 18 19

MoTe2 49 43 50 17 11

WS2 767 380 215 37 127

WSe2 275 180 46 23 88

WTe2 64 166 181 60 55

empirical pseudopotentials. Similarly, in GaN the energy of
the satellite L-valleys computed fromDFT seems to be incon-
sistent with some experimental data, as we have mentioned
in Sect. 42.4.2. Ultimately and not surprisingly, the problem
originates from the approximations that we must necessarily
make in dealing with the exchange and correlation func-
tionals that enter the Kohn-Sham equation. We should add,
parenthetically, that accounting for the spin-orbit interaction
still presents some fundamental issues.

Much more serious is the second cause of the broad range
of calculated results. As shown in Table 42.9, even in materi-
als in which intervalley scattering does not control transport,
some differences are seen. If one may expect some depen-
dence of the results on the choice made for the exchange-
correlation functionals, more worrisome is the observation
that even the choice made for the pseudopotentials matters.
The situation is acceptable only in some particular cases, such
as for MoS2, but it remains generally unsatisfactory.

As a final important remark, we should note that results
like those reported in Tables 42.8 and 42.9 have been ob-
tained assuming free-standing 2D layers. Experiments are
often performed on layers supported by insulating substrates,
often also gated (occasionally supported and gated), and
at a nonzero carrier density. Under these circumstances,
dielectric screening by the dielectric environment (as re-
ported for impurity scattering in Ref. [244]) and free-carrier
screening may improve the mobility, whereas scattering with
the hybrid plasmon/optical-phonon interface modes (often
called “remote-phonon” scattering, somewhat improperly)
may depress it. Therefore, comparison with experimental
data should be made keeping these effects in mind.

If the choice of functionals and pseudopotential is an
issue, using an all-electron method may solve the latter
problem and employing the GW approximation may address
the former issue. At present, such calculations are possible
only in some particular cases (also employing the simpler
G0W0 approximation). However, having already remarked
how accustomed we have grown in witnessing the progress
of numerical algorithms and computer hardware, we may
speculate that in a not-too-distant future the term ab initio
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will be considered synonymous of all-electron/GW, rather
than DFT.
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