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Abstract

In this chapter an outline of the very diverse topic of
process simulation is given. This includes the process
steps of ion implantation and thermal annealing, which
introduce, activate, and modify dopant distributions, and
the process steps lithography, deposition, and etching,
which are used to structure the semiconductor wafer. The
section on oxidation deals with the simulation of the
oxide growth, whereas the aspect of dopant segregation
is included in the section on diffusion. Finally, the impact
of process variations is outlined. Overall, the process sim-
ulation chapter primarily deals with the physics and the
related models for the various process steps, whereas the
discussion of generic algorithms, e.g., for the solution of
partial differential equations, is left for another dedicated
chapter of this book. However, some algorithms which are
specific for process simulation are also briefly described
in this chapter.

Due to the diversity of the area of process simulation,
this chapter could not strive for completeness in the pre-
sentation of the physical models. We largely refer to sili-
con technology, whereas most models can also be applied
for or adapted to other top-down semiconductor technolo-
gies where, in contrast to bottom-up technologies based
on self-assembling, patterning steps, ion implantation and
high-temperature process steps are used to generate three-
dimensional geometries and dopant distributions.
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35.1 Scope and History of Process
Simulation

This chapter deals with the physical and chemical processes
employed to fabricate semiconductor devices based on semi-
conducting material such as silicon, namely, to generate
their geometries and the spatial distributions of dopants,
mechanical stress, and potentially further quantities which
determine and influence the electrical behavior and the re-
liability of the devices. The processes to be studied may be
grouped into those which primarily influence the geome-
try, namely, lithography, etching, and deposition, and those
which primarily introduce and modify dopant distributions
and their activation, namely, ion implantation and thermal
annealing. Oxidation primarily changes the local geometry
but also affects dopant distributions. Epitaxy is used both to
deposit semiconducting layers with desired properties and to
introduce dopants, and silicidation is a combination of metal
deposition and annealing to form metal-silicon alloys to act
as contacts.

Process simulation is an integral part of technology
computer-aided design (TCAD). The overall industrial
benefit of TCAD in terms of the reduction of development
times and costs was already in the 2011 International
Technology Roadmap for Semiconductors (ITRS) [1]
estimated at about 40%. Although no serious assessment
is available on how much process simulation contributes
to this benefit, its impact is in any case very significant.
Especially, there were also statements from industry that the
impact of TCAD cannot be given in percent, because several
technological developments would even not be possible at
all without the use of TCAD.

Historically and long ago, these processes could be de-
scribed with macroscopic process parameters, such as the
temperature to which wafers were exposed in a furnace
reactor, used for annealing or oxidation. During the last
decades and in parallel with device scaling, it got increasingly
important and difficult to reliably and accurately control such
parameters in both space and time. In turn, it has got more and
more important to characterize, simulate, and control how
such parameters depend on the process equipment used. One
of the first effects considered already decades ago was the
temperature profiles which occur when a wafer is introduced
into a furnace reactor for annealing or oxidation: Whereas
the wafer is initially at room temperature, it is gradually

heated while being pushed into the furnace reactor. The
temperature to which a dopant is then exposed depends on
the temperature distribution in the furnace, the movement
of the wafer into its target position, and the thermal con-
duction within the wafer. This is one of the first examples
for the need to simulate not only geometries and dopants
at transistor scale but also the development of spatial and
temporal distributions in the process equipment. This so-
called equipment simulation is therefore also considered in
this chapter. Especially it is also highly relevant for the
advanced fabrication steps used for current nanoscale tran-
sistors, such as millisecond annealing, and lithography steps
employed to generate patterns far smaller than the wave-
length of the light used (e.g., 40 nm structures with 193 nm
wavelength double patterning immersion lithography, ac-
cording to the 2013 International Technology Roadmap for
Semiconductors (ITRS) [2]).

With both physical processes and device architectures be-
ing driven to their limits, systematic and stochastic variations
of the processes used can no more be neglected. The most
famous and obvious effect is random dopant fluctuations
(RDF) [3]: For example, for threshold voltage implants of
1012 cm−2, at mean 4 ions are implanted into a 20-nm-long
and 20-nm-wide transistor channel. Because ion implantation
is a statistical process, this means that the real number of ions
implanted into the channel fluctuates around the mean value
of 4. In turn, also the threshold voltage is distributed around
its nominal value. Such variations are critical for the overall
yield in semiconductor fabrication. A short overview of this
aspect is given at the end of this chapter.

The scope of process (including equipment) simulation
outlined above is very wide and diverse. In turn, the detailed
discussion of the large set of processes and models needed
to simulate them would require a dedicated and rather thick
book: One of the first reviews of the at that time emerging
area of process simulation was published in 1984 as one
chapter of a book on the simulation of semiconductor devices
in general [4]. Twenty years later, the book on just one
(very important) area within process simulation, the mod-
eling of dopant diffusion and activation, published by one
of the authors [5] extended to more than 500 pages. Since
then, the diversity and complexity of process and equipment
models has further grown, due to shrinking features and new
processes, materials, and physical effects having come into
play. Therefore, this chapter cannot give a comprehensive
review of all details. Rather, it intends to give the reader an
overview how the input data needed for device simulation,
in terms of geometries, active dopants, and strain, can be
generated by simulation and which merits and limitations the
approaches employed have. In view of this and of the limited
space available, we do not include epitaxy, silicidation, and
chemical-mechanical polishing CMP. Whereas the chapter
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generally refers to silicon as the semiconductor material
used, most models can also be applied or adapted to other
semiconducting materials. Generally, we refer to specific
literature for further details.

Another important aspect to consider is that the level and
effort of simulation has historically changed and will con-
tinue to do so: Whereas for the simulation of a transistor with
one micron channel length, the use of (kinetic) Monte Carlo
methods was neither necessary nor possible, a completely
different situation applies for sub-decananometer transistors,
where shrinking feature sizes both necessitate and partly en-
able more sophisticated simulation methods. Compared with
device simulation, ab initio approaches are hardly used for
process simulation, but nevertheless can support the devel-
opment of computationallymore efficient models. During the
last decades, simulation has developed from one-dimensional
process simulation with academic tools around 1980 [6–8]
through two-dimensional process simulation in the 80th and
90th [9, 10] to the current situation where three-dimensional
process simulation with commercial tools [11, 12] is the
industrial standard.Moreover, in the early days of technology
computer-aided design, the individual process steps were
mostly treated in isolation, in order to optimize the process
step in question, e.g., the annealing steps employed to create
high dopant activation while maintaining a shallow junction.
In the course of device scaling and more physical models
being developed, the interactions between the individual pro-
cess steps became ever more important. A common example
is that dopant diffusion and activation critically depend on the
distribution of point defects, which is influenced not only by
the annealing step itself but also by other preceding process
steps, such as ion implantation or thermal oxidation. In turn,
integrated simulation of whole process flows, or the most
important part of them, became mandatory. Concerning the
transfer of process results into device simulation, in some
cases simplistic assumption on device geometry and dopant
distributions were made to simplify device studies, e.g.,
using Gaussian dopant profiles or abrupt junctions. However,
such assumptions are sometimes physically not sound and
are especially for current nanoscale devices misleading and
likely invalidate the results of subsequent device simulations.
In turn, the result of the simulation of the whole process flow
must be transferred into the device simulator to be used, in
most cases necessitating major remeshing. Currently even
the gap between the device community and the lithography
community is closing, because transistors no more depend on
the footprint of the resist structures patterned in lithography
steps, but also on the impact of in general non-vertical edges
of the resist lines on subsequent etching and deposition pro-
cesses. This adds to the impact non-vertical nitride, poly, or
oxide masks on implanted profiles, which has been included
in state-of-the-art process simulation since long.

35.2 Simulation of Ion Implantation

For decades, analytical models have been the workhorse for
the simulation of ion implantation. Therefore this chapter
starts with this approach and describes it in some detail.

35.2.1 Analytical Models

Some fundamentals of the analytical description of ion im-
plantation can still be taken from the very early book men-
tioned above [4]. In general, analytical models use distribu-
tion functions f (x) which are normalized to unity and vanish
for very large (positive and negative) x:

f (−∞) = f (∞) = 0;
∫ ∞

−∞
f (x) dx = 1 (35.1)

The dopant distribution C(x) is then obtained by multi-
plying the distribution function f (x) with the implanted dose
ND. The part of the vertical distribution for x smaller than
zero does not stand for a dopant profile. Rather, it is assumed
that the integral across the negative axis corresponds to the
amount of particles which are backscattered from the wafer
surface during implantation [13].

The analytical models use range moments of the distribu-
tion f (x,y), both in vertical (x) and in lateral direction (y), and
also partly mixed moments in both directions. Here, x refers
to the direction parallel to the incident ion beam and y to the
direction perpendicular to this. The first moment in vertical
direction is the mean value of the depth in which the ion is
stopped, the so-called projected range:

Rp =
∫ ∞

−∞
x · f (x) dx (35.2)

whereas the further moments in vertical direction, the range
straggling �Rp, the skewness γ , and the kurtosis β are
centered around Rp:

�Rp =
√∫ ∞

−∞

(
x− Rp

)2
f (x) dx (35.3)

γ = 1

�R3
p

∫ ∞

−∞

(
x− Rp

)3
f (x) dx (35.4)

β = 1

�R4
p

∫ ∞

−∞

(
x− Rp

)4
f (x) dx (35.5)
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In case of two-dimensional distributions in x and y, f (x)
must be replaced by f (x,y), and the integration runs across x
and y.

Due to symmetry, the odd moments in lateral direction are
equal to zero. Important lateral moments are the lateral range
straggling �Rp,l and the lateral kurtosis β l:

�Rp,l =
∫∫ ∞

−∞
y2f (x, y) dx dy (35.6)

ıl = 1

�R4
p,l

∫∫ ∞

−∞
y4 f (x, y) dx dy (35.7)

Because the lateral shape of the implanted doping profile
generally depends on the depth x, it is also useful to introduce
mixed moments Xi Yj [14]:

XiYj = 1

�Rp
i · �Rpl

j

∫∫ ∞

−∞

(
x− Rp

)i
yj f (x, y) dx dy

(35.8)

Whereas again odd moments in y vanish, moments XiY2

describe the change of the profile width with depths. Mo-
ments XiY4 describe the change of the lateral kurtosis with
depth.

One-Dimensional Analytical Models
The analytical description of ion implantation is based on
distribution functions from statistics, which in the context
have no physical background except that ion implantation
is a statistical process and that dopant profiles have certain
shapes.

Simplest but sometimes still used is the Gaussian distribu-
tion, which approximates the vertical distribution as

C(x) = ND√
2π�Rp

exp

(
−

(
x− Rp

)2
2�R2

p

)
(35.9)

It is apparent that due to the non-negligible implantation
energy, the depth distribution of implanted ions is not sym-
metric, and not Gaussian. Generally, Pearson distributions
have been shown [15] to best describe vertical profiles of im-
planted ions. These are defined as solutions of the differential
equation:

df (x)

dx
= x− a

b0 + b1 · x+ b2 · x2 (35.10)

Here, the parameters a, b0, b1, and b2 depend on the
vertical range moments; see Eqs. (35.2), (35.3), (35.4), and
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Fig. 35.1 Domains of validity of type (Roman number) of Pearson
functions [4] depending on skewness and kurtosis

(35.5) [4]. Depending on the values of b0, b1, and b2, the
denominator of Eq. (35.10) may have singularities. In turn,
different types of Pearson distributions result, depending on
the values of skewness and kurtosis, from which b0, b1, and
b2 are calculated; see Fig. 35.1 [4].

For vertical distributions, mostly Pearson IV distributions
are suited best:

f (x) = K
[
−

{
b0 + b1

(
x− Rp

) + b2
(
x− Rp

)2]1
/
2b2 ·

exp

⎡
⎣−

⎛
⎝
b1

/
b2

+2·a√
4·b2·b0−b21

⎞
⎠ · arctan 2b2(x−Rp)+b1√

4 b2b0−b21

⎤
⎦

(35.11)

For vanishing skewness, symmetric Pearson II, Pearson
VII, and also Gaussian distributions (for a kurtosis of three)
result. Depending on the parameter values, these are used for
the lateral dopant distributions.

A very essential aspect in ion implantation is channeling:
A larger amount of the ions penetrate deeper into the target if
they are implanted along a low indexed crystalline direction.
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Generally, implantation is performed with a tilt angle of
about 7◦ to 10◦ [16], in order to minimize channeling. This
situation is described by the Pearson distributions of type IV
discussed above. For other (non-standard) tilt angles, range
parameters may need to be adapted, depending on the amount
of channeling occurring, or Monte Carlo methods should
be used, as outlined in Sect. 35.2.2. For implantation into
amorphous targets, where no channeling occurs, generally
the asymmetric Pearson I and PearsonVI distributions are ap-
plicable, with Pearson III and Pearson V as limiting cases. In
case of high-dose implantation into crystalline targets, amor-
phization occurs during the process. This situation can be
described by the weighted addition of a Pearson distribution
with parameters for a crystalline target and another Person
distribution with parameters for an amorphous target [17].

Analytical One-Dimensional Multilayer Models
Ion implantation is not restricted to the ideal cases where
the wafer can be divided into areas of bare silicon and areas
which are masked by a layer which is not penetrated by the
ions. Rather, ions are partly implanted through layers, and
mask edges have a finite height and are in general not parallel
to the implantation direction. In view of this, models are
needed to describe the implantation into multilayer targets.
In principle, such models would need to take the differences
in the electronic stopping and in the nuclear scattering of
the layers into account. Whereas the projected range of the
implanted ions is strongly influenced by both electronic
stopping and nuclear scattering, the range straggling is pri-
marily influenced by the nuclear scattering as the dominating
statistical process in ion implantation. In view of this, some
models were published which approximate the change of the
doping profile in silicon due to the influence of masking
layers by taking the differences of the projected ranges and/or
in the projected range straggling in the materials in question
into account. The first and well-known model [18] assumed
Gaussian profiles for both the mask (layer 1, with thickness
t) and the silicon (layer 2) below, using for both layers
the projected range and the projected range straggling in
question. In addition, the profile in the silicon layer was
shifted by

d = t ·
(
1 − �Rp2

�Rp1

)
(35.12)

The weaknesses of this model were its limitation to Gaus-
sian functions and that the ratio of the projected range strag-
glings did not sufficiently describe the changes in the stop-
ping powers and, in turn, the profile shift. A generalization of
this model [19] removed the restriction to Gaussian profiles:

C(x) = C1(x), x ≤ t (35.13)

C(x) = �Rp1

�Rp2
· C1

(
�Rp1

�Rp2
x− t

(
�Rp1

�Rp2
− 1

))
, x > t

(35.14)

However, it still used the modified profile of the first
layer also for the second layer and yields wrong results for
the limiting case of t → 0, where the profile in the second
layer should be C2 (x) and not �Rp1 /�Rp2 · C1 (�Rp1

/�Rp2 · x).
A model which well considers the original profile shape

in the material in question and the changes in projected
range due to masking layers is the Numerical Range Scaling
model (NRS) [19, 20]. Here, for all layers in the stack,
Pearson distributions are used with the range parameters for
the material in question. Then, for all but the first layer, the
layers on top are considered by shifting the profile based
on the thicknesses of the layers on top and the ratios of the
projected ranges.

For the implantation through a mask of thickness t (layer
1) into layer 2, this reads

C(x) = C1(x) for 0 ≤ x ≤ t (35.15)

C(x) = α · C2

(
x− t

(
1 − Rp2

Rp1

))
for x > t (35.16)

Here, α is a scaling factor after which the model is
named: Because no simplifications are made for the pro-
file shapes C1(x) and C2(x) (unlike, e.g., in the Ishiwara-
Furukawa model [18] where Gaussian distributions are as-
sumed), α cannot be given in analytical form but results from
numerical integration, to ensure thatC(x) is normalized to the
total implanted dose.

A similar scaling of the ranges was also suggested in the
LAYER model [21], however restricted to Gaussian profiles,
for which dose conservation could be achieved by an analyti-
cal scaling factor. In the LAYERmodel, for the distribution in
the second layer, a joint half Gaussian distribution was used,
which assumes different range stragglings before and after
its maximum, both depending on the projected range in the
material of the first layer and projected range stragglings in
the materials of the first and the second layer. By comparison
with Monte Carlo simulations, it was shown that the range
straggling in the second layer does not match especially for
very thin or very thick masks [22].

As an extension of the NRS model, in the Improved
Numerical Range Scaling model (NRS’) [20], the projected
range stragglings are corrected based on the layer thickness
and the ratios of the projected range stragglings and the
projected ranges:
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�R′
p2 = �Rp2 + t

(
�Rp1

Rp1
− �Rp2

Rp2

)
(35.17)

Figure 35.2 shows the comparison between the Numerical
Range Scaling model (NRS) and the Improved Numeri-
cal Range Scaling model (NRS’) and measurements using
secondary-ion mass spectroscopy (SIMS) for the implan-
tation of boron with an energy of 100 keV and a dose
of 1015 cm−2 through a silicon nitride layer into silicon.
Whereas the NRS model already well describes the shift of
the dopant profile in the silicon due to the different stopping
power of the nitride layer, NRS’ also yields a good descrip-
tion of the profile width in the silicon. However, it still fails
to predict the change of the width in case of strange material
combinations, such as the implantation of lithium into a stack
of cadmium on gold. These are better described by a further
refinement of the NRS’ model, which was motivated by
some aspects of the LAYER model and resulted in a further
modified range straggling in the second layer [22]:

�R′
p2 = �Rp2 + t

(
�Rp1

Rp1
· Rp2 + �Rp2

Rp1 + �Rp1
− �Rp2

Rp2

)

(35.18)

The multilayer models outlined above in some way ap-
proximate the shift of the doping profile in the buried layers
due to the different stopping power of the masking layer
or layers and partly also the changes of the profile width.

However, during ion implantation backscattering plays an
important role. In result, the doping profile in a masking
layer may also be influenced by a layer situated below. This
holds especially in case of a light masking layer on top of a
heavy substrate, and if the maximum of the doping profile is
in the second layer, and compared with the projected range
not too far from the interface. Based on considerations for
the reflection of implanted ions at interfaces and in thin
films, a simple model for the reflection at the interface
between layers was developed, which is in the following
outlined for a masking layer on top of a substrate. Here, the
backscattered particles are described by half of a Gaussian
distribution, located in the masking layer with its maximum
at the interface. The reflected dose equals to a reflection
coefficient times the amount of dopants passing the interface,
and the projected range straggling of the reflected particles
depends on an approximation of the maximum depth of
the implantation profile in the masking material, the mask
thickness, the implantation energy, and the mean particle
energy at the interface. Good agreement with Monte Carlo
simulations has been reported even for extreme combinations
of implanted ions such as implantation of Li into a stack of
silicon on gold [23].

Another effect which is at the edge of the possibilities of
an analytical multilayer model is the treatment of channeling.
As mentioned above, for implantation into a single semi-
infinite layer, the double Pearson approach outlined above
yields a good description. In principle, this can be extended
by simply applying one of the multilayer models outlined

B → Si3N4/Si, 100 keV, 1015 cm–2 B → Si3N4/Si, 100 keV, 1015 cm–2 
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Fig. 35.3 Basic two-dimensional sketch for point response function for titled ion implantation. (a) Tilted implantation in standard coordinate
system; (b) equivalent situation of vertical implantation into tilted wafer

above to both the crystalline and the amorphous Pearson dis-
tribution. However, already for the Numerical Range Scaling
model explained above, a reasonable agreement with SIMS
measurements was reported, and the benefit of applying
the double Pearson approach together with NRS was rather
limited [22].

In conclusion, in many cases Pearson distributions com-
bined with the Numerical Range Scaling model (NRS) or
better the Improved Numerical Range Scaling model (NRS’)
yield good approximations for one-dimensional dopant pro-
files. This depends of course on the quality of the range para-
meters, which must be provided upfront from other sources,
as outlined below. The NRS model is also partly being used
in commercial process simulation programs [11], however
without the modification of the projected range straggling
included in the NRS’ model. The importance of the use of
appropriate model parameters (range moments) is among
others highlighted by the availability of different data sets,
linking to earlier simulation programs, in current tools. Fur-
ther refinements of one-dimensional analytical models for
ion implantation appeared not to be very useful, due to the
growing complexity of description and the need to provide
additional parameters whichwould be difficult to obtain. This
would diminish the advantages of analytical implantation
models and can be considered as reason why the state-of-the-
art in one-dimensional implantation models is about stable
since many years.

Multidimensional Implantation Models
The basic approach in all multidimensional implantation
models is that first a point response function g(η, ζ ) is cal-

culated which describes for each point η in two or three
dimensions the normalized distribution of the ions implanted
just at one point ζ of the wafer surface. Here, it is necessary to
take into considerations that the implantation is usually tilted
(by about 7◦) comparedwith the wafer normal and rotated out
of a two-dimensional simulation plain. This is equivalent to
tilting and rotating the wafer geometry by the opposite angles
and then considering vertical implantation into this modified
structure; see Fig. 35.3. Therefore, in the following “vertical”
means in direction of the implantation beam, and “lateral”
means perpendicular to the implantation beam.

The two- or three-dimensional dopant distribution then
results from the integration across all incident ions beams and
multiplication with the implanted dose ND:

C (η) = ND ·
∫
g(η, ζ ) dζ (35.19)

The main topic for multidimensional implantation mod-
els is then how to get the point response functions g. The
methods range from simplistic analytical assumptions to
extracting the point response functions from Monte Carlo
simulations; see the corresponding subsection below. Sim-
ilar to the one-dimensional (vertical) distribution described
above, also g must be normalized to unity when integrating
across the full two- or three-dimensional space.

The first model published dealt with the implantation
through an ideal mask window, where vertical mask edges
are situated at –a and a. Strictly speaking the mask should
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be infinitely thin (to avoid scattering of ions out of the mask
into the mask window), but nevertheless the mask should
completely stop ions implanted into the mask. Gaussian
shapes of the point response function both in vertical and
lateral direction (x and y) were assumed. For implantation at
a point (0,y’), this reads

g (x, y) = ND√
2π�Rp

exp

(
−

(
x− Rp

)2
2�R2

p

)
· 1√

2π�Rpl

exp

(
−

(
y− y′

)2
2�R2

pl

)

(35.20)

and the convolution in Eq. (35.19) results in the two-
dimensional dopant distribution [24].

C (x, y) =
∫
g

(
x, y− y′

)
dy′

= ND√
2π�Rp

exp

(
−

(
x− Rp

)2
2 �R2

p

)
·

1

2

[
erfc

(
y− a√
2�Rpl

)
− erfc

(
y+ a√
2�Rpl

)]

(35.21)

where erfc is the complementary error function. Approaches
like Eq. (35.21) are appropriate in case of device simulation
studies which start from analytical dopant profiles. For dif-
ferent mask windows, simply the integration limits need to be
changed accordingly. The simplest assumption for implanted
and then annealed dopant profiles is to replace the standard
deviations �Rp and �Rpl by

√
�R2

p + 2Dt and
√

�R2
pl + 2Dt (35.22)

respectively, because after this replacement, both the point
response function of Eq. (35.20) and in turn the dopant profile
in Eq. (35.21) satisfy the linear diffusion equation valid for
intrinsic diffusion:

∂C

∂t
= D�C (35.23)

It should be kept in mind that both Gaussian point re-
sponse functions for ion implantation and linear diffusion
are very crude assumptions. However, assuming Gaussian
implantation profiles also in lateral direction, without carry-
ing out the convolution which leads to the complementary
error functions erfc in Eq. (35.21), would lead to unphysical
results and must be strictly avoided also as input for device
simulation.

Two aspects are essential for the generalization of the
point response function approach given in Eq. (35.19): First,
g(η, ζ) depends for each entry point ζ on the local material
and on the masking layers on top. Second, it is unphys-
ical to assume that the lateral profile shape, e.g., for the
implantation at just one point of the wafer surface, stays
constant, independent of the depth: Heavy ions like arsenic
are scattered less than light ions such as boron. In result
the doping profile somewhat broadens with depth for heavy
ions like arsenic, whereas it gets narrower for boron which
has a higher likelihood to be backscattered toward the wafer
surface. For easier presentation, in the following the two-
dimensional case is discussed, whereas the extension to three
dimensions is obvious. These effects can be considered by
assuming a convolution between a vertical multilayer profile
f (x,y’) as discussed in the preceding subsection and a lateral
profile g(x’,y–y’) which depends on the depth x’:

C (x, y) =
∫
f

(
x, y′

)
g

(
x′, y− y′

)
dy′ (35.24)

Since the vertical distribution f (x,y’) is calculated at the
lateral coordinate y’, the masking effects of the layers through
which the ion has passed is taken into consideration. For the
lateral distribution g(x’,y–y’), depending on the range para-
meters in question, a symmetric Pearson distribution should
be used [25]. The vertical coordinate x’ can either be equal
to x, as in the original publication, or be equal to the entry
point into the target for the lateral coordinate y’, which is
more complicated to implement. The usage of mixed models
Xi Yj according to Eq. (35.8) allows to well describe the depth
dependence of the lateral projected range [26] and the lateral
kurtosis [27]. In the latter paper, a mix of a parabolic and an
exponential approach was given for the depth dependence of
the square of the lateral range straggling, whereas an expo-
nential approach was presented for the depth dependence of
the lateral kurtosis, in both cases depending on the vertical,
the lateral, and the mixed range moments introduced in
Eqs. (35.2), (35.3), (35.4), (35.5), (35.6), (35.7), and (35.8).
Figure 35.4 shows as an example the comparison of the
analytical model with Monte Carlo simulations, assuming
depth-independent lateral profiles, depth-dependent lateral
straggling, and depth-dependent lateral straggling and lateral
kurtosis, respectively. In this latter case, the analytical model
and the Monte Carlo simulations agree within the statistical
error of the Monte Carlo results.

Model Parameters for Analytical Models
As mentioned above, analytical models need suitable ver-
tical, lateral, and partly also mixed range moments. These
must be provided upfront as tables depending on the combi-
nation of ion and target material, implantation energy, and
potentially dose. For the latter two, a suitable number of
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Fig. 35.4 Comparison between analytical model (broken lines) and
Monte Carlo simulation of implantation of arsenic at an energy of
100 keV and a dose of 1015 cm−2 near an ideal mask edge. Equicon-
centration lines of 1020 cm−3, 1019 cm−3, 1018 cm−3, and 1017 cm−3

shown. (a) Standard model with�Rpl and ßl independent of depth x; (b)
�Rpl depending on x; (c) �Rpl and ßl depending on x, leading to better
agreement for low concentrations

discrete values is used. Whereas state-of-the-art characteri-
zation techniques such as SIMS enable the accurate measure-
ment of vertical range profiles and, in turn, the extraction
of appropriate vertical range moments, the possibilities for
extraction of lateral and especially of mixed range moments
from experiment are limited, and the experimental effort
becomes excessive. Alternatively, for amorphous targets, all
these range moments may be efficiently and accurately ex-
tracted from Boltzmann transport calculations, where this
equation is not solved directly but its moments are calcu-
lated including their dependence on the implantation energy,
starting from an infinitesimally small value. This approach
was used in the RAMM code [14]. The range moments
both for amorphous and for crystalline targets can also be
extracted from two-dimensional Monte Carlo simulations,
as described below. Here, a sufficient number of particle
trajectories must be traced to yield sufficient accuracy of the
moments while keeping computation time per implantation
energy acceptable for the extraction of tables with various
ion/target combinations and implantation energies. Both for
the use of Boltzmann transport andMonte Carlo simulations,
the use of appropriate physical models for electronic stopping
and nuclear scattering, as outlined below, is mandatory. It
was demonstrated in the literature [28] that for amorphous
targets (vertical), range moments extracted from Boltzmann
transport calculations with RAMM and from Monte Carlo
simulations using the well-known TRIM code [29] agree well
with experimental values obtained by SIMS measurements.

Analytical Models for Intrinsic Point Defects
Because subsequent annealing steps are critically influenced
by the distribution of intrinsic point defects (especially va-
cancies and interstitials of crystal atoms), including those
generated during ion implantation, there is a need to also
include them in the analytical models for ion implantation.
The problem is, however, that the capabilities to measure the
distributions of intrinsic point defects are by far not sufficient
to extract range moments. In turn, either very simple models
are used for point defects or the required parameters have to
be extracted from Monte Carlo simulations, as described be-
low. It is also essential to take into account that point defects
diffuse very fast and neighboring vacancies and interstitial
atoms may partly recombine already during the implantation
itself. In turn, in the “+1 model” as the simplest approach, it
is assumed that one interstitial and no vacancies are generated
per (and at the same position as the) ion implanted.

An established model which is also used in commercial
simulators [11] was published already in 1988 [30]. Here, no
difference is made between vacancies and interstitials. For
the implantation of light ions such as boron and phosphorus,
an exponential and a Gaussian function are joined at a po-
sition x0 (naming of variables adapted from [30]), with the
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parameters adjusted to assure continuity of the distribution
and of its derivative at x0:

(x) =
⎧⎨
⎩

C1 · exp
(
x
a1

)
, x ≤ x0

C2 · exp
[
− (x−a2)2

2·a32
]
, x > x0

(35.25)

For heavy ions such as arsenic or antimony, the expo-
nential and the Gaussian distribution are interchanged. The
parameters C1 and C2 depend on a1, a2, a3, the implantation
dose, and the number of point defects generated per ion. In
the literature the parameters a1, a2, and a3 were extracted
from Monte Carlo simulations, resulting in good agreement
between the analytical defect profile and Monte Carlo sim-
ulations for the examples presented there. In addition, the
lateral defect profile from Monte Carlo simulation could be
fitted well with a Gaussian distribution.

For a further brief description of the assumptions used
as initial condition for the simulation of post-implantation
annealing, see Sect. 35.3.6.

35.2.2 Monte Carlo Simulation

For the Monte Carlo simulation of ion implantation, a large
number of ion trajectories is traced until the implanted ions
have been stopped, which means that their energy has been
reduced to a negligible value. In case of relatively high
doses and large structures (e.g., 100 nm scale, as shown in
Fig. 35.4), the number of ion trajectories calculated is orders
of magnitude smaller that the number of the particles im-
planted in reality. In consequence, in the simulations pseudo-
particles are considered, which have the same properties as
the real particles but each represent a large number of them.

The ion trajectories are governed by the energy transfer
to the electron gas in the target, which is modeled by the
so-called electronic stopping Se and by the scattering at the
(shielded) charges of the crystal lattice, the so-called nuclear
scattering Sn:

Sn,e = − 1

N

(
dE

dx

)
n,e

(35.26)

The first general assumption made is the so-called binary
collision approximation, in which only two-body problems
are considered, where the impinging ion is at a time only
scattered by the potential of one target atom. Because the
masses of the implanted ions and of the target atoms are
comparable (none of these can be neglected compared with
the other), the scattering process is usually calculated not in
the laboratory system but in the center-of-mass system. The
relationship between implantation energy, masses, and scat-
tering angles in both the laboratory system and the center-of-

mass system is given in standard textbooks on mechanics or
in standard literature on implantation [31]. First, the reduced
mass mc and the energy Ec of the projectile in the center-of-
mass system have to be calculated from its mass m1, energy
E0, and velocity v0 in the laboratory system and the mass m2

of the target atom:

mc = m1 · m2

m1 + m2
;Ec = 1

2
mc · v0

2 (35.27)

The final results for the scattering angle in the center-of-
mass system,�, the scattering angle in the laboratory system,
ϑ ; and energy transfer from the implanted ion to the target ion
in the laboratory system are given by

θ = π − 2
∫ ∞

rmin

p dr

r2 ·
√
1 − V(r)

Ec
− p2

r2

(35.28)

tan ϑ = m2 sin �

m1 + m2 cos �
(35.29)

T = 4 m1m2

(m1 + m2)
2 E0sin2

(
�

2

)
(35.30)

Here, r is the distance between implanted ion and target
atom during scattering, rmin its minimum value, for which
the denominator in Eq. (35.28) equals zero. p is the impact
parameter: the minimum distance between the implanted ion
and the target in case the ion would not be scattered.

Physical Models
Besides themechanical problem summarized above, physical
models are needed for both the electronic stopping Se and the
nuclear scattering Sn. Because these should be applicable for
arbitrary combinations of ions and targets, it is advisable to
develop universal models which hold for all combinations.
This is generally done by introducing an interatomic screen-
ing function φ(r) [31]:

φ(r) = V(r)

Z1Z2e2
/
r

(35.31)

where the numerator is the actual shielded coulomb potential
of the target ion and the denominator is the unshielded poten-
tial of the implanted ion with charge Z1 e and the target atom
with charge Z2 e. As discussed in literature [31], the so-called
universal screening potential φU yields good interatomic
potentials, with the Bohr radius a0 of about 0.529 Å as the
length scale:
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φU = 0.1818 e−3.2x + 0.5099 e−0.9423x + 0.2802 e−0.4029x

+ 0.02817 e−0.2016x

(35.32)

x = r

au
au = 0.8854 a0

Z
2/
3

1 + Z
2/
3

2

(35.33)

For the electronic stopping Se, no universal equation is
available. Calculation starts from a fit of the stopping power
for protons and includes several scaling and correction steps
[31].

Implementation
Current Monte Carlo (MC) simulation programs for ion im-
plantation can be categorized according to the way the target
is treated, either as amorphous or crystalline, and whether
modifications of the target during implantation are consid-
ered or not. Furthermore, several approaches are available
to speed up Monte Carlo simulations. Well-known historical
examples for MC codes are the amorphous Monte Carlo
code TRIM [29] and the crystalline Monte Carlo code MAR-
LOWE [32]. Current MC codes are numerous, including
implementations provided by software houses.

Amorphous Monte Carlo simulation: In the simplest case,
the target is treated as amorphous, and the effect of modifica-
tions during the implantation process on the particle trajecto-
ries is neglected. In this case, the true positions of the target
atoms are not considered. Employing the binary collision
approximation mentioned above, a straight ion trajectory is
assumed between the individual scattering effects, which are
separated by an assumed mean free path length L. Because
most scattering processes occur at impact parameters p which
are that large that the scattering angles ϑ (and the transferred
energy T) can be neglected, for L a value significantly larger
than the interatomic spacing of the (neglected) crystal lattice
can be chosen. In parallel, the maximum impact parameter
pmax to be considered is limited. For consistent simulation,
the cylinder with pmax as radius and L as length must contain
one target atom:

π · p2max · L = 1

N
(35.34)

where N is the density of target atoms. Besides that Eq.
(35.34) must be fulfilled, the choice of L and pmax depends
on the Monte Carlo simulator in question. The actual value
of p2 is then selected at random between 0 (head-on collision
with scattering angle 180◦) and pmax

2. The scattering angle
ϑ and the energy loss T of the ion in the laboratory system
are calculated according to Eqs. (35.27), (35.28), (35.29),

(35.30), (35.31), (35.32), and (35.33). Between the individual
scattering events, the ion energy is reduced by integration of
the electronic stopping Se along the straight path between the
scattering events. An approximation for the number of point
defects generated is frequently made based on the Kinchin-
Pease formula [33, 30], according to which this number is
proportional to the ratio of the transferred energy T (or a
fraction of this) and the energy needed to generate a Frenkel
pair (crystal atom leaving its site and generating a pair of
vacancy and interstitial).

Whereas the analytical simulation of ion implantation is
in general computationally less expensive, the use of amor-
phous Monte Carlo simulations is advisable if no suitable
range parameters are available, or especially if implanted
ions cross interfaces between different layers (including free
space) beyond the limitations of the multilayer or multidi-
mensional analytical models summarized above. A common
situationwhere this applies is ion implantation into the neigh-
borhood of a trench. In this case, a significant fraction of the
implanted ions is scattered out of the material and into the
trench, causing doping of the opposite sidewall of the trench.
An example is given in Fig. 35.5.

Crystalline Monte Carlo simulation: The inclusion of the
crystal structure increases the program complexity and the
computational effort. In essence, based on the current posi-
tion and direction of flight of the ion, the next neighboring
crystal atom is located, or the next few neighboring crystal
atoms are identified. In the first case, the binary collision
approximation can be used directly, calculating the impact
parameter p and subsequently the transferred energy T and
the scattering angle ϑ . In the second case in principle, the
scattering of an ion in the superposition of two or more
screened potentials φi would need to be calculated, for which
in general no analytical formula is available. In turn, this
problem is approximated by applying the binary collision
approximation separately to each of the scattering processes
identified. The details how to extract the final energy transfer
T and the scattering angle ϑ for these individual scattering
events depend on the simulation code in question. Random
parameters are mainly the impact parameter of the first
collision of the incident ion with a crystal atom and partly
thermal vibrations of the target atoms.

The benefit of the crystalline Monte Carlo simulation, be-
yond the amorphous Monte Carlo simulation outlined above,
is its capability to simulate channeling. For standard implan-
tation into crystalline silicon, where tilt and rotation angles
are selected to minimize residual channeling, also analytical
models can provide appropriate distributions of implanted
ions, provided the models summarized at the beginning of
this section are used with suitable range parameters for
the combination of implanted ion and crystalline target in
question. Such range parameters can be extracted from point
response functions obtained from crystalline Monte Carlo



1270 J. Lorenz and P. Pichler

Boron (cm–3) Boron (cm–3)

1.426 1020 1.250 1020

1.768 1019

2.500 1018

3.535 1017

5.000 1016

7.071 1015

1.000 1015

1.973 1019

2.729 1018

3.776 1017

5.224 1016

7.228 1015

1.000 1015

a b

Fig. 35.5 Simulation of implantation of boron at an energy of 20 keV and a dose of 1015 cm−2 into amorphous silicon with a trench. (a) Analytical
simulation; (b) amorphous Monte Carlo simulation. The doping of the sidewall for the trench cannot be described with analytical methods

simulations or partly from measurements of dopant profiles.
On the other hand, advanced materials such as SiC partly
show pronounced channeling effects which moreover depend
on covering layers of oxide, as illustrated in Fig. 35.6 [34].
The doping spikes occurring here cannot be reasonably de-
scribed by analytical models.

Dynamic Monte Carlo simulation: The next extension is
the inclusion of target modifications which occur when the
implanted ion kicks a crystal atom (or an ion implanted
before) from its current position. This may even generate
cascades of secondary particles. Here, an atom leaves its po-
sition in case the energy T transferred to it exceeds a critical
value. In consequence, the trajectory of this knock-on particle
must be simulated with the same approach as the trajectory
of the implanted ion. This increases both the amount of data
to be stored and the computational effort. The benefit is that
dynamic effects like target modification (e.g., sputtering and
amorphization) and the dose dependence of channeling are
as well included in the simulations as the extraction of the
distributions of the vacancies and interstitials generated.

Statistics: Generally, Monte Carlo simulations require the
calculation of a large number of ion trajectories, depending
on the dimensionality of the problem and on the size of the
simulation domain. For example, for the three-dimensional
simulation of source-drain implantation about 100,000 ion
trajectories should be calculated to achieve a “smooth” dop-
ing profile without artificial fluctuations, resulting in compu-
tation times of minutes to hours on a standard PC, depending

on ion mass and energy. This situation changes if the simu-
lation domain and the implantation dose are small enough to
allow the simulation of the trajectory of each implanted ion:
Here, the fluctuations are physically meaningful and part of
the results required.

The statistics of Monte Carlo simulations can easily be
improved in either of two ways: The first approach is to just
calculate a point response function for one surface point and
then to copy this on a suitable mesh of surface points, rather
similar to the calculation and use of analytical point response
functions [35]. Second, in the trajectory split approach [36],
the pseudo-particles are split into two or more particles as
soon as they enter areas with low concentration of implanted
species. The pseudo-particles resulting from these split then
represent an accordingly smaller number of real particles
and are in turn considered with a lower statistical weight.
Their further trajectories are then calculated using random
numbers which are independent between these trajectories.
This splitting procedure may be repeated several times for
decreasing concentrations of the implanted ions. In conse-
quence, additional calculations are only carried out for the
relatively rare parts of the trajectories which are situated in
low-concentration areas.

Monte Carlo simulation can also be applied to describe
novel processes such as plasma doping (PLAD) (also named
plasma immersion ion implantation), where charged ions are
extracted from a plasma, in order to generate shallow doping
profiles with high ion currents. Besides source-drain profiles,
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Fig. 35.6 Monte-Carlo simulation of implantation of aluminum at an energy of 140 keV and a dose of 1013 cm−2 into 4H SiC covered with a
30 nm thick oxide layer: (a) 2D point response function and (b) 1D vertical profile [34]

PLAD can also be used to generate surface-conformal doping
of trenches or FinFETs. For the simulation of PLAD, the
energetic distribution of ions can be extracted from physical
considerations on the plasma sheath [37] and finally be
approximated by analytical expressions, as, e.g., in [38]. This
distribution can then be fed into Monte Carlo simulators as
described above, which are then used to calculate the spatial
distribution of the implanted ions.

35.3 Simulation of Diffusion
and Activation

During any process steps at elevated temperatures, the ther-
mally induced movement of dopant atoms and other impuri-
ties may lead to a noticeable broadening of their distribution
as well as to quasi-chemical reactions with other atoms of
the same or other impurity species or with intrinsic point
defects. For dopants, the latter typically manifests itself in an
electrical activation which is lower than the respective total
concentration. Annealing processes at elevated temperatures
are used intentionally, e.g., to drive-in dopants deeply into
power semiconductors or to electrically activate implanted
dopants and to anneal the damage created by the ion implan-

tation processes. However, as indicated already, diffusion and
reduced electrical activation may originate from any techno-
logical process at high-enough temperatures whether during
front-end or back-end processing. In the following, the most
important concepts associated with diffusion phenomena in
semiconductors are outlined with an emphasis on silicon. For
a more comprehensive presentation, the interested reader is
referred to reviews such as [5, 39, 40, 41].

35.3.1 Intrinsic Point Defects and Impurities

In crystalline semiconductor materials like silicon, germa-
nium, or SiGe alloys, most of the atoms of which the semi-
conductor consists are arranged in the form of a diamond
structure. In other semiconductors like SiC, the atoms may
be arranged in cubic or hexagonal structures. Only few atoms
may be missing from their lattice sites or can be found
elsewhere. Since such defective atomic arrangements affect
only their nearest neighbors, they are referred to as “point
defects.” Point defects comprising only atoms of which the
semiconductor consists of are called “intrinsic point defects.”
Empty lattice sites, as shown schematically in Fig. 35.7a,
are referred to as vacancies. For silicon, even close to the
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Fig. 35.7 Schematic representation of point defects in elemental semi-
conductors: (a) Vacancy, (b) divacancy, (c) self-interstitial, (d) intersti-
tialcy, (e) interstitial impurity, (f) substitutional impurity, (g) impurity-
vacancy pair, (h) impurity-self-interstitial pair. (after [5])

melting point, less than one out of 107 silicon atoms are
expected to be missing. Vacancies on neighboring sites (see
Fig. 35.7b) are called divacancies. The counterpart of vacan-
cies are semiconductor atoms which either occupy as self-
interstitials sites between the lattice atoms as in Fig. 35.7c
or share with another semiconductor atom a lattice site as in
Fig. 35.7d. Such an atomic configuration is usually referred
to as interstitialcy, split-interstitial, or dumb-bell interstitial.
Similar to vacancies, less than one out of 107 silicon atoms
are expected to occupy such interstitial positions even close
to the melting point.

Atoms differing from the semiconductor atoms are called
impurities. Some of them like oxygen or hydrogen occupy
preferentially interstitial sites as indicated in Fig. 35.7e. By
far the most important impurities for the Group-IV semi-
conductors (Si, Ge, SiGe, SiC, etc.) are dopant atoms from
the Groups III and V of the periodic system. They prefer-
entially substitute the lattice atoms as shown schematically
in Fig. 35.7f. Dopants from Group III require an additional
electron to satisfy the four valence bonds to the neighboring
silicon atoms which leads to the formation of a hole in the va-
lence band. Based on their ability to “accept” an electron, the
Group III atoms are referred to as “acceptors.” Substitutional
Group V atoms, on the other hand, have one electron too
many and can donate it to the conduction band. Accordingly,
they are referred to as “donors.” In addition to occupying
interstitial and substitutional sites, impurities may be found
in pairs with vacancies as in Fig. 35.7f or with silicon atoms
sharing a regular lattice site as in Fig. 35.7h.

Vacancies can be thought to result from taking one of the
lattice atoms from its site and dragging it to a kink at the sur-
face of the semiconductor. Similarly, the intrinsic interstitial
defects can be thought to result from dragging semiconductor
atoms from a kink at the surface to the respective site. In

addition, both can be created as pairs by dragging a lattice
atom to an interstitial position and vice versa annihilated
by dragging an interstitial atom to a vacancy. The latter
processes are usually referred to as bulk generation and
recombination of intrinsic point defects.

The probability to find intrinsic point defects in a specific
metastable atomic configuration reflects the respective free
energy of formationGf

X. Accordingly, it is not “either-or” but
rather “as well as” to find intrinsic point defects in the one
or the other configuration. Because of that, it makes hardly
sense to discern self-interstitials and interstitialcies, and all
such configurations will be referred to as self-interstitials
in the following. Besides the point-like configurations, va-
cancies and self-interstitials were assumed to exist in an
extended state, i.e., that one atom in an overall tetrahedrally
coordinated region comprising some 10–20 silicon atoms is
missing or too much. In the most recent work of Voronkov
and Falster [42], as an example, vacancies in three different
configurations are postulated to coexist to explain amultitude
of seemingly contradictory phenomena.

For the impurity complexes, the situation depends on how
the impurities are introduced. For impurities in a closed
system, the relative concentrations of the particular atomic
configurations need to sum up to the total concentration. For
systems in which dopants can enter from a reservoir, their
formation energy in the semiconductor will determine the
solubility concentration of the impurity in the semiconductor;
see Sect. 35.3.8.

Given the concentration of possible sites CXS at which
a specific defect can be realized and the number �X of
internal degrees of freedom of the defect at a specific site,
the concentration of a defect X in steady state is given by

Ceq
X = �X CXS exp

(
−Gf

X

kT

)
(35.35)

with k standing for Boltzmann’s constant and T for the
absolute temperature. For charged defects, Gf will depend
on the Fermi level. Deviations of the Fermi level can be ex-
pected for dopant concentrations which exceed significantly
the charge carrier concentration ni which would be found
under intrinsic conditions, i.e., without dopants. Assuming
Boltzmann statistics to be a valid approximation at elevated
temperatures, the concentration of a defect in a particular
charge state can be expressed in terms of the concentration
CX0 of the neutral charge state and the electron concentration
n as.

CX− = CX0δX−
(
n
ni

)
CX= = CX0δX=

(
n
ni

)2

CX+ = CX0δX+
( ni
n

)
CX++ = CX0δX++

( ni
n

)2 (35.36)

Therein, the charge states have been indicated by –, =,
0, +, and ++ for singly negative, double negative, neutral,
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positive, and doubly positive. The respective δX denote the
relative concentration under intrinsic conditions.

35.3.2 Basic Diffusion and Reaction
Mechanisms

Simple point defects diffuse by jumping from one energeti-
cally favorable site to a neighboring one. In case of simple
interstitial impurities as depicted schematically in Fig. 35.7e
or h, it is the migrating atom itself which performs the jumps.
For the self-interstitial configurations in Fig. 35.7c, d, it could
also be always the same silicon atom that moves from site to
site. However, it could also be that a self-interstitial assumes
the site of a neighboring lattice atom and displaces it to the
interstitial site. Finally, the vacancies shown in Fig. 35.7a
move when a neighboring semiconductor atom jumps into
the vacant lattice site. As long as such point defects do not
interact and as long as no forces like electric fields have to
be considered, the evolution of their concentration can be
described by Fick’s laws. Fick’s first law

JX = −DX gradCX (35.37)

establishes a purely phenomenological definition of the diffu-
sion coefficientDX of a defect X as a proportionality constant
between the net number of defects passing a unit area per
time, the diffusion flux JX, and the gradient of the defect
concentration CX. Fick’s second law

∂CX

∂t
= div (−JX) = div (DX gradCX) (35.38)

is a combination of Fick’s first law with a continuity equation
and constitutes a diffusion equation that can be used to
calculate the change in concentration due to diffusion as
a function of time t. The concept of a concentration and
a gradient obviously requires a certain number of defects
per unit volume considered. A complementary view can
be obtained by observing the movement of a single defect
through the crystal. Given the projection of the mean jump
distance L between two stable configurations on one of the
axes of the coordinate system, the mean square displacement
of the defect from its origin

〈
DN

2〉 = NL2 (35.39)

increases linearly with the number N of its jumps. As shown
by Einstein more than a century ago, the mean square dis-
placement can be used as an atomistic definition of the
diffusion coefficient D in (35.37) and (35.38) in the form

D =
〈
DN

2
〉

2t
= 

L2

2
(35.40)

with  = N/t standing for the number of jumps per time.
In general, the diffusion coefficient is a tensor. However, for
diamond structures like silicon or germanium, it reduces to a
scalar. Transitions between energetically favorable positions
require that an energetically less favorable saddle point is
assumed and overcome. Diffusive jumps usually require the
motion of more atoms than just the moving one. Accordingly,
not only the increase in enthalpyHm at the saddle point has to
be considered but also the different entropy Sm of the system.
Altogether, the jump frequency is usually expressed as

 = 0 exp
(
Sm

k

)
exp

(
−Hm

kT

)
(35.41)

with the attempt frequency 0. Combining (35.40) and
(35.41), diffusion coefficients can be written in the form
of an Arrhenius law

D = D0 exp
(

−Hm

kT

)
(35.42)

where the prefactor D0 comprises all temperature-
independent terms. The diffusion coefficient of interstitial
oxygen in silicon, as an example, follows this relationship
from cryogenic temperatures to the melting point for more
than 13 decades [43]. Depending on the species, usual values
for the activation energyHm range from 0 to 5 eV for silicon.
To include the effects of mechanical stress on the diffusion
coefficient, its temperature dependence (35.42) is completed
for hydrostatic pressures P in the form

D = DP=0 exp
(

−P�V

kT

)
(35.43)

introducing the activation volume �V. Positive numbers for
the activation volume mean retarded diffusion for compres-
sive stress and enhanced diffusion for tensile stress and
vice versa for negative activation volumes. In magnitude,
activation volumes are expected to range up to the volume
associated with a lattice atom. For non-hydrostatic pressures,
a tensor form has to be adopted in which the hydrostatic
pressure is replaced by the strain tensor and the activation
volume by a strain-activation tensor.

As indicated already above, defects are expected to coexist
in a variety of charge states. In case of dopant concentrations
exceeding the intrinsic concentration of charge carriers ni,
an electric field will be established in the semiconductor
which exerts a force on the charged defects. Accordingly, the
diffusive jumps will be biased since the defects gain or lose
energy when they move in the field from their energetically
favored site to the saddle point. To include such effects,
Fick’s first law is adapted in the form

JX = −DX gradCX − zXμXCXE (35.44)
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where the charge state z has been defined here as the number
of negative charges associated with the charge state (i.e., +1
for a singly negatively charged defect or −2 for a doubly
positively charged defect). It should be noted, however, that
an association of the charge state with the number of positive
charges is just as common in the literature. The mobility μ

was already shown by Einstein to be related to the diffusion
coefficient by

D/μ = kT/q (35.45)

with q standing for the elementary charge. Expressing the
electric field as the negative gradient of the electrostatic
potential ψ , (35.44) takes the familiar form

JX = −DX gradCX + zXDXCX grad
(

ψ

UT

)
(35.46)

with the thermal voltage UT introduced for kT/q.
With defects co-existing in a number of charge states,

any charge state contributes to the diffusion process with
a different diffusion coefficient. Adding the contributions
of the individual charge states to total concentrations and
fluxes, one arrives again at the diffusion Eqs. (35.38) and
(35.46). The diffusion coefficients and charge states in these
equations are Fermi-level-dependent mean values weighted
with the relative concentration of the respective charge state.
However, particularly for vacancies and self-interstitials, the
experimental knowledge is far from allowing to establish
such dependences, and one pragmatically uses Fermi-level-
independent values.

The situation becomes more complicated in case of
dopants and other impurities which preferentially reside
on substitutional sites as indicated in Fig. 35.7f. In such
a configuration, the respective atoms are assumed to be
immobile. To diffuse, they need to come into an interstitial
configuration as depicted schematically in Fig. 35.7e, h or in
a configuration with a vacancy as indicated in Fig. 35.7g.
Diffusion as interstitials as in Fig. 35.7e is expected
particularly for transition metals like gold and platinum.
For boron in silicon, as another example, diffusion as pair
with self-interstitials in analogy to Fig. 35.7h was suggested
by Windl et al. [44] on the basis of ab initio calculations.
Other elements like antimony in silicon and most dopants
in germanium are assumed to diffuse via bound pairs with
vacancies as shown schematically in Fig. 35.7g. Since even
multiple exchanges of sites between vacancy and dopant
would not lead to an effective movement, this mechanism
requires that the vacancy partially dissociates from the
dopant and returns to another nearest neighboring site of
the impurity. In general, dopants will diffuse via both, self-
interstitials and vacancies, although one of these mechanisms
may dominate. Despite the atomistically completely different

mechanisms, migrating interstitial atoms and pairs with
intrinsic point defects are assumed to diffusemacroscopically
as entities. As such, diffusion coefficients and charge
states can be assigned to them, and their movement can
be described in analogy to the concepts discussed above.

With substitutional impurity atoms being assumed immo-
bile, the mobile dopant complexes must form dynamically.
For boron and self-interstitials, De Salvador et al. [45] were
able to clarify experimentally the complex reaction paths
to mobile pairs. However, this is a rare case and for most
other pair-formation reactions, such a detailed knowledge
is not available. Accordingly, pair formation is usually de-
scribed in a more generic way. Such pair-diffusion models
were pioneered by Yoshida et al. [46] who proposed that
substitutional impuritiesMs form mobile MV pairs, depicted
schematically in Fig. 35.7g, with vacancies V by the quasi-
chemical reaction:

Ms + V
kMV→
�

kMV←
MV. (35.47)

The analogy for self-interstitials I is the formation of
mobile MI pairs, shown schematically Fig. 35.7h, via

Ms + I
kMI→
�

kMI←
MI. (35.48)

Within the level of description of process simulation,
it is not important whether MI is a bound impurity-self-
interstitial pair or an interstitial impurity Mi. Interactions of
self-interstitials with dopants were probably first considered
by Seeger and Chik [47] in the form of their interstitialcy
mechanism. For metal interstitials, one usually refers to the
kick-out mechanism suggested by Gösele et al. [48]. In
addition to the pairing reactions, one needs to include the
bulk-recombination reaction

I + V
kIV→
�

kIV←
0 (35.49)

of self-interstitials and vacancies to an undisturbed lattice site
symbolized by the “0.” For metal diffusion, instead of the
formation of vacancy pairs, one needs to consider the reaction
of metal impurities with vacancies

Mi + V � Ms (35.50)

proposed first by Frank and Turnbull [49] for copper in
germanium. For the diffusion of dopants in semiconductors,
such a reaction, just as the counterpart of a dopant-vacancy
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pair reacting with a self-interstitial

MV + I � Ms, (35.51)

constitutes a dopant-concentration-dependent parallel path to
the recombination of self-interstitials and vacancies which
also influences the concentrations of the pairs in steady state.

A quantitative description of the full system requires that
the interactions between intrinsic point defects, substitutional
impurities, mobile impurities and mobile complexes of im-
purities with intrinsic point defects, etc., are taken into ac-
count. This is usually done via the methodology of diffusion-
reaction equations by writing, e.g., the interaction of species
A with species B to species C in the form of the binary quasi-
chemical reaction

A+ B
k→
�
k←

C (35.52)

with k→ and k← being the forward and backward reaction
constants. The reaction term

R = k→CACB − k←CC (35.53)

is common to the continuity equations of the species A to C

∂CA

∂t
= div (−JA) − R; ∂CB

∂t
= div (−JB) − R;

∂CC

∂t
= div (−JC) + R

(35.54)

and couples them. The different signs of the reaction term
in the continuity equations mean that the concentrations
of A and B are reduced when A and B react, while the
concentration of species C increases. In the common case
of several parallel reactions, the respective reaction terms
are added or subtracted in the continuity equations of the
species. For immobile species like substitutional dopants, the
diffusion term is simply omitted in the continuity equation.
In equilibrium or stead state, the concentration of the product
can be expressed as

Ceq
C = Ceq

A C
eq
B

θC

θAθB
exp

(
Gf

A + Gf
B − Gf

C

kT

)

= θC

θAθB
exp

(
GB

kT

) (35.55)

in terms of the respective concentrations of the reactants,
the numbers of internal degree of freedom of the defects at
specific sites θX, and their formation energies Gf

X. As long
as charge is conserved in the reaction, the binding energy GB

will be independent of the Fermi level. A particular advantage

of binary reactions is that the forward reaction rates can be
estimated on the basis of Waite’s theory of diffusion-limited
reactions [50] in the form

k→ = 4πaR (DA + DB) (35.56)

as a function of the diffusion coefficients of the reacting
species and the recombination radius aR which is usually
assumed to be on the order of the bond length between two
lattice atoms. For the cases that both particles are electrically
charged and that reaction barriers have to be overcome,
extensions are available from Debye [51] and Waite [52],
respectively. To determine the backward rate, two procedures
have been used in literature. The first one is based on the
concept that the backward reaction constant k← is basically
the break-up frequency of the defect. This is very similar to
(35.43) with Sm and Hm replaced by the dissociation entropy
and enthalpy of the defectC. The secondmethod uses the fact
that the forward and backward reaction rates of all reactions
need to cancel out in equilibrium. Accordingly, the ratio of
forward and backward reaction rate can be written in terms
of the equilibrium concentrations of the species

k→
k←

= Ceq
C

Ceq
A C

eq
B

(35.57)

which in turn can be written via (35.55) in terms of the
binding energy of the reaction.

35.3.3 Macroscopic Diffusion Behavior
of Dopants

Within the methodology of diffusion-reaction equations
outlined in the previous subsection, mobile complexes are
postulated to form via the reactions (35.47) and (35.48). In
addition, the complementary reactions of the mobile com-
plexes with intrinsic point defects via the reactions (35.50)
and (35.51) need to be taken into account. To calculate
the generation rate of the mobile complexes, concurrent
reactions between substitutional dopants and intrinsic point
defects in all charge states have to be included. For themobile
complexes, the single negative, neutral, and single positive
charge states are usually considered, and steady state between
them is assumed to be established rapidly. The resulting
system of coupled partial differential equations then consists
of the continuity equations for the self-interstitials and va-
cancies as well as for each dopant in continuity equations for
the substitutional dopants and the pairs with self-interstitials
and vacancies. Accordingly, this type of diffusion model is
commonly referred to as “five-stream model.” Although al-
ready a simplification, five-stream models are able to capture
fairly complex diffusion phenomena. To illustrate some of
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them, useful simplifications and their areas of application are
discussed below.

As indicated first byCowern et al. [53], a dynamic descrip-
tion of the formation of mobile dopant species is important
to understand the macroscopic diffusion behavior for short
annealing times. To illustrate this, we consider a simple
system in which a substitutional impurityMs changes with a
frequency 1/τ into the mobile state MI. Denoting the steady-
state ratio of the concentrations in the substitutional and the
mobile state by α and assuming that the diffusion flux follows
Fick’s first law (35.37), one arrives at a coupled system of
equations in the form

∂CMs
∂t = − 1

τ
CMs + α

τ
CMI,

∂CMI
∂t = div (DMI gradCMI) + 1

τ
CMs − α

τ
CMI.

(35.58)

Assuming that all atoms are initially in a narrow layer in
a depth of 0.5 μm, the total concentration CM = CMs +
CMI for α = 1000 and DMI chosen so that the macroscopic
projected diffusion length for the time τ equals

√
2DMIτ/α

= 10 nm is shown in Fig. 35.8 (coupled system) together with
a simulation in which steady state between the substitutional
and interstitial species is assumed (one equation). For the
latter case, the diffusion equation results for all times in
the Gaussian profiles shown. The same profiles are obtained
for the coupled system for long diffusion times for which
substitutional and mobile impurities are in steady state. In
contrast, for the shortest time, the delta-doped layer is still
clearly visible, and the profile has a characteristic shape with
exponentially decreasing flanks.

For sufficiently long diffusion times, the substitutional
impurities will be in steady state with the respective mobile
species. To calculate concentrations of themobile complexes,
as emphasized by Cowern [54], one needs to consider the
pairing reactions (35.47) and (35.48) as well as the reactions
of the pairs with the opposite intrinsic point defects via the
reactions (35.50) and (35.51). This leads in non-equilibrium
situations to a nonlinear dependence of the pair concentra-
tion on both the self-interstitial and vacancy concentrations.
However, for the important case that bulk recombination
maintains local equilibrium between the intrinsic point de-
fects (CICV ∼ Ceq

I C
eq
V ), the same pair concentrations are

predicted as in the case that the reactions (35.50) and (35.51)
are ignored and the pair concentrations can be calculated
from (35.55). Considering the diffusion of dopants, one has
to keep in mind that acceptors on substitutional sites are
negatively charged and donors positively. Accordingly, the
concentrations of single negative, neutral, and single positive
pairs CMX, with X standing either for self-interstitials I or
vacancies V, will be

CMX− = ηMX−CM−
s

CX

Ceq
X

;CMX0 = ηMX0CM−
s

CX

Ceq
X

p

ni
;

CMX+ = ηMX+CM−
s

CX

Ceq
X

(
p

ni

)2
(35.59)

for acceptors and

CMX− = ηMX−CM+
s

CX

Ceq
X

(
n

ni

)2

;CMX0 = ηMX0CM+
s

CX

Ceq
X

n

ni
;

CMX+ = ηMX+CM+
s

CX

Ceq
X

(35.60)

for donors. Therein, the ηMX−/0/+ stand for the temperature-
dependent relative concentrations of pairs under intrinsic
conditions (n = p = n i) with the respective point defects
being in equilibrium (CX = Ceq

X ).
It should be noted that all the pair concentrations are

proportional to the concentration of the substitutional atoms.
In systems not too far from equilibrium, the concentrations
of the pairs are expected to make up only a small fraction
of the total concentration. As long as the concentrations of
pairs remain small in comparison to the total dopant concen-
tration, they will increase linearly with the respective point-
defect concentration. In situations far from equilibrium, the
formation of pairs will lead to a reduction of the substitutional
concentration and consequently to a sublinear increase of the
concentration of the dominating pair with the respective point
defect concentration. In the limiting case, the redistribution of
the dopants atoms takes place in the form of the dominating
pairs with the respective diffusion coefficient.

In many important cases, the concentrations of pairs can
be safely ignored. Then, the concentration of substitutional
dopant atoms CMs in (35.59) and (35.60) can be replaced
by the total dopant concentration CM . Adding the continuity
equations leads to the diffusion equation

∂CM
∂t = div

(
DMI grad

(
CM

CI

Ceq
I

)
+ DMV grad

(
CM

CV

Ceq
V

)

−zM
(
DMI

CI

Ceq
I

+ DMV
CV

Ceq
V

)
CM grad

(
ψ

UT

))
(35.61)

with the diffusion coefficients DMX given by

DMX = ηMX−DMX− + ηMX0DMX0p

ni
+ ηMX+DMX+

(
p

ni

)2

(35.62)

for pairs with acceptors and
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Fig. 35.8 Diffusion of impurities from an initially delta-doped layer,
simulated by diffusion equations for mobile species and substitutional
species and under the assumption of local equilibrium between these

species. The running index is the diffusion time in multiples of the time
constant τ . (After [5])

DMX = ηMX−DMX−

(
n

ni

)2

+ ηMX0DMX0
n

ni
+ ηMX+DMX+

(35.63)

for pairs with donors. For both, the dependence of the diffu-
sion coefficient on the Fermi level reflects the increase of the
concentration of pairs in extrinsically doped semiconductors.

As long as the semiconductor is intrinsically doped, with
vacancy and self-interstitial concentrations at equilibrium,
and negligible strain effects, the respective diffusion coef-
ficients of the dopants depend just on temperature. This
“intrinsic diffusion coefficient” D0 = DMI + DMV shown
in Fig. 35.9 for the main dopants in silicon and germanium
is probably the best-studied property of dopants in semi-
conductors. An exception is boron in germanium for which
only three experimental determinations are available which
resulted in values which are orders of magnitude apart [55].
Comparing the other dopants for silicon and germanium, it is
also noticeable that the fastest and slowest diffusers exchange
places.

A further important property of dopants is the degree to
which they diffuse via self-interstitials and vacancies. This is
typically expressed in terms of the fractional diffusivity via
self-interstitials:

fI = DMI

DMI + DMV
. (35.64)

The degree to which dopant atoms diffuse via vacancies
and interstitial atoms was a subject of sharp discussions after
Seeger and Chik [47] introduced the interstitialcy mechanism
which lasted well after the review of Fahey et al. The current
understanding of dopant diffusion in silicon was developed
on the basis of diffusion studies in which some dopant atoms
show enhanced diffusion, while the diffusion of others is
retarded. Such studies, discussed in more detail in Sect.
35.3.5, in combination with information about the growth
of extrinsic stacking faults led to the conclusion that boron
and aluminum diffuse in silicon nearly exclusively via self-
interstitials, while antimony has been found to diffuse nearly
exclusively via vacancies. Arsenic in silicon diffuses via
both, and phosphorus diffuses at low concentrations nearly
exclusively via self-interstitials while at high concentrations
a dominant diffusion via vacancies has been found. In ger-
manium, all elements except boron were suggested to diffuse
via a vacancy mechanism. For boron, the considerably lower
diffusion coefficient in comparison to the other dopants is
sometimes associated with an interstitial diffusion although
no unambiguous experimental evidence is available.
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Fig. 35.9 Intrinsic diffusion coefficients of dopants in germanium and silicon as a function of the inverse homologous temperature. (The data are
from [5] and [41] for silicon and germanium, respectively)

35.3.4 Dopant Diffusion at High
Concentrations

Particularly for contact areas, the active doping concentra-
tion cannot be high enough. For such conditions, the charge
carrier concentrations exceed the concentration ni by far. The
effects of such high doping levels on dopant diffusion will be
discussed briefly in this subsection on the basis of an exper-
iment reported by Orr Arienzo et al. [56] in which a highly
doped polysilicon layer maintained a constant concentration
of boron during the diffusion at 950 ◦C for 1 h.

The first simulation result shown in Fig. 35.10, denoted
“Intrinsic diffusion,” was obtained under the assumption of
intrinsic diffusion with a constant diffusion coefficient. The
resulting error function profile apparently underestimates the
dopant penetration by far.

The second simulation result, denoted “+ Field effect,”
takes into account that the extrinsic doping concentration
results in an electric field E which acts via (35.44) as an addi-
tional driving force for dopant redistribution. This manifests
itself, as shown, e.g., by Smits [57], in an effective diffusion
coefficient which depends via

D = D0

⎛
⎝1 + C√

C2 + 4n2i

⎞
⎠ (35.65)

on the dopant concentration. However, the enhancement by
a factor of two for C 
 ni remains too small to explain the
experimental profile.

Considering also that boron diffuses predominantly via
neutral pairs with self-interstitials, i.e., with an effective
diffusion coefficient (35.62) which increases linearlywith the
hole concentration, one obtains the profile denoted “D(p)”
in Fig. 35.10 under the assumption that the intrinsic point
defects remain in equilibrium. In comparison to the previous
simulations, the concentration-dependent diffusion coeffi-
cient results in pronounced platykurtic profiles which are
flatter at the top but steeper at the flanks. Assuming an
effective diffusion coefficient which increases quadratically
with the respective charge carrier concentration would lead to
a deeper penetration of the dopants but also to even steeper
flanks.

To reproduce the gentler slope of the experimental profile
as in the profile denoted “Full model,” one has to take the
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Fig. 35.10 Simulation of the diffusion of boron at high concentrations. (Courtesy C. Ortiz, Fraunhofer IISB) and comparison to the experiment
of Orr Arienzo et al. [56] at 950 ◦C. After [5])

full interaction between boron atoms and self-interstitials
into account: Boron-self-interstitial pairs form via (35.48)
predominantly close to the interface to the polysilicon layer
where the boron concentration is highest. When diffusing
into the bulk, the boron concentration reduces, and the pairs
are more and more likely to dissociate into substitutional
boron and self-interstitials. This results, as shown by the
line “CI/C

eq
I ” in Fig. 35.10, in an oversaturation of self-

interstitials which increases with depth. There, the increase
of the self-interstitial concentration compensates for the de-
crease of the effective diffusion coefficient with the charge
carrier concentration so that the resulting doping profile
becomes nearly error-function-like but with a much higher
effective diffusion coefficient than in the case of intrinsic dif-
fusion. Following their gradient, the self-interstitials will dif-
fuse back to the surface so that their oversaturation depends
on the interplay of transport into the bulk via dopant diffusion
and transport back to the surface by self-diffusion. While
the effect is rather unspectacular for boron, it is responsible
also for the formation of pronounced kink and tail features in
high-concentration phosphorus profiles and the broadening
of the base region of bipolar transistors in areas below high-
concentration phosphorus profiles, the so-called emitter-push
effect [58].

At even higher phosphorus background concentrations,
Nylandsted Larsen et al. [59] found that the diffusion of
a variety of dopants increases steeply with the phospho-
rus concentration. Following the suggestion of Mathiot and
Pfister [60], this was explained in terms of a percolation
phenomenon. However, this explanation was discussed con-
troversially, and Ramamoorthy and Pantelides [61], as an
example, argued that the rapid diffusion should give rise to
fast dopant clustering and the break-up of the percolation
cluster.

35.3.5 The Influence of Surface Processes on
Dopant Diffusion

First indications for the influence of surface chemical pro-
cesses on dopant diffusion date back to the 1960s, when
the (111)-oriented wafers prevalently used in industry were
replaced by (100)-oriented wafers. Comparative diffusion
studies at that time indicated an orientation-dependence of
the diffusion of dopants which would not be expected for
semiconductors with a diamond lattice. However, some re-
searchers reported already then that such effects would be
seen only for diffusion process in oxidizing ambient and not
in inert ambient [62]. Later studies confirmed the oxidation-
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enhanced diffusion of boron [63] and phosphorus [64] during
dry oxidation of (100)-oriented silicon, while at the same
time an oxidation-retarded diffusion of antimony was found
[65]. Based on the observation of the concurrent growth of
stacking faults identified unambiguously as self-interstitial
agglomerates, it was suggested by Dobson [66] and Hu [67]
that overstoichiometric silicon atoms are incorporated during
the oxidation into the growing oxide layer and that these
silicon atoms may segregate as self-interstitials into the sili-
con where they increase the concentration of self-interstitials
beyond their equilibrium concentration. Because of bulk
recombination of self-interstitials and vacancies (35.49), an
oversaturation of the former (CI/C

eq
I > 1) will inevitably

lead to an undersaturation of the latter (CV/Ceq
V < 1) and

vice versa. The resulting effective diffusion coefficient under
non-equilibrium conditions

Deff = Deq

(
fI
CI

Ceq
I

+ (1 − fI)
CV

Ceq
V

)
(35.66)

will be higher than the diffusion coefficient Deq under equi-
librium conditions (CI = Ceq

I , CV = Ceq
V ) for dopants dif-

fusing preferentially via self-interstitials (fI > 0.5). Dopants
diffusing preferentially via vacancies (fI < 0.5), on the other
hand, may be retarded in their redistribution. In process
simulation programs, the injection of self-interstitials is usu-
ally modeled empirically as a flux of self-interstitials which
increases sublinearly with the oxidation rate.

While the dry oxidation of (100)-oriented silicon was
always found to result in an enhanced self-interstitial concen-
tration, opposite effects were found for the diffusion of (111)-
oriented samples at high temperatures and long diffusion
times. This was explained by Taniguchi et al. [68] by a
preferential segregation of self-interstitials into the growing
oxide for small oxidation rates.

More problematic to explain was the retarded diffusion of
boron and phosphorus, the enhanced diffusion of antimony,
and the shrinkage of self-interstitial agglomerates reported
by Mizuo et al. [69] during the nitridation of silicon. Inter-
preted in terms of (35.66), the nitridation-enhanced diffusion
of antimony indicated an injection of vacancies. However,
kinetic models in analogy to those for the injection of self-
interstitials during oxidation had the problem that the growth
of surface nitrides almost stopped after a short time, while the
effects on dopant diffusion and stacking-fault growth lasted
for much longer. In addition, it was shown by Ahn et al. [70]
that similar effects can be observed below deposited nitrides.
An explanation for these phenomena was finally suggested
by Cowern [71] who noted that the work done against over-
layers has to be taken into account in the formulation of the
formation energies of the intrinsic point defects.

Finally, it should be noted that also other surface chemical
processes like the nitridation of oxide layers or the formation

of silicides were reported to lead to non-equilibrium diffusion
effects.

35.3.6 Transient Diffusion Effects During
Post-Implantation Annealing

Because of its superior homogeneity and dose control, ion
implantation has become the main process for the doping of
semiconductors. Inevitably associated with ion implantation
is the creation of damage due to elastic collisions of the
impinging atoms with the lattice atoms. Depending on the
mass and energy of the implanted atoms, some ten to many
hundred self-interstitials and vacancies are generated per
implanted atom. For high enough doses, an amorphous layer
is formed in the semiconductor. To remove the damage,
semiconductors need to be annealed after ion implantation.
With all the intrinsic point defects being far from equilibrium,
such annealings result in significant implantation-enhanced
diffusion of the dopants.

To illustrate typical effects during post-implantation an-
nealing, simulations of a 20 keV boron implantation with a
dose of 5× 1015 cm−2 and subsequent isothermal annealings
at 900 ◦C are shown in Fig. 35.11. During the first 10
to 40 s, significant diffusion is observed in the tail of the
boron profile. During this time interval, diffusive broadening
is limited to concentrations up to about 1 × 1019 cm−3.
This value corresponds to the concentration of electrically
active, i.e., substitutional boron atoms, which remains nearly
the same. Increasing the annealing time to 1 min results
already in a much smaller broadening, and increasing the
time further to 10 min has an even much smaller effect.
In contrast, a significant increase of the electrically active
boron concentration is observed. Because of their eminent
technological importance, transient diffusion and transient
activation have been main research topics for decades. For
the sake of brevity, we can only present the most important
results here and must refer the interested reader to somemore
extensive reviews in this area [73, 74].

While it was clear already at an early stage that implan-
tation damage was the cause of the implantation-enhanced
diffusion, the exact mechanism was not as clear for some
time. The consensus today is that the implantation leads to
an excess of self-interstitials in the crystal which agglomerate
during annealing and undergoOstwald ripening. The oversat-
uration which drives dopant diffusion results from the cloud
of self-interstitials that the extended defects maintain in their
vicinity [75]. Quantitative information about the extended
defects could be obtained by numerous TEM (transmission
electron microscopy) studies with the work of Eaglesham
et al. [76] and Bonafos et al. [77] just to give some prominent
examples. Complementary information about the energetics
of self-interstitial clusters which are too small to be investi-
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Fig. 35.11 Boron profiles after implantation with 20 keV and 5 × 1015 cm−2 and annealing at 900 ◦C simulated with Sentaurus Process [72]

gated by TEMbecame available by the experiment of Cowern
et al. [78] in which the implantation-enhanced diffusion of
narrow boron layers was induced by silicon implants. For a
comprehensive review of the Ostwald ripening of extended
defects, the review article of Claverie et al. [79] can be
recommended. Among themanymodels suggested to capture
the main aspects of the Ostwald ripening of small silicon
clusters and extended {311} defects, the one of Zechner et al.
[80] is particularly frequently used in process simulation
since it combines predictive power with a minimum number
of equations to be solved. For longer annealing times for
which the {311} defects transform into stacking faults and
perfect dislocation loops, extensions have been suggested by
Zographos et al. [81] and Wolf et al. [82].

As initial conditions for the abovementioned models, the
relevant concentration of self-interstitials needs to be calcu-
lated. This can, in principle, be done by theMonte Carlo tech-
niques discussed in Sect. 35.2.2. However, the concentration
of defects obtained would be far too high since vacancies and
self-interstitials are created in pairs during the collisions with
the impinging atoms and are likely to recombine early in the
annealing stage. Accordingly, Giles [83] suggested for sub-
amorphizing implants that only the extra atom introduced
by the implantation needs to be taken into account as self-

interstitial. While this assumption works well, e.g., for boron,
it was found by Pelaz et al. [84] that the number of self-
interstitials per implanted atom needs to be increased for
heavier ions. Finally, for amorphizing implants, the amor-
phized region will regrow defect-free already at low temper-
atures like during the ramping stage of annealing. Accord-
ingly, only the excess of self-interstitials in depths beyond
the amorphous/crystalline interface needs to be taken into
account and can be calculated by Monte Carlo simulations or
by assuming an effective plus factor as for non-amorphizing
implants [85].

35.3.7 Electrical Activation, Clusters, and Solid
Solubility

One of the phenomena apparent from Fig. 35.11 is that a sig-
nificant part of the atoms are immobile as well as electrically
inactive. To explain such phenomena for arsenic in silicon,
small electrically neutral clusters of two [86] and four arsenic
atoms [87] were assumed to form. While the formation of
such clusters can be described by binary reactions or chains
of binary reactions, clusters Cln comprising n dopant atoms
are usually assumed to form by the reaction



1282 J. Lorenz and P. Pichler

n Ms

kCl→
�
kCl←

Cln (35.67)

which results in an additional continuity equation

∂CCln

∂t
= kCl→

(
CMs

)n − kCl←CCln (35.68)

for the clusters. Because of mass conservation, the right-hand
term multiplied by n also appears in the continuity equation
of the substitutional impurities. Since the total concentration
of impurities CM includes now also the atoms in the cluster,
adding all contributions leads again to an equation similar to
(35.61) but with the substitutional concentration CMs instead
of the total concentration CM in the term on the right hand
side. The substitutional concentration can now be consider-
ably smaller than the total concentration, which leads already
to a significant retardation of the diffusion of the impurities.
In addition, the clustering also reduces the charge-carrier
concentration in the high-concentration regions and thus also
the effective diffusivity (35.62) of the non-clustered dopant
atoms.

Coming back to the post-implantation annealing of boron
shown in Fig. 35.11, it is noticeable that the electrical active
concentration remains virtually the same during the period
of transient-enhanced diffusion, while it increases signif-
icantly thereafter. This indicates an involvement of self-
interstitials in the formation of the complexes responsible.
Accordingly, for the latter, the term boron-interstitial clus-
ters (BICs) was introduced in literature. Based on ab initio
calculations, schemes of binary reactions of substitutional
boron atoms and BICs with boron interstitial atoms and
self-interstitials were developed (see, e.g., [88]) and shown
to be able to capture the main features of transient boron
diffusion and activation. For arsenic and phosphorus, the
reaction schemes were even extended toward mixed clusters
involving self-interstitials or vacancies [89].

Particularly by ion implantation, the total concentrations
of dopants can be increased almost unlimitedly. However,
when a certain total impurity concentration, known as solid
solubility, is exceeded, an impurity-rich phase is expected to
form in equilibrium. Depending on the impurity and tempera-
ture, the impurity-rich phase may be a liquid, a pure impurity
phase, or a silicide phase [90]. Dynamically, such a phase
can form by spinodal decomposition or, often more likely,
by nucleation and growth of precipitates. Since the latter
process is kinetically limited, dopant precipitates are often
observed only after annealing processes with high thermal
budgets [91]. However, dopant precipitates are not only ob-
served after ion implantation. During growth and annealing
of phosphosilicate glasses, as a prominent example, so many
phosphorus atoms segregate into the silicon that the (binary)

solid solubility of phosphorus in silicon is exceeded there and
SiP precipitates form [92].

35.3.8 Segregation

In real applications, semiconductors will always be in contact
to other materials like silicon dioxide, silicides, or metals.
During annealing processes, the atoms being present in either
material will diffuse not only therein but also across the inter-
faces between the materials. In equilibrium, because of their
different formation energies, discontinuous distributions of
the atoms are expected at the interfaces. An example in this
sense already mentioned above is the formation of large SiP
precipitates in silicon where the phosphorus concentration
is 50 at.% in the SiP, while the total concentration in sili-
con corresponds largely to the temperature-dependent solid
solubility. At the interfaces, the discontinuous distributions
of atoms in equilibrium are characterized by the segregation
coefficients m as ratios of the respective concentrations at
the two sides. During thermal processing, the flux of species
between the phases A and B is usually written in form of a
first-order kinetic model

JX = h
(
CA
X − mCB

X

)
(35.69)

as being proportional to the interface transport coefficient
h and the difference in concentration normalized by the
segregation coefficient.

Segregation of dopants from highly doped phosphosilicate
or borosilicate glasses into silicon is used in solar and power
electronics for the doping of silicon with concentrations
which may be even above solid solubility. At lower concen-
trations, diffusion of dopants in silicon dioxide is rather slow
so that segregation effects can be observed only when the
interface moves during an oxidation process. During such
processes, phosphorus, arsenic, and antimony pile up at the
silicon side, while boron segregates preferentially into the
growing oxide.

Pile-up of donors was observed also at stationary inter-
faces between silicon and silicon dioxide. Dedicated investi-
gations showed that this pile-up occurs for phosphorus [93]
and arsenic [94, 95] within few nm from the interface on
the silicon side even if the dopants in the area below are
homogeneously distributed. In contrast, a similar pile-up of
boron was shown to result rather from large self-interstitial
gradients toward the interface during post-implantation an-
nealing [96]. In continuum simulators, interface segregation
of phosphorus and arsenic is usually included via an approach
suggested by Lau, Orlowski, and coworkers [97, 98]. It
assumes that dopants adsorb and desorb from both materials
to energetically favorable sites at the interface.
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35.3.9 SimulationMethodologies

The dawn of numeric diffusion simulation began around
1980 with programs like SUPREM [6, 7] and ICECREM [8],
when diffusion theories were already too complicated to be
solved analytically. These programs like their two- and three-
dimensional successors were based on a discretization of the
diffusion-reaction equations discussed above. A big advan-
tage of such continuum approaches is that the mesh used for
discretization of the equations can be adjusted to the problem,
i.e., made fine where necessary, while it can be left coarse
elsewhere. A second potential advantage is that empirical
models like the clustering Eq. (35.67) or the self-interstitial-
complex ripening models mentioned in Sect. 35.3.6 can be
implemented easily to reduce parameters and equations to be
solved. On the other hand, there is an over-linear increase of
computer resources and simulation time associated with an
increase of the number of equations to be solved. Due to their
excellent prediction accuracy and robustness for a wide range
of applications from nanoelectronics to power electronics,
continuum models are currently the workhorses of TCAD
simulations in industry.

As an alternative, atomistic simulators like DADOS [99]
were introduced at the end of the 1990s. These programs
consider directly the diffusive jumps of non-lattice atoms and
defects as well as the reactions among them by a kinetic
Monte Carlo (KMC) algorithm. The big advantage of KMC
simulators is that a plethora of different defects and defect
reactions can be taken into account with a linear increase of
computational efforts only. On the other hand, all non-lattice
atoms and defects must be taken along in the simulations
which make them feasible only for comparatively small
volumes. However, with the continuing miniaturization of
devices, this is becoming all the easier.

To simulate crystal-orientation-dependent phenomena
like faceting during epitaxial deposition or shape changes
during laser annealing, both continuum andKMCapproaches
lack predictive power. For such effects, it is necessary to
include the host atoms in the calculations as in lattice kinetic
Monte Carlo (LKMC) schemes [100]. However, it should
be noted that classical LKMC implementations lack the
ability to simulate other defects apart from vacancies and
substitutional impurities.

35.4 Simulation of Oxidation

For many years, the simulation of oxidation was both a very
important and a very difficult part of process simulation:
Local oxidation (“LOCOS”) was indispensable to generate
three-dimensional structures for electrical isolation. It led
to transition domains between the thin gate oxide and the
isolation oxide, as shown in Fig. 35.12. The basic effect is

Fig. 35.12 SEM micrograph of transition domain (“bird’s beak”) be-
tween thick field oxide and thin gate oxide. Technology from the 1980s,
with gate oxide thickness of about 100 nm

that during oxidation 2.27 volumes of oxide are generated
from one volume of silicon. For local oxidation as shown in
Fig. 35.12, the excess volume of oxide generated leads to a
flux of oxide and the need to solve the resulting mechanical
problem.

Simulation of oxidation includes simultaneously the dif-
fusion of dopants and defects in the bulk semiconductor and
in the (growing) oxide, the mechanics of the oxide flux, and
the transport of dopant atoms across the moving interface
between the semiconductor and the oxide, which in many
cases critically affected the total amount of dopants near the
channel, and in turn even top electrical parameters like the
threshold voltage. In turn, the generation and adaptation of
meshes to properly resolve the transport of dopants across
moving interfaces was a key problem for three-dimensional
process simulation.

For current nanoelectronic devices, the simulation of ox-
idation is far less important, because advanced device archi-
tectures do not include LOCOS oxidation, but merely thin
oxides. Shallow trench oxidation is performed by growth
of a thin oxide followed by oxide deposition. However, for
applications like power electronics, thicker oxides are still
needed, and the three-dimensional simulation of oxidation
stays important for such cases.

35.4.1 One-Dimensional Simulation
of Oxidation

The basic physical processes to be included in the one-
dimensional simulation of oxidation are shown in Fig. 35.13.
They are all fast compared with the oxide growth and can
therefore be considered as stationary. At the interface be-
tween oxide and silicon, the oxidizing species O2 in case of
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Fig. 35.13 Physical processes involved in the oxidation of silicon. (a) One-dimensional case (planar oxidation); (b) Two−/three-dimensional
case as discussed in Sect. 35.4.2

dry oxidation and H2O in case of wet oxidation react with
silicon according to

Si + O2 → SiO2 (35.70)

Si + 2 H2O → SiO2 + 2 H2 (35.71)

The corresponding Deal-Grove model [101] consists of
three steps, which can all be expressed as fluxes F of the
oxidizing species. These species are first adsorbed at the
oxide surface, resulting in a concentrationC*, which depends
on the partial pressure of the oxidizing ambient (O2 or H2O).
A parameter h describes the transfer of the species across the
surface, giving rise to the concentration C0 at the oxide side
of the surface:

F = h · (
C∗ − C0

)
(35.72)

Stationary diffusion with a diffusion coefficientD leads to
a concentration Ci of the oxidizing species at the oxide side
of the interface to silicon:

F = D · (C0 − Ci)

zox
(35.73)

A constant k describes the first-order reaction of the
oxidizing species at the interface between oxide and silicon:

F = k · Ci (35.74)

Since the three fluxes in Eqs. (35.72), (35.73), and (35.74)
are equal, a differential equation for the oxide thickness zox
results [101]:

dzox
dt

=
kC∗/

N

1 + k
h + k · zox

/
D

(35.75)

Here, N is the density of the atoms in the silicon crys-
tal. The solution of Eq. (35.75) is the well-known linear-
parabolic relationship for the time dependence of the oxide
thickness:

zox2

kp
+ zox

kl
= t + t0 (35.76)

Here, kp and kl are the parabolic and the linear oxide
growth coefficients. They relate to the physical parameters
given above according to

kl = C∗

N
(

1
k + 1

h

) (35.77)

kp = 2D · C∗/
N (35.78)

The linear regime applies for small oxide thicknesses zox
and is determined by the transfer of the oxidant across the
oxide surface and the reaction at the interface between oxide
and silicon, expressed by the parameters k and h. For larger
oxide thickness, the transport through the existing oxide
layer limits the process, resulting in a growth asymptotically
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approaching the square root of the oxidation time. The initial
time t0 is used to express the native oxide which is grown
almost instantaneously. An increase of the initial oxidation
rate can be described by Massoud’s model [102], which adds
an exponential term to Eq. (35.75):

dzox
dt

=
kC∗/

N

1 + k
h + k · zox

/
D

+ C e(−
zox
L ) (35.79)

In this case the oxide thickness is no more given in the
analytical form of Eq. (35.76), but must be calculated as
solution of the differential Eq. (35.79).

In Eqs. (35.75), (35.76), (35.77), (35.78), and (35.79), the
physical parameters D, k, h, C, and L depend in various re-
spects on the process to be simulated, including temperature,
the orientation of the silicon crystal, the oxidizing species
(O2 or H2O) and its partial pressure, additional HCl in the
atmosphere, the dopant concentration on the silicon side of
the interface between silicon and oxide, and stress.

35.4.2 Multidimensional Simulation
of Oxidation

The one-dimensional oxidation model summarized above
describes the situation where a homogeneous oxide layer is
grown on a flat silicon surface. This does no more apply in
areas where the silicon is structured (e.g., a trench) or partly
masked. This situation is visualized in two dimensions in
Fig. 35.13b. In this case, Eqs. (35.72), (35.73), and (35.74)
are replaced by a stationary partial differential equation and
the corresponding boundary conditions for the concentration
C of the oxidizing species, depending on space and time.
Here, ∂

∂n is the derivative in direction normal to the surface
or interface:

∇ (D · ∇C) = 0 in the oxide; (35.80)

D · ∂C

∂n
= h · (

C∗ − C
)
at the oxide surface; (35.81)

D · ∂C

∂n
= k · C at the interface between oxide and silicon.

(35.82)

The dependence of the physical constants D, h, and k
on the process to be simulated is in principle similar to the
one-dimensional case. However, for non-planar or masked
structures, the stress-dependent flux of the oxide must be

simulated, which results from the generation of 2.27 volumes
of oxide from one volume of silicon. In addition to the
standard Arrhenius dependence on the temperature, this leads
to

D = D0 · exp
(

−ED

kT

)
· exp

(
−p · VD

kT

)
; (35.83)

C∗ = C0 · exp
(

−EC

kT

)
· exp

(
−p · VC

kT

)
; (35.84)

k = k0 · exp
(

−Ek

kT

)
· exp

(
σnn · Vk

kT

)
; (35.85)

η = η0 · exp
(

−Eη

kT

)
· exp (p · α(T)) (35.86)

where the symbols have partly been adapted from the litera-
ture [103]. Here,Ed,EC, Ek, andEη are the activation energies
in the respective Arrhenius laws, with k the Boltzmann con-
stant. p is the hydrostatic pressure and σ nn the normal stress at
the interface between oxide and silicon, counted as positive
if the oxide executes a pull on the silicon. VD, Vc, Vk, and
Vη (see Eqs. (35.83), (35.84), (35.85), (35.86), and(35.87))
are the activation energies for the stress dependencies of
the respective parameters and α a parameter depending on
temperature. Whereas according to [103], Vk is the differ-
ence between the molecular volume of SiO2 and the atomic
volume of Si, and equals to 25 Å3, the other volumes are
fitting parameters. It was shown [104] that for the oxidation
of cylindrical structures, Eq. (35.86) leads to an equation
for the hydrodynamic pressure p, which has no solution in
case of some concave structures. It was therefore suggested
to replace Eq. (35.86) by a model proposed by Eyring [105,
106]:

η = η0 · exp
(

−Eη

kT

)
·

σ
/

σc

sinh
(
σ

/
σc

) ,with σc = 2kT
/
Vη

(35.87)

35.4.3 Multidimensional Simulation
of Stress-Dependent Oxidation

Besides the specific physical models for the diffusion and
reaction of the oxidizing species also themechanical problem
resulting from the generation of 2.27 volumes of oxide from
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one volume of silicon must be solved numerically. In general,
this needs the simulation of the viscoeleastic oxide flow. For
this, the stress σ and strain ε must be considered. They are
given by tensors (here displayed as six-dimensional vectors),
and the hydrodynamic pressure p relates to them as follows:

σ = (
σx, σy, σz, τxy, τxz, τyz

)
(35.88)

ε = (
εx, εy, εz, γxy, γxz, γyz

)
(35.89)

P = − (
σx + σy + σz

)
/3 (35.90)

Here, the indices of the first three components give the
direction of the stress or strain.

For the shear stresses in last three components of the stress
σ , the first index indicates the normal to the surface to which
the shear stress is applied, and the second index gives the
direction of the shear stress. In this nomenclature one could
also use σ xx instead of σ x, etc. The stain components give the
changes of the shifts u, v, and w in directions x, y, and z:

εx = ∂u

∂x
; εy = ∂v

∂y
; εy = ∂w

∂y
; (35.91)

γxy = ∂u

∂y
+ ∂v

∂x
; γxz = ∂u

∂z
+ ∂w

∂x
; γyz = ∂v

∂z
+ ∂w

∂y
(35.92)

The space available here does not allow for the discussion
of the various approaches and approximations used for the
simulation of stress in the literature. It is important to note
that for temperatures of 960 ◦C and above, the viscous
behavior of the oxide dominates [107] whereas below the
oxide increasingly becomes elastic. In the viscous case, the
velocity field V of the oxide flow can then be related to the
hydrodynamic pressure P via

η · �V = ∇P (35.93)

If the oxide is approximated as incompressible, Eq.
(35.93) reduces to �V = 0. In that case all stress
dependencies given in Eqs. (35.83), (35.84), (35.85), and
(35.86) are neglected and only that Laplace equation is used
to simulate the flow of the incompressible oxide caused by
the extra volume generated during oxidation. This alsomeans
that masks are considered as flexible, executing no pressure
on the growing oxide.

Figure 35.14 shows a sample oxide structure with the
different kinds of interfaces at which boundary conditions for

Oxidant diffusion:
���(D �C ) = 0

Oxide flow (viscous,
elastic, visco-elastic)

Reaction kinetics:
(1)

(1)

(3)

(2)

∂C
∂n = k · C

Fig. 35.14 Boundary conditions for multidimensional simulation of
oxidation

v and P must be defined: (1) At the interface between oxide
and silicon, v is normal to the interface, and its value is given
by the rate at which silicon is transformed into oxide (equal
to 0.44 times the oxide growth rate); (2) at the oxide surface,
P is equal to the ambient pressure minus the surface tension;
(3) at the interface between oxide and nitride, P is equal to
the mechanical pressure executed by the nitride layer. This
needs either mechanical calculations of the nitride bending
or the use of suitable analytical approximations. For the then
still missing boundary condition for the velocity at the free
oxide surface, Chin used an additional relationship provided
by an artificial compressibility algorithm [108].

35.5 Lithography Simulation

One of the most important process steps in semiconductor
manufacturing is lithography, because it enables the trans-
fer of the chip design onto the silicon wafer. Here, three
properties are most important: the capability to generate tiny
features (currently, the smallest dense features for single ex-
posure are in the range of 20 nm); to establish the pre-defined
links foreseen in the chip design between the transistors and
capacitors acting as switches, amplifiers, or storage elements;
and moreover to process up to hundreds of billion elements at
the same time. Because a separate chapter of this handbook
is dedicated to the lithography equipment and technology,
below only a few technological aspects are outlined, which
are necessary to present lithography simulation in a self-
contained section.

35.5.1 Basic Principle of Lithography

Figure 35.15 shows the principle of a projection lithography
step. Light from a suitable source illuminates a mask, where
it is diffracted at the mask features. The diffracted light is
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Fig. 35.15 Schematics of imaging in optical lithography

then collected via a suitable optical system and focused onto
a photoresist. This part of the lithography process is called
imaging and depends both on the mask and the lithography
equipment, namely, the light source and the optical system.
The resolution of this optical system is then given by the
Rayleigh criterion [109].

dmin = k1 · λ

NA
(35.94)

where dmin is the minimum pitch which can be printed, λ

is the wavelength of the light used, NA is the numerical
aperture (equal to the relative refractive index of the medium
times the sine of the opening angle of the last lens), and
k1 is the so-called technology factor, with a minimum value
of 0.5. Because 193 nm is the smallest wavelength of laser
light currently used in high-volume semiconductor device
manufacturing, for which lenses are sufficiently transparent,
the theoretical minimum pitch which can be printed in the so-
called “dry” optical lithography (with air as medium between
the last lens and the photoresist) is about 104 nm. Smaller
pitches can either be printed via so-called multiple patterning
lithography [110], with immersion lithography [111] or with
extreme ultraviolet (EUV) lithography [112]. In the latter

case, soft X-rays at a wavelength of about 13.5 nm are used,
which then necessitate the replacement of the lenses in all
parts of the optical system by multilayer MoSi mirrors. The
projection process transfers an image of the mask patterns
into the photoresist, leading to local deposition of energy into
the photoresist. The image is diffraction limited, because the
lenses cannot collect all diffraction orders from the mask.
Furthermore, the image is disturbed by several other effects
such as defocus, lens imperfections, or defects on the mask.
After resist development parts of the resist which were ex-
posed (positive tone resist) or not exposed (negative tone
resist) are chemically modified and in turn (partly) removed.
This latter part is influenced by chemistry and diffusion
effects in the resist.

35.5.2 Principle of Lithography Simulation

Figure 35.16 illustrates the lithography process and its simu-
lation, which is divided into two steps: First, for the imaging
step, the intensity distribution, generated by the projection of
the mask through the optical system, inside the photoresist is
simulated. Second, the modification of the photoresist caused
by the energy deposited during exposure, and governed by
chemical reactions, diffusion, and temperature in case of a
post-exposure bake process, is simulated. Different to the
other process steps described in the other subsections, the
imaging step requires simultaneous simulation on equipment,
and feature-scale level to calculate from characteristics of the
illumination source, themask, and the optical system used the
energy deposition in photoresists on a nanometer scale.

35.5.3 Simulation of Imaging

The physics of projection is well understood and could in
principle be fully described by the well-known Maxwell’s
equations. However, due to the different size dimensions to
be simulated during the projection step, different simulation
methods derived from the Maxwell’s equations must be
applied. For example, the projection of the mask can be
simulated very accurately with derivatives of the Hopkins’s
equation [113], whereas the mask diffraction is typically
simulated by directly solving the Maxwell’s equations either
without any simplifications or, depending on the mask area
and accuracy to be simulated, by using some derived simpli-
fied methods.

One common derivative of the Hopkins’ equation is the
Abbe approach [111], which basically consists of a Fourier
transformation F of the mask transmission, a multiplication
with pupil functions P in the Fourier space to describe the
transmission behavior of the optical system, and finally an
inverse Fourier transformation F−1 to simulate the intensity
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Fig. 35.16 Principle of lithography simulation

distribution in the image plane. This approach is based on
the assumptions of an illumination with a single plane wave
along the z-axis or with a tilt angle (tx,ty), a given complex
mask transmission t(x,y), and projection along the z-axis.
Spatial frequencies fx and fy are introduced, which depend on
the diffraction angles �x and �y in x- and y-directions, and
the wavelength λ, and are used for the mask diffraction spec-
trum s(fx,fy). In the following formulas, a scalar description
not considering polarization is given:

fx = sin (θx)

λ
; fy = sin

(
�y

)
λ

(35.95)

s
(
fx, fy

) = F {t (x, y)} =
∫
t (x, y) · e−i2ππ(fx·x+fy·y)dx dy

(35.96)

For illumination with the tilt angle (τ x,τ y), the mask
diffraction spectrum is shifted accordingly:

s
(
fx, fy

) → s

(
fx − sinτx

λ
, fy − sinτy

λ

)
(35.97)

The pupil function P(fx,fy) expresses within the numerical
aperture NA, for example, focus and aberrations, and is zero
outside:

P
(
fx, fy

) = 0 for
√

sin2θx + sin2θy > NA (35.98)

The complex amplitude aP of the light in the image plane
resulting from a single source point P is then given by the
inverse Fourier transformation of the pupil function times the
diffraction spectrum, where the tilt is considered in the pupil
function P:

aP (x, y) = F−1

{
P

(
fx − sinτx

λ
, fy − sinτy

λ

)
· F {t( x, y )}

}

(35.99)

Alternatively, the tilt could also be considered in the
diffraction spectrum s according to Eq. (35.97) while using
the pupil function P without tilt.

The overall light intensity is then calculated as the incoher-
ent sum across the images of all points P of the light source:

Itot =
∑
P

aP (x, y) · a∗
P (x, y) (35.100)

However, for state-of-the-art lithography technologies, the
real topography of the masks and their materials, described
by the complex refractive indices n + ik, must be considered
as well as polarization effects. This is not possible with an-
alytical approaches like the Kirchhoff approximation [114],
which assumes an infinitely thin mask. Moreover, for some
investigations, it is not sufficient to only calculate the image
generated in the image plane (the so-called aerial image).
Instead, the light transmission within the photoresist must be
calculated, because the intensity changes due to absorption
and reflection.

A possible approach, not using the Kirchhoff approxima-
tion, is to simulate the diffraction at the mask via an effi-
cient numerical solution of Maxwell’s equations, for exam-
ple, via the so-called finite-difference time-domain (FDTD)
method (see the standard reference [115]) or in Fourier
space via a variant of the so-called rigorous coupled-wave
analysis (RCWA) (see [116]). The key feature of FDTD is
that Maxwell’s equations are solved on a staggered grid,
one subgrid for the electrical field E and another subgrid
for the magnetic field H, as visualized in Fig. 35.17: Here,
the values of one field vector (either E or H) at the time
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tn is calculated from the values of the other field vector
(either H or E) at the preceding time step tn–1. Both the
accuracy and the computation time are about proportional
to the number of mesh points. Because the typical mesh
size is about 5% of the wavelength λ, the computation time
scales with about 1/λ2 [117]. The method is more appropriate
for optical lithography than for EUV lithography where the
ratio between wavelength and feature size is much smaller
than in optical lithography. Figure 35.18a shows a schematic
discretization of an alternating-phase-shift mask AltPSM.

The waveguide method (WG) [117] is a variant of the
RCWA which is well suited for the simulation of the impact
of EUV masks. Such masks consist of absorbers placed on
top of the multilayer MoSi mirror. For the simulation the
mask is divided into slices with homogeneous optical prop-
erties in the vertical direction; see Fig. 35.18b. Inside these
slices or waveguides, both the electromagnetic fields and the
permittivity profiles are expanded into Fourier series and are
inserted into Maxwell’s equations. The problem statement
based on Maxwell’s equations is transformed into the solu-
tion of an eigenvalue problem, which yields the eigenmodes
of all mask slices. Using proper boundary conditions, the
coupling of the modes of all slices leads to the overall
physical response of the system. The computation time scales
linearly with the number of inhomogeneous slices (more
than one material inside the slice) and cubically with the
numbers of the modes considered in both lateral directions.
Both FDTD andWG and their advantages and drawbacks are
explained more in detail in the literature [117].

FDTD

∆x
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b

Fig. 35.18 Schematic mask representation for (a) FDTD and (b)
waveguide. The figure shows one and a half periods of a standard
alternating phase-shift mask AltPSM and the corresponding FDTD
mesh and waveguide slices

Another approach used for the simulation of parts of resist
exposure is the transfer matrix method for homogeneous
layers. Here, the light intensity within the layer stack is
calculated for a given number of layers with their refractive
indices n + ik, angle of incidence, and polarization. The two
variables considered are the amplitude of the incident and
the reflected light within the system. Incident and reflected
light within a layer propagate as a plain wave with damping
constant k, described by a diagonal matrix. Transmission and
reflection at the interfaces between layers depend on the com-
plex refractive indices of the layer together with the angles of
incidence and the polarization of the light and are expressed
by a matrix where the off-diagonal elements describe the
reflection. Besides the orientation of the mask features, the
difference in the reflectivity between a transversal-electric
and a transversal-magnetic wave may result in important po-
larization effects. A more detailed description of the transfer
matrix method can be found in the literature, for example
[114].
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35.5.4 Simulation of Resist Development

The imaging process outlined above modifies the photoresist
due to the locally deposited energy. In the subsequent devel-
opment step, depending on the resist type used, either the
(sufficiently) exposed or the (sufficiently) unexposed parts
of the resists are removed.

The common description of this process is given by the
Dill model [118]:

∂M (r, t)

∂t
= −C Ĩ (r, t)M (r, t) (35.101)

a (r, t) = A M (r, t) + B (35.102)

Here, the concentration of the photoactive compound
M(r,t) decreases due to the deposited energy density Ĩ (r, t),
and the absorption α(r,t) depends on M(r,t). A, B, and C are
the Dill model parameters for the photoresist in question.
Furthermore, the photoactive compound M diffused with a
diffusion coefficient D:

∂M (r, t)

∂t
= D�M (r, t) (35.103)

Finally, the local resist development rate R(M) depends
onM. Various refinements of this standard reaction-diffusion
model were developed in order to describe state-of-the-art
photoresists, e.g., chemically amplified resists (CAR).

35.5.5 State-of-the-Art Lithography
Simulation

Current state-of-the-art lithography simulation tools employ
selections of the basic approaches summarized below in var-
ious combinations, depending on the tool and the application
in question. Commercially supported tools such as PROLITH
[119], Sentaurus-Lithography [120], and OPTOLITH [121]
additionally provide elaborated user interfaces, and espe-
cially Sentaurus-Lithography and OPTOLITH are integrated
with other TCAD tools of the respective vendors. Examples
shown in the following subsection have been generated with
the research and development simulator Dr.LiTHO [122],
which is designed especially for efficiency and flexibility in
the implementation of physical models and algorithms.

The semi-analytical Kirchhoff approximation allows for
some simple simulation studies where the mask can be ap-
proximated as a two-dimensional pattern of transparent and
opaque arrays and where polarization effects can be ne-
glected. State-of-the-art masks need to be simulated with
numerical approaches such as FDTD, RCWA, or WG, which

are also mandatory if polarization comes into play. Whereas
these are needed for the near field of the mask, the imaging
of this near field onto the wafer may further be simulated, for
example, with the Abbe approach outlined above, utilizing
the result of the mask simulations. As described above,
energy deposition in the photoresist is simulated with the
transfer matrix approach, and resist development is being
simulated based on the Dill model.

Besides these aspects which are specific to lithography
simulation, several more general techniques are also needed,
customized, and employed in lithography simulation: Dur-
ing resist development, its surface is moved with one of
the techniques described below in Sect. 35.7 on deposition
and etching. In order to further improve the efficiency of
simulation and to extend the possible sizes and use cases of
the masks to be simulated, different domain decomposition
methods [123] can be employed which may include not
only three-dimensional but partly also two- or even one-
dimensional simulations. This may also reuse results of prior
simulations which were stored in a repository [123]. To
enable important and promising technological approaches
such as source-mask co-optimization [124], advanced global
optimization algorithms such as genetic algorithms [125] are
being employed. Furthermore, as mentioned below in Sect.
35.8 on process variations, lithography simulation is also
an essential part of TCAD-based Design-Technology Co-
Optimization (DTCO) approaches, in order to establish the
link betweenmask layout and the performance of real devices
and circuits.

35.5.6 Examples for State-of-the-Art
Lithography Simulation

In the following, a few examples of results obtained with the
research and development lithography simulator Dr.LiTHO
[122] in the context of current research on the development
of advanced lithography technologies are shown.

Figure 35.19 shows the impact of a particle located on
an EUV mask pellicle on the printed feature size (critical
dimension, CD) for an EUV system with a NA of 0.55
under specific imaging conditions [125]. The pellicle is a
polysilicon membrane at 2.5 mmmask distance. One can see
that larger particles are critical even in the presence of a mask
protection membrane.

Figure 35.20 shows the impact of mask absorber 3D
effects on the process window of 20 nm semi isolated lines
of a NA 0.33 EUV system [123]. The black curve shows
the result for an ideal absorber in combination with a real
multilayer and the gray curve the same for a real absorber
in combination with a real multilayer. In the simulations,
the real absorber can be replaced by an ideal one to “switch
off” the absorber-related 3D mask effects. The comparison
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Fig. 35.20 Process windows of an ideal EUV absorber (black, in-
finitely thin absorber) and a real EUV absorber (gray) both on top of
a real EUV multilayer [123]

with the fully real mask shows the effect caused by the real
absorber geometry, which is mainly the expected asymmetric
through focus behavior.

The defect-induced loss of reflected light and image in-
tensity in the area of an EUV multilayer defect can be partly
compensated by a removal of absorber in the vicinity of
the defect. Figure 35.21 demonstrates a simulation of this
method for 32 nm features at a NA of 0.33 [126]. The repair is
done by removal of the absorber in a circle around the center
of the defect; see dashed larger circles in the figure, with
an optimum of 50 nm (wafer scale). Other defect positions

and sizes may require more complex repair shapes, especially
at larger NAs where more details of the defect will become
visible.

35.6 Simulation of Deposition and Etching

Similar to lithography, also for deposition and etching, it is
indispensable to take equipment effects into account when
simulating the process results on feature scale. However, here
mostly a clear separation can bemade between the equipment
and the feature-scale level: Equipment simulation (on a scale
of centimeters to meters) can be used in a preparatory step
to calculate quantities just above the (macroscopically flat)
wafer, such as local gas or particle flows and local temper-
atures, which are affected by the reactor geometry, process
recipes, and partly varying further parameters. These inter-
mediate results can then be used as inputs for feature-scale
simulation (on the scale of micro- to nanometers) of the local
deposition and etching of layers. Figure 35.22 visualizes the
separation between these simulation scales.

The area of the simulation of deposition and etching is
very diverse in three respects: First, it includes macroscopic
equipment and nanoscale feature simulation, and moreover
also the (generally three-dimensional) simulation of the
evolvement of partly complex surfaces. These aspects are
reflected by the following subsections. Second, there is a
huge variety of etching and deposition processes which
cannot be covered within the space available for this section.
Therefore, here only the basic principles and approaches
are discussed, and no attempt is made to list the specific
equations and parameters for the large variety of processes
used in semiconductor technology.

35.6.1 Outline of Equipment Simulation

Whereas in the area of lithography integrated equipment and
feature-scale process simulation is mandatory since long, as
described in the preceding section, for both deposition and
etching, the simulation at equipment level can be separated
from the feature-scale simulation. Similar to this, this sepa-
ration is also possible for diffusion and oxidation, whereas in
these two areas, equipment simulation is rarely used. Except
for plasma doping, e.g [127], for ion implantation equipment
simulation has so far not been an issue.

Inmost cases equipment simulation consists of the follow-
ing steps:

1. Three-dimensional discretization of the process reactor or
furnace.

2. Establish assumptions on the physical/chemical modeling
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Fig. 35.21 EUV multilayer defect repair by increasing absorber removal around the defect. The defect caused line deformation is reduced with
an optimum at 50 nm absorber removal [126]

components for the system in question, e.g., gas flow, re-
sistive or inductive heating, radiative heat transfer, plasma
physics, characteristics of sputter targets, chemical reac-
tions, etc.

3. Set up and solve a system of partial differential equations,
representing fluid dynamics, thermal behavior, plasma
characteristics, electrical properties, and chemical reac-
tions for the equipment, possibly including macroscopic
models for the interaction with the wafers (e.g., as sinks
or sources for heat or for chemical species). Such macro-
scopic models do not have to resolve the individual fea-
tures on the wafer. This step can be omitted if, e.g., the
particle flow can be extracted directly in step 4 from the
characteristics of a sputter target defined in step 2.

4. Extract from the equipment simulations the quantities
of interest directly above the wafer, e.g., temperature,
pressure, species concentration, angular or energy dis-
tributions of ions, electrical field, or potential (without
considering individual features on the wafer).

Whereas all these steps are necessary to define and de-
scribe the equipment and process in question, the main nu-
merical effort is needed for step 3, except for cases where no
fluid dynamics is involved. In order to efficiently implement
step 3, usually well-established computational fluid dynam-
ics [128] or plasma simulation codes [129] are employed,
which then have to be supplied by the user with the relevant
physical data and models, as described above.

As an example, Fig. 35.22a deals with the equipment
simulation of the deposition of silicon oxide in a capaci-
tively coupled plasma-enhanced chemical vapor deposition
(PECVD) reactor using oxygen and TEOS chemistry. The
contour colors in the figure represent the concentration of
the oxygen radicals. The corresponding fluxes of oxygen
radicals, together with the fluxes of oxygen ions, provide
the boundary conditions for the feature-scale simulation, the
result of which is shown in Fig. 35.22b. This figure represents
a cross section of a contact hole with a non-conformally
deposited silicon oxide layer.
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In case of diffusion and oxidation processes, the situation
is somewhat easier, because the process gas does not react
in the furnace volume, but only on the wafer (in case of
oxidation, transforming silicon to silicon oxide). Here, step 3
is reduced to the simulation of fluid dynamics and thermal
behavior. However, several transient effects might need to
be considered, due to the movement of a wafer or a batch
of wafers into or out of the preheated furnace or due to
ramping the temperature up and down while the wafer is
being processed. This is especially important in case of very
short time annealing processes, such as spike or millisecond
annealing, which need elaborated simulation of the transient
local temperature distributions because these are not in equi-
librium. For example, laser thermal annealing was discussed
in [130].

35.6.2 Discretization andMovement
of Surfaces

Deposition and etching do not only change the geometry
of the device or structure during fabrication, but may also
change its topology: New layers may be added, old layers
may be completely removed, originally connected features
may get disconnect and vice versa, and holes may be trans-
ferred into voids. Very small features may be critical, because
they may, e.g., act as an etch stop. Also curved, tilted, and

non-axis-aligned structures must be accurately described. In
turn, it is vital to employ surface discretizations and algo-
rithms for their update, which are numerically efficient and
stable, can reliably handle arbitrary topographies and their
changes and allow for adaptive control of the local number
of elements used, to achieve a good compromise between
accuracy and efficiency.

Three main methods have been used for the description
of geometries and of their changes during processing. The
simplest and most stable is the cell-based description and the
related cell-removal algorithm [131], which is, however, due
to its inherent limitations hardly used any more and here only
mentioned for historical and reference purposes. The other
two approaches are triangulation and the level set method.
Triangulation is the three-dimensional extension [132] of
the “string algorithm” which was generally used for two-
dimensional topography simulation [133]. Here, surfaces and
interfaces are discretized by triangles. Geometrical changes
during processes are then described by moving the vertices
of the triangles according to rates which result from physical
models as described in Sect. 35.6.3. The main advantage
is that these models can directly use the position, size, and
orientation of these triangles. The main disadvantage is that
it is difficult with this approach to deal with topological
changes, e.g., in case that during layer deposition the opening
of a hole closes to form a void, as it would happen if the
process shown in Fig. 35.23 would be continued.
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The approach which is most frequently used for the dis-
cretization of three-dimensional surfaces and interfaces is the
level set method: Here, the surface is described as the set of
points x where a three-dimensional function F(x, t) equals
zero, and the movement of the surface is simulated based on
local rates r(x, t):

∂F (x, t)
∂t

+ r (x, t) · ∇F (x, t) = 0 (35.104)

The main advantages are that with this approach surfaces
and interfaces are given as solutions of partial differential
equations, which are solved on a three-dimensional mesh,
similar to bulk variables like dopant concentrations, and
that changes in topology should not lead to problems if the
underlying three-dimensional grid is locally fine enough. The
disadvantage is that surface elements and surface normals
needed in the implementation of the physical models as
outlined in Sect. 35.6.3 are not given directly and must be
extracted separately from the level set description.

35.6.3 Models for Deposition and Etching
Rates

Physical/chemical models for deposition and etching con-
sider the interaction of different ionic or neutral species with
the surface to allow the determination of local deposition
or etching rates. Boundary conditions for the feature-scale
modeling can be provided by equipment simulations or mea-
surements, e.g., of temperature, pressure, species concentra-

tions, or energies of neutrals and ions. In the following, as an
example we discuss low-pressure chemical vapor deposition,
where the mean free path is large compared with the feature
size and the particles move isotropically in the volume of the
reactor far away from the surface.

Assuming a triangulated surface, for each triangle I the
reaction flux Ri depends on the flux of particles from free
space Ai and from all other triangles j, Sij. Whereas the
impinging particles are incorporated into the growing layer
with a sticking coefficient sc, the remaining particles are
desorbed and may arrive at other parts of the surface. Here,
the notation from the literature [132] is used, in which also
more details are given:

Ri = sc ·
⎛
⎝Ai + ∑

j

Sij

⎞
⎠ (35.105)

Here, the fluxes from free space and from all other tri-
angles are calculated based on the solid angle for free sight
to gas space �free, the solid angle of free sight to all other
triangles j, ��ij, and the angle ϑ ij between the surface
normal of triangle i and the straight line between the centers
of triangle i and triangle j; see Fig. 35.24:

Sij = Rj
1 − sc

π sc
cos ϑij · ��ij (35.106)

The flux Ai from the gas volume is obtained by

Ai = G
∫

�free

cos ϑd� (35.107)
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(b) geometry for two arbitrary triangles with particle transfer to be
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where ϑ is the angle between the normal of triangle i and the
direction from triangle i to d� (see Fig. 35.24).

Establishing the flux balance between all triangles and
with free space results in a system of linear equations for
the reaction fluxes Ri, with the transfer matrix Tij between
triangles I and j:

πRi −
∑
j=i

TijRj = π − 1

1 − sc

∑
j=i

Tij (35.108)

Tij = (1 − sc) cos ϑij · ��ij (35.109)

Here, for the transfer matrix elements Tij, the calculation
of the angles of free sight to gas space and especially to all
other triangles is needed. For the latter, it must be checked if
the view is (partly) blocked by any other triangle. In turn, for a

surface discretization consisting of n triangles, the numerical
effort scales with the third power of n.

Finally, the absolute deposition rates for each surface
segment are obtained by normalizing to the deposition rate
for a one-dimensional (flat) geometry. That one-dimensional
deposition rate and the sticking coefficient are the only phys-
ical parameters of the process, whereas the transfer matrix
characterizes the geometry. These have to be re-calculated
after each time step to take the changes of the geometry into
account.

In terms of computational efficiency, subsequent work has
dealt especially with the optimumway to calculate the angles
of free sight. Other numerical issues have been the appropri-
ate adaptive surface discretization with one of the methods
outlined in Sect. 35.6.2 and the efficient implementation of
surface movement.

Figure 35.23 shows an example of a simulation that has
been carried out with the model described above assuming a
sticking coefficient of 0.15 which is a typical value for the
modeling of a low-temperature oxide (LTO) process.

This basic model for deposition has been extended and
adapted to the different deposition processes in various re-
spects:

• Processes in which more than one mechanism contributes
to the deposition. In the simplest case, the approach is
applied simultaneously to two or more reaction species,
which show no interaction and are each described by
their one-dimensional deposition rate and their sticking
coefficient.

• Long-throw sputter deposition which is characterized by
the emission characteristics of the sputter source, colli-
sionless movement of the sputtered particles due to low
pressure, and a sticking coefficient of unity. Here, the
transfer matrix is not needed, and the local deposition
rates are calculated by integrating the contributions of the
sputter source across the angle of free sight for the surface
point in question, as discussed in the literature [134].

• Considering different species which either react on the
surface and/or sputter away some already deposited
atoms. This leads to additional terms in Eq. (35.105)
while not changing the basic approach because the role
and computation of the transfer matrix does not change.
An example is ionized metal plasma deposition [135].

Such models can also be implemented by using Monte
Carlo ray tracing instead of the transfer matrix method [136]:
Here, trajectories of pseudo-particles are traced until they
hit the layer surface. Similar to above, physical models are
employed for the initial emission statistics of the particles
and their adsorption, reaction, and desorption at the wafer
surface. This also allows for the simulation of deposition
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processes which are carried out in two steps, like atomic layer
deposition (ALD) [137].

For etching, depending on the process in question, some
or all of the elements discussed above for deposition may
show up. In most cases of etching, physical and chemical
sputtering play major roles, with the corresponding yields
introduced asmodel parameters, replacing or complementing
sticking coefficients [138]. However, adsorption/desorption
and in turn transfer matrices may still play a role, because
for some etching processes the emission and re-adsorption
of species need to be modeled.

A detailed open-access review paper [139] deals espe-
cially with numerical aspects linked to the usage of the level
set algorithm and physical models for etching simulation.

35.7 Process Variations

For advanced micro- and nanoelectronic devices and circuits,
both statistical and systematical process variations come
into play, which influence the performance of devices and
systems. In result, although the nominal product, fabricated
under ideal circumstances, may meet the specifications and
required figures of merit, a considerable fraction of devices
and circuits may fail to do so, causing yield loss and critical
increase of fabrication costs per sold unit. In turn, the impact
of such process variations must be known and minimized as
much as necessary.

Statistical process variations such as random dopant fluc-
tuations RDF [3], line edge roughness LER [140], and metal
grain granularity MGG [141] result from the granularity of
matter. They have been considered since long in dedicated
device studies, employing special efficient device simulation

tools [142] and simple but valid assumptions on the statistical
distribution of these variations. This is in line with the fre-
quent practice in device simulation to start from assumed ide-
alized device geometries and dopant distributions. However,
in a real fabrication environment not only the full process
flowmust be considered, which leads to non-idealized device
geometries and dopant distributions, but also its variations. In
the following, a brief overview of the sources of systematic
process variations is given, together with a hierarchical ap-
proach to simulate their effect on devices and circuits.

35.7.1 Sources of Systematic Process
Variations

Systematic process variations may occur in all major pro-
cess steps. They can be grouped into two categories: First,
inhomogeneity which is inherent to the equipment used and
which can neither be completely avoided by optimizing the
equipment design nor the process flow. Second, some process
parameters cannot be controlled precisely or may have some
drifts during processing or on the long run between repeated
process steps.

For both optical and EUV lithography, both the distance
between the optical system (last lens or last mirror) and
the wafer and the energy emitted by the light source may
change from illumination to illumination in the standard
step-and-repeat process, leading to systematic variations be-
tween different dies on one wafer and especially between
different wafers. The so-called process window in Fig. 35.25
shows examples how these variations of focus and dose,
respectively, modify the size of the features generated in
the lithography step, the so-called critical dimensions (CD).
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Fig. 35.25 Process window in optical lithography for (a) 120 nm pitch with 60 nm lines and (b) 72 nm lines
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Here, the central line shows the combinations of focus and
dose which lead to the nominal CD (60 nm left picture, 72 nm
right picture), whereas the upper and lower lines show the
combinations of focus and dose which lead to a CD increase
or decrease by 10%, respectively. Whereas under specific
imaging conditions, the CD stays constant for varying focus
at a specific fixed dose, for other imaging conditions, this is
not the case. Additionally, also some other process variations
may occur in lithography steps, caused, e.g., by defects
and imperfections of the optical system or imperfect wafer
alignment.

For etching and deposition, especially inhomogeneous
concentrations of ions and neutrals, the temperature distribu-
tion, or the emission characteristics of the sputter target lead
to systematic process variations across the wafers or between
wafers. Figure 35.26 shows an example for the dependence of
the etch rate on the distance from the center of the wafer for
reactive ion etching of silicon based on chlorine chemistry.

Further systematic process variations include among oth-
ers differences between nominally equal temperature profiles
in very short time annealing processes, such as millisecond
or laser thermal annealing [130].

35.7.2 Hierarchical Simulation of the Impact
of Process Variations

In order to predict the impact of process variations on de-
vices and systems, it is necessary to trace them through the
whole fabrications process: Not only the process step where
the variation occurs must be simulated, but all subsequent
process steps must be simulated, using as starting conditions
both the intermediate results without and with the effects of
that variation. Furthermore, it is necessary to make sure that
numerical errors which occur throughout the simulation or

4

E
tc

h
 r

at
e 

(n
m

/s
)

Distance to center of wafer (cm)

‘Etch-rates.dat’

3.8

3.6

3.4

3.2

3
0 1 2 3 4 5 6 7 8 9 10

Fig. 35.26 Example for the dependence of etch rate of a silicon etching
process on the distance from the center of the wafer

when changing between the data representation of different
simulation modules or tools do not invalidate the variability
study: They must affect the result significantly less than the
variation in question.

From the modeling point of view, the study of process
variations requires to employ appropriate models: First, mod-
els which describe the effect of the process variation at the
step at which it occurs – e.g., the impact of focus on the CD
generated in a lithography step. Next, models must be used
which are capable of tracing the changes of the results of
that process step (here the CD) through all following process
steps. Generally, both requirements can be met by selecting
a suitable process model among the ones available.

In real cases, a state-of-the-art process flow may be af-
fected by a large number of process variations. Considering
just 10 process variations and just 5 parameter values for each
of them would yield a final split of 510 or nearly ten million
process simulations, which is of course not feasible. In turn,
it is necessary to first select the most relevant process vari-
ations (about 3–5) and then to employ a suitable design-of-
experiment approach to define the set of process simulations
needed, as discussed elsewhere [143].

In result, geometries, dopant distributions, and potentially
other quantities which characterize a device (or interconnect)
are simulated for different values of the input process varia-
tions. Considering, e.g., three process variations which are
discretized with three values each, a matrix of 3 × 3 × 3
devices results. In order to extract compact models which
are aware of variations, first the nominal compact model
for the nominal device without any variations is extracted.
In the second step, this compact model is extended to also
include the process corners considered, which means in
the example addressed here the 3 × 3 × 3 devices [144].
Finally, statistical device simulation is employed to extend
this compact model to also include the statistical process
variations, such as RDF [144]. A later improvement of this
method [145] has enabled the direct usage of the values of
the systematic process variations (e.g., defocus) in the second
compact model extraction step outlined above [143]; see
Fig. 35.27. As an example Fig. 35.28 shows the saturation
current of a nanowire transistor.

More detailed descriptions of the sources of process vari-
ations and of the hierarchical simulation of their impacts on
devices and are given in a related open-access papers [143]
[145].

35.8 Conclusions

Process simulation is the virtual image of IC manufacturing
on a computer: It covers the whole development from the
bare silicon wafer to the final device and circuit. Its full
benefit can only materialize if accurate physical models with
proper parameters are available within numerically stable and
correct simulators.
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Fig. 35.27 Extraction and generation of hierarchical compact model
aware of systematic and statistical process variations, following the
approach published before [145]
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The applications of process simulation are manifold.
Nowadays it is most frequently used in industry for the
development and optimization of the process flows needed
for the fabrication of devices. The success of this approach
depends on the availability of advanced process simulation
tools which cover the whole fabrication sequence, are closely
linked with device simulation, and are accompanied by
good user support. Because the speed of simulation is a
key requirement for the simulation splits used in technology
and device optimization, very frequently efficient models

are used which depend on calibrations for the process
flow in question. On the other hand, physically rigorous
models are readily used for development and optimization
of new advanced processes or pieces of equipment. Here,
predictivity with as little calibration as possible is the key
requirement, not the integration into an overall simulation
system.

An increasingly important advantage of process simu-
lation is that it can be used not only to study and select
process options but also to quantify and minimize the impact
of systematic process variations which are caused by the
equipment used. Here, it makes indispensable contributions
to the simultaneous development and optimization of tech-
nologies, devices, circuits, and designs, the so-called Design-
Technology Co-Optimization (DTCO), which has in recent
year developed into a key and indispensable method for the
nanoelectronics industry.

With new semiconductor materials coming into use and
new device architectures (including new carriers of informa-
tion like spin or the phase of the material) emerging, the
complexity of the processes to be simulated is continuing
to grow. So are the requirements on model accuracy and
generality and efficiency of simulation. There will also in
future be several (but of course different from the past)
challenges left for developers in the process simulation area.
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