
Real Time Multi Object Detection & Tracking
on Urban Cameras

Rifkat Minnikhanov1(&), Maria Dagaeva1,2, Timur Aslyamov1,
Tikhon Bolshakov1, and Emil Faizrakhmanov1

1 “Road Safety” State Company, Kazan, Russia
its.center.kzn@gmail.com

2 Kazan National Research Technical University - KAI named
after A. N. Tupolev, Kazan, Russia

Abstract. Processing video from urban video surveillance cameras requires the
use of algorithms for multi-object detection and tracking on video in real-time.
However, existing computer vision algorithms require the use of powerful
equipment and are not sufficiently optimized to process multiple video streams
simultaneously. This article proposes an approach to using the tracker in con-
junction with the YoloV4 object detector for real-time video processing on
medium-power equipment. Paper also presents the solution for difficulties that
arise during work with optical flow. The results of the comparison of the
accuracy and speed of image processing of the applied approach with such
trackers as IOU17, SORT, KCF, and MOSSEE are also presented.

Keywords: Deep learning � Object detection & tracking � Video surveillance �
Computer vision

1 Introduction and Problem Definition

Currently, one of the most relevant areas in the field of intelligent transport systems
(ITS) is the task of detecting and tracking objects in real-time on video streams of
closed-circuit television systems (CCTV). Existing algorithms for detecting and track-
ing objects in the video image allow to determine the position of the object, its trajectory
and class with high accuracy. However, when processing video images from multiple
video surveillance cameras in a data centre, there is a problem associated with the need
to accommodate many expensive graphics processor units (GPU). The development of
our solution for object detection and tracking allows real-time analysis of video images
on medium-power equipment with sufficient accuracy that allows using of video
surveillance cameras as an optimal and operational source of information.

2 Related Works

Today, most existing tracking solutions follow the tracking-by-detection paradigm. The
paradigm involves splitting the tracking process into 2 stages: detecting all objects in
the image (frame) and linking the corresponding detected objects to form a trajectory.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Akhnoukh et al. (Eds.): IRF 2021, SUCI, pp. 257–268, 2022.
https://doi.org/10.1007/978-3-030-79801-7_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79801-7_18&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79801-7_18&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79801-7_18&domain=pdf
https://doi.org/10.1007/978-3-030-79801-7_18

According to the features of the application, existing trackers can be divided as
follows:

1. Trackers that require a marked-up training dataset (Braso and Leal-Taixe 2020;
Fang et al. 2018; Sadeghian et al. 2017; Leal-Taixe et al. 2014). This feature creates
difficulties in obtaining a marked-up dataset, which makes their use difficult.

2. Trackers that perform processing with insufficient FPS (an indicator of video pro-
cessing, denoted as the number of frames processed per second), which makes real-
time processing impossible (Bergmann et al. 2019; Karthik et al. 2020).

3. Trackers that perform independent tracking of individual objects, without the use of
a detector on each frame (Chu et al. 2019; Bolme et al. 2010). This group of trackers
has a problem related to the insufficient quality of tracking objects.

4. Trackers that provide acceptable tracking quality and image processing speed
(hereinafter referred to as FPS), provided that an effective detector is used (Bewley
et al. 2016; Bchinski et al. 2017).

Although, the problem, outlined in the article, should be solved by trackers from
the 4-th group, to date, there are no sufficiently effective, pre-trained detectors for
detecting objects on video from surveillance cameras in the public domain. The
exception is the YoloV4 detector (Bochkovskiy et al. 2020), which is the best in
FPS/accuracy ratio. It is capable of providing real-time image processing on Nvidia
GeForce 2070 graphics cards with an input image size of 320*320 pixels. However, its
use on medium-power video cards (GeForce 960, 1050 Ti, 1060, 1070 and 1080) is not
possible due to the low FPS rate. At the same time, the use of a lightweight version of
this detector – YoloV4 – tiny (Bochkovskiy et al. 2020) is not sufficiently effective in
detecting objects. The Table 1 shows a comparison of the FPS output of YoloV4 on
different GPUs.

Table 1. Comparison of YoloV4 FPS on different GPUs

Nvidia GPU Framework An input image size FPS

GeForce 850M OpenCV 4.4.0 for Windows 416 * 416 5.4
GeForce 1050 Ti 416 * 416 14.3
GeForce 1050 Ti 608 * 608 9.1
GeForce 1060 Ti 416 * 416 20.4
GeForce 1060 Ti 608 * 608 16.1
Jetson Nano TensorRT FP16 416 * 416 3.9
Jetson Nano 608 * 608 1.9
GeForce 1080 Ti TensorRT FP32 416 * 416 27.3
GeForce 1080 Ti 608 * 608 18.2
Tesla V100 16 Gb OpenCV 4.5.0 – pre for Linux 416 * 416 62.5
Tesla V100 16 Gb 608 * 608 37

258 R. Minnikhanov et al.

3 Proposed Solution

In this paper, we propose a new tracker for tracking multiple objects based on the
pyramidal implementation of the allowed optical flow KLT (Bouguet 2001).

Our tracker independently predicts the position of the object bounding box several
frames ahead, and every few frames the YoloV4 detector is used (with the size of the
input image - 608*608 pixels). This is necessary to correct the predicted values of the
object frame position and track new objects. For effective prediction, the tracker uses
statistical characteristics of the distribution of the calculated allowed optical flow KLT
to predict the current position of the frame from its previous location. The association
of objects between frames is carried out by solving the assignment problem with a
greedy algorithm according to the following principle: if the centroid of a newfound
object falls into one of the existing frames, then it is considered that it is the same
object. If the centroid of the newfound object falls within more than one of the existing
frames, then it is associated with the one whose distance to the centroid is less. In this
case, an object is considered lost if the detector has not confirmed its existence a certain
number of times in a row.

3.1 Predicting the Position of the Object Frame with the Tracker

To predict the position of an object’s frame, it is enough to know the position of the
object in the current frame and the contour or mask of the object in the previous frame.
Also, given that the object is defined by a bounding rectangle rather than a contour, it is
sufficient to determine how much the frame’s centroid must be offset for the frame to
continue to reflect the object’s position. The displacement of the centroid can be
determined using a statistical characteristic of the distribution of displacements of
points of the object (mathematical expectation, mode or median of the optical flow of
points of the object). However, there are some problems when calculating the optical
flow.

1. Fast detectors do not return the object mask, but its bounding box, which does not
allow you to simply accept new frame coordinates after calculating the optical flow
for the coordinates of points in the current frame, for a number of reasons: some
points fall on a fixed background; the object mask may be partially covered by a
fixed background object and for overlapping points; the optical flow is cleared
incorrectly.
This problem was solved in the following way. The absolute majority of points for
which the zero optical flux is calculated will belong either to the background or to a
static occluder (an object that overlaps a moving object). Points associated with the
background or static occluder appear gradually in the object frame and, having a
sufficiently large area, retain their position relative to the object in neighbouring
frames. Excluding “standing points” (points with the near-zero optical flow) from
consideration, we will most likely exclude all points related to the background or
static occluder. An example of excluding points can be seen in the Fig. 1.

Real Time Multi Object Detection & Tracking on Urban Cameras 259

2. Calculating the optical flow over all points of an object is a very expensive oper-
ation if there are many objects or they are large.

The problem of slow calculation of the optical flow is eliminated by selecting a
representative sample of points belonging to the object frame. It was assumed that the
frames returned by the detector are well centred relative to the object, that is, the
centroid of the frame is close to the centroid of the object and if the object is solid, then
the points closer to the centre of the frame will be more likely to fall on the object, and
not on the background. Obtaining a representative sample was carried out by creating a
“template for placing control points” on a hypothetical object that has a side size of one
length. Such a template is a tensor of size H*W*2, where H is the number of points in
the sample in height, W is the number of points in the sample in width. The tensor
contains the coordinates of the sample control points for the hypothetical object under
consideration. The value of the tensor elements is determined by the following
formulas:

templatei;j;0 ¼ 0:5þ 10
0:5� 1

Wð Þ� j�W
2ð Þ

1þ 0:25 10
0:5� 1

Wð Þ� W�1�W
2ð Þ�10

0:5� 1
Wð Þ� W�2�W

2ð Þ� � ; j[W
2

templatei;j;0 ¼ 0:5� 10
0:5� 1

Wð Þ� W
2�jð Þ

1þ 0:25 10
0:5� 1

Wð Þ� W�1�W
2ð Þ�10

0:5� 1
Wð Þ� W�2�W

2ð Þ� � ; j\W
2

templatei;j;1 ¼ 0:5þ 10
0:5�1

Hð Þ� H
2�ið Þ

1þ 0:25 10
0:5�1

Hð Þ� H�1�H
2ð Þ�10

0:5�1
Hð Þ� H�2�H

2ð Þ� � ; i[H
2

templatei;j;1 ¼ 0:5� 10
0:5�1

Hð Þ� i�H
2ð Þ

1þ 0:25 10
0:5�1

Hð Þ� H�1�H
2ð Þ�10

0:5�1
Hð Þ� H�2�H

2ð Þ� � ; j\ H
2

templatei;j;0 ¼ 0:5; j ¼ W
2

templatei;j;1 ¼ 0:5; i ¼ H
2

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

ð1Þ

Next, a similar pattern is applied to the frame of the object by adding to it the offset
of the object relative to the coordinates (0, 0), as well as multiplying the corresponding
coordinates by the width and height of the object. An example of such a template
superimposed on an object with a size of 64*128 pixels is shown in the Fig. 2.

Fig. 1. (a) – the tracked object (car) moving behind a static occluder (road sign) indicating its
direction of movement; (b) - display of the optical flow of a number of points inside the frame;
(c) - display of the optical flow of points, except for those whose optical flow was calculated
incorrectly, or for the second or more consecutive times turned out to be near-zero.

260 R. Minnikhanov et al.

To determine whether the object is moving or not, we calculate the proportion of
control points that are standing for the first time, from all control points that are not
standing for the second or more times. To do this, the optical flow of each object is
calculated at the points corresponding to the previously described pattern superimposed
on the object frame.

The condition that the object is worth will be:

P
stopmasks;n �

P ðstopmask�s;nstopmasks�1;nÞ
H �W �P ðstopmask�s;nstopmasks�1;nÞ �

P
sts;n

[0:75 ð2Þ

Taking into account that:

• sts,n - binary matrix H*W of the correctness of calculating the optical flow for the n-
th object on the s-th frame, in which 1-means that the optical flow is calculated
incorrectly, and 0-that it is calculated normally;

• stop_masks,n - binary matrix H*W of immobility of control points for the n-th
object on the s-th frame, in which 1 is the optical flow for the point near zero, 0 is
significantly different from zero;

The coefficient 0.75 was determined empirically.
The matrix sts,n is determined automatically when calculating the offsets of control

points by the optical flow. The matrix stop_masks,n is filled in by comparing the
coordinate differences of all control points for which the optical flow was calculated
with a certain threshold, which is calculated based on the size of the object frame. If it
was determined that the object is stationary, then the frame offset for it is not calculated.
In addition, all elements of the matrix stop_masks,n for this object are set to 0, so that on
the next frame, if this object remains stationary, there is no “parasitic” jitter for its
frame. All fixed control points and control points for which the optical flow has not

Fig. 2. “Template for placing control points” on objects defined by a 12*12*2 tensor
superimposed on a hypothetical object with a size of 64*128 pixels

Real Time Multi Object Detection & Tracking on Urban Cameras 261

calculated offsets are removed from the calculation of the final offset of the object
frame. Thus, it becomes possible to calculate some statistics on the offsets of control
points with a high probability related to the object itself, and not to the background or
occluders. All fixed control points and control points for which the optical flow has not
calculated offsets are removed from the calculation of the final offset of the object
frame. Thus, it becomes possible to calculate some statistics on the offsets of control
points with a high probability related to the object itself, and not to the background or
occluders. In the first version of our tracker (Makhmutova et al. 2020), the median was
used as a statistical measure for determining the displacement of the object frame. Its
advantage is that in most cases it perfectly copes with “outliers” in the sample of
control point offsets, but its calculation requires sorting at least half of the sample.
Sorting is a rather expensive operation that is poorly suited for performing it in parallel
mode.

On the other hand, mathematical expectation can be calculated quickly and con-
veniently, but it will be a biased estimate if there are serious outliers. To fix this
problem, you can recalculate the mathematical expectation after removing the control
points from consideration, the offset of which differs from the already calculated
mathematical expectation by a certain coefficient that depends on the standard devia-
tion. Moreover, such an operation can be carried out iteratively the required number of
times, which will consistently reduce the offset of the mathematical expectation. The
visual effect of the iterative recalculation of the mathematical expectations can be seen
in the Fig. 3.

Fig. 3. Comparison of different ways to remove outliers. (a) - displaying offsets of control points
without any filtering; (b) – filtering outliers with a cut-off of ±1.5 r; (c) – filtering outliers with a
cut-off of ±1.1 r; (d) - filtering outliers with 2 cut-offs of ±1.5 r with a recalculation of the
expectation value.

262 R. Minnikhanov et al.

At each iteration, the corresponding binary mask korr with size H*W is calculated
for the points:

korrc;s;n;i;j ¼ 1 � korrc�1;s;n;i;j; xs;n;i;j � mc�1;s;n

�� ��\K � rc�1;s;n

0 � korrc�1;s;n;i;j; xs;n;i;j � mc�1;s;n

�� ��[K � rc�1;s;n

�
ð3Þ

where:

• xs,n,i,j is the offset of the control point (i, j) for the n-th object on frame s;
• c - the outlier elimination iteration number;
• mc,s,n is the expected value of the control point offsets on iteration c for the n-th

object on frame s;
• rc,s,n is the standard deviation of the control point offsets on iteration c for the n-th

object on frame s.

The matrix korr0 is initially initialized as:

korro0 ¼ stopmask � st ð4Þ

The expectation value mc, s, n and the standard deviation rc, s, n, in this case, are
determined by the formulas:

mc;s;n ¼
P

x�s;nkorrc;s;nP
korrc;s;n

ð5Þ

rc;s;n ¼
PH;W

i¼1;j¼0 ðxs;n;i;j � korrc;s;n;i;j � mc;s;n;i;jÞ2P
korrc;s;n

ð6Þ

The expectation value, together with the application of this method of eliminating
outliers, is a fairly accurate and easily calculated measure that was used to determine
the final offset of the object frame from a set of control point offsets.

3. Optical flow for the “hidden” points are calculated has been grossly inadequate, and
the fact of such calculations can often be very difficult to detect automatically.

The optical flow is calculated inadequately if the control point has disappeared
behind the occluder or has gone beyond the image. With the gradual overlap of the
object, static occluder offset checkpoints before occluders computed optical flow is
much less than the real displacement of the object frame. If the occluder has small
dimensions relative to the object, these differences do not make a significant contri-
bution to the final frame displacements, being compensated by the displacements of the
remaining control points. At the same time, the frame begins to lag behind the object
horizontally if a significant part of the columns of the control point placement template
is blocked, and vertically if a significant part of the rows is blocked. We solved this
problem by adding artificial acceleration to objects horizontally if a certain percentage
of the columns of the object’s control point placement pattern is significantly over-
lapped, and vertically if a certain percentage of rows are significantly overlapped.

Real Time Multi Object Detection & Tracking on Urban Cameras 263

The problem of inadequate calculation of the optical flow for control points located
near the image boundaries can be solved by tracking how much the width and height of
the object frame have decreased due to going beyond the image boundaries relative to
the original ones. Then, according to the calculated shares, exclude from consideration
the corresponding shares of rows and columns from the corresponding sides of the
template for placing control points of the object. In addition, if the frame of an object
has reduced its area due to going beyond the image boundary, reduce the coefficient
before r for this object, as well as increase the number of iterations of recalculating the
mathematical expectation with clipping by the standard deviation by one.

3.2 Parameters of the Tracker

By applying all the above methods together, you can significantly improve the effi-
ciency of mathematical expectation as an estimate of the displacement of the object
frame with a slight increase in the time of its calculation. We have empirically selected
the following parameters for our tracker:

• Percentage of standing points from the total number of points except for standing
the second or more times to recognize the object as standing – 75%

• number of points in the template for placing control points in width and height –
12*12

• Number of iterations to recalculate expectation with sigma - 2
• The coefficient in front of r for drop emissions – 2
• The rate of acceleration of objects horizontally due to the overlapping of a con-

siderable number of columns in the pattern of placement of control points – 1.6
• The rate of acceleration of objects vertically due to the overlapping of a consid-

erable number of lines in the pattern of placement of control points – 1.1
• The share of the points standing in the column/row placement pattern of control

points, to make a column/line has been blocked – 0.6
• The proportion of overlapped columns/rows to start the working mechanism of

acceleration – 0.2
• The multiplier factor r for discarding feature points, the part of the framework

which went beyond image – 0.85 (Fig. 4)

Fig. 4. Estimates of the distribution of control point offsets relative to the real displacement of
the object frame: (a) - a histogram of the distributions of control point offsets relative to the real
displacement of the object frame; (b) - various estimates of the real displacement of the object
frame based on the distributions of control point offsets.

264 R. Minnikhanov et al.

4 Evaluation

The effectiveness of our tracker was evaluated on 3 datasets: training data
2DMOT2015 (Leal-Taixe et al. 2015), training data MOT16 (Milan et al. 2016) and
our own dataset consisting of various videos from surveillance cameras of the city of
Kazan. Our own dataset is a set of 5 videos from CCTV Kazan city roads. Their
description is presented in the Table 2.

Table 2. Description of the dataset for trackers evaluation.

Videofile’s
name

FPS Resolution Length
(Duration)

Tracks Number
of
bounding
boxes

Density Description of
the video

Bulak 30 1280 * 720 1 980
(1:06)

132 34 183 17,3 Footage of
busy
intersection in
the centre of
Kazan, clear
weather

Bulak_accident 30 1280 * 720 1 483
(0:49)

89 26 926 18,2 Footage of an
accident at one
of the
intersections
with rainy
weather

Bulak_night 30 1280 * 720 460 (0:15) 24 3 391 7,5 Footage at one
of the
intersections in
the centre of
Kazan at night
with
defocusing of
the camera

Kamala 30 1280 * 720 2 010
(1:07)

64 24 935 12,4 Footage where
there are a large
number of
static occluders

Nesmelova 30 1280 * 720 1 285
(0:42)

57 17 230 13,4 Footage where
there is a
significant
difference in
light

Total – – 7 208 366 106 665 14, 8 –

Real Time Multi Object Detection & Tracking on Urban Cameras 265

The sets provided by the authors were used as the detection set for the MOT
Challenge sets. For our dataset, we used detections made using yolov4 with a 608x608
window.

For comparison with our tracker, 3 trackers were selected: SORT (Bewley et al.
2016), IOU17 (Bchinski et al. 2017), KCF MOSSE. For SORT and IOU17, imple-
mentations provided by the authors of these trackers were used as part of the official
publication of the results of the MOT Challenge performed by these trackers. For KCF
and MOSSE, implementations from OpenCV 4.4.0 were used.

The main key point is the maximum reduction in the cost of processing video from
a single camera, this can be achieved by increasing the intervals between the use of the
detector while maintaining an acceptable detection efficiency of objects. Also, in the
case of increasing the intervals by reducing the FPS of the video stream, there is an
extremely undesirable loss of information. Therefore, one of the points of our study
was a comparative analysis of the behaviour of trackers with a decrease in the fre-
quency of use of the detector. The comparison results are shown in the Fig. 5.

It is worth noting that for all trackers except IOU17, the position of the frames for
objects between detector applications was determined based on tracker predictions.
IOU17 does not have a mechanism for predicting the position of the object frame on
the next frame, so the only way available for it to reduce the frequency of using the
detector is to reduce the FPS of the video itself, by discarding all frames between
detections. For this reason, the evaluation results for this tracker are somewhat inflated
compared to the rest.

The results show that our tracker is slightly behind in efficiency and speed SORT
and IOU17, when applying the detector on each frame, greatly surpasses them in
effectiveness in reducing the frequency of application of the detector 3 or more times,
allowing us to confidently move objects by reducing the frequency of application of the
detector to 5 times. When compared with KCF, our tracker shows similar efficiency,
while reducing the frequency of use of the detector by 4–5 times.

The effect of reducing the frequency of detector application on the final perfor-
mance of the detector and tracker bundle was also measured. As a detector, YoloV4
was used with a window of 608x608 pixels on hardware with GPU: NVIDIA GeForce
1050ti 4 GB, CPU: Intel Core i5 8300H and 8 GB RAM. The results are shown in the

Fig. 5. The dependence of the Multi-Object Tracking Accuracy (MOTA) on the frequency of
use of the detector: (a) - for our dataset; (b) - for the 2dMOT2015 dataset; (b) - for the MOT2016
dataset.

266 R. Minnikhanov et al.

Fig. 6. The figure shows that with this configuration of equipment, real-time video
processing is achieved only when the frequency of using the detector is reduced by 4
times for SORT and IOU17, 5 times for our tracker by 7–8 times for MOSSE.
For KCF, real-time processing cannot be achieved. At the same time, the only tracker
that provides sufficient efficiency of tracking objects in real-time is the tracker with the
suggested approach.

5 Conclusions

The essence of the work was a comparative analysis of existing trackers with the
developed tracker algorithm to achieve real-time video processing on medium-power
equipment and with acceptable object detection accuracy. The evaluation results
showed that the presented algorithm of the tracker, under the mandatory condition of
working in real-time, has a MOTA indicator close to the values of the trackers, which
have a much lower FPS indicator. Thus, the tracker is balanced between the acceptable
accuracy of object detection and the number of processed frames per second. The
tracker provides reliable tracking of objects at intervals of up to 5 frames without the
use of a detector, and, when working in conjunction with the YoloV4 detector, which
detects once every 5 frames on input 608x608 images, produces 25 FPS on an GeForce
1050 Ti GPU and an Intel Core processor i5 8300H. The use of this tracker allows not
only to provide tracking of objects in the video in real-time on relatively weak GPU,
but also allows to process several video streams on one copy of YoloV4 on powerful
ones: the detector performs object detection for one of the cameras, while for the rest it
tracks objects without detections. Experiments show that using a similar technique, one
copy of YoloV4 can serve up to 4–5 trackers on Nvidia Tesla V100 16 Gb.

Fig. 6. The dependence of the FPS of the detector and tracker bundles on the decrease in the
frequency of use of the detector.

Real Time Multi Object Detection & Tracking on Urban Cameras 267

References

Bchinski, E., Eiselein, V., Sikora T.: High-speed tracking-by-detection without using image
information. In: 14-th IEEE Conference on Advanced Video and Signal Based Surveillance
(AVSS), Lecce, Italy (2017)

Bergmann, P., Meinhardt, T., Leal-Taixe, L.: Tracking without Bells and Whistles. IEEE/CVF
International Conference on Computer Vision (ICCV) (2019)

Bewley, A., Ge, Z., Ott, L., Ramox, F., Upcroft B.: Simple online and realtime tracking. In: IEEE
International Conference on Image Processing (ICIP), Phoenix, USA (2016)

Bochkovskiy, A., Wang, C., Liao, H.M.: YOLOv4: optimal speed and accuracy of object
detection, arXiv:2004.10934v1 [cs] (2020)

Bolme, D., Beveridge, J.R., Draper, B., Lui, Y.: Visual object tracking using adaptive correlation
filters. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR), San Francisco, California (2010)

Bouguet, J.-Y.: Pyramidal implementation of the affine Lucas Kanade feature tracker description
of the algorithm. Intel Corporation, Microprocessor Research Labs (2001)

Braso, G., Leal-Taixe, L.: Learning a neural solver for multiple object tracking. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 6247–6257 (2020)

Chu, P., Fan, H., Tan, C., Ling, H.: Online multi-object tracking with instance-aware tracker and
dynamic model refreshment (2019)

Fang, K., Xiang, Y., Li. X., Savarese, S.: Recurrent autoregressive networks for online multi-
object tracking. In: IEEE Winter Conference on Applications of Computer Vision, Lake
Tahoe, USA (2018)

Karthik, S., Prabhu, A., Gandhi, V.: Simple unsupervised multi-object tracking, arXiv:2006.
02609v1 [cs] (2020)

Leal-Taixe, L., Milan, A., Reid, I., Roth, S., Schindler, K.: MOTChallenge 2015: towards a
benchmark for multi-target tracking, arXiv:1504.01942 [cs] (2015)

Makhmutova, A., Anikin, I.V., Dagaeva, M.: Object tracking method for videomonitoring in
intelligent transport systems. In: Proceedings of International Russian Automation Confer-
ence, RusAutoCon 2020, pp. 535–540 (2020)

Milan, A., Leal-Taixe, L., Reid, I., Roth, S., Scindler, K.: MOT16: a benchmark for multi-object
tracking, arXiv:1603.00831 [cs] (2016)

Sadeghian, A., Alahi. A., Savarese. S.: Tracking the untrackable: learning to track multiple cues
with long-term dependencies. In: IEEE International Conference on Computer Vision
(ICCV), Venice, Italy (2017)

Leal-Taixe, L., Fenzi. M., Kuznetsova, A., Rosenhahn, B., Savarese. S.: Learning an image-
based motion context for multiple people tracking. In: IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (2014)

268 R. Minnikhanov et al.

http://arxiv.org/abs/2004.10934v1
http://arxiv.org/abs/2006.02609v1
http://arxiv.org/abs/2006.02609v1
http://arxiv.org/abs/1504.01942
http://arxiv.org/abs/1603.00831

	Real Time Multi Object Detection & Tracking on Urban Cameras
	Abstract
	1 Introduction and Problem Definition
	2 Related Works
	3 Proposed Solution
	3.1 Predicting the Position of the Object Frame with the Tracker
	3.2 Parameters of the Tracker

	4 Evaluation
	5 Conclusions
	References

