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1 Introduction

In the last month of 2019, in the city of Wuhan, China, a local outbreak of
an illness was found that was cursing with symptoms such as cough, fever,
sore throat, shortness of breath, fatigue, pneumonia evolving into severe acute
respiratory syndrome, possibly being fatal. It was soon discovered that the disease
was caused by a new coronavirus, SARS-CoV2 (severe acute respiratory syndrome
coronavirus), and that the contagiousness and course of the disease would make
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it a threat to the world’s different health systems. The disease, named COVID-19,
quickly spread across four continents, until on March 11, 2020 it was declared a
pandemic by the World Health Organization [20]. In little more than a year after
the pandemic was recognized, covid-19 has now reached more than 130,000,000
people, adding up to more than 2,800,000 fatalities [98]. These numbers continue to
grow. The biggest public health crisis in decades had begun. If on one hand COVID-
19 exposed the epidemiological fragility of an extremely connected world, using
tourist and commercial routes to reach the most diverse populations; on the other
hand, the global connection proved its value once again, with scientists from various
fields of knowledge and from the most varied countries establishing collaborations
in the urgent effort to know, detail, prevent, detect, and contain the virus. Thus,
a large amount of research has begun on epidemiological and pathophysiological
aspects, drug development, virus detection tests, vaccines, and case prediction and
control. Science has advanced by leaps and bounds and made the distance between
the emergence of a new disease, the identification of the causative agent, the
sequencing of its genetic material, and the appearance of the first viable vaccines
seem shorter in just 1 year. Despite these achievements, one year after the WHO
recognized the pandemic, the disease continues to spread, presenting an exuberance
of possible clinical manifestations. The virus has new and even more transmissible
variants (REF). The most viable form of control since the beginning of the pandemic
continues to be: case identification, tracking and contact isolation. The ability to
identify the presence of the pathogen plays an important role both in preventing
the spread of the disease and in adequately combating it. Delay in diagnosis can
delay proper patient care, hindering recovery, and especially allowing undiagnosed
infected people to circulate in society, spreading the virus. The most well accepted
test for diagnosing COVID-19 is RT-PCR (Reverse Transcription Polymerase Chain
Reaction); however, the procedures for this test take several hours [24] and the result
can take days to be available. In addition, there is the possibility of virus presence
and transmission even if the RT-PCR test is negative, depending on the time of
contamination at which the test was performed. Understanding more about the
behavior of the virus in populations (identifying risk groups, more vulnerable social
groups) or about its spatial and temporal spread in a region was, since the beginning
of the pandemic, a factor that reduced the impact of the virus. And this has allowed
greater assertiveness in the measures of isolation, protection, and vaccination,
besides being determinant for economic, social, and administrative decisions of
governments that have the intention to contain the pandemic by COVID-19. In
this context, a relatively new area of Public Health, digital epidemiology, has
gained space and recognition, providing effective monitoring of confirmed cases,
accumulations, and excess deaths. Moreover, the possibility of using machine
learning to make temporal and spatial predictions about the occurrence of COVID-
19 has definitely brought artificial intelligence into the healthcare field. This chapter
is dedicated to exploring some of the major studies that have been done on the use of
forecasting by compartmental, statistical, machine learning, and hybrid approaches.

This chapter is organized as follows: in Sect. 2, we present the theoretical basis
and a review of compartment forecasting models; in Sect. 3, we detail the forecasting
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approaches based on statistical learning and present the basis of the main machine
learning methods applied to Covid-19 forecast, as well as state-of-the-art works
selected taking into account academic relevance, i.e. the number of citations and
the impact factor of journals and books; finally, in Sect. 4 we present our final
considerations and general conclusions.

2 Forecasting by Statistical Learning and Compartment
Models

With the outbreak of the 2019 coronavirus disease many researchers have become
interested in mathematically modeling this new disease. Many have done these
studies using compartmental models based on differential equations. These models
can be described by two types of equations, ordinary differential equations (ODEs)
and partial differential equations (PDEs). The techniques for solving each of these
models and methods for doing numerical simulations are different.

The following are some studies that have used mathematical modeling to under-
stand how disease dynamics work and even make predictions using computational
techniques associated with these models.

Among the ODE-based compartmental models the researchers Sarkar et al. [85]
developed a 6-compartment model that extends the classical SEIR to predict Covid-
19 dynamics, where a sensitivity analysis was conducted to recognize the most
influential parameters with respect to the infected population. For this purpose,
the partial rank correlation coefficient (PRCC) technique was used for all input
parameters with respect to variable I(infected or symptomatic individuals). And the
numerical implementation was done in the FORTRAN program with the method of
least squares (MMQ) to adjust the diary cases of the disease.

The researchers Suba et al. [89] developed a model based on ODEs and also
used implementation by means of the method of least squares. In this work, seven
models were developed, and to find the parameters of the model, excel spreadsheet
and MMQ and plotted graphs in MATLAB were used. This study did the sensitivity
analysis using real data from Tamil Nadu. Good results with simple methods, but
the system is sensitive to the change of the basic reproduction number R0, which
changes the whole system automatically.

Some other studies follow the line of numerical implementation with MATLAB.
This same software was used in the study developed by Zhong et al. [105], to
perform the numerical calculation of the created differential equation system. And
real data was used to predict the number of infected. This study brought predictions
of the epidemic in different scenarios and with different levels of anti-epidemic
measure and medical care represented by beta rate and gamma rate, with unreliable
data through objective analysis. But this study has a prediction limited by the data
and their reliability, because data before January 18, 2020 should be used with
caution. Mandal et al. [59] also used MATLAB software to solve the system of
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differential equations that describes the proposed SEIQR model. The method used
was the fourth-order Runge–Kutta (RK4). In this study, a theoretical analysis and
numerical simulation are performed, as well as a stability analysis and estimation
of R0. The prediction made is sensitive to some parametric conditions, and since
human behavior is uncertain there are changes in the parametric space corroborating
to the change in the graphs of the COVID-19 cases. Therefore, the prediction made
is short term. MATLAB was also used by Jiang [37]. Initially this work used the
simulation repository built into the Netlogo software to create a SIR model to
simulate virus transmission. The simulation took place in a closed environment
(Small World) and assumed that there were no vital dynamics, i.e., no one died
or was born naturally. To optimize the parameters of the proposed model, the
MATLAB function fmincon was used. To find the numerical solution of the ODE
system and adjust the curves, MATLAB’s ode45 function was used. By using this
function the values obtained were quite consistent with the real data as well as the
simulation curves. This model was done for USA and for Hubei, China. For USA
a model without vital dynamics was used, due to lack of data. The parameters
definitely change with time in the real situation. The data from asymptomatic
individuals is late, which makes it difficult to establish a SEIR-based model for
fitting and prediction. As for Hubei, the prediction does not match the real situation.
And finally, none of the models divides infected people into isolated and non-
isolated infected individuals, or whether they received effective treatment. Massonis
et al. [60] did a multi-state review using SIR and SEIR models described by systems
of ODEs in which it evaluates structural identifiability, i.e., ability to provide
insights into their unknown parameters, and observability (unmeasured states). A
total of 255 articles were evaluated, 98 with SIR models and 157 with SEIR
models. And a list of 36 model structures was made. The ability to provide reliable
information was evaluated, and theoretical concepts of structural identifiability and
reliability control were used for this. STRIKE-GOLDD, an open source toolbox
and GenSSI2 MATLAB were used as analysis tools, and for some models the
Observability Test code in Maple, Identifiability Analysis in Mathematica, SIAN in
Maple, and others were used. Most models found in the literature have identifiable
parameters. Often allowing for variability in an unknown parameter improves the
observability and/or the identifiability of the model. This work has contributed
to providing a detailed analysis of the structural identifiability and observability
of a large set of compartmentalized COVID-19 models presented in the recent
literature. To model and make prediction of COVID-19 evolution in Brazil, Bastos
and Cajueiro [11] proposed two models SIRD and SIRASD described by ODEs.
And to find the numerical solution of the ODE system and fit the curves, ode45
function, also from MATLAB, was used. And although this method controls the
error by assuming fourth-order precision, it uses a precise fifth order formula to
perform the steps. As a starting condition we used data from the Brazilian Institute
of Geography and Statistics (IBGE). And the data used were from the Brazilian
Ministry of Health (February 25 to March 30, 2020). For the estimation procedure,
we minimized the loss functions using the method “optimize.leastsquares” also
from the scipy Python 34 library using the Cauchy loss with scaling parameter. It
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is notable that although the SIRASD model predicts that the number of infected
is higher than the SIRD model estimates, it also manages to predict a lower peak
for those infected with symptoms, which are those who require medical attention.
This model is advantageous for short-term prediction for Brazil. The methodology
of this study was able to estimate the asymptomatic individuals, who may not be
entirely present in the data. But because the study was done at the beginning of the
pandemic, there was little data and there were cases of underreporting of the actual
number of infected people. In addition, this study did not take demographic effects
into account, and it was assumed that there was no reinfection. The SIRASD model
proved sensitive to the initial condition of asymptomatic individuals. Because the
number of tests is small to map the entire population, it is necessary to work with
assumptions.

A modeling of the spread of coronavirus taking into account the cases of
undetected infections in China was done by Ivorra et al. [34]. In this paper, a
deterministic SEIHRD model was made, which has low computational complexity
and possibility of using ODE theory to analyze and interpret properly. This model
is solved numerically via fourth-order Runge–Kutta (RK4) with 4 h time interval
to approximate the solution of the system. Both Runge–Kutta and the WASF-GA
algorithm have been implemented in Java. It is advantageous to use a deterministic
model when you have little data, but the methodology used aimed precisely at
solving this limitation. And a robust approach for overfitting the model parameters
with respect to the reported data was created. However, the results are unsatisfactory
because the estimation was done at the early stage of the epidemic.

Ambikapathy and Krishnamurthy [6] developed and validated a mathematical
model to assess the impact of various scenarios on COVID-19 transmission in India.
A compartmentalized ODE model incorporating the actual cases from 14 countries,
China, Italy, Germany, France, USA, UK, Sweden, Netherlands, Austria, Canada,
Australia, Malaysia, Singapore, and India, was proposed. The model was applied
to predict transmission in India and the highest exposure situations, such as transit
stations and shopping malls, were evaluated. It was validated using the infections
reported in the adopted period and was used to predict future infected cases in the
above countries, considering a 65-day period (IndiaSim implementation). Different
intervention strategies were used with blocking periods of 4, 14, 21, 42, and 60
days. The model developed can capture the infection dynamics in each country to a
considerable extent and predict future cases. The use of an ODE system to describe
the models is advantageous because it is possible to apply controls to the model
and find results. Nevertheless, the model suffers from numerical errors because at
the beginning of the disease the S-compartment has a high value and the I and
R-compartments have very low values. In addition, the model proposed in India
assumes no spread of the disease in the community until the first week of March
2020, and the dynamic prediction interval is limited (110 days). The model will
need to be updated. Also in order to do a predictive analysis of COVID-19 in China,
Italy, and France, developed a SIRD model to predict the position of the epidemic
peak of the disease. For stochastic evolution, the Python-Scipy package was used.
For Italy, the prediction with nonlinear fit strategy for the endemic peak is robust.
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With simulations it was shown that the recovery rate is the same for China as for
Italy, but the infection and mortality rates seem to be different. This model showed
that cultural factors influence the infection rate, varying from one country to another.
The model has the limitation of data sensitivity, so it changes from one country to
another. And when making numerical solution adjustments, it was found that the
data reported for the outbreak in France is still too preliminary to justify a significant
adjustment of this kind. The researchers [48] introduced a SIRD model described
by a system of ODEs to analyze the behavior of COVID-19 disease in the USA,
Germany, UK, and Russia and solved using numerical methods, and the data agree
well with the model. The model predicts the peak of the epidemic in each country
and compares the results obtained. Germany’s prediction was the optimistic one.
The authors Khajanchi et al. [42] proposed another paper in which two mathematical
models were developed to describe the dynamics of the virus in China described by
systems of ODEs and curves constructed for the number of infected, recovered, and
dead. The optimal values of the model parameters, which accurately describe the
statistical data, were found. World Health Organization (WHO) data was used to
obtain the model parameters, obtaining good agreement between the statistical data
and the model curves. Thus, it is shown that there was a broad fit of the proposed
mathematical model. This indicates a high adequacy of the mathematical model for
coronavirus infection. Hamzah et al. [31] have developed a framework to manage
and track COVID-19 data called CoronaTracker. This framework is based on a
SEIR predictive compartmental model to predict the outbreak of COVID-19 inside
and outside China based on daily observations, analyzing the influence of news
of people’s behavior both positively and economically. John Hopkins University
(UJH), World Health Organization (WHO), and Ding Xiang Yuan databases were
used as data sources. The data collected in CoronaTracker is available on the data
lakes platform. For numerical simulation, the Scipy implementation was used, and
for numerical integration, odeint was used. The study showed that the spread of the
outbreak is influenced by the social policy of each country. The developed platform
has an easy interface in which citizens can register their feelings and express
their opinions about news articles. CoronaTracker can assist the government and
authorities to disseminate articles, provide updates on the situation, and advocate
good personal hygiene. This study has the limitation that when using data from John
Hopkins University (UJH), an initial number of exposed individuals was missing.
A decision-making system for COVID-19 (CDMS) was created by Varotsos and
Krapivin [93] for USA, Brazil, Russia, and Greece. For the model with deterministic
components, a compartmental SPRD model was created, similar to the classic
SIRD in the literature, described by ODEs and with parameters determined by the
reported data. And for the model with stochastic compartments, the classes were
represented with a stability indicator that characterizes the COVID-19 propagation
trend. Numerical evaluations were done by the SARD block using stochastic reports
on the state of disease effects. This study showed that temperature and humidity
slowly affect the effects of the pandemic. The analysis of the spread of the disease
and the loss of income due to the pandemic has different impacts for each country.
The analysis of official data from Russia and Greece showed the results of the



On Machine Learning Approaches for Covid-19 Spatio-Temporal Forecasting 339

pandemic. The risk of infection and mortality increases with increasing population
density. What limits this study is that there is not enough data to make the study
reliable. In practice, it was impossible to coordinate measures to contain the
COVID-19 pandemic under conditions of high uncertainty. In the study of Sadun
[81] a compartmentalized SEIR model was developed. In this study strategies are
developed to try to estimate the reproduction number R0, and come to the conclusion
that there is no direct way to measure it. The estimated value of R0 depends on the
length of the latency period for three versions of the classical SEIR model. The
estimates of the reproduction number that have been published should be viewed
with skepticism, one needs to understand the latency of COVID-19. However, there
is no direct way to measure R0, so what one can do is measure the time scale of the
exponential growth of the pandemic and try to estimate R from it. The SEIPAHRF
model was created by Ndaïrou et al. [67] to understand the transmission dynamics
of COVID-19 in Wuhan. This model introduced a modification of the classical
SEIR model by introducing asymptomatic (A), hospitalized (H), and fatality (F)
infectious class. To study the basic reproduction number, a generation matrix was
used in a sensitivity analysis. The local stability of the model was also studied.
In this study, the theoretical findings and numerical results fit well with the actual
results and reflect reality in Wuhan, China. This model can be used to study the
reality in other countries whose outbreaks are increasing. However, the limited
data at the beginning of the study, since it was early in the disease, was limited.
Also to model and predict the dynamics of the COVID-19 pandemic in India,
Sarkar et al. [85] created a 6-compartment model that extends the standard SEIR.
And it divides the coronavirus-infected population from the susceptible individuals
before the progression of clinical symptoms. It was also proven that quarantine
decreases contact between uninfected and infected, and thus there is a reduction in
the contact rate and can effectively reduce R0. A sensitivity analysis was performed
to recognize the most influential parameters with respect to the clinically infected
population. And this sensitivity analysis was done by evaluating the technique of
partial rank correlation coefficients (PRCC) for all input parameters in relation
to variable I. The indices were evaluated at six time points: 30, 45, 60, 75, 90,
and 100 days before steady state. The model variable was selected for sensitivity
analysis I (infected or symptomatic individuals), generating six more influential
parameters out of nine. And the actual daily COVID-19 data are fitted using
least squares method (MMQ), which locally minimizes the sum of squares of
errors. The numerical implementation was done in FORTRAN program. This model
provides an important tool for assessing the consequences of possible policies,
incorporating social distancing and blocking. Unfortunately, because of the short
time scale, demographic effects are not considered. The Abou-Ismail [1] researchers
focused on explaining and mathematically simplifying three models: SIR, SEIR,
and SUQC (susceptible, unquarantined, quarantined, and confirmed). The goal was
to understand the nature of the pandemic and to measure the impacts of social
distancing through mathematical models. Making use of a system analysis of ODEs
that describe the disease.
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To analyze mathematically and do a numerical study the authors Viguerie et al.
[95] created a new framework for understanding compartmental models by means
of equilibrium equations similar to those found in Continuum Mechanics (Lotka–
Volterra type). The model is SEIRD and made use of differential equation models
to derive and analyze R0. For models based on ODEs it has the concept of the
basic reproduction number R0 well defined, but the extension to a model based
on PDEs is not clear due to the influence of diffusion. Therefore, in this work
the EDO version of the EDP model was derived and its efficiency was evaluated
with numerical tests. For the numerical tests either implicit second-order Backward
Euler (BDF2) or implicit first-order Backward Euler was used. Picard linearization
was performed at each time step. And the iterative Generalized Minimum Residual
method (GMRES) with Jacobi preconditioning was used to solve all linear systems.
PDE models are advantageous in that they allow a continuous space description of
the relevant dynamics, allowing the dynamics to be described in time and space
at all scales. Since models described by EDOs are limited for describing spatial
information, implicit models are effective in describing the temporal dynamics
of the system. In this model deaths other than by COVID-19 and births are not
considered. The study developed by the researchers Khoshnaw et al. [47] used
MATLAB’s System Biology Tool (SBedit) package to compute the class dynamics
of the model, and thus obtained a better understanding and identification of the
key critical model parameters. And thus it was possible to understand the impacts
of transmission rate and contact for New York. However, having several different
models implies that one needs to create or identify the critical elements of each of
the models. Furthermore, the model cannot simply be extrapolated to conditions in
another country. Its parameters must be estimated from the new conditions. Making
use of the same MATLAB package to obtain numerical solutions and calculate local
sensitivity, Khoshnaw et al. [46] developed a model. Sensitivity analysis was done
with the dynamics of the biological system modeled with law of mass action. This
study also concluded that the most effective factors for the spread of coronavirus are:
(1) the rate of person-to-person transmission, (2) the rate of quarantined exposure,
and (3) the rate of transition from exposed individuals to individuals infected.
MATLAB was used to numerically solve the compartmental model described by
nonlinear differential equations proposed by Ahmed et al. [3]. And for the logistic
model, the fitVirus function was used. The union of mathematical models and
computer simulations is an effective tool that provides us with more understanding
and good numerical predictions of the model states. However, in this study it is
noticed that the number of people exposed to quarantine becomes stable after
40 days but the number of recovered people increases rapidly and becomes stable
slowly. Having many approaches to identifying the estimates and understanding the
disease makes the issue murky. However, this study has brought the identification
of critical parameters of the model, helping to understand the overall issue more
effectively and broadly. Using a code in MATLAB, Shao et al. [87] performed the
numerical simulations. In this study, two time-delayed dynamic models were used to
track COVID-19. The time-delayed dynamic coronavirus pneumonia model (TDD-
NCP) introduced the delay process into the differential equations to describe the
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latent period of the epidemic and can be used to predict the trend of coronavirus
outbreak. Whereas the Fudan-Chinese Center for Disease Control and Prevention
(CCDC) model was established to determine the kernel functions in the TDD-NCP
model by the public data of CDCC, this model is suggested to use the time delay
model to adjust the real data. The advantage of the Fudan-Chinese model is that
it can track the initial date of the epidemic, when provided the I (t0). Moreover,
this model can reconstruct parameters such as the growth rate and the “isolation
rage,” and predict the cumulative number of confirmed cases in some cities in
China. However, because this work was done in early March, there was still little
knowledge about the disease and little data on confirmed cases. Rajagopal et al. [75]
have developed a SEIRD model with integer and fractional differential equations to
describe coronavirus in Italy. The fractional model is of the Caputo type, the most
popular and most widely used for real problems. To find the optimal parameters,
the model parameters are estimated. The number of infected, the number of deaths,
and the associated mean square error (RMSE) are also considered. The fractional
model gives more realistic predictions and has fewer modeling errors. And with that,
the proposed model agrees with the actual data from Italy better than the classical
model. A SCEAQHR model for predicting cases in Cameroon has been proposed
by Nabi et al. [65]. This model integrates a new class for individuals who have made
imperfect quarantine and disregarded blocking policies. The model parameters were
estimated with real-time data, followed by a projection of the disease evolution. The
model is described by Caputo fractional differential equations, and the existence
and uniqueness of the solutions are presented. The optimization algorithm is based
on the reliable-region-reflective (TRR) algorithm, which is the evolution of the
Levenberg–Marquardt algorithm. The numerical implementation is done using the
lsqcurve fit function of MATLAB. The Partial Rank Correlation Coefficient (PRCC)
method was used to quantify the dominant mechanisms. The optimization is robust
to solving nonlinear least squares problems.

The researchers Roda et al. [78] used the Akaike Information Criterion (AIC)
to select the model. And performed an analysis of the predictions of the SIR and
SEIR models. The SIR model outperformed the SEIR model in representing the
information contained in the confirmed case data. The calibration of the model was
done using the Monte Carlo Markov Chain algorithm, and the calibration was done
with data from January 21 to February 04 from Wuhan city in China. The authors
state that data before January 23 is unreliable and there is a lack of data. There is
no identifiability because a group of model parameters cannot be determined solely
from the data provided during model calibration. This impacts the reliability of the
model.

Din et al. [22] brought out a new three-compartment model (PIQ) described by
EDPs for COVID-19 transmission. To study the stability, the Atangana, Baleanu,
and Caputo (ABC) model with arbitrary order was used. Banach’s fixed point
theorem and Guo–Krasnoselskii were used to prove the existence of the model. And
the numerical simulations were done using the Adams–Bashforth (AB) method with
fractional differentiation. Using this method is a sophisticated and powerful tool for
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investigating nonlinear problems. The model proves mathematically that it is well
defined.

Through a system of ordinary differential equations, the disease is contextualized
through social parameters to understand how the spread works and how it is possible
to control the epidemics that affect society and thereby create preventive measures.
Examples of this type of model are the modified SEIR models proposed by Yang
et al. [101] as well as the SEIR (Susceptible, Exposed, Infectious, Recovered) model
with age-structured quarantine class with the two types of control measures used to
analyze the effects of policy control for the coronavirus epidemic in Brazil [15], and
the SEIRQ (Susceptible, Exposed, Infectious, Recovered, Quarantine) model with
age structure, proposed by Gondim and Machado [29]. This model aims to analyze
optimal quarantine strategies in order to help in decision-making through health
managers.

Regarding statistical epidemiological models, Sarkar et al. [85] propose a
mathematical model to monitor the dynamics of six compartments: Susceptible (S),
Asymptomatic (A), Recovered (R), Infected (I), Isolated Infected (Iq), and Quar-
antined Susceptible (Sq), collectively expressed SARIIqSq. The authors applied
their proposal to real data on the COVID-19 pandemic in India. Starting from
the date of first COVID-19 case reported in India, the authors have simulated the
SARIIqSq model for 260 days for each states and for whole India to study the
dynamics of the SARS-CoV-2 disease. They statistically confirmed that a reduction
in the contact rate between uninfected and infected individuals by quarantined
the susceptible individuals can effectively reduce the basic reproduction number.
They also demonstrate that the elimination of ongoing SARS-CoV-2 pandemic
is possible by combining the restrictive social distancing and contact tracing.
However, the authors also emphasize the uncertainty of accessible authentic data,
specially concerning to the accurate baseline number of infected individuals due
to subnotifications, which may guide to equivocal outcomes and inappropriate
predictions by orders of size.

Ndaïrou et al. [67] propose a novel epidemiological compartment model that
takes into account the super-spreading phenomenon of some individuals. They
consider a fatality compartment, related to death due to the virus infection. The
constant total population size N is subdivided into eight epidemiological classes:
Susceptible class (S), Exposed class (E), Symptomatic and Infectious class (I),
Super-Spreaders class (P), Infectious but Asymptomatic class (A), Hospitalized (H),
Recovery class (R), and Fatality class (F). This model reached a reasonably good
approximation of the reality of the Wuhan outbreak, predicting a diminishing on
the daily number of confirmed cases of the disease. The model also fits well the
real data of daily confirmed deaths. The model can be considered useful for other
realities than Wuhan, China, since the amount of hospitalized individuals is relevant
as an estimate of the Intensive Care Units (ICU) needed.

Khajanchi and Sarkar [43] developed a new compartmental model to explain the
transmission dynamics of Covid-19. They calibrated their model with daily Covid-
19 data for four Indian states: Jharkhand, Gujarat, Andhra Pradesh, and Chandigarh.
They studied the feasible equilibria of the proposed model and their stability with
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respect to the basic reproduction number R0. The disease-free equilibrium becomes
stable and the endemic equilibrium becomes unstable when the recovery rate of
infected individuals increases, but if the disease transmission rate remains higher,
then the endemic equilibrium always remains stable. The proposed model obtained
R0 > 1 for all studied Indian states, suggesting a significant outbreak. The model is
able to provide short-time Covid-19 forecasting as well.

Samui et al. [84] proposed a deterministic ordinary differential equation model
able to represent the overall dynamics of SARS-CoV-2. They stratified the total
human population into four compartments: susceptible individuals (uninfected),
asymptomatic individuals (pauci-symptomatic or clinically undetected), reported
symptomatic infected individuals (symptomatic infectious individuals are reported
by the public health service), and unreported symptomatic infected individuals
(clinically ill but not reported) to formulate the SAIU (susceptible or uninfected (S),
asymptomatic (A), reported symptomatic infectious (I), unreported symptomatic
infectious (U)) model. This model assumes that infected individuals informed
will no longer be associated with infections, as they are isolated or transferred
to Intensive Care Units (ICU). Thus, only infectious individuals belonging to I(t)
or U(t) spread or transmit the diseases. The authors designed the SAIU model to
study the transmission dynamics of COVID-19 based on the accessible data for
India during the time period January 30, 2020 to April 30, 2020. Based on the
estimated data, the SAIU model predicts the outbreak of COVID-19 and computes
the basic reproduction number R0. The authors assessed the sensitivity indices
of the basic reproductive number R0, given that R0 expresses the initial disease
transmission and the sensitivity indices describe the relative importance of various
parameters in coronavirus transmission. The SAIU model showed the persistence of
diseases for R0 > 1. The endemic equilibrium point E∗, for this study, was locally
asymptotically stable for R0 > 1.

Khajanchi et al. [44] extended the classical deterministic Susceptible–exposed–
infectious–removed (SEIR) compartmental model refined by introducing contact
tracing-hospitalization strategies to study the epidemiological properties of Covid-
19. They calibrated their mathematical model using data of confirmed cases in
India and estimated the basic reproduction number for the disease transmission. The
authors have their calibrated epidemic model for the short term prediction in the four
provinces and the Republic of India. The simulation of the calibrated model was
able to capture the increasing growth patterns for three different provinces, namely
Delhi, Maharashtra, West Bengal and the Republic of India, whereas in case of the
province Kerala, the model fitting is not good compared to other states and overall
India. Model simulation and prediction suggest that Covid-19 has a potential to
exhibit oscillatory but controllable dynamics in the near future by maintaining social
distancing and effectiveness of home isolation and hospitalization. The proposed
model forecasts that isolation or hospitalization of the symptomatic population,
under stringent hygiene safeguards and social distancing, is considerably effective.
Finally, Khajanchi et al. [44] give evidences that the size and duration of an epidemic
can be considerably affected by timely implementation of the hospitalization or
isolation program.
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The classic mathematical models of epidemiological prediction are quite useful,
but deterministic, demonstrating only the average behavior of the epidemic, which
makes it difficult to quantify uncertainty. Wang et al. [97] proposed an analysis of
the spatial structure and dynamics of the spread of Covid-19, providing a spatio-
temporal prediction of the Covid-19 outbreak in the USA. Kapoor et al. [39]
investigated large-scale spatio-temporal prediction using neural network graphs
and human mobility data in US counties. Through this method and space-time
information, the model learns the epidemiological dynamics. Tomar and Gupta
[92] proposed a space-time approach to control and monitor Covid-19 using LSTM
(Long Short-Term Memory) neural networks and adjusting curves to predict chaos.
Ren et al. [76] used Ecological Niche Models (ENM) to gather epidemiological
and socioeconomic data, aiming to accurately predict the risk areas for Covid-19
infection. Yesilkanat [102] made a study with space-time approach for 190 countries
in the world and compared it with the number of real cases of the disease using the
Random Forest method. Also using a space-time approach, Pourghasemi et al. [70]
did a risk mapping, change detection and trend analysis of the Covid-19 spread in
Iran using regression and machine learning. Roy et al. [79] developed a short-term
prediction model for the new Coronavirus using canonical ARIMA (Autoregressive
Integrated Moving Average) and disease risk analysis done using weighted overlap
analysis in geographic information systems.

3 Forecasting by Machine Learning and Hybrid Approaches

Several efforts to aid Covid-19 screening and monitoring can be perused in the
works of Dong et al. [25]. In this work, Dong et al. [25] created an online
interactive panel to visualize Covid-19 infected cases and deaths in real time,
providing researchers, health authorities, and the general public a tool to track
cases as the disease progresses. Due to the rapid development of the coronavirus,
the need to classify infected patients and analyze which individuals were more
vulnerable to the disease also grew. Therefore, Xie et al. [100] proposed a model of
clinical prediction for patient mortality based on multivariable logistic regression, to
improve the use of limited healthcare resources and calculate the patient’s survival
rate. Furthermore, in order to aid the diagnosis, Feng et al. [26] developed the
online calculator S-COVID-19-P based on Lasso regression, for early identification
of suspected Covid-19 pneumonia in the admission of adult patients with fever.
Jin et al. [38] proposed a system based on deep learning for the rapid diagnosis of
Covid-19 with precision comparable to experienced radiologists, and can accurately
classify pneumonia, CAP (Community-Acquired Pneumonia), influenza A and B,
and Covid-19. They used LASSO to find the 12 most discriminating characteristics
in the distinction between Covid-19 and other pneumonias. Gomes et al. [28]
proposed a system to support the diagnosis of Covid-19 by analyzing chest X-ray
images, capable of differentiating Covid-19 from bacterial and viral pneumonias
using texture-based image representation and classification by Random Forests.
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Different from other more complex Covid-19 X-ray feature extraction approaches
[7, 8, 12, 19, 33, 35, 45, 53, 54, 63, 66, 96], Gomes et al. [28] avoided deep learning
based solutions and adopted texture and shape features to provide the users a low-
cost computational web-based computational environment able to deal with several
simultaneous users without overcharging network resources.

In order to find a new way to perform early, efficient, and accurate control and
screening of suspected individuals, Meng et al. [62] created the Covid-19 Diagnostic
Aid APP to calculate the probability of infection through simple and easy laboratory
test results. Screening a large number of suspicious people could optimize the
diagnostic process and save medical resources. Barbosa et al. [10] considered the
fact that, in many regions of the world, RNA testing is not always available due to the
scarcity of inputs, created HegIA, an intelligent system based on Bayes Networks
and Random Forests to aid at the diagnosis of Covid-19 based on blood tests
from 24 blood tests. The performance is close to RT-PCR (Reverse Transcription
Polymerase Chain Reaction) for symptomatic individuals, though coronavirus RNA
is not searched [10]. HegIA is a fully functional system, available for free use, to
provide low-cost rapid testing.

Several works have used Evolutionary Computing and Swarm Intelligence
Methods to automatically adjust compartmental models [61, 71, 73, 83]. Putra
and Khozin Mu’tamar [71] automatically estimated parameters in the Susceptible,
Infected, Recovered (SIR) model using the Particle Swarm Optimization (PSO)
algorithm. Their results suggest that the proposed method is able to tune SIR
models precisely compared to other analytical approaches. Similarly, Mbuvha and
Marwala [61] calibrated a SIR model to South Africa’s Covid-19 reported cases
taking into account several scenarios of the reproduction number R0 for reporting
infections and healthcare resource estimations. They assumed that the reported
confirmed cases represent between 0.2% and 1% of the total infected population.
The authors also assumed that SIR model parameters are fixed albeit at multiple
ranges. However, they detected the uncertainty around SIR parameters and propose
a Bayesian treatment using Markov Chain Monte Carlo techniques in the near
future.

Qi et al. [73] investigated the influence of daily temperature (AT) and relative
humidity (ARH) on the occurrence of Covid-19 in 31 Chinese provinces, mainly
in Hubei. The authors collected daily counts of laboratory-confirmed cases in all
provinces in China from the official reports of the National Health Commission of
People’s Republic of China from December 1, 2019 to February 11, 2020 for Hubei
province and from January 20, 2020 to February 11, 2020 for other provinces. Tibet
was not included in the following model since only one case was reported during the
23-day cited period. The meteorological data, including daily average temperature
(AT) and daily average relative humidity (ARH) of each provincial capital, were
retrieved from Weather Underground. Although this study suggests that both daily
temperature and relative humidity influenced the occurrence of COVID-19 in Hubei
province and in some other provinces, the association between COVID-19 and AT
and ARH across the provinces was not considered consistent. The authors found
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spatial heterogeneity of COVID-19 incidence, as well as its relationship with daily
AT and ARH, among provinces in Mainland China.

Salgotra et al. [83] propose prediction models based on genetic programming
(GP) for confirmed cases and death cases across the three most affected states
in India: Maharashtra, Gujarat, and Delhi. The authors also applied the model
to forecast Covid-19 cases in whole India. The proposed prediction models are
presented using explicit formula. The authors studied the impotence of prediction
variables as well. Statistical parameters and metrics have been used to evaluate
and validate the evolved models. Genetic evolutionary programming models have
proven to be highly reliable for Covid-19 cases in India.

Rahimi et al. [74] present a systematic review on Computational Intelligence
algorithms for Covid-19 forecasting. They searched on Web of Science (WoS) and
Scopus for publications in accordance with the following keywords: forecasting,
prediction, Covid-19, and coronavirus. The authors selected 920 technical research
articles presenting just algorithmic descriptions, review articles, conference papers,
case studies, and able to provide managerial insights, published until October 10,
2020. The authors focused on papers indexed by the Web of Science. Rahimi et al.
[74] categorized the main forecasting works according to the following classification
regarding the algorithms:

– Simple Moving Average [16] as defined by Maleki and Arellano-Valle [55],
Maleki and Nematollahi [58], Zarrin et al. [103], Maleki et al. [56], and Hajrajabi
and Maleki [30];

– Auto-Regressive Integrated Moving Average (ARIMA) [5, 50, 64, 80, 88];
– Two-piece distributions based on the scale [57];
– Logistic functions: S-shaped functions to model epidemiological curves [17, 52,

72];
– Regression Methods [4, 36, 77, 90, 94];
– Canonical neural networks [27, 64, 91];
– Deep learning methods based on Convolutional Neural Networks (CNNs) [13,

51, 86];
– Deep learning methods based on Long-Short Term Memory (LSTM) neural

networks [9, 18];
– Genetic programming [82, 83]);
– Classical and modified compartment models: SIR, SEIR, and SIRD [2, 14, 41,

69].

Tamang et al. [91] used artificial neural network-based curve fitting techniques to
predict and forecast Covid-19 infected and death cases in India, USA, France, and
United Kingdom, considering the progressive trends of China and South Korea. The
authors considered three cases to analyze the Covid-19 outbreak: (1) forecasting as
per the present trend of rising cases of different countries; (2) one-week forecasting
following up with the improvement trends as per China and South Korea; and (3)
forecasting if followed up the progressive trends as per China and South Korea
before a week. According to the authors, to reduce infection rates and achieve
leveling of trends in epidemiological curves, these countries will require fewer
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days according to the forecast with the trend in China and more days with steady
progress are seen with the South Korea’s trend. In addition, it can also be concluded
that, with the trend of China, countries with a greater number of cases could be
better in fewer days with possibly stricter measures of social isolation, detachment,
and confinement. Considering that South Korea’s trend is toward slower and more
constant control, which could be more effective in the initial stage with lower
reported cases. All conclusions were made in accordance with the predictions
obtained with the application of the multilayer perceptron artificial neural network
technique. Although the case data used in the study are based on reliable sources,
the predictions are in accordance with the conditions and techniques applied.
Consequently, their experimental results suggest that artificial neural networks are
able to forecast the future cases of COVID 19 outbreak of practically any country at
low error rates.

Huang et al. [32] propose a new model of CNN deep neural network with
multiple inputs to predict the cumulative number of confirmed cases of Covid-
19. The cumulative number of confirmed cases on the following day is predicted
according to the total number of confirmed cases from the previous 5 days, total
new confirmed cases, total cured cases, total new cured cases, total deaths, and
total new deaths. Datasets from seven Chinese cities in the provinces of Hubei,
Guangdong, and Zhejiang were used with confirmed serious cases for the training
and forecasting of the models. Data on confirmed cases of COVID-19 from January
23, 2020 to March 2, 2020, and from January 23, 2020 to March 2, 2020, were
obtained from the media outlet Surging News Network and from the World Health
Organization, respectively. The two evaluation indexes of the mean absolute error
(MAE) and root mean square error (RMSE) were used. According to the authors,
the proposed algorithm can quickly use small datasets to establish models with
high predictive precision. This is a considerable advantage of this model over other
models with similar characteristics. Through the proposed algorithm, a prediction
model was established for the number of confirmed cases of COVID-19. Verification
and comparison were conducted between different deep learning algorithms. The
accuracy and reliability of the deep learning algorithm have been verified by
predicting the future trend of Covid-19. In addition, experiments for several cities
with more serious confirmed cases in China indicated that the prediction model in
this study had the lowest error rate among its tested equivalents. As future work, the
authors envisage using deep learning networks with a mixed structure, seeking to
build more accurate models, which can be applied to more countries.

Distante et al. [23] modeled spreading of Covid-19 using Chinese data and used
the model to predict epidemic curve in each Italian region, allowing to gain better
information on the new daily cases peaks with the predicted epidemiological curve.
According to the authors, the forecast portion of the curve allows to have a better
prediction of active cases with the SEIR model, by computing the position of the
peaks of active cases for each Italian region. Interestingly, the process of training
on Chinese data and using the knowledge to forecast Italian spreading of Covid-19
has resulted in good forecasting results, considering the mean average precision
between official Italian data and the forecast. SEIR models may fit better than
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other compartment models since they are based on the complete curve dynamic.
Therefore, the proposed approach is valid since the predictive model learns from
the dynamics of Covid-19 in China and exploits its knowledge to predict future
daily cases in Italy.

Wieczorek et al. [99] proposes a predictive model based on a deep 7-layer
neural network trained by the NAdam method to predict the number of infected
cases. The authors used a dataset provided by the Center for Systems Science and
Engineering (CSSE) at Johns Hopkins University on their github page. This dataset
is composed of the following sources: (a) World Health Organization (WHO);
(b) European Center for Disease Prevention and Control (ECDC); (c) DXY.cn.
Pneumonia. 2020; (d) COVID Tracking Project; (e) National Health Commission
of the People’s Republic of China (NHC); (f) China CDC (CCDC); (g) Washington
State Department of Health; (h) other smaller, regional US health departments. The
predictive model was able to predict new cases with very high efficiency, above 99%
in some geographic regions. However, the authors noticed that analysts should take
into account several factors able to influence the epidemiological curves: behavior of
the population in a given region, behavior of governments of given countries as well
as access to knowledge and medical equipment. The neural network-based predictor
employs a unified architecture. According to their experimental results, the authors
do not need to change the architecture in dependence with each region or country.
Accuracy for most of regions is around 87.70%. However, the authors believe that
dedicated architectures should be used to contemplate differences among countries,
like population and government behaviors.

Kırbaş et al. [49] modeled confirmed COVID-19 cases of Denmark, Belgium,
Germany, France, United Kingdom, Finland, Switzerland, and Turkey using Auto-
Regressive Integrated Moving Average (ARIMA), Nonlinear Autoregression Neural
Network (NARNN) and Long-Short Term Memory (LSTM) approaches. They
tested six model performance metrics: MSE, PSNR, RMSE, NRMSE, MAPE, and
SMAPE. Cumulative confirmed case data of eight different European countries
were used for modeling: Denmark, Belgium, Germany, France, United Kingdom,
Finland, Switzerland, and Turkey. The datasets were acquired from the European
Center for Disease Prevention and Control. Data were taken from the day the first
case was seen, and the number of data for each country varies. The data covers
67, 90, 97, 100, 94, 90, 68, and 55 days, respectively, and ends on 3 May 2020.
The data from cumulative confirmed cases in some European countries are modeled
using three different approaches. According to the results, it was determined that
LSTM approach has much higher success compared to ARIMA and NARNN. The
lowest number of cases was observed in Finland during the epidemic, while the
highest rate of increase was observed in the United Kingdom. According to the
2-week prospective estimation study, in many countries, the total case increase
rate is expected to decrease slightly. Since the work was carried out entirely by
considering statistical data and methodologies, the effects of social distancing and
other similar measures, compliance with hygiene rules or lockdown were ignored.
However, according to the results on real data, the authors considered the predictions
satisfactory.
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Pal et al. [68] have proposed to use the local data trend with a shallow Long
Short-Term Memory (LSTM) based neural network combined with a fuzzy rule
based system to predict long term risk of a country. The country-specific neural
networks are optimized using Bayesian optimization. The authors used the dataset
(https://github.com/datasets/covid-19) that included date, country, the number of
confirmed cases, the number of recovered cases, and the total number of deaths. This
data was combined with weather data (https://darksky.net/): humidity, dew, ozone,
perception, maximum temperature, minimum temperature, and UV for analyzing
the effect of weather. The authors considered mean and standard deviation over
different cities of a country. The data spanned the duration 22-01-2020 to 02-08-
2020. The authors propose to use country-specific optimized networks for accurate
prediction, since this approach seems suitable for small and uncertain dataset.
Combining the overall optimized LSTMs, they noticed that a shallow networks
perform better compared to deep neural networks. The authors also noticed that
the weather data does not affect the forecasting accuracy.

Zeroual et al. [104] performed a comparative study of five deep learning
methods to forecast the number of new cases and recovered cases: simple Recurrent
Neural Network (RNN), Long short-term memory (LSTM), Bidirectional LSTM
(BiLSTM), Gated recurrent units (GRUs), and Variational AutoEncoder (VAE).
These methods were applied for global forecasting of Covid-19 cases based on
a small volume of data. This study is based on daily confirmed and recovered
cases collected from six countries namely Italy, Spain, France, China, USA, and
Australia. The values of parameters of deep learning models are selected such that
the loss function is minimized during the training. The authors adopted the Adam
optimizer. In the testing stage, the previously constructed models with the selected
parameters are used to forecast the number of COVID cases. The accuracy of the
model was verified by comparing the measured data with real data via different
statistical indicators including RMSE, MAE, MAPE, and RMSLE (Root Mean
Squared Log Error). The research was based on daily figures of confirmed and
recovered cases collected from six highly impacted countries namely Italy, Spain,
Italy, China, the USA, and Australia. The considered datasets are gathered from
the starting of COVID-19 for the respective countries, i.e. 22 January 2020, till
June 17th, 2020. These datasets are made publically by the Center for Systems
Science and Engineering (CSSE) at Johns Hopkins University (https://github.com/
CSSEGISandData). Results demonstrate that the Variational AutoEncoder achieved
the best forecasting performance in comparison to the other models.

Kapoor et al. [40] propose a novel spatio-temporal forecasting approach for
Covid-19 case prediction based on Graph Neural Networks and mobility data.
Differently from time series forecasting models, the proposed model learns from
a single large-scale spatio-temporal graph, where nodes represent the region-level
human mobility, spatial edges represent the human mobility based inter-region
connectivity, and temporal edges represent node features through time. The authors
applied their method to the US county level COVID-19 dataset. They perceived
that the spatial and temporal information leveraged by the graph neural network
allows the model to learn considerably complex dynamics. It is noticed a 6%

https://github.com/datasets/covid-19
https://darksky.net/
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reduction of RMSLE and an absolute Pearson Correlation improvement from 0.9978
to 0.998 in comparison with the state-of-the-art models. According to the authors,
the combination of graph-based deep learning approaches can be very useful to aid
to understand the spread and evolution of Covid-19.

de Lima et al. [21] proposed a real-time surveillance, forecast, and spatial
visualization of Covid-19, named COVID-SGIS. As a case study, the forecasting
system was applied to monitor Brazil. The system captures routinely reported
Covid-19 information from 27 federative units from the Brazil.io database. It
uses Covid-19 confirmed case data notified through Brazil’s National Notification
System, SINAN, from March to May 2020. Time series ARIMA models were
integrated to forecast the cumulative number of Covid-19 cases and deaths. These
include 6-days forecasts as graphical outputs for each federal state in Brazil,
separately, with its corresponding 95% confidence interval. The worst and the best
scenarios are both presented. The overall percentage error between the forecasted
values and the actual values varied between 2.56% and 6.50%. For the days when
the forecasts fell outside the forecast interval, the percentage errors in relation to
the worst case scenario were below 5%. Considering the good results obtained
with the proposed tool, the authors claimed that the proposed method for dynamic
forecasting may be used to guide social policies and plan direct interventions in a
cost-effective, concise, and robust manner.

4 Conclusions

COVID-19 is a disease that was discovered and soon assumed pandemic status
as it spread to several countries around the world. It drew attention for its ease
of transmission and for exposing the vulnerabilities of health systems around the
world. The individuals who were infected and their families were left with the pain
and suffering and the after-effects of the disease. Although there are vaccines, there
is still no proven effective drug against the disease, so following safety protocols
and social isolation are indispensable. In addition to hygiene practices such as the
use of masks and hand-washing, the use of models to understand the behavior of the
disease and even to predict it helps to shed light on the next steps to be taken in this
pandemic.

The representation of disease through mathematical models facilitates monitor-
ing and can help analyze and understand disease dynamics through key characteris-
tics. Through a system of equations, it is possible to model a disease and contribute
to a quantitative understanding. These characteristics become useful information on
how the spread of the disease works. They also make it possible to understand how
to build time prediction and thus help to create measures to control and prevent
COVID-19. However, for this type of modeling, some assumptions are made, such
as assuming that disease transmission occurs homogeneously, or selecting only one
among several climatic factors. Therefore, this limits the model’s ability to predict.
And if more features were added, the model would lose robustness.
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With the large amount of data available and thanks to speed and storage
technologies, Artificial Intelligence is increasingly strong and present in several
areas. Then, the use of machine learning techniques grew in order to obtain insights
from this data. These models are applied in several areas, such as economics,
for the performance of a stock in the stock market, in banking, in e-commerce,
determining whether a customer will like the product or not, in health, as is done in
the present work with digital epidemiology. But models with this kind of approach
are black boxes, that is, they are not intelligible to experts, because their goal
is to correctly map inputs to outputs. Another type of approach using Artificial
Intelligence is the one that uses hybrid models, i.e. it combines machine learning
models with statistical models. By doing this they combine the advantages of each
of these types of models in order to obtain a more robust prediction model. Another
type of hybrid model is one that combines compartmental models and machine
learning. With this approach the model does not have as good a prediction quality
as machine learning based models; however, it can aid in human understanding of
epidemiological aspects as phenomena, while machine learning based models can
return accurate predictions, thus combining intelligent systems for accurate human
learning emergent predictions. The use of all these approaches is very important to
support us in temporal and spatio-temporal prediction of cases and deaths. For these
solutions can shed light on strategies to assist decision-making by health managers.

Finally, COVID-19 brings with it all the challenges of a new disease with
only 1 year of existence, in facing this unknown, science makes use of all its
arsenal. At this time when there is no extensive background to teach how the
disease behaves, daily experience determines adjustments and creation of clinical
protocols. Predicting the temporal and spatial behavior of COVID-19 through
machine learning becomes a valuable tool to guide strategies, policies, and hope.
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