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1 Introduction

In December 2019, the World Health Organization (WHO) received notifications
from China regarding cases of pneumonia and severe respiratory syndrome among
workers at the seafood market in Wuhan, China, having unknown cause [1]. In
March 2020, WHO classified the state of this disease as pandemic, known as
COVID-19, which has a high rate of transmissibility, with the ability to spread fast
throughout the world [2].

After a year of pandemic, the clinical manifestations of COVID-19 are not
fully understood, as there is still limited information to characterize the clinical
picture of the disease [3]. However, at the beginning of the pandemic, Brazilian
Ministry of Health established the flu syndrome as the most common manifestation
of this disease, which is defined as an acute respiratory condition, characterized by
a feverish sensation or fever, accompanied by cough, sore throat, runny nose, or
difficulty breathing.

The World Health Organization clarifies that the initial signs and symptoms of
the disease resemble a common flu-like condition, but can vary from person to
person, and may manifest through pneumonia, severe pneumonia, and severe acute
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respiratory syndrome [4]. In the current context, people with comorbidities such as
diabetes, cardiovascular diseases, obesity, hypertension, tuberculosis, and others are
at higher risk of rapid worsening of the disease, which can lead to death.

With that in mind, the early detection and management of this disease is essential,
especially in the Brazilian context, a country with continental dimensions and
diverse territorial realities, with great social inequality and limitations in access
to health services by the population. Thus, it is necessary to know and check
information about local realities (states and cities) to make decisions in this scenario.

It is worth mentioning that, based on this problem, organizations and researchers
from different areas of knowledge have sought answers to questions related to health
problems caused by COVID-19. Scientific investigations aim to provide immediate
actions that collaborate to control the pandemic, that is, that contribute to assist
in clinical, social, or political decision-making, all based on scientific evidence, to
maximize the benefits and minimize injuries and costs.

From the existing initiatives to assist the health professional in decision-making,
we highlighted in this research the Artificial Intelligence (AI) and biostatistics,
which together can predict, for instance, the survivor or risk of patients from their
physiological parameters. These predictions allow treatment individualization, and
greater chances of complete recovery. Among the subareas of AI, we highlight
machine learning, whose algorithms have become one of the most used forms of
classification and prediction of patterns in large data nowadays [5].

Thereby, the main goal of this research is to make predictions about the type
of hospitalization and severity assessments of patients with and without COVID-
19. For this, we used hematological data from patients of the units of the Unified
Health System (SUS) in the city of Paudalho, Brazil. The aim is to analyze
algorithms that are capable of making hospitalization predictions into one of the
three possible choices: regular ward, semi-intensive care unit, and intensive care
unit, corresponding to mild (non-critical), moderate, and severe cases. In order
to perform this study, seven classic classifiers were applied to the data set, such
as Support Vector Machine (SVM), Multilayer Perceptron (MLP), Random Tree,
Random Forest, Bayesian Networks, and J48 Decision Trees, all with well-defined
parameter settings tested along the experiments.

This chapter is structured as follows. After this introduction, Sect. 2 and its
respective subsections highlight the theoretical background used in this project.
Section 3 presents the works related to the developed research. Section 4 sets out
the methodological path adopted, while Sect. 5 describes in detail the obtained
results. Section 6 presents a general analysis, building discussions of the results.
Final considerations and perspectives for future work are presented in Sect. 7.

2 Theoretical Foundation

In this section, we present the theoretical approaches related to the main topics of
this research, with emphasis on COVID-19 and machine learning.
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2.1 COVID-19

Characterized as a contagious respiratory disease, COVID-19 is associated with
high mortality rates since its emergence in December 2019 [6]. According to the
World Health Organization, the coronavirus pandemic is putting even the best health
systems worldwide under tremendous pressure [7]. The study by Nemati et al. [6]
states that on March 24, 2020, the virus had spread to more than 170 countries, with
more than 422,613 confirmed cases and 18,891 deaths. In addition, mortality rates
may vary between countries due to demographic differences, age distribution, and
healthcare infrastructure.

The symptoms of COVID-19 are similar to a common flu condition, such as
malaise, fever, fatigue, cough, mild dyspnea, anorexia, sore throat, body pain,
headache, and nasal congestion [3]. However, as this disease progresses, patients
feel shortness of breath, nausea culminating in pneumonia, and multiple organ
failure. Because of this, the best way so far to prevent the disease is individual
protection, such as hand washing, correct use of masks, and social isolation. These
protective measures must be aligned with government actions, such as providing
more beds in intensive care units, hiring and qualifying frontline profession-
als, providing basic sanitation, acquiring specialized medical equipment such as
mechanical fans, and increasing and decentralizing the performance of rapid tests
and vaccination of the population.

The best accepted test to diagnose COVID-19 is the molecular test, such as
reverse transcription followed by polymerase chain reaction (RT-PCR), which
identifies the SARS-CoV-2 viral RNA. In this type of test, secretions from the
nasopharynx are collected. However, according to Iser et al. [3], citing the work
developed by Woelfel et al. [8], Tolia et al. [9], and Hadaya et al. [10], these tests
should be performed between the third and seventh day of infection. This period
guarantees greater precision of the method and reduction of false-negative results.
The problem is that in many cases, it is difficult to identify when the patient became
infected. In addition, RT-PCR tests are normally performed on health professionals
and on symptomatic patients who have been hospitalized, due to the high cost
and the scarcity of certified laboratories for its performance. Serologic tests by
immunochromatography, known as rapid tests, have become an option for: (1)
people with mild to moderate symptoms, without the need for hospitalization; (2)
public health system, for tracking asymptomatic cases, epidemiological survey of
confirmed cases, and estimating the population’s immunization rate. In this case,
they should be used 7 days after the onset of symptoms. Unfortunately, rapid tests
are non-specific for the detection of virus presence directly.

Briefly, the coronavirus increased the need for immediate clinical decisions and
the effective use of health resources, as record pressure was imposed on health
systems worldwide. The aim of developing techniques that assist in decision-
making is to contribute to the control not only of the pandemic, but of the factors
associated with the problem of interest. As a result, scientific investigations, ethical
commitment, and the ability to perceive important clinical gaps for characterizing
and defining hypotheses have become essential.
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2.2 Machine Learning

Machine learning (ML) is a subarea of Artificial Intelligence. From a more technical
point of view, ML stems from the difficulty in manually handling a large volume
of available data, proposing intelligent systems that can learn the patterns or
regularities in the data [12]. One of the objectives of ML techniques is to perform
pattern detection in databases [13]. This is possible through data that provides
machines with the ability to learn and, from that, recognize patterns and create
relationships between variables.

The use of machine learning has become very valuable in several intelligent
applications, solving most data-related problems [14]. With the algorithms present
in machine learning it is possible to work with hundreds of attributes, either in the
detection/use of the interactions between the attributes and thus favor the support to
the diagnosis in the health area [15]. Machine learning techniques have been used
in activities that mainly involve the identification of patterns [13, 15–20]. These
techniques are significantly contributing to the resolution of real problems such as
prediction, diagnosis, and recognition of health problems.

In this COVID-19 scenario, prediction has become a priority for public health.
Thus, the use of ML algorithms has been useful to health professionals, and can help
in several factors, such as for pneumonia detection by analyzing chest X-ray images
[16], support for diagnosis through blood tests [13], predictive model to help doctors
choose the best therapeutic strategies for patients with COVID-19 [21], prediction
of mortality from blood tests [22], and others.

3 Related Works

To contribute in the context of forecasts that estimate the outbreak of COVID-19,
the study by Ardabili et al. [23] presents a thorough and comparative analysis of
machine learning and soft computing models, both in alternative to the Susceptible-
Infected-Recovered (SIR) and Susceptible-Exposed-Infectious-Removed (SEIR)
models. The methods were applied to data from five countries (Italy, Germany,
Iran, the USA, and China) for the total cases obtained in 30 days. Among a range
of investigated ML models, the Multilayer Perceptron (MLP) and the Adaptive
Neuro-Fuzzy Inference System (ANFIS) stood out and showed promising results.
The authors reinforce the importance of researchers dedicating themselves to
investigating predictions to also estimate the number of infected patients, as well
as the number of deaths. Thus, ML models must be analyzed and take into account
the individual context of each country.

The research carried out by Nemati et al. [6] also contributes in this context by
developing predictive models with the ability to predict the length of stay of patients
in the hospital. For this, survival characteristics of 1182 patients were considered,
where the time of discharge was chosen as a variable of interest, along with survival



Prediction of Care for Patients in a COVID-19 Pandemic Situation Based on. . . 173

analysis techniques, including statistical analysis and seven algorithms machine
learning. The results obtained indicate that being male or belonging to older age
groups is associated with lower probabilities of hospital discharge. In addition,
the Gradient Boosting (GB) survival model surpasses other models for predicting
patient survival in the researched context. Stagewise GB, on the other hand, offers
the most accurate download time prediction compared to other algorithms. But,
Kaplan-Meier Estimator and Cox regression methods suggest that the gender and
age of hospitalized patients have a direct effect on recovery time. Finally, all findings
are of great relevance to help healthcare professionals make more assertive decisions
during the outbreak.

Still analyzing the various possibilities of developing predictive models to
contribute in the context of COVID-19, we also highlight the work carried out by
Batista et al. [11] at the beginning of the pandemic in Brazil. The work aimed to
predict the risk of a positive diagnosis of COVID-19 with machine learning, using
data resulting from admission exams in the RT-PCR tests of 235 adult patients,
in the emergency room of Hospital Israelita Albert Einstein in São Paulo, from
March 17 to 30, 2020. In all, five ML algorithms (neural networks, Random Forests,
gradient augmentation trees, logistic regression, and SVM) were used. The results
show that the best predictive performance was obtained by the SVM algorithm
(AUC: 0.85; Sensitivity: 0.68; Specificity: 0.85; BrierScore: 0.16). The three most
important variables for the predictive performance of the algorithm were the number
of lymphocytes, leukocytes, and eosinophils, respectively.

Researchers also appear in order to propose diagnoses that are faster and cheaper.
An example of this is the work developed by Kumar et al. [7]. A classifier based on
ML and Deep Learning using ResNet152 on chest X-ray images of patients with
COVID-19 was proposed for prediction of the new coronavirus. This work focused
on the prevention of spread of the virus by asymptomatic patients. The authors used
the SMOTE technique to balance the data points and then apply the algorithms.
The best results were obtained using the Random Forest model, which stood out in
precision (0.973), sensitivity (0.974), specificity (0.986), F1 score (0.973), and AUC
(0.997). About the predictive model, the XGBoost performed better, with precision
(0.977), sensitivity (0.977), specificity (0.988), F1 score (0.977), and AUC (0.998).
Both models contribute to the effective clinical prediction of COVID-19.

Gomes et al. [16] proposed an intelligent system to support the diagnosis of
COVID-19, investigating radiographs from different databases. Radiographies of
patients with viral pneumonia, bacterial pneumonia, and healthy patients were
obtained from the Kaggle website. The X-rays of patients with COVID-19 were
obtained from four different databases: open source GitHub repository shared by
Dr. Joseph Cohen et al. [24]; COVID-19 database, made available online by Societa
Italiana di Radiologia Medica e Interventistica [25], and Peshmerga Erbil Hospital
database. The authors analyzed the classification performance, using five metrics:
accuracy, sensitivity, precision, specificity, and kappa index. The machine learning
methods used to classify X-ray images were the Multilayer Perceptron, Support
Vector Machine, Decision Trees, Bayesian Network, and Naive Bayes, and all
experiments were carried out with the Weka software. The work showed that the
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system can diagnose COVID-19 with an average accuracy of 89.78%. Its prototype
is already developed, it was able to differentiate COVID-19 from viral and bacterial
pneumonia and has low computational cost.

In the work of de Barbosa et al. [13], several experiments are also carried out with
machine learning methods, such as MLP, SVM, Random Trees, Random Forest,
Bayesian Networks, and Naive Bayes in order to propose an intelligent system with
classic classifiers and low computational cost to support the diagnosis COVID-
19 based on blood tests. Six metrics were chosen to analyze the classification
performance: accuracy, precision, sensitivity, specificity, recall, and precision. The
databases were made available by Hospital Israelita Albert Einstein located in São
Paulo, Brazil, which are available on the Kaggle platform. Bayes Network was the
best method that stood out, being able to achieve high diagnostic performance,
with general precision of 95.159% ± 0.693 of general precision, kappa index of
0.903 ± 0.014, sensitivity of 0.968 ± 0.007, precision of 0.938 ± 0.010, and
specificity of 0.936 ± 0.011. According to the authors, the availability of this
software system combined with rapid and low-cost tests, based on blood tests, can
be of great help in overcoming the testing challenges that are being faced worldwide.

With the works presented above, it is evident that the machine learning area
can be applied to different types of data contributing to the pandemic scenario
caused by COVID-19, considering different goals and objectives, either at the global
or individual level of each country. For this, this research field has peculiarities,
potentialities, and interdisciplinary alignment with other areas. For comparative
effect and better understanding, each of the works cited in this section, they were
summarized in Table 1, considering the main goal, methods used, and obtained
results.

4 Methods

In this study, we evaluated 41 hematological data (blood tests) from patients treated
at public healthcare units in the city of Paudalho, Brazil. These 41 tests (Table 2)
were the features used as classification input. Patient records covered the period
from December 2019 to August 2020. In order to predict hospitalization, we
assessed data from three different hospitalization conditions: regular ward, semi-
intensive care unit, and intensive care unit. Regular ward refers to regular service
or non-critical cases, while semi-intensive care unit corresponds to moderate cases,
and intensive care unit is related to severe cases. It is important to mention that
all procedures involving human participants were performed in accordance with the
1964 Helsinki declaration and with the ethical standards of the institutional research
committee from the Federal University of Pernambuco, registered under number
34932020.3.0000.5208.

The experiments were performed using the WEKA software, version 3.8 [26].
For a better understanding, Fig. 1 illustrates the methodological path used to carry
out the experiments.
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Table 1 Summary of related works

Authors/Year Objective Method Results

Ardabili et al.
[23]

Perform a comparative
analysis of machine
learning and soft
computing models to
predict the outbreak of
COVID-19

Genetic algorithms
(GA), particle swarm
optimizer (PSO), gray
wolf optimizer
(GWO), and others

The MLP and ANFIS
models stood out in the
analysis due to the high
generalization capacity
for long-term forecasting

Nemati et al.
[6]

Analyze the survival
characteristics of
patients with
COVID-19 by
computational
techniques and predict
the length of stay of
these patients in the
hospital

Statistical analysis
techniques along with
machine learning
taking into account the
survival characteristics
of 1182 patients

The results obtained show
that the gradient boosting
model surpasses the other
models for predicting
patient survival, followed
by the KM and cox
regression methods

Batista et al.
[11]

Predict the risk of a
positive diagnosis of
COVID-19 with
machine learning,
using the results of
admission exams in
the RT-PCR tests of
235 adult patients as
predictors in the
emergency room

Five machine learning
algorithms were used
in the experiments,
namely, neural
networks, random
forests, gradient
increase trees, logistic
regression, and SVM

The best predictive
performance was
obtained by the SVM
algorithm (with AUC:
0.85; SEN: 0.68; ESP:
0.85; BrierScore: 0.16).
And, three variables were
identified as most
important for good
predictive performance,
namely: Number of
lymphocytes, leukocytes,
and eosinophils

Kumar et al.
[7]

Propose a classifier
capable of diagnosing
patients with
COVID-19 using chest
X-ray images

ML-based classifier
and deep learning
using ResNet152 on
chest X-ray images of
patients with
COVID-19 for early
and non-invasive
prediction of the new
coronavirus

The best results were
obtained using the
random Forest model,
which excelled in terms
of accuracy (0.973), F1
score (0.973), AUC
(0.997), SEN (0.974), and
ESP (0.986)

Gomes et al.
[16]

Development of an
intelligent system to
support the diagnosis
of COVID-19, using
radiographs from
different databases

Multiclass
classification,
differentiating between
multiple respiratory
diseases, such as
COVID-19, viral
pneumonia, and
bacterial pneumonia

The developed system
can diagnose COVID-19
with up to 89.78% of
average accuracy, also
being able to differentiate
COVID-19 from viral and
bacterial pneumonia

(continued)
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Table 1 (continued)

Authors/Year Objective Method Results

de Barbosa
et al. [13]

Propose an intelligent
system capable of
supporting the
COVID-19 diagnosis
based on blood tests

Experimenting with six
classic machine
learning models,
namely, MLP, SVM,
random trees, random
Forest, Bayesian
networks, and naive
Bayes

The model that stood out most
was the SVM, capable of
achieving high diagnostic
performance, with an overall
accuracy of 95.159% ± 0.693
and low computational cost

This work Analyze intelligent
classifiers that are able
to make hospitalization
predictions considering
three possible
scenarios: Regular
ward, semi-intensive
care unit, and intensive
care unit,
corresponding to mild
(non-critical),
moderate, and serious
cases

For this, we used
hematological data
from patients of the
units of the unified
health system in the
city of Paudalho,
Brazil. Where, seven
classic classifiers were
applied to the data set,
such as SVM, MLP,
random tree, random
Forest, Bayesian
networks, and J48
decision trees

The results obtained show the
random Forest with 100 trees
showed the best potential to
perform the predictions for
regular ward (ACC: 82%;
KPP: 0.642; SEN: 0.730 and
ESP: 0.913), as for the
semi-intensive care unit (ACC:
81%; KPP: 0.633; SEN: 0.890
and ESP: 0.875), and intensive
care unit (ACC: 82%; KPP:
0.640; SEN: 0.640 e ESP:
0.947)

It is valid to clarify that all steps were applied individually for each one of
the three hospitalization conditions (regular, semi-intensive, and intensive). Class
balancing was performed (Step 1), using SMOTE method (Synthetic Minority
Oversampling Technique) [27], which aims to generate artificial instances based
on existing samples to balance the classes. The settings used in this step can be seen
in Table 3.

After class balancing, in Step 2 we pre-processed the data using MLPAutoen-
coder algorithm, which is an unsupervised learning method to select attributes and,
consequently, decrease data dimensionality [28].

In Steps 3, 4, and 5 seven (7) classic classifiers were applied, both for balanced
databases (Step 1) and for databases with selected attributes (Step 2). It is worth
mentioning that in order to obtain individual statistical performance information for
the analyses we tested each classifier 30 times, using the k-fold cross-validation
method with the number of folds equal to 10. Table 4 shows which classifiers were
used and their respective configuration.

Exceptionally, when using the original database, without pre-processing, (Step
5), only the classifiers that obtained the best results in Steps 3 and 4 were used,
namely, Random Tree, Random Forest, and J48 Decision Tree, all configured with
the parameters shown in Table 3. The choice of these algorithms was due to their
performance in terms of the analyzed metrics, in addition to the consumption of
time and memory involved in their processing. In Step 6, some evaluative metrics
were used to perform a multimodal analysis of the obtained results. The metrics
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Table 2 Features extracted from patients’ blood tests

List of features
Hematocrit Leukocytes Serum glucose Metamyelocytes Segmented

Hemoglobin Basophils Neutrophils Myelocytes HB saturation
arterial blood
gases

Platelets Mean corpuscular
hemoglobin Mch

Urea Myeloblasts Total CO2
arterial blood gas
analysis

Mean platelet
volume

Eosinophils C-reactive
protein

Partial
thromboplastin
time PTT

Promyelocytes

Red blood
cells

Mean corpuscular
volume MCV

Creatinine Lactic
dehydrogenase

PCO2 arterial
blood gas
analysis

Lymphocytes Monocytes Total bilirubin Prothrombin time
pt. activity

HCO3 arterial
blood gas
analysis

Mean
corpuscular
hemoglobin
concentration
Mchc

Red blood cell
distribution width
rdw

Direct bilirubin Lipase dosage Indirect bilirubin

D-dimer Base excess arterial
blood gas analysis

PH arterial blood
gas analysis

PO2 arterial
blood gas
analysis

Arterial FIO2

CTO2 arterial
blood gas
analysis

Fig. 1 Steps of the methodological path. In Step 1 the class balancing was carried out; in Step
2 we performed attribute selection; in Steps 3, 4, and 5, we trained and tested the classification
models; and Step 6 consists in the metrics analyses
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Table 3 Settings used for the SMOTE method

Care unit Class value Nearest neighbors Percentage

Regular 0 2 95%
Semi-intensive 0 2 27.7%
Intensive 0 2 790%

Table 4 Classifiers
configuration

Classifier Parameters

Naive Bayes Batch size: 100
Bayes net Batch size: 100
Random tree Batch size: 100

Seed: 1
J48 decision tree Batch size: 100
Random Forest Trees: 10, 20, 50 e 100

Batch size: 100
MLP Neurons in the hidden layer: 20, 50 and 100

Learning rate: 0.3
Iterations: 500

SVM Linear kernel (P = 1)
Polynomial kernel (P = 2 and P = 3)
RBF kernel (gamma: 0.01; 0.25 and 0.5)

were accuracy (ACC), kappa Statistics (KPP), sensitivity (SEN), specificity (ESP),
ROC curve area (AUC), and training time (TT). In the results section, it is also
reinforced that, for statistical purposes, the values presented refer to the averages
and standard deviation of each metric, calculated from the 300 testing values found
from the experiments.

5 Results

For better understanding, the results section was divided into three subsections, each
referring to one of the care units. In each subsection we, respectively, assessed
classifiers’ performances in the prediction of regular ward hospitalization, semi-
intensive care unit hospitalization, and intensive care unit hospitalization.

5.1 Regular Ward Hospitalization

In the data referring to the regular care wing, class 0 has 4110 instances and
represents patients who did not need to be admitted to the regular ward. While class
1 is composed of 2105 instances and refers to patients who needed to be admitted
to the regular ward. As a result, the imbalance between the two classes mentioned
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is visible, with a difference of 2005 instances. To solve this problem, we applied the
SMOTE method considering the real instances as examples to generate synthetic
data, based on two neighbors and using the percentage of 95%. After applying
SMOTE, classes 0 and 1 were balanced, both with 4110 instances.

In Step 2, MLPAutoenconder was applied to select attributes and thus, reduce
the dimensionality of the data. Then, from the 41 features of the original database
(listed in Table 2), only 10 were identified by the model as relevant.

The results obtained after the application of the seven classifiers (Step 3) on the
balanced database (Step 1) show that the model with the best performance in relation
to accuracy (82.1%), kappa statistics (0.64), sensitivity (0.73), and specificity (0.91)
was the Random Forest with 100 trees. On the other hand, the worst result achieved
for this case was obtained by Naive Bayes algorithm, in relation to accuracy (65%),
kappa (0.30), and sensitivity (0.38); however, the average specificity value of 0.98
was slightly higher than the other methods. These results can be seen in Fig. 2, and
may be further analyzed in Table 5.

In Step 4, where we applied theMLPAutocoder to select attributes in the database
pre-processed with SMOTE (Step 3), the Random Forest with 100 trees stood out in
terms of accuracy (75%), kappa statistics (0.651), sensitivity (0.676), and specificity
(0.824). Another notable point is the good results obtained by Random Forest with
50 trees, where kappa statistics (0.651) and sensitivity (0.676) are equal to the values
of Random Forest with 100 trees, differing only in accuracy (74%) and specificity
(0.800).

On the other hand, the SVM with linear kernel achieved a worse performance in
terms of accuracy (67%) and sensitivity (0.320), but this same model showed better
kappa statistics (0.489) and specificity (0.920) than the values obtained by Naive
Bayes, with kappa of 0.298, and specificity of 0.880, but still with better accuracy
(69%) and sensitivity (0.390).

Figure 3 presents the results obtained in Step 4. Briefly, it is clear that the
algorithms with better performances were both Random Forest, using 50 and 100
trees, as already described. Naive Bayes, followed by SVM with linear kernel, is
the model that stands out negatively when compared to the others to carry out the
prediction of hospitalization in the regular ward.

Regarding Step 5, among the three classifiers, the accuracy (76.9%), kappa
statistics (0.523), sensitivity (0.742), and specificity (0.822) of Random Forest with
100 trees stood out in relation to the other models. However, it is worth noting that
Random Forest with 10, 20, and 50 trees also obtained good results, similar to those
with 100 trees. Through Fig. 4 it is possible to view this information.

Even with good results, in this scenario, Random Tree continues to occupy the
position of classifier with the worst performance in relation to the other models
in terms of accuracy metrics (72%), kappa index (0.453), sensitivity (0.705), and
specificity (0.798).
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Fig. 2 Results of accuracy (a), kappa statistics (b), sensitivity (c), and specificity (d) to predict
regular ward hospitalization using the balanced database (Step 3)
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Fig. 3 Results of accuracy (a), kappa statistics (b), sensitivity (c), and specificity (d) to predict
regular ward hospitalization using the database with features selected by MLPAutoencoder (Step
4)
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Fig. 4 Results of accuracy (a), kappa statistics (b), sensitivity (c), and specificity (d) to predict
regular ward hospitalization using the original database, without pre-processing (Step 5)
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5.2 Semi-Intensive Care Unit Hospitalization

In the data referring to semi-intensive care, class 0 is composed of 2728 instances
and represents patients who did not need this type of care, while class 1 has 3487
instances and represents patients who needed care in the semi-intensive unit. There
is clearly a difference of 759 instances between classes. In this unbalanced scenario,
SMOTE was applied to these data in Step 1, considering two neighbors of the
majority class and applying the percentage of 27.7% (as specified in Table 3). After
this procedure, both classes were left with an equivalent number of instances of
3487.

Such as in the context of regular ward hospitalization, in Step 2, from the
41 original features, only 10 were selected by MLPAutoenconder. The prediction
performance of the seven classifiers (Step 3) on the balanced database (Step 1)
clearly demonstrate that the Random Forest with 100 trees stood out positively in
terms of accuracy (81%), kappa statistics (0.633), sensitivity (0.890), and specificity
(0.742). The Random Forest with 20 and 50 trees also performed well reaching
similar results to that using 100 trees, as shown in Fig. 5.

On the other hand, Naive Bayes presents less satisfactory results regarding
accuracy (61%), kappa statistics (0.230), and specificity (0.300); however, the
sensitivity (0.980) of this classifier stands out in relation to the other models. The
performance of this classifier is closely followed by SVM with RBF kernel and
gamma of 0.01, with worse performances in the metrics of accuracy (60.8%), kappa
statistics (0.240), and specificity (0.320). Similar to Naive Bayes, SVM also showed
high sensitivity (0.870).

With the reduced number of attributes (Step 2), the results of Step 4 did not
present major discrepancies between them. However, the best result was obtained
by the Random Forest model with its respective configurations, highlighting the
accuracy (71.9%) and the kappa statistics (0.438) of the model using 100 trees.
In terms of sensitivity, the SVM with a 0.01 gamma and RBF kernel stood out,
achieving the average value of 0.830. Regarding specificity, the Naive Bayes model
performed better than the other methods, reaching 0.780. However, when comparing
the training time (5 s) and the area under the ROC curve (0.778) of the 100 trees
Random Forest with the other models, it presents the best results and is seen as
a potential model for predicting hospitalization in semi-intensive care units in this
scenario.

Analyzing from the perspective of the worst performing model, we highlight
the SVM with linear kernel, which obtained the worst results in terms of accuracy
(61%), kappa statistics (0.230), and specificity (0.380), improving only in sensitivity
(0.850). In Fig. 6, it is possible to observe the performance of the aforementioned
models.

In order to carry out a comparative analysis with the results obtained in Steps
3 and 4, in Step 5 experiments were performed to predict hospitalization in semi-
intensive care units from the database without pre-processing. As shown in Fig. 7, it
is clear that the Random Forest model with its respective tree configurations stands
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Fig. 5 Results of accuracy (a), kappa statistics (b), sensitivity (c), and specificity (d) to predict
semi-intensive care unit hospitalization using the balanced database (Step 3)
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Fig. 6 Results of accuracy (a), kappa statistics (b), sensitivity (c), and specificity (d) to predict
semi-intensive care unit hospitalization using the database with selected features (Step 4)
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out, especially that of 100 trees regarding accuracy (79.6%), kappa statistics (0.594),
sensitivity (0.858), and specificity (0.861).

Finally, analyzing the model with the worst performance in this scenario, we
highlight the Random Tree model in terms of accuracy (73%), kappa statistics
(0.512), sensitivity (0.710), and specificity (0.690). However, it is worth noting that
in the general context, all three models (Random Tree, J48, and Random Forest)
showed positive results and better performance than SVMs and MLPs. But among
these three classifiers, Random Forest showed the best overall performance.

5.3 Intensive Care Unit Hospitalization

In the data regarding prediction of hospitalization in intensive care units, class 0
has 5592 instances and represents patients who did not need to be admitted to the
intensive care unit. While class 1 is composed of 623 instances and refers to patients
who needed intensive care. Clearly, it is possible to identify an imbalance between
classes, with a difference of 4969 instances. In order to perform the class balancing,
in Step 1 (SMOTE method), it was necessary to carry out an expansion of 790%
of the smaller class based on two neighbors of the majority class, resulting in two
balanced classes, each one with 5592 instances.

During the analysis, from the predictions of hospitalization in intensive care
units using the database pre-processed with the SMOTE method (Step 3), the
algorithm that obtained the best accuracy (82%) was Random Forest (as shown
in Fig. 8a), configured with 50 and 100 trees, respectively. Bayes Net also stood
out for accuracy, with 78.4%. For this same metric, the models that had the most
outlier values were Naive Bayes (60%) and SVMs (ranging from 63% to 68%).
This information can be seen in Fig. 8.

In Fig. 8, we also see the kappa statistics (Fig. 8b) obtained by the models in Step
3, which ended up following a pattern similar to the previous metric: with Random
Forest of 100 trees achieving the best average kappa (0.65). Naive Bayes model
with kappa of 0.22, followed by the SVMs with kappa statistics ranging from 0.23
to 0.43, showed less satisfactory results.

Regarding sensitivity, the SVM models performed better, reaching 0.98 in the
identification of true positives. While Naive Bayes obtained only 0.26, it stands out,
therefore, in three parameter analyses, as the worst model to be used in this context.
The specificities of the SVMs models, on the other hand, were the lowest, thus
disqualifying these models for the identification of true negatives.

In Step 4, after applying MLPAutocode, there was a reduction from 41 to 10
attributes in the database pre-processed with SMOTE (Step 3). By analyzing the
accuracy of the models in detail, as shown in Fig. 9, it is clear that the Random
Forest models of 100, 50, 20, and 10 trees stood out in comparison to the other
algorithms, with accuracy between 76% and 78%. On the other hand, it was also
found that SVM models did not obtain good results in this metric, specially SVM



188 A. S. Torcate et al.

Fig. 7 Results of accuracy (a), kappa statistics (b), sensitivity (c), and specificity (d) to predict
semi-intensive care unit hospitalization using the original database, without pre-processing (Step
5)
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Fig. 8 Results of accuracy (a), kappa statistics (b), sensitivity (c) and specificity (d) to predict
intensive care unit hospitalization using the class-balanced database (Step 3)
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with RBF kernel and gamma of 0.01 (63%), followed by SVM with linear kernel
(64%).

We highlight that the kappa statistics presented a behavior very similar to the
accuracy. The Random Forest model stood out from the other methods, with kappa
reaching 0.55. The SVM models with RBF kernel with 0.01 gamma and SVM with
linear kernel performed worse again, with kappa of 0.25 and 0.29, respectively.

Unlike what has been analyzed and reported so far, for sensitivity (Fig. 9c) in
Step 4, we see that the models with the best sensitivity were Naive Bayes (0.98),
followed by SVM with linear kernel (0.97) and the SVM with RBF kernel and
gamma of 0.01 (0.89), while Random Tree and J48 showed sensitivity of 0.60 and
0.61, respectively. We also noticed that the same models that performed better in
sensitivity achieved worse values for specificity (Fig. 9d), indicating a discrepancy
between true-positive and negative predictions.

For comparative purposes, as shown in Fig. 10, only the Random Forest, J48, and
Random Tree models were executed on the database without pre-processing (Step
5), since these algorithms showed better overall performances in the previous steps.
As a result, the accuracies of J48 (94%) and Random Forest models (from 90% to
93%) were outstanding. Random Tree, on the other hand, achieved 87% of accuracy,
decreasing in relation to the other models.

Still at this step, during the analysis of the kappa statistics, the Random Forest
models of 50 and 100 trees continued to stand out, with average values of 0.38,
followed by J48 with kappa of 0.37. The Random Tree classifier did not show good
performance, with an average kappa equal to 0.27.

Figure 10 also presents the results related to the sensitivity in Step 5. In this
metric, the findings demonstrate that J48 stands out with an average value of 0.99,
closely followed by Random Forest, with 0.98. Random Tree obtained 0.95 for the
same indicator. As for specificity, the discrepancy with the pattern presented so far
is visible. This time, the J48 model performed worse among the models, with a true-
negative rate of 0.22. The Random Forest model with 100 trees, on the other hand,
reached the highest average specificity value (0.26).

After a comparative and multimodal analysis in each of the stages, to predict the
three types of hospitalization proposed, the best models were selected. In order to
further show these results, the indicators for the best models in each scenario were
compiled in Table 5, together with the averages and standard deviations of accuracy
(ACC), kappa statistics (KPP), sensitivity (SEN), specificity (SPE), area under the
ROC curve (AUC), and the training time (TT).

Finally, it is of great value to mention that at all steps for the three different
types of care unit (regular, semi-intensive, and intensive), the model that stood out
positively regarding the evaluation metrics was the Random Forest, mainly with
the configuration of 50 and 100 trees. On the other hand, the models that had less
satisfactory results, in all three conditions, were Naive Bayes, SVMs, and Random
Tree (Stage 5). However, in order to obtain a more accurate and general analysis,
the discussion of these results will be further explored in the following section.
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Fig. 9 Results of accuracy (a), kappa statistics (b), sensitivity (c) and specificity (d) to predict
intensive care unit hospitalization using the database with selected features (Step 4)
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Fig. 10 Results of accuracy (a), kappa statistics (b), sensitivity (c), and specificity (d) to predict
intensive care unit hospitalization using the original database, without pre-processing (Step 5)
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6 Discussion

In general, the Random Forest model with its four configurations (10, 20, 50,
and 100 trees), had better performance. In all the generated databases (original,
balanced, and with attributes selection), its performance was satisfactory, not only
considering the average values of its metrics, but also the standard deviations and
the constancy of these models. About the training time, it was identified that very
high degree parameters (such as SVM and MLP) showed an exponential growth for
an insignificant performance gain. Although the re-training is done on average once
a week, the metrics were not positive enough to encourage the use of these models.

In the context of regular ward care, the Random Forest model was the most
successful. Both with the configuration of 100 trees, as well as those of 50, 20,
and 10 trees. Another classifier that also showed positive results was the J48. It is
worth mentioning that in this context, as shown in the results section, the SVMs and
MLPs have not shown satisfactory results.

The prediction of hospitalization in semi-intensive care units shares the same
findings as the regular ward. In both, Random Forest with its four configurations
performed better. On the other hand, SVMs and Bayes Net declined in the results
of the evaluation indicators. It is important to note that most of the classifiers were
more promising with the balanced database.

Considering the intensive care unit hospitalization, the Random Forest models
with 100 and 50 trees showed better accuracy and sensitivity with the original
database. Kappa index, specificity, and area under the ROC curve were best
evaluated on the balanced database. Still for this type of care, the Naive Bayes model
was the worst classifier, taking into account that its metrics are the lowest.

One curiosity found, which is worth reporting, refers to the calculated sensitivity
for recommendation in care in semi-intensive and intensive care units. In this
indicator, SVM models were the best evaluated, SVM with RBF kernel and 0.01
gamma, followed by SVM with linear kernel. Despite their good performance for
the identification of true positives, these classifiers showed discrepancies in terms
of accuracy, kappa index, specificity, and area of the ROC curve.

Finally, in view of the evidence, the results weighed against the original bases.
This leads to belief that the balance of bases, more than the reduction in the
number of attributes, result in better classifications of this problem. This leaves the
possibility that, perhaps, the MLPAutocode is not the most appropriate technique
in this context of prediction. In testing this hypothesis, future works may use other
techniques and, consequently, different configurations to carry out a comparative
analysis of the results.
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7 Conclusion

Considering this atypical pandemic moment caused by the new coronavirus, the
use of predictive models has been helping health professionals in order to control
the spread of the virus and the burden on the health system. In this context, our
work contributes to this theme by proposing a comparative analysis of seven classic
classifiers capable of making predictions regarding care and assessments of the
severity of patients with and without COVID-19, seen at the Unified Health System
(SUS) units of the municipality of Paudalho, Brazil, based on the evaluation of
hematological data (blood tests).

The results obtained through the evaluative metrics show that among the seven
classifiers used, both for predicting regular appointments and for attending a semi-
intensive care unit, the Random Forest algorithm showed better performance with
all configurations, in relation to the other models. In both cases, the SVM also stood
out, but negatively, thus being the least suitable model to be used in this scenario.

Besides the findings, we highlight that analyzing the results from different
quantitative and qualitative perspectives is important both for a better understanding
of the problem, as well as for choosing the best solution in the researched context.
For this reason, several aspects, ranging from the robustness of the model to the time
of its execution, must be taken into account.

It is worth noting that the predictive models should assist the health professional
in making decisions. The model is only for support and streamline the process.
In the case of this work, the prediction can help by assisting in the screening of
regular patients, so that those with moderate and severe cases receive care as soon
as possible.

Finally, as perspectives for future work, it is intended to apply to the three
databases (referring to regular, intensive, and semi-intensive care) other pre-
processing techniques, as well as other methods for reducing and selecting the
number of attributes with different configurations, in order to verify comparatively
the classifiers’ performance in relation to the original knowledge base and the base
with the pre-processed data.
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