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5.1 Introduction

Mobility is one of the essential faculties and can be defined as the ability of an
individual to freely move through multiple environments and perform activities
of daily living with ease [1, 2]. Following a neurological dysfunction, such as
stroke, mobility may be affected and only a short period might remain to take
advantage of the inherent adaptability and plasticity of the central nervous system
[3]. Reestablishing adequate mobility for individuals with lower-limb impairments
is often a complex challenge and frequently involves the interdisciplinary efforts
of many medical, surgical, and rehabilitative specialists [4]. Thus, robotics-based
training is considered a potential aid, not only for patients but also for healthcare
professionals.

Although these diseases that compromise mobility are well identified and
studied, just a small group of individuals can be entirely reversed by surgical
or rehabilitation procedures [5]. In other words, most of the patients who suffer
disorders of gait are left with consequences. In this context, it is paramount to
mitigate disability and the deterioration of the quality of life of these individuals.
It is necessary to develop techniques that enhance the rehabilitation processes to
improve patient mobility safely and efficiently [6]. Therefore, gait analysis has
been used to help therapists who wish to monitor the recovery of patients going
through rehabilitation processes [7]. Within clinical settings, gait classification
can be implemented as part of the control parameters for functional electrical
stimulation [8, 9], estimation of the risk of older adults fall [10], the detection of
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abnormal gait pattern in patients with paretic limbs, and their classification based
on known pathologies [11]. Besides, an atypical gait pattern can be an indicator of
the progression of neurological disorders. For instance, atypical gait patterns have
been proven to predict if seniors will develop dementia or cognitive decline [12].

Regarding the field of robotics, researchers have managed to program humanoid
robots to use human-based gait trajectories generated via gait classification [13], as
well as consistently control wearable assistive devices such as robotic prostheses
[14] and orthoses [15] for the recovery of lower-limb mobility. In particular, gait
phase detection methods have been used in robotic lower-limb orthoses to command
force-field behaviors according to the detected gait sub-phase. Due to the recent
rise in lower-limb exoskeletons as an alternative for gait rehabilitation, gait phase
detection has become an increasingly important feature in controlling these devices.

This chapter aims to present strategies for the automatic identification of gait
phases and their applications. To this end, firstly, it is essential to identify the
importance of gait parameters to have a successful gait analysis in rehabilitation
scenarios; and secondly, it is necessary to recognize the most commonly used
portable devices for gait analysis with their advantages and disadvantages. The
main content of this chapter is organized into five thematic sections, addressing
relevant aspects regarding gait phase estimation and essential aspects covering their
applications in rehabilitation settings. Section 5.2 begins with the definition of the
spatiotemporal parameters that describe the gait pattern. Section 5.3 presents the
most commonly used wearable gait analysis devices. Section 5.4 describes two
methodologies to automatically classify and detect the gait phases for assistive and
rehabilitation applications. Section 5.5 illustrates a walker-assisted gait case study,
where an online methodology is presented to estimate gait parameters. Finally,
Sect. 5.6 presents the conclusions and recommendations for future works in this
field and the challenges of gait phases estimation in the rehabilitation context.

5.2 Spatiotemporal Gait Parameters

Spatial and temporal parameters or indicators characterize the gait cycle (presented
in Chap. 1). These indicators commonly refer to the step time (seconds), stride time
(seconds), step length (meters), stride length (meters), cadence (steps per minute),
walking speed (meters per second), foot angle (grades), single limb support time
(seconds), double limb support time (seconds), and stance-to-swing ratio. These
time and distance parameters provide an index of an individual’s walking patterns.
It is essential to highlight that these parameters are dependent on an individual’s
walking speed. Therefore, it is recommended that individuals walk and their freely
selected cadence during a gait analysis exam. On the other hand, although temporal
gait parameters are often helpful when diagnosing pathological conditions and
evaluating treatment efficacy, these parameters rarely provide sufficient insight into
the origin of gait abnormalities [16].

Step length is the longitudinal distance from heel strike (HS) of one foot to
contralateral HS. Step time is the elapsed time associated with the step length.
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Stride length is the longitudinal distance between the occurrences of the same event
(e.g., HS) with the same foot. Normal gait is symmetrical; hence, stride length is
equal to twice the step length. Stride time is the elapsed time associated with the
stride length. Cadence is defined as the rate at which an individual ambulates and is
measured in steps per minute. The rate at which an individual ambulates at a self-
selected comfortable speed is termed natural cadence. Walking speed represents
the overall performance of walking. It is the rate of displacement change along
the predefined direction of progression per unit time. Walking speed is also the
product of step length and cadence. Foot angle is the angle between the line of
progression and the foot axis. Foot angle is positive when the axis points lateral
to the line of progression. Foot angle is zero when the foot axis is parallel to the
line of progression. Foot angle is negative when the foot axis points medially to the
line of progression. Single limb support is the elapsed time of the gait cycle during
which one foot contacts the ground. Double limb support is the elapsed time of the
gait cycle during which both feet are in contact with the ground. Single and double
limb support may also be expressed as a percentage of the overall gait cycle. The
stance-to-swing ratio is the stance interval divided by the swing interval [16–19].

5.3 Wearable Gait Analysis Devices

Gait analysis has become an essential task in clinical and rehabilitation programs,
as it provides powerful insights into the individual’s gait quality, the behavior of
the gait pattern, and other dynamic factors [20]. Moreover, the output from a gait
analysis process can offer information that is characteristic of a particular gait
pathology or impairment. Thus, individualized treatments can be proposed.

Nowadays, the applications of gait analysis are divided into two main categories:
clinical gait assessment and gait research purposes. Despite both seek to improve
the human quality of life, clinical gait assessment (addressed in Chap. 10) has
the purpose of helping individual patients directly, whereas gait research aims to
improve medical diagnosis or treatment by improving the understanding of gait
[21]. For instance, the gait spatiotemporal parameters are widely used in control
algorithms for robotic applications and several rehabilitation programs [2, 22]. The
smart walkers use gait information to provide natural and safe control strategies
[2,23]. Similarly, estimating users’ gait speed is useful to implement follow-in-front
controllers or intention-based strategies in smart walkers [24–26]. Furthermore, it
has been demonstrated that the tracking of gait parameters during rehabilitation
processes may offer an overall indicator of patients’ gait health [27].

Several gait analysis methods have been used and employed in these applications
according to: (1) the nature of the clinical condition, (2) the individual’s skills, (3)
the available facilities in the clinic or laboratory, and (4) the purpose for which
the analysis is being performed [21]. In general terms, the analysis methodology
strongly relies on the type of sensor used. Among the most common wearable
sensors are: inertial sensors, ultrasonic sensors, laser rangefinder systems, and force
sensors.
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5.3.1 Inertial Sensors

Inertial sensors are gaining increasing popularity in human motion analysis, as
they are commonly worn by the user, provide motion data directly, and do not
require external sources or devices. Using inertial sensors can typically achieve
high accuracy at moderate to high walking speeds or in self-paced walking.
However, their performance noticeably degrades at lower speeds, usually the pace
for individuals with walking difficulties [28, 29].

The typical inertial sensor is the Inertial Measurement Unit (IMU), a combination
of three components: accelerometers, gyroscopes, and magnetometers. This device
can measure gravitational force, speed, and orientation. With these parameters it is
possible to make estimations of the gait phases, as well as spatiotemporal parameters
[30]. The implementation of different sources of information in IMUs makes them
a very robust sensor, and they often require complex fusion algorithms to get
improved estimations [27].

Accelerometers are the most widely used option if an outpatient gait analysis is
required; these have certain advantages such as reduced size, highly mobile, low
cost, and power consumption [30]. Accelerometers are transducers used to measure
linear and angular accelerations. They can be arranged in either uni- or multi-axial
configurations. These devices are designed according to Newton’s second law of
motion and Hooke’s law [31]. Displacement and velocity sensors can be used in
combination with derivative circuits to measure acceleration. Direct measurement
of acceleration can also be obtained with the use of compact accelerometers
[31]. However, its use carries several factors such as: (1) the need for gravity
compensations, (2) increased computational load in the post-processing stage,
(3) the occurrence of drift error in position data, and (4) the need for system’s
calibration to properly locate the sensors in the required application [30].

Gyroscopes are angular velocity sensors. This velocity is a factor whose signal is
not influenced by the vibrations that occur when hitting the heel, and additionally,
this variable is not affected by the force of gravity. In gyroscope, the output is the
obtained periodic results whose patterns are repeated during the gait cycle [30].
To get the references to the framework to these sensors as it is the orientation of
the axis are commonly used the Direction Cosine Matrix (DCM) and Kalman filter
[32]. Today, commercially available inertial sensors measure both linear and angular
accelerations with six degrees of freedom.

Finally, magnetometers provide information related to changes in magnetic
fields. By definition, these devices measure the air’s magnetic flux density and detect
fluctuations in Earth’s magnetic field. With this information, the magnetometers
offer the possibility to find the vector towards Earth’s magnetic North. This is
often used to improve the accuracy of the measurement system through the use of
data from the magnetometer, accelerometer, and gyroscope. Commercially available
inertial sensors with these three types of sensors are considered as nine degrees of
freedom IMUs. They provide a more robust estimation of orientation angles (i.e.,
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yaw, pitch, roll), as well as linear and angular accelerations, and employ better drift
correction strategies [33].

5.3.2 Ultrasonic Sensors

An ultrasonic sensor is an electronic device that measures the distance of a target
object using ultrasonic sound waves and converts the reflected sound into an
electrical signal [34]. An ultrasonic sensor uses a transducer to send and receive
ultrasonic pulses that relay back information about an object’s proximity. These
sensors, for instance, estimate the gait parameters by measuring the distance
between the user’s feet and the floor [27]. In general, these measure kinematic
variables such as the stride length, step length, the distance separating the two feet,
and the distance separating the swinging foot from the ground.

5.3.3 Laser Rangefinders (LRFs)

Laser-based systems or laser rangefinders are optical sensors that use infrared laser
beams for distance measurement in two dimensions. In general, these systems
consist of a transmitter of light pulses arranged on a rotation system that allows
distance measurements at different angles. Most common LRFs are based on the
time-of-flight principle. Under this method, the time it takes for the light beam to
travel to a target and return is measured [35, 36].

The data delivered by the laser sensors can be organized as an ordered sequence
of points in polar coordinates (S), as shown in Eq. 5.1, where ρ corresponds to the
measured distance and θ to the angle.

S = [s1, s2, . . . , sn], si = (ρ, θ). (5.1)

In some applications it is helpful to express the points acquired by the laser in
Cartesian coordinates. Considering that the plane of laser readings corresponds to
the XY plane, Eq. 5.2 illustrates this conversion.

P = [(x1, y1), (x2, y2), . . . , (xn, yn)], : xi = ρ sin(θ), ρ cos(θ). (5.2)

For instance, in walker-assisted gait applications, these sensors track the user’s
legs position and are placed in front of the user at approximately the knee height
[2, 22–24, 37]. Clustering algorithms then process the information retrieved from
the LRFs to estimate the average position of each leg.
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5.3.4 Foot Pressure Sensors

The ground reaction force is an external force acting on the sole during standing,
walking, or running activities. In this sense, the ground reaction force has also
been of interest in human motion analysis [38]. To date, numerous measurement
techniques have been utilized in the study of this type of force. For instance, the
ground reaction force can be measured by sensors placed on the floor [27, 39] or
foot pressure sensors that measure the foot contact with the ground [40]. Other
techniques include floor-mounted transducer matrices, pressure mats, instrumented
shoes, force plates, insole-based pressure systems, and glass plates using the critical
light reflection technique [27].

Studies utilizing floor-mounted force sensing resistors (FSR) or transducers
illustrate barefoot, isolated steps, and insole systems that allow investigation of step-
to-step alterations in gait. Their output requires a straightforward processing, but
they do not provide any information regarding the swing phase of the gait [41].
Specifically, an FSR is a sensor whose electrical resistance changes in proportion
to an applied pressure; as applied to gait phase detection, these sensors are located
in shoe soles so that changes in the plantar pressure can be directly correlated to
the gait phase, since each gait phase can be related to a specific pressure pattern
[42–45]. Flexible pressure sensors experience changing resistances as a function of
pressure. These sensors are inexpensive and have a convenient input composition
[42]. Nevertheless, their use in everyday activities is not recommended as they need
to be placed at optimal locations to accurately detect gait phases, thus requiring an
experienced professional to determine their optimal placement [46]. Additionally,
pressure insoles must be tailored for each subject’s foot, which incurs higher
research costs, and are continuously exposed to tear and friction, which results in a
shorter lifetime [47].

Overall, although these sensors provide essential real-time information correlated
to locomotion, they are low-cost and small size enabling applications in both clinical
settings and home environment applications [41]. Besides, in plantar pressure
studies consideration should be given to possible sources of error. These include
sensor hysteresis, non-linearity, bending, humidity and temperature changes, and
stress shielding secondary to sensor–tissue or sensor–insole interface mechanics
[38].

5.4 Classification of Gait Phases: Exoskeletons’ Case Study

The evolution of technology allows using more sophisticated tools such as pattern
analysis and artificial intelligence to analyze and interpret the motion and gait
analysis. These models allow accurate biomechanical analysis and precise analysis
of the biomechanical effects of orthotics, prosthetics, and assistive devices. This
section will show the theoretical approach, implementation methodology, and
applications of two classification strategies that have been implemented in this book
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Fig. 5.1 Illustration of an assisted gait application using a lower-limb exoskeleton and a variable
stiffness ankle exoskeleton. Gait phases’ information is used to determine the behavior of the
assistive devices

for the automatic identification of gait cycle.1 As an illustration, Fig. 5.1 describes
an example of a lower-limb exoskeleton and a variable stiffness ankle exoskeleton
in a gait assisted application. The assistive devices employ the information extracted
from an IMU to determine the most appropriate control strategy at each gait phase.

First, it is essential to note that several computational methods have been
previously proposed for the automatic segmentation of the gait cycle, which fall into
two main categories. The first category is comprised of algorithms, which divide the
gait phases based on the threshold selection of either raw or processed data [44,48].
Second, some machine learning approaches have emerged in recent years to sub-
stitute the techniques mentioned above that rely on hand-crafted feature extraction.
These adaptive methods extract patterns based on Support Vector Machines (SVM)
[11], Artificial Neural Network (ANN) [43, 49, 50], hybrid algorithms [51], hidden
Markov model (HMM) [52–58], among others.

This chapter implements two classification strategies for the automatic identifi-
cation of four gait phases, drawn from inertial data coming from a single Inertial
Measurement Unit (IMU) located at the foot instep. This sensor is used as means
of gait phase detection thanks to its cost-effectiveness [59] and the fact that inertial
quantities present typical waveform features during a gait cycle [60]. Studies have
been conducted positioning IMUs on the waist [61], thigh [62], shank [63], and foot
instep [8,64]. The IMU placed at the foot instead was because scalar classifiers have

1The implementation of the two classification strategies and the dataset are available at: https://
github.com/midasama3124/hmm_gait_phase_classifier.

https://github.com/midasama3124/hmm_gait_phase_classifier
https://github.com/midasama3124/hmm_gait_phase_classifier
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shown better performance with the sensor placed at this location, even compared to
other vector classifiers involving more inertial sensors placed at different locations
on the lower limb [53].

Regarding the two classification strategies implemented, the first and most easily
implemented strategy is a threshold-based algorithm that determines the gait phases
of interest by establishing specific decision rules and thresholds, which must be
met to jump from one gait phase to another. The other partitioning method may
be viewed as a machine learning algorithm since it requires a training stage and a
posterior testing stage [52]. Specifically, the implemented algorithm is based on a
continuous HMM.

5.4.1 Threshold-Based Detection Algorithm (TB)

A Threshold-Based Detection Algorithm is based on a finite state machine (FSM),
which consists of a set of states si and a set of transitions between pairs of states
si, sj . A transition is labeled condition/action: a condition that causes the transition
to be taken and action that is performed when the transition is taken [65]. State
machines are a method of modeling systems whose output depends on the entire
history of their inputs and not just on the most recent input, compared to purely
functional systems, in which the input purely determines the output. State machines
have a performance determined by their history [66] and provide means to control
decisions.

The developed Threshold-Based Detection (TB) Algorithm is based on the
mediolateral axis rotation component of the foot accelerometer (Ay) and gyroscope
(Gy) signals as input, since the lower-limb joints movement occurs mainly along
the sagittal plane. Timestamps are also used as algorithm inputs, since this detection
algorithm uses spatial thresholds and temporal limits. This means that each gait
phase can be associated with a sequence of wave-related features without any
complex processing that would result in a high computational load [67]. For more
information on the TB’s feature extraction process, the author recommends to read
the publication associated with this chapter [68]. Figure 5.2 illustrates the feature-
based conditions for the transitions between gait phases. Similar strategies based on
curve characteristics could be carried out in different inertial signals drawn from
different locations in the human body (i.e., waist, shank, thigh).

To be more precise, the flowchart in Fig. 5.3 summarizes the main detection
features for the transition between gait phases and their extraction process. First,
feature extraction from linear acceleration and angular velocity signals begins with
creating a feature list, since several features must be found before any gait phase is
claimed as detected. Each time a new gait phase is updated, this list is emptied. The
input data (D(i) in Fig. 5.3: Gy or Ay as appropriate) are updated at a sampling rate
of 100 Hz, which matches the inertial sensor sampling rate. Each feature should
meet certain conditions to be included in the list. These conditions are evaluated
sequentially as follows:
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Fig. 5.2 State machine of the threshold-based algorithm. The transition conditions are based on
features found in the angular velocity (Gy ) and linear acceleration (Ay ) signals
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Fig. 5.3 Flowchart of feature extraction of the threshold-based algorithm from inertial motion
data. This chart shows how a feature list is updated based on the fulfillment of certain conditions.
The occurrence of each feature and their corresponding conditions are sequentially assessed in the
following manner: crossed high threshold (Ref. 1), crossed low threshold (Ref. 2), Crest Middle
(Ref. 3), crest (Ref. 4), Trough Middle (Ref. 5), Trough (Ref. 6), and neutral (Ref. 7). When a new
gait phase is detected, the feature list is emptied for further searches. Adapted from [68]
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• Crossed High Threshold (Ref. 1 in Fig. 5.3): Current data (D(i)) must be
above a pre-established threshold (Dhigh_threshold) and at least 150 ms should have
elapsed since the last saved feature. The time difference between features (�t)
and the spotted feature is saved into the feature list.

• Crossed Low Threshold (Ref. 2 in Fig. 5.3): Current data (D(i)) must be below
a pre-specified threshold (Dlow_threshold) and at least 150 ms should have elapsed
since the last saved feature. Also �t is saved into the feature list.

• Crest Middle (Ref. 3 in Fig. 5.3): Current data (D(i)) must be above a pre-
established threshold (Dcrest_threshold), and at least 150 ms should have elapsed
since the last saved feature. Also, �t is saved into the feature list.

• Crest (Ref. 4 in Fig. 5.3): This feature is only assessed if Crest Middle has been
saved into the list. Hence, the current data (D(i)) must have crossed the already
exceeded pre-specified threshold (Dcrest_threshold), and a certain amount of time
(tcrest_threshold), which differs between acquired signals (Ay , Gy), should have
elapsed since the last saved feature. Therefore, a crest may be reported. Also, �t

is saved into the feature list.
• Trough Middle (Ref. 5 in Fig. 5.3): Current data (D(i)) must be below a pre-

specified threshold (Dtrough_threshold) and at least 150 ms should have elapsed
since the last saved feature. Also, �t is saved into the feature list.

• Trough (Ref. 6 in Fig. 5.3): This feature is only assessed if Trough Middle has
been saved into the list. Hence, the current data (D(i)) should again be above the
already crossed pre-specified threshold (Dtrough_threshold), and a certain amount of
time (ttrough_threshold), which differs between acquired signals (Ay , Gy), should
have elapsed since the last saved feature. Therefore, a crest may be reported.
Also, �t is saved into the feature list.

• Neutral (Ref. 7 in Fig. 5.3): A neutral region is only reported as long as the
current data (D(i)) remains within the range between Dneutral_min_threshold and
Dneutral_max_threshold, and if a certain amount of time (tneutral_threshold), which
differs between acquired signals (Ay , Gy), has elapsed since the last saved
feature. Also, �t is saved into the feature list.

The selection of correct threshold values used in this classifier was carried out
as reported in Kotiadis et al. [69], whose research validated all possible thresholds
within a range, and whose limits were determined visually from the signals captured
in a preliminary analysis. After checking each condition included in the feature
extraction process (as evidenced above), the feature list is reviewed to determine if
a new gait phase has been found. The following is a summary of the feature-based
rules governing the various transitions between gait phases.

• Heel Strike (HS) → Flat Foot (FF): To detect the FF onset, the current angular
velocity signal must have exhibited a crest, while the linear acceleration data
must be right in the middle of a trough, after entering the crest corresponding to
the HS in the feature list (see Fig. 5.4).
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Fig. 5.4 Threshold-based gait phase detection using an inertial detection system over two gait
cycles. Feature-based decisions are made to identify the onset of each gait phase: heel strike (first
dashed line), Flat Foot (second dashed line), heel off (third dashed line), and swing phase (fourth
complete line). Adapted from [68]

• Flat Foot (FF) → Heel Off (HO): To detect the HO onset, the current angular
velocity signal has a neutral region, since linear acceleration data also must
remain within a neutral region, followed by a high cross threshold (see Fig. 5.4).

• Heel Off (HO) → Swing Phase (SP): To detect the SP onset, the current angular
velocity signal must have shown a crest, while the linear acceleration data must
have crossed a predefined threshold (see Fig. 5.4).

• Swing Phase (SP) → Heel Strike (HS): To detect the HS onset, the current
velocity signal should have shown a trough and a crossed high threshold, while
the linear acceleration data should be in the middle of a crest, and after another
crest, a trough and a crossed high threshold have been sequentially entered in the
feature list (see Fig. 5.4).

5.4.2 Classification Using a HiddenMarkovModel (HMM)

A Markov process is a stochastic extension of a finite state automaton. It provides
a way to model the dependencies of current information with previous information.
In a Markov process, state transitions are probabilistic and there is in contrast to
a finite state automaton no input to the system: besides, it is composed of states,
transitions, scheme between states, and emission of outputs (discrete or continuous)
[70,71]. The following can be achieved with Markov’s models: Learning sequential
data statistics, making predictions or estimates, and recognizing patterns.
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An HMM is a double stochastic process in which the existence of a set of
discrete states is assumed for a given system. The first stochastic process describes
how the system may jump from one state to another (transition probability), under
the hypothesis that the next state depends only on the state at present (Markov
property). It means that this process has N underlying discrete states that are not
observable, i.e., its state sequence is hidden to the observer who only has access to
the emissions of each state [72]. In this case, this first stochastic process refers to
the gait cycle, which was divided into four phases (this division is the most used as
illustrated in Chap. 1). On the other hand, the second stochastic process yields the
statistical description governing the emissions of each observed variable (emission
probability). It means that the second embedded stochastic process describes the
emissions from Y observations, i.e., either the sensor readout or feature vectors
extracted from them (in this case they were the signals given by the IMU sensor),
in terms of discrete probabilities or Probability Density Functions [54]. HMM is
a statistical model widely used to estimate a sequence of hidden states in a time
series [52], which for the case of gait phase detection corresponds to the gait events
(N = 4), i.e., Flat Foot, Toe Off, Swing, and heel strike.

The HMM can be expressed as a function, as presented in Eq. 5.3 as a set λ

characterized of three parameters A,B, and π .

λ = (A,B, π), (5.3)

which includes the probability distribution matrix of state transition A, the proba-
bility distribution matrix of observation symbols B, and the initial state distribution
vector π .

The typical gait pattern repeats itself indefinitely with a known sequence of gait
events, which in terms of probability means that it can either remain in the current
state or eventually transition to the consecutive state. This behavior has recently
been modeled using a left–right model [53, 54], whose main feature is to limit
transitions to consecutive states of the Markov chain. Since transitions represent
a narrow fraction of the gait cycle, their associated probabilities assume lower
values than those related to permanence in the same state. Thus, diagonal elements
assume a higher value than the others. Therefore, the transition matrix A may be
implemented as shown in Eq. 5.4 [53].

A = {
aij

} =

⎡

⎢⎢
⎣

0.9 0.1 0 0
0 0.9 0.1 0
0 0 0.9 0.1

0.1 0 0 0.9

⎤

⎥⎥
⎦ , (5.4)

where aij denotes the transition probability from state Si to state Sj . The possible
transitions among gait phases are reported in Fig. 5.5. The state S1 was paired to the
gait phase delimited by swing phase and heel strike events. Further pairings were:
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S2 S3 S4S1

a₁₁ a₂₂ a₃₃ a₄₄

a₁₂ a₂₃ a₃₄

a₄₁

Fig. 5.5 Possible transitions (aij ) among four states (Si) of a continuous HMM according to
a left–right model. Each model state is paired to a gait phase, whose borders are identified by
corresponding gait events and whose emissions are modeled using a Gaussian Mixture Model with
three components: aij denotes the transition probability from state Si to state Sj

S2: Heel Strike—Stance Phase; S3: Stance Phase—Toe Off; S4: Toe Off—Swing of
the next stride.

Because the initial state t0 of the model is unknown, an initial state distribution
vector π allocates the same probability to all states (see Eq. 5.5), i.e., each state has
the same probability of being the first in a chosen state sequence.

π = {t0}Qx1 =

⎛

⎜⎜
⎝

1
N
1
N
1
N
1
N

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

0.25
0.25
0.25
0.25

⎞

⎟⎟
⎠ . (5.5)

Finally, a Bivariate Gaussian Mixture Model with three components was utilized
to describe the emissions from each state. These emissions allude to feature vectors
that include the angular velocity measured at any sampling time, and its time
derivative computed employing a first-order finite difference approximation, i.e., the
angular acceleration [55]. This particular stochastic model yields the best trade-off
between complexity and accuracy for gyroscope signals [54, 62].

It is essential to highlight that to develop an HMM is necessary to consider the
three problems learning/interference and three algorithms to help to solve these
problems: the Baum–Welch (BW) algorithm computes the Maximum Likelihood
(ML) estimates of model parameters; the Viterbi algorithm estimates the most likely
sequence of hidden states; the forward–backward algorithm [72].

The continuous HMM development involves two main procedures: a training
phase and a test phase. The first stage concerns the adjustment of model parameters
λ to optimally fit them to an observed training dataset [72]. In the present classifier,
the Baum–Welch algorithm, which is the most common solution to this problem,
is implemented. This training procedure starts with a set of initial parameters (first-
phase training in Fig. 5.6), based on which it extracts probabilistically weighted
state sequences. The initial model is repeatedly updated with these new transition
and emission probabilities until a desired level of convergence is reached [62].
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Fig. 5.6 Flowchart that illustrates the validation methodology of HMM. A model is trained to
employ the Baum–Welch algorithm after applying feature extraction to the acquired dataset. The
optimal state sequence is then computed through the Viterbi algorithm by using feature vectors
from the test dataset, and the performance evaluation is conducted concerning gait phase labels
drawn from the reference system. Adapted from [68]

Afterward, the testing stage allows the classification of features based on the
trained model reached in the training phase, i.e., the search for the optimal state
sequence is carried out. The Viterbi algorithm uses a common optimality criterion
to find the most likely/probable state sequence [72]. Despite its computational
efficiency, this algorithm is not suitable for real-time application, since the indicators
it uses are computed based on a whole observation dataset. Therefore, the validation
of the classifier outputs is compared offline concerning an FSR-based reference
system that provides the actual gait phase labels. The reference system should
be matched with each subject’s shoe size and equipped with four force-sensitive
resistors (FSRs) on the foot sole. The first sensor is located at the hallux (toe), two
more sensors are located at the first and fifth metatarsophalangeal articulation, and
one more is located at the heel.
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5.5 Estimation of Gait Parameters: Smart Walkers’ Case Study

As previously described, gait characterization is often accomplished by calculating
spatiotemporal parameters, such as speed, cadence, stride length, step length, among
others. Some of these features are referred to as the general gait parameters (GGPs)
and have been widely used as standard indicators for gait assessment [73]. Among
the GGPs, three spatial and temporal parameters are found: (1) the stride cadence
(SC), (2) the stride length (STL), which is composed of two step lengths (SPL); and
(3) the gait speed (GS) [73, 74].

To estimate the GGPs, many studies have proposed and assessed sensing
technologies comprising wearable and non-wearable sensors [37]. However, most
of them have been developed within laboratory conditions, with non-wearable
constraints, and do not allow online estimations [75]. Therefore, an accurate online
estimation of these parameters with ambulatory technologies for practical scenarios
is described in the following sections [37].

5.5.1 Gait Data Acquisition

The first step in estimating gait parameters is acquiring data from the patient or user
of an assistive device. For this description, a walker-assisted gait application was
proposed, in which a laser rangefinder (LRF) sensor is used to detect and track the
user’s legs relative position. Figure 5.7a shows an example of the LRF’s location
and orientation in a passive rollator application.

In ambulatory applications employing LRF sensors and mobile assistive devices,
such as smart walkers, it is essential to place the sensor at an appropriate height
guaranteeing that the laser’s field of view is not occluded and the user’s legs are
always visible. Given the variability in gait patterns from one individual to another,
a proper recommendation on the LRFs location is to place them approximately at
the user’s knees height [37]. This location provides a clear field of view, even in self
occlusions during walking (i.e., the legs are too close or one in front of the other).
Figure 5.7b and c illustrates examples of LRF’s readings during walker-assisted gait.

In addition to the above, to avoid noisy readings with objects not related to users’
legs, the measurement area is often constrained to a narrow polygon. Notably, the
LRF’s field of view is constrained between 45◦ and 135◦ and between 1 m and
1.5 m.

5.5.2 Clustering of Legs’ Data

Once data are obtained from the LRF sensor, it is essential to label the laser
readings, to identify which leg they are from. To this end, different machine learning
algorithms are often used for classification purposes. One of the most common
techniques relies on an unsupervised learning classifier that returns clusters of laser
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Fig. 5.7 (a) Illustration of an assisted gait application with a passive rollator, equipped with a
laser rangefinder (LRF) to detect and track the user’s legs. (b) Example of LRF scan where one leg
is covering part of the other leg. (c) Example of LRF scan where legs are enough separated

points [24, 37]. For instance, density-based spatial clustering of applications with
noise (DBSCAN) is one of the most used data clustering algorithms that, in this
case, allows the classification of laser points either as legs or as noise [24].

These clustering algorithms require two parameters to be executed. The first one
refers to the minimum distance to group two consecutive points. The second one
defines the minimum number of grouped points to save a cluster [24]. After that, the
position of each leg and relative distance to the walker can be defined by calculating
the center of each cluster and the mean distance between them [24].

5.5.3 Legs’ Distance Difference (LDD) Signal

During gait, the human trunk exhibits oscillatory behavior, and so does the
movement of the legs. In particular, the distance between the legs is characterized by
a sinusoidal behavior. Therefore, to estimate the GGPs, this signal can be used. The
frequency and amplitude of the principal component of the signal obtained from a
distance between each leg correspond to the stride cadence (SC) and the step length
(SPL), respectively [2]. Moreover, it is possible to estimate the gait speed (GS), by
multiplying the SC and the SPL [76]. Using the LRF readings, the LDD signal can
be calculated as described in Eq. 5.6.

LDD = dR ∗ sin(θR) − dL ∗ sin(θL), (5.6)
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Fig. 5.8 Illustration of the legs’ distance difference (LDD) signal, obtained from the readings of
the LRF sensor

where dR and dL are the distances to the right and left legs, respectively; θR and
θL are the angles of the right and left legs. Each cycle of the LDD signal illustrates
the behavior of a stride cycle composed of two steps. The right step (RSP ) can be
seen as a decrease in the LDD signal and the left step (LSP ) can be seen as an
increase in the LDD signal. Moreover, the length of each step can be calculated
by the maximum value (MaxLDD) and minimum values (MinLDD) of each cycle.
Thus, the stride length (STL) can be estimated as the sum of both step lengths.

To extract every cycle of the LDD signal, the zero crossings with positive slopes
(ZCP) provide the starting and ending points of each stride. With this information,
the SC can be calculated as the inverted value of the period of each cycle [2].
Figure 5.8 illustrates the LDD signal, describing the left and right steps (RSP ,
LSP ), the zero crossings with positive slopes (ZCP), and the maximum values
(Max_LDD) and the minimum values (Min_LDD) of each cycle.

5.5.4 Adaptive Filters for LDD Processing

A simple approach to estimate the GGPs would use the MaxLDD , MinLDD , and
ZCP values to calculate the frequency and amplitude of the LDD signal. However,
this method might be affected by sudden objects sensed by the LRF or noisy
readings. Therefore, a robust methodology based on two adaptive filters has been
proposed to estimate the GGPs [37]. In particular, the Weighted Frequency Fourier
Linear Combiner (WFLC) and the Fourier Linear Combiner (FLC) are filters that
allow a smooth online estimation of the frequency and amplitude of the principal
Fourier component of the LDD signal [37]. In this sense, the WFLC takes the LDD
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signal as input and estimates the stride cadence, while the FLC takes the LDD
signal and the stride cadence to estimate the step length. According to the literature
evidence, these filters have proven to be valuable and efficient in several real-time
applications [2, 22, 77, 78].

5.5.4.1 Weighted Frequency Fourier Linear Combiner (WFLC)
In general terms, the WFLC filter is a powerful tool capable of calculating the
frequency, amplitude, and phase of the Fourier components from a real-time signal
[79]. The WFLC filter uses the least mean square algorithm to reduce the error
between the actual signal and the estimated signal conformed by the Fourier
components. The process of the WFLC filter can be described as follows in Eqs. 5.7,
5.8, 5.9, and 5.10 [37]:

xrk =
⎧
⎨

⎩

sin(r
∑M

t=1 ω0t ), 1 ≤ r ≤ M

cos(r
∑M

t=1 ω0t ), M + 1 ≤ r ≤ 2M

(5.7)

εk = Sk − μb − WT
kXk (5.8)

ω0k+1 = ω0k
+ 2μ0εk

M∑

r=1

r(WrkXm+rk − Wm+rkXrk) (5.9)

Wk+1 = 2μ1εkXk + Wk. (5.10)

Equation 5.7 describes the estimation of the Fourier components with an initial
guess of the frequency ω0t . Equation 5.8 illustrates the calculation of the error
between the input signal (Sk) and the estimated signal conformed by the Fourier
components (Wk represents a matrix containing the weights of each Fourier
component, and Xk represents a matrix with each Fourier component value).
Equations 5.9 and 5.10 show the implementation of the least mean square algorithm
to update the frequency (ω0k+1 ) and the amplitudes (Wk+1) [37].

It is worth mentioning that the WFLC formulation requires four parameters to be
set or tuned: (1) M , the number of required harmonics to estimate the input signal
(set to 1); (2) μ0, the gain used to adapt the frequency estimation (set to 0.14); (3)
μ1, the gain used to adapt the amplitude estimation (set to 0.4); and (4) μb, the
gain used to compensate low-frequency errors (set to 0) [80]. A normalization value
(NV ) of 1000 was used to set the signal between −1 and 1 [37, 79].

As an illustration of a walker-assisted gait application, Fig. 5.9 shows a compari-
son between the stride cadence obtained by the WFLC (SCWFLC) and the estimated
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Fig. 5.9 Example of the Weighted Fourier Linear Combiner (WFLC) behavior in a walker-
assisted gait application at a speed of 1.8 km/h. (a) Illustration of the legs’ distance difference
signal (LDD) and the zero crossings with positive values (ZCP). Illustration of the stride cadence
obtained with the WFLC filter and the ZCP values

one with the period of each cycle (SCLRF ). The WFLC filter generates the SCWFLC

by taking the LDD signal as input, whereas the SCLRF is obtained with the ZCP
values of the LDD signal. The WFLC returns the SC value as soon as a sample of
the input signal appears. For this example, the Hokuyo URG-04LX-UG01 was used,
which works at a sample rate of 10 Hz. In this sense, the SCWFLC was updated every
0.1 s. Similarly, the SCLRF was only updated every time a new ZCP was detected
[37]. Figure 5.9a shows the LDD signal and ZCP values obtained with the LRF at
a walking speed of 1.8 km/h. Moreover, Fig. 5.9b shows the cadence obtained with
the WFLC and with the ZCP values.

5.5.4.2 Fourier Linear Combiner (FLC)
The FLC is an adaptive algorithm used to achieve a continuous estimation of quasi-
periodical signals based on the M harmonics dynamic Fourier mode [81]. Using a
frequency and number of harmonics as inputs, the FLC can estimate the amplitudes
and phases of the Fourier components. In this application, the algorithm requires the
frequency (ω0) of the signal produced by the WFLC as an input parameter [37].

Even though the WFLC also estimates the Fourier components’ amplitudes, these
calculations can be affected by the frequency estimation. Therefore, it is better to
estimate such amplitudes employing the FLC [2]. The formulation of this filter uses
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Fig. 5.10 Example of the Fourier Linear Combiner (FLC) behavior in a walker-assisted gait
application at a speed of 1.8 km/h. The step length (SPF LC, in black) is estimated from the legs’
distance difference (LDD, in gray) signal. The left and right step lengths (LSPL_LRF , RSPL_LRF )
are also shown for comparison purposes

two parameters: (1) M , the number of harmonics to estimate the input signal (set to
1) and (2) μ, the gain used to calculate the harmonics weights (set to 0.2). Similar
to WFLC, the FLC also employs the least mean square recursion to update the
estimations of the amplitude and phase. This algorithm is described as follows by
Eqs. 5.11, 5.12, and 5.13 [37, 81].

xrk =
⎧
⎨

⎩

sin(rω0k
), 1 ≤ r ≤ M

cos((r − M)ω0k
), M + 1 ≤ r ≤ 2M

(5.11)

εk = Yk − WT
kXk (5.12)

Wk+1 = 2μεkXk + Wk, (5.13)

where Yk is the input signal, W and X matrices are the weights and values of the
Fourier components, and εk is the error between the input signal and the estimated
one. The FLC also requires a normalization value for setting the input values,
between −1 and 1.

As previously described, with the amplitude estimated by the FLC, the step
length values can be directly computed. Following the walker-assisted gait example
used for the WFLC illustration, the step length was estimated using the FLC output
(SPLFLC). This estimation was compared with the left step length, (LSPL_LRF )
and the right step length (RSPL_LRF ) calculated with maximum value MaxLDD

and minimum value MinLDD of each LDD signal’s cycle. Figure 5.10 illustrates
these estimations.

Finally, to obtain the gait speed (GS), the stride cadence (SC) and the step length
(SPL) calculated with the WFLC and FLC are multiplied as shown in Eq. 5.14 [37].
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Table 5.1 Comparison of estimation errors between multiple technologies reported in the
literature and the online methodology using an LRF sensor and adaptive filters

Ultrasonic Accelerometers Gyroscopes IMUs LRF

SC 4.1 [82] % 5% [59] 10% [39] 2.3% [83] 4.9%

SPL – 7% [59] – 7% [83] 4.1%

GS = 2(SC)(SPL). (5.14)

This process is not a heavy computational task and it is also carried out with
every scan reading. Thus all the GGPs are computed every 0.1 s for this scenario.

5.5.5 Online Estimation

This methodology can be easily extended to an online version with simple mathe-
matical correction. In Aguirre et al., the authors found that the stride cadence does
not exhibit significant differences at any speed, when comparing this methodology
with an automated motion tracking system (e.g., VICON, BTS) [37]. In contrast, the
step length presented significant differences with a reference system (i.e., motion
tracking system). To fix this discrepancy, the authors proposed a linear model was
to adjust the step length measurements.

In particular, the error between the estimation of this methodology and a
reference system increases when the stride cadence does. By comparing the GGPs
measurement in ten volunteers at four different speeds, the authors found the linear
model presented in Eq. 5.15.

K = 0.157(SC) + 1.069. (5.15)

In this way, the online estimation process goes as follows: (1) the user’s legs are
detected and tracked with the LRF sensor, (2) a clustering algorithm is applied to
estimate the distance difference between legs (i.e., the LDD signal), (3) the WFLC
estimates the frequency of the LDD’s Fourier principal component (i.e., the SC),
(4) the FLC uses the SC as input to estimate the amplitude of the LDD’s Fourier
principal component (i.e., the SPL), (5) the linear model described in Eq. 5.15 is
used to adjust the SPL, and finally (vi) the GS is obtained using Eq. 5.14.

As reported by the authors in Aguirre et al. [37], this methodology was
able to attain very accurate estimations compared to the literature evidence. In
particular, Table 5.1 summarizes the estimation errors of real-time technologies,
and the estimation errors for the SC and the SPL, using this online methodology.
Considering that LRF sensors are commonly used to control robotic devices, such
as smart walkers, rather than to do gait assessment, an average error of 5% can be
considered as a good accuracy [2, 23, 24, 37].

According to the collected data in [37], it was reported that a scanning frequency
of at least ten times the stride cadence is required to ensure the proper performance
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of the WFLC and FLC filters. This means that to obtain an online GGPs estimation
system at walking speeds of 5 km/h to 6 km/h (i.e., the average speed of healthy
individuals), an LRF working at frequencies from 10 Hz to 20 Hz would be required.

5.6 Conclusions

The analysis of gait patterns, indicators, and phases is a fundamental aspect
when evaluating assistive technologies, both conventional and robotic. In general,
gait evaluation techniques allow to: (1) track and report a patient’s rehabilitation
progress, (2) detect anomalies in the gait pattern, and (3) obtain reference inputs for
high-level controllers in mobile and wearable robotic devices.

According to evidence in the literature, multiple sensing technologies have been
developed to acquire information about an individual’s gait. In this sense, this
chapter presented a brief description of the most relevant spatial and temporal
indicators used to characterize human gait, and some wearable sensors that allow
their acquisition for rehabilitation and daily living scenarios. Finally, multiple
methodologies that allow the concise description of the different gait characteris-
tics, including their classification by phases and calculation of the most relevant
indicators, were also presented.
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