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13.1 Introduction

In the last decades, the development of robotic devices for gait assistance and reha-
bilitation has shown ongoing growth [1, 2]. As these technologies have expanded
and matured, the need for accurate assessment and understanding of how users
perform with the robotic devices has become evident and has been a convergence
point for multiple technology designers. Even if robotic technology’s potential
was and is indisputable, demonstrating its value on a quantitative basis has been
challenging. Trying to address this general concern, many research studies have
started to evaluate robotic devices’ performance, resulting in an abundant and highly
diverse compilation of methods, variables, and protocols. The enormous amount
of information led the robotics community to increase interest in benchmarking to
scientifically assess and compare robotic devices’ performance for gait assistance
and rehabilitation. Even though benchmarks have been long used to verify and
compare the readiness level of different technologies in many domains, not long
ago, the primary approach to compare devices like exoskeletons was only through
competitions, such as Cybathlon [3]. The big challenge of unifying a benchmark
is even more difficult for the specific case of assistive and rehabilitation devices.
The intrinsic interaction of these devices with the subjects complicates finding
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appropriate metrics to measure their performance. Hence, studies in this area
generally have to be accompanied by performance studies of the subject and not
just the robots.

The foundations to build such standards have been laid by recent efforts in
the field of benchmarking bipedal locomotion to consolidate a unified scheme
for humanoids, wearable robots, and humans [4]. Subsequently, work has been
done attempting to organize the available assessment information and identify
performance indicators that could be converted into practical benchmarks [5, 6].

This chapter presents an overview of the most promising and used measures,
experimental procedures, equipment, sensors, and tools so far identified in the
literature to assess gait robotic assistive and rehabilitation devices. The chapter starts
with the introduction to the basic concepts to understand the implications and ways
to assess the performance of an activity. Thereafter, the different modules towards a
correct assessment are explained.

13.2 Motor Skills, Abilities, and Performance

The assessment of robotic devices for gait assistance and rehabilitation is a multi-
disciplinary area. Engineers and clinicians of different backgrounds have to agree
on common nomenclature and classification systems to conceive standards in the
assessment process. Inspired by the approach by Magill [7], further organized and
discussed by Torricelli et al. [4], three basic concepts are often used to understand
the area: motor skill, motor ability, and motor performance (see Fig. 13.1).

A motor skill, also called action in the motor learning and control research
literature, refers to an activity or task that has a specific goal to achieve. However,
not all activities with a goal are considered motor skills. To be studied as one,
it needs to have other characteristics as: (i) be performed voluntarily, (ii) require
the movement of joints and body segments, and (iii) be learned or relearned (as it
usually happens in the field of rehabilitation) [7]. The most basic motor skill in this
book is walking, but several others will be contemplated in the following sections.

Highly related to the concept of skill is the one of abilities. Motor abilities can
be referred to as the general traits of an individual that are a determinant of his
achievement potential for the performance of specific skills [7]. Let the skill be
walking. The abilities may refer to stability, coordination, compliance, and any other
characteristic needed to walk.

The last concept is motor performance, defined as the level of achievement of the
goal, i.e., how well the goal established in the skill is achieved. The performance
of any motor skill is influenced by (a) characteristics of the skill itself, (b) the
environment in which the skill is performed, and (c) the person performing the skill
[7], as presented in Fig. 13.1. The person is the agent in charge of learning and
adapting the skill through the observation and perception of the performance.

Measuring the level of achievement of a skill is not a straightforward process.
Many ways to assess motor performance have been defined over time. These
different measuring methods are called the performance indicators (PI) [4] and can
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Fig. 13.1 Basic concepts in the assessment of robotic devices that interact with humans

be grouped into two main categories according to Magill. In the first one are the
performance outcome indicators, which indicate the result of performing a motor
skill (e.g., how far or fast a person walked). They provide information where the
primary concern is whether or not the goal of the skill was accomplished. In the
second category are the performance production indicators, which indicate how the
different human systems (e.g., the nervous system, the muscular system, and the
movement of the limbs or joints) function during the performance of a motor skill
[7]. This category includes both kinematic/kinetic measures and the ones defined as
Human–Robot Interaction (HRI) measures [4], which will be addressed in further
sections.

13.3 ClassifyingMotor Skills

A complete understanding and characterization of related motor skills is crucial
to correctly assess the performance of robotic devices used in gait assistance and
rehabilitation. Classifying the motor skills for which these devices are developed
and the possible variations and conditionals involved is the first step in the
assessment process. Several proposals like the ones by Gentile [8] and Fleishman et
al. [9] successfully classify motor skills and motor abilities and are commonly used
in physical therapy and psychology.

Similar to what was established to influence a motor performance in Fig. 13.1,
Gentile classified motor skills according to two general items. The first one is the
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environment, which he divided into: (i) unaltered motion and (ii) with the presence
of inter-trial variability or unexpected disturbances. The second item corresponds to
the function of the motor skill, which is classified according to: (i) the motion of
the body (posture or transport) and (ii) the simultaneous manipulation of an object
during the execution of the task. Furthermore, Fleishman proposed a list of the
“fewest independent ability categories which might be most useful and meaningful
in describing performance in the widest variety of tasks” [9]. In addition to the
abilities previously established as an example for the skill of walking, significant
motor abilities from that list are inter-limb coordination, static and dynamic
strength, limb flexibility, gross body equilibrium, reaction time, speed of limbs,
and control precision [4]. However, Fleishman’s lists should not be considered
exhaustive inventories of all the abilities related to motor skill performance, as the
objective was to identify the smallest number of abilities that would describe the
tasks performed [7].

Based on those two taxonomic proposals, a benchmark for bipedal locomotion
was created to unify a scheme for humanoids, wearable robots, and humans [4]. The
motor skill classification presented here maintains the conventions defined there.

13.3.1 Walking

Walking is undoubtedly the core motor skill to be assessed and the main focus of the
robotic devices described in this book. However, since motor skills can be further
classified according to: (i) environment variability and (ii) the presence of external
disturbances, the relevant motor skills for robotic devices are:

• Walking in a static environment with a constant or absent disturbance:
This includes walking on flat ground, constant slopes, ascending or descending
stairs, and backward walking.

• Walking in a static environment with a variable disturbance:
This includes walking on variable slopes, irregular terrains, and slippery surfaces.

• Walking in a moving environment with a constant or absent disturbance:
This includes walking on a constant treadmill, a constant soft ground, and
walking while bearing additional weight.

• Walking in a moving environment with a variable disturbance:
This includes walking on a variable treadmill, a variable soft ground, when
pushed, overcoming obstacles and slalom or turning.

13.3.2 Standing

Even if most of the efforts when designing a robotic device are devoted to walking,
standing (maintaining an upright posture) is critical motor skill to assess. Standing
is evaluated employing the same two previous variables:
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• Standing in a static environment with a constant or absent disturbance:
This includes standing on a horizontal surface and an inclined surface.

• Standing in a static environment with a variable disturbance:
This includes standing on uneven terrains and during manipulation.

• Standing in a moving environment with a constant or absent disturbance:
This includes standing while bearing additional weight and while periodic tilts
or moving ground.

• Standing in a moving environment with a variable disturbance:
This includes standing in the presence of pushes and while irregular tilts or rough
translations.

13.3.3 Others

Finally, other skills related to the assessment of robotic devices and not included
in either of the aforementioned categories can be of value and are covered. This
includes activities, where the environment is static and there are no or constant
disturbances, such as: lateral stepping, crouching or kneeling, changing from sitting-
to-standing or from standing-to-sitting, and running.

A complete illustrated scheme presented in an interactive application, with the
first step being the selection of a motor skill from the previously listed skills, is
available in the official Benchmarking Locomotion Website [10].

Once the skill is fully determined and characterized, the following action towards
the assessment corresponds to selecting the desired measures to be taken when
performing it.

13.4 Performance Indicators

As mentioned before, there are multiple ways to measure motor skill performance.
A first and useful way to organize them is by grouping them into two categories
defined in Fig. 13.1 that relate to the different levels of performance observations,
as suggested by Magill [7]. The first type, the performance outcome indicators,
received another name in Pinto-Fernandez et al. [5] and will be the one adopted
in this chapter. They label them as Goal-Level variables or measurements. In the
second category, the same authors identified two different subgroups that will also
be used further on. On one side are the kinematic and kinetic indicators focusing
on the limbs, head, or body movements that lead to the observed outcomes. On the
other side are the HRI measurements that relate more to the variables that might
influence the intrinsic interaction between the user and the robotic device. The PIs
that correspond to each of these categories will now be addressed.

www.benchmarkinglocomotion.org
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13.4.1 Goal-Level Performance Indicators

To indicate the results of performing a motor skill, different variables can be
considered. The following are the most commonly used Goal-Level PI in the field
of the assessment of robotic devices for gait assistance and rehabilitation:

• Time indicators
This category includes various time-related measurements. One of the preferred
metrics for performance evaluation is the minimum time or the maximum speed
achieved to correctly complete a task. However, another important indicator
under this category is the reaction time (RT), which indicates how long it takes
for a person to prepare and initiate a movement. Time indicators are mostly
calculated during clinical tests, such as the 10 Meter Walking Test (10MWT),
the 6 Minute Walking Test (6MWT), and the Timed Up and Go (TUG) test [5],
and are measured in time units (e.g., sec, min).

• Error indicators
Metrics related to errors have a prominent place in human performance research
and in everyday living activities (assistance and rehabilitation). Multiple ways
of reporting errors are accepted and it is up to the researchers to decide if
they correspond to a study of accuracy either spatial, temporal, or both. Error
indicators can be in the form of: (i) the amount of error in performing criterion
movement, e.g., absolute error (AE), constant error (CE), or variable error (VE),
or (ii) the number or percentage of errors [7].

• Distance
The distance covered when performing a motor skill with a device is frequently
used as PI. In exoskeletons, the 6MWT is found to be the preferred PI in this
category [5].

• Stability (to external disturbances)
Stability can be understood as the ability to maintain equilibrium over the support
base during the motor skill execution [4]. The PIs in this category include:
maintaining the center of mass (CoM) above the polygon of support (what
Fleishman on his list referred to as gross body equilibrium), forefoot and rearfoot
loading, length of the motion path, or confidence ellipse area [5].

• Endurance
This PI generally refers to the ability to perform long periods of functioning or
multiple cycles of work to test the robot’s skills (also in the benchmark proposal).
Nevertheless, it can also apply to other robotic devices as it is usually measured
by the power development per joint, joint stiffness, and battery usage [5].

• Repetitions
PIs under this category are measured with integer numbers and one of the
simplest to recognize. Good examples are the number of successful attempts and
the number of trials or repetitions to complete the task.

• Versatility
Versatility is here understood as the ability of the robotic devices to cope with
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different motor skills in the same run [5]. It is mainly used in cases where
an exoskeleton takes part. This PI can be implemented together with the last
category by measuring the number of successful transitions between tasks, or
independently, with step width adaptability criteria.

Goal-Level PIs, especially time, error, and distance indicators, are very popular
and globally accepted indicators. They are relatively simple and practical to use,
making them particularly useful during competitions in the area (Cybathlon [3],
for example). However, they can be rather insufficient to validate or quantify the
robotic systems’ performance [5], as robotics in rehabilitation and assistance are
highly conditioned to the subject’s performance. Given that these PIs are not very
reproducible, other types of PIs are usually needed.

13.4.2 Kinematic and Kinetic Performance Indicators

Addressing the robotic device’s performance during the motor skill by measuring
the production indicators includes many more parameters to consider than the
outcome indicators. To capture the complexity of the action to be performed
more closely, they require specific instruments and equipment, as presented in the
following sections.

Kinematic and kinetic PIs include many of the most common indicators used
to assess robotic devices [5]. They are traditionally associated with biomechanics
and refer to descriptors of motion without concern for its cause and force as a
cause of motion, respectively [7]. Under this category are the following PIs for the
assessment of robotic devices in the field:

• Spatiotemporal Parameters
They correspond to parameters of distance (spatial) and time (temporal) during
gait. They are considered standard metrics that can grasp the kinematic perfor-
mance’s main features in basic locomotion tasks [5]. The spatial parameters are
related to the step and stride length but can include others like the number of
steps. On the other hand, temporal parameters comprise the cadence, walking
speed and the complete cycle, and individual phase time.

• Kinematic indicators
As previously stated, kinematic indicators are a description of motion without
regard to force or mass. As PIs, they portray the displacement, velocity, and
acceleration of the human and robotic joints. This includes: joint trajectories,
range of motions (ROMs), speed, and CoM position along the three principal
planes of motions (sagittal, frontal, and transverse).

• Kinetic indicators
In kinetic indicators, force is the main parameter to consider in the analysis of
joints. Therefore, these PIs are of joints torques, force, power, and work, global
forces, and power and ground reaction forces (GRF).
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• Symmetry
The symmetry indexes are the percentage of symmetry between the right and left
gait cycle regarding their curve of acceleration or pelvic angles. Pelvic angles are
the tilt, obliquity, and rotation, according to the plane of motion. As the indexes
approach 100, the more symmetry there is along the trial [11].

• Coordination
Coordination PIs come after the previously explained spatiotemporal parameters.
For a cyclic movement, like gait, an indicator of coordination between two limb
segments is the relative phase. This index calculates the phase angles for each
limb segment or limb at a specific point in time and then subtracts one phase
angle from the other [7].

The first three PIs presented in this section are very popular in assessing
exoskeletons as they can grasp the entire complexity of limb dynamics. However,
the kinematic and kinetic indicators are often difficult to compare and replicate
as there are no typical standard setups, data labeling, or experimental protocols.
Symmetry and coordination, on the other hand, are still poorly used in the evaluation
of exoskeletons’ performance [5].

13.4.3 Human–Robot Interaction Performance Indicators

The second type of performance production indicators comprises all the mea-
surements that characterize the synergy between the user and the robotic device.
Given the nature of this group of indicators, HRI PIs include both quantitative and
qualitative variables. The first ones evaluate the user’s physical parameters, while
the others reveal subjective levels of acceptance of the technology by the user during
the interaction. The main PIs in this category are:

• Metabolic cost
Metabolic cost is a way to describe the intensity of an activity or motor skill.
Many indicators can be used to that end. The most frequent PIs are: heart rate,
blood lactate concentration, oxygen consumption, carbon dioxide production,
metabolic power, biological power, work, and calorimetry [5, 12].

• Muscle activity
This type of indicator is the most commonly employed variable for the assess-
ment of HRI. It is generally measured by electromyography (EMG), in which
the intention of movement is captured through muscles’ electrical activity. EMG
recordings are relevant to motor learning and control issues as they can indicate
when a muscle begins and ends activation [7] and can be used to quantify the
effects of a robot on muscle fatigue.

• Brain activity
Research on the relationship between brain activity and performance has led
to rapid brain assessment technology implementation on motor rehabilitation.
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Similar to the previous indicators, brain activity is usually measured by elec-
troencephalography (EEG) recordings.

• Interaction forces
This category does not need any extra information other than the fact that it
is measured through three PIs: the power delivered to the robot, the interface
transmitted forces, and the interaction forces themselves.

• Comfort
Comfort is defined in this document as the user’s perception of the HRI. This
one corresponds to the qualitative variables previously mentioned and has many
ways of being measured. Among the most relevant indicators are pain scales, skin
irritation, sore spots, spasticity, clinical questionnaires, and user sense of comfort
[5].

• Ergonomics
Ergonomics refers to the design and arrangement of things people use to make
the interaction the most efficient and safe possible. The main PIs used in
this category are HR relative position, interface displacements, anthropometric
database percentiles, and adaptability to different height ranges [5].

• Safety
This indicator assesses the condition of being protected from harm or other non-
desirable outcomes. Safety PIs are a mix of both quantitative and qualitative
indicators. Quantitative PIs are the number of falls, blood pressure, and heart
rate. Qualitative PIs include the skin, spine, and joint status after using the robot,
and clinical questionnaires similar to those implemented for comfort.

Some of the most expected performance outcomes and production measurements
here are included in the official Benchmarking Locomotion Website [10]. They
correspond to the second step of selecting the organization of the currently available
metrics and protocols to assess bipedal function into a meaningful taxonomy.

Keeping in mind the provided overview of the motor skills and PI, the only
unexplored and missing area to fully understand how to assess robotic devices in gait
assistance and rehabilitation is the section of the required equipment and sensors.

13.5 Equipment and Sensors

By equipment and sensors, one should understand in this chapter all the set of
tools, devices, and kits, assembled to measure and capture the different PIs for the
chosen motor skills. Regarding their location, the equipment and sensors can: (i) be
mounted or fixed in the testing environment and record from strategic points of the
activity or the specific events, or (ii) be wearable, which means that the user wears
them during the performance of the motor skill. The first type is considered the gold
standard in accuracy for walking kinematics [13], but their main disadvantages are
the price and their limitation to indoor use with a very controlled environment [14].
On the contrary, wearable sensors have become popular due to their affordability
and flexibility of use, together with shorter donning/doffing times [15].

www.benchmarkinglocomotion.org
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This section presents a non-exhaustive catalog of the leading equipment and sen-
sors used to assess the motor skills’ performance, as mentioned earlier, employing
the desired PI. Most of them are depicted in Fig. 13.2. They are grouped in the same
categories used to classify the PIs. Given the purpose of the Goal-Level PIs and their
intention to measure outcomes, most of the metrics are not complex and with simple
equipment like timers, counters, and rulers can be calculated. Therefore, no further
details are presented regarding this kind of PI, except possibly for stability, which
can be addressed with the equipment of other kinematic and kinetic PIs.

13.5.1 Equipment and Sensors for Kinematic and Kinetic
Performance Indicators

The extraction of most kinematic PIs (including spatiotemporal, symmetry, and
coordination) was first done with portable sensors called electrogoniometers.
Afterward, the measurements evolved to 2D and 3D video systems, which need to
be placed in the performance environment, depend on specific laboratory conditions
and imply complex protocols and high economic costs. Nowadays, the extraction is
moving back to relay on wearable sensors like inertial motion units (IMUs).
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13.5.1.1 Electrogoniometers
Electrogoniometers are electromechanical devices that span the joint to be measured
by attaching to the proximal and distal limb segments. They measure the joint’s
angular change by providing an output voltage proportional to the change and
assuming that the attachment segments move with the limb segment’s midline
[16]. The two significant advantages of these devices are ease of use and low cost.
However, a significant limitation in using them is that the angles are only acquired
in a single motion plane [17].

13.5.1.2 Video Systems
Video systems are based on a computer vision approach, in which the main goal
is to extract gait patterns from sequential images [18]. There are both 2D and 3D
configurations and it depends on the complexity of the motor skill and the chosen
PI, which of them to implement. 2D Systems, as electrogoniometers, can record
joint angles in only one plane of motion. 3D Systems, through the inclusion of
depth, can extract joint angles in all three planes. The use of active (LED markers
that are pulsed sequentially) or passive (lightweight reflective markers) markers is
widespread when implementing this kind of system, even though some have worked
their way out of the markers. The leading video systems used in the field are:

• 2D Systems
The Kinect is the most used exemplar of this technology. First developed by
Microsoft, in 2010, collects information from RGB cameras, infrared projectors,
and detectors that mapped depth to perform real-time gesture recognition and
skeletal body detection, among others. In this sense, a biomechanical model
based on rigid segments can be implemented to acquire human motion data [19].
As the human body is modeled, joint angles are acquired while performing a
motor skill. As previously mentioned, it can only record angles in one plane
of motion, and, in this case, users are not required to wear any markers.
Additionally, this equipment is portable (easy to relocate) and low cost. The main
drawback is that it is no longer produced as by 2018, Microsoft discontinued all
Kinect hardware for video games. Moreover, for those who still can get their
hand on them, specific lighting and space conditions (controlled or laboratory
conditions) are required.

Other alternatives to this system include motion tracking software, based
on recordings by a 2D camera (and possible reflective markers) to calculate
almost all kinematic parameters. MaxTRAQ 2D (Innovision Systems, USA) [20]
includes tools and analysis of angles, distances, the center of mass, and more.

• 3D Systems
3D optoelectronic camera systems for motion capture are often regarded as the
gold standard in acquiring biomechanical parameters, given their robustness [21].
They detect light and use it to estimate the 3D position of reflective markers via
time-of-flight triangulations. To correctly place markers on the user and allow an
optimal estimation many protocols have been developed. The accuracy of these
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systems is dependent on the different details of the experimental setup: (a) the
location of each of the cameras relative to the others, (b) the distance between
the cameras and the markers, (c) the position, number, and type of the markers
implemented, and (d) the motion of the markers within the capture volume [22].

Systems of this type are based on fixed cameras, which means they can only
acquire data in a restricted area [23]. The number of cameras, their field of view,
and the space between them condition the total volume in which the skill can
be performed and captured. The most extensive measured range reported, to the
authors’ knowledge, is 824 m2, obtained with a Vicon MX13 (UK) measurement
system [6]. To capture this range, a total of 24 cameras were required.

Among the major drawbacks of these systems are high costs, lack of
portability, constant need for calibration and synchronization, high labor in the
organization and processing of trials, and high sensitivity to alterations in setup.
By increasing the number of cameras increases the level of all of these items.
Further limitations of the system are the necessity of line-of-sight, which means
that the data output will be interrupted when the cameras lose sight of the markers
[6, 24], and the need for dark areas (indoors), as bright sunlight interferes with
the measurements [6].

Important and widely used manufacturers of this technology include: Vicon
(UK) [25–27], Motion Analysis (USA) [17,28,29], Qualisys (Sweden) [20], and
BTS Bioengineering (Italy) [30].

An extensive review of vision-based systems that have been proposed for
tracking human motion in the past years can be found in Moeslund et al. [31].

13.5.1.3 Inertial Unit System (IMU)
An inertial measurement unit (IMU) is a sensor composed of the fusion of
three other sensors: gyroscopes, accelerometers, and magnetometers. Through this
combination of components, the unit can acquire gravitational acceleration and
rotational velocity, to estimate the velocity, acceleration, and orientation of the
element they are attached to. In a person’s lower limbs, they are usually positioned
on the waist, thigh, shank, and foot instep [32–34]. To estimate complex PIs, multi-
sensor arrangements are widely used to assess a specific task. Several studies used a
multi-sensor to estimate and compare the efficacy and precision, analyzing signal
patterns of body segments in different locations [35–37]. They are of relatively
low cost and provide an alternative to 3D systems as they do not require specific
light and space conditions to function properly. Nevertheless, signal processing
can be challenging as it involves the fusion of three sensors and the presence of
cumulative drift error and the growth of quadratic or cubic error [38], which can
distort the measured parameters. There are many commercially available IMUs on
the market. From sophisticated modules like Xsens (Netherlands) to simple units
from manufacturers as Bosch (Germany) [39].

A complete analysis of the accuracy of the three previously presented systems
for the capture and assessment of human motion (aimed but not strictly to sports
applications) can be found in the work by van der Kruk and Reijne [40].
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13.5.1.4 Ground Reaction Force (GRF) Sensors
To calculate kinetics indicators for each of the joints involved in the motor skill,
dedicated software based on inverse kinematics analysis has been developed. The
most prominent exponent is C-motion (Visual3D, USA) [20, 41, 42]. The basic
inputs for this software are: (i) kinematic PI, obtained by any of the motion capture
systems shown before, (ii) ground reaction forces (GRF), and (iii) segmental mass
distribution models. GRF can be measured with two main types of sensors:

• Force Platforms or Plates
A force platform can be understood as a pair of plates, one over another with
force transducers between them at the corners [43]. There are several types
of force plates on the market and they are classified either by how many
pedestals (single-pedestal or multi-pedestal) or by the type of transducer they
employ. The types of transducers commonly found in force platforms are: strain
gauge, piezoelectric sensor, capacitance gauge, Hall effect, and piezoresistive
sensor, each with the advantages and drawbacks inherent in their nature. For
gait analysis, force platforms with three or four pedestals are used to permit
forces that migrate across the plate [44]. They are usually synchronized with 3D
optoelectronic camera systems to provide a simultaneous analysis of the different
PIs [25, 28, 45].

• Pressure Mapping Systems
Pressure mapping systems quantify the interface pressure between two contact-
ing surfaces. They can come in different forms, from walking mats or strip of
carpet-like sensors, to a completely wireless thin insole (in-shoe technology).
These systems use a larger number of sensors (typically in the hundreds,
depending on the size) to capture the pressure distribution and profiles in the
foot, and the position and trajectories of the center of pressure (CoP) during
stance phases of gait. Nonetheless, they have also been used to measure force
profiles during many activities. For example, the F-Scan (TekScan, USA) in-
shoe pressure mapping system has been effectively used to measure GRF during
able-bodied walking [46, 47], and the Pedar-X mobile (Novel Gmbh, Germany)
in-shoe system was used for collecting GRF using a lower limbs exoskeleton
[48].

13.5.2 Equipment, Sensors, and Tools for Human–Robot Interaction
Performance Indicators

As mentioned in the HRI PI characterization, this type of measurement includes
quantitative and qualitative variables. Two big groups of equipment and sensors,
which refer to the user’s physical parameters, describe the majority of the quantita-
tive HRI indicators. The qualitative PIs are clustered in one independent group in
this chapter.
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13.5.2.1 Metabolic Cost Systems
Metabolic cost encloses a variety of PIs, as it was presented in Sect. 13.4.3. Authors
have measured it in numerous ways and with different types of equipment. Some of
the sensors and calculations that best exemplify this are:

(i) Malcom et al. measured the metabolic cost of subjects walking with an
exoskeleton through respiratory gas analysis. They analyzed respiratory gasses with
a computerized O2–CO2 analyzer flow meter (Oxycon Pro, Germany) and estimated
metabolic cost with the formula from Brockway [20, 49]. (ii) Lee et al. equipped
elder exoskeleton users with a facemask connected to a computerized portable
cardiopulmonary metabolic system (Cosmed K4B2, Italy), to measure breath-by-
breath metabolic costs. They also measured the heart rate via a wireless chest-strap
heart rate monitor [29]. (iii) Award et al. measured the energy cost of walking in
individuals in the chronic phase of stroke recovery using an exosuit. They defined
it as mass normalized oxygen consumption per meter ambulated (mlO2/kg/m)
measured with indirect calorimetry (Cosmed K4B2, Italy) and normalized by
body weight (kg) and walking speed (m/min) [42]. Finally, (iv) Arazpour et al.
evaluated the physiological cost index (PCI) of walking (a proxy measure of energy
consumption) in a group of subjects with poliomyelitis. They used a Polar Heart
Rate monitor (Polar, USA) to evaluate the PCI through a calculation including heart
rate at steady-state walking (HRss) and heart rate at rest (HRar) [50].

13.5.2.2 EMG and EEG Systems
Muscle and brain activity and their corresponding subindicators are measured
using the electrical signals associated with each human system as mentioned in
Sect. 13.4.3. For researchers to achieve non-invasive and painless EMG and EEG
recordings, surface electrodes are attached to the skin over muscles (known as
surface EMG or sEMG) or a person’s scalp. Typically, electrodes are placed on
standard locations on the muscles and scalp to measure the voltage fluctuations.
In the EEG case, the electrodes are usually contained in an elastic cap in their
appropriate locations on the scalp to measure the activity of thousands or millions
of neurons immediately beneath them [7]. sEMG systems are widely used to assess
muscle activity PI during gait [28, 29, 51].

13.5.2.3 Clinical Scales and Evaluations
This last group comprises all measurements that cannot be captured or characterized
with sensors or equipment as the ones explained before. This section intends not to
list all the existing tools to assess qualitative PIs, as it would be extensive, but rather
to give examples that have been used in the literature.

A detailed description and compilation of more than 500 measures of clinical
protocols, scales, indexes, and questionnaires are found in the Rehabilitation
Measures Database Website of the Shirley Ryan AbilityLab [52]. Additionally, in
Chapter 14: Experiences of Clinicians Using Rehabilitation Robotics, some of the
most used standardized questionnaires to evaluate user’s ergonomics, comfort, and
safety are presented.

https://www.sralab.org/rehabilitation-measures
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Regarding practical examples of the clinical scales used to assess HRI PI in the
field, the following are some of the reported studies:

(i) Visual analog scales (VAS) are used to assess features like user fatigue, pain,
and comfort [53]. del-Ama et al. implemented a VAS consisting of a 10 centimeter
rectangle. With that scale, the user was asked to rate the pain perception by placing
a mark inside the rectangle, rating from no pain at the left edge of the rectangle, to
intolerable pain at the right edge of the rectangle [54]. (ii) The Ashworth scale (AS)
and the Modified Ashworth scale (MAS) are utilized to evaluate spasticity [54, 55],
and spasm frequency and severity are quantified using the Penn Spasm Frequency
Scale (PSFS) [55]. (iii) To evaluate all aspects of patients’ health and assess if there
has been an improvement or decline in clinical status, the patient’s global impression
of change (PGIC) is used [55]. Finally, (iv) to assess the static balance and fall risk
the Berg Balance Scale (BBS) is usually implemented [56].

13.6 Conclusions

The assessment of robotic devices’ performance for gait assistance and rehabil-
itation is a multidisciplinary area that involves the mastering of many different
concepts. Recent efforts to benchmark bipedal locomotion have settled the basis to
understand the various considerations when classifying a motor skill and measuring
its performance. The overview presented hopes to have organized and explained
the key components one needs to consider when assessing gait robotic assistive
and rehabilitation devices. According to the focus given to the performance, a
reasonably detailed description of the implemented measures was achieved through
the characterization of the existing PI. Additionally, the inclusion of practical
information of their use and application in research intends to favor future studies,
where standardized nomenclature, parameters, and benchmarking, in general, are
included. Finally, some of the most popular equipment, sensors, and tools used
in the literature and commercially available to measure motor performance were
described. The knowledge and understanding of all the components presented
are fundamental in the process of accurately assessing technology towards better
assistance and rehabilitation of patients.
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