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11.1 Introduction

Gait is a rehabilitation process that involves physical and cognitive parameters [1].
Rehabilitation may need to be done in a cognitively stimulating context to maximize
its impact on neuroplasticity and cognition [2]. Engagement, motivation, and adher-
ence during the process have shown a high impact on the patient’s performance.
Social Robots have been used to assist the patient physically and cognitively [3]
through factors like robot embodiment, social, emotional intelligence, and socio-
cognitive skills [4]. Socially Assistive Robotics (SAR) focuses on achieving specific
goals in rehabilitation, training, or education [5].

In the first section of this chapter, the basic concepts of social robotics and
the importance of the cognitive process are presented. In the second section, the
parameters considered for developing patient–robot interfaces based on SAR for gait
rehabilitation are described. The application of these concepts is presented through
an example in neurological rehabilitation.
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11.2 Social Interaction

To understand social robotics is essential to have a clear meaning of social
interaction. The main objective of a social robot is to assist the patient not only
physically but also cognitively. Over time, social interaction has been studied, and
it has been represented through a variety of theories. However, a general definition
of social interaction from a sociology approach is as follows: “social interaction
is a dynamic, changing sequence of social actions between individuals or groups”
[6]. As a product of social interaction, the partners can modify their actions and
reactions.

In this context, social robots have several ways to change and share actions. The
channels commonly used for social robots are verbal and nonverbal communication
[7]. Verbal communication is considered the exchange of symbols that can be
spoken or written [8], and nonverbal communication can be produced through
gestures and gaze [6]. For long-term periods, this interaction is expected to be
more robust and very similar to the human–human social interaction. Currently,
SAR applications for long-time experiences still represent a challenge. Factors such
as robot embodiment, social, emotional intelligence, and socio-cognitive skills [4]
must be considered during the design of social robots and their applications.

11.2.1 Relevant SAR Characteristics During Social Interaction

Some characteristics differentiate SAR from other forms of social interaction like
virtual agents, affecting the relationship with humans in different scenarios [9].
The parameters described here will be social robots’ embodiment, social-emotional
intelligence, and socio-cognitive skills (Fig. 11.1).

11.2.1.1 Social Robots’ Embodiment
Social robots are developed to interact with users in a human-centric way. The
robot embodiment is not always the same; robots can have various external
appearances (e.g., human-like [10], animal-like [11], or abstract designs [12], see
Fig. 11.2), but they share the aim of engaging users in an interpersonal manner
[4]. Despite the several social robots, people tend to have a greater acceptance
of anthropomorphic robots [13]. This preference occurs as humans attribute their
mental stages (e.g., thoughts, emotions, and desires) to this kind of robot [14].
The design of the robot depends on its final application. It is crucial to include
whole-body motion proxemics, facial expression, linguistic vocalization, and touch-
based communications in some areas. To achieve the correct embodiment features
is vital to use methodologies as an inclusive-participatory design [15], where the
participants contribute to the decision-making process to increase the acceptance
and effectiveness of the impact caused by the robot.
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Fig. 11.1 Parameters that differentiate SAR from other forms of social interaction
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Fig. 11.2 Socially Assistive Robots classification. In this chapter, we consider two main cate-
gories: real/abstract referring to their similarity to living beings and human/animal referring to
their similarity with humans or in contrast their similarity with animals
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11.2.1.2 Socio-emotional Intelligence
Human communication and social interaction often integrate compelling and
emotive cues. Thus, social robots need to be able to recognize and interpret
affective signals from the users. Theoretical models of emotions for social robots are
currently being developed to derive coherent computational models. Two theoretical
models are mainly used in social robotics: appraisal theory model and dimensional
theory model.

The appraisal theory emphasizes a connection between cognition and emotion.
In this model, emotions are evoked from personal significance events (e.g., individ-
ual beliefs, desire, and intentions) [16]. This theory can be described as a discrete
model, where an emotional event causes a response. For example, the Artificial
Intelligence (AI) with if-then rule codes is based on this kind of model. On the other
hand, the dimensional theory is based on continuous dimensional space [17], where
the user’s emotional state can be represented in a 3D space. PAD models are based
on this theory [18]. PAD models are represented by P (i.e., pleasure/valence), A (i.e.,
arousal/intensity), and D (i.e., dominance/coping potential).

Emotional Empathy is another factor relevant in order to achieve long-term
interactions between robots and humans. Empathy can be broadly defined as an
“affective response more appropriate to someone else’s situation than the one’s own”
[19]. Several works are currently focused on empathy approaches to enhance the
social robots’ capabilities [20]. Most of these studies use mimicking user’s affective
states to endorse the effects of social robotics [21].

11.2.1.3 Socio-cognitive Skills
Social robots must understand and predict human behaviors. Therefore, robots
have to be aware of people’s goals and intentions, so the robot’s behaviors can be
adjusted to help the users in terms of their goals and needs [22]. In this way, several
strategies are used. The most common features used in robots are memory (i.e., face
recognition) [23, 24] and communicative skills (i.e., speech recognition) [25].

A key challenge in this kind of interaction recalls critical past events during
conversations and activities [26]. Episodic memory is a core concept to define
this challenge. The episodic memory stores the data related to past events and
adds perspective to the robot to choose actual and emotional events and preserve
temporal labels to use them in future referencing. Several applications consider
the use of automatic speech recognition (ASR) to produce casual communication
and social exchanges [27]. However, this remains a challenge. Limitations on the
environmental characteristics and the voice properties are highlighted in various
research studies [28, 29].

11.2.2 Importance of the Cognitive Approach in Rehabilitation

Gait rehabilitation is a process that involves a multidisciplinary approach. Several
medical specialties are included (i.e., physiatry, internal medicine, and orthopedics),
physical therapy, occupational therapy, speech pathology, social work, clinical psy-
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chology, neuropsychology, orthotics/prosthetics, nutrition, and recreational therapy
[1]. A basic premise of rehabilitation medicine is that optimal patient recovery
requires the concerted efforts of some combination of each of these treatment
disciplines [1]. It has been proposed that rehabilitation may need to be done in
a cognitively stimulating context to maximize its impact on neuroplasticity and
cognition [2]. Physical and cognitive training on their own are helpful to some extent
for improving cognition, but there may be added benefits to combining the two
into a single activity [30]. Social cognitive and system formulations can help revise
how we attempt to deliver comprehensive rehabilitation efforts [1]. In this context,
Bandura’s social cognitive theory of human behavior and cognition suggests that
environmental factors, internal factors, and behavioral outcomes combine to shape
and direct human learning, cognition, and behavior [31].

The integration of a cognitive approach in physical rehabilitation has been done
through different studies. The study by Dhami et al. in 2015 proposed dancing as
an alternative to physical therapies as used in neurorehabilitation. This produced
a positive impact on physical functioning and cognitive perception, due to the
combined, or multimodal framework in therapies, which incorporate simultaneous
physical and cognitive activities in a stimulating environment [30]. This can also be
achieved through SAR. SAR shares with assistive robotics to assist human users,
but SAR constraints that assistance through non-physical social interaction. SAR
focuses on achieving specific convalescence, rehabilitation, training, or education
goals [5]. Integrating a socially assistive robot can help provide one-on-one support
to the patient [3]. It can facilitate the healthcare staff to focus on patients’ individual
needs, immediately detect any complications during the session [32], analyze the
patient’s progress within the program in more detail [33], and provide a more
tailored plan [34]. Unlike virtual agents [35], socially assistive robots present
a physical embodiment, which improves likeability [36, 37], user engagement
and motivation [38], adherence [39, 40], and task performance [38], which are
essential in long-term healthcare programs. This subsection will further discuss the
importance of motivation and adherence and gait rehabilitation and how it can be
improved using a cognitive approach.

11.2.2.1 Intrinsic Motivation
Motivation is the most challenging part of the work of the therapeutic profession.
Motivated patients are believed to perform better in rehabilitation activities and
make more gains than those described as less enthusiastic for treatment [41]. Yet,
motivation is recognized as the most significant challenge in physical rehabilitation
and training [42]. The more an individual is motivated and engaged in the learning
activity, the better the learning outcome [41].

SAR technology can provide novel means for monitoring, motivating, and
coaching [42]. Socially assistive robots have been shown to improve user motivation
and engagement in several studies in rehabilitation [5, 43–47]. A complementary
application where robots are used to motivate and increase the adherence in long-
term therapies and medical self-care is diabetes mellitus treatments, where robots
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play personal assistants in the adult [48] and children [49] population, showing
potential results within motivational aspects and treatment engagement.

11.2.2.2 Adherence
Improving adherence to therapy is a critical component of advancing outcomes
and reducing rehabilitation costs [50]. Rehabilitative robotics has the potential
to enhance adherence to rehabilitation recommendations, which is known to be
difficult for those with chronic health conditions [51]. Research suggests that
poor adherence compromises health outcomes [52], while high levels of therapy
practice optimize motor recovery [53], underscoring the importance of strategies
and technologies that bring rehabilitation support into patients’ homes. Different
studies have shown positive results of social robotics regarding this factor. Gadde
et al. evaluated an interactive personal robot trainer in the early stages to monitor
and increase exercise adherence in older adults [54]. The system was tested with
10 participants, initially showing positive response and a favorable interaction. In
another study by White et al., using focus groups, all participants favorably endorsed
the potential utility of a socially assistive robot that functioned as a personal
coach. They identified three areas in which such a system would be helpful for (1)
adherence to therapy recommendations, (2) organizing and remembering things to
do, and (3) locating and supporting participation in social and recreational activities
[50].

11.3 Patient–Robot Interfaces Based on SAR

Natural human-to-human interaction is performed using senses (e.g., vision, touch,
taste, smell, and touch) that facilitate perception of the environment and the ability
to communicate employing diverse information channels [55]. This information
serves as the input of cognitive processes that are conformed by a sequence of
tasks, including reasoning, planning, and execution of a given situation [56, 57].
Unlike human beings, who use their senses to perceive the world, computers and
robotic systems implement interfaces composed of a set of sensors that provide the
required data to perceive the environment, process the information to define a plan,
and perform a determined behavior according to the context [58]. Hence, aiming to
generate an effective interaction between the user and the robot, it is of relevance
to provide multiple communication channels from different sources. In other words,
these interfaces should be multimodal to allow interaction as naturally as possible
[56]. For this reason, in most of the Human–Robot Interaction (HRI) systems, there
are considered not only humans and robots but also multimodal interfaces that work
as an intermediary between both agents [58]. Classic Human–Computer interfaces
commonly conform to such interfaces (HCis), such as graphical computer interfaces
in conjunction with visual interfaces (e.g., camera-based vision and recognition
interfaces) and sensors. Among the most used sensors are Inertial Measurement
Units (IMUs), laser rangefinders (LRFs), or wearable devices associated with
different communication modalities that are integrated within the HCi [56].
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The way an HRI is developed is critical to achieving a natural interaction that
can potentiate the intervention with SAR, and over the years, researchers have
used different methods to plan and produce these interfaces. A method that has
shown promising results is the participatory design. The design of a Patient–Robot
interface based on SAR following this methodology is presented in this section. The
process is done in a generic rehabilitation program where there is a component of
gait rehabilitation. The core activities for which an HCi can be developed are the
ones carried out on a treadmill.

11.3.1 Participatory Design

Participatory design (PD) is a well-known method to develop products and services
for a target population. The process intends to empower the people involved in a
specific activity or situation (users, designers, and stakeholders) by providing them
space and a voice to contribute to the decision-making [59]. This way, the real needs,
desires, and expectations of the population are met in the final products or services.

PD was initially used in areas like industrial design, but given the effectiveness of
designs based on participatory practices, researchers’ attention has gained attention
in different fields. PD techniques are up-and-coming when transferring knowledge
and developments from research to the real world, especially when interacting
with humans is vital in the final product or service. Additionally, implementing
PD constitutes an opportunity to understand and gain knowledge about the target
community’s context. An occasion to show the benefits of technological tools and
build a relationship based on trust and confidence between researchers and the
community.

In health care, PD has been used in the design of social robots for (i) Autism
Spectrum Disorder (ASD) [15, 60] and (ii) a children’s hospital [61]. In all
these contributions, PD methods have been implemented to recognize the target
populations and their environment (families, society, groups of allies, and friends) as
partners with experience that can be a part of the solution. They are no longer only a
source to obtain information and requirements to produce results [62]. All the actors
in the project are acknowledged as valuable contributors, which plays a crucial role
in ethical, political, and social considerations of the development. The philosophy
behind PD is not to provide a step-by-step list of the activities or phases to develop
the final product or service, as there are multiple possible ways to implement it. It
is up to the researchers to plan and design an appropriate methodology based on the
population, context, variables, and objective. A general diagram of the main phases
to consider during a PD is presented in Fig. 11.3.

When the participatory process is correctly implemented, it comprises different
stages that could lead researchers to:

• obtain contextual information that successfully establishes the needs, interests,
preferences, fears, desires, and priorities related to the product or service’s
functionality,
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Fig. 11.3 General diagram
of participatory design phases
to design product and
services
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• validate or refute the insights gained in previous studies or developments to
design the different products or services, and

• generate ideas and creative solutions through reflecting on experiences from the
various participants.

11.3.2 Design Criteria

The contextual information found when applying PD leads to the establishment of
design criteria or requirements. A natural way to understand and address them in an
ordered fashion can be by grouping them according to their characteristics.

Observations from the process that follow the PD steps in Fig. 11.3 set the
requirements that the HRI must accomplish. These requirements can be broadly
classified into three main groups:

• Variables:
In most rehabilitation scenarios, three types of variables are required to be
measured by the system: (i) spatiotemporal, (ii) physiological, and (iii) exercise
intensity variables. Spatiotemporal variables include the measurement of items
as speed (mph) of the band, cadence (Hz), which is the step frequency of the
patient (amount of steps per second), and step length (m), which refers to the
distance between legs on each step during exercise. The clinicians typically
request the measurement of these variables to monitor the patient’s movement.
Additionally, the cadence and the step length measurement are used to determine
the patients’ walking speed. Physiological variables control the patients’ physical
condition, usually employing the heart rate, blood pressure, and posture while
walking. Finally, exercise intensity can be monitored employing the Borg scale
and configured with the treadmill inclination.
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• Interactivity:
This requirement is provided through a Graphical User Interface (GUI) that
allows visual interaction and provides corrections to avoid risk during the
session. Similarly, a social robot must be integrated to provide a more natural
and social interaction with the system and monitor and motivate patients during
exercise.

• Follow-up:
The third requirement is associated with the data management and follow-up of
the program. Hence, a database must be included to provide a record of the events
generated on each session and record each parameter of the sessions to allow the
clinical staff to perform analysis on the patient’s evolution.

The requirements are summarized in Table 11.1.

11.3.3 Patient–Robot Interface Structure

After recognizing the need for the different modules presented in Table 11.1, the
structure of the HRI is evident. The system must accomplish a continuous measuring
and recording of variables while providing visual interactivity (employing a GUI).
These functionalities that comprise the variables, follow-up, and the GUI regarding
the interactivity requirement are considered the HCi. Similarly, the robotic social
agent can address the interactivity requirements associated with social interaction,

Table 11.1 Requirements for the design of an HRI based on SAR

Module Feature

Variables Sensor interface Spatiotemporal

Speed (mph)

Cadence (Hz)

Step length (m)

Physiological

Heart rate (bpm)

Blood pressure (mmHg)

Posture correction

Exercise Intensity

Treadmill inclination (◦)

Borg scale

Interactivity Graphical User Interface Visual interaction

Social Robotic Agent Social interaction

Monitoring

Motivation

Follow-up Database Events recording

Parameters recording



296 M. Múnera et al.

Graphical User
Interface

Camera

HR sensor

LRF

IMU

Sensor
Interface

HCi

Social Robotic Agent

Motivation

Monitoring

Emergency

Warning

Social Interaction

Fig. 11.4 Modules to consider in the design of a Patient–Robot Interface

monitoring, and motivation. Both systems, in conjunction, conform to the Patient–
Robot Interface illustrated in Fig. 11.4.

A Patient–Robot Interface focuses on three main properties: acquisition of
sensory data, computer interaction, and social interaction between the patient
and the system. As depicted in Fig. 11.4, the HCi handles variables described in
Table 11.1 utilizing a sensor interface and the user requests through the GUI. The
therapy info is processed in the HCi and sent to the social robotic agent. The
robot analyzes this information, and based on the result, the state of the therapy
and the behavior that must be adopted are determined (i.e., motivation, monitoring,
emergency, and warning). These behaviors are established according to the risks
associated with the therapy. Hence, with this control loop, the patient’s health
condition is monitored and controlled, reducing the probability of risk occurrences.
While at the same time, the robot can provide feedback and motivation through
social interaction.

11.3.3.1 Sensor Interface
The sensor interface measures three types of variables usually selected by the
medical staff to monitor the patient’s status during the therapy, presented in
Sect. 11.3.2. This interface integrates the measurement from a heart rate (HR)
monitor, an IMU (reporting the treadmill inclination), an LRF (to estimate gait
parameters), a camera (recording the patient’s posture), and periodic results from
the Borg scale. The system must be designed to present the three primary metrics
and examples of the technology that can be involved are as follows:
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Gait Spatiotemporal Parameters
As these parameters require tracking the displacement of the patient’s legs during
exercise, the selected sensor must locate the patient in the band and measure
the leg difference distance (LDD). Additionally, the number of steps per second,
namely the cadence, must be achieved by the exact measurement. Moreover, the
sensor must accomplish the measurement at a frequency higher than the gait
frequency. However, gait frequency is low compared to electronic devices. Hence,
one sensor that meets all previous requirements could be the Hokuyo-URG 04LX-
UG01 (Hokuyo, USA) [63]. This is a laser rangefinder (LRF) used to measure
areas using an infrared electromagnetic wave (a wavelength of 785nm), and the
distance measurement principle is based on the light phase difference. Similarly,
this sensor allows measuring in a range of 240 degrees with a maximum distance
of 4m. However, for this application, the measurement range must be limited to
60 degrees to limit the measurement of the treadmill band area. The sensor can
perform a scan composed of 683 measurements in 0.1 s, which indicates a sampling
frequency of 10 Hz, which is suitable for measuring gait spatiotemporal parameters.
As shown in Fig. 11.4, an LRF sensor reports measurements used to estimate the
patient’s cadence, step length, and speed. The estimation of these parameters was
proposed and validated in previous work [56, 64].

Physiological Parameters
The appropriate sensor to measure the HR must meet three main requirements: (1) it
must allow physical activity while performing the measurement; in other words, the
sensor must resist movement perturbations. (2) This sensor must allow online data
transmission since the heart rate must be monitored in real-time during therapy.
Finally, (3) the sensor must provide the processed data; namely, the sensor has to
measure the signal and provide the heart rate value without requiring any additional
processing. Hence, a suitable sensor for this application could be the heart rate
monitor Zehpyr HxM BT (Zehpyr, USA) [65]. This sensor is located on the user’s
chest and reports a wireless and continuous measurement of the heart rate using
Bluetooth communication [66].

Additionally, cervical posture corrections (the flexion of lower cervical vertebrae
and its inclinations [67]) can be measured with the front camera of the tablet
(Microsoft, USA) placed on the treadmill screen. A gaze estimator algorithm can
be used. During the exercise, a proper cervical posture is set when the patient looks
straight. In most therapies performed on a treadmill, the proper posture is essential to
avoid dizziness, falls, and nausea. This measure represents the counting of a binary
(“look-straight, not look-straight”) value extracted from a gaze vector.

Exercise Intensity Parameters
Two different metrics are used to measure the physical activity difficulty: the
inclination of the treadmill and the reported difficulty of the exercise. As the
inclination most often cannot be accessed directly from the treadmill, an additional
sensor must be installed. This sensor must be capable of measuring inclination
angles in a range of 0 to 5 degrees (slope available on the treadmill), and as with
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the other sensors, it must allow online data transferring. Hence a sensor that meets
these requirements is an IMU that will be placed on the treadmill so that one of its
rotation angles corresponds to the central rotation axis of the treadmill. This way,
changes in the measured IMU angle are equal to changes in the treadmill slope. For
example, the MPU9150 IMU (Invensense, USA) [68] is an embedded system that
combines a 3-axis gyroscope, one 3-axis accelerometer, a 3-axis magnetometer, and
a digital motion processor.

11.3.3.2 Graphical User Interface
The GUI can run in a tactile computer monitor (i.e., Surface Pro-Microsoft, USA).
This interface must present basic information and control panels regarding the status
of the therapy (e.g., current user, session time, start/stop panel, emergency status,
and biofeedback display) (see Fig. 11.5). As was presented in Fig. 11.4, the system
receives the sensory data to be processed, stored, and displayed on the screen. With
this information, the patient has access to visual feedback provided by the HCi.
Hence, the graphical interface should report the synchronized and processed data
from the sensors and allow the user to interact and respond to the requests generated
by the system or the robot. Additionally, the interface must estimate the patient’s
fatigue level or related values, which can be captured employing the Borg scale (a
qualitative measurement that estimates the perceived exertion of the patient, 6 for
low intensity and 20 for very high intensity [69]). This value has to be periodically
requested by the system or the robot.

Figure 11.5 presents an example of the main window (i.e., MainTherapyWindow)
displayed during the therapy time. However, the system can contain additional
functionalities and forms that allow the medical staff to register users, log in to
the therapy session, and set therapy configuration parameters. Additionally, the
system may allow the user to select different modalities of the therapy. In the

Computer
Interaction

GUI

Fig. 11.5 Graphical User Interface to assess the patients’ fatigue, view the therapy parameters as
a form of feedback, configure the robot, monitor sensors, and control the therapy performance
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first modality, the system could only work with the HCi; namely, the system only
measures performance through the sensor interface and stores it in the database.
Additionally, the GUI could request the Borg scale, even if feedback is not displayed
on the screen. This modality is meant to measure a patient’s performance without
providing any feedback or social interaction and can be used for validation purposes
with a control group defined in the baseline. The second modality could incorporate
the social robot to provide social interaction, motivation, and monitoring. Similarly,
the GUI should provide feedback regarding the state of the measured parameters
(biofeedback display, see Fig. 11.5).

11.3.3.3 Social Robotic Agent
The robot module is focused on the interaction between the user and the robot.
This interaction is provided through three robot roles: (i) motivational support, (ii)
performance monitoring, and (iii) online feedback (emergency and warning). A
typical therapy with the robot starts with an initial greeting, where the robot made
an introduction of its functionalities during the rehabilitation program. Then, when
the patient starts the exercise on the treadmill, the performance monitoring state
is activated. During this state, sensory information is analyzed. Depending on the
values given by each sensor, the current state can turn to the online feedback state
or remain in the same state. If the online feedback is activated, two robot behaviors
can be triggered (emergency or warning) when the system detects an increment in
the physiological parameters such as training heart rate, Borg scale, and cervical
posture.

11.4 Case Study: A Social Robot for Gait Rehabilitation with
Lokomat

Patients who suffer from neurological disorders as spinal cord injuries, dementia,
and cerebrovascular diseases like stroke are usually recommended to enter a
physical rehabilitation (PR) program. PR is an active process to achieve a full
recovery or an optimal physical, mental, and social potential to integrate the person
appropriately back into society [70]. This is done through a combination of a (1)
physiological treatment (e.g., cardiovascular, aerobic, and muscle control training)
and (2) cognitive rehabilitation (e.g., language, perception, motivation, attention,
and memory training) according to the patient’s condition [70, 71]. There are
different methods to perform PR. The conventional method is based on the guidance
and manual assistance of the therapist in repetitive exercises that are used to improve
the patient’s performance [72]. In this method, the results depend merely on the
expertise of the physiotherapist and the intensity of the exercises [73]. Alternatively,
robot-assisted PR therapies combine a body weight support (BWS) system with a
lower-limb exoskeleton to train physiological gait patterns on treadmills. Such is the
case of PR with Lokomat, a robotic orthotic device that includes a BWS system to
retrain gait [74].
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Several studies have demonstrated the benefits of robot-assisted PR with Loko-
mat over the conventional therapies, including improvements in cardiovascular
parameters [75], motor control [76], and balance [77], among others. However,
even with robotic aids, PR is complex, and its second component, i.e., cognitive
rehabilitation, has not been fully integrated. In healthcare, including social robots to
rehabilitation procedures has shown progress regarding adherence to the treatments,
assistance, and perception [5,78]. This section presents the design and implementa-
tion of a patient–robot interface using SAR during Lokomat therapies.

11.4.1 Patient–Robot Interface

Following the approach presented in Sect. 11.3.3, Cespedes et al. [79,80] developed
and tested the interface. The system was composed of three main modules: (i) the
sensory module, which allowed the acquisition and processing of sensory data,
(ii) the Graphical User Interface, which was used for the computer interaction and
monitoring, and (iii) the social robot module, in charge of the social interaction and
the assistance of the patients. Figure 11.6 shows the patient–robot interface proposed
for the Lokomat gait rehabilitation therapy using SAR.

Social
Interaction

HR sensor

IMU

Sensor
Interface

Motivation

Monitoring

Social
Robot

Feedback
Data Display

Borg Scale

GUI

Control

Therapy
Visualization

Sensory
Monitoring

Patient-Robot Interface

Fig. 11.6 Patient–robot interface for the Lokomat gait rehabilitation therapy using SAR



11 Socially Assistive Robotics for Gait Rehabilitation 301

Sensory Module
The system acquired and processed the following physiological variables:

• The spinal posture (cervical and thoracic postures), measured with an IMU
BNO055 (Adafruit, USA).

• The heart rate, measured with a Zephyr HxM sensor (Medtronic, New Zealand).
• The patients’ perceived exertion during the exercise, measured with the Borg

scale.

Graphical User Interface
The GUI was in charge of visualizing the therapy’s data and controlling the session
flow. Additionally, it allowed the therapists to interact with the patient and manage
the session. A tablet Surface Pro (Windows, USA) was used to display the interface.

Social Robot Module
The robot’s role was to provide feedback to the patients regarding their physiological
parameters and motivate them during the therapy development. It supported the
therapists while performing other tasks during the session, enabling physical
distancing between the clinicians and the patient. The feedback given by the robot
included nonverbal (imitation of healthy postures) and verbal gestures. The nonver-
bal gestures and the conversation scheme designed for the robot were developed
with a rule-based algorithm. It depended on the events that took place during the
sessions and the types of feedback presented. An NAO V6 robot (Softbank Robotics,
France) was used to achieve the interaction.

11.4.2 Setup and Results

The study took place at the Mobility Group Rehabilitation Center located in Bogota,
Colombia, where patients received Neurological Rehabilitation with Lokomat. A
total of 10 patients were recruited to perform the rehabilitation assisted by the robot
during 15 sessions. A session was conducted per week and lasted around 50 min.
In the end, only 60% of the patients finished rehabilitation with Lokomat. Two
conditions were established: (i) a Control condition and (b) a Robot condition. In the
Control condition, the participants performed a conventional session of neurological
rehabilitation with Lokomat. During the Robot condition, the participants performed
the sessions assisted by the social robot. Patients were monitored in both conditions
through the sensory module and the GUI and received support and additional
feedback from the healthcare staff. Test sessions, where physiological parameters
were measured, were performed at the beginning, in the middle, and at the end of
the study. Afterward, the patients were assigned randomly to start with one of the
conditions during six sessions. Finally, considering the start condition, the patients
changed the scenario during another six sessions.

Two types of variables were analyzed to evaluate the robot assistance. The first
one was quantitative variables, including the unhealthy posture time, the Borg scale,
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and the heart rate at training. The second group was qualitative variables from a
questionnaire to observe the patient’s perceptions of the robot’s role. A Wilcoxon
Signed-Rank test was applied to compare the patient’s progress in both conditions.
This is a non-parametric test used to compare two related samples and assess their
difference [81]. A descriptive analysis was performed for the closed questions in the
qualitative parameters, and a textual data analysis test was performed for the open
items.

The study provided promising results regarding the inclusion of SAR in long-
term PR and expanded the boundaries of robotic-assisted PR:

(i) In the case of patients who started the study with the Control condition,
the percentage of unhealthy posture time regarding both the cervical and the
thoracic postures (for both planes of motion) decreased when performing the
session with the robot. The heart rate was maintained in a healthy range
considering the exercise performed during the session, and the Borg scale was
perceived at a low level.

(ii) Similarly, in the case of patients who started theRobot condition study, the
percentage of unhealthy posture time regarding both postures was lower with
the robot than without it. However, the patients seemed to maintain the posture
after the robot intervention (the unhealthy posture time was lower compared to
the previous group of patients), indicating that the patient learns how to control
the cervical posture on the sagittal plane. Both the heart rate and the Borg scale
were performed in healthy ranges.

(iii) Statistical differences in the different measurements between the Robot and
the Control condition were found. For example, the percentages of unhealthy
posture time were lower in the Robot condition than in the Control condition.
Contrarily, the heart rate and the Borg scale parameters did not show differ-
ences between conditions.

(iv) During the robot condition, many benefits were evidenced. First, the feedback
given by the robot allowed the patients to maintain a healthy posture and
promote full gait rehabilitation. Patients considered that the system was safe
and secure as they were continuously monitored. At the same time, this
monitoring gave the medical team the possibility of performing other tasks
during the session, which enriched the therapy sessions.

(v) An essential contribution of this study is how a patient–robot interface can
enhance the methods in therapy by integrating different sources of information.
For instance, the heart rate is not measured in conventional therapies. With
the system and the robot’s interaction, the clinicians could be warned by
the robot and take action during the therapy if the patients had a high heart
rate. Additionally, the inclusion of the Borg scale provided the clinicians with
precise information regarding the performance of the patients. Altogether,
clinicians could evaluate the patient’s progress, not only in the gait behavior
but also in their cardiovascular functioning and the exertion perceived during
each session.
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(vi) Although, in general, the robot’s sociability was perceived as low by the users,
they highlighted the platform’s potential in PR with Lokomat. Fluid speech and
conversation with the robot is the next step towards better social interaction. At
the end of the sessions, most of the patients suggest using the robot with other
patients. Clinicians’ overall perception was also positive and in accordance
with recent findings that evidence the need for social and cognitive support
during PR [82]. These results showed the potential of SAR in gait rehabilitation
as a tool to enhance the conventional sessions.

11.5 Conclusions

Gait rehabilitation is a primary component of physical rehabilitation processes for
many patients with neurological disorders. Robot-assisted methods to perform this
rehabilitation therapy have shown many physical benefits for patients. Nevertheless,
these methods can still improve substantially as their cognitive component is
explored. Social Assistive Robotics have been used in the last years in therapy
to include cognitive aspects such as patient motivation and engagement. Starting
from the basic concepts of social interaction, relevant characteristics of social
robotics and their importance in rehabilitation processes were presented. After that,
the methodology to design a Patient–Robot interface based on social robots was
guided through a real-world rehabilitation scenario on a treadmill. The impact and
promising future of including SAR in physical rehabilitation were at last shown in
a case study of long-term gait rehabilitation with Lokomat.
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