
10Control Strategies for
Human–Robot–Environment Interaction in
Assisted Gait with Smart Walkers

Sergio D. Sierra M. , Mario F. Jiménez, Anselmo Frizera-Neto,
Marcela Múnera, and Carlos A. Cifuentes

10.1 Introduction

Recent advances and developments in rehabilitation engineering have been focused
on the design and implementation of control strategies that allow natural, safe, and
compliant interaction between users, the smart walker, the environment, and the
healthcare professionals [1, 2]. In particular, multiple research projects have been
oriented to develop innovative tools to assist older people, neurological patients,
and people with cognitive impairments. Among these, the AGoRA Smart Walker [3],
the UFES Smart Walker [4], the GUIDO Smart Walker [5], and the MOBOT
Platform [6] are found.

These strategies have gained considerable popularity in rehabilitation and every-
day scenarios, owing to their positive usability outcomes, proper users and medical
acceptance, and the increasing cooperation between engineers, medical staff, and
patients [7–9]. Specifically, a key issue in such interdisciplinary collaborations
is related to the fact that they focus on generating solutions with a particular
focus on the user, that is to say, strategies and prototypes centered on the users’
requirements [10].

S. D. Sierra M. · M. Múnera · C. A. Cifuentes (�)
Biomedical Engineering, Department of the Colombian School of Engineering Julio Garavito,
Bogotá D.C., Colombia
e-mail: sergio.sierra@escuelaing.edu.co; marcela.munera@escuelaing.edu.co;
carlos.cifuentes@escuelaing.edu.co

M. F. Jiménez
School of Engineering, Science and Technology, Universidad del Rosario, Bogotá D.C.,
Colombia
e-mail: mariof.jimenez@urosario.edu.co

A. Frizera-Neto
Graduate Program in Electrical Engineering, Federal University of Espírito Santo, Vitória, Brazil
e-mail: frizera@ieee.org

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
C. A. Cifuentes, M. Múnera, Interfacing Humans and Robots for Gait Assistance
and Rehabilitation, https://doi.org/10.1007/978-3-030-79630-3_10

259

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79630-3_10&domain=pdf
https://orcid.org/0000-0001-5714-1478
https://orcid.org/0000-0002-6942-865X
mailto:sergio.sierra@escuelaing.edu.co
mailto:marcela.munera@escuelaing.edu.co
mailto:carlos.cifuentes@escuelaing.edu.co
mailto:mariof.jimenez@urosario.edu.co
mailto:frizera@ieee.org
https://doi.org/10.1007/978-3-030-79630-3_10


260 S. D. Sierra M. et al.

Considering the particular case of smart walkers, in the previous chapters, it
has been stated that these interaction strategies require the rehabilitation device
to count with appropriate sensory architectures, precise actuation interfaces, and
sufficient communication interfaces with the user. In general, the selection of such
components is aimed at providing three types of interaction in smart walkers: (1)
Human–Robot Interaction (HRI), (2) Robot–Environment Interaction (REI), and (3)
Human–Robot–Environment Interaction (HREI). In this sense, this chapter seeks to
describe the most common architectures that can be used to provide these types
of interaction during walker-assisted gait and demonstrate some case studies and
provide insights into their implementation in real devices.

10.2 Design Considerations for Control Strategies

During the design process of an interaction strategy for walker-assisted gait,
several milestones should be attained by researchers, healthcare professionals,
and stakeholders. For instance, this process involves (1) identification of patients’
requirements, (2) co-design of robotic solutions (involving engineers, clinicians,
patients, and relatives), (3) implementation in healthy patients, (4) validation in
clinical scenarios, and (5) analysis of effects [11, 12]. This is not a straightforward
process but a continuous loop of development, integration, and testing. Moreover,
depending on the type of interaction that is sought to be developed, there are several
baseline design criteria, such as safety, compliance, and comfort, among others.
Table 10.1 describes these underlying concepts for HRI, REI, and HREI.

As it can be inferred from Table 10.1, it is a common denominator in the design
criteria that the smart walker behavior is safe, intuitive, compliant, and appropriate
for the users’ specific requirements [1]. Some of these criteria have been widely
reported in literature reviews focused on smart walkers [2, 13, 14]. Additional
constraints might also include (1) the smart walker motion should be smooth and
only triggered by the users’ intentions, (2) the control strategies should not induce
hazardous situations neither for the users nor for the environment, (3) the healthcare
professional should always be involved in the interaction loop, either for monitoring
or for active participation, and (4) the smart walker should track and store the users’
progress and session’s performance [1].

Finally, the control architectures for walker-assisted gait should include several
minimal modules to interact with users. Particularly, Fig. 10.1 illustrates a standard
control diagram in a walker-assisted gait application, where the involvement of the
user, the smart walker, and the clinician is showcased. Moreover, this architecture
aims to implement the design criteria defined previously (see Table 10.1). Several
smart walkers reported in the literature have already proposed control strategies
that can be framed within this control diagram [3–6, 15–17]. This diagram offers
a generalization of the control strategies, and thus some smart walkers might not
include all of the proposed modules.

Multiple control strategies will be described in the following sections, categoriz-
ing them as strategies for HRI, REI, or HREI. Moreover, some of such strategies



10 Control Strategies for Human–Robot–Environment Interaction in. . . 261

Table 10.1 Description of general design criteria for the development of control strategies in
walker-assisted gait

Interaction type Design criteria Example

Human–Robot Interaction
(HRI)

Recognition of physical interac-
tion with the user

Sensing of forces, torque, and
pressure exerted by the user

Recognition of cognitive inter-
action with the user

Voice processing modules. Ges-
tures recognition

Estimation of user’s navigation
commands

Rule-based algorithms. Admit-
tance controllers

Estimation of user’s gait param-
eters

Sensing gait with IMUs, pressure
insoles, ranging devices, etc.

User monitoring Hearth rate estimation

Safety management Detection of proper user’s sup-
port and posture. Emergency
braking

Implementation of compliant
control strategies

Natural and intuitive interaction.
Personalized behaviors

Robot–Environment
Interaction (REI)

Smart walker motion control Low-level controllers to generate
desired velocity

Implementation of autonomous
navigation

Localization and mapping. Path
planning. Obstacle detection.
Guidance

Social interaction ability Detection of surrounding people.
Motion adaption to avoid intrud-
ing into personal spaces

Safety management Redundant systems. Remote con-
trol

Human–Robot–
Environment Interaction
(HREI)

Implementation of shared con-
trol strategies

Adaptation of control authority.
Modulation of user’s participa-
tion. The user triggers motion

Clinician participation Close accompanying teleopera-
tion and remote monitoring

Feedback of environment infor-
mation to the user

Haptic, auditory, and visual feed-
back

have already been validated with users, and thus, the following section presents two
particular smart walkers used for these purposes: the AGoRA Smart Walker and the
UFES Smart Walker.

10.3 Robotic Platforms

The AGoRA Smart Walker and the UFES Smart Walker, illustrated in Fig. 10.2,
are two active robotic walkers that have been used to implement control strategies
for HRI, REI, and HREI [3, 4]. In this way, their internal components and main
characteristics are described as follows:



262 S. D. Sierra M. et al.

HRI

REI

HREI

3. Control Strategy

Smart 

Walker

4. Safety 

Supervisor

1. Intention 

Detector

0. Physical

& Cognitive

Interaction

2. Therapy

Goals

User

Therapist

5. Feedback

Strategies

Environment
6. Monitoring 

& Control

Fig. 10.1 Standard control architecture for a walker-assisted gait application

(x2) Handlebars
2D LRF
(x2) Tri-Axial 

Force Sensors

HD Camera

2D LiDAR

Ultrasonic Board

Bumper Board

Ultrasonic Board 

FY

FX

FZ

(a)

LiDAR

IMU

Driver
DC Motors

DC Motors
& Encoders

Internal CPU

LRF Sensor

External CPU

(x2) Tri-Axial 
Force Sensors

FYFX

FZ

(b)

Fig. 10.2 Illustration of two standard robotic walkers for Human–Robot–Environment Interac-
tion. (a) AGoRA Smart Walker. (b) UFES Smart Walker

10.3.1 AGoRA Smart Walker

The AGoRA Smart Walker is a robotic walker mounted on a commercial robot
(Pioneer LX, Omron Adept, USA), emulating an assistive smart walker’s structural
frame and functionality (see Fig. 10.2a).

The platform is equipped with (1) two motorized wheels and four caster
wheels, (2) two encoders, one Inertial Measurement Unit (IMU), and two hall
sensors to measure walker’s overall position and speed, (3) a 2D Light Detection



10 Control Strategies for Human–Robot–Environment Interaction in. . . 263

and Ranging (LiDAR) sensor (S300 Expert, SICK, Germany) for environment
sensing, (4) two ultrasonic boards for detection of users and low-rise obstacles,
(5) a bumper panel to stop the platform under collisions, (6) two tri-axial load
cells (MTA400, FUTEK, USA) to estimate the user’s navigation commands, (7)
a camera (LifeCam Studio, Microsoft, USA) to sense people in the environment,
and (8) a 2D laser range finder (LRF) (URG-04LX, Hokuyo, Japan) for user’s gait
parameters estimation [3].

The device’s onboard CPU runs a Linux distribution to support the Robotic Oper-
ating System (ROS) framework and the software requirements [3]. Moreover, to
ensure efficient processing resources, an external computer is used to off-load non-
critical modules. The platform’s Ethernet and WiFi modules allow communication
with the external CPU [3].

10.3.2 UFES Smart Walker

The UFES Smart Walker, developed at the Federal University of Espírito Santo,
Brazil, is an active three-wheeled walker that provides gait rehabilitation and
assistance. The platform is depicted in Fig. 10.2b, as well as its sensory and
actuation interfaces.

The smart walker is based on a differential drive configuration with one front
caster wheel and two rear motorized wheels. The device is equipped with (1) an
encoder at each motorized wheel (H1, US Digital, USA) to estimate the wheel’s
position and movement, (2) an Inertial Measurement Unit (BNO055, Adafruit,
USA) to estimate the platform’s orientation, (3) two tri-axial force sensors at
each forearm support handlebar (MTA400, Futek, USA) to estimate physical
interactions between the user and the platform, (4) a laser rangefinder (LRF)
sensor (URG-04LX, Hokuyo, Japan) located in front of the user’s legs to obtain
user’s gait spatiotemporal parameters and distance to the platform, and (5) a 2D
Light Detection and Ranging (LiDAR) sensor (RPLIDAR A1, SLAMTEC, CHN)
pointing towards the front for environment sensing.

Additionally, the platform is equipped with an onboard computer (PC/104-Plus
Standard, 1.67 GHz Atom N450, 2GB RAM). This computer is configured to run a
real-time architecture based on the Matlab Simulink Real-Time xPC Target Toolbox.
An external computer is used for programming purposes of the onboard computer
and for experimental data storage.

10.4 Control Strategies for HRI

One of the significant improvements that have brought the emergence of smart
walkers is their ability to acquire and process physical and cognitive interaction
with users. Considering that each user may have different health conditions, the
smart walkers are often equipped with a wide range of sensors and actuators to
meet the particular assistance requirements of the users (see Chap. 2). This section



264 S. D. Sierra M. et al.

describes several interaction strategies that have been proposed in the literature to
provide natural and compliant HRI.

To follow the design criteria outlined in Table 10.1 and the control architecture
illustrated in Fig. 10.1, the first module in an HRI strategy is related to estimating
the user’s intentions. This is a crucial issue, considering that the outputs of this
module are in charge of triggering the smart walker motion, so that it is compliant
with the user’s motivational demands. A common source of this information is the
physical interaction between the user and the smart walker. This interaction is often
quantified employing force and pressure sensors on the device’s forearm supports
and handlebars (see Fig. 10.2). These sensors output force and torque signals that
can be used to estimate the user’s intentions.

10.4.1 Estimation of Physical Interaction

As shown in the AGoRA Smart Walker and the UFES Smart Walker sensory
interfaces, the forces are acquired from the sensors placed on the left and right
forearm supports. In particular, tri-axial force sensors can obtain magnitudes along
the x, y, and z axes. In this way, to compute the final exerted force and torque by the
user, the following equations are used:

FY = (FLY + FRY ) ∗ 1

2
,

FZ = (FLZ + FRZ) ∗ 1

2
,

(10.1)

τ = (FLY − FRY ) ∗ d

2
. (10.2)

In particular, Eq. 10.1 shows that the resulting impulse force FY can be estimated
by averaging the forces along the y-axis on both sensors, i.e., FLY and FRY, and
it provides information about the users’ intention to start walking. Similarly, the
support force FZ can be estimated using the forces along the z-axis on both sensors,
i.e., FLZ and FRZ. This support force is useful to detect the oscillatory components
of gait and the posture of the user. Note that the force component along the x-axis
is discarded, as it does not provide any additional or relevant information about the
user’s intentions.

Regarding the torque τ , it provides information about the turning intentions of
the users. Equation 10.2 shows that it can be estimated using the difference between
the forces along the y-axis, i.e., FLY and FRY, and the sensors’ separation distance
d. In this case, the vertical forces are not used to calculate another torque signal,
indicating the user’s intention to roll the device about the x-axis.



10 Control Strategies for Human–Robot–Environment Interaction in. . . 265

10.4.2 Signals Processing

Current commercial force and torque sensors can extract clear signals, containing
meaningful information about the user’s support, propulsion, and turning intentions.
However these signals also contain information about the oscillatory patterns of
the users’ gait and high-frequency noise related to vibrations produced by the floor
[3,18]. Therefore, before implementing a control strategy based on such interaction
forces, a filtering and gait parameters extraction process is required. Consequently,
the estimation of the user’s intentions of movement and the user’s navigation
commands could be achieved with ease and fewer probabilities to misinterpretations
[3].

According to the above, there are several alternatives to achieve such a filtering
process. Two of them are briefly introduced as follows:

1. Low-Pass Filters: These types of filters have been proposed to remove high-
frequency noise components. Among these, Gaussian, Blackman, Moving Aver-
age, and multiple-pass filters are commonly found. The Moving Average filter
is one of the most common techniques in digital signal processing and one of
the simplest in terms of implementation and formulation. This type of filter
acts as a low-pass filter, although it has poor ability to handle frequency-
domain responses. The operation of this filter takes M input points, estimates
the average of those points, and finally produces a single output point. In a force
signal processing application, Eq. 10.3 describes the formulation of the Moving
Average filter:

F′
Y[i] = 1

M

M−1∑

k=0

FY[i + k]. (10.3)

F′
Y[i] is the filtered force signal, and M indicates the number of points to

average [19]. Considering that this filter is intended to remove random noise, it
might not remove oscillatory patterns related to gait. Moreover, given that the
estimation of each filtered point requires M input samples, this filter induces
an amount of delay that increases with the M value. Regarding Gaussian and
Blackman variations of this type of filter, they have better stopband attenuation
than the Moving Average filter itself. The Gaussian filter, for instance, sets
smaller amplitudes near the ends of the averaging window, thus producing
smoother results [19].

2. Adaptive Filters Based on Gait Parameters: It is well known that the gait
pattern exhibits a natural oscillatory behavior, which is commonly related to
movements of the human trunk and center of mass in the sagittal plane [3]. In
walker-assisted gait applications, the force sensors also capture such movements
of the users’ upper body [3]. Thus, the frequency of the gait components that
contaminate the force signals is often related to the gait cadence [20].



266 S. D. Sierra M. et al.

Band-Pass Filter

(1 Hz - 2 Hz)
FZ

WFLC

Filter

F’Z Cadence

Low-Pass Filter

(5 Hz)
FY

FLC

FilterF’Y

0.5

F’’Y

Fig. 10.3 Illustration of the adaptive filtering process using Weighted Fourier Linear Combiner
(WFLC) and Fourier Linear Combiner (FLC)

In this way, as proposed in [20], an appropriate filtering process of the force
signals requires estimating the gait cadence. This process relies on the imple-
mentation of adaptive filters, such as (i) the Weighted-Fourier Linear Combiner
(WFLC) and (ii) the Fourier Linear Combiner (FLC), which allow the online
tracking of quasi-periodic signals [20]. The mathematical formulation of these
filters has been previously described in Chap. 5, and thus, their implementation
for force signal filtering is outlined here.

As illustrated in Fig. 10.3, the filtering process consists of several steps. On the
one hand, the resulting support force FZ (see Eq. 10.1) is passed through a band-
pass filter with cutoff frequencies of 1 Hz and 2 Hz to remove the signal’s offset
and high-frequency noise [3]. Several studies have validated these frequencies in
walker-assisted gait applications [3, 17, 20]. Afterward, the first harmonic of the
filtered force signal F′

Z, i.e., the gait cadence, is estimated by the WFLC.
On the other hand, the resulting impulse force FY (see Eq. 10.1) is filtered

by a fourth-order Butterworth low-pass filter with a cutoff frequency of 5 Hz. In
parallel, the FLC is fed with the cadence from the WFLC and the filtered signal
F′
Y. Finally, the FLC outputs the cadence signal F′

Y_CAD, which is subtracted
from the F′

Y to get the final F′′
Y filtered signal.

The above-mentioned filtering processes are helpful to process and remove
undesired components from the force signals acquired from the sensory interfaces
of the smart walkers. Note that one can obtain a filtered torque signal if these
processes are not carried out with the resulting force signals FY and FZ, but with
the independent signals of each sensor, FRY, FLY, FRZ, and FLZ.

At this point, it is still necessary to obtain the users’ intentions of movement
to set appropriate behaviors (i.e., velocities) on the smart walker. To this end, the
following section describes one of the most common methods employed to extract
velocities from force and torque signals.



10 Control Strategies for Human–Robot–Environment Interaction in. . . 267

10.4.3 Motion Intention Detector

As stated in the design criteria, the smart walkers should compliantly respond to
users’ motivational demands, to guarantee safety and acceptance [3,4]. In this sense,
admittance controllers have been widely implemented in smart walkers, as they
allow users to control the device by exerting forces and torques on the handlebars or
supporting themselves on the devices’ forearms [1, 3, 4]. The main idea with these
controllers is that the users require less effort to handle the smart walker than to
control the device in a passive configuration [1].

In general, the admittance controllers are dynamic models that generate linear
and angular velocities from users’ intentions [3, 4]. These controllers model the
smart walker as two first-order mass-damper systems, whose inputs are the resulting
impulse force FY

1 and the resulting torque τ . The outputs of these controllers are
the linear (v) and angular (ω) velocities, meaning the user’s navigation commands.

To estimate the linear velocity μ(t) from the exerted force FY(t), the first-order
system shown in Eq. 10.4 is used:

μ(t) = FY(t) − mμ̇(t)

bμ

, (10.4)

where m is a virtual mass and bμ is the damping constant. Similarly, this system can
also be represented in terms of the following transfer function:

L(s) = μ(s)

FY(s)
=

1
m

s + bμ

m

. (10.5)

The torque τ is used to obtain the angular velocity for the smart walker. Using
the first-order mass-damper system, the angular velocity ω(t) can be calculated as
shown in the equation below:

ω(t) = τ (t) − J ω̇(t)

bω

, (10.6)

where J represents virtual inertia and bω is the damping constant. Similarly, this
system can be represented in the frequency domain, as follows:

A(s) = ω(s)

τ (s)
=

1
J

s + bω

J

. (10.7)

In addition to the above, the quality and type of interaction are strongly related
to the values of the controllers’ constants. In particular, during the selection of

1For simplicity, the filtered force is referred to as FY.



268 S. D. Sierra M. et al.

these parameters, it is possible to provide different assistance levels by changing the
general virtual stiffness of the platform [3,4]. On the one hand, experimental studies
with the AGoRA Smart Walker reported that using m = 0.5 kg, bμ = 4 N.s/m,
J = 2.1 kg.m2/rad, and bω = 2 N.m.s/rad, the controllers provided the most
effortless and lightest interaction.

On the other hand, experimental studies have also reported that it might be
helpful to make the smart walker oppose the users’ intentions, i.e., for muscular
and gait training purposes. In patients in later stages of rehabilitation, it could be
helpful to set the controllers’ parameters to render a heavier and more challenging
maneuvering experience [21].

To accomplish this, it is assumed that people with higher Body Mass Index
(BMI) values can exert higher force and torque values on the device. Therefore,
a unique set of parameters is not suitable. In this sense, to provide a resistive mode,
the virtual mass should be at least ten times greater than the virtual mass of the
previous configuration. The value of the virtual inertia remains unchanged to avoid
increasing the risk for falls. An experimental study with the AGoRA Smart Walker
reported the following values: m = 10 kg, bμ = β N.s/m, J = 2.1 kg.m2/rad,
and bω = 7 N.m.s/rad. The calculation of the damping constant (β) employs the
user’s weight, as follows:

β = 0.375 ∗ weight − 12.5, (10.8)

The values of the model presented in Eq. 10.8 were estimated empirically, in
such a way that a subject with a maximum weight of 120 kg or a minimum weight
of 55 kg could move the device with moderate resistance [21].

10.4.4 HRI Strategy: Case of Study

As an illustration of the previously explained modules, a simple task is proposed.
A user is asked to follow an L-shaped path, while the admittance controllers are in
charge of generating linear and angular velocities from the force and torque signals
(see Fig. 10.4). In this case, the user was asked to walk at the preferred speed, and the
first set of constants was used (i.e., m = 0.5 kg, bμ = 4 N.s/m, J = 2.1kg.m2/rad,
and bω = 2 N.m.s/rad).

Moreover, for safety purposes, the motion of the smart walker is only allowed
if the user is appropriately supporting on the device’s forearm supports. This can
be achieved by employing the information obtained from the support force FZ
and setting a simple threshold. Similarly, another implementation of this safety
constraint can be made by using ranging sensors pointing towards the user’s legs
and setting a distance threshold. If the distance threshold is exceeded, the smart
walker stops.

Figure 10.5 illustrates the outcomes of the HRI case study. In particular,
Fig. 10.5a shows the raw and filtered signals of the resulting impulse force and
the resulting torque. In this case, the filtered force and torque signals in dark red



10 Control Strategies for Human–Robot–Environment Interaction in. . . 269

Fig. 10.4 Description of a simple case of study with the control strategy for HRI

and dark blue, respectively, were obtained by filtering the independent force signals
of each sensor. As it can be noted, the filtering process removes both the high-
frequency noise and the cadence components. Regarding the generation of linear
and angular velocities, Fig. 10.5b shows the obtained velocities from the filtered
force and torque signals. These velocities were generated using the admittance
controllers described in the previous section.

In general, these outcomes highlight how the admittance controllers can extract
the users’ intentions to move. Particularly, increases in the impulse force are
commonly associated with increases in the linear velocity. Analogously, increases
or decreases in the torque exerted by the users are associated with turning intentions.
Moreover, the turning intentions are also accompanied by a slight decrease in the
impulse force. This behavior is explained by the fact that users prefer to perform
soft turns, rather than turns around their axis (i.e., 90 degree turns) [3, 4].

10.5 Control Strategies for REI

Smart walkers are usually deployed in complex and dynamic environments, such
as homes, hospitals, and rehabilitation centers. Likewise, smart walkers are often
required to provide cognitive support to the user by assisting them in moving tasks.
In this sense, the control strategies for REI are designed to provide guidance and
path following capabilities. To this end, the smart walkers navigate autonomously
and effectively while avoiding static and dynamic obstacles in the environment.
According to the above, this section presents the following components for REI:
(1) position control, (2) path following control, (3) autonomous navigation, and (4)
low-level safety constraints.



270 S. D. Sierra M. et al.

6

4

2

0

-2

)
N(

ecroF

)
m
N(

euqroT

6

4

2

0

-2

5 10 15 20

(a) Force signals in red and torque signals in blue.

1.5

1.0

0.5

0.0

-0.5

)s/
m
yti col e Vr aeni

L

)s/ dar(
yt icol e Vral ugn

A

1.5

1.0

0.5

0.0

-0.5

5 10 15 20
Time (s)

(b) Linear velocity in black and angular velocity in gray.

Fig. 10.5 Outcomes of the HRI case study. (a) Illustration of raw (light colors) and filtered (dark
colors) force and torque signals. (b) Illustration of the linear and angular velocities generated by
the admittance controllers

10.5.1 Positioning Control

One of the simplest ways to interact with the environment is to use a positioning
strategy. This type of strategy allows a robotic walker to be taken from one point to
another without defining a particular trajectory. In this scenario, two strategies are
outlined below.

10.5.1.1 Non-linear Position Controller
In a positioning strategy, the controller should safely and naturally take the smart
walker to a desired point. Let us describe this problem as shown in Fig. 10.6a,
where the kinematic unicycle model is presented in polar coordinates (e, θ). In
this scenario, the smart walker is located at the position defined by (xR, yR), and
the desired point is the origin of the inertial reference frame (XI , YI ).

As explained in Chap. 2, the unicycle kinematic model is described by Eq. 10.9,
and the control variables of the robot are μ and ω:

[
ẋR

ẏR

]
=

[
μ cos(ϕ)

μ sin(ϕ)
.

]
(10.9)

The conversion to polar coordinates is described by Eq. 10.10, where e is the
error distance between the smart walker and the goal, and θ is the orientation with
respect to the global reference frame:



10 Control Strategies for Human–Robot–Environment Interaction in. . . 271

XI

YI

ω

yR

xR

e

φ
θ

θ

α ẏR

ẋR

(a)

XI

YI

ω

yR

xR

e

φφ

α

(b)

µ µ

Fig. 10.6 (a) Polar coordinates for the unicycle model in positioning problem. The goal is located
at the origin of the global reference frame. (b) Formulation of the positioning problem as a
mechanical system

[
XI

YI

]
=

[
e cos(θ)

e sin(θ)
.

]
(10.10)

Considering that e2 = X2
I + Y 2

I and that the orientation error is defined by α =
θ − ϕ, the kinematic model is replaced by

⎡

⎣
ė

α̇

θ̇

⎤

⎦ =
⎡

⎣
−μ cos(α)

−ω + μ
sin(α)

e

μ
sin(α)

e

⎤

⎦ (10.11)

At this point, the problem is focused on finding a control law that guarantees
that e → 0, α → 0, and θ → 0, asymptotically. To this end, as described
in [22], the Lyapunov-based control method can be applied. In particular, the
basic idea of Lyapunov’s direct method is to find the mathematical extension of
a physical observation for a given system [23]. In general, this method states that
if a mechanical or electrical system’s energy is continuously dissipated, it must
eventually stabilize to an equilibrium point [23].

In this way, consider the alternative formulation of the positioning problem
shown in Fig. 10.6b. Specifically, the unicycle model is described as a mechanical
system that comprises two springs, which are in charge of taking the system to
the desired goal. Thus, the candidate Lyapunov function for this system can be
formulated by examining the total system energy, i.e., the sum of the energy of
the springs, as shown in the equation below:



272 S. D. Sierra M. et al.

V (e, α) = V1 + V2 = 1

2
e2 + 1

2
α2. (10.12)

Moreover, the rate of energy variation of the system is obtained by taking the
time derivative of V (e, α), as expressed in Eq. 10.13. Physically, this implies that
the system will stabilize at the natural length of the springs, i.e., at the desired goal
[23].

V̇ = V̇1 + V̇2 = eė + αα̇

V̇ = e(−μ cos(α)) + α

(
−ω + μ

sin(α)

e

)
.

(10.13)

The Lyapunov energy-like function V (e, α) should be positive definite and
should have a continuous first partial derivative to guarantee the stability of the
system’s equilibrium point stability. Similarly, V̇ should be negative semi-definite.
Furthermore, if V̇ is locally negative definite, the stability is asymptotic. The
rigorous formulation of this theorem can be found in [23].

According to this, V̇1 can be made non-positive by choosing:

μ = λe cos(α), λ > 0 (10.14)

which yields that

V̇2 = α(−ω + λ sin(α) cos(α)), (10.15)

and consequently, V̇2 can also be made non-positive by choosing

ω = kα + λ sin(α) cos(α), k > 0. (10.16)

Then, replacing the equations from e and α, it gives

V̇ = −λe2 cos2(α) − kα2, (10.17)

which finally implies that e(t), α(t) → 0 with t → ∞.
At this point, the equations of the position controller have been defined by

Eqs. 10.14 and 10.16. However, to obtain a safe behavior for μ and ω, a saturation
strategy can be added. Particularly, to avoid motor saturation, the linear and angular
velocities can be truncated, by saturating the error e with the hyperbolic tangent.
Thus, the controller is now defined by

[
μ

ω

]
=

[
λ tanh(e) cos(α)

kα + λ
tanh(e)

e
sin(α) cos(α)

.

]
(10.18)



10 Control Strategies for Human–Robot–Environment Interaction in. . . 273

As an illustration of the behavior of this control strategy, Fig. 10.7 shows the
outcomes of several positioning tasks with a healthy user. Remarkably, three posi-
tioning tasks from the same initial pose were executed (see Fig. 10.7a). Moreover,
to demonstrate the asymptotic behavior of the distance error, Fig. 10.7b shows the
distance error e for each goal. Finally, Fig. 10.7c presents the behavior of the steering
error α for each goal. In this case, α did not exhibit a strict asymptotic behavior.
However, it stabilized around an equilibrium point near 0.

It should be noted that this controller does not consider the users’ intentions to
make the smart walker move. Thus, to guarantee users’ safety, this controller can be
coupled with a motion triggering system, so that the smart walker only moves if the
user is exerting a minimal impulse force.

-6 -5 -4 -3 -2 -1 0 1 2 3 4

x [m]

-4

-2

0

2

y
 [

m
]

Goal 1

Goal 2

Goal 3

Initial

Pose

(a)

0 1 2 3 4 5 6 7 8 9 10

Time [s]

0

5

10

15

D
is

ta
n
ce

 [
m

] egoal 1

egoal 2

egoal 3

(b)

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-0.4

-0.2

0

0.2

O
ri

en
ta

ti
o
n
 [

ra
d
]

αgoal 1

αgoal 2

αgoal 3

(c)

Fig. 10.7 Example of three positioning tasks. (a) describes the initial position of the smart walker,
the performed trajectory, and the final position. (b) describes the behavior of the distance error e

between the smart walker and each goal. (c) describes the behavior of the orientation error α



274 S. D. Sierra M. et al.

Fig. 10.8 Simple
formulation of the positioning
problem for the displaced
kinematic model

yR

xRxP

yP

y

x

Goal

XI

YI

φ

a

ω

10.5.1.2 Proportional Position Controller
An alternative to the previously described non-linear controller is related to the
formulation of a simple proportional controller. In this case, consider the position
problem described in Fig. 10.8, where the smart walker is modeled with the
displaced kinematic model presented in Chap. 2 (see Eq. 10.19).

[
ẋ

ẏ

]
=

[
μ cos(ϕ) − a ω sin(ϕ)

μ sin(ϕ) + a ω cos(ϕ)
.

]
(10.19)

This model can be expressed in terms of the kinematic matrix C (also referred to
as Jacobian matrix J) as

[
ẋ

ẏ

]
=

[
cos(ϕ) −a sin(ϕ)

sin(ϕ) a cos(ϕ)

] [
μ

ω

]

[
ẋ

ẏ

]
= C

[
μ

ω
.

] (10.20)

In this context, the formulation of a position controller should provide an
expression for the required linear and angular velocities to reach the desired goal.
Thus, it can be obtained from Eq. 10.20 that

[
μ

ω

]
=

[
cos(ϕ) sin(ϕ)

− 1
a

sin(ϕ) 1
a

cos(ϕ)

] [
ẋ

ẏ

]

[
μ

ω

]
= C−1

[
ẋ

ẏ
,

] (10.21)

where C−1 is the inverse kinematic (or Jacobian) matrix. At this point, the equations
of a proportional controller can be used to define [ẋ, ẏ]T , as follows:



10 Control Strategies for Human–Robot–Environment Interaction in. . . 275

-6 -5 -4 -3 -2 -1 0 1 2 3 4

x [m]

-4

-2

0

2
y
 [

m
]

Goal 1

Goal 2

Goal 3

Initial

Pose

(a)

0 1 2 3 4 5 6 7 8 9 10

Time [s]

0

5

10

D
is

ta
n
ce

 [
m

] xgoal 1

xgoal 2

xgoal 3

(b)

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-4

-2

0

2

D
is

ta
n
ce

 [
m

] ygoal 1

ygoal 2

ygoal 3

(c)

Fig. 10.9 Example of three positioning tasks with the proportional controller. (a) describes the
initial position of the smart walker, the performed trajectory, and the final position. (b) describes
the behavior of the error between the x coordinates of the smart walker and the desired goal. (c)
describes the behavior of the error between the y coordinates of the smart walker and the desired
goal

[
ẋ

ẏ

]
=

[
Kx̃

Kỹ
.

]
(10.22)

K is a proportional gain, while x̃ and ỹ are the distance errors between the x and
y coordinates of the smart walker and the desired goal, respectively. An illustration
of the behavior of this controller with a healthy user is shown in Fig. 10.9. The
same three goals were used to compare this controller with the previous non-linear
strategy (see Fig. 10.9a). Moreover, Fig. 10.9b and c shows the behavior of x̃ and ỹ,
respectively.

For this controller, it should also be noted that the users’ intentions are not
taken into account; thus, it is recommended to integrate a motion triggering system.
Additionally, the results presented in Fig. 10.9 might suggest that the proportional



276 S. D. Sierra M. et al.

controller exhibits a faster and more asymptotic response than the outcomes
presented in Fig. 10.7 for the non-linear controller.

However, let us analyze the behavior of the linear and angular velocities
generated by these two controllers, for one of the proposed goals (see Fig. 10.10).
Regarding the linear velocities illustrated in Fig. 10.10a, the proportional controller
generates larger velocity magnitudes, as it does not integrate any saturation strategy.
This behavior might lead to sudden unsafe movements of the smart walker in an
actual application. The angular velocity generated by the non-linear controller (see
Fig. 10.10b) exhibits a soft behavior that does not impose considerable effort on the
robot’s actuators. Nevertheless, the angular velocity generated by the proportional
controller exhibits more aggressive behavior that could induce unsafe movements in
the smart walker (see Fig. 10.10c). Furthermore, this controller saturates the robot’s
actuators.

0 1 2 3 4 5 6 7 8 9 10
Time [s]

0

1

2

3

L
in

ea
r 

V
el

o
ci

ty
 [

m
/s

]

non-linear

proportional

(a)

0 1 2 3 4 5 6 7 8 9 10
Time [s]

-0.6

-0.4

-0.2

0

A
n
g
u
la

r
V

el
o
ci

ty
 [

ra
d
/s

]

non-linear

(b)

0 1 2 3 4 5 6 7 8 9 10
-10

0

10

A
n
g
u
la

r 
V

el
o
ci

ty
 [

ra
d
/s

]

proportional

Time [s]

(c)

Fig. 10.10 Comparison of linear and angular velocities generated by the two positioning strate-
gies. (a) Linear velocities generated by the two controllers. (b) Angular velocity generated by the
non-linear controller. (c) Angular velocity generated by the proportional controller



10 Control Strategies for Human–Robot–Environment Interaction in. . . 277

10.5.2 Path Following Control

As stated in the previous chapters, a valuable functionality of smart walkers is
related to guiding users with cognitive and physical impairments. In general, a
guiding task aims at taking the user through the desired route, consisting of several
predetermined poses or goals. A standard solution for path following in wheeled
mobile robots consists of proposing a controller that generates the required linear
and angular velocities to achieve the desired route.

10.5.2.1 Non-linear Path Following Controller
Let us consider the path following problem described in Fig. 10.11, where the smart
walker is also modeled with the displaced kinematic model, previously described in
Eq. 10.19.

This model can also be expressed in terms of the kinematic matrix C, as shown in
Eq. 10.20. In this context, the inverse kinematic matrix C−1 is again used to obtain
expressions for the required linear and angular velocities to follow a particular path
(see Eq. 10.21).

Thus, finding the equations of the path following controller relies on defining
proper expressions for [ẋ, ẏ]T . In particular, Andaluz et al. proposed a set of
equations for this formulation, which have been widely used in mobile robotics
applications [24]. For every path pose, the closed-loop equation of the controller
proposed in [24] is represented as follows:

[
ẋ

ẏ

]
= νp + νa, (10.23)

where νp is the desired velocity vector on the path and νa is an attraction vector to
the path. In this sense, Eq. 10.23 can be further expressed as

Fig. 10.11 Illustration of the
path following problem,
where the smart walker
should reach a desired point
on the route

yR

xRxP

yP

y

x

vp

va

Nearest Goal

Path

XI

YI

φ

a

ω

θp



278 S. D. Sierra M. et al.

[
ẋ

ẏ

]
=

⎡

⎣νr cos(θp) + lx tanh
(

kx

lx
x̃
)

νr sin(θp) + ly tanh
(

ky

ly
ỹ
),

⎤

⎦ (10.24)

where νr is the magnitude of the desired velocity on the path; θp is the reference
orientation of the path, defined by the tangent of the nearest point to the path; lx and
ly determine the saturation limits of the position error; kx and ky are constant gains
that establish the linear zone of the position error; and x̃ and ỹ are the position errors
of the smart walker with respect to the path [4, 24].

With these equations, it is possible to implement a path following strategy in
any wheeled mobile robot that can be modeled as shown in Eq. 10.19. Note that
in the case of walker-assisted gait applications, this solution does not consider the
users’ intentions, and thus it assumes that the user will follow the smart walker’s
motion. However, to avoid unsafe situations, this strategy can be coupled with a
simple motion triggering system, so that the motion of the smart walker is only
enabled if the user exerts a minimum impulse. Such impulse force will indicate that
the user is ready to start walking with the device.

As an illustration of this control strategy, Fig. 10.12 describes the outcomes of a
path following task with a healthy user, where the desired route was configured as a
lemniscate curve. Figure 10.12a also shows the initial pose of the smart walker and
the pose after 5 s (t5). The blue asterisk indicates the desired goal on the route at t5.
Moreover, Fig. 10.12b shows the distance errors x̃ and ỹ during the execution of the
task.

10.5.2.2 Proportional Path Following Controller
Another simple yet valuable solution to following a desired route is based on
the formulation of a proportional controller. Let us assume the same formulation
shown in Fig. 10.11, modeling the smart walker with the displaced kinematic
model described by Eq. 10.20. Once again, the equations for the linear and angular
velocities can be obtained from Eq. 10.21, and it is required to formulate an
expression for [ẋ, ẏ]T .

In this case, the closed-loop equation of the controller can be defined as

[
ẋ

ẏ

]
=

[
	x + Kx̃

	y + Kỹ
,

]
(10.25)

where 	x and 	y correspond to the difference of the x and y coordinates between
the current and the next desired point on the route, respectively. Likewise, x̃ and ỹ

are the position errors between the smart walker and the desired goal on the path, and
K is a proportional constant. Similar to the previous controller, this formulation does
not consider the users’ intention to move. Therefore, a motion triggering system is
required only to make the smart walker move, when the user exerts a minimum
impulse force. An illustration of this control strategy is shown in Fig. 10.13.



10 Control Strategies for Human–Robot–Environment Interaction in. . . 279

-6 -4 -2 0 2 4 6

x [m]

-2

0

2
y
 [

m
]

SW Position

Desired Position

Initial

Pose

t5 pose

(a)

0 2 4 6 8 10 12 14 16 18 20

Time [s]

0

1

2

D
is

ta
n
ce

 [
m

] x

y

(b)

Fig. 10.12 Example of a path following task using the non-linear path controller proposed by
Andaluz et al. [24] (a) describes the position of the smart walker during the task. (b) shows the
distance errors during the task

Figure 10.13a compares the desired route and the position of the smart walker
during the task. It also shows the initial pose of the smart walker and the pose after
5 s (t5). The blue asterisk indicates the desired goal on the route at t5. Moreover,
Fig. 10.13b shows the distance errors x̃ and ỹ during the execution of the task.

In this case, the errors between the smart walker and the route are larger, and thus
the smart walker does not follow the exact desired route. Moreover, considering that
the controller is based on a proportional equation, it might generate large velocities
when the error is not zero. This can cause saturation on the smart walker’s motor
and abrupt movement of the device. In this way, this controller could be helpful to
provide path following; however, it should be softened with saturation prevention
strategies. Likewise, the formulation of this controller can be extended to versions
including integral and derivative gains.

10.5.3 Autonomous Navigation

Navigation during walker-assisted gait is mainly focused on safety provision while
guiding the users through different environments. Such guiding might respond to the
users’ intentions, e.g., “I want to go to my room,” or be used in rehabilitation sce-
narios to perform circuit-based tasks. The concept of autonomous navigation often
differs from the previous position and path following controllers, as these controllers



280 S. D. Sierra M. et al.

-6 -4 -2 0 2 4 6

x [m]

-2

0

2
y
 [

m
]

SW Position

Desired Position

t5 pose Initial

Pose

(a)

0 2 4 6 8 10 12 14 16 18 20

Time [s]

-2

0

2

D
is

ta
n
ce

 [
m

] x

y

(b)

Fig. 10.13 Example of a path following task using a simple proportional controller a. The desired
route and the position of the smart walker during the task b. The distance errors during the execution
of the task

often require a static environment with controlled conditions. Moreover, one of the
significant benefits of autonomous navigation is related to the online estimation and
adaption of routes based on the environment’s dynamic characteristics. Overall, the
fundamentals of autonomous navigation are based on four concepts [25].

1. Perception: This refers to the ability of the robotic device to acquire information
from the environment through sensory interfaces and extract meaningful infor-
mation. This is often accomplished by ranging sensors (e.g., ultrasonic sensors
and laser rangefinders), cameras, and depth cameras, among others.

2. Localization: This concept states that the robot must determine and track its
position (i.e., odometry) in known and unknown environments. Commonly, this
concept is also related to the robot’s ability to create and update maps of its
environment.

3. Decision-Making: Given a set of mission commands or goals, the navigation
system must decide how to achieve such objectives. Similarly, this concept also
states that the robot should determine if a particular goal is feasible or not and to
determine when to perform recovery strategies, e.g., the localization is distorted.
Moreover, this also refers to making plans and updating them if the environment
conditions change.



10 Control Strategies for Human–Robot–Environment Interaction in. . . 281

4. Motion Control: Finally, with a particular plan or path to follow, the robot must
determine the appropriate motor commands to achieve such a plan. This concept
is very similar to the path following and position controllers described previously.

In this context, the navigation systems in smart walkers employ the same
navigation’s concepts for wheeled mobile robots. It comprises map building,
autonomous localization, obstacle avoidance, and path following strategies [3].
Moreover, for simplicity, these concepts will be introduced in a high-level context,
and their implementation will be based on the functionalities of the Robot Operating
System (ROS) navigation stack.

10.5.3.1 Requirements for Navigation
Several hardware and software considerations should be met so that a wheeled
mobile robot (or a smart walker) can integrate a navigation system, such as the
one provided by ROS.

First, the robot should have a transform configuration system that provides
information about the relationships between the coordinate frames of the robot.
Typically, every sensor, the robot’s decks and the robot’s base have a coordinate
frame. Thus, the transform configuration defines offsets in translation and rotation
between different coordinate frames [26]. Second, the device must implement
a reliable odometry system to estimate its position, orientation, and velocity
[27]. Third, the robot must equip and properly acquire information from range
sensors. Preferably, laser rangefinders or LiDARs are recommended as they provide
sufficient information about the surrounding obstacles [28]. Finally, the robot must
integrate a low-level base controller in charge of converting the linear and angular
velocities generated by the navigation system to independent motors’ commands
[29].

The following sections describe the main functional components required for an
autonomous navigation system, focused on the ROS navigation stack.

10.5.3.2 Localization andMap Building
The problem of robot’s localization has been an active research area in the last
decades, since several methodologies for both indoors and outdoors applications
have been proposed [25]. In general, every localization strategy requires an environ-
ment map that could be made by hand or automatically with ranging and odometry
sensors.

For mapping, the ROS navigation stack offers an implementation of a 2D
map building algorithm based on the Simultaneous Localization and Mapping
(SLAM) technique [3]. This strategy has emerged considering that robots often
equip sensors with limited ranges. Therefore the robots are obligated to create
maps while exploring and localizing themselves in an unknown environment [25].
Specifically, the GMapping ROS package aims at creating a static map of the
complete interaction environment [30]. The static map is made offline and focuses
on defining the main constraints and characteristics of the environment [3]. For
instance, in a walker-assisted gait application in clinical environments, the map of
the environment should be built before any interactions with users or patients.



282 S. D. Sierra M. et al.

Once the desired map is obtained, it is also used for the robot’s online local-
ization. To this end, the navigation stack implements the Adaptive Monte Carlo
Localization Approach (AMCL) [31]. This is a probabilistic strategy that uses a
particle filter to estimate all the possible poses of the robot within the map. With the
robot’s motion, the filter starts to converge to a single localization [32].

A common problem related to these strategies is often associated with zones
such as stairs, elevator entrances, corridor railings, and glass walls. These zones
are defined as non-interaction unsafe zones, and the ranging sensors such as LiDARs
cannot completely sense their physical surface. Moreover, these zones are also
restricted to the robot, mainly due to the risk of collisions and falls [1]. In this
sense, and considering that a gray-scale image often represents the environment’s
map, these restrictions are achieved by editing the resulting static map [3].

It is worth mentioning that robots can also perform autonomous navigation
without having a map of the environment. In this case, the robot can only plan and
execute motion tasks that are limited to the field of view of its ranging sensors.

10.5.3.3 Path Planners and Cost Maps
One of the major functionalities of a navigation system is to receive a mission
command or a desired goal and plan an optimal route to attain such an objective. In
this sense, to perform path planning, the ROS navigation system implements three
main concepts: (1) cost maps, (2) a global planner, and (3) a local planner.

A cost map consists of an occupancy grid, where every detected obstacle is
represented as a cost, and it is elaborated from the previous edited map. To define the
numerical value of an obstacle’s cost, several aspects are considered. For instance,
the distance that the robot is allowed to approach the obstacles, and this process is
called obstacles inflation [3]. There is a global cost map, as well as a local cost map.
The global cost map is generated by inflating the obstacles on the edited map. The
local cost map is generated online by inflating obstacles detected by the field of view
of the robot’s sensors. These cost maps are also capable of semantically separating
the obstacles in several layers [33]. Frequently, a navigation system employs a static
map layer, an obstacle layer, a sonar layer, and an inflation layer [33]. Moreover,
if the robot can detect people in the environment, a social layer can also be used to
integrate proxemics and social zones.

Regarding the global planner, it executes two tasks. First, the global planner
checks if the desired goal is feasible; if not, a near feasible goal is automatically
proposed. Second, it seeks to find a global route with a minimum cost between the
start point (i.e., current robot’s position) and the endpoint (i.e., desired goal). To this
end, ROS provides implementations of path planning algorithms such as Dijkstra’s
and A* algorithms [32].

Regarding the local planner, it provides a controller that drives the robot in
the environment. Using the local cost map, the local planner creates a kinematic
trajectory for the robot to get from a start point to a goal location [3]. Specifically,
the Trajectory Rollout and the Dynamic Window Approach (DWA) plan local
paths based on environmental data and sensory readings [32, 34]. To determine the
required linear and angular velocities to execute the local plan, the DWA performs



10 Control Strategies for Human–Robot–Environment Interaction in. . . 283

forward simulations from the robot’s current state to predict possible velocities
and trajectories [32]. Each simulation is scored by metrics, such as proximity to
obstacles, proximity to the goal, proximity to the global path, and speed [32]. The
trajectories that collide with obstacles are considered illegal and thus discarded.
Finally, the highest-scoring trajectory is chosen and the associated velocity is sent
to the robot’s motion controller [32].

10.5.3.4 Considerations for Smart Walkers
Accordingly, a navigation system is of great relevance in walker-assisted gait
applications for guiding and path following tasks [1,3]. However, as in the previous
controllers, this system does not consider the user’s movement intentions. In this
sense, for the navigation system to be safe and intuitive, the walker must move only
when the user wants it.

There are several alternatives to solve this. One option is to leave control of the
smart walker’s linear speed to the user through an admittance controller, while the
navigation system controls the angular speed. This allows the users to follow the
planned route at their speed. Another option is to implement a triggering system,
as mentioned in the previous controllers. In this case, the movement of the smart
walker is only allowed if the user is exerting a minimum impulse force. Also, for
this, a maximum navigation speed must be configured to be comfortable for the user.

In addition to the above, it is essential to configure the navigation system so
that the robotic walker does not make turns on its axis. In other words, a minimum
turning radius must be established to prevent users from stumbling and thus reduce
the risk of falls.

10.5.4 Low-Level Safety Supervisor

This module is in charge of guaranteeing users’ safety in case of malfunctioning
of the above-described control strategies. In particular, the AGoRA Smart Walker
and the UFES Smart Walker have reported several safety rules that constraint the
walker’s movement when hazardous situations are detected [3, 4]. As proposed in
Fig. 10.1, the safety supervisor should be implemented to override the control strate-
gies, if required. In general, the supervisor monitors two main safety conditions.

1. User condition: In this case, the device movement is only allowed if the user
supports himself/herself on the walker handlebars and properly stands behind
it. This information can be obtained from the force or pressure sensors on the
forearm supports and from ranging sensors pointing towards the user.

2. Warning zone condition: Using the information gathered from the ranging
sensors mounted on the device, the walker’s speed can be constrained when
surrounding obstacles are detected. In this sense, an area of interest must be
defined around the robotic walker, for which obstacles will be taken into account.
This is known as a warning zone. There is no definitive warning zone since,
depending on the application, the context, or the user’s requirements, one zone or



284 S. D. Sierra M. et al.

(a) (b) (c) (d)

Fig. 10.14 Illustration of possible warning zones to detect surrounding obstacles and constraint
the smart walker’s motion. (a) Square zone. (b) Semi-circular zone. (c) Gaussian zone. (d) Conic
zone

another may be chosen. In particular, Fig. 10.14 shows some applicable warning
zones. Regardless of the shape of the waning zone, the speed limitation goes as
follows [3]:
a. The readings from ranging sensors are processed to detect surrounding

obstacles. Clustering algorithms can be helpful for such processing.
b. Only the obstacles in the warning zone are taken into account.
c. The smart walker’s velocity is constrained proportionally to the distance

between the smart walker and the obstacle.
d. A stopping distance is defined, so that if the obstacle is at this distance or

closer, the robot comes to a complete stop. In this case, only angular velocities
are allowed, to let the user avoid the obstacle.

On the other hand, smart walkers are constantly monitored by healthcare
professionals or researchers. In this sense, if a device malfunctioning occurs, they
can remotely disable, fix, or stop the device. The supervisor’s safety restrictions
should always be redundant. That is to say, they are executed from the onboard
computer, as well as from external computers. In case of communication loss
with the external computer, the device can continue running the safety supervisor
autonomously.

10.6 Conclusions

The ability of robotic walkers to interact with the user or the environment is due
to their actuators, sensory interface, and the implementation of control strategies.
These strategies allow obtaining specific behaviors such as responding to the user’s
movement intentions, guiding a user between two points or along a trajectory.

In this sense, this chapter presented some of the control strategies that are
most commonly used in robotic walkers to ensure Human–Robot interaction
(HRI), Robot–Environment interaction (REI), and Human–Robot–Environment
Interaction. It is essential to clarify that some of these strategies have already
been implemented in wheeled mobile robots, which are not necessarily related
to rehabilitation. Thus, in these sections, concepts of applying these strategies in
walker-assisted gait applications were given.



10 Control Strategies for Human–Robot–Environment Interaction in. . . 285

References

1. S. Sierra, L. Arciniegas, F. Ballen-Moreno, D. Gomez-Vargas, M. Munera, C.A. Cifuentes,
Adaptable robotic platform for gait rehabilitation and assistance: design concepts and appli-
cations, in Exoskeleton Robots for Rehabilitation and Healthcare Devices (Springer, 2020),
pp. 67–93

2. T. Mikolajczyk, I. Ciobanu, D.I. Badea, A. Iliescu, S. Pizzamiglio, T. Schauer, T. Seel, P.L.
Seiciu, D.L. Turner, M. Berteanu, Advanced technology for gait rehabilitation: An overview.
Adv. Mech. Eng. 10, 1–19 (2018)

3. S.D. Sierra M., M. Garzón, M. Múnera, C.A. Cifuentes, Human–Robot–environment interac-
tion interface for smart walker assisted gait: AGoRA walker. Sensors 19, 2897 (2019)

4. M.F. Jiménez, M. Monllor, A. Frizera, T. Bastos, F. Roberti, R. Carelli, Admittance controller
with spatial modulation for assisted locomotion using a smart walker. J. Intell. Robot. Syst., 1
(2018)

5. G.J. Lacey, D. Rodriguez-Losada, The evolution of guido. IEEE Robot. Autom. Mag. 15(4),
75–83 (2008)

6. E. Efthimiou, S.-E. Fotinea, T. Goulas, A.-L. Dimou, M. Koutsombogera, V. Pitsikalis,
P. Maragos, C. Tzafestas, The MOBOT platform – Showcasing multimodality in human-
assistive robot interaction, in Universal Access in Human-Computer Interaction. Interaction
Techniques and Environments (Springer, 2016), pp. 382–391

7. S. Sierra, M. Jimenez, M. Munera, T. Bastos, A. Frizera-Neto, C. Cifuentes, A therapist
helping hand for walker-assisted gait rehabilitation: A pre-clinical assessment, in 4th IEEE
Colombian Conference on Automatic Control: Automatic Control as Key Support of Industrial
Productivity, CCAC 2019 - Proceedings (2019)

8. P. Boissy, S. Briere, H. Corriveau, A. Grant, M. Lauria, F. Michaud, Usability testing of a
mobile robotic system for in-home telerehabilitation, in 2011 Annual International Conference
of the IEEE Engineering in Medicine and Biology Society (IEEE, 2011), pp. 1839–1842

9. Y. Koumpouros, A systematic review on existing measures for the subjective assessment of
rehabilitation and assistive robot devices. J. Healthcare Eng. 2016, 1–10 (2016)

10. J. Varela, R.J. Saltaren, L.J. Puglisi, J. López, M. Alvarez, J.C. Rodríguez, User centred design
of rehabilitation robots, in Advances in Automation and Robotics Research in Latin America.
Lecture Notes in Networks and Systems (Springer, Cham, 2017), pp. 97–109

11. A.A. Ramírez-Duque, L.F. Aycardi, A. Villa, M. Munera, T. Bastos, T. Belpaeme, A. Frizera-
Neto, C.A. Cifuentes, Collaborative and inclusive process with the autism community: A case
study in Colombia about social robot design. Int. J. Soc. Robot. 13, 153–167 (2021)

12. D. Casas-Bocanegra, D. Gomez-Vargas, M.J. Pinto-Bernal, J. Maldonado, M. Munera,
A. Villa-Moreno, M.F. Stoelen, T. Belpaeme, C.A. Cifuentes, An open-source social robot
based on compliant soft robotics for therapy with children with ASD. Actuators 9, 91 (2020)

13. M.M. Martins, C.P. Santos, A. Frizera-Neto, R. Ceres, Assistive mobility devices focusing on
Smart Walkers: Classification and review. Robot. Auton. Syst. 60(4), 548–562 (2012)

14. M. Martins, C. Santos, A. Frizera, R. Ceres, A review of the functionalities of smart walkers.
Med. Eng. Phys. 37, 917–928 (2015)

15. M.F. Jiménez, R.C. Mello, T. Bastos, A. Frizera, Assistive locomotion device with haptic
feedback for guiding visually impaired people. Med. Eng. Phys. (2020)

16. A. Wachaja, P. Agarwal, M. Zink, M.R. Adame, K. Möller, W. Burgard, Navigating blind
people with walking impairments using a smart walker. Autonomous Robots 41, 555–573
(2017)

17. C.A. Cifuentes, A. Frizera, Human-Robot Interaction Strategies for Walker-Assisted Locomo-
tion, vol. 115 of Springer Tracts in Advanced Robotics (Springer International Publishing,
Cham, 2016)

18. M.A.D. Brodie, T.R. Beijer, C.G. Canning, S.R. Lord, Head and pelvis stride-to-stride oscil-
lations in gait: validation and interpretation of measurements from wearable accelerometers.
Physiological Measurement 36, 857–872 (2015)



286 S. D. Sierra M. et al.

19. S.W. Smith, Moving average filters, in The Scientist and Engineer’s Guide to Digital Signal
Processing, ch. 15, 2nd edn. (California Technical Publishing, San Diego, 1999), pp. 277–284

20. A. Frizera, J. Gallego, E. Rocon de Lima, A. Abellanas, J. Pons, R. Ceres, Online cadence
estimation through force interaction in walker assisted gait, in ISSNIP Biosignals and
Biorobotics Conference 2010 (Vitória, 2010), pp. 1–5

21. S.D. Sierra M., M. Munera, T. Provot, M. Bourgain, C.A. Cifuentes, Evaluation of physical
interaction during walker-assisted gait with the AGoRA walker: Strategies based on virtual
mechanical stiffness. Sensors (In revision) (2021)

22. S.G. Tzafestas, Mobile robot control I, in Introduction to Mobile Robot Control (Elsevier,
2014), pp. 137–183

23. J. Slotine, J. Slotine, W. Li, Applied Nonlinear Control (Prentice Hall, 1991)
24. V.H. Andaluz, F. Roberti, J.M. Toibero, R. Carelli, B. Wagner, Adaptive dynamic path

following control of an unicycle like mobile robot, in Intelligent Robotics and Applications,
ch. 56 (Springer Berlin Heidelberg, 2011), pp. 563–574

25. R. Siegwart, I.R. Nourbakhsh, D. Scaramuzza, Introduction to Autonomous Mobile Robots,
2nd edn. (MIT Press, 2011)

26. ROS, Setting up your robot using tf (2021)
27. ROS, Publishing odometry information over ROS (2019)
28. ROS, Publishing sensor streams over ROS (2012)
29. ROS, Setup and configuration of the navigation stack on a robot (2018)
30. G. Grisetti, C. Stachniss, W. Burgard, Improved techniques for grid mapping With Rao-

Blackwellized particle filters. IEEE Trans. Robot. 23, 34–46 (2007)
31. D. Fox, W. Burgard, F. Dellaert, S. Thrun, Monte Carlo localization: efficient position

estimation for mobile robots, in AAAI-99, no. Handschin, vol. 1970, pp. 343–349 (1999)
32. K. Zheng, ROS navigation tuning guide (2016)
33. D.V. Lu, D. Hershberger, W.D. Smart, Layered costmaps for context-sensitive navigation, in

2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2014),
pp. 709–715

34. D. Fox, W. Burgard, S. Thrun, The dynamic window approach to collision avoidance. Robot.
Autom. Mag., 1–23 (1997)


	10 Control Strategies for Human–Robot–Environment Interaction in Assisted Gait with Smart Walkers
	10.1 Introduction
	10.2 Design Considerations for Control Strategies
	10.3 Robotic Platforms
	10.3.1 AGoRA Smart Walker
	10.3.2 UFES Smart Walker

	10.4 Control Strategies for HRI
	10.4.1 Estimation of Physical Interaction
	10.4.2 Signals Processing
	10.4.3 Motion Intention Detector
	10.4.4 HRI Strategy: Case of Study

	10.5 Control Strategies for REI
	10.5.1 Positioning Control
	10.5.1.1 Non-linear Position Controller
	10.5.1.2 Proportional Position Controller

	10.5.2 Path Following Control
	10.5.2.1 Non-linear Path Following Controller
	10.5.2.2 Proportional Path Following Controller

	10.5.3 Autonomous Navigation
	10.5.3.1 Requirements for Navigation
	10.5.3.2 Localization and Map Building
	10.5.3.3 Path Planners and Cost Maps
	10.5.3.4 Considerations for Smart Walkers

	10.5.4 Low-Level Safety Supervisor

	10.6 Conclusions
	References


