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Abstract. Graph clustering is a fundamental technique in data analy-
sis with a vast number of applications in computer science and statis-
tics. In theoretical computer science, the problem of graph clustering
has received significant research attention over the past two decades,
which has led to pivotal algorithmic breakthroughs. However, the design
of most graph clustering algorithms is based on complicated techniques
from computational optimisation, which are not applicable for process-
ing massive data sets stored in physically remote locations.

In this work we present a novel distributed algorithm for graph cluster-
ing. Most of the previous algorithms only work for graphs with balanced-
sized clusters, which restrict their applications in many practical settings.
Our proposed algorithm works for graphs with clusters of arbitrary size
and its performance is analysed with respect to every individual cluster.
In addition, our algorithm is easy to implement, and only requires a poly-
logarithmic number of rounds for many graphs occurring in practice.

Keywords: Distributed computing · Graph clustering · Randomised
algorithms

1 Introduction

Graph clustering, also known as community detection, is one of the most fun-
damental problems in algorithms with applications in distributed computing,
machine learning, network analysis, and statistics. Over the past four decades,
graph clustering algorithms have been extensively studied from both the theo-
retical and applied perspectives [10,21]. On the theoretical side, the problem is
known as graph partitioning and is one of the most fundamental NP-hard prob-
lems. Among the many reasons, we mention its connection to several important
topics in theoretical computer science including the Unique Games Conjecture
and the Small Set Expansion Conjecture. Because of this, most graph clustering
algorithms with better approximation guarantee are based on complicated spec-
tral and convex optimisation techniques [17,22], whose runtime is slow even in
the centralised setting. From the practical point of view, graph clustering is a key
component in unsupervised learning, and has been widely applied in data min-
ing, analysis of social networks, and statistics. In particular, since many graphs
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occurring in practice (e.g. social networks) are stored in physically distributed
servers (sites), designing simple and more practical distributed algorithms, with
better performance, has received a lot attention in recent years [2–4,8,12,23,24].

We study graph clustering algorithms in the distributed setting. We assume
that the input G = (V,E) is an unweighted distributed network over a set of
|V | = n nodes and |E| = m edges. The set of nodes is always fixed and there
are no node failures. Each node is a computational unit communicating only to
its neighbours. We consider the synchronous timing model when, in each round,
a node can either send the same message to all its neighbours or choose not to
communicate. We assume that every node knows the rough size of |V |, which is
not difficult to approximate, however the global structure of G is unknown to
each node. Every node v has a unique1 identifier ID(v) of size O(log(n)). We will
assume that any message sent by a node v will also contain ID(v).

In this work we study the clustering problem when the input G consists of
k well-defined clusters S1, · · · , Sk that form a partition of V , i.e., it holds that
Si ∩ Sj = ∅ for i �= j and

⋃
1≤i≤k Si = V . We allow the nodes in the network

to exchange information with their neighbours over a number of rounds T . At
the end of the T rounds, every node v determines a label indicating the cluster
in which it belongs. Our objective is to design a distributed algorithm which
guarantees that: (1) most nodes within the same cluster would receive the same
label, and (2) every cluster would have its own unique label. The performance
of our algorithm is measured by (1) the total number of proceeded rounds T ,
(2) the approximation guarantee, i.e., how many nodes in each cluster receive
the correct label, and (3) the total message complexity, i.e., the total number of
words exchanged among the nodes.

Structure of Clusters. The performance of a clustering algorithm always
depends on the inherent cluster structure of the network: the more significant the
cluster structure is, the easier the algorithm could approximate it. To quantify
the significance of the cluster structure associated with the underlying graph,
we follow the previous reference [18,19] and introduce the gap assumption. For
any set S ⊂ V , let the conductance of S be

φG(S) � |∂(S)|
vol(S)

,

where ∂(S) = E(S, V \ S) is the set of edges crossing S and V \ S, and vol(S) is
the sum of degrees of nodes in S. We define the k-way expansion of G by

ρ(k) � min
partitions S1,...,Sk

max
1≤i≤k

φG(Si),

and we call a partition {Si}k
i=1 that achieves ρ(k) an optimal partitioning.

One of the basic facts in spectral graph theory is a tight connection between
ρ(k) and the eigenvalues of the normalised Laplacian matrix of G. In particular,
Lee et al. [14] proved the so-called higher-order Cheeger inequality:
1 Every node v can randomly select a number between [1, poly(n)], such that, with

high probability, those numbers are distinct.
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λk

2
≤ ρ(k) ≤ O(k3)

√
λk, (1)

where 0 = λ1 ≤ · · · ≤ λn ≤ 2 are the eigenvalues of the normalised Laplacian
of G. By definition, it is easy to see that a small value of ρ(k) ensures the
existence of disjoint S1, . . . , Sk of low conductance. On the other hand, by (1)
we know that a large value of λk+1 implies that no matter how we partition G
into k + 1 subsets S1, . . . , Sk+1, there will be at least one subset Si for which
φG(Si) ≥ λk+1

2 . To formalise this intuition, we follow the previous reference (e.g.,
[19,23]) and define

ΥG(k) � λk+1

ρ(k)
.

By definition, a large value of ΥG(k) would ensure that G has k well-defined
clusters.

Our Result. Our main result is an improved distributed graph clustering algo-
rithm for inputs with k-well defined clusters. For the ease of presentation, we
assume that G is d-regular, however our algorithm works and the analysis follows
as long as the maximum degree dmax of G and the minimum degree dmin satisfy
dmax/dmin = O(1). Our result is as follows:

Theorem 1 (Main Result). Let G = (V,E) be a d-regular network with
|V | = n nodes, |E| = m edges and k optimal clusters S1, . . . , Sk. If ΥG(k) =
ω

(
k4 log3(n)

)
, there is a distributed algorithm that finishes in T = O

(
log(n)
λk+1

)

rounds, such that the following three statements hold:

1. For any cluster Sj of size |Sj | ≤ log(n), every node u ∈ Sj will determine the
same label. Moreover, this label is ID(v) for some v ∈ Sj.

2. With probability at least 0.9, for any cluster Sj of size |Sj | > log(n), all but
o(|Sj |) nodes u ∈ Sj will determine the same label. Moreover, this label is
ID(v) for some v ∈ Sj.

3. With probability at least 0.9, the total information exchanged among the n

nodes, i.e. the message complexity is Õ
(

n2

λk+1

)
, where Õ(·) hides poly log(n)

factors.

Now we discuss the significance of our result. First of all, notice that
λk+1 = Ω(1) in many practical settings [16,18], and in this case our algorithm
finishes in T = O(log n) rounds. Secondly, our result significantly improves the
previous work with respect to the approximation ratio. As far as we know, the
vast majority of the previous algorithms for distributed clustering are analysed
with respect to the total volume (or number) of misclassified nodes over all
clusters (e.g., [2–4,23]). However, this form of approximation is unsatisfactory
when the underlying graph contains clusters with very unbalanced sizes, since an
upper bound on the total volume (or number) of misclassified nodes could still
imply that nodes from a smaller cluster are completely misclassified. Our current
work successfully overcomes this downside by analysing the approximation guar-
antee with respect to every approximated cluster and its optimal correspondent.
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To the best of our knowledge, such a strong approximation guarantee with
respect to every optimal cluster is only known in the centralised setting [13,19].
We show that such result can be obtained for distributed algorithms as well.

It is not difficult to image that obtaining this strong approximation guarantee
would require a more refined analysis on the smaller clusters, since clusters with
different size might have different orders of mixing time if random walk based
processes are needed when performing the algorithm. Surprisingly, we are able
to show that our algorithm is able to perfectly recover every small cluster. To
the best of our knowledge, such a result of perfectly recovering small clusters is
unknown even for centralised algorithms, and our developed subroutine of small
cluster recovery might have other applications.

Finally, as a key component of our algorithm, we present a distributed sub-
routine which allows most nodes to estimate the size of the cluster they belong.
This subroutine is based on the power method applied to a number of initial vec-
tors. We show that the information retrieved by each node after this process is
sufficient for most nodes to obtain good estimates for the size of their cluster. We
believe that our present algorithm and the developed techniques would inspire
further applications for many different problems concerning multiple and paral-
lel random walks [11,20] or testing clusters of communities in networks [9,15].

Related Work. There is a large amount of work on graph clustering over the
past decades, and here we discuss the ones closely related to ours. First of all,
there have been several studies on graph clustering where the presence of the clus-
ter structure is guaranteed by some spectral properties of the Laplacian matrix
of an input graph. Von Luxburg [16] studies spectral clustering, and discusses
the influence of the eigen-gap on the quality of spectral clustering algorithms.
Peng et al. [19] analyse spectral clustering on well-clustered graphs and show
that, when there is a gap between λk+1 and ρ(k), the approximation guarantee
of spectral clustering can be theoretically analysed. Gharan and Trevisan [18]
designed an approximation algorithm that, under some condition on the rela-
tionship between λk and λk+1, returns k clusters S1, . . . , Sk such that both the
inner and outer conductance of each Si can be theoretically analysed. Allen-Zhu
et al. [1] present a local algorithm for finding a cluster with improved approxi-
mation guarantee under some gap assumption similar with ours.

For distributed graph clustering, the work most related to ours is the dis-
tributed algorithm developed by Sun and Zanetti [23]. In comparison to our
algorithm, the algorithm in [23] only holds for graphs that consist of clusters of
balanced sizes, and the approximation guarantee (i.e., the number of misclassi-
fied nodes) of their algorithm is with respect to the volume of the input graph,
while the approximation guarantee of our algorithm is with respect to every
individual cluster. Becchetti et al. [3] presented a distributed graph clustering
algorithm for the case k = 2, based on an Averaging dynamics process. However,
their analysis holds only for a restricted class of graphs exhibiting sparse cuts.
Becchetti et al. [4] extended the results for a more general class of volume regular
networks with k clusters. Nonetheless, their results apply to reasonably balanced
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networks, which is a setting more restricted than ours. Finally, we would like to
mention a related sequence of work on decomposing graphs into expanders [6,7].
However, we highlight that these algorithms cannot be applied in our setting for
the following reasons: the number of partitioning sets could be much larger than
the initial number of clusters k and the decomposition also allows some fraction
of nodes not to be in any cluster [7].

Notation. We consider the input network G = (V,E) to be an unweighted d-
regular network on |V | = n nodes and |E| = m edges. The n × n adjacency
matrix is denoted AG and is defined as AG(u, v) = 1 if {u, v} ∈ E and AG(u, v) =
0 otherwise. The normalised Laplacian of G is the n × n matrix defined as

LG � I − 1
d

· AG.

We denote the eigenvalues of LG by 0 = λ1 ≤ · · · ≤ λn ≤ 2. For any subset
S ⊆ V , we denote the characteristic vector 1S ∈ R

n by 1S(v) = 1 if v ∈ S and
1S(v) = 0 otherwise. For brevity, we will write 1v whenever S = {v}.

We will consider the setting when the input network G contains k disjoint
clusters S1, . . . , Sk, that form a partition of V . For a given node v ∈ V , we will
denote by S(v) the cluster that contains v. We will write Broadcastu(Message)
whenever a node u sends a Message to its neighbours and we will drop the
subscript u whenever that is clear from the context. We will denote the label
of a node v by L(v) and we will assume that initially L(v) =⊥, for all nodes v.
Throughout our algorithm, some nodes v ∈ V will become active. We will use
the notation v∗ whenever referring to an active node v.

2 Algorithm Description

Our algorithm consists in three major phases: Averaging, Small Detection and
Large Detection, which we will describe individually.

Averaging Phase: The Averaging phase (Algorithm 1) consists in the execution
of n different diffusion processes, one for every node. To each diffusion process,
say corresponding to a node v, we associate a set of vectors {xv

i }i such that, after
every round i, every node u in the network will store the value xv

i (u). The value
xv

i (u) is the mass value that node u received from node v after i rounds. Initially
(round 0) the diffusion process starts from xv

0 = 1√
d
1v, i.e. all mass value 1√

d
is

concentrated at node v with 0 mass to the other nodes. For a general round i,
the vector xv

i is constructed iteratively, via the recursive formula

xv
i (u) =

1
2
xv

i−1(u) +
1
2d

∑

{u,w}∈E

xv
i−1(w), (2)

for any u. We remark that, the only information a node u needs in round i are
the values xv

i−1(w) for all its neighbours w. We note that at any round i, node u
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does not need to update the values xv
i for all nodes v in the network. Instead, u

focuses on the diffusion processes started at the nodes which u has already seen
throughout the process. To keep track of the already seen nodes, u maintains
the set Seen(u) (See Line 2 of Algorithm 1).

Now let us discuss the intuition behind this phase. The goal of the diffusion
process started at node v is that, after T = Θ

(
log(n)
λk+1

)
rounds, the entire mass

1√
d

is split roughly equally among all nodes inside the cluster S(v), with very
few of this mass exiting the cluster. A closer look at Eq. (2) tells us that the
diffusion process started at v is nothing but a T -step, 1/2-lazy random walk
process starting from the vector 1√

d
1v. It is well known [5] that, assuming G

is connected, the vectors xv
i will converge to the uniform distribution as i goes

to infinity. However, if the process runs for merely T = Θ
(

log(n)
λk+1

)
iterations,

one should expect the vector xv
T to be close to the (normalised) indicator vector

of the cluster S(v). This is because log(n)
λk+1

corresponds to the local mixing time
inside the cluster S(v). Therefore, after T rounds, we expect for every u ∈ S(v),
the values xv

T (u) to be similar and significantly greater than 0, while for nodes
w /∈ S(v), we expect the values xv

T (w) to be close to 0.
At the end of the Averaging phase, based on the values {xv

T (u)}v each node
u computes an estimate 
u for the size of its cluster. We define the estimates as


u � 3
d · ∑

v [xv
T (u)]2

,

and we will show that, for most nodes u, the estimates satisfy 
u ∈
[|S(u)|, 4|S(u)|] (see Lemma 6).

Algorithm 1. Average (u, T )

Require: A node u, a number of rounds T = Θ
(

log(n)
λk+1

)

1: Set xu
0 (u) = 1√

d
and xv

0(u) = 0 for all v �= u � Initialisation step

2: Seen(u) = {u}.
3: for i = 1 . . . T do
4: Broadcast

({
(xv

i−1(u), ID(v))
∣∣v ∈ Seen(u)

})
5: for all (xv

i−1(w), ID(v)) that u receives do
6: Add v to Seen(u)

7: for all v ∈ Seen(u) do
8: xv

i (u) = 1
2
xv

i−1(u) + 1
2d

∑
w∼u xv

i−1(w). � Update the current status

9: return {xv
T (u)}.

Small Detection Phase: The purpose of this phase is for every node u in a
cluster of small size |S(u)| ≤ log(n) to determine its label. Again, we focus on
the intuition behind this process and we refer the reader to Algorithm 2 for
a formal description. From the perspective of a node u, we would like to use
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the values {xv
T (u)}v to decide which nodes are in its own cluster. Informally,

the values {xv
T (u)}v∈S(u) should be similar and close to 1√

d|S(u)| since, for every

diffusion process started at v ∈ S(u) we expect the 1√
d

mass to be equally
distributed among all nodes in the cluster. At the same time, we expect the values
{xw

T (u)}w/∈S(u) not to be very large, because they correspond to random walks
started in a different clusters. Therefore, if |S(u)| is not too big, we expect to
see a clear separation between xv

T (u) and xw
T (u), for any v ∈ S(u) and w /∈ S(u).

Since u knows that it is a member of its own cluster, it can use xu
T (u) as a

reference point. Namely u computes the pairwise differences

yv � |xu
T (u) − xv

T (u)|,
for all v and sorts them in increasing order. Let us call yv1 ≤ · · · ≤ yvn

to be
those values. Based on the previous remarks, it should be expected that the first
|S(u)| values are small and correspond to nodes v ∈ S(u). Then, u performs a
binary search to find the exact size of its cluster S(u) (lines 4-10 of Algorithm 2).
Finally, u sets its label to be the minimum2 ID among nodes corresponding to
the smallest |S(u)| values {yvi

}.

Algorithm 2. SmallDetection (u, 
u,RW(u))
Require: A node u, an estimated cluster size �u, a list of values RW(u) = {xv

T (u)}
1: for all v do
2: Compute yv = |xu

T (u) − xv
T (u)|.

3: Sort the values {yv} and call the sorted ones yv1 ≤ · · · ≤ yvn

4: Let ilow = 1, ihigh = �u. � The binary search step
5: while ilow + 1 < ihigh do � At the end of the loop, we have ilow = |S(u)|
6: i = � ilow+ihigh

2
�

7: if yvi < 9

10
√

d·i then
8: ilow = i
9: else

10: ihigh = i.

11: L(u) = minvi

{
ID(vi)

∣∣i ≤ ilow
}

� Determining the label
12: return L(u).

At the end of this phase we would like to stress two important facts. First
of all, it is really crucial that the cluster S(u) has size |S(u)| ≤ log(n). Oth-
erwise, the values {xv

T (u)}v∈S(u) would be too small for u to distinguish them.
Therefore, we cannot use this approach to determine the label of all nodes in
the network. Secondly, we remark that for the algorithm to work, every node u
should be in possession of the value xu

T (u). This can be ensured only if all nodes
start their own diffusion process.

2 The minimum does not play any special role here, it is only used to guarantee
consensus among all nodes in the same cluster. The maximum ID works just as fine.
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Large Detection Phase: In this phase, the algorithm will detect the remaining
clusters of large and medium size, that are clusters S with |S| > log(n). The
formal description of this phase can be found in Algorithm 3. Again, a node u in
such a cluster would like to use the values {xv

T (u)}v to determine the composition
of its cluster. Unfortunately, node u cannot trust all values xv

T (u) because of the
error in the diffusion processes caused by some mass exiting the cluster.

To overcome this difficulty, we use a different approach. We want each cluster
Sj to select some representatives, which we will refer to as active nodes. The
label of the cluster Sj will be the minimum ID among the active nodes in Sj .
The purpose of this selection is to avoid the (bad) nodes for which the diffusion
process does not behave as expected. To that extent, we let each node u activate
itself independently (Line 3 of Algorithm 3), with probability

p(u) � 5 · log (100k)

u

.

Since for most nodes 
u ≈ |S(u)|, the probability p(u) is large enough to ensure
that: every cluster will have at least one active node and, in expectation, there
will not be too many active nodes overall. If a node u becomes active, it will
announce this in the network, along with its estimated cluster size 
u. This
happens throughout T rounds of communication (Lines 6–14 of Algorithm 3).
In such a round j, every node v in the network keeps a list Act(v) of the active
nodes v has seen up to round j. Then, v checks which of those active nodes he has
not yet communicated, broadcasts them in a Message (Line 12 of Algorithm 3)
and marks them as Sent. This process ensures that every node v announces each
active node at most once, which significantly reduces the communication cost.

Coming back to node u, at the end of the T rounds u has seen all active
nodes v∗ ∈ Act(u). Node u considers an active node v∗ to be in S(u), if two
conditions are satisfied: 1) its estimated cluster size 
u and 
v∗ are similar and
2) the value xv∗

T is similar to what u expects to see. More precisely, u sets the
threshold

tu � 1
2
√

d
u

,

and considers its set of candidates

Cand(u) �
{

v∗∣∣v∗ ∈ Act(u),

u

4
≤ 
v∗ ≤ 4
u and xv∗

T (u) ≥ tu

}

.

The set of candidates Cand(u) represents the set of active nodes that u believes
are in its own cluster. If Cand(u) �= ∅, then u sets its label to be the
minv∗∈Cand(u) ID(v∗). Otherwise, if u is unlucky so that Cand(u) = ∅, then u ran-
domly chooses an active node v∗ ∈ Act(u) and selects its label as L(u) = ID(v∗)
(Lines 20−23 of Algorithm 3).
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Algorithm 3. LargeDetection (u, 
u,RW(u), T )
Require: A node u, an estimated cluster size �u, a list of values RW(u) = {xv

T (u)},
the number of rounds T

1: Set Act(u) = ∅, Cand(u) = ∅, Sent(v) = false, ∀v � Initialisation step
2: if L(u) =⊥ then

3: Activate u with probability p(u) = 5 log(100k)
�u

. � Activation step

4: if u becomes active then
5: Set Act(u) = {(u, �u)}
6: for j = 1 . . . T do � Propagation step
7: Message = ∅
8: for all (v∗, �v∗) ∈ Act(u) and Sent(v∗) = false do
9: Add (v∗, �v∗) to Message

10: Set Sent(v∗) = true

11: if Message �= ∅ then
12: Broadcast (Message).

13: for all v∗ such that u received (v∗, �v∗) in round j do
14: Add (v∗, �v∗) to Act(u).

15: Set tu = 1

2
√

d·�u

16: for all (v∗, �v∗) ∈ Act(u) do
17: if

�v∗
4

≤ �u ≤ 4�v∗ and xv∗
T (u) ≥ tu then

18: Add v∗ to Cand(u)

19: if Cand(u) �= ∅ then � Labeling step
20: Set L(u) = minv∗∈Act(u) {ID(v∗)}
21: else
22: Choose a random (v∗, �∗

v) ∈ Act(u)
23: Set L(u) = ID(v∗)

24: return L(u).

The Main Algorithm: Now we bring together all three subroutines and present
our main Algorithm 4. We note that once a node u has determined their label,
that will not change in the future. This is because Algorithm 3 can only change
the label if L(u) =⊥ initially. Moreover, even if a node has determined their label
in the Small Detection phase, they still participate in the Large Detection phase
since they are active parts in the Propagation step (Lines 6–14) of Algorithm 3.

3 Analysis of the Algorithm

In this section we analyse our distributed algorithm and prove Theorem 1.
Remember that we assume G is a d-regular network with optimal k clusters
S1, . . . , Sk. Moreover, we work in the regime when G satisfies the assumption
that

ΥG(k) = ω
(
k4 log3(n)

)
. (3)
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Algorithm 4. Cluster (u, n)
Require: A node u, the number of nodes in the network n.

1: Set T = Θ
(

log(n)
λk+1

)
. � Choose λk+1 = 1

poly log(n)
in practice

2: Set L(u) =⊥.
3: Let RW(u) = Average(u, T ). � Perform the Averaging phase
4: Let �u = 3/

(
d

∑
v [xv

T (u)]2
)

be the estimate for |S(u)|.
5: if �u ≤ 4 log(n) then
6: L(u) = SmallDetection (u, �u, RW(u)) � Perform the Small Detection phase

7: L(u) = LargeDetection (u, �u, RW(u), T ) � Perform the Large Detection phase
8: return L(u).

For brevity, we will use Υ instead of ΥG(k). We will structure the analysis of
our algorithm in five subsections. In Subsect. 3.1 we recap some of the results
in [23] and present the guarantees achieved after the Averaging phase of the
algorithm. In Subsect. 3.2 we show that most nodes in the network can obtain
a good estimate for the size of their cluster. In Subsect. 3.3 we deal with the
analysis of the Small Detection phase of the algorithm. We will ultimately show
that for all clusters Sj of size |Sj | ≤ log(n), all nodes u ∈ Sj will determine
the same label, unique for the cluster Sj . In Subsect. 3.4 we analyse the Large
Detection phase of the algorithm. In this phase, most nodes in clusters of size at
least log(n) will decide on a common label that is unique for the cluster. We also
show that the number of misclassified nodes for each cluster is small. Finally, we
conclude with the proof of Theorem 1 in Subsect. 3.5.

3.1 Analysis of the Averaging Phase

Recall that the Averaging phase consists in performing n diffusion processes for
T = Θ

(
log(n)
λk+1

)
rounds. For a node v, its own diffusion process can be viewed as

a lazy random walk starting at xv
0 = 1√

d
1v and following the recursion

xv
i+1 = Pxv

i ,

where
P � 1

2
· I +

1
2d

· AG = I − 1
2
LG

is the transition matrix of the process. It is known that, assuming G is con-
nected, the vectors {xv

i } will converge to the stationary distribution as i goes to
infinity. However, if the power method runs for T = Θ

(
log(n)
λk+1

)
phases, we expect

xv
T ≈ 1√

d·|S(v)| · 1S(v). Sun and Zanetti [23] formalise this intuition and give a
concrete version of the above observation (See Lemma 2). The intuition behind
their result lies in the fact that, for graphs G with k good clusters, there is a
strong connection between the bottom k eigenvectors of LG and the normalised
indicator vectors of the clusters [19].
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We will now introduce the notation required to formalise the above discus-
sion. Let f1, . . . , fk be the bottom k eigenvectors of LG and let {χS1 , . . . , χSk

}
be the normalised indicator vectors of the clusters Si, that is χSi

� 1√
|Si|

1Si
, for

all i. Let χ̃i be the projection of fi onto span{χS1 , . . . χSk
} and let {χ̂i} be the

vectors obtained from {χ̃i} by applying the Gram-Schmidt orthonormalisation3.
For any node v, we define the discrepancy parameter

αv �

√
√
√
√1

d

k∑

i=1

(fi(v) − χ̂i(v))2.

We are now ready to state the result relating xv
T to the indicator vector of

the cluster 1S(v):

Lemma 2 (Adaptation of Lemma 4.4 in [23]). For any v ∈ V , if we run the
lazy random walk for T = Θ

(
log n
λk+1

)
rounds, starting at xv

0 = 1√
d
1v, we obtain

a vector xv
T such that

∥
∥
∥
∥xv

T − 1√
d · |S(v)| · 1S(v)

∥
∥
∥
∥

2

= O

(
k2

d · Υ · |S(v)| + α2
v

)

. (4)

One can view the RHS of (4) as an upper bound for the total error of the
diffusion process that started at v. To that extent, let us define the set of vectors

εv � xv
T − 1√

d · |S(v)| · 1S(v) (5)

and we will use for shortend ε(v,u) = εv(u). It is important to note that the
order of the pair matters, since ε(v,u) corresponds to a diffusion process started
at v, while ε(u,v) corresponds to a diffusion process started at u.

Under this notation, Eq. (4) becomes

∑

u∈V

ε2(v,u) ≤ Cε

(
k2

d · Υ · |S(v)| + α2
v

)

, (6)

for some absolute constant Cε. While one should expect each individual error
ε(v,u) to be relatively small, i.e. O

(
1

|S(v)|
)
, it is not immediately clear why this

should be the case. Indeed, the presence of αv in Eq. (6) can cause significant
perturbation. Given the relatively complicated definition of this parameter, the
only upper bound we are aware of is the following:

Lemma 3. It holds that
∑

v∈V

α2
v = O

(
k2

d · Υ

)

≤ Cα · k2

d · Υ
, (7)

for some absolute constant Cα > 0.
3 For a more detailed discussion of the connection between the sets {fi}, {χSi}, {χ̃i}

we refer the reader to [19].
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3.2 Estimating the Cluster Size

In this section we will show that most nodes in every cluster are able to estimate
approximately the size of their cluster. Recall that the estimate that each node
u computes is


u =
3

d
∑

v [xv
T (u)]2

,

and we want to show that for most nodes u we have that |S(u)| ≤ 
u ≤ 4 · |S(u)|.
To that extent, we split the set of (bad) nodes, that do not obey the above
condition, into two categories:

Bbig �
{

u

∣
∣
∣
∣
∣

u > 4 |S(u)|

}

and Bsmall �
{

u

∣
∣
∣
∣
∣

u < |S(u)|

}

.

Moreover we let
B� � Bbig ∪ Bsmall

and we will show that in each cluster, only a small fraction of nodes can be in
B�. We start with set Bbig and here we show that only a small fraction of nodes
in each cluster can be in Bbig.

Lemma 4. For every cluster Sj it holds that

|Bbig ∩ Sj | ≤ |Sj |
2 · 500k · log(nk)

.

Now we focus on the set Bsmall. In this case, we will prove something stronger,
namely that in each cluster Sj the fraction of nodes estimating some value 
 is
directly proportional to the value of 
. In other words, the smaller the value of

, the fewer the number of nodes will estimate it. This result is crucial for the
analysis of the Large Detection phase. To that extent, we define the level sets

Bi
small �

{

u

∣
∣
∣
∣
∣

u <

|S(u)|
2i−1

}

,

for i = 1, . . . , log(n). The following result formalises our discussion.

Lemma 5. For every cluster Sj and every i = 1, . . . , log(n) it holds that

∣
∣Bi

small ∩ Sj

∣
∣ ≤ |Sj |

2i · 500k · log(nk)
.

Now we are ready to state and prove the main result of this subsection.

Lemma 6. Almost all nodes u ∈ V have a good approximation 
u ≈ |S(u)|.
That is, for every cluster Sj the following conditions hold:
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1. |B�∩Sj |
|Sj | ≤ 1

500k·log nk ;
2. ∀u /∈ B�, it holds that |S(u)| ≤ 
u ≤ 4|S(u)|.
Proof. Applying Lemmas 4 and 5 we have that

|B� ∩ Sj |
|Sj | ≤ |Bsmall ∩ Sj |

|Sj | +
|Bbig ∩ Sj |

|Sj | ≤ 1
500k · log(nk)

.

��

3.3 Analysis of the Small Detection Phase

This subsection is dedicated to the analysis of the Small Detection phase of our
clustering algorithm and thus to the analysis of Algorithm 2. In this section we
will show that our algorithm will perfectly recover all clusters of small size. We
first introduce some notation. Up to a permutation of the indices, without loss
of generality we consider the clusters S1, . . . , Sp such that

|Si| ≤ log(n),

for each 1 ≤ i ≤ p ≤ k. Moreover, we will denote by

A = S1 ∪ · · · ∪ Sp

to be the union of these clusters. The proof of our claim lies on the key obser-
vation that, for nodes u ∈ A, there is a large enough gap between the mass
values of diffusion processes started in the same cluster and processes started
indifferent clusters. This observation is formalised below.

Lemma 7. For any u ∈ A and v ∈ V the following statements hold.

1. If v ∈ S(u), then |xu
T (u) − xv

T (u)| ≤ 1
100

√
d·log(n) ;

2. If v /∈ S(u), then |xu
T (u) − xv

T (u)| ≥ 9
10

√
d·|S(u)|

Now we state and prove the main result of this subsection.

Lemma 8. Let Sj be a cluster such that |Sj | ≤ log(n). At the end of the Small
Detection phase of the algorithm, all nodes u ∈ Sj will agree on a unique label.
Moreover, this label is ID(v), for some v ∈ Sj.

Proof. Let Sj be some cluster of size |Sj | ≤ log(n) and let u ∈ Sj be some
node. Applying Lemma 6, we see that all nodes u ∈ Sj have an approximation
|Sj | ≤ 
u ≤ 4|Sj | ≤ 4 log(n). Therefore every node u ∈ Sj will certainly perform
the Small Detection phase (Line 6 of Algorithm 4).

Firstly, u sorts the values yv = |xu
T (u) − xv

T (u)|, for all v ∈ V . Say the sorted
values are yv1 ≤ · · · ≤ yvn

. Notice that if w1 ∈ Sj and w2 /∈ Sj , by Lemma 7 it
must be that

|xu
T (u) − xw1

T (u)| ≤ 1
100

√
d · log(n)

<
9

10
√

d · |Sj |
≤ |xu

T (u) − xw2
T (u)|.
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Therefore, u knows that the first |Sj | values, namely yv1 , . . . , yv|Sj | correspond
to nodes in its own cluster and the other values correspond to nodes in different
clusters. Thus, u needs to find a pair of consecutive values yvi

≤ yvi+1 such that
vi ∈ Sj and vi+1 /∈ Sj .

To do this, u performs a binary search to find the size of its cluster. At any
intermediate phase, say u considers the value yvi

, for some i, and compares this
with 9

10
√

d·i . If yvi
< 9

10
√

d·i we claim that i ≤ |Sj |. If not, then vi /∈ Sj and by
Lemma 7 we have that

yvi
≥ 9

10
√

d · |Sj |
≥ 9

10
√

d · i
,

which gives the contradiction. Similarly, we can show that if yvi
≥ 9

10
√

d·i then
i > |Sj |.

Once the node u finds the exact size of its cluster |S(u)|, he also knows which
nodes are in the same cluster, i.e. v1, . . . , v|S(u)|. Thus u can set its label to be
the smallest ID among nodes in its cluster. This holds for all nodes u ∈ Sj and
all clusters Sj . ��

3.4 Analysis of the Large Detection Phase

At this point, we will assume all n random walks have been completed, i.e. the T
rounds have been executed and each node u has a list of values {xv

T (u)}v. From
the perspective of u, we would like to use this information to decide which nodes
are in the same cluster as u and which are not. Unfortunately, node u cannot
trust all values xv

T (u) because of the error term ε(v,u). Going back to Eq. (6),
we see that these errors are dependent on the parameters αv. To overcome this
issue, we define the notion of a γ-bad node, that is a node v for which the value
of αv is large relative to its cluster size:

Definition 9. We say that a node u is γ-bad if

αu ≥ γ · Cα · k2

d · Υ · |S(u)| .

The set of γ-bad nodes is denoted by

Bγ �
{

u

∣
∣
∣
∣
∣
αu ≥ γ · Cα · k2

d · Υ · |S(u)|

}

.

One should think about the γ-bad nodes as nodes for which the diffusion pro-
cess does not necessarily behave as expected. Hence we want to avoid activating
them since they are not good representatives for their own clusters. To put it
differently, combining Eq. (6) with the above definition, we have the following
remark:



384 B.-A. Manghiuc

Remark 10. For every node v /∈ Bγ it holds that

‖εv‖2 ≤ Cε (1 + Cα · γ) ·
(

k2

d · Υ · |S(v)|
)

≤ 2 · Cε · Cα · γ · k2

d · Υ · |S(v)| .

For the rest of the analysis, we will consider the value

γ � 500k · log(100k). (8)

As for the question of how many γ-bad nodes are inside each cluster, the answer
is not too many and is formalised in the Lemma bellow:

Lemma 11. Let Sj be some cluster. It holds that

|Bγ ∩ Sj | ≤ |Sj |
γ

.

The ultimate goal of the activation process is to select representatives for
each cluster in such a way that the following conditions hold: (1) Every cluster
has at least one active node, (2) The total number of active nodes is small and (3)
No γ-bad node becomes active. Recall that each node activates independently
with probability

p(u) =
5 log(100k)


u
.

For most nodes, i.e. u ∈ V \ B�, the probabilities are good enough to ensure
the three conditions hold. The tricky part is to deal with nodes u ∈ B�. More
precisely, for nodes u such that 
u � |S(u)| and u ∈ Bγ the activation probability
is simply too large to reason directly that no such node becomes active. We
overcome this by first showing that, with high constant probability, no node
u ∈ B� becomes active, and based on this no node in Bγ becomes active as well.
We formalise our discussion in Lemma 12, which is the main technical result of
this subsection.

Lemma 12. With probability at least 0.9, the following statements hold:

A1. No node from B� ∪ Bγ becomes active.
A2. Every cluster Sj contains at least one active node v∗

j ∈ Sj \ B�;
A3. The total number of active nodes is na ≤ 500k · log(100k);

Now we are ready to state the main result of this subsection.

Lemma 13. At the end of the Large Detection phase, with probability at least
0.9, for any cluster Sj of size |Sj | > log(n), all but o(|Sj |) nodes u ∈ Sj will
determine the same label. Moreover, this label is ID(v) for some v ∈ Sj.

Proof (Sketch). We assume the conclusions of Lemma 12 hold. Fix some cluster
Sj . We focus on the nodes u ∈ S′

j = Sj \ B� and assume the other nodes are
misclassified. This is sufficient since, by Lemma 6, |Sj ∩ B�| = o (|Sj |). Let s∗

j be
the active node in Sj of smallest ID. By (A2) and (A1) we know s∗

j exists and
s∗

j /∈ B� ∪Bγ . Let u ∈ S′
j be a misclassified node. By the Algorithm’s description

we know one of the two conditions must happen:
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1. s∗
j /∈ Cand(u)

2. ∃v∗ /∈ Sj , but v∗ ∈ Cand(u)

We look at each condition separately. For the first one, since s∗
j , u ∈ S′

j , it must

be that x
s∗

j

T (u) < tu. This means that the error ε(s∗
j ,u) is large in absolute value:

ε(s∗
j ,u) < − 1

2
√

d|Sj | . But since s∗
j /∈ Bγ , by Remark 10 the total error

∥
∥
∥εs∗

j

∥
∥
∥ cannot

be too large. This means that the first condition can happen only for a small
number o(|Sj |) of nodes. For the second condition the argument is similar. Let
v∗ be an active node such that v∗ /∈ Sj , but v∗ ∈ Cand(u). Since v∗ ∈ Cand(u),
we know that 
u ≈ 
v∗ and that the error ε(v∗,u) is quite large: ε(v∗,u) ≥ tu.
However, by (A1) v∗ /∈ Bγ , so ‖εv∗‖ cannot be too large. Therefore v∗ can be
a candidate for a limited number of u ∈ S′

j . Summing over all active nodes and
using the upper bound (A3) is sufficient to show that condition 2 can happen
only for a small number o(|Sj |) of nodes. ��

3.5 Proof of the Main Result

In this section we bring everything together and prove Theorem 1:

Proof (Proof of Theorem 1)
Number of Rounds. Firstly, let us look at the number of rounds of our
Algorithm 4. We know that the Averaging phase of the algorithm takes T =
Θ

(
log(n)
λk+1

)
rounds. The Small Detection phase does not require any extra rounds

of communication. For the Large Detection phase, we have again T rounds. This
brings the total number of rounds to

2 · T = Θ

(
log(n)
λk+1

)

.

Clustering Guarantee. Secondly, we will look at the clustering guarantees of
Algorithm 4. Let Sj be some cluster of G. If |Sj | ≤ log(n), then by Lemma 8 we
know that all nodes of Sj will choose the same label, that is the minimum ID
among nodes in Sj . If |Sj | > log(n), by Lemma 13 it follows that with proba-
bility at least 0.9 all but o (|Sj |) nodes will determine the same label that is the
ID(v) for some v ∈ Sj .

Communication Cost. Let us first look at the cost for the Averaging phase.
In any round i ≤ T , every node u has to send to all its neighbours the values
{xv

i−1(u)}. This results in a total communication cost of costAvg = O (T · n · m).
Again, for the Small Detection phase there is no cost attached. While for the
Large Detection phase, by Lemma 13 we know that, with probability at least 0.9,
the total number of active nodes is na = O(k log(n)·log(k log(n))). By the design
of Algorithm 3, every node u in the network will broadcast each active node at
most once. Therefore the total communication cost in the Large Detection phase
is costLD = O(m · na) = O(mk · log(k)). This gives in total a communication
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cost of O(costAvg +costLD) = O(T ·n ·m). We remark that, while in general the
number of edges could be m = Θ(n2), we can first apply the sampling scheme
in [23] to sparsify our network and then run our algorithm. The sparsification
ensures that the structure of the clusters, the degree sequence and the parameter
ΥG(k) are preserved up to a small constant factor and the resulting number of
edges becomes m = Õ(n). Thus the final communication cost can be expressed
as Õ(T · n2). ��
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