
Tomasz Jurdziński
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Preface

The papers in this volume were presented at the 28th International Colloquium on
Structural Information and Communication Complexity (SIROCCO 2021), which was
planned to be held during June 28 – July 1, 2021, in Wrocław, Poland. However, due to
the COVID-19 pandemic, the conference took place online, as in the previous year.

SIROCCO is devoted to the study of the interplay between structural knowledge,
communication, and computing in decentralized systems of multiple communicating
entities. Special emphasis is given to innovative approaches leading to better under-
standing of the relationship between computing and communication.

This year, for the first time, we moved the submission deadline significantly earlier,
to 4 December, 2020, (usually the deadline is around March), while keeping the usual
conference date. We are happy that because of, or despite, this change we could attract
a large number of submissions compared to previous years. In total we received 48
submissions, from which we accepted 20, i.e., 42%.

This volume also includes abstracts of the keynote presentations and one invited
paper from a keynote speaker. The paper “Superfast Coloring in CONGEST via
Efficient Color Sampling” by Magnús M. Halldórsson and Alexandre Nolin received
the Best Paper Award, and “New Approximation Algorithms for the Heterogeneous
Weighted Delivery Problem” by Davide Bilò, Luciano Gualà, Stefano Leucci, Guido
Proietti, and Mirko Rossi won the Best Student Paper Award.

We would like to thank the authors who submitted their work to SIROCCO this year
and the Program Committee members and subreviewers for their valuable and
insightful reviews and comments. We would also like to thank the keynote speakers,
Rotem Oshman (Tel Aviv University, Israel), Dan Alistarh (IST, Austria), and Kenneth
Cheung (NASA, USA), for their excellent talks, and Friedhelm Meyer auf der Heide
for his featured talk as the recipient of the 2021 SIROCCO Prize for Innovation in
Distributed Computing. The SIROCCO Steering Committee, chaired by Magnús M.
Halldórsson, provided help and guidance throughout the process. The EasyChair
system was used to handle the submission of papers and to manage the review process.
Without all of these people it would not have been possible to come up with these
proceedings and the great conference program.

June 2021 Tomasz Jurdziński
Stefan Schmid



Laudatio

2021 SIROCCO Prize for Innovation in Distributed Computing

It is a pleasure to award the 2021 SIROCCO Prize for Innovation in Distributed
Computing to Friedhelm Meyer auf der Heide. Friedhelm has been an active con-
tributor to the field of Distributed Computing since its very beginning, with pioneering
contributions to online scheduling problems, load balancing, distributed data structures,
hashing, network routing, mobile facility location, and distributed data streams. Not
only has he produced excellent research on distributed computing but he has also
inspired and mentored several young researchers, some of whom are now well
established scientists in this field. His numerous research contributions include seven
articles in SIROCCO and a keynote lecture.

The prize is awarded for his contributions to continuous strategies for swarms of
mobile robots. The decentralized coordination of large teams of mobile robots has
been a key research theme is this community, but primarily with the simplifying
assumption that robots act only at discrete times. This discrete time model and its
variations have been canonical in the research on distributed mobile robotics. Fried-
helm advocated the unorthodox model of continuous protocols [8] where robots
observe their surroundings and execute the protocol continuously while they are
moving. Such a model requires a completely different set of tools for analyzing robot
protocols and proving their correctness and efficiency. This model was first presented
in the SIROCCO 2010 paper [1], which considers continuous strategies for line for-
mation by mobile robots with limited vision. Subsequent papers addressed the fun-
damental problem of gathering and its other variants [4, 6, 7] in the same model, thus
establishing the utility of this new model.

Another important contribution of Friedhelm is the introduction of new techniques
for analyzing well-known algorithms for mobile robots which, among other results,
provided an asymptotically optimal time bound for the classical convergence algorithm
[3] and a tight bound for the first known gathering algorithm in the limited visibility
model [2]. Yet another novel contribution of Friedhelm is the consideration of
energy-efficient strategies for mobile robot formation problems in the continuous plane
[5].

The model proposed and studied in detail by Friedhelm and his coauthors has two
key features: limited visibility of robots and continuous motion, which brings it closer
to the research performed by the robotics community as well as control theory
researchers, thus bridging the gap between three different communities of researchers
who work on mobile robots. With his coauthors, Friedhelm is already extending his
work to the three dimensional case, presenting the first gathering algorithm for robots
moving continuously in the 3D space in an article [9] that received the Best Student



Paper Award at SIROCCO 2020. We believe Friedhelm’s contributions will continue
to inspire young researchers to work in this emerging area of distributed computing.

The 2021 Award committee1

Keren Censor-Hillel Technion, Israel
Shantanu Das Aix-Marseille Université, France
Michele Flammini Gran Sasso Science Institute, Italy
Magnús M. Halldórsson (Chair) Reykjavik University, Iceland
Zvi Lotker Ben Gurion University, Israel
Boaz Patt-Shamir Tel Aviv University, Israel
Sébastien Tixeuil Sorbonne Université, France

Selected Publications Related to Friedhelm Meyer auf der Heide’s
Contribution:

1. B. Degener, B. Kempkes, P. Kling, F. Meyer auf der Heide, A Continuous, Local
Strategy for Constructing a Short Chain of Mobile Robots. Proc. SIROCCO 2010:
168–182.

2. B. Degener, B. Kempkes, T. Langner, F. Meyer auf der Heide, P. Pietrzyk, R.
Wattenhofer, A tight runtime bound for synchronous gathering of autonomous
robots with limited visibility. Proc. SPAA 2011: 139–148.

3. A. Cord-Landwehr, B. Degener, M. Fischer, M. Hüllmann, B. Kempkes, A. Klaas,
P. Kling, S. Kurras, M. Märtens, F. Meyer auf der Heide, C. Raupach, K. Swierkot,
D. Warner, C. Weddemann, D. Wonisch, A New Approach for Analyzing Con-
vergence Algorithms for Mobile Robots. Proc. ICAL P(2) 2011: 650–661.

4. B. Kempkes, P. Kling, F. Meyer auf der Heide, Optimal and Competitive runtime
bounds for continuous, local gathering of mobile robots. Proc. SPAA 2012: 18–26.

5. P. Brandes, B. Degener, B. Kempkes, F. Meyer auf der Heide, Energy-efficient
Strategies for Building Short Chains of Mobile Robots Locally. Theoretical Com-
puter Science, 509: 97–112 (2013).

6. B. Degener, B. Kempkes, P. Kling, F. Meyer auf der Heide, Linear and Competitive
Strategies for Continuous Robot Formation Problems. ACM Transactions on Par-
allel Computing, 2(1): 2:1–2:18 (2015).

7. S. Li, C. Markarian, F. Meyer auf der Heide, P. Podlipyan, A Continuous Strategy
for Collisionless Gathering. Proc. ALGOSENSORS 2017: 182–197.

8. P. Kling, F. Meyer auf der Heide, Continuous Protocols for Swarm Robotics.
Distributed Computing by Mobile Entities, Current Research in Moving and
Computing, 317–334 (2019).

9. M. Braun, J. Castenow, F. Meyer auf der Heide, Local Gathering of Mobile Robots
in Three Dimensions. Proc. SIROCCO 2020: 63–79.

1 We wish to thank the nominator for the nomination and for contributing to this text.
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Collecting Coupons is Faster with Friends

Dan Alistarh and Peter Davies

Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400
Klosterneuburg, Austria

{dan.alistarh,peter.davies}@ist.ac.at

Abstract. In this note, we introduce a distributed twist on the classic coupon
collector problem: a set of m collectors wish to each obtain a set of n coupons;
for this, they can each sample coupons uniformly at random, but can also meet
in pairwise interactions, during which they can exchange coupons. By doing so,
they hope to reduce the number of coupons that must be sampled by each
collector in order to obtain a full set. This extension is natural when considering
real-world manifestations of the coupon collector phenomenon, and has been
remarked upon and studied empirically (Hayes and Hannigan 2006, Ahmad
et al. 2014, Delmarcelle 2019).
We provide the first theoretical analysis for such a scenario. We find that

“coupon collecting with friends” can indeed significantly reduce the number of
coupons each collector must sample, and raises interesting connections to the
more traditional variants of the problem. While our analysis is in most cases
asymptotically tight, there are several open questions raised, regarding finer-
grained analysis of both “coupon collecting with friends,” and of a long-studied
variant of the original problem in which a collector requires multiple full sets of
coupons.

Keywords: Coupon collector problem � Population protocols � Probability



Structure Structuring Structures

Kenneth C. Cheung

NASA Ames Research Center, Moffett Field CA 94035, USA
kenny@nasa.gov

https://www.nasa.gov/centers/ames/cct/about/bios/

kennycheung

Abstract. We consider programmable materials as systems with the ability to
form versatile structures as similar to the ability of a digital image to approxi-
mate any image, given high enough resolution, with a very simple set of discrete
components. Instead of colors, we can tune effective shape and mechanical
behavior (instead of pixels, we refer to building blocks as voxels, for volumetric
pixels). Modular reconfigurable structures have been appreciated throughout
technological history. A key philosophical idea behind programmable materials
is that they can be engineered to maintain a fixed precision at essentially arbi-
trary scale, achieved by careful design of connections that display symmetric
error distributions [4], allowing for tolerances that do not increase with system
size. This principle is well exercised in the scaling robustness of digital com-
munication and computation systems, which rely on well-engineered encoding,
error detection, and correction for systems composed of many similar discrete
information building blocks [5]. Can we formulate a general mathematical
theory of structured fabrication of physical products? An argument for the
timeliness of this question (and revisiting prior versions thereof) is given by the
existence of examples of physical modular structural systems that no longer
present a mechanical performance compromise relative to conventionally
manufactured hardware. These ‘metamaterials’ are possible because assembly
allows production of almost any geometry with almost any material [2], and
with progress in our ability to characterize the effect of geometry on the whole
of material mechanical properties [1]. The most significant benefit might be in
extended material life-cycles and corresponding reductions in energy use [3].

Keywords: Programmable materials � Fabrication � Metamaterials
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Distributed Zero-Knowledge Proofs

Rotem Oshman

Computer Science Department, Tel Aviv University

Abstract. Zero-knowledge proofs are one of the most influential concepts in
theoretical computer science. In the seminal definition due to Goldwasser,
Micali and Rackoff dating back to the 80’s, a computationally-bounded verifier
interacts with a powerful but untrusted prover, with the goal of becoming
convinced that the input is in some language. In addition to the usual require-
ments of completeness and soundness, in a zero-knowledge proof, we protect
the prover’s knowledge: assuming the prover is honest, anything that the verifier
can deduce after interacting with the prover, it could have deduced by itself.
Zero-knowledge proofs have found many applications within theoretical com-
puter science and beyond, e.g., in cryptography, client-cloud computing,
blockchains and cryptocurrencies, electronic voting and auctions, and in the
financial industry.
In this talk I will describe recent work on extending the notion of

zero-knowledge proofs to distributed networks, where a network of verifiers
interacts with an untrusted prover to decide some distributed language. The
prover is assumed to know the entire network graph, as well as any input that the
nodes may possess, and, as in the centralized setting, the protocol we design
should protect this knowledge. Building on the recent introduction of distributed
interactive proofs, we define distributed zero-knowledge proofs and construct
such proofs for the 3-coloring problem and for other fundamental problems.
Joint work with Aviv Bick and Gillat Kol.
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Collecting Coupons is Faster with Friends

Dan Alistarh(B) and Peter Davies

Institute of Science and Technology Austria (IST Austria), Am Campus 1,
3400 Klosterneuburg, Austria

{dan.alistarh,peter.davies}@ist.ac.at

Abstract. In this note, we introduce a distributed twist on the classic
coupon collector problem: a set of m collectors wish to each obtain a
set of n coupons; for this, they can each sample coupons uniformly at
random, but can also meet in pairwise interactions, during which they
can exchange coupons. By doing so, they hope to reduce the number of
coupons that must be sampled by each collector in order to obtain a full
set. This extension is natural when considering real-world manifestations
of the coupon collector phenomenon, and has been remarked upon and
studied empirically (Hayes and Hannigan 2006, Ahmad et al. 2014, Del-
marcelle 2019).

We provide the first theoretical analysis for such a scenario. We find
that “coupon collecting with friends” can indeed significantly reduce the
number of coupons each collector must sample, and raises interesting
connections to the more traditional variants of the problem. While our
analysis is in most cases asymptotically tight, there are several open ques-
tions raised, regarding finer-grained analysis of both “coupon collecting
with friends,” and of a long-studied variant of the original problem in
which a collector requires multiple full sets of coupons.

Keywords: Coupon collector problem · Population protocols ·
Probability

1 Introduction

The coupon collector problem is a classic exercise in probability theory, appear-
ing in standard textbooks such as those of Feller [5] and Motwani and Raghavan
[7]. It is often introduced with a story along the lines of the following: a cereal
company runs a promotion giving away a toy (the “coupon”) in each box of cereal
sold. The toys are chosen uniformly at random from some finite set of different
types. A child wishes to collect the full set of toys, and our task is to analyze the
number of cereal boxes her parents must purchase to achieve this. This number
is, of course, a random variable, and while elementary bounds on it are quite
straightforward, a tighter analysis requires more sophisticated techniques (see,
e.g., [4]).

A modern real-world example of this phenomenon is the World Cup sticker
album [6]. Collectors purchase sealed packs of stickers of football players, and
c© Springer Nature Switzerland AG 2021

T. Jurdziński and S. Schmid (Eds.): SIROCCO 2021, LNCS 12810, pp. 3–12, 2021.
https://doi.org/10.1007/978-3-030-79527-6_1
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4 D. Alistarh and P. Davies

aim to collect one of each in order to fill all the slots in their album. Completing
the sticker album has proven a very popular activity among (mostly, but by
no means exclusively) young football fans every four years, and has highlighted
an aspect which is absent from the classical analysis of the coupon collector’s
problem: one can achieve a full collection much faster by swapping duplicate
coupons with friends who are also collecting. This has been noted previously and
studied empirically, specifically for the World Cup sticker album [1,2,6], but we
are not aware of any prior theoretical analysis for such a setting in general.

Of course, for theoretical analysis, one must first define a model specifying
how swapping of coupons is permitted. If all collectors are allowed to swap freely,
then the problem is equivalent to a variant which has seen prior theoretical study:
that in which m > 1 full sets of coupons must be completed by a single collector.
This variant was studied by Newman and Shepp [8] and Erdös and Rényi [4]. In
more recent works (e.g., [3] and the references therein), problem settings of this
sort are often referred to as “coupon collector with siblings:” the accompanying
story is that there is a single collector, but she has a succession of younger siblings
to whom she gives duplicate coupons upon receiving them. One can then ask
long it takes for the mth sibling to complete his collection. Specifically, Newman
and Shepp [8] showed that the number of coupons needed to complete m full sets
is n(log n+(m−1) log log n+O(1)) in expectation. Erdös and Rényi [4] provided
concentration bounds around this expectation, and specified the constant in the
linear term. However, it is important to note that this bound holds only when m
is a constant; as Erdös and Rényi themselves note, “It is an interesting problem
to investigate the limiting distribution of vm(n) when m increases together with
n, but we can not go into this question here.” Surprisingly, to our knowledge,
this open problem has never been addressed, and while we give an asymptotic
analysis here, it remains an open question to extend the more fine-grained bounds
of Newman and Shepp, and Erdös and Rényi to the case where m also tends to
infinity.

Our primary focus is a distributed generalization: when completing, for exam-
ple, the World Cup sticker album, collectors generally do not, to the authors’
knowledge, deliberately congregate in large groups in order to exchange stickers
in an organized fashion. Instead, we would expect that exchanges are usually ad-
hoc, and made between individual pairs of collectors. So, we will abstract such
behavior using a “population protocol”-style model of random pairwise interac-
tions: in each round, an independent, uniformly random pair of collectors will
meet, and can swap coupons between them as they wish. We then aim to analyze
the trade-off between the number of coupons that each collector must sample,
and the number of interactions required, in order for all collectors to obtain full
collections. We call this problem “coupon collecting with friends.”

1.1 The Formal Problem Setting

A set M of m collectors each wish to obtain a full collection of n distinct coupons.
For this, they will operate in sequences of collection (sampling) and exchanging
(interaction) phases:
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1. A collection phase, in which each collector independently and uniformly sam-
ples, with replacement, rc coupons from [n].

2. An exchanging phase, in which re sequential interactions between indepen-
dent, uniformly random pairs of collectors occur. An interacting pair of col-
lectors can choose to exchange coupons however they wish.

We are interested in the trade-off between the numbers of collection rounds
and exchanging rounds (rc and re) that are required for each of the m agents to
obtain a full collection of n distinct coupons.

1.2 Preliminaries

In the following, we denote ln x := loge x and log x := log2 x. We make frequent
use of the well-known inequalities 1 − x ≤ e−x for x ∈ R and 1 − x ≥ 4−x for
x ∈ [0, 1

2 ], and the Chernoff bound in the following standard form:

Lemma 1 (Chernoff bound). Suppose Z1, . . . , Zt are independent random
variables taking values in {0, 1}. Let Z denote their sum and let μ = E [Z]
denote the sum’s expected value. Then for any δ ∈ [0, 1],

Pr [Z ≤ (1 − δ)μ] ≤ e− δ2μ
2 .

2 What Happens with No Exchanges?

We first look at the most “standard” variant of the trade-off: when re = 0,
i.e., no exchanges are allowed. In this case, the problem is simply m separate
instances of the standard coupon collector problem, since each collector must
independently collect a full set without help from the other collectors.

It has long been known [4,8] that the number of samples needed for a single
collector to obtain a full set is n ln n±O(n) with probability 1−ε, where ε > 0 is
any positive constant. To be precise, we use the following statement as phrased
by Motwani and Raghavan:

Statement 1 ([7], corollary to Theorem 3.8, Section 3.6.3). For any real
constant c, we have

lim
n→∞ Pr [X ≤ n(ln n − c)] = e−ec

and

lim
n→∞ Pr [X ≥ n(ln n + c)] = 1 − e−e−c

.

(Here X is the random variable denoting the number of required samples.)
The statement implies that the probability of failure for a single collector after
n ln n + ω(n) samples tends to 0 as n tends to infinity. However, this is not quite
sufficient for us: we require m independent instances to all succeed, so we need
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the probability of failure for each collector to be less than 1/m, and we do not
treat m as a constant. So, we need to know how fast the failure probability tends
to 0.

We give the following straightforward asymptotic upper and lower bounds for
the problem (for n > 1; for n = 1, exactly 1 collection round is clearly necessary
and sufficient).

Lemma 2. If re = 0, then rc = O(n log mn) is sufficient to succeed with proba-
bility 1 − (mn)−1.

Proof. Let rc = 2n ln mn. Fix a particular collector v and coupon α. The
probability that v does not collect a copy of α is at most

(
1 − 1

n

)2n ln mn ≤
e− 2n ln mn

n = (mn)−2. By a union bound over all coupons and collectors, the
probability that any collector does not receive a copy of any coupon is at most
mn · (mn)−2 = (mn)−1.

Lemma 3. For n > 1, if re = 0, then rc = Ω(n log mn) is necessary to succeed
with any positive constant probability.

Proof. By Statement 1, even a single collector must perform Ω(n log n) sam-
ples to collect all n coupons with any constant probability. We now show that
Ω(n log m) samples per collector are required for all m collectors to be successful.
The lower bound is then Ω(max{n log m, n log n}) = Ω(n log mn).

Fix a particular coupon α, and let rc ≤ 1
4 n log m. The probability that a

particular collector v does not receive a copy of α is (1− 1
n )rc ≥ 4

−rc
n ≥ 4

− log m
4 =

m− 1
2 (using that 1 − x ≥ 4−x for x ∈ [0, 1

2 ]).
The events that each collector receives a copy of α are independent. There-

fore, the probability that all collectors receive a copy is

Pr
[

⋂

v∈M

{v receives a copy of α}
]

=
∏

v∈M

Pr [v receives a copy of α]

≤
∏

v∈M

(
1 − m− 1

2

)

=
(

1 − m− 1
2

)m

= e−m− 1
2 ·m = e−√

m.

So, in order to achieve any constant (as m → ∞, which we may assume since
this component of the lower bound is only relevant when m > n) probability of
success, we require rc > 1

4 n log m.

3 What Happens with Unlimited Exchanges?

If an unlimited amount of exchanges are allowed, then the problem is equiva-
lent to simply ensuring that m copies of each coupon are sampled between all
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collectors, since the exchanges will then allow these to eventually be distributed
to each collector. As mentioned, for constant m strong bounds are known [4,8],
but we are not aware of any prior work for non-constant m.

Again, we can show straighforward matching asymptotic bounds:

Lemma 4. If re = ∞, then rc = O(n + n log n
m ) is sufficient to succeed with

probability 1 − 1
n .

Proof. Let rc = 16(n + n ln n
m ), i.e., 16(mn + n ln n) total samples are taken.

Fix a particular coupon α. The expected number of copies of α obtained is
μ := 16(m + ln n), and each sample is independent. So, by a Chernoff bound
(Lemma 1),

Pr [fewer than m copies of α are collected]

< Pr
[
at most (1 − 1

2)μ copies of α are collected
]

≤ e− μ
8 ≤ e− 16 ln n

8 ≤ n−2.

Taking a union bound over all coupons, we find that the probability that
any coupon does not have at least m copies sampled is at most 1

n . So, with
probability at least 1 − 1

n , every coupon is sampled at least m times, and with
unlimited exchanges we can complete every collector’s collection.

Lemma 5. If re = ∞, then rc = Ω(n + n log n
m ) is necessary to succeed with any

positive constant probability.

Proof. A lower bound of Ω(n log n) samples follows from the standard coupon
collector problem: by Statement 1, with o(n log n) samples we cannot collect even
one copy of all coupons with any constant probability. Furthermore, mn samples
are clearly necessary to collect m copies of each of the n coupons. So, we have a
lower bound of Ω(max{mn, n log n}) total samples, i.e. rc = Ω(n + n log n

m ).

We now see the power of allowing exchanges: with unlimited exchanges
between m participants, the amount of samples required per collector reduces
from Θ(n log mn) to Θ(n + n log n

m ). In particular, collaborating with a small
group of m = O(log n) collectors reduces the required number of samples lin-
early in m (from Θ(n log n) to Θ( n log n

m )), which may be an appealing prospect
to collectors of World Cup stickers (or their parents).

4 Minimizing Exchanges for Optimal Collection Rounds

Now we reach the main question of this work: how many exchanging rounds
are necessary to ensure completion using the asymptotically optimal amount of
collection rounds?

We first prove the following upper bound:
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Theorem 2. If rc ≥ 36(n + n ln n
m ), re = O(m log mn) is sufficient to succeed

with probability 1 − 1
mn .

Proof. Fix a coupon α to analyze during the collection phase. We will call col-
lectors that receive fewer than 2 copies of α during the collection phase bad,
and call them good otherwise. Fix also a specific collector v. After rc collection
rounds, v receives, in expectation, μ := rc

n copies of α. Every collection round is
independent, so by a Chernoff bound, the probability that v is bad is at most:

Pr [v is bad] = Pr
[
v receives at most

(
1 − μ − 1

μ

)
μ copies of α

]

≤ e− (μ−1)2
2μ < e1− μ

2 .

Keeping α fixed but unfixing v, we now wish to bound the probability that
at least m

3 collectors are bad (have fewer than 2 copies of α). We do this by
a union bound over all possible sets of m

3 collectors (technically � m
3 �, but we

omit the ceiling functions for clarity since the effect is negligible), using that the
‘badness’ of collectors is independent:

Pr
[
at least m

3 collectors are bad
]

= Pr

⎡

⎢
⎢
⎣

⋃

S⊂M
|S|= m

3

all collectors in S are bad

⎤

⎥
⎥
⎦

≤
∑

S⊂M
|S|= m

3

Pr [all collectors in S are bad]

≤
(

m
m
3

)
(e1− μ

2 ) m
3

≤ (3e)
m
3 e(1− μ

2 ) m
3

= e−( μ
2 −2−ln 3) m

3 .

In the penultimate line here we used the inequality
(

a
b

) ≤ (
ae
b

)b. Since μ =
rc

n ≥ 36, we have μ
2 − 2 − ln 3 > μ

3 . So,

Pr
[
at least m

3 collectors are bad
]

< e− μ
3 · m

3 = e− rcm
9n ≤ e−4(m+ln n).

Taking a union bound over all coupons, we have that for all coupons there
are fewer than m

3 bad collectors with probability at least 1 − ne−4(m+ln n) =
1 − e−4m−3 ln n. We call this event a successful collection phase.

We now describe the exchanging phase. Let re = 6m ln mn. We will use the
following simple swapping rule: whenever a collector with at least two copies of
some coupon α interacts with a collector with 0 copies of that coupon, it will
give one of its copies.
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A crucial observation is that for a coupon α which has fewer than m
3 bad

collectors after the collection phase, there will always be at least m
3 collectors

with at least two copies throughout the exchanging phase. This is because every
time a good collector gives away a copy (possibly dropping to 1 copy itself), a
collector with 0 copies goes up to 1 copy. Since there are at most m

3 collectors
with 0 copies to begin with (and collectors never drop down to 0 copies), this
can occur at most m

3 times, leaving at least m
3 collectors with multiple copies.

To analyze the exchanging phase, we fix a particular interaction, a particular
coupon α which is not yet held by all collectors, and a particular collector v
which currently has 0 copies of α. By the above observation, with probability at
least 2 · 1

m · 1
3 = 2

3m , the interaction pairs v with a collector who has at least 2
copies of α, and so v receives a copy.

There are initially (trivially) at most mn such pairs (α, v) where v holds 0
copies of α. Conditioning on a successful collection phase, each of these pairs is
removed in each iteration with probability at least 2

3m . For a fixed pair, these
probabilities hold independently over all iterations. So the probability of a par-
ticular pair (α, v) remaining over the entire exchanging phase (i.e., for v to still
hold no copy of α upon completion) is at most

(
1 − 2

3m

)6m ln mn

≤ e−3 ln mn = (mn)−3.

Taking a union bound over all such pairs, the probability that any pair
remains is at most (mn)−2. Finally, taking another union bound to remove the
conditioning on a successful collection phase, the probability of successfully com-
pleting all collections is at least 1 − e−4m−3 ln n − (mn)−2 ≥ 1 − 1

mn .

We next give a pair of lower bounds, which when combined will match the
asymptotic expression for re from Theorem 2.

Lemma 6. If rc ≤ 1
4 n ln n, then re = Ω(m log n) is necessary to succeed with

probability 1 − 1
n .

Proof. Fix a collector v. By Statement 1, since rc = n log n−ω(n), the probability
that v receives a full set of coupons during the collection phase is o(1). Denote
this probability q. To succeed overall with probability 1− 1

n , there must be some
case in which v does not receive a full collection during the collection phase, but
gains it during the exchanging phase with probability at least 1 − 2

n (over the
randomness in the exchanging phase only), since otherwise the total probability
of v having a full collection is at most q + (1 − q)(1 − 2

n ) = 1 − 2
n + o(1)

n < 1 − 1
n

(for sufficiently large n).
If re ≤ 1

8 m log n, and for m ≥ 4, the probability that v is not involved in any
interactions is at least

(
1 − 2

m

)re

≥ 4− 2
m re ≥ 4− 1

4 log n = n− 1
2 .

In this case v cannot obtain a full collection of coupons if it did not have one
after the collection phase. So, the probability of success if v did not gain a full
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collection during the collection phase is at most 1 − n− 1
2 < 1 − 2

n , which means
that the total success probability is less than 1 − 1

n .
For the remaining case m < 4, we again apply Statement 1, which implies that

the probability of collecting a single full collection with n ln n − ω(n) samples
is o(1). In total, over the m < 4 collectors, we are taking at most 3

4 n ln n =
n ln n − ω(n) samples during the collection phase. So, with probability 1 − o(1),
there is some coupon for which no collector has a copy, in which case we cannot
hope to be successful even with re = ∞. Thus, our overall success probability is
o(1).

Lemma 7. If rc = n ln n − ω(n), then re = Ω(m log m) is necessary to succeed
with any positive constant probability.

Proof. By Statement 1, for rc = n log n − ω(n), the probability that a particular
collector v receives a full set of coupons during the collection phase is o(1). The
expected number of collectors receiving full sets is therefore o(m). By Markov’s
inequality, the probability that at least m

2 collectors receive full sets at most
o(1). With probability 1−o(1), therefore, there are at least m

2 collectors without
full sets. We call this event an unsuccessful collection phase.

To fill each collector’s collection overall with any positive constant probability
ε > 0, there must be at least one instance with an unsuccessful collection phase
on which we do so with probability at least ε

2 (over the randomness of the
exchanging phase), since otherwise the total success probability would be at
most ε

2 + o(1). We will now show that this requires re = Ω(m log m) exchanging
rounds.

Assume that we have an unsuccessful collection phase, and a set S of m
2

collectors without full sets (again omitting ceiling functions for clarity). Fixing
some v ∈ S, the probability that each interaction involves v is 2

m . Furthermore,
it is at most 4

m independently of the behavior of all other u ∈ S (the worst case
is that all other u ∈ S are not involved in the interaction, in which case v is
involved with probability 2

m
2 +1 < 4

m ).
If re ≤ 1

16 m log m, and for m ≥ 8, the probability that v is not involved in
any interactions is at least

(
1 − 4

m

)re

≥ 4− 4
m re ≥ 4− 1

4 log m = m− 1
2 ,

independently of the other u ∈ S. Then, the probability that all collectors in
S are involved in at least one interaction is at most

(
1 − m− 1

2

)|S|
≤ e−m− 1

2 m
2 = e−

√
m
2 = o(1).

That is, with probability 1−o(1), at least one collector v in S is not involved
in any interactions. In this case v cannot obtain a full collection of coupons: by
definition of S its collection is incomplete after the collection phase, and it has
no interactions in which to gain new coupons in the exchanging phase. So, we
have a total success probability of o(1).



Collecting Coupons is Faster with Friends 11

The above analysis assumes that m → ∞; the case m = O(1) is trivial, since
by Statement 1, with probability 1 − o(1) we have not completed all collections
during the collection phase, and so require at least 1 = Ω(m log m) exchanging
rounds.

Combining Lemmas 6 and 7 yields the following theorem:

Theorem 3. If rc ≤ 1
4 n ln n, then re = Ω(m log mn) is necessary to succeed

with probability 1 − 1
n .

Proof. By Lemmas 6 and 7, we require re = Ω(max{m log m, m log n}) =
Ω(m log mn).

We make some observations about the bounds we have shown in Theorems 2
and 3. We now know that Θ(m log mn) interactions suffice to achieve an asymp-
totically optimal number of collection rounds, and are necessary to asymptoti-
cally improve over the number of samples needed for the standard single-collector
case. If one requires a high probability of success in n (i.e. probability at most
1
n of failure), these bounds are tight. However, they leave open the possibility of
using fewer interactions to achieve a lower (but still at least a positive constant)
success probability. In this regime, Lemma 6 does not apply, so we have only
that O(m log mn) interactions suffice by Theorem 2, and that Ω(m log m) are
necessary by Lemma 7. We conjecture that it is the upper bound that is tight,
and the lower bound that could be improved:

Conjecture 1. If rc = O(n + n ln n
m ), then re = Ω(m log mn) is necessary to

succeed with any positive constant probability.

The reason for this conjecture is that the current lower bound does not take
into account the difficulty for collectors with incomplete collections to obtain
multiple coupons during the exchanging phase; it uses only the hardness of ensur-
ing a single interaction. Since most collectors will have Θ(n) coupons missing
after the collection phase, we would expect that collectors will require some
number of interactions depending on n in order to complete their collections.
However, since the events of a collector gaining two different coupons from an
interaction are not independent, this would require more sophisticated tech-
niques to analyze.

5 Conclusions and Open Problems

Our aim in this paper has been to introduce the study of what we argue is a
natural distributed variant of the coupon collector problem: collection by a group
of collectors which can meet, in random pairwise fashion, to exchange coupons.
As mentioned, there is one gap in the asymptotic analysis we provide: whether
o(m log mn) exchanges can suffice for the asymptotic optimum of Θ(n + n ln n

m )
collection rounds, under a weaker success guarantee (than high probability in n).
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Generally, most of the prior work on the standard coupon collector problem
has been on finer-grained analysis, pinning down the exact terms in the number
of samples required, and one could ask whether we can do the same here. Such
a focus would change the problem significantly: in particular, the approach of
Theorem 2 (ensuring that a constant fraction of collectors always hold multiple
copies of each coupon) would not work if the number of samples was “only just”
sufficient, and one would need to find a different way to analyze the exchanging
phase.

Surprisingly, the situation is still not fully understood, even for the more
“traditional” case, corresponding to rc = ∞, when m tends to infinity alongside
n. We therefore close by reiterating the open question posed by Erdös and Rényi,
and ask how the coupon collector problem behaves when a non-constant number
of full collections are required.

Acknowledgements. Peter Davies is supported by the European Union’s Horizon
2020 research and innovation programme under the Marie Skłodowska-Curie grant
agreement No. 754411.
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Abstract. In this paper we study fractional coloring from the angle
of distributed computing. Fractional coloring is the linear relaxation of
the classical notion of coloring, and has many applications, in particu-
lar in scheduling. It was proved by Hasemann, Hirvonen, Rybicki and
Suomela [19] that for every real α > 1 and integer Δ, a fractional color-
ing of total weight at most α(Δ + 1) can be obtained deterministically
in a single round in graphs of maximum degree Δ, in the LOCAL model
of computation. However, a major issue of this result is that the out-
put of each vertex has unbounded size. Here we prove that even if we
impose the more realistic assumption that the output of each vertex has
constant size, we can find fractional colorings of total weight arbitrarily
close to known tight bounds for the fractional chromatic number in sev-
eral cases of interest. More precisely, we show that for any fixed ε > 0
and Δ, a fractional coloring of total weight at most Δ+ε can be found in
O(log∗ n) rounds in graphs of maximum degree Δ with no KΔ+1, while
finding a fractional coloring of total weight at most Δ in this case requires
Ω(log log n) rounds for randomized algorithms and Ω(log n) rounds for
deterministic algorithms. We also show how to obtain fractional color-
ings of total weight at most 2+ ε in grids of any fixed dimension, for any
ε > 0, in O(log∗ n) rounds. Finally, we prove that in sparse graphs of
large girth from any proper minor-closed family we can find a fractional
coloring of total weight at most 2 + ε, for any ε > 0, in O(log n) rounds.

Keywords: Fractional coloring · Graph coloring · Distributed
algorithms

1 Introduction

A (proper) kA -coloring of a graph G is an assignment of colors to the vertices
of G, such that adjacent vertices receive different colors. This is the same as a
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partition of the vertices of G into (or covering of the vertices of G by) k indepen-
dent sets. This has many applications in physical networks; for instance most
scheduling problems can be expressed by a coloring problem in the underlying
graph. When the resources at play inside the network are fractionable, it is more
relevant to consider the linear relaxation of this problem, where one wants to
assign weights xS ∈ [0, 1] to the independent sets S of G, so that for each vertex
v of G, the sum of the weights xS of the independent sets S containing v is at
least 1, and the objective is to minimize the sum of the weights xS . The solu-
tion of this linear program is the fractional chromatic number of G, denoted by
χf (G). The definition shows that χf is rational and that ω(G) � χf (G) � χ(G)
for any graph G where ω(G) denotes the clique number of G (maximum size of a
set of pairwise adjacent vertices), and χ(G) denotes the usual chromatic number
(minimum k such that G admits a proper k-coloring). A polyhedral definition
of χf , which is not difficult to derive from the definition above, is that χf (G) is
the minimum x such that there is a probability distribution on the independent
sets of G, such that each vertex appears in a random independent set (drawn
from this probability distribution) with probability at least 1

x .
In this paper, we study fractional coloring from the angle of distributed

algorithms. In this context, each vertex outputs its “part” of the solution, and
in a Locally Checkable Labelling (whose precise definition will be given in Sect. 2)
this part should be of constant size. For instance, in a distributed algorithm for
proper k-coloring of G, each vertex can output its color (an integer in [k] =
{1, . . . , k}), and in a distributed algorithm for maximal independent set, each
vertex can output a bit saying whether it belongs to the independent set. In
both cases the fact that the solution is correct can then be checked locally, in
the sense that adjacent vertices only need to compare their outputs, and if there
is no local conflict then the global solution is correct. For more details about the
distributed aspects of graph coloring, the reader is referred to the book [4].

Looking back at the polyhedral definition of fractional coloring introduced
above, a first possibility would be to design a randomized distributed algorithm
producing a (random) independent set, in which each vertex has a large proba-
bility to be selected (in this case, the output of each vertex is a single bit, telling
whether it belongs to the chosen independent set). A classical algorithm in this
vein is the following [1,6]: Each vertex is assigned a random identifier, and joins
the independent set if its identifier is smaller than that of all its neighbors. This
clearly produces an independent set, and it is not difficult to prove that each
vertex v is selected with probability at least 1

d(v)+1 , so in particular this 1-round
randomized algorithm witnesses the fact that the fractional chromatic number
of graphs of maximum degree Δ is at most Δ + 1. Note that factor-of-IID algo-
rithms for independent sets introduced in the past years are of this form (see
for instance [14,15]). This leaves the question of how to produce a deterministic
distributed algorithm for fractional coloring. Recall that a fractional coloring is
a distribution of independent sets, so the first issue is to decide what the output
of the algorithm should be in order to be locally checkable. A solution explored
in [19] is to assign to each independent set S of G an interval IS ⊂ R of length
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xS (or a finite union of intervals of total length xS), where xS is the weight
defined above in the linear programming definition of fractional coloring, such
that all IS are pairwise disjoint. The output of each vertex v is then the union
of all subsets IS ⊂ R such that v ∈ S. Each vertex can check that its output
(which is a finite union of intervals) has total length at least 1, and pairs of adja-
cent vertices can check that their outputs are disjoint, so the fact that this is a
fractional coloring can be checked locally. If the set of identifiers of the vertices
of G is known to all the vertices in advance (for instance if there are n vertices
and the identifiers are {1, . . . , n}), then by enumerating all permutations of the
identifiers in some canonical order, it is not difficult to transform the 1-round
randomized algorithm described above into a 1-round deterministic algorithm
producing such an output and with total weight at most Δ + 1 (by running it
for all permutations and aggregating all the solutions). The main result of [19]
is a 1-round deterministic algorithm producing such an output and with total
weight at most α(Δ+1) (for any α > 1), when the set of identifiers is not known
in advance. As observed in [19], the unbounded size of the output implies that
this algorithm is unusable in practice. In this paper, we explore a different way
to design deterministic distributed algorithms producing fractional colorings of
small total weight.

Given two integers p � q � 1, a (p :q)-coloring of a graph G is an assignment
of q-element subsets of [p] to the vertices of G, such that the sets assigned to any
two adjacent vertices are disjoint. An alternative view is that a (p : q)-coloring
of G is precisely a homomorphism from G to the Kneser graph KG (p, q), which
is the graph whose vertices are the q-element subsets of [p], and in which two
vertices are adjacent if the corresponding subsets of [p] are disjoint. The weight
of a (p :q)-coloring c is w(c) = p/q.

The fractional chromatic number χf (G) can be equivalently defined as the
infimum of {p

q |G has a (p : q)-coloring} [25] (as before, it can be proved that
this infimum is indeed a minimum). Observe that a (p :1)-coloring is a (proper)
p-coloring. It is well known that the Kneser graph KG (p, q) has fractional chro-
matic number p

q , while Lovász famously proved [22] that its chromatic number
is p−2q +2 using topological methods. This shows in particular that χf (G) and
χ(G) can be arbitrarily far apart.

This definition of the fractional chromatic number gives a natural way to
produce distributed fractional colorings, while keeping the output of each vertex
bounded. It suffices to fix the integer q � 1, and ask for the smallest integer
p such that G has a (p : q)-coloring c; then the output of each vertex is the
sequence of its q colors from [p], which can be encoded in a bit-string with at
most q log p = q(log q + log w(c)) bits (in the remainder of the paper, the output
size always refers to the number of bits in this string, and log stands for the
binary logarithm). The requirement that the output of each vertex has bounded
size is quite constraining in the case of fractional colourings, since in general the
smallest integers p and q such that χf (G) = p

q can be exponential in |V (G)| [16].
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In addition to the classical applications of fractional coloring in scheduling
(see [19]), there is another more theoretical motivation for studying this problem
(or the relaxation above where q is fixed). In n-vertex graphs of maximum degree
Δ (which is assumed to be a constant), a coloring with Δ + 1 colors can be
found in O(log∗ n) rounds [18,21] in the LOCAL model of computation (which
will be introduced formally below). On the other hand, Brooks’ Theorem says
that if Δ � 3, any graph of maximum degree Δ with no clique KΔ+1 is Δ-
colorable [10], and finding such a coloring has proved to be an interesting problem
of intermediate complexity in distributed computing. It was proved that the
round complexity for computing such a coloring is Ω(log log n) for randomized
algorithms [9] and Ω(log n) for deterministic algorithms [11] (see also [7]). Thus
a large complexity gap appears between Δ and Δ+1 colors, and since the values
are integral it is all that can be said about this problem. However, if the number
of colors is real, or rational, the precise location of the complexity threshold
in the interval [Δ,Δ + 1] can be investigated. In Sect. 3, we will show that for
fractional coloring, the complexity threshold is arbitrarily close to Δ; namely
finding a fractional Δ-coloring is as difficult as finding a Δ-coloring, but for any
fixed ε > 0 and Δ, a fractional (Δ + ε)-coloring with output size of O

(
1
ε log Δ

ε

)

bits per vertex can be found in Oε(log∗ n) rounds in graphs of maximum degree
Δ with no KΔ+1. Here, the subscript ε in the big-O notation indicates that the
implicit multiplicative constant depends on ε.

Theorem 1. For any integer q � 1, and any n-vertex graph G of maximum
degree Δ � 3, without KΔ+1, a (qΔ + 1 : q)-coloring of G can be computed in
O(q3Δ2q + q log∗ n) rounds deterministically in the LOCAL model.

There are other similar complexity thresholds in distributed graph coloring.
For instance, it was proved that D-dimensional grids1 can be colored with 4
colors in O(log∗ n) rounds, while computing a 3-coloring in a 2-dimensional n×n-
grid takes Ω(n) rounds [8] (see also [20] for related results). For (almost) vertex-
transitive graphs like grids finding minimum fractional colorings is essentially
equivalent to finding maximum independent sets, and simple local randomized
algorithms approaching the optimal independent set in grids can be used to
produce fractional (2 + ε)-colorings with small output (see for instance [15]).
In Sect. 4, we will show that for any fixed ε > 0 and D � 1, a fractional (2 +
ε)-coloring of the D-dimensional grid G(n,D) of dimension n × · · · × n with
output size of O(6

D

ε log(6
D

ε )) bits per vertex can be computed deterministically
in Oε,D(log∗ n) rounds, while it can be easily observed that finding a (2q : q)-
coloring takes Ω(n) rounds (even if D = 1, i.e., when the graph is a path).

Theorem 2. For every integers D � 1 and q � 1, a (2q + 4 · 6D :q)-coloring of
the D-dimensional grid G(n,D) can be found in O

(
D�(2�)D +D� log∗ n

)
rounds

deterministically in the LOCAL model, where � = q + 2 · 6D.

1 We note that these results are proved for toroidal grids with a consistent orientation,
while Theorem 2 considers classical, non-oriented grids.
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The last observation implies in particular that (2q : q)-coloring trees takes
Ω(n) rounds. On the other hand, trees can be colored with 3 colors in O(log n)
rounds and this is best possible (even with 3 replaced by an arbitrary number of
colors) [18,21]. The maximum average degree of a graph G, denoted by mad(G),
is the maximum of the average degrees of all the subgraphs H of G. In Sect. 5 we
prove that, for every ε > 0, graphs of maximum average degree at most 2+ ε/40
and large girth can be (2 + ε)-colored in Oε(log n) rounds with output size of
O( 1ε log 1

ε ) bits per vertex.

Theorem 3. Let G be an n-vertex graph with girth at least 2q+2, and mad(G) �
2 + 1

40q , for some fixed q � 1. Then a (2q + 1:q)-coloring of G can be computed
deterministically in O(q log n + q2) rounds in the LOCAL model.

This implies that trees, and more generally graphs of sufficiently large girth
from any minor-closed class can be (2 + ε)-colored in O(log n) rounds, for any
ε > 0. Note that the assumption that the girth is large cannot be avoided, as a
cycle of length 2q − 1 has fractional chromatic number equal to 2+ 1

q−1 > 2+ 1
q .

We conjecture that more generally, graphs of girth Ω(q) and maximum aver-
age degree k+O(1/q) (where k � 2 and q are integers) have a (kq+1:q)-coloring
that can be computed efficiently by a deterministic algorithm in the LOCAL
model (the fact that such a coloring exists is a simple consequence of [24] but
the proof there uses flows and does not seem to be efficiently implementable in
the LOCAL model).

2 The LOCAL Model of Computation

All our results are proved in the LOCAL model, introduced by Linial [21]. We
consider a network, in the form of an n-vertex graph G whose vertices have
unbounded computational power, and whose edges are communication links
between the corresponding vertices. We are given a combinatorial problem that
we need to solve in the graph G. In the case of deterministic algorithms, each
vertex of G starts with an arbitrary unique identifier (an integer between 1 and
nc, for some constant c � 1, such that all integers assigned to the vertices are dis-
tinct). For randomized algorithms, each vertex starts instead with a collection of
(private) random bits. The vertices then exchange messages (of unbounded size)
with their neighbors in synchronous rounds, and after a fixed number of rounds
(the round complexity of the algorithm), each vertex outputs its local “part” of
the global solution of the problem. This could for instance be the color of the ver-
tex in a proper k-coloring. In Locally Checkable Labelling (LCL) problems, this
output has to be of constant size, and should be checkable locally, in the sense
that the solution is correct globally if and only if it is correct in all neighbor-
hoods of some (constant) radius. LCL problems include problems like k-coloring
(with constant k), or maximal independent set, but not maximum independent
set (for instance), and are central in the field of distributed algorithms.

It turns out that with the assumption that messages have unbounded size,
vertices can just send to their neighbors at each round all the information that
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they have received so far, and in t rounds each vertex v “knows” its neighborhood
Bt(v) at distance t (the set of all vertices at distance at most t from v). More
specifically v knows the labelled subgraph of G induced by Bt(v) (where the
labels are the identifiers of the vertices), and nothing more, and the output of v
is based solely on this information.

The goal is to minimize the round complexity. Since in t rounds each vertex
sees its neighborhood at distance t, after a number of rounds equal to the diam-
eter of G, each vertex sees the entire graph. Since each vertex has unbounded
computational power, a distinguished vertex (the vertex with the smallest iden-
tifier, say) can compute an optimal solution of the problem and communicate
this solution to all the vertices of the graph. This shows that any problem can
be solved in a number of rounds equal to the diameter of the graph, which is
at most n when G is connected. The goal is to obtain algorithms that are sig-
nificantly more efficient, i.e., of round complexity O(log n), or even O(log∗ n),
where log∗ n is the number of times we have to iterate the logarithm, starting
with n, to reach a value in (0, 1].

3 Maximum Degree

In this section we will need the following consequence of a result of Aubry, Godin
and Togni [2, Corollary 8] (see also [13]).

Theorem 4 ([2]). Let q � 1 be an integer and let P = v1, v2, . . . , v2q+1 be a
path. Assume that for i ∈ {1, 2q + 1} the vertex vi has a list L(vi) of at least
q + 1 colors, and for any 2 � i � 2q, vi has a list L(vi) of at least 2q + 1 colors.
Then each vertex vi of P can be assigned a subset Si ⊆ L(vi) of q colors, so that
adjacent vertices are assigned disjoint sets.

In a graph G, we say that a path P is an induced path if the subgraph of
G induced by V (P ), the vertex set of P , is a path. The length of a path is its
number of vertices. Note that shortest paths are induced paths, and in particular
every connected graph that has no induced path of length k has diameter at most
k − 2.

We are now ready to prove Theorem 1, which we restate here for the conve-
nience of the reader.

Theorem 1. For any integer q � 1, and any n-vertex graph G of maximum
degree Δ � 3, without KΔ+1, a (qΔ + 1 : q)-coloring of G can be computed in
O(q3Δ2q + q log∗ n) rounds deterministically in the LOCAL model.

Proof. The first step is to construct the graph H1, whose nodes are all the
induced paths of length 2q + 1 in G, with an edge between two nodes of H1 if
the corresponding paths in G share at least one vertex. So H1 can be seen as
the intersection graph of the induced paths of length 2q + 1 of G. Note that
any communication in H1 can be emulated in G, by incurring a multiplicative
factor of O(q) on the round complexity. Note that H1 has at most n · Δ2q
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vertices and maximum degree O(q2Δ2q) (given a path P , one has O(q2) possible
choices for the position of the intersection vertex x on P and on an intersecting
path, then at most Δ2q possible ways of extending x into such an intersecting
path). It follows that a maximal independent set S1 in H1 can be computed in
O(Δ(H1)+log∗(|V (H1)|)) = O(q2Δ2q +log∗(Δ2qn)) = O(q2Δ2q +log∗ n) rounds
in G1 [5], and thus in O(q3Δ2q + q log∗ n) rounds in G.

Observe that the set S1 corresponds to a set of vertex-disjoint induced paths
of length 2q + 1 in G. Let P =

⋃
P∈S1

V (P ). By maximality of S1, the graph
G − P has no induced path of length 2q + 1, and in particular each connected
component C of G − P has diameter at most 2q − 1. Each such component C
has indeed a (qΔ + 1:q)-coloring c (since C, as a subgraph of G, is Δ-colorable,
by Brooks’ theorem), which can be computed in O(q) rounds. Our next step
is to extend this coloring c of G − P to P. To this end, define a graph H2

whose nodes are the elements of S1, in which two nodes are adjacent if the two
corresponding paths are adjacent in G (i.e., some edge of G has a vertex in
each of these two paths). Observe that H2 has at most n nodes and maximum
degree O(qΔ). So a proper coloring c2 of H2 with t = O(qΔ) colors 1, 2, . . . , t
can be found in O(qΔ + log∗ n) rounds in H2 [5] (and thus in O(q2Δ + q log∗ n)
rounds in G). For each color i, consider the paths of P of color i in c2. We
extend the current partial coloring of G to these paths (which are pairwise non-
adjacent by definition) using Theorem 4. For each of these paths, each vertex
starts with qΔ + 1 available colors and the coloring of the neighborhood of this
path forbids at most q(Δ − 2) colors for each internal vertex of the path, and at
most q(Δ − 1) colors for each endpoint of the path. Thus each internal vertex
of a path of P has a list of 2q + 1 colors and each endpoint has a list of q + 1
colors, as required for the application of Theorem 4. The extension thus takes
t = O(qΔ) steps, each taking O(q) rounds, and thus the final round complexity is
O(q3Δ2q + q log∗ n). �

We now prove that finding a (qΔ :q)-coloring is significantly harder. We will
use a reduction from the sinkless orientation problem: given a bipartite n-vertex
Δ-regular graph G, with Δ � 3 we have to find an orientation of the edges of
G so that each vertex has at least one outgoing edge. It was proved that in the
LOCAL model this takes Ω(log log n) rounds for a randomized algorithm [9] (see
also [11]) and Ω(log n) for a deterministic algorithm [11] (see also [7]). Note that
the results in [9] and [7] are proved for Δ = 3, while the results of [11] are proved
for any Δ � 3.

Theorem 5. For any integers Δ � 3 and q � 1, obtaining a (qΔ : q)-coloring
of an n-vertex Δ-regular graph with no KΔ+1 takes Ω(log log n) rounds for a
randomized algorithm and Ω(log n) rounds for a deterministic algorithm in the
LOCAL model.

Proof. Let A be a distributed algorithm which returns a (qΔ : q)-coloring of any
n-vertex Δ-regular graph G with no KΔ+1 within f(n) rounds, for every integer
q � 1. Note that such an algorithm exists with f(n) � n, since by Brook’s
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Fig. 1. The construction of H from G in the proof of Theorem 5, for Δ = 3.

theorem G is Δ-colorable, and we obtain a (qΔ : q)-coloring of G by exploding
each color into q copies in a Δ-coloring of G (that we find for free once each
node has a complete knowledge of the graph G within n rounds).

Consider a bipartite Δ-regular n-vertex graph G, in which we want to com-
pute a sinkless orientation. Let H be the Δn-vertex Δ-regular graph obtained
from G by replacing each vertex v by a clique v1, v2, . . . , vΔ on Δ vertices (see
Fig. 1). Note that H does not contain any copy of KΔ+1. We now apply the
algorithm A on H in order to compute a (qΔ : q)-coloring c of H. Note that
each copy of KΔ in H uses all qΔ colors, and thus the set S of vertices of H
whose set of colors in c contains the color 1 intersects each copy v1, . . . , vΔ of
KΔ in H in a single vertex (say v1, up to renaming of the vertices of H). Let
ev be the edge of H that contains v1, but is disjoint from v2, . . . , vΔ. Then for
every vertex v of G we orient ev from v to the other endpoint of ev in H. Note
that this gives a partial orientation of H (an edge cannot be oriented in both
directions, since otherwise the two endpoints contain color 1, which is a contra-
diction), which can be transferred to a partial orientation of G by contracting
each clique v1, . . . , vΔ back to the vertex v. Since S intersects each copy of KΔ

in H, the resulting partial orientation of G is sinkless, as desired.
We have described a distributed algorithm which returns a sinkless orien-

tation of any bipartite Δ-regular graph n-vertex graph within f(Δn) rounds,
hence f(n) = Ω

(
log n

Δ

)
if A is deterministic, or f(n) = Ω

(
log log n

Δ

)
if A is

randomized. �

A natural question is whether one can find another description of fractional
coloring with bounded size certificates for which the existence of a fractional
coloring of total weight Δ can be determined faster. The existence of such a
fractional coloring implies the existence of an independent set of weight at least
1
Δ in G. It can be observed that the same proof as that of Theorem 5, shows
that finding such an independent set in a graph of maximum Δ with no KΔ+1

is as hard as finding a sinkless orientation.
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4 Coloring the Grid

Let G(n,D) be the D-dimensional grid with vertex set [n]D, i.e., two distinct
vertices x = (x1, . . . , xD) and y = (y1, . . . , yD) in [n]D are adjacent in G(n,D)
if and only if d1(x, y) =

∑D
i=1 |xi − yi| = 1 (where d1 denotes the usual taxicab

distance). We assume that all the vertices know their identifier (but do not have
access to their own coordinates in the grid). We note that our results do not
assume any knowledge of directions in the grid (i.e., a consistent orientation of
edges, such as South→North and West→East in 2 dimensions), in contrast with
the results of [8].

Note that the distance between vertices in the grid coincides with the taxicab
distance d1 in R

D. In this section it will be convenient to work instead with the
Chebyshev distance d∞(x, y) = max1�i�n |xi − yi|, since balls with respect to
d∞ are grids themselves, as well as their (possibly empty) pairwise intersections.
We observe that any communication between two nodes at distance d∞ at most
� can be emulated within D · � rounds, hence working with d∞ rather than
with d1 does not have a significant impact in terms of round complexity. In the
remainder of this section, all distances refer to the d∞-distance.

We now prove Theorem 2, restated here for convenience.

Theorem 2. For every integers D � 1 and q � 1, a (2q + 4 · 6D :q)-coloring of
the D-dimensional grid G(n,D) can be found in O

(
D�(2�)D +D� log∗ n

)
rounds

deterministically in the LOCAL model, where � = q + 2 · 6D.

Proof. Let G = G(n,D) and � = q + 2 · 6D. We assume that n � 2�, for
otherwise G has diameter (with respect to d∞) at most O(�) and a desired
coloring can be found in O(D�) rounds. We start by finding an inclusionwise
maximal independent set I of G[�], the graph obtained from G by linking each
pair of vertices at (d∞-)distance at most � from each other, which are therefore
linked by a path of length at most D� in G. Note that the maximum degree of G[�]

corresponds to the maximum size of a ball of radius � in a D-dimensional grid,
that is at most (2�+1)D; therefore I can be constructed in O((2�+1)D +log∗ n)
rounds in G[�] [5], and this can be emulated in O

(
D�(2�)D + D� log∗ n

)
rounds

in G.
A given vertex x of the grid can find the list Lx of vertices of coordinates x+e

for every e ∈ {−1, 1}D within D rounds (although x is not aware of the absolute
directions in the grid corresponding to each of these vertices). This can be done
with the following procedure. Given a vertex y ∈ V (G), we say that a vertex
z ∈ V (G) is a 1-neighbour of y if N(z) contains y, and for every 2 � i � D we
say that z is an i-neighbour of y if N(z) contains at least two (i − 1)-neighbours
of y. Then Lx is the list of vertices y ∈ V (G) such that x is a D-neighbour of y,
and this list can be found within D rounds. Given x and y = x+e ∈ Lx, finding
z = x + 2e can be done in 2D rounds, since z is the vertex in Ly furthest away
from x with respect to the d1-distance in G (and more generally x + ie can be
found in iD rounds).

The next step of the coloring procedure is as follows. Every vertex x ∈ I
chooses a direction ex ∈ {−1, 1}D in such a way that x[i] := x + i · ex ∈ [n]D is
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well-defined for every i � � (this is possible since n � 2�, and such a direction
can be chosen in � · D rounds).

For any x ∈ I and 1 � i � �, we define a set B(x, i) as follows. Each vertex
y considers the vertex x ∈ I of smallest identifier such that d∞(y, x[i]) � 2� and
joins the set B(x, i). Equivalently, B(x, i) is the ball of center x[i] and radius 2�,
in which we remove all vertices at distance at most 2� from x′[i] for some x′ ∈ I

of smaller identifier than that of x. We also let B̃(x, i) be obtained from B(x, i)
after removing all vertices at distance exactly 2� from x[i]. When some vertex v

is in B(x, i) \ B̃(x, i), we say that v is a boundary vertex for x[i]. An example of
such a partition of the grid is depicted in Fig. 2.

Each vertex v ∈ V (G) is at distance at most � from at least one vertex x ∈ I
by maximality of I, and therefore at distance at most 2� from x[i] for every i � �.
It follows that for every fixed 1 � i � �, the collection of the sets B(x, i) over all
x ∈ I forms a partition of V (G).

We now show that for each i, no two distinct sets B̃(x, i) and B̃(y, i) (with
x, y ∈ I) are connected by an edge. Indeed, assume for the sake of contradiction
that there is an edge uv with u ∈ B̃(x, i) and v ∈ B̃(y, i), for two distinct
vertices x and y in I with ID(x) < ID(y), where ID(x) denotes the identifier
of x. Then d∞(x, u) � 2� − 1 and thus d∞(x, v) � 2� which contradicts the
fact that v �∈ B(x, i) since ID(x) < ID(y). This shows that no two distinct sets
B̃(x, i) and B̃(y, i) (with x, y ∈ I) are connected by an edge, as desired. This
implies that all the components of the subgraph Gi of G induced by

⋃
x∈I B̃(x, i)

(which is bipartite) have diameter O(�), and in particular for every 1 � i � �,
we can find a proper 2-coloring ci of Gi with colors in {2i − 1, 2i} within O(�)
rounds. We now show that the union of these colorings over all i � � yields a
(2q + 4 · 6D : q)-coloring c of G.

The total number of colors is 2� = 2q+4 ·6D, so it remains to show that each
vertex v ∈ V (G) is assigned at least q colors in c. This is equivalent to showing
that each vertex v ∈ V (G) is a boundary vertex for x[i] for at most 2·6D different
combinations of x and i. If v is a boundary vertex for x[i], then x[i] lies on the
boundary of the ball Bv of center v and radius 2�. Note that every line intersects
the boundary of a convex polytope in at most two points or in a segment, and in
the latter case the line is contained in the hyperplane defining a facet. Since we
have chosen the directions ex ∈ {−1, 1}D while balls in d∞ are grids (bounded
by axis-parallel hyperplanes), this shows that for every vertex x ∈ I, the set of
vertices {x[i] : 1 � i � �} intersects the boundary of Bv at most twice, and if
the intersection is non-empty then x is at distance at most 3� from v. For a fixed
vertex v there can be at most 6D vertices in NG[3�](v) ∩ I. To see this, for every
(i1, . . . , iD) ∈ {−3,−2, . . . , 2}D, we let S(i1,...,iD) be the set of vertices y ∈ V (G)
of coordinates (y1, . . . , yD) satisfying vj + ij · � � yj � vj + (ij + 1) · � for every
1 � j � D. It is straightforward to see that the diameter of S(i1,...,iD) is �, so it
contains at most 1 element of I. Since moreover the collection

(
S(i1,...,iD)

)
covers

NG[3�](v), the results follows, which concludes the proof. �
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Fig. 2. An example of the partition of the 2-dimensional grid into the sets B(x, i); here
2� = 4, and the labels of the vertices are increasing according to the lexicographical
ordering of the coordinates. The regions containing the boundary vertices are lighter;
the vertices x[i] (for x ∈ I) are colored in red. (Color figure online)

5 Sparse Graphs

The average degree of a graph G = (V,E), denoted by ad(G), is defined as the
average of the degrees of the vertices of G (it is equal to 0 if V is empty and to
2|E|/|V | otherwise).

In this section we are interested in graphs of average degree at most 2+ε, for
some small ε > 0, and with no connected component isomorphic to a short cycle
(later we will need the stronger property that all cycles in the graph are large).
We first prove that they contain a linear number of vertices that are either of
degree at most 1 or belong to long chains of vertices of degree 2, and such a set
can be found efficiently. Note that the condition that no connected component
is isomorphic to a short cycle is necessary (a disjoint union of short cycles has
average degree 2 but no vertex of degree 1 and no long chain of vertices of degree
2).

Lemma 1. Let G be an n-vertex graph with ad(G) � 2 + 1
40q and without com-

ponent isomorphic to a cycle of length less than 2q + 2, for some q � 1. Let S
be the set of vertices of degree at most 1 in G, and let P be the set of vertices
belonging to a path consisting of at least 2q + 1 vertices, all of degree 2 in G (in
particular each vertex of P has degree 2 in G). Then |S ∪ P | � 1

40q n.
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Proof. Let ε = 1
40q . For i = 0, 1, 2, let Vi be the set of vertices of degree i, and

let V +
3 be the set of vertices of degree at least 3. We denote by n0, n1, n2, and

n+
3 the cardinality of these four sets. Since G has average degree at most 2 + ε,

we have

n1 + 2n2 + 3n+
3 � n1 + 2n2 +

∑

v∈V +
3

dG(v) � (2 + ε)(n0 + n1 + n2 + n+
3 ),

and thus n+
3 � 2+ε

1−ε · n0 + 1+ε
1−ε · n1 + ε

1−ε · n2 � 5
2 n0 + 3

2 n1 + 3
2ε n2 (since ε � 1

8 ).
Let H be the multigraph obtained from G by removing all connected com-

ponents isomorphic to a cycle, and then replacing each maximal path of vertices
of degree 2 in G by a single edge (i.e., for each maximal path P in which all
internal vertices have degree 2 in G, we delete these internal vertices and add
an edge between the two endpoints of P ). Note that H has no vertices of degree
2, and it contains precisely n0 + n1 + n+

3 vertices. Observe also that the number
mH of edges of H is precisely 1

2

∑
v∈V0∪V1∪V +

3
dG(v). It thus follows from the

inequalities above that

mH � 1
2 (2 + ε)(n0 + n1 + n2 + n+

3 ) − n2

= (1 + ε
2 )(n0 + n1 + n+

3 ) + ε
2 · n2

� 5
4 n0 + 5

4 n1 + 5
4 ( 52 n0 + 3

2 n1 + 3
2ε n2) + ε

2 · n2.

� 5(n0 + n1) + 3ε n2.

We now set S = V0 ∪ V1. Thus, if |S| = n0 + n1 � 1
40q n = ε n we have sets

S and P = ∅ satisfying all required properties. Hence, we can assume in the
remainder of the proof that

n0 + n1 � ε n � ε (n0 + n1 + n2 + n+
3 )

� ε (n0 + n1 + n2 + 5
2 (n0 + n1) + 3

2ε n2)
� (n0 + n1) 72 ε + n2 ε(1 + 3

2 ε)
� (n0 + n1) 72 ε + 2n2 ε

It follows that
n0 + n1 � 1

1 − 7
2 ε

· 2n2 ε � 3ε n2,

since ε � 1
12 . This implies that n+

3 � 9ε n2 since otherwise the average degree
would be larger than (2 + ε). Consequently, we obtain n � (1 + 12ε)n2, and
mH � 18ε n2.

In G, remove all the vertices of degree at most 1 and at least 3. We are left
with mH (possibly empty) paths P1, P2, . . . , PmH

of vertices of degree 2 in G,
each corresponding to an edge of H (each edge of H is either a path in G of
vertices of degree two, or a real edge of G in which case the corresponding path
is empty), plus a certain number of cycles (consisting of vertices of degree 2 in
G). Since G has no connected component isomorphic to a cycle of length less
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than 2q + 2, each vertex of such a cycle is included in a path consisting of at
least 2q + 1 vertices of degree 2 in G, so all these vertices can be added to the
set P . We also add to P all the paths Pi (1 � i � mH) containing at least 2q +1
vertices. As a consequence, the set P contains all the vertices of degree 2 in G,
except those which only belong to paths Pi of at most 2q vertices. So we have
|P | � n2 − 2qmH . By the inequalities above, we have

n2 − 2qmH � n2(1 − 18ε · 2q) � 1 − 2 · 18εq

1 + 12ε
· n � n

40 ,

where the last inequality follows from ε = 1
40q . Since n

40 � ε n, the set P contains
at least ε n vertices, as desired. �

The girth of a graph G is the length of a shortest cycle in G (if the graph is
acyclic we set its girth to +∞). We recall that the maximum average degree of
a graph G, denoted by mad(G), is the maximum of the average degrees of the
subgraphs of G. We now explain how to apply Lemma 1 to design a distributed
algorithm for (2q + 1:q)-coloring. Note that Theorem 3, which we restate below
for convenience, requires that the maximum average degree of G is close to 2
and the girth is at least 2q + 2, while the previous result only required that the
average degree is close to 2, and there is no component isomorphic to a cycle of
length less than 2q +2. As observed by a reviewer, there are similarities between
our approach and the rake and compress technique of Miller and Reif [23] (see
also [3] and [12] for distributed algorithms in trees using this technique).

Theorem 3. Let G be an n-vertex graph with girth at least 2q+2, and mad(G) �
2 + 1

40q , for some fixed q � 1. Then a (2q + 1:q)-coloring of G can be computed
deterministically in O(q log n + q2) rounds in the LOCAL model.

Proof. The algorithm proceeds similarly as in [18]. We set G0 := G and for
i = 1 to � = O(log n) we define Si−1 ∪ Pi−1 as the set of vertices of degree at
most 2 given by applying Lemma 1 to Gi−1 (which has average degree at most
2 + 1

40q since mad(G) � 2 + 1
40q ), and set Gi := Gi−1 − (Si−1 ∪ Pi−1). Note that

each Si ∪ Pi consists of a set of vertices of V (Gi) of size at least 1
40q |V (Gi)|,

and in particular we can choose � = O(log n) such that G� is empty. Note that
the induced subgraph G[Si ∪ Pi] = Gi[Si ∪ Pi] consists of isolated vertices and
edges, paths consisting of at least 2q+1 vertices, all of degree 2 in Gi, and cycles
consisting of at least 2q + 2 vertices, all of degree 2 in Gi.

Note that each Si ∪ Pi can be computed in O(q) rounds (each vertex only
needs to look at its neighborhood at distance at most 2q+1), and thus the decom-
position of G into S1, P1, . . . , S�, P� (and the sequence of graphs G1, . . . , G�) can
be computed in O(q log n) rounds.

For each 1 � i � �, in parallel, compute a maximal set Ii of vertices at
pairwise distance at least 2q +1 in G[Si ∪Pi]. Recall that the vertices of Si have
degree at most 1 in Gi, so they induce isolated vertices or isolated edges in Gi

(and G), while Pi induces a disjoint union of cycles of length at least 2q + 2 and
paths of at least 2q+1 vertices, each consisting only of vertices of degree 2 in Gi.
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In particular, by maximality of Ii, the set Pi − Ii induces a collection of disjoint
(and pairwise non-adjacent) paths of at least 2q + 1 and at most 4q + 2 vertices
(except the first and last segment of each path of Pi, which might contain fewer
vertices). For each path of Pi, discard from Ii the first and last vertex of Ii in the
path (these two vertices might coincide if a path of Pi contains a single vertex of
Ii), and call I ′

i the resulting subset of Ii (note that each vertex x ∈ Ii can check
in O(q) rounds if it belongs to I ′

i by inspecting the lengths of the two subpaths
of vertices of degree 2 adjacent to x, if any of them is smaller than 2q + 1 then
x ∈ I ′

i). By maximality of Ii and the definition of I ′
i, the set Pi − I ′

i induces a
collection of disjoint (and pairwise non-adjacent) paths of length at least 2q + 1
and at most 8q + 2. Note that each graph G[Si ∪ Pi] has maximum degree at
most 2, so a maximal set Ii of vertices at pairwise distance at least 2q + 1 can
be computed in O(q + log∗ n) rounds in the (2q + 1)-th power of G[Si ∪ Pi] [5],
and thus in O(q2 + q log∗ n) rounds in G. Since the computation of the sets Ii is
made in parallel in each G[Si ∪ Pi], this step takes O(q2 + log∗ n) rounds.

We now color each Si ∪ Pi in reverse order, i.e., from i = � − 1 to 0. For
the components induced by Si this can be done greedily, since the vertices have
degree at most 1 in Gi, they have at most one colored neighbor and thus at
most q forbidden colors (and at least q +1 available colors). For the components
induced by Pi, we start by coloring I ′

i arbitrarily, and then extend the color-
ing greedily to Pi − I ′

i until each path of uncolored vertices has size precisely
2q + 1 (this can be done in O(q) rounds). We then use Theorem 4 (each end-
point of an uncolored path has a list of at least 2q + 1 − q � q + 1 available
colors). Each coloring extension takes O(q) rounds, so overall this part takes
O(q log n) rounds. It follows that the overall round complexity is O(q2 + q log n),
as desired. �

This immediately implies the following.

Corollary 1. Let G be an n-vertex tree. Then for any fixed q � 1, a (2q +1:q)-
coloring of G can be computed in O(q log n + q2) rounds.

Note that given any (2q + 1 : q)-coloring, we can deduce a (q + 2)-coloring
in a single round (each vertex chooses the smallest color in its set of q colors
given by the (2q + 1 : q)-coloring), while coloring trees with a constant number
of colors takes Ω(log n) rounds [21], so the round complexity in Corollary 1 is
best possible.

For k � 1, a graph G is k-path-degenerate if any non-empty subgraph H of
G contains a vertex of degree at most 1, or a path consisting of k vertices of
degree 2 in H.

Lemma 2. If G is k-path-degenerate, then mad(G) � 2 + 2
k .

Proof. Let H be a subgraph of G. Let n and m be the number of vertices and
edges of H. We prove that ad(H) = 2m/n � 2 + 2

k by induction on n. If H
is empty, then the result is trivial, so assume that n � 1. Since G is k-path-
degenerate, H contains a vertex of degree at most 1 or a path of k vertices
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of degree 2 in H. Assume first that H contains a vertex v of degree at most
1. Then H − v contains n − 1 vertices and at least m − 1 edges, and thus by
induction 2 + 2

k � ad(H − v) � 2m−2
n−1 . It follows that 2m � (n − 1)(2 + 2

k ) + 2 �
n(2 + 2

k ), and thus ad(H) � 2 + 2
k , as desired. Assume now that H contains

a path P of k vertices of degree 2 in H. Then H − P contains n − k vertices
and m − k − 1 edges, and by induction 2 + 2

k � ad(H − P ) = 2m−2k−2
n−k . It

follows that 2m � (n − k)(2 + 2
k ) + 2k + 2 � n(2 + 2

k ), thus ad(H) � 2 + 2
k ,

as desired. �

It was proved by Gallucio, Goddyn, and Hell [17] that if C is a proper minor-
closed class, or a class closed under taking topological minors, then for any k � 1
there is a girth g(k) such that any graph G ∈ C with girth at least g(k) is k-
path-degenerate. Using Lemma 2 and Theorem 3, this immediately implies the
following.

Corollary 2. For any integer q � 1 and any proper class C that is closed under
taking minors or topological minors, there is an integer g such that any n-vertex
graph G ∈ C of girth at least g can be (2q + 1:q)-colored in O(log n) rounds.

Acknowledgement. We thank the anonymous reviewers for their detailed comments
and suggestions.
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Abstract. The locality of a graph problem is the smallest distance T
such that each node can choose its own part of the solution based on its
radius-T neighborhood. In many settings, a graph problem can be solved
efficiently with a distributed or parallel algorithm if and only if it has a
small locality. In this work we seek to automate the study of solvability
and locality: given the description of a graph problem Π, we would like to
determine if Π is solvable and what is the asymptotic locality of Π as a
function of the size of the graph. Put otherwise, we seek to automatically
synthesize efficient distributed and parallel algorithms for solving Π. We
focus on locally checkable graph problems; these are problems in which
a solution is globally feasible if it looks feasible in all constant-radius
neighborhoods. Prior work on such problems has brought primarily bad
news: questions related to locality are undecidable in general, and even
if we focus on the case of labeled paths and cycles, determining locality
is PSPACE-hard (Balliu et al. PODC 2019). We complement prior nega-
tive results with efficient algorithms for the cases of unlabeled paths and
cycles and, as an extension, for rooted trees. We study locally checkable
graph problems from an automata-theoretic perspective by representing
a locally checkable problem Π as a nondeterministic finite automaton M
over a unary alphabet. We identify polynomial-time-computable proper-
ties of the automaton M that near-completely capture the solvability
and locality of Π in cycles and paths, with the exception of one specific
case that is co-NP-complete.

1 Introduction

In this work, our goal is to automate the design of efficient distributed and
parallel algorithms for solving graph problems, as far as possible. In the full
generality, such tasks are undecidable: for example, given a Turing machine
M , we can easily construct a graph problem Π such that there is an efficient
distributed algorithm for solving Π if and only if M halts [27]. Nevertheless, we
are bringing here good news.

We focus on so-called locally checkable graph problems in paths, cycles, and
rooted trees, and we show that in many cases, the task of designing efficient
distributed or parallel algorithms for such problems can be automated, not only
in principle but also in practice.
c© Springer Nature Switzerland AG 2021
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We study the locality of graph problems from an automata-theoretic perspec-
tive. To introduce the concrete research questions that we study, we first define
one specific model of distributed computing, the LOCAL model—through this
model we can define the fundamental concept of locality. However, as we will
discuss in Sect. 1, our results are directly applicable in many other synchronous
models of distributed and parallel computing as well.

Background: Locality and Round Complexity in Distributed Comput-
ing. In classical centralized sequential computing, a particularly successful idea
has been the comparison of deterministic and nondeterministic models of com-
puting. The question of P vs. NP is a prime example: given a problem in which
solutions are easy to verify, is it also easy to solve?

In distributed computing a key computational resource is locality, and hence
the distributed analogue of this idea can be phrased as follows: given a problem
in which solutions can be verified locally, can it also be solved locally?

This question is formalized in the study of so-called locally checkable labeling
(LCL) problems in the LOCAL model of distributed computing. LCL problems are
graph problems in which solutions are labelings of nodes and/or edges that can be
verified locally : if a solution looks feasible in all constant-radius neighborhoods,
then it is also globally feasible [27]. A simple example of an LCL problem is
proper 3-coloring of a graph: if a labeling of the nodes looks like a proper 3-
coloring in the radius-1 neighborhood of each node, then it is by definition a
feasible solution.

In the LOCAL model of computing [25,28], we assume that the nodes of the
input graph are equipped with unique identifiers from {1, 2, . . . ,poly(n)}, where
n is the number of nodes. A distributed algorithm with a time complexity T (n)
is then a function that maps the radius-T (n) neighborhood of each node into
its local output. The local output of a node is its own part of the solution, e.g.,
its own color in the graph coloring problem. Here we say that the algorithm
has locality T ; the locality of a problem is the smallest T such that there is an
algorithm for solving it with locality T .

If we interpret the input graph as a computer network, with nodes as com-
puters and edges as communication links, then in T synchronous communication
rounds all nodes can gather full information about their radius-T neighborhood.
Hence time (number of communication rounds) and distance (how far one needs
to see) are interchangeable in the LOCAL model. In what follows, we will pri-
marily use the term round complexity.

Prior Work: The Complexity Landscape of LCL Problems. Now we
have a natural distributed analog of the classical P vs. NP question: given an
LCL problem, what is its round complexity in the LOCAL model? This is a
question that was already introduced by Naor and Stockmeyer in 1995 [27], but
the systematic study of the complexity landscape of LCL questions was started
only very recently, around 2016 [4–6,8,9,12,13,19,21,22,30].
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By now we have got a relatively complete understanding of possible complex-
ity classes: to give a simple example, if we look at deterministic algorithms in
the LOCAL model, there are LCL problems with complexity Θ(log∗ n), and there
are also LCL problems with complexity Θ(log n), but it can be shown that there
is no LCL problem with complexity between ω(log∗ n) and o(log n) [8,12].

However, much less is known about how to decide the complexity of a given
LCL problem. Many such questions are undecidable in general, and undecidabil-
ity holds already in relatively simple settings such as LCLs on 2-dimensional
grids and tori [9,27]. We will zoom into graph classes in which no such obstacle
exists.

Our Focus: Cycles, Paths, and Rooted Trees. Throughout this work, our
main focus will be on paths and cycles. This may at first seem highly restrictive,
but as we will show in the full version [14], once we understand LCL problems in
paths and cycles, through reductions we will also gain understanding on so-called
edge-checkable problems in rooted trees.

In cycles and paths, there are only three possible round complexities: O(1),
Θ(log∗ n), or Θ(n) [1]. Randomness does not help in cycles and paths—this is a
major difference in comparison with trees, in which there are LCL problems in
which randomness helps exponentially [7,12,29].

If our input is a labeled path or cycle, the round complexity is known to
be decidable, but unfortunately it is at least PSPACE-hard [1]. On the other
hand, the round complexity of LCLs on unlabeled directed cycles has a simple
graph-theoretic characterization [9].

However, many questions are left open by prior work, and these are the
questions that we will resolve in this work:

– What happens in undirected cycles?
– What happens if we study paths instead of cycles?
– Can we also characterize the existence of a solution for all graphs in a graph

class?

To illustrate these questions, consider the following problems that can be
expressed as LCLs:

– Π2col: finding a proper 2-coloring,
– Πorient: finding a globally consistent orientation (i.e., an orientation of edges

such that it does not contain a node with two incoming or outgoing edges).

The round complexity of Π2col is Θ(n) both in cycles and paths, regardless of
whether they are directed or undirected, while the complexity of Πorient is Θ(n)
in the undirected setting but it becomes O(1) in the directed setting. Problems
Π2col and Πorient are always solvable on paths, and Πorient is always solvable on
cycles, but if we have an odd cycle, then a solution to Π2col does not exist. In
particular, for Π2col there are infinitely many solvable instances and infinitely
many unsolvable instances. Our goal in this work is to develop a framework that
enables us to make these kind of observations automatically for any given LCL
problem.
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LCLs as Nondeterministic Automata over a Unary Alphabet. In this
work we study the solvability and the round complexity of LCL problems from
an automata-theoretic perspective. Specifically, we generalize the graph-theoretic
characterization for LCL problems on unlabeled directed cycles in [9] to all paths
and cycles, directed and undirected, and identify a connection between such a
characterization and automata theory.

This connection allows us to leverage prior work on automata theory. For
example, as we will later see in this work, the co-NP-completeness of the uni-
versality problem for nondeterministic finite automata [31] allows us to deduce
the NP-hardness for distinguishing between zero and infinitely many unsolvable
instances for LCL problems on paths.

We would like to emphasize that there are many ways to interpret LCLs as
automata—and the approach that might seem most natural does not make it
possible to directly leverage prior work on automata theory. We will later see
that the approach we take enables us to identify direct connections between
distributed computational complexity and automata theory.

Let us first briefly describe the “obvious” encoding and show why it does not
achieve what we want: A labeling of a directed path with symbols from some
alphabet Σ can be interpreted as a string. Then a locally checkable problem can
be interpreted as a regular language over alphabet Σ. We can then represent an
LCL problem Π as a finite automaton M such that M accepts a string x ∈ Σ∗

if and only if a directed path labeled with x is a feasible solution to Π.
However, such an interpretation does not seem to lead to a useful theory of

LCL problems. To see one challenge, consider these problems on paths:

– Π2col: finding a proper 2-coloring,
– Π3col: finding a proper 3-coloring.

These are fundamentally different problems from the perspective of LCLs in the
LOCAL model: problem Π2col requires Θ(n) rounds while problem Π3col is solv-
able in Θ(log∗ n) rounds [15]. However, if we consider analogous automata M2col

and M3col that recognize these solutions, it is not easy to identify a classical
automata-theoretic concept that would separate these cases.

Instead of identifying the alphabet of the automaton with the set of labels in
the LCL, it turns out to be a better idea to have a unary alphabet and identify
the set of states of the automaton with the set of labels. In brief, the perspective
that we take throughout this work is as follows (this is a simplified version of
the idea):

Assume Π is an LCL problem in which the set of output labels is Γ . We
interpret Π as a nondeterministic finite automaton MΠ over the unary
alphabet Σ = {o} such that the set of states of MΠ is Γ .

At first this approach may seem counterintuitive. But as we will see in this work,
it enables us to connect classical automata-theoretic concepts to properties of
LCLs this way.
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To give one nontrivial example, consider the question of whether a given LCL
problem Π can be solved in O(log∗ n) rounds. With the above interpretation, this
turns out to be directly connected to the existence of synchronizing words [10,17],
in the following nondeterministic sense: we say that w is a synchronizing word
for an NFA M that takes M into state t if, given any starting state s ∈ Q there
is a sequence of state transitions that takes M to state t when it processes w.
Such a sequence w is known as the D3-directing word introduced in [24] and
further studied in [16,20,23,26]. We will show that the following holds (up to
some minor technicalities):

An LCL on directed paths and cycles has a round complexity of O(log∗ n) if
and only if a strongly connected component of the corresponding NFA M
over the unary alphabet has a D3-directing word.

Moreover, we will show that for the unary alphabet, the existence of such a word
can be decided in polynomial time in the size of the NFA M, or equivalently,
in the size of the description of the LCL Π. In contrast, when the size of the
alphabet is at least two, the problem of deciding the existence of a D3-directing
word is known to be PSPACE-hard [26].

We would like to emphasize that this connection between LCL problems and
automata theory is not inherent to unlabeled paths and cycles. For example, tree
automata can be used to encode LCL problems on bounded-degree trees, and to
encode LCL problems with input labels Σ, it suffices to consider automata over
the alphabet Σ. Whether such a connection beyond unlabeled paths and cycles
can lead to new results is an interesting future work direction.

Contributions. We study LCL problems in unlabeled cycles and paths, both
with and without consistent orientation. For each of these settings, we show how
to answer the following questions in a mechanical manner, for any given LCL
problem Π:

– How many unsolvable instances there are (none, finitely, or infinitely many)?
– How many solvable instances there are (none, finitely, or infinitely many)?
– What is the round complexity of Π for solvable instances (O(1), Θ(log∗ n),

or Θ(n))?

We show that all such questions are not only decidable but they are in NP or
co-NP, and almost all such questions are in P, with the exception of a couple
of specific questions that are NP-complete or co-NP-complete. We also give a
complete classification of all possible case combinations—for example, we show
that if there are infinitely many unsolvable instances, then the complexity of the
problem for solvable instances cannot be Θ(log∗ n).

We give a uniform automata-theoretic formalism that enables us to study
such questions, and that makes it possible to leverage prior work on automata
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Table 1. Classification of LCL problems in cycles and paths. This table defines 11
types, labeled with A–K, based on six properties (Definitions 3, 6–10); see Fig. 3 for
examples of problems of each type. For each problem type, we show what is the number
of solvable instances, the number of unsolvable instances, and the distributed round
complexity for both directed and undirected paths and cycles. The cases marked with
“×” refer to problems that are not well-defined or that are never solvable. For the
cases labeled with “?” deciding the number of unsolvable instances is NP-complete (or
co-NP-complete depending on the way one defines the decision problem). However, for
all other cases the type directly determines both solvability, and all these cases are also
decidable in polynomial time. The correctness of this classification is proved in the full
version [14].

Type A B C D E F G H I J K

Def. 3: symmetric problem yes yes yes no yes yes no yes no yes no

Def. 6: repeatable state yes yes yes yes yes yes yes yes yes no no

Def. 7: flexible state [9] yes yes yes yes yes yes yes no no no no

Def. 8: loop [9] yes yes yes yes no no no no no no no

Def. 9: mirror-flexible state yes yes no — yes no — no — no —

Def. 10: mirror-flexible loop yes no no — no no — no — no —

Num. of instances: 0 = zero < = finite ∞ = infinite ? = NP-complete to decide

· solvable cycles ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0 0

· solvable paths ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ < <

· unsolvable cycles 0 0 0 0 < < < ∞ ∞ ∞ ∞
· unsolvable paths < < < < < < < ? ? ∞ ∞

Round complexity: � = O(1) � = Θ(log∗ n) � = Θ(n) × = N/A

· directed cycles [9] � � � � � � � � � × ×
· directed paths � � � � � � � � � � �
· undirected cycles � � � × � � × � × × ×
· undirected paths � � � × � � × � × � ×

theory. We also develop new efficient algorithms for some automata-theoretic
questions that to our knowledge have not been studied before.

Finally, we show that our results can be used to analyze also a family of
LCL problems in rooted trees. This demonstrates that the automata-theoretic
framework considered here is applicable also beyond the seemingly restrictive
case of cycles and paths.

Our main result—the complete classification of the solvability and distributed
round complexity of all LCL problems in undirected and directed cycles and paths
is presented in Table 1.
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Extensions to Other Models of Distributed and Parallel Computing.
While we use the LOCAL model of distributed computing throughout this work,
our results are directly applicable also in many other models of distributed and
parallel computing.

In distributed computing we usually assume that the input graph represents
the communication network; each node is a computer, each edge is a communi-
cation link, and the nodes can communicate by passing messages to each other.
However, in parallel computing we usually take a very different perspective: we
assume that the input graph is stored as a linked data structure somewhere in
the shared memory, and we have multiple processors that can access the mem-
ory. In such a setting, directed paths and rooted trees are particularly relevant
families of input, as they correspond to linked lists and tree data structures.

While the settings are superficially different, our upper bounds apply directly
in all such settings. All of our distributed algorithms are based on the observation
that there are two canonical problems: distance-k anchoring (Definition 11) and
distance-k orientation (Definition 12). Both of the canonical problems can be
solved in the message-passing setting with small messages and with little local
memory. Furthermore, when we look at rooted trees (see the full version [14]),
our algorithms are “one-sided”: each node only needs to receive information from
its parent. It follows that our algorithms work also e.g. in the CONGEST model
[28] of distributed computing, and they can be efficiently simulated e.g. in the
classic PRAM model, as well as various modern models of massively parallel
computing.

Our lower bounds are also broadly applicable, as they hold in the LOCAL
model, which is a very strong model of distributed computing (unbounded mes-
sage size; unlimited local storage; unbounded local computation; nodes can talk
to all of their neighbors in parallel). In particular, the lower bounds trivially
hold also the CONGEST model. Adapting the lower bounds to shared-memory
models takes more effort, but it is also possible—see Fich and Ramachandran
[18] for an example of how to turn Ω(log∗ n) lower bounds for the LOCAL model
into Ω(log log∗ n) lower bounds for variants of the PRAM model.

Comparison with Prior Work. In comparison with [1,9,12,13,27], our work
gives a more fine-grained perspective: instead of merely discussing decidability,
we explore the question of which of the decision problems are in P, NP, and
co-NP.

In comparison with the discussion of directed cycles in [9], our work studies a
much broader range of settings. Previously, it was not expected that the simple
characterization of LCLs on directed cycles could be extended in a straightfor-
ward manner to paths or undirected cycles. For example, we can define an infinite
family of orientation problems that can be solved in undirected cycles in O(1)
rounds but that require a nontrivial algorithm; such problems do not exist in
directed cycles, as O(1)-round solvability implies trivial 0-round solvability.

Furthermore, we study the graph-theoretic question of the existence of a
solution in addition to the algorithmic question of the complexity of finding a
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solution, and relate solvability with complexity in a systematic manner; we are
not aware of prior work that would do the same in the context of LCLs in the
LOCAL model.

Our work also takes the first steps towards an effective (i.e., polynomial-
time computable) characterization of LCL problems in trees, by showing how to
characterize so-called edge-checkable problems in rooted trees.

For general LCL problems on bounded-degree trees, previous work [4,11,13]
showed that it is decidable to distinguish between the complexity pairs O(log n)
– nΩ(1) and O(n1/(k+1)) – Ω(n1/k) for any constant k ≥ 1. These algorithms are
not efficient, as these are EXPTIME-hard problems [13].

The previous work [1,4,11,13] studying the complexity landscape of LCL
problems on paths, cycles, and bounded-degree trees with input labels uses a
different connection to automata theory. In their proofs, they classified paths
and trees into a finite number of classes satisfying certain properties using the
pumping lemma for regular languages.

2 Representation of LCLs as Automata

To reiterate, LCL problems [27], broadly speaking, are problems in which the task
is to label nodes and/or edges with labels from a constant-size alphabet (denoted
by Γ ), subject to local constraints. That is, a solution is globally feasible if it
looks good in all radius-r neighborhoods for some constant r. In this section
we will develop a way to represent all LCL problems on paths and cycles as
nondeterministic automata.

In this paper, we consider as input graphs only paths and cycles that
are either undirected (undirected case) or the edges are consistently oriented
(directed case). We say that a cycle or a path has consistently oriented edges if
it does not contain a node with two incoming or outgoing edges.

2.1 Formalizing LCLs as Node-Edge-Checkable Problems

LCL problems can be specified in many different forms, and we have to be able
to capture, among others, problems of the following forms:

– The problem may ask for a labeling of nodes, a labeling of edges, a labeling
of the endpoints of the edges, an orientation of the edges, or any combination
of these.

– The input graph can be a path or a cycle.
– The input graph may be directed or undirected.

As discussed in the recent papers [2,3], a rather elegant way to capture all LCL
problems is the following approach: We imagine that we have split every edge
into two half-edges, which are also called ports. The labeling refers only to the
ports.

More formally, a port or a half-edge p is a pair (e, v) consisting of an edge
e and a node v ∈ e incident to e. Let P be the set of all ports. A labeling is a
function λ : P → Γ from ports to labels from some alphabet Γ .
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It is easy to see that we can represent LCL problems of different flavors in
this formalism, for example:

– If the task is to label nodes, we require all ports incident to a node to be
labeled by the same label, so that the label of a node is well-defined.

– If the task is to label edges, we require that both half-edges of each edge have
the same label, so that the label of an edge is well-defined.

– If the task is to find an orientation, we can use e.g. symbols H (head) and
T (tail) and require that for each edge exactly one half is labeled with H
and the other half is labeled with T , so that the orientation of each edge is
well-defined.

Moreover, the constraints for node-edge-checkable problems will be divided
into node constraints and edge constraints. Node constraints consider only inci-
dent port labels of a node and edge constraints consider only incident port labels
of an edge.

We will now formally define an LCL problem in the node-edge-checkable for-
malism. Let us first consider the case of directed cycles or paths. By assumption,
a directed cycle or a directed path is consistently oriented. For each edge, one
port is a tail port and the other port is a head port. Furthermore, for each degree-
2 node, there is also exactly one head port and exactly one tail port incident to
it.

Definition 1 (LCL problem). An LCL problem Π in the node-edge-checkable
formalism on cycles or paths is a tuple Π = (Γ, Cedge, Cnode, Cstart, Cend) consisting
of

– a finite set Γ of output labels,
– an edge constraint Cedge ⊆ Γ × Γ ,
– a node constraint Cnode ⊆ Γ × Γ , and
– start and end constraints Cstart ⊆ Γ and Cend ⊆ Γ .

Definition 2 (solution on directed cycles or paths). Let G be a directed
cycle or a directed path, and let Π be an LCL problem, and let λ : P → Γ be a
labeling of G. We say that λ is a solution to Π if the following holds:

– For each edge e, if p is the tail port and q is the head port of e, then
(λ(p), λ(q)) ∈ Cedge.

– For each degree-2 node v, if p is the head port and q is the tail port of v, then
(λ(p), λ(q)) ∈ Cnode.

– For each degree-1 node v with only one tail port p, we have λ(p) ∈ Cstart.
– For each degree-1 node v with only one head port p, we have λ(p) ∈ Cend.

Informally, when we follow the labeling in the positive direction along the
directed path, we will first see a label from Cstart, then each edge is labeled with
a pair from Cedge, each internal node is labeled with a pair from Cnode, and the
final label along the path is Cend.

Next we consider the case of undirected cycles or paths.
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Definition 3 (symmetric LCL problems). We say that an LCL problem
Π = (Γ, Cedge, Cnode, Cstart, Cend) is symmetric if Cedge and Cnode are symmetric
relations and Cstart = Cend. Otherwise the problem is asymmetric.

As in the undirected case, we cannot consistently distinguish ports, hence we
can only solve and define solution for symmetric LCL problems.

Definition 4 (solution on undirected cycles or paths). Let G be an undi-
rected cycle or an undirected path, and let Π be a symmetric LCL problem, and
let λ : P → Γ be a labeling of G. We say that λ is a solution to Π if the following
holds:

– For each edge e, if the ports of e are p and q, then (λ(p), λ(q)) ∈ Cedge.
– For each degree-2 node v, if the ports incident to v are p and q, then

(λ(p), λ(q)) ∈ Cnode.
– For each degree-1 node v, if the port incident to v is p, then λ(p) ∈ Cstart =

Cend.

Recall that in symmetric problems Cedge and Cnode are symmetric, so the
above formulation is well-defined. When we study the case of cycles, we can set
Cstart = Cend = ∅. For brevity, in what follows, we will usually write the pair (a, b)
simply as ab.

It is usually fairly easy to encode any given LCL problem in a natural manner
in this formalism—see Fig. 1 for examples. In the figure, maximal matching serves
as an example of a problem in which the natural encoding of indicating which
edges are part of the matching does not work (it does not capture maximality)
but with one additional label we can precisely define a problem that is equivalent
to maximal matchings.

In general, if we have any LCL problem Π (in which the problem description
can refer to radius-r neighborhoods for some constant r), we can define an equiv-
alent problem Π ′ that can be represented in the node-edge-checkable formalism,
modulo constant-time preprocessing and postprocessing. In brief, one label in
the new problem Π ′ corresponds to the labeling of a subpath of length Θ(r) in
Π. Now given a solution of Π, one can construct a solution of Π ′ in O(r) rounds,
and given a solution of Π ′, one can construct a solution of Π in zero rounds.
Moreover, Π ′ can be specified in the node-edge-checkable formalism. We will give
the details in the full version [14]. From now on, all LCL problems considered
are by default problems defined using the node-edge-checkable formalism.

2.2 Turning Node-Edge-Checkable Problems into Automata

Now consider an LCL problem Π that is specified in the node-edge-checkable
formalism. Construct a nondeterministic finite automaton MΠ as follows; see
Figs. 1 and 2 for examples.



Distributed Graph Problems Through an Automata-Theoretic Lens 41

– The set of states is Cedge.
– There is a transition from (a, b) to (c, d) whenever (b, c) ∈ Cnode.
– (a, b) ∈ Cedge is a starting state whenever a ∈ Cstart.
– (a, b) ∈ Cedge is an accepting state whenever b ∈ Cend.

We will interpret MΠ as an NFA over the unary alphabet Σ = {o}. Note that
there can be multiple starting states; the automaton can choose the starting
state nondeterministically. We remark that in case of cycles, the sets Cstart and
Cend are empty which transforms an NFA into a nondeterministic semiautomaton

Fig. 1. Examples of how to encode LCL problems in the node-edge-checkable formalism,
and how to represent the problem as an automaton. Here the problems are symmet-
ric, so they are well-specified also on undirected cycles. For maximal matching, ports
incident to matched nodes are labeled with “1” and “M”, ports incident to unmatched
nodes are labeled with “0”, and the edge constraints ensure that there are no unmatched
nodes adjacent to each other.
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(i.e., an automation having no starting or accepting states). In the following part
we will see how to view the constructed automata.

We define the following concepts:

Definition 5 (generating paths and cycles). Automaton M can generate
the cycle (x1, x2, . . . , xm) if each xi is a state of M, there is a state transition
from xi to xi+1 for each i < m, and there is a state transition from xm to x1.

Automaton M can generate the path (x1, x2, . . . , xm) if each xi is a state of
M, x1 is a starting state, xm is an accepting state, and there is a state transition
from xi to xi+1 for each i < m.

Fig. 2. Five variants of the node 2-coloring problem. Each variant has different allowed
colors for the endpoints, hence also different starting and accepting states. Here (a)
and (d) are the only problems that are symmetric; therefore problems (b), (c), and (e)
are not meaningful on undirected paths.

Note that M can generate cycles even if there are no starting states or accepting
states.

Example 1. Consider the state machines in Fig. 1. The state machine for consis-
tent orientation can generate the following cycles:

(HT), (TH), (HT, HT), (TH, TH), (HT, HT, HT), (TH, TH, TH), . . .

The state machine for maximal matching can generate the following cycles:

(11, MM), (MM, 11), (10, 01, MM), (01, MM, 10), (MM, 10, 01),
(11, MM, 11, MM), (MM, 11, MM, 11), . . .

Remark 1. If we start with a symmetric problem, the automaton will be mirror-
symmetric in the following sense: there is a state transition (a, b) → (c, d) if
and only if there is a state transition (d, c) → (b, a), and the automaton can
generate (x1y1, . . . , xmym) if and only if it can generate (ymxm, . . . , y1x1). All
automata in Fig. 1 have this property, while in Fig. 2 only automata (a) and (d)
are mirror-symmetric.
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Automata Capture Node-Edge-Checkable Problems. These observations
follow directly from the definitions:

– Let Π be a symmetric or asymmetric problem. Automaton MΠ can generate
a cycle (x1, x2, . . . , xm) if and only if the following is a feasible solution for
problem Π: Take a directed cycle with m nodes and m edges and walk along
the cycle in the positive direction, starting at an arbitrary edge. Label the
ports of the first edge with x1, the ports of the second edge with x2, etc.

– Let Π be a symmetric problem. Automaton MΠ can generate a cycle
(x1, x2, . . . , xm) if and only if the following is a feasible solution for prob-
lem Π: Take an undirected cycle with m nodes and m edges and walk the
cycle in some consistent direction, starting at an arbitrary edge. Label the
ports of the first edge with x1, the ports of the second edge with x2, etc.

– We can make analogous observations also related to directed and undirected
paths; see the full version [14] for details.

Hence, for example, the question of whether a given problem Π is solvable in
a path of length m is equivalent to the question of whether MΠ accepts the
string om. Similarly, the question of whether Π is solvable in a cycle of length
m is equivalent to the question of whether there is a state q such that MΠ can
return to state q after processing om.

However, the key question is what can be said about the complexity of solving
Π in a distributed setting. As we will see, this is also captured in the structural
properties of MΠ .

3 Classification of All LCL Problems on Cycles

Consider a problem Π and its corresponding automation MΠ . We introduce the
following definitions; see Fig. 3 for examples.

To clarify, for states ab, cd in MΠ , a walk from ab to cd (denoted by ab � cd)
is a sequence of state transitions starting at state ab and ending at state cd.

Definition 6 (repeatable state). State ab ∈ Cedge is repeatable if there is a
walk ab � ab in MΠ .

Definition 7. (flexible state [9]). State ab ∈ Cedge is flexible with flexibility K
if for all k ≥ K there is a walk ab � ab of length exactly k in MΠ .

Definition 8 (loop). State ab ∈ Cedge is a loop if there is a state transition
ab → ab in MΠ .

Observe that each defined property of a state is a proper strengthening of
the previous property (i.e. each loop is a flexible state and each flexible state is
a repeatable state).

For a symmetric problemΠ we also define:

Definition 9 (mirror-flexible state). State ab ∈ Cedge is mirror-flexible with
flexibility K if for all k ≥ K there are walks ab � ab, ab � ba, ba � ab, and
ba � ba of length exactly k in MΠ .
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Fig. 3. Examples of LCL problems of each type (type A–K in Table 1) represented
as automata, together with a classification of their states using Definitions 6–10. The
states are colored only by the most restrictive property. Here is a brief description of
each sample problem: A: orient the edges so that each consistently oriented fragment
consists of at least two edges, one with the label pair 12 and at least one with the
label pair 34. B: either find a consistent orientation (encoded with labels 1–2) or find
a proper 3-coloring of the edges (encoded with labels 3–5). C: consistent orientation.
D: orientation in the positive direction. E: edge 3-coloring. F: consistent orientation
together with an edge 3-coloring. G: orientation in the positive direction together with
an edge 3-coloring. H: edge 2-coloring. I: orientation in the positive direction together
with an edge 2-coloring. J–K: problems only solvable on paths of length at most 2
(assuming appropriate starting and accepting states).

Definition 10 (mirror-flexible loop). State ab ∈ Cedge is a mirror-flexible
loop with flexibility K if ab is a mirror-flexible state with flexibility K and ab is
also a loop.

Note that if ab is mirror-flexible loop, then so is ba, as the problem is symmetric.

3.1 Flexibility and Synchronizing Words

Flexibility is a key concept that we will use in our characterization of LCL prob-
lems. We will now connect it to the automata-theoretic concept of synchronizing
words.

First, let us make a simple observation that allows us to study automata by
their strongly connected components:

Lemma 1. Let M′ be a strongly connected component of automaton MΠ , and
let q be a state in M′. Then q is flexible in MΠ if and only if q is flexible in
M′.

Proof. A walk from q back to q in MΠ cannot leave M′.
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Recall that a word w is called D3-directing word [24] for NFA M if there
is a state t such that starting with any state s of M there is a sequence of
state transitions that takes M to state t when it processes w. We show that this
specific notion of a nondeterministic synchronizing word is, in essence, equivalent
to the concept of flexibility:

Lemma 2. Consider a strongly connected component M′ of some automaton
MΠ . The following statements are equivalent:

1. There is a flexible state in M′.
2. All states of M′ are flexible.
3. There is a D3-directing word for M′.

Proof. (1) =⇒ (2): Assume that state q has flexibility K. Let x be another state
in M′. As it is in the same connected component, there is some r such that we
can walk from x to q and back in r steps. Therefore for any k ≥ K we can walk
from x back to x in k + r steps by following the route x � q � q � x. Hence x
is a flexible state with flexibility at most K + r.

(2) =⇒ (3): Assume that state q has flexibility K, and there is a walk of
length at most r from any state x to state q. Then we can walk from any state
x to q in exactly r + K steps: first in r′ ≤ r steps we can reach q and then in
K + r − r′ ≥ K steps we can walk from q back to itself. Hence w = oK+r is a
D3-directing word for automaton M′ that takes it from any state to state q.

(3) =⇒ (1): Assume that there is some D3-directing word w = oK that can
take one from any state of M′ to state q in exactly K steps. Then we can also
walk from q to itself in k steps for any k ≥ K: first take k − K steps arbitrarily
inside M′, and then walk back to q in exactly K steps.

Hence, in what follows, we can freely use any of the above perspectives when
reasoning about the distributed complexity of LCL problems. Mirror-flexibility
can be then seen as a mirror-symmetric extension of D3-directing words.

There is also a natural connection between flexibility and Markov chains.
Automaton MΠ over the unary alphabet can be viewed as the diagram of a
Markov Chain for unknown probabilities of the transitions. If we assume that
every edge will have a non-zero probability, then a strongly connected component
of the automaton is an irreducible Markov chain, and in such a component the
notion of flexibility coincides with the notion of aperiodicity.

3.2 Results

Our main result is the classification presented in Table 1; see also Fig. 3 for some
examples of problems in each class. What was already well-known by prior work
[1,13] is that there are only three possible complexities: O(1), Θ(log∗ n), and
Θ(n). However, our work gives the first concise classification of exactly which
problems belong to which complexity class. In the full version [14] we show that
our classification of locally checkable problems on cycles or paths into types A–K,
defined by properties of the automaton, is correct and complete.
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The entire classification can be computed efficiently. In particular, for all of
the defined properties (repeatable states, flexible states, loops, mirror-flexible
states and mirror-flexible loops) a polynomial-time algorithm can determine if
an automaton contains a state with such a property. The non-trivial cases here
are flexibility and mirror-flexibility; we present the proofs in the full version [14].

The role of mirror-flexibility. Consider the following problem that we call
distance-k anchoring ; here the selected edges are called anchors:

Definition 11. A distance-k anchoring is a maximal subset of edges that splits
the cycle in fragments of length at least k − 1.

This problem can be solved in O(log∗ n) rounds (e.g. by applying maximal inde-
pendent set algorithms in the kth power of the line graph of the input graph).
Now consider an LCL problem Π that has a flexible state q with flexibility k.
It is known by prior work [9] that we can now solve Π on directed cycles in
O(log∗ n) rounds, as follows: Solve distance-k anchoring and label the anchor
edges with the label pair of state q. As state q is flexible, we can walk along the
cycle from one anchor to another, and find a way to fill in the fragment between
two anchors with a feasible label sequence.

Mirror-flexibility plays a similar role for undirected cycles: the key difference
is that the anchor edges cannot be consistently oriented, and hence we need
to be able to also fill a gap between state q = ab and its mirror q′ = ba, in
any order. It is easy to see that mirror-flexibility then implies O(log∗ n)-round
solvability—what is more surprising is that the converse also holds: O(log∗ n)-
round solvability necessarily implies the existence of a mirror-flexible state.

A new canonical problem for constant-time solvability. One of the new concep-
tual contributions of this work is related to the following problem, which we call
distance-k orientation:

Definition 12. A distance-k orientation is an orientation in which each con-
sistently oriented fragment has a length at least k.

The problem is trivial to solve in directed cycles in 0 rounds, but the case of
undirected cycles is not equally simple. However, with some thought, one can
see that the problem can be solved in O(1) rounds also on undirected cycles
[13]. This shows that there are infinite families of nontrivial O(1)-time solvable
problems, and hence it seems at first challenging to concisely and efficiently
characterize all such problems. However, as we will see in the full version [14],
distance-k orientation can be seen as the canonical O(1)-time solvable problem
on undirected cycles. We show that any problem Π that is O(1)-time solvable on
undirected cycles has to be of type A (see Table 1), and any such problem can be
solved in two steps: first find a distance-k orientation for some constant k that
only depends on the structure of MΠ , and then map the distance-k orientation
to a feasible solution of Π.

We summarize the key new observations related to undirected cycles as
follows:
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Θ(1) rounds ⇐⇒ mirror-flexible loop
⇐⇒ solvable with distance-k orientation

Θ(log∗ n) rounds ⇐⇒ mirror-flexible state
⇐⇒ solvable with distance-k anchoring

4 Classification of All LCL Problems on Paths

We present the classification of all LCL problems on paths in Table 1. The detailed
proofs of the correctness of the classification, as well as discussion on the key
properties are presented in the full version [14].

Acknowledgments. We would like to thank Alkida Balliu, Sebastian Brandt, Lau-
rent Feuilloley, Juho Hirvonen, Yannic Maus, Dennis Olivetti, Aleksandr Tereshchenko,
Jara Uitto, and all participants of the Helsinki February Workshop 2018 on Theory of
Distributed Computing for discussions related to the decidability of LCLs on trees. We
would also like to thank the anonymous reviewers of previous versions of this works for
their helpful comments and feedback.

Yi-Jun Chang was supported by Dr. Max Rössler, by the Walter Haefner Founda-
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Matematicko-fyzikálny časopis 14(3), 208–216 (1964), http://dml.cz/dmlcz/
126647

11. Chang, Y.J.: The complexity landscape of distributed locally checkable problems
on trees. In: DISC 2020 (2020). https://doi.org/10.4230/LIPIcs.DISC.2020.18

12. Chang, Y.J., Kopelowitz, T., Pettie, S.: An exponential separation between ran-
domized and deterministic complexity in the local model. SIAM J. Comput. 48(1),
122–143 (2019). https://doi.org/10.1137/17M1117537

13. Chang, Y.J., Pettie, S.: A time hierarchy theorem for the LOCAL model. SIAM
J. Comput. 48(1), 33–69 (2019). https://doi.org/10.1137/17M1157957
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Abstract. This paper provides three nearly-optimal algorithms for
scheduling t jobs in the CLIQUE model. First, we present a determin-
istic scheduling algorithm that runs in O(GlobalCongestion + dilation)
rounds for jobs that are sufficiently efficient in terms of their memory.
The dilation is the maximum round complexity of any of the given jobs,
and the GlobalCongestion is the total number of messages in all jobs
divided by the per-round bandwidth of n2 of the CLIQUE model. Both
are inherent lower bounds for any scheduling algorithm.

Then, we present a randomized scheduling algorithm which runs
t jobs in O(GlobalCongestion + dilation · log n + t) rounds and only
requires that inputs and outputs do not exceed O(n log n) bits per node,
which is met by, e.g., almost all graph problems. Lastly, we adjust
the random-delay-based scheduling algorithm [Ghaffari, PODC’15] from
the CONGEST model and obtain an algorithm that schedules any t
jobs in O(t/n + LocalCongestion + dilation · log n) rounds, where the
LocalCongestion relates to the congestion at a single node of the CLIQUE.
We compare this algorithm to the previous approaches and show their
benefit.

We schedule the set of jobs on-the-fly, without a priori knowledge of
its parameters or the communication patterns of the jobs. In light of the
inherent lower bounds, all of our algorithms are nearly-optimal.

We exemplify the power of our algorithms by analyzing the mes-
sage complexity of the state-of-the-art MIS protocol [Ghaffari, Gouleakis,
Konrad, Mitrovic and Rubinfeld, PODC’18], and we show that we can
solve t instances of MIS in O(t + log log Δ log n) rounds, that is, in O(1)
amortized time, for t ≥ log log Δ log n.

Keywords: Distributed algorithms · Congested clique · Scheduling ·
Maximal independent set

1 Introduction

Motivated by the ever-growing number of frameworks for parallel computations,
we address the complexity of executing multiple jobs in such settings. Such
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frameworks, e.g., MapReduce [20], typically need to execute a long queue of
jobs. A fundamental goal of such systems is to schedule many jobs in parallel, for
utilizing as much of the computational power of the system as possible. Ideally,
this is done by the system in a black-box manner, without the need to modify
the jobs and, more importantly, without the need to know their properties and
specifically their communication patterns beforehand.

In their seminal work, Leighton, Maggs, and Rao [23] studied the special
case where each of the to-be-scheduled jobs is a routing protocol that routes
a packet through a network along a given path. The goal in their work is to
schedule t jobs such that the length of the schedule, i.e., the overall runtime
until all t packets have reached their destination, is minimized. They showed that
there exists an optimal packet-routing schedule of length O(congestion+dilation),
where congestion is the maximum number of packets that need to be routed over
a single edge of the network and dilation is the maximum length of a path that a
packet needs to travel. Clearly, both parameters are lower bounds on the length
of any schedule, implying that the above schedule is asymptotically optimal.
Further, Leighton, Maggs, and Rao [23] showed that assigning a random delay
to each packet gives a schedule of length O(congestion+dilation · log (t · dilation)).

In his beautiful work, Ghaffari [10] raised the question of running mul-
tiple jobs in the distributed CONGEST model on n nodes. Applying the
random delays method [23], he showed a randomized algorithm which after
O(dilation · log2 n) rounds of pre-computation, runs a given a set of jobs in
O(congestion+dilation · log n) rounds. Here, in a similar spirit to [23], congestion
is the maximum number of messages that need to be sent over a single edge
and dilation is the maximum round complexity of all jobs. Further, Ghaffari [10]
showed that this is nearly optimal, by constructing an instance which requires
Ω(congestion + dilation · log n/ log log n) rounds to schedule.

In this paper, we address the t-scheduling problem in the (CONGESTED)
CLIQUE model [25], in which each of n machines can send O(log n)-bit mes-
sages to any other machine in each round. Our goal is thus to devise scheduling
algorithms that run t jobs in a black-box manner, such that they complete in
a number of rounds that beats the trivial solution of simply running the jobs
sequentially one after the other, and, ideally, reaches inherent lower bounds that
we discuss later. We emphasize that we schedule all jobs’ actions on-the-fly dur-
ing their execution. Throughout the paper, we use the terminology that a job
is a protocol that n nodes, v0, . . . , vn−1, need to run on some input, and we use
the notion of an algorithm for the scheduling procedure that the n machines,
p0, . . . , pn−1, execute. Each machine pi is given the inputs of the nodes vj

i for
all jobs j, and the machines run an algorithm which simulates the protocols of
their assigned nodes.

Our contributions are three algorithms for scheduling t jobs in the
CLIQUE model, which exhibit trade-offs based on the parameters of dilation,
LocalCongestion, and GlobalCongestion of the set of jobs, which we formally define
below. Our scheduling algorithms complete within round complexities that are
nearly optimal w.r.t. the appropriate parameters.
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1.1 Our Contributions

No scheduling algorithm can beat the dilation of the set of jobs, which is the
maximum runtime of a job in the set, had this job been executed standalone.
Similarly, another natural lower bound is given by the GlobalCongestion, which
is the total number of messages that all nodes in all jobs send over all rounds,
normalized by the n2 per-round-bandwidth of the CLIQUE model (for simplicity,
this considers the possibility that a machine sends a message to itself). The main
goal is thus to get as close as possible to these parameters.

As a toy example, consider a set of jobs in which each completes within a
single round. Intuitively, if the total number of messages that need to be sent by
all nodes in all jobs is at most n2, then one could hope to squeeze all of these jobs
into a single round of the CLIQUE model, as n2 is the available bandwidth per
round. The main hurdle in a straightforward argument as above, lies in the fact
that a machine cannot send more than n messages in a round. Thus, although
we are promised that in total there no more than n2 messages, it might be that
a machine is required to send/receive ω(n) messages because the heaviest-loaded
nodes of multiple jobs might be located on the same machine.

This implies that a näıve scheduling, in which each machine simulates the
nodes that are located at it, is more expensive than our single-round goal schedul-
ing, as some messages must wait for later rounds. In the general case, these issues
become more severe, as the jobs may originally require more than a single round,
and it could be that each round displays an imbalance in a different set of nodes
and machines.

The key ingredient in the first two scheduling algorithms that we present
is hence to rebalance the nodes among the machines, for the sake of a more
efficient simulation that deals with the possible imbalance, which also may vary
from round to round. The third scheduling algorithm we present is inspired
by the random-delay approach of [10,23]. In what follows, we present the
guarantees that are obtained by our three scheduling algorithms, and discuss
the trade-offs that they exhibit.

Deterministic Scheduling. A crucial factor in the complexity of rebalancing the
nodes among the machines is the amount of information that needs to be passed
from one machine to another in order for the latter to take over the simulation
of a node. To this end, we define an M -memory efficient job as a job where
for each node, its state can be encoded in M log n bits, and that the number
of messages it needs to receive in this round can be inferred from its state. In
Sect. 3, we obtain the following deterministic algorithm for scheduling t jobs that
are M -memory efficient.

Theorem 3. There is a deterministic algorithm that schedules t = poly n jobs
that are M -memory efficient in O(GlobalCongestion+�M · t/n�·dilation) rounds.

At a very high level, in the algorithm for Theorem 3, the machines rebalance
nodes in each round by sending the states of nodes. The main technical effort is
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that the reassignment needs to be computed by the machines on-the-fly, and we
show how to do so in a fast way.

Notice that for the case that M · t = O(n), the round complexity we get
from Theorem 3 is O(GlobalCongestion + dilation), which is optimal. Another
crucial point is that our algorithm does not require the knowledge of either the
GlobalCongestion or the dilation of the set of jobs.

Randomized Scheduling. If we are given a set of jobs that are not memory efficient
for a reasonable value of M , it may be too expensive to rebalance the nodes
among the machines in every simulated round. However, if the input of each
node is not too large, we can randomly shuffle the nodes at the beginning of
the simulation, and if the output is also not too large then we can efficiently
unshuffle, and reach the original assignment.

To capture this, we say that a job is I/O efficient if its input and output
can be encoded within O(n log n) bits. Notice that most graph-related problems
are I/O efficient, e.g., MST [15,16,19,22,25,26], MIS [5,11,12], Minimum Cut
[13,14], as well as many algebraic problems [3,9]. An example of a graph problem
that is not I/O efficient is k-clique listing, in which all nodes together have to
explicitly output all k-cliques in the input graph [2,6,8,18,27] which can be
as many as Ω(nk), thus necessitating large outputs. While the k-clique listing
problem is not output efficient, it is input efficient, and as it does not require a
specific node to output a specific clique, one could also run several instances of
the problem by omitting the output unshuffling step of our scheduling algorithm.

The following randomized algorithm schedules t I/O efficient jobs.

Theorem 4. There is a randomized algorithm in the CLIQUE model that sched-
ules t = poly n jobs that are I/O efficient in O(t + GlobalCongestion + dilation ·
log n) rounds, w.h.p.1

As the deterministic scheduling algorithm (Theorem3), the scheduling algo-
rithm of Theorem4 requires neither the knowledge of GlobalCongestion nor the
knowledge of dilation.

Both of our scheduling algorithms for Theorem3 and Theorem 4 have the
machines possibly simulate the execution of nodes that are not originally assigned
to them. We stress that any black-box scheduling algorithm in which each
machine only simulates the nodes that are originally assigned to it must inher-
ently suffer from another type of congestion as a lower bound on its round
complexity, namely, the maximum number of messages that all nodes assigned
to a single machine have to send or receive, normalized by the bandwidth n that
each machine has per round. We call this the LocalCongestion of a set of jobs.
We obtain the following random-delay-based algorithm for scheduling any t jobs,
without reassigning nodes.

1 An event occurs w.h.p. (with high probability) if for an arbitrary constant c ≥ 1,
the probability that the event occurs is at least 1 − n−c, where n is the number of
machines. All our results can be adapted to any constant c at the cost of increasing
the runtime by a constant factor.
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Theorem 5 (Simplified). There is a randomized algorithm in the CLIQUE
model that schedules t = poly n jobs in O(t/n+LocalCongestion+dilation · log n)
rounds w.h.p.

The stated complexity in the above simplified version of Theorem 5 requires
the knowledge of the LocalCongestion, but this can be eliminated using a standard
doubling approach, at the cost of a logarithmic multiplicative factor (see precise
statement in Sect. 4).

The random-delay algorithm which gives Theorem5 is suboptimal for a
set of jobs which have a single machine with heavily-loaded nodes assigned to
it, since in this case it does not exploit the entire bandwidth of the CLIQUE
model. For example, for a problem with inputs of at most O(n log n) bits per
node, a protocol in which a fixed leader learns the entire input takes O(n)
rounds, where on each round each node sends one message to the leader, who
receives n messages. For n such jobs, the GlobalCongestion is n, while the
LocalCongestion is n2. In such a setting, our random-shuffling algorithm from
Theorem 4 outperforms the random-delay algorithm from Theorem5. One may
suggest to replace the fixed leader by a randomly or more carefully chosen
leader. However, this trick might be more complicated in the general case:
suppose now that n0.9 nodes need to learn n1.1 messages each. For such a set
of jobs, it holds that LocalCongestion = n0.1, while GlobalCongestion = 1. Thus,
it is more efficient to run Theorem 4 in this case. Another crucial example in
which random-shuffling outperforms random-delays is the maximal independent
set protocol that we describe below. Note that our algorithms address these
cases in a black-box manner without assuming knowledge of the communication
pattern.

Applications. In the full version of the paper [4], we present two applications in
order to exemplify our scheduling algorithms. We summarize these applications
below and defer a more detailed discussion to the full version and Sect. 5.

A maximal independent set (MIS) of a graph G = (V,E) is a set M ⊆ V such
that no two nodes in M are adjacent and no node of V can be added to M without
violating this condition. The state-of-the-art randomized CLIQUE protocol for
solving the MIS problem completes in O(log log Δ) rounds, w.h.p., where Δ is
the maximum degree of the graph [12]. We analyze the message complexity of
this protocol, and show that it does not utilize the entire bandwidth. Thus, we
can schedule multiple MIS jobs efficiently using our random shuffling scheduling
algorithm from Theorem4, and we obtain the following theorem.

Theorem 1 (Multiple MIS instances). There is a randomized algorithm
in the CLIQUE model which solves t = poly n instances of MIS in O(t +
log log Δ log n) rounds, w.h.p.

Another application that exemplifies our scheduling algorithms is a variant of
the pointer jumping problem, which is a widespread algorithmic technique [17].
In the P -pointer jumping problem, each node has a permutation on P elements.
A fixed node has a value pointer p and should learn the result of applying
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these permutations one after another on p. Pointer jumping can be solved by
an O(log n)-round protocol in the CLIQUE model by learning the composition
of all permutations. We observe that this protocol does not utilize the entire
bandwidth and leverage this for obtaining an algorithm that executes multiple
instances of this protocol efficiently.

Theorem 2 (Pointer Jumping). For P ≤ n, there are algorithms in the
CLIQUE model that solve t = poly n instances of the P -pointer jumping problem
deterministically in O(�P · t/n� · log n), and randomized in O(t+log2 n) rounds,
w.h.p.

We obtain the deterministic result using our scheduling algorithm and the
randomized result using our random-shuffling scheduling algorithm in the full
version of the paper. The proposed simple O(log n) round pointer jumping pro-
tocol also serves as an example where scheduling jobs via the random-shuffling
approach of Theorem 4 is significantly better than the random-delay based app-
roach of Theorem 5. For more details we refer to the full version of the paper.

In Sect. 5 we discuss the amortized versions of these results, and present
a small example of a set of jobs that can be scheduled with o(1)-amortized
complexity. In light of the growing number of O(1)-round CLIQUE-protocols,
e.g., [7,14,26], we propose the amortized complexity of solving many instances of
a problem in parallel, as a valuable measure for the efficiency in future research.

1.2 Related Work

Many graph problems are studied in the CLIQUE model. There are fast protocols
for the CLIQUE model for distance computations [3,9], minimum spanning tree
(MST) [15,22,25,26], MIS [5,11,12], and more.

To the best of our knowledge, there are no previous works that study the
scheduling of jobs in the CLIQUE model. In the past, it has been shown that
running multiple instances of the same protocol on different inputs can result in
fast algorithms for some complex problems. We survey some of these. Hegeman
et al. [16] reduce the MST problem to multiple smaller instances of graph connec-
tivity, breaking below the long-standing upper bound of O(log log n) by Lotker
et al. [25]. Further variants and improvements on the MST problem [15,19,22,26]
all invoke multiple instances of sparser problems. This line of work culminated
in the deterministic O(1)-round algorithm of Nowicki [26].

In [13], Ghaffari and Nowicki show a randomized algorithm which solves
O(n1−ε) many instances of the MST problem in O(ε−1) rounds. This is used for
finding the minimum cut of a graph. The state-of-the-art O(1)-round algorithm
for the minimum cut problem, by Ghaffari et al. [14], runs Θ(log n) instances of
connected components as a subroutine. The complexity of computing multiple
matrix multiplications in parallel was explored by Le Gall [9] and was used in
the same paper to solve the all-pairs-shortest-path problem.
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The notion of LocalCongestion is similar to the notion of
Communication Degree Complexity [21]. The difference lies in the fact that
the latter is an upper bound on the number of messages sent or received by
any node on any round, while LocalCongestion is an upper bound on the total
number of messages sent or received by any node over all rounds.

2 Preliminaries

The CLIQUE Model. In the (CONGESTED) CLIQUE model, n machines
p0, . . . , pn−1 communicate with each other in synchronous rounds in an all-to-all
fashion. In each round, any pair of machines can exchange O(log n) bits. There
is usually no constraint neither on the size of the local memory nor on the time
complexity of the local computations. Besides the local memory, each machine
has a read-only input buffer and a write-only output buffer, as well as read/write
incoming- and outgoing- message buffers.

Routing in the CLIQUE Model. Lenzen’s routing scheme [24] says that a set of
messages can be routed in the CLIQUE model within O(1) rounds, given that
each machine sends and receives at most O(n) messages. We formally state it
here in its generalized version, which addresses the case of more than a linear
number of messages. In the generalized version, each machine pi holds a set
of messages Mi =

⋃
i′∈[n] M

i′
i , where M i′

i is a set of messages with the des-
tination pi′ . The claim follows by having each node chop its set of messages
Mi into chunks of n messages, each of which containing |M i′

i |n/X messages for
each i′ ∈ [n], and applying the original routing scheme X/n times. The routing
scheme could be adapted to preserve the message complexity in the following
way.2 Let Y =

∑
i∈[n] |Mi| ≤ n2 be the total number of messages. First, com-

pute a global numbering of messages and the total number of messages Y . Then,
send O(�√Y �) messages to each one of the first O(�√Y �) machines via inter-
mediate nodes based on the numbering. Sort messages by the destination in the
using Lenzen’s sorting algorithm [24] over O(�√Y �)-clique. Finally, deliver the
messages to their destinations via intermediate nodes based on the indices of
messages in the sorted sequence. The round complexity of the algorithm is O(1)
and the message complexity of the algorithm in O(Y + �√Y � · �√Y �) = O(Y ).

Claim 1 (Lenzen’s Routing Scheme). Let X be a globally known value and
let P be the property that |Mi| ≤ X for all i ∈ [n] and

∑
i∈[n] |M i′

i | ≤ X for
all i′ ∈ [n]. There is an algorithm in the CLIQUE model which completes in
O(�X/n�) rounds and O(

∑
i∈[n] Mi) messages, and delivers all messages if P

holds, or indicates that it does not hold.

Protocols and Jobs. A protocol is run on an input, that is provided in a distributed
manner in the read-only input buffer of each machine. The complexity of a proto-
col is the number of synchronous rounds until each machine has finished writing
its output to its write-only output buffer.
2 We thank an anonymous reviewer for pointing this out.
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A job is an instance of a protocol together with a given input and a job is
finished when each machine has written its output. We generally assume that
each job finishes in O(poly n) rounds.

For our purposes of fast scheduling, we need to specify the internals of each
synchronous round. We follow the standard description, which is usually omitted
and simply referred to as a ‘round’. We require that for each machine, the input
and output buffers are only accessed in the first and last rounds of the protocol
on that machine, respectively. In particular, this means that any further access
to the input requires storing it in the local memory. Accessing the incoming- and
outgoing-message buffers is not restricted to certain rounds. Each synchronous
round of a protocol consists of 3 steps, in the following order.

– Receiving Step: Read from incoming-message buffer (or from input buffer
if this is the first round), possibly modifying the local memory.

– Computation Step: Possibly modify local memory.
– Sending Step: Write to outgoing-message buffer, (or to output buffer if this

is the last round), possibly modifying the local memory.

After these 3 phases, all messages written in outgoing-message buffers are deliv-
ered into the incoming-message buffers of their targets.

The Scheduling Problem. In the t-scheduling problem (or simply a scheduling
problem, if t is clear from the context) the objective is to execute t jobs. Since
our goal is to do this in an efficient manner, we wish to allow a machine to
simulate a computation that originally should take place in a different machine,
in a näıve execution of the t jobs. To this end, we distinguish between the physical
machine and the nodes, which are the virtual machines that need to execute each
job. That is, for each job j we denote by {vi,j |i ∈ [n]} the set of nodes that need
to execute job j.

Formally, in the t-scheduling problem, the input for machine pi is composed
of the inputs of all the nodes with identifiers of the form vi,j for each job j ∈ [t].
We also assume that each machine knows the protocol for each of the t jobs.
An algorithm solves the scheduling problem or schedules the jobs when each job
has finished writing its output. That is, for deterministic jobs, we require each
machine pi to write the output of nodes vi,j for all j ∈ [t]. For randomized jobs,
the machines’ output distribution for each job has to be equal to the distribution
of outputs in a näıve execution of the job. In the rest of the paper, we refer to
the scheduling solution as an algorithm, while we use the term protocol only for
the content of a job.

Notations. Following the widespread conventions, we denote by log the logarithm
base 2, and by ln the natural logarithm. Also, we denote [n] = {0, 1, . . . , n − 1}.
We denote by sr

i,j and tri,j the number of messages sent and received by
vi,j in round r, respectively. If job j terminates before round r, we indi-
cate sr

i,j = tri,j = 0. We sometimes drop the superscript r, when it is clear
from the context. We denote by �j the round complexity of job j and by
mj =

∑
i∈[n],r∈[�j ]

sr
i,j =

∑
i∈[n],r∈[�j ]

tri,j the total number of messages sent
or received during the execution of job j, i.e., the message complexity of job j.
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Another notation we extensively use is mr =
∑

i∈[n],j∈[t] s
r
i,j =

∑
i∈[n],j∈[t] t

r
i,j ,

which is the number of messages all nodes in all jobs sent or received during
round r.

Congestion Parameters. We define the normalized GlobalCongestion as the
total number of messages sent by all the jobs divided by n2, and normalized
LocalCongestion as the maximum number of messages send to or received by
some node in the entire course of the execution of all jobs divided by n. For-
mally, dilation = maxj∈[t] �j ,

GlobalCongestion =
∑

j∈[t]

mj =
∑

i∈[n]

∑

j∈[t]

∑

r∈[�j ]

sr
i,j/n2 =

∑

r∈[dilation]

mr/n2,

LocalCongestion = max

⎧
⎨

⎩
max
i∈[n]

∑

j∈[t]

∑

r∈[�j ]

sr
i,j/n,max

i∈[n]

∑

j∈[t]

∑

r∈[�j ]

tri,j/n

⎫
⎬

⎭
.

3 Deterministic Scheduling

The objective of this section is to prove the following theorem.

Theorem 3. There is a deterministic algorithm that schedules t = poly n jobs
that are M -memory efficient in O(GlobalCongestion+�M · t/n�·dilation) rounds.

The formal definition of an M -memory efficient job as used in Theorem 3 is
as follows.

Definition 1 (M-memory efficient job). For a given value M , an M -
memory efficient job is a job in which for each node v in each round r, the
state (local memory) of v at the end of the Computation Step can be encoded in
M log n bits. In addition, there is a function that, given the state of node v after
the Computation Step of round r, infers the number of messages it sends and
receives on this round.

Theorem 3 requires that jobs use at most M bits of local memory per machine.
Thus, the power of the result is when M = o(n), as otherwise the näıve execution
of jobs one after another schedules them in dilation · t rounds. In the case that
M · t = O(n), the runtime becomes O(GlobalCongestion + dilation), which is
optimal up to a constant factor as, clearly, any schedule for any collection of
jobs requires at least Ω(GlobalCongestion + dilation) rounds.

To schedule the jobs for Theorem 3, we work in epochs. Each machine pi first
simulates round 0 up to the end of the Computation Step for the nodes vi,j , for
each j ∈ [t]. This does not require any communication. Then, the epochs are
such that for each round r, at the start of epoch r, all nodes in all jobs are at the
end of the Computation Step of round r. Clearly, for each simulated node that
finishes in round r, the machine does not need to do anything for the part that
executes the beginning of round r+1. The reason why we execute the protocol in
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these shifted epochs, from Sending Step of round r (including) to Sending Step
of round r + 1 (excluding), lies in the fact that the bottleneck is the possible
imbalance in communication.

Recall that mr denotes the number of messages all nodes from all jobs send
in round r. Since in each round of the CLIQUE model, at most n2 messages can
be exchanged, routing mr messages cannot be done faster than �mr/n2� rounds.
We aim to execute an epoch in this optimal number of O(�mr/n2�) rounds. We
start with the simple case and then use it to solve the general case.

The first case is when mr ≤ 2n2. In Lemma 1, we show that in this case, we
can route all mr messages in O(�M · t/n�) rounds. The challenge we encounter
is that although mr ≤ 2n2, we are not promised that the messages are balanced
across the machines in the following sense. It is possible that some machine
pi, which simulates the nodes vi,j , for all jobs 0 ≤ j < t, is required to send
significantly more than n messages when summing over all messages that need
to be sent by these nodes vi,j . We overcome this issue by assigning the simulation
of some of these nodes to some other machine pi′ , which originally has a smaller
load of messages to send. The crux that underlies our ability to defer a simulation
of a node vi,j to a machine pi′ is that the state of the node does not consume
too many bits. We show how to compute a well-balanced assignment of nodes
to machines in Claim 2. This assignment allows us to execute the epoch in the
claimed number of O(�M · t/n�) rounds.

In the general case, we can have mr > 2n2. We show how to carefully
split up the messages that need to be sent into chunks that allow us to use
multiple invocations of Lemma1. This allows us to execute the epoch in the
O(�mr/n2� + M · t/n) rounds. As the core of our algorithm is handling the case
mr ≤ 2n2, the proof of the general case as well as using these results to prove
Theorem 3 is deferred to the full version of the paper. Now, we focus on the case
mr ≤ 2n2.

We start with the following notation. An assignment of nodes to machines
corresponds to a function ϕ : [n] × [t] �→ [n], where ϕ(i, j) = k says that the
i-th node in job j, i.e., vi,j , is assigned to the k-th machine pk. We sometimes
abuse notation and write that ϕ(vi,j) = pk for ϕ(i, j) = k. We call an assignment
balanced, if the number of nodes assigned to each machine is O(t), i.e., if for each
k, it holds that |ϕ−1(pk)| = O(t). The (balanced) assignment ϕ(i, j) = i is called
the trivial assignment. The next claim (proof deferred to the full version of the
paper) states that nodes can be efficiently reassigned from an initial balanced
assignment ϕs to a finial balanced assignment ϕf .

We denote by Si,j,r the state of node vi,j after its Computation Step in
round r.

Claim 2 (Distributing the states). Given are t jobs that are M -memory
efficient, and globally known initial and final balanced assignments, ϕs and ϕf ,
respectively. Assume that for each i ∈ [n] and j ∈ [t], machine ϕs(i, j) holds
the state Si,j,r of node vi,j after its Computation Step in round r. Then, there
exists a CLIQUE algorithm which completes in O(�M · t/n�) rounds and moves
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the states according to ϕf , that is, at the end of the algorithm, for each i ∈ [n]
and j ∈ [t], machine ϕf (i, j) holds the state Si,j,r of node vi,j.

Lemma 1 (Scheduling of a round with mr ≤ 2n2 messages). Given are
t jobs that are M -memory efficient, and given is a round number, r, for which
mr ≤ 2n2. Assume that for each i ∈ [n], pi holds Si,j,r for all j ∈ [t]. Then
there exists a deterministic CLIQUE algorithm which completes in O(�M · t/n�)
rounds, at the end of which, for each i ∈ [n], pi holds Si,j,r+1 for all j ∈ [t].

The outline of the algorithm is as follows. Each machine partitions its sim-
ulated nodes into buckets of contiguous ranges of indices, such that nodes in
each bucket send and receive O(n) messages altogether. Thus, the messages of
all nodes in the bucket can be sent or received by a single machine.

We show that the number of buckets over all machines is O(n). The machines
collectively assign the buckets such that each machine gets O(1) buckets, and
they make the assignment globally known. Then, the states Si,j,r are distributed
according to the assignment using Claim 2, and each machine executes the Send-
ing Step of round r for each of its newly assigned nodes and all messages get
delivered. Then, each machine executes the remainder of the protocol of its
newly assigned nodes until after the Computation Step of round r + 1. Finally,
the states Si,j,r+1 for round r + 1 are distributed back according to the trivial
assignment.

Proof of Lemma 1. We begin with describing the algorithm (see Algorithm 1).
Afterwards, we prove the correctness and analyze the round complexity.

Algorithm 1. Simulating a round with mr ≤ n2.
1: Compute the balanced assignment ϕ : [n] × [t] �→ [n].
2: Distribute the states according to the assignment ϕ.
3: Execute the protocol for round r accounting for ϕ.
4: Distribute the states back according to the trivial assignment.

The Algorithm. We first show how to split nodes into buckets. Then we show
how to compute a globally known assignment ϕ, distribute the nodes according
to ϕ, execute the jobs until after the next Computation Step, and assign nodes
back to their initial machines.

Forming Buckets (Locally). Each machine pi for each j ∈ [t] uses Si,j,r to locally
compute si,j and ti,j , the number of messages each node vi,j sends and receives
in round r, respectively. This is possible by the definition of an M -memory effi-
cient job. Let Si =

∑t−1
j=0 si,j and Ti =

∑t−1
j=0 ti,j . Then, each machine pi (locally

and independently) applies [1, Lemma 7] with k = ki = �max{Si/n, Ti/n}�
to the sequences (si,j)t−1

j=0 and (ti,j)t−1
j=0, to split its nodes into ki buckets

Bi,0, . . . , Bi,ki−1 of continuous ranges of jobs’ indices. Invoking the lemma with
s = n ≥ si,j , t = n ≥ ti,j , S = Si, and T = Ti, implies that for each i ∈ [n]
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and i′ ∈ [ki], the nodes inside each bucket Bi,i′ want to send/receive at most 4n
messages, i.e.,

∑

j∈Bi,i′

si,j ≤ 2
(

S

k
+ s

)

≤ 2
(

Si

(Si/s)
+ s

)

= 4s = 4n, and

∑

j∈Bi,i′

ti,j ≤ 2
(

T

k
+ t

)

≤ 2
(

Ti

(Ti/t)
+ t

)

= 4t = 4n.

Computing the Assignment ϕ. We first define the assignment ϕ and then show
how it becomes globally known. Recall that the buckets of machine pi are num-
bered from 0 to ki − 1 and define the following value for i ∈ [n] and i′ ∈ [ki]:

f(i, i′) =

⌊(

i′ +
∑

i′′<i

ki′′

)

/5

⌋

.

Then, we define the assignment ϕ to assign all nodes in bucket Bi,i′ to machine
pf(i,i′). Notice that this is a valid assignment because with

∑
i Si ≤ 2n2 and∑

i Ti ≤ 2n2 (due to mr ≤ 2n2) we obtain

f(i, i′) <
∑

0≤i<n

ki

5
=

1
5

∑

i

�max { Si

n
,
Ti

n
}�

≤ 1
5

∑

i

(
Si

n
+

Ti

n
+ 1

)

≤ 1
5

· 5n = n.

Here, the first inequality follows from i′ < ki′ . Also, notice that each machine
receives at most 5 different buckets because at most five pairs (i, i′) are mapped
to the same index by f .

Now, we want to make the assignment ϕ globally known to all machines. To
this end, each machine pi broadcasts the number of its buckets, ki. Thus, machine
pi can compute f(i, i′) for each of its buckets Bi,i′ . Then, for all i′ ∈ [ki], machine
pi informs machine pf(i,i′) about the smallest and the largest job number of a
node in bucket Bi,i′ . As the buckets Bi,1, . . . , Bi,ki

are ordered (increasingly) by
the jobs’ indices for all i ∈ [n], this information is sufficient for each machine
to deduce which nodes are assigned to it in ϕ. In the last step, each machine
broadcasts the messages that it has received, i.e., machine pf(i,i′) broadcasts the
smallest and largest job index of bucket Bi,i′ together with the index i, and each
machine can deduce the full assignment ϕ.

Executing Round r + 1. We now use Claim 2 to distribute the states Si,j,r from
the trivial initial assignment ϕs(i, j) = i to the globally known final assignment
ϕf = ϕ. Then, each machine executes the Sending Step of round r for each
of its newly assigned nodes, where a message from vi,j to vi′,j is sent from
pϕ(i,j) to pϕ(i′,j). This is possible since ϕ is globally known. Then, each machine
executes the remainder of the protocol of its newly assigned nodes until after the
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Computation Step of round r + 1. Finally, the obtained states Si,j,r+1 for round
r+1 are re-distributed according to the trivial assignment by using Claim2 once
more, with ϕs = ϕ and ϕf (i, j) = i.

Correctness. For each i ∈ [n] and j ∈ [t] the machine pf(i,j) receives the state
Si,j,r and executes the Sending Step of round r, the Receiving Step of round
r + 1, and the Computation Step of round r + 1 for node vi,j . Thus, afterwards
it holds the state Si,j,r+1. Since this state is then sent back to pi, the correctness
follows.

Round Complexity. The partitioning of each machine’s nodes into buckets is
done locally without communication. Broadcasting the number of buckets (the
value of ki) can be done in a single round. We next reason about the time com-
plexity that is required to make the assignment ϕ globally known. The computa-
tion of f(i, i′) is done locally. Informing machine pf(i,i′) about the smallest and
largest job in the bucket Bi,i′ requires for each machine pi to send at most t mes-
sages and to receive at most 5 messages. Thus, by �t/n� invocations of Claim 1,
this step completes in O(�t/n�) rounds. Since each machine pi is assigned at
most 5 buckets, and for each bucket Bi′,j it broadcasts a constant number of
elements (smallest and largest job index in it together with the identifier i′), this
step completes in O(1) rounds.

The runtime is hence dominated by distributing the states via Claim2, which
takes O(�M · t/n�) rounds. All nodes in a bucket send/receive at most 4n mes-
sages in total and each machine executes the sending/receiving phase for at most
5 buckets, and thus these steps are done in O(1) rounds by Claim 1. ��

4 Randomized Scheduling

In this section we show and compare the two approaches for randomized schedul-
ing: random shuffling (Sect. 4.1) and random delaying (Sect. 4.2). In contrast to
Theorem 3, the results in this section do not require the jobs to be memory
efficient.

4.1 Scheduling Through Random Shuffling

In this subsection we use random shuffling to schedule I/O efficient jobs and we
obtain the following theorem.

Theorem 4. There is a randomized algorithm in the CLIQUE model that
schedules t = poly n jobs that are I/O efficient in O(t + GlobalCongestion +
dilation · log n) rounds, w.h.p.

The definition of an I/O efficient job as used in Theorem 4 is as follows.

Definition 2 (I/O efficient job). An I/O efficient job is a job where each
node receives and produces at most O(n log n) bits of input and output.
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Algorithm. The high level overview of the algorithm for Theorem4 (see
Algorithm 2) consists of three steps: Input Shuffling, Execution, and Output
Unshuffling.

Algorithm 2. Scheduling of I/O efficient job.
1: Input Shuffling

2: Execution: Run dilation many phases, where in phase r each machine pi runs the
protocol for its nodes {v

π−1
j (i),j

| j ∈ [t]}, and messages are routed via Claim 1.

3: Output Unshuffling

Input Shuffling: We iterate sequentially through the jobs. For each job, a
leader machine, say, p0, generates a random uniform permutation πj : [n] �→ [n].
The permutation becomes globally known within two rounds by having p0 send
πj(i) to each pi and then each pi broadcasts πj(i) to all machines. In the last
round of this subroutine, each machine pi sends the input of vi,j to machine
pπj(i). A single round is sufficient because the job is I/O efficient. Thus, at the
end, machine pi holds the state of the nodes vπ−1

j (i),j for all j ∈ [t]. We call this
subroutine Input Shuffling.

Execution: In dilation many phases we progress each job by one round. That
is, each machine pi performs all actions of the nodes that it holds, which are
vπ−1

j (i),j for all j ∈ [t]. In order to use Claim 1 efficiently for each phase r, the
machines need to compute a bound on the number of messages that any of them
sends or receives in phase r. To this end, the machines jointly compute the value
of mr =

∑
j∈[t]

∑
i∈[n] s

r
i,j , where sr

i,j is the number of messages that node vi,j

sends in round r. They do this by having each machine pi send
∑

j∈[t] s
r
π−1
j (i),j

to a leader machine, say, p0, which then sums these values and broadcasts their
sum mr. That is, mr is the total number of messages sent by all nodes in all jobs
in round r, and we show that for each i ∈ [n], O(mr/n + n log n) is a bound on∑

j∈[t] s
r
π−1
j (i),j

(
∑

j∈[t] t
r
π−1
j (i),j

), which is the number of messages that machine

pi has to send (receive) in phase r, to be used when invoking Claim 1.

Output Unshuffling: At the end, after each machine executes the protocols
until they finish, we use a single round of communication for each job to unshuffle
the outputs according to π−1

j . At the end of this Output Unshuffling subrou-
tine, machine pi holds the output vi,j for all j ∈ [t]. This finishes the description
of the algorithm.

In the following lemma, we bound the number of messages that each machine
has to send/receive in one phase by X = O(mr/n+n · log n). Its proof is deferred
to the full version of the paper.

Lemma 2. Consider t jobs and a set of permutations {πj}j∈[t] gener-
ated uniformly at random and let S = maxi∈[n]

∑
j∈[t] s

r
π−1
j (i),j

and R =
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maxi∈[n]

∑
j∈[t] t

r
π−1
j (i),j

. Then, w.h.p., it holds that X = max{S,R} = O(mr/n+

n log n), where mr =
∑

i∈[n]

∑
j∈[t] s

r
i,j.

With an upper bound at hand, on the number of messages that each machine
sends or receives in phase r, we can prove that Algorithm 2 satisfies the statement
of Theorem 4.

Proof of Theorem 4. We prove the correctness and bound the runtime of the
presented algorithm (see Algorithm 2).

Correctness: After the Input Shuffling subroutine (Algorithm2), the input
for node vi,j is stored on machine pπj(i). For each phase r ∈ [dilation], we invoke
Claim 1 with the computed value X, which is w.h.p. a bound the number of mes-
sages that each machine sends or receives. Thus, w.h.p. this invocation succeeds.
Since dilation = O(n), a union bound over all phases gives that at the end of the
Execution subroutine, each machine pi holds the outputs of all nodes vπ−1(i),j

for each j ∈ [t]. After Output Unshuffling, machine pi holds the output for
node vi,j for each job j ∈ [t].

Round Complexity: The initial Input Shuffling (Algorithm 2) and the
Output Unshuffling at the end of the algorithm (Algorithm2) complete with
t rounds each. For each phase r in the Execution part of the algorithm, com-
puting mr is done in 2 rounds. By Lemma 2, X = O(mr/n + n log n) is a bound
on

∑
j∈[t] s

r
π−1(i),j and

∑
j∈[t] t

r
π−1(i),j , which are the number of messages that

machine pi sends and receives in phase r, respectively, for all i ∈ [n]. Thus,
invoking Claim 1 completes in O(mr/n2+log n) rounds, w.h.p. Thus, the overall
round complexity of the algorithm is

O(t +
∑

r∈[dilation]

(mr/n2 + log n)) = O(t +
∑

j∈[t]

mj/n2 + dilation · log n)

= O(t + GlobalCongestion + dilation · log n). ��

4.2 Scheduling Through Random Delays

In this subsection we show how to use random delays approach introduced in
[23] to schedule jobs.

Theorem 5. There is a randomized algorithm in the CLIQUE model,
which schedules t jobs O(LocalCongestion + dilation · log n + t/n) rounds,
w.h.p., given an upper bound on the value of LocalCongestion, and in
O

(
LocalCongestion+ log LocalCongestion · (dilation · log n + t/n)

)
rounds, w.h.p.,

if such a bound is not known.

We next sketch the algorithm and the crucial proof step; the formal proof is
deferred to Sect. 4.2. In the algorithm, job j ∈ [t] is executed with a delay Dj

that is chosen uniformly at random from [D], where D = LocalCongestion/ ln n�.
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In the crucial step of the proof, we use a Hoeffding Bound to show that
this random delay implies that each node has to send and receive at most
X = O(LocalCongestion · n/D) messages per round in all jobs combined. The
claim then follows by routing all messages of a single round with Lenzen’s rout-
ing scheme (Claim 1). This approach uses that all nodes know a bound on
LocalCongestion, which can be removed at the cost of a logarithmic factor with
a standard doubling-technique.

5 Discussion

Our results suggest that the amortized complexity, i.e., the runtime of solving
many instances of a problem divided by the number of instances, is a valuable
measure for the efficiency of protocols in the CLIQUE model. Our interest in
obtaining protocols with fast amortized complexities stems from the growing
number of problems which admit O(1)-round CLIQUE-protocols, e.g., [7,14,26],
whose amortized complexity could potentially be shown to go below constant,
as well as from problems that are still not known to have a constant worst-case
complexity. We now elaborate on this viewpoint.

We give MIS as an example of a problem which can be solved with a
good amortized complexity. The best known protocol [12] requires O(log log Δ)
rounds. In the full version of the paper we show how to run t = poly n instances
of MIS in O(t+log log Δ log n) rounds. For t = Ω(log log Δ log n), the second part
of the complexity “amortizes out” and we obtain that we run t instances of the
MIS problem in O(t) rounds. Basically, we show that the amortized complexity
of the MIS problem is O(1) rounds.

Note that the amortized complexity should not be optimized isolated from
other measures. For example, consider the trivial O(n)-round protocol for pointer
jumping, in which in the i-th round, the i-th node applies its permutation to the
current pointer and sends the result to the next node. It requires only O(n) mes-
sages. Thus, it is trivial to run t ≤ n2 instances of this pointer jumping protocol in
only O(n) rounds, leading to an amortized complexity of O(1/n) = o(1). However,
the latency of this algorithm is an unacceptable O(n) rounds. Instead, in the full
version of the paper we show that the pointer jumping problem has an acceptable
amortized complexity of O(1) rounds and a small latency of O(log2 n) rounds.

For certain protocols, Theorem 3 might even yield o(1) amortized complex-
ity. For example, consider a job in which it is required to compute the

√
n-bin

histogram of some given data. In the trivial 2-round protocol, each node locally
builds a histogram of its input and sends the number of elements in its i-th bin
to vi. For all i ∈ [

√
n], node vi sums the received values and broadcasts the

result. Clearly, such an algorithm is O(
√

n)-memory efficient and uses O(n
√

n)
messages. Our algorithm from Theorem 3 executes t instances of this protocol
in O(�t/√

n�) rounds. Whenever t = o(
√

n), this gives an o(1) amortized round
complexity with constant latency.

The reader may notice that for some sets of jobs, it may be that some ad-
hoc routing could be developed for efficient scheduling. We emphasize that, in
contrast, the power of our algorithms is that they do not require tailoring the
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protocols for the sake of scheduling them within a given set of jobs. This is pivotal
for obtaining a general framework, because knowing in advance the setting in
which a protocol would be executed is an unreasonable assumption that we do
not wish to make.
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Abstract. We present a procedure for efficiently sampling colors in the
CONGEST model. It allows nodes whose number of colors exceeds their
number of neighbors by a constant fraction to sample up to Θ(log n)
semi-random colors unused by their neighbors in O(1) rounds, even in the
distance-2 setting. This yields algorithms with O(log∗ Δ) complexity for
different edge-coloring, vertex coloring, and distance-2 coloring problems,
matching the best possible. In particular, we obtain an O(log∗ Δ)-round
CONGEST algorithm for (1+ε)Δ-edge coloring when Δ ≥ log1+1/ log∗ n n,
and a poly(log log n)-round algorithm for (2Δ − 1)-edge coloring in gen-
eral. The sampling procedure is inspired by a seminal result of Newman
in communication complexity.

1 Introduction

The two primary models of locality, LOCAL and CONGEST, share most of the
same features: the nodes are connected in the form of an undirected graph, time
proceeds in synchronous rounds, and in each round, each node can exchange
different messages with each of its neighbors. The difference is that the messages
can be of arbitrary size in LOCAL, but only logarithmic in CONGEST. A question
of major current interest is to what extent message sizes matter in order to
achieve fast execution.

Random sampling is an important and powerful principle with extensive
applications to distributed algorithms. In its basic form, the nodes of the network
compute their random samples and share it with their neighbors in order to
reach collaborative decisions. When the samples are too large to fit in a single
CONGEST message, then the LOCAL model seems to have a clear advantage.
The goal of this work is to overcome this handicap and derive equally efficient
CONGEST algorithms, particularly in the context of coloring problems.

Graph coloring is one of the most fundamental topics in distributed comput-
ing. In fact, it was the subject of the first work on distributed graph algorithms by
Linial [18]. The task is to either color the vertices or the edges of the underlying
communication graph G so that adjacent vertices/edges receive different colors.
The most basic distributed coloring question is to match what is achieved by a
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simple centralized algorithm that colors the vertices/edges in an arbitrary order.
Thus, our primary focus is on the (Δ+1)-vertex coloring and the (2Δ− 1)-edge
coloring problems, where Δ is the maximum degree of G.

Randomized distributed coloring algorithms are generally based on sampling
colors from the appropriate domain. The classical and early algorithms for vertex
coloring, e.g. [1,16], involve sampling individual colors and operate therefore
equally well in CONGEST. The more recent fast coloring algorithms, both for
vertex [2,6,14,24] and edge coloring [6], all involve a technique of Schneider and
Wattenhofer [24] that uses samples of up to logarithmic number of colors. In fact,
there are no published sublogarithmic algorithms (in n or Δ) for these coloring
problems in CONGEST, while there are now poly(log log n)-round algorithms
[2,6,8] in LOCAL. A case in point is the (2Δ − 1)-edge coloring problem when
Δ = log1+Ω(1) n, which can be solved in only O(log∗ n) LOCAL rounds [6].
The bottleneck in CONGEST is the sampling size of the Schneider-Wattenhofer
protocol.

We present here a technique for sampling a logarithmic number of colors
and communicating them in only O(1) CONGEST rounds. It allows us to match
in CONGEST the best complexity known in LOCAL for a number of coloring
problems where the nodes/edges to be colored have a large slack : the number
of colors available exceeds by a constant fraction the number of neighbors. We
particularly apply the technique to settings where the maximum degree Δ is
superlogarithmic (we shall assume Δ = Ω(log1+1/ log∗ n n)).

The sampling technique is best viewed as making random choices with a lim-
ited amount of randomness. This is achieved by showing that sampling within
an appropriate subfamily of all color samples can retain some of the useful sta-
tistical properties of a fully random sample. It is inspired by Newman’s theorem
in communication complexity [19], where dependence on shared randomness is
removed through a similar argument.

We obtain a superfast O(log∗ Δ)-round algorithm for (2Δ − 1)-edge coloring
when Δ = Ω(log1+1/ log∗ n n). Independent of Δ, we obtain a poly(log log n)-
round algorithm. This shows that coloring need not be any slower in CONGEST
than in LOCAL.

We also obtain similar results for vertex coloring, for the same values of
Δ (Δ = Ω(log1+1/ log∗ n n)). We obtain an O(log∗ Δ)-round algorithm for (1 +
ε)Δ-coloring, for any ε > 0. For graphs that are locally sparse (see Sect. 2 for
definition), this gives a (Δ + 1)-coloring in the same time complexity. Matching
results also hold for the distance-2 coloring problem, where nodes within distance
2 must receive different colors.

1.1 Related Work

The literature on distributed coloring is vast and we limit this discussion to work
that is directly relevant to ours, primarily randomized algorithms.

An edge coloring of a graph G corresponds to a vertex coloring of its line
graph, whose maximum degree is 2Δ(G) − 2. Therefore, LOCAL algorithms for
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(Δ + 1)-vertex coloring yield (2Δ − 1)-edge coloring in the same time. Since
line graphs have a special structure, edge coloring often allows for either faster
algorithms or fewer number of colors. For CONGEST, the situation is different:
Because of capacity restrictions, no single node can expect to learn the colors
of all edges adjacent to a given edge. In fact, there are no published results on
efficient edge-coloring algorithms in CONGEST, to the best of our knowledge1.

A classical simple (probably folklore) algorithm for vertex coloring is for
each vertex to pick in each round a color uniformly at random from its current
palette, the colors that are not used on neighbors. Each node can be shown to
become colored in each round with constant probability and thus this procedure
completes in O(log n) rounds, w.h.p. [16]. In fact, each round of this procedure
reduces w.h.p. the uncolored degree of each vertex by a constant factor, as long
as the degree is Ω(log n) [1]. Within O(log Δ) rounds, the maximum uncolored
degree of each node is logarithmic. This algorithm works also in CONGEST for
node coloring, and as well for edge coloring in LOCAL, but not for edge coloring
in CONGEST, as it is not clear how to randomly select a color from an edge’s
palette in this setting.

Color sampling algorithms along a similar vein have also been studied for edge
coloring [3,10,20], all running in O(log n) LOCAL rounds in general. Panconesi
and Srinivasan [20] showed that one of the most basic algorithms finds a (1.6Δ+
log2+Ω(1) n)-edge coloring. Grable and Panconesi [10] showed that O(log log n)
rounds suffice when Δ = nΩ(1/ log log n)). Dubhashi, Grable and Panconesi [3]
proposed an algorithm based on the Rödl nibble technique, where only a subset
of the edges try a color in each round, and showed that it finds a (1 + ε)Δ-edge
coloring, when Δ = ω(log n).

Sublogarithmic round vertex coloring algorithms have two phases, where the
first phase is completed once the uncolored degree of the nodes is low (logarithmic
or polylogarithmic). Barenboim et al. [1] showed that within O(log log n) addi-
tional rounds, the graph is shattered : each connected component (induced by
the uncolored nodes) is of polylogarithmic size. The default approach is then to
apply fast deterministic algorithms. With recent progress on network decompo-
sition [8,23], as well as fast deterministic coloring algorithms [9], the low degree
case can now be solved in poly(log log n) rounds.

Recent years have seen fast LOCAL coloring algorithms that run in subloga-
rithmic time. These methods depend crucially on a random sampling method of
Schneider and Wattenhofer [24] where each node picks as many as log n colors
at a time. The method works when each node has large slack ; i.e., when the
number of colors in the node’s palette is a constant fraction larger than the
number of neighbors (competing for those colors). This holds in particular when
computing a (1 + ε)Δ-coloring, for some ε > 0, which they achieve in O(log∗ Δ)
rounds, when Δ ≥ log1+Ω(1) n.

1 Fischer, Ghaffari and Kuhn [7] suggest in a footnote that their edge coloring algo-
rithms, described and proven in LOCAL, actually work in CONGEST. It does not
hold for their randomized edge-coloring result, which applies the algorithm of [6].
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In the (Δ+1)-node coloring and (2Δ− 1)-edge coloring problems, the nodes
do not have any slack a priori. It turns out that such slack can sometimes be
generated by a single round of color guessing. Suppose the graph is triangle free,
or more generally, locally sparse, meaning that the induced subgraph of each
node has many non-adjacent pairs of nodes. Then, when each node tries random
color, each pair of non-adjacent common neighbors of v has a fair chance of
being colored with the same color, which leads to an increase in the slack of
v. As shown by Elkin et al. [6] (with a longer history in graph theory, tracing
back at least to Reed [22]), locally sparse graphs will have slack Ω(Δ) after this
single color sampling round. Line graphs are locally sparse graphs, and thus we
obtain this way a O(log∗ Δ)-round algorithm for (2Δ − 1)-edge coloring [6], for
Δ ≥ Δ1+Ω(1). They further obtain a (1+ ε)Δ-edge list coloring in the same time
frame, using the nibble technique of [20].

This fast coloring of locally sparse graphs is also useful in (Δ + 1)-vertex
coloring. Both the first sublogarithmic round algorithm of Harris, Schneider, Su
[14] and the current fastest algorithm of Chang et al. [2] partition the graph into
a sparse and a dense part, and use a variation of the method of [24] to color the
sparse part.

A distance-2 coloring is a vertex coloring such that nodes within distance at
most 2 receive different colors. This problem in CONGEST shares a key prop-
erty with edge coloring: nodes cannot obtain a full knowledge of their available
palette, but they can try a color by asking their neighbors. A recent (Δ2 + 1)-
distance-2 coloring algorithm of [11] that runs in O(log Δ) + poly(log log n)
CONGEST rounds can be used to compute (2Δ − 1)-edge colorings in the same
time complexity.

2 Intuition and Preliminaries

Existing O(log∗ Δ) algorithms for the different coloring problems in LOCAL such
as those by Schneider and Wattenhofer [24] all involve sampling several colors in
a single round. In such algorithms, the nodes try colors in a way that guarantees
each color an independent, Ω(1) probability of success. While this probability
of success is a given when nodes try a single color, trying several colors simul-
taneously could create more conflicts between colors and reduce the probability
of success of any given one.

This issue is usually solved using slack, the difference between the number
of colors unused by the neighbors of a node and how many of its neighbors are
still uncolored. Slack is a given when we allow more colors than each node has
neighbors, and is otherwise easily generated in a locally sparse graph.

If the nodes are all able to try Θ(log n) colors in O(1) rounds, and all colors
have an independent, Ω(1) probability of success, O(1) rounds suffice to color all
nodes w.h.p. However, this is usually not immediately possible, unless all nodes
have a large amount of slack from the beginning. The O(log∗ n) algorithms work
through increasing the ratio of slack to uncolored degree, trying more and more
colors as this ratio increases, allowing nodes to try Θ(log n) colors each with
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constant probability over the course of O(log∗ n) rounds. The speed comes from
the fact that slack never decreases but the uncolored degree of the edges decreases
with exponentially increasing speed as the nodes try more and more colors.

However, sending Θ(log n) arbitrary colors requires Θ(log n·log Δ) bits, i.e., a
minimum of Θ(log Δ) CONGEST rounds. Our algorithms will also involve having
each node try up to Θ(log n) colors, but without transmitting Θ(log n) arbitrary
colors.

2.1 Sampling Colors with Shared Randomness

While Θ(log n · log Δ) bits are needed to describe an arbitrary choice of Θ(log n)
colors in a color space of size Θ(Δ), being able to describe any choice of Θ(log n)
colors can be unnecessary. To get intuition about this, consider the setting where
all nodes have access to a shared source of randomness.

With a shared source of randomness, instead of sending log Δ bits to specify
a color, a node can interpret blocks of log Δ bits in the source as colors and
send the index of one of them. If each random color has a chance ≥ p of having
the properties needed to be tried, the index of the first satisfactory color will
only take O(log(1/p)) bits to communicate. The nodes can also use O(log n)
bits to indicate which of the first O(log n) colors in the random source they try.
This technique allows the edges to sample Θ(p log n) colors in a single round
of CONGEST. The choices made by nodes are made independent by having the
nodes use disjoint parts of the shared randomness (for example, each node might
only use the bits at indices equal to its ID modulo n). This type of saving in the
communication based on a shared source of randomness appears in several places
in communication complexity, in particular in [15] where it is used with the Dis-
jointness problem, and in the folklore protocol for Equality (e.g., Example 3.13
in [17]).

It is crucial in the above argument that all nodes have access to a shared
source of randomness, as messages making references to the shared randomness
lose their meaning without it. Our goal will now be to remove this need for
a shared source of randomness, taking inspiration from Newman’s Theorem in
communication complexity [19] (Theorem 3.14 in [17], Theorem 3.5 in [21]). It
is not an application of it, however, as contrary to the 2-party communication
complexity setting, distributing a common random seed to all parties would
require many rounds in our context, and the success of any node trying one or
more colors is interrelated with the random choices of up to Δ + 1 parties. Our
contribution is best understood as replacing a fully random sample of colors
by a pseudorandom one with appropriate statistical guarantees, whose proof of
existence resembles the proof of Newman’s Theorem. We do so in Sect. 3, and
give multiple applications of this result in subsequent sections.

2.2 Tools and Notation

Our results rely heavily on the existence of a family of sets with the right prop-
erties, whose existence we prove by a probabilistic argument. We make frequent
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use of the Chernoff-Hoeffding bounds in this proof, as well as in other parts of
the paper. We use a version of the bounds that holds for negatively associated
random variables.

Definition 1 (Negative association). The random variables X1, . . . , Xn are
said to be negatively associated if for all disjoint subsets I, J ⊆ [n] and all non-
decreasing functions f and g,

E[f(Xi, i ∈ I) · g(Xj , j ∈ J)] ≤ E[f(Xi, i ∈ I)] · E[g(Xj , j ∈ J)]

Lemma 1 (Chernoff-Hoeffding bounds). Let X1, . . . , Xn be n negatively
associated random variables in [0, 1], X :=

∑n
i=1 Xi their sum, and let the expec-

tation of X satisfy μL ≤ E[X] ≤ μH . For 0 < ε < 1:

Pr[X > (1 + ε)μH ] ≤ e−ε2μH/3, Pr[X < (1 − ε)μL] ≤ e−ε2μL/2.

Negative association is a somewhat complicated-looking property but the
property holds in simple scenarios. In particular it holds for balls and bins
experiments [4,5], such as when the random variables X1, . . . , Xn correspond
to sampling k elements out of n (i.e., when the random variables satisfy
Pr[Xi = vi,∀i ∈ [n]] = 1/

(
n
k

)
for all v ∈ {0, 1}n, ‖v‖1 = k). It also encompasses

the usual setting where X1, . . . , Xn are independent.
For ease of notation, we use the following shorthands: [a, b]k for the interval

[a · k, b · k], [a..b] for the set {a, . . . , b}, and [k] for the set {1, . . . , k}.
Throughout the paper we describe algorithms that try an increasing number

of colors in a single round. This increase is much faster than exponential and
we use Knuth’s up-arrow notation to denote it. In fact, the increase is as fast
as the inverse of log∗, which already gives a sense of why our algorithms run in
O(log∗ n) rounds.

Definition 2 (Knuth’s up-arrow notation for tetration). For a ∈ R, b ∈
N, a ↑↑ b represents the tetration or iterated exponentiation of a by b, defined
as:

a ↑↑ 0 = 1, and a ↑↑ b = aa↑↑(b−1) when b > 0.

Throughout the paper, as we work on a graph G(V,E) of vertices V and edges
E, we denote by n the number of vertices and by Δ the maximum degree of
the graph. The degree of a vertex is denoted by d(v), its uncolored degree (how
many of its neighbors are uncolored) by d∗(v). The sparsity of v (Definition 3)
is denoted by ζ(v), the palette of v (the set of colors not yet used by one of v’s
neighbors) by ψv, and its slack s(v) is defined as s(v) = |ψv| − d∗(v). Whenever
we consider an edge-coloring problem, we will often work on the line graph and
add an L subscript to indicate that we consider the same quantities but on
L(G): the maximum degree of this graph is ΔL = 2Δ − 1, the degree of an edge
is denoted by dL(e), and so on.
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Definition 3 (Sparsity). Let v be a node in the graph G(V,E) of maximum
degree Δ, and let E[N(v)] the set of edges between nodes of v’s neighborhood
N(v). The sparsity of v is defined as:

ζ(v) =
1
Δ

·
((

Δ

2

)

− |E[N(v)]|
)

The sparsity is a measure of how many edges are missing out of all the edges
that could exist in the neighborhood of a node. As immediate property, ζ(v) is
a rational number in the range [0, (Δ− 1)/2]. A value close to 0 indicates a very
dense neighborhood (in particular ζ(v) = 0 iff {v}∪N(v) forms a (Δ+1)-clique)
while a value close to (Δ − 1)/2 indicates the opposite, that v’s neighborhood is
sparse (at the extreme, ζ(v) = (Δ− 1)/2 iff no two neighbors of v are connected
to one another). A graph is said to be (1 − ε)-locally sparse iff its vertices are
all of sparsity at least εΔ. A vertex v of sparsity ζ is equivalently said to be
ζ-sparse.

Sparsity is of interest here for two reasons: first, because we know from a
result of [6] that nodes receive slack proportional to their sparsity w.h.p. in just
one round of all nodes trying a random color if ζ(v) ∈ Ω(log n) (Proposition 1),
and second because the line graph is sparse by construction (Proposition 2).

Proposition 1 ([6], Lemma 3.1). Let v be a vertex of sparsity ζ and let Z
be the slack of v after trying a single random color. Then,

Pr[Z ≤ ζ/(4e3)] ≤ e−Ω(ζ).

Proposition 2. A node e of the line graph L(G) (i.e., an edge of G) has degree
dL(e) at most ΔL = 2(Δ − 1), and the number of edges in its neighborhood
EL(G)[N(e) \ {e}] is at most (Δ − 1)2, meaning e is (Δ − 2)/2-sparse, i.e.,
(ΔL − 2)/4-sparse.

3 Efficient Color Sampling with Representative Sets

We now introduce the tool that will allow us to sample and communicate Θ(log n)
colors in O(1) CONGEST rounds with the right probabilistic guarantees. Let s be
the number of elements we sample and k the size of the universe to be sampled
from. If we wanted to be able to sample any subset of [k] of size s, we would need
log

(
k
s

)
bits to communicate our choice of subset. But our goal is to communicate

less than this amount, so we instead consider a family of s-sized subsets of [k]
such that picking one of those subsets at random has some of the probabilistic
properties of sampling an s-sized subset of [k] uniformly at random. The family
is much smaller that the set of all possible s-sized subsets of [k], which allows
us to communicate a member of it in much less than log

(
k
s

)
bits. We call the

family of subsets a representative family, made of representative sets, and the
probabilistic properties we maintain are essentially that:
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– Every element of [k] is present in about the same number of sets.
– For any large enough subset T of [k], a random representative set intersects

T in about as many elements as a fully random s-sized set.

Crucially, the second property holds for a large enough arbitrary T , so we will be
able to apply it even as T is dependent on the choices of other nodes in the graph
as long as the representative set is picked independently from T . T will typically
be the palette of a node or edge, or the set of colors not tried by any neighbors of
a node or edge. Maintaining these two properties is enough to efficiently adapt
many LOCAL algorithms that rely on communicating large subsets of colors to
the CONGEST setting.

Definition 4 (Representative sets). Let U be a universe of size k. A family
F = {S1, . . . , St} of s-sized sets is said to be an (α, δ, ν)-representative family
iff:

∀T ⊆ U, |T | ≥ δk : Pr
i∈[t]

[ |Si ∩ T |
|Si| ∈ [1 − α, 1 + α]

|T |
k

]

≥ (1 − ν), (1)

∀T ⊆ U, |T | < δk : Pr
i∈[t]

[ |Si ∩ T |
|Si| ≤ (1 + α)δ

]

≥ (1 − ν), (2)

∀u ∈ U : Pr
i∈[t]

[u ∈ Si] ∈ [1 − α, 1 + α]
s · t

k
. (3)

We show in Lemma 2 that such families exist for some appropriate choices
of parameters. The proof of this result, which relies on the probabilistic method,
takes direct inspiration from Newman’s Theorem [19].

Lemma 2 (Representative sets exist). Let U be a universe of size k. For
any α, δ, ν > 0, there exists an (α, δ, ν)-representative family (Si)i∈[t] of t ∈
O(k/ν + k log(k)) subsets, each of size s ∈ O(α−2δ−1 log(1/ν)).

Proof. Our proof is probabilistic: we show that Eqs. 1, 2 and 3 all hold with non-
zero probability when picking sets at random. We first study the probability that
Eqs. 1 and 2 hold, and then the probability that Eq. 3 holds.

Consider any set T ⊆ U of size ≥ δk. Pick a random set S ⊆ U of size s. The
intersection of S and T has expected size ES [|S ∩ T |] = |T |

k s. Let us say that
S has an unusual intersection with T if its size is outside the [1 − α, 1 + α] |T |

k s
range. By Chernoff with negative dependence,

Pr
S

[

|S ∩ T | �∈ [1 − α, 1 + α]
|T |
k

s

]

≤ 2e−sα2 |T |
3k ≤ 2e− α2δ

3 s.

This last quantity also bounds the probability that |S ∩T | > (1+α)δs when
|T | < δk, which we also consider as an unusual intersection.
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Pick t sets S1, . . . , St of size s at random independently from each other,
let Xi be the event that the ith set Si unusually intersects T . By Chernoff, the
probability that more than 4t · exp

(
−α2δ

3 s
)

of the sets unusually intersect T is:

Pr
S1...St

[
∑

i

Xi > 4t · e− α2δ
3 s

]

≤ e
− t

3 ·exp
(

− α2δ
3 s

)

There are less than 2k subsets of U . Therefore, the probability that there
exists a set T such that out of the t sampled sets S1 . . . St, more than 4t ·
exp

(
−α2δ

3 s
)

have an unusual intersection with T , is at most:

2k · e
− t

3 ·exp
(

− α2δ
3 s

)
= exp

(

k · ln(2) − t

3
· exp

(

−α2δ

3
s

))

This last quantity is an upper bound on the probability that one of Eqs. 1
and 2 does not hold. Let us now similarly bound the probability that Eq. 3 does
not hold.

For any u ∈ U , the probability that a random s-sized subset of U contains u
is s/k. Let Xi be the event that our ith random set Si contains u, we have:

Pr
S1...St

[
∑

i

Xi �∈ [1 − α, 1 + α]
s · t

k

]

≤ 2e−α2 s·t
3k

Therefore the probability that Eq. 3 does not hold, i.e., that there exists an
under- or over-represented element u ∈ U in our t randomly picked sets, is less
than 2k · e−α2 s·t

3k . The probability that one of Eqs. 1, 2, and 3 does not hold is
at most:

exp
(

k · ln(2) − t

3
· exp

(

−α2δ

3
s

))

+ exp
(

ln(2k) − α2 s · t

3k

)

We now pick the right values for s and t such that: first, this last probability
is less than 1 and, therefore, a family with all the above properties exist; second,
the fraction of sets Si with the wrong intersection is less than ν for all T .

The fraction of bad sets is guaranteed to be less than ν if 4 · e− α2δ
3 s ≤

ν, which is achieved with s ≥ ln(4/ν) · 3
α2δ . We take s to be this last value

rounded up, i.e., we have s ∈ O(α−2δ−1 log(1/ν)). For t, we pick it satisfying
t > 3(k ·ln(2)+1)·exp

(
α2δ
3 s

)
and t > 3k·(ln(2k)+1)

α2·s , that is, we can pick t of order
Θ (k/ν + k log(k)) and satisfy all properties with non-zero probability, implying
the existence of the desired representative family.

4 (1 + ε)Δ-Vertex Coloring

We first apply our techniques to the relatively simple (1 + ε)Δ-vertex coloring
problem. The arguments deployed here for this setting are core to all our results.
Our main result in this section is Theorem 1:
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Theorem 1. Suppose Δ ∈ Ω(log1+1/ log∗ n n). There is a CONGEST algorithm
that solves the (1 + ε)Δ-vertex coloring problem w.h.p. in O(log∗ n) rounds.

Throughout this section, let us assume that all nodes know a common repre-
sentative family (Si)i∈[t] with parameters α = 1/2, δ = ε

4(1+ε) , and ν = n−3 over
the color space U = [(1+ε)Δ]. The nodes may, for example, all compute the lex-
icographically first (α, δ, ν)-representative family over U guaranteed by Lemma
2, with t ∈ O(Δ · n3) and s ∈ O(log n), at the very beginning of the algorithm.

We leverage this representative family in a procedure we call MultiTrials,
where nodes can try up to Θ(log n) colors in a round. The trade-off is that the
colors they try are not fully random but picked from a representative set. We
show that this does not matter in this application.

Algorithm 1. Procedure MultiTrials(x) (vertex coloring version)
1. v picks iv ∈ [t] uniformly at random and chooses a subset Xv of x colors uniformly

at random in Siv ∩ψv. These are the colors v tries. v describes Xv to its neighbors
in O(1) rounds by sending iv and (δ[c∈Xv ])c∈Siv

in log(t) + s ∈ O(log n) bits.
2. If v tried a color that none of its neighbors tried, v adopts one such color and

informs its neighbors of it.

Using MultiTrials with an increasing number of colors, we immediately
get an O(log∗ n) algorithm for the (1 + ε)Δ-coloring problem (Algorithm 2).

Algorithm 2. Algorithm for (1 + ε)Δ-vertex coloring (large Δ)
1. Nodes compute a common (α, δ, ν)-representative family over [(1+ε)Δ] guaranteed

by Lemma 2.
2. For i ∈ [0.. log∗ n], for O(1) rounds, each uncolored node runs MultiTrials(2↑↑i).

3. For i ∈ [0.. log∗ n], each uncolored node runs MultiTrials
(

εΔ·logi/ log∗ n n
2(1+ε)Cc log n

)
O(1)

times.

To show that Algorithm 2 works, we first show that MultiTrials, under
the right circumstances, is very efficient at coloring nodes (Lemma 3). In fact,
given the right ratio between slack and uncolored degree, as the nodes try mul-
tiple colors, they get colored as if each color tried succeeded independently with
constant probability.

Lemma 3. Suppose a node v has slack s(v) ≥ εΔ and d∗(v) uncolored neighbors.
Suppose x ≤ ε

2(1+ε)Δ. If x ≤ s(v)/2d∗(v), then conditioned on an event of high
probability ≥ 1 − 2ν, an execution of MultiTrials(x) colors v with probability
at least 1 − 2−x/4, even conditioned on any particular combination of random
choices from the other nodes.
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Proof. Consider the representative set Siv
randomly picked by v in the commonly

known representative family of parameters α = 1/2, δ = ε
4(1+ε) , and ν = n−3.

We know that Siv
intersects any set of colors T ⊆ [(1 + ε)Δ] of size at least

δ(1 + ε)Δ in [1/2, 3/2] |T |
(1+ε)Δ |Siv

| ≥ δ
2 |Siv

| positions w.h.p.
Let us apply this with ψv, the set of colors not currently used by neighbors

of v, and Tgood, the set of colors that are neither already used nor tried in this
round by nodes adjacent to v.

Clearly, Tgood ⊆ ψv, |ψv| = s(v)+d∗(v), and |Tgood| ≥ s(v)+d∗(v)−x·d∗(v) ≥
(s(v)+d∗(v))/2 = |ψv|/2. Both sets are of size at least δ(1+ε)Δ, therefore w.h.p.
|Siv

∩ Tgood| ≥ 1
2 |Siv

| · |Tgood|
(1+ε)Δ ≥ 1

4 |Siv
| · |ψv|

(1+ε)Δ ≥ 1
6 |Siv

∩ ψv|.
Therefore, assuming that the above holds and that there are at least x colors

in Siv
∩ψv, when v picks x random colors in Siv

∩ψv, the colors picked each have a
chance at least 1/6 of being in Tgood. The probability that none of them succeeds
is at most (5/6)x ≤ 2−x/4. The event that Siv

does not have an intersections of
unusual size with either ψv or Tgood has probability at least 1 − 2ν.

The second part of the argument consists of showing that the ratio of slack to
uncolored degree increases as Algorithm 2 uses MultiTrials with an increasing
number of colors. Lemma 4 helps guarantee that the repeated use of MultiTri-
als leaves all uncolored nodes with an uncolored degree at most Cc log n for
some constant Cc.

Lemma 4. Suppose the nodes all satisfy d∗(v) ≤ s(v)/(2 · 2 ↑↑ i), with s(v)/(2 ·
2 ↑↑ i) ≥ Cc log n. Then after O(1) rounds of MultiTrials(2 ↑↑ i), w.h.p., they
all satisfy d∗(v) ≤ max(s(v)/(2 · 2 ↑↑ (i + 1)), Cc log n).

Proof. Let v be a node of uncolored degree at least Cc log n (if not, it already
satisfies the desired end property).

By Lemma 3, each uncolored neighbor of v stays uncolored with probability
at most 2−(2↑↑i)/4. By a Chernoff bound, Cc being large enough, at most 21/4 ·
2−(2↑↑i)/4 · d∗(v) neighbors of v stay uncolored w.h.p.

Let us repeat this process for 4 rounds. If at any point the uncolored degree
drops below Cc log n, we reached the desired property, and the argument is over.
Otherwise, we can apply the Chernoff bound for all 4 rounds and get that at
most 2 · 2−(2↑↑i) · d∗(v) = 2 · 1

2↑↑(i+1) · d∗(v) neighbors of v stay uncolored, so the
new uncolored degree of v satisfies:

d∗(v) ≤ 2 · 1
2 ↑↑ (i + 1)

· s(v)
2 · 2 ↑↑ i

≤ s(v)
2 · 2 ↑↑ (i + 1)

.

Lemma 5. Suppose the nodes all satisfy d∗(v) ≤ Cc log1−i/ log∗ n n. Then after

O(1) rounds of MultiTrials
(

εΔ·logi/ log∗ n n
2(1+ε)Cc log n

)
, w.h.p., they all satisfy d∗(v) ≤

Cc log1−(i+1)/ log∗ n n.

Proof. Let x = εΔ·logi/ log∗ n n
2(1+ε)Cc log n denote the number of colors tried in our applica-

tion of MultiTrials. For each uncolored node v we have x ≤ s(v)/2d∗(v). By
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Lemma 3, conditioned on a high probability event, each uncolored node stays
uncolored with probability at most 2−x/4, regardless of the random choices of
other nodes. We set q = Cc log1−(i+1)/ log∗ n n. Since Δ ≥ log1+1/ log∗ n n and
x ≥ ε

2(1+ε)Cc
log(i+1)/ log∗ n n, we have q · x ∈ Ω(log n).

Consider q neighbors of a node v, Θ(1) runs of MultiTrials(x) leave them
all uncolored with probability at most 2−Ω(q·x). The probability that a set of q
neighbors stays uncolored is bounded by d∗(v)q · 2−Ω(q·x) = 2−Ω(q·(x−log log n)) =
2−Ω(log n). So, w.h.p., less than q neighbors of v stay uncolored.

With Lemmas 3 to 5 proved, we only need a few additional arguments to
complete the proof of Theorem 1.

Proof (Proof of Theorem 1). Step 2. of Algorithm 2 with i = 0 creates a situation
where the hypotheses of Lemma 4 hold for i = 1. The repeated application of
Lemma 4 guarantees that, w.h.p., all nodes are either colored or have uncolored
degree ≤ Cc log n.

In Step 3., all nodes start with uncolored degree at most Cc log n and slack at
least εΔ, thus fitting the hypotheses of Lemma 5. Its repeated application yields
that after the first log∗ n− 1 first phases of this step, each node is either already
colored or tries Ω(log n) colors in each run of MultiTrials, which colors all
remaining nodes w.h.p.

Lower Δ and Concluding Remarks: When Δ ∈ O(log1+1/ log∗ n n), a simple use
of the shattering technique [1] together with the recent deterministic algorithm
of [9] (using O(log2 C log n) rounds with O(log C) bits to compute a degree+1 list-
coloring of a n-vertex graph whose lists are subsets of [C]) is enough to solve the
problem in O(log3 log n) CONGEST rounds, which combined with our previous
O(log∗(n)) algorithm for Δ ∈ O(log1+1/ log∗ n n) means there exists an algorithm
for all Δ that solves the (1 + ε)Δ coloring problem in O(log3 log n) CONGEST
rounds w.h.p.

Theorem 2. There is a CONGEST algorithm that solves the (1 + ε)Δ-vertex
coloring problem in O(log3 log n) rounds w.h.p.

5 Edge Coloring

Moving on to the more complicated setting of edge-coloring, we will see that most
of what we proved in the previous section is easily adapted to the edge-coloring
setting. We first convert the (1 + ε)Δ-vertex coloring result to a (2 + ε)Δ-edge
coloring and then sketch how to obtain superfast algorithms for only (2Δ − 1)
and (1+ε)Δ colors, with the details deferred to the full version of the paper [13].

5.1 (2 + ε)Δ-Edge Coloring

Theorem 3. Suppose Δ ∈ O(log1+1/ log∗ n n). There is a CONGEST algorithm
that solves the (2 + ε)Δ-edge coloring problem w.h.p. in O(log∗ n) rounds.
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To prove Theorem 3, the most crucial observation is that the elements of
the graph trying to color themselves no longer know their palette. In the edge-
coloring setting, each of the two endpoints of an edge e only has a partial view
of which colors are used by e’s neighbors. Communicating the list of colors
used at one endpoint of e to the other endpoint is impractical, as it could
require up to Θ(Δ log Δ) bits. To circumvent this, we introduce a procedure
(PaletteSampling) for the two endpoints of an edge e to efficiently sample
colors in ψe, the palette of e, again using representative sets. The MultiTrials
procedure is then easily adapted to the edge-setting by making it use Palette-
Sampling, and the same algorithm as the one we had in the node setting works
here, simply swapping its basic building block procedure for an edge-adapted
variant.

As before (but with a different color space) let us assume throughout this
section that all nodes know a common representative family (Si)i∈[t] with param-
eters α = 1/2, δ = ε

4(1+ε) , and ν = n−3 over the color space U = [(2 + ε)Δ].
For each edge e, let us denote by ve and v′

e its two endpoints, with ve the
one of higher ID. Let us denote by ψe the palette of e, the set of colors unused
by e’s neighboring edges, and for a node u let ψu be the set of colors unused by
edges around u. For an uncolored edge e, ψe = ψve

∩ ψv′
e
.

Algorithm 3. Procedure PaletteSampling (edge-coloring version)
1. ve picks ie ∈ [t] uniformly at random and sends ie to v′

e in O(log(t)/ log(n)) = O(1)
rounds.

2. v′
e replies with s bits describing Sie ∩ ψv′

e
in O(1) rounds.

3. ve sends s bits to v′
e describing Sie ∩ ψve in O(1) rounds.

Proposition 3. Suppose e’s palette ψe satisfies |ψe| ≥ δ · (2+ ε)Δ. Then ve and
v′

e find [1 − α, 1 + α] · s · |ψe|/(2 + ε)Δ colors in e’s palette in an execution of
PaletteSampling w.h.p.

Proof. The result follows directly from Eq. 1 in the definition of representative
sets (Definition 4).

PaletteSampling leverages that sending a random color for the other end-
point to reject or approve requires much less communication than learning which
colors are used at the other endpoint. The representative sets and the slack at
the edges’ disposal further allow us to sample not just Θ(log n/ log Δ) colors
(represented in log Δ bits each) in O(1) rounds but Θ(log n) colors by sampling
pseudo-independent colors.
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Algorithm 4. Procedure MultiTrials(x) (edge-coloring version)
1. ve and v′

e execute PaletteSampling. Let Sie be the randomly picked represen-
tative set.

2. ve picks a subset Xe of x colors uniformly at random in Sie ∩ ψe and sends s bits
to v′

e to describe it. These are the colors e tries.
At this point, each node u knows which colors are tried by all its incident edges.

3. Each ve describes to v′
e which of the x colors tried by e were not tried by any other

edge adjacent to ve in O(1) rounds, and reciprocally.
4. If e tried a color that no edge adjacent to e tried, ve picks an arbitrary such color,

sends it to v′
e, and e adopts this color.

An execution of MultiTrials maintains the invariant that each node knows
which colors are used by edges incident to it. As before, the representative sets
guarantee that for any uncolored edge e, whatever colors other edges adjacent
to e are trying, the chosen representative set Sie

has a large intersection with
the set of unused and untried colors, as long as this set represents a constant
fraction of the color space (which slack and a good choice of x guarantee).

Algorithm 5. Algorithm for (2 + ε)Δ-edge coloring (large Δ)
1. Nodes send their ID to their neighbors.
2. Nodes compute a common (α, δ, ν)-representative family over [(2 + ε)Δ].
3. For i ∈ [0.. log∗ n], for O(1) rounds, each uncolored edge runs MultiTrials(2↑↑i).
4. For i ∈ [0.. log∗ n], for O(1) rounds, each uncolored edge runs MultiTri-

als
(

εΔ·logi/ log∗ n n
2(2+ε)Cc log n

)
.

Algorithm 5 is exactly the same algorithm as Algorithm 2 in which we have
swapped the node version of MultiTrials for its edge-variant, which makes for
a straightforward proof.

Proof (Proof of Theorem 3). The edge-coloring version of MultiTrials has the
same properties as its vertex-coloring counterpart. More precisely, Lemmas 3
and 4 still hold (with the line graph L(G) instead of G and edges instead of
nodes), and we can simply refer to the Proof of Theorem 1 for the details of how
all edges get colored w.h.p. by Algorithm 5.
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Table 1. Summary of our results. log(c) is the c-iterated logarithm, c and c′ are con-
stants. Note that (2+ ε)Δ > (2Δ − 1) > (1+ ε)Δ. Proposition 1 implies similar results
for vertex-coloring using less colors on locally sparse graphs for large Δ.

Degree Tasks Complexity in CONGEST

Δ = Ω(log1+1/ log∗ n n) (1 + ε)Δ-vertex coloring O(log∗ n)

(1 + ε)Δ-edge coloring

Δ = O(log1+1/ log∗ n n) (1 + ε)Δ-vertex coloring O(log3 logn)

(2Δ − 1)-edge coloring O(log4 logn)

Δ = Ω(

√
log1+1/ log∗ n n) (1 + ε)Δ2-vertex distance-2 coloring O(log∗ n)

Δ = O(

√
log1+1/ log∗ n n) O(log4 logn)

Δ = Ω(log1+1/c′
n) Δ log(c)-vertex coloring O(1)

Δ log(c)-edge coloring

Δ = Ω(

√
log1+1/c′

n) Δ2 log(c) n-vertex distance-2 coloring

5.2 (2Δ − 1)-Edge and (1 + ε)Δ-Edge Coloring

A few extra steps prior to using our algorithm for (2+ε)Δ-edge coloring suffice to
reduce the number of colors to (2Δ−1) and even (1+ε)Δ at no cost in complexity,
for Δ ∈ Ω(log1+1/ log∗ n n). The (2Δ−1) result only relies on Propositions 1 and
2 to generate slack, and the (1 + ε)Δ result uses a technique presented in [3] to
significantly reduce the live degree of the graph with few colors. We also obtain
results for lower values of Δ using shattering and the deterministic algorithm
of [9] for vertex coloring.

6 Conclusions

We have presented a new technique, inspired by communication complexity, for
speeding up CONGEST algorithms. We have applied it to a range of coloring
problems, but it would be interesting to see it used more widely, possibly with
extensions.

All our results are summarized in Table 1. For related proofs and details
absent here, we refer readers to the full version of the paper [13].
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Abstract. Approximate agreement is one of the few variants of consen-
sus that can be solved in a wait-free manner in asynchronous systems
where processes communicate by reading and writing to shared memory.
In this work, we consider a natural generalisation of approximate agree-
ment on arbitrary undirected connected graphs. Each process is given
a vertex of the graph as input and, if non-faulty, must output a vertex
such that

– all the outputs are within distance 1 of one another, and
– each output value lies on a shortest path between two input values.

From prior work, it is known that there is no wait-free algorithm among
n ≥ 3 processes for this problem on any cycle of length c ≥ 4, by reduc-
tion from 2-set agreement (Castañeda et al. 2018).

In this work, we investigate the solvability and complexity of this
task on general graphs. We give a new, direct proof of the impossibility
of approximate agreement on cycles of length c ≥ 4, via a generalisation
of Sperner’s Lemma to convex polygons. We also extend the reduction
from 2-set agreement to a larger class of graphs, showing that approxi-
mate agreement on these graphs is unsolvable. On the positive side, we
present a wait-free algorithm for a class of graphs that properly contains
the class of chordal graphs.

Keywords: Approximate agreement · Wait-free · Extension-based
proofs

1 Introduction

Understanding the solvability and complexity of coordination tasks is one of
the key questions in distributed computing. The difficulty of coordination often
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Fig. 1. Examples of approximate agreement with n = 2 processes. In the top row,
blue nodes are input values for a particular instance. Solid blue edges denote edges on
shortest paths, and blue double lines denote the additional edges that are also on some
minimal path connecting input nodes. Solid and non-solid orange nodes denote out-
puts that satisfy the shortest path and minimal path validity constraints, respectively.
(a) Agreement on a tree. All minimal paths are also shortest paths. (b) Agreement on
a chordal graph. (c) Agreement on a non-chordal bridged graph. (d)–(e) Instances of
6-cycle agreement. (Color figure online)

arises from uncertainty : processes have limited knowledge about each other’s
inputs, the relative speed of computation and communication between processes
can vary, and processes may fail during computation.

Tasks which require perfect agreement, such as consensus [36], are typically
hard to solve: Fischer, Lynch, and Paterson [25] proved that consensus cannot
be reached in asynchronous message-passing systems if even one process may
crash. Later, this was extended to shared memory systems where processes com-
municate using shared registers [13,32].

While perfect agreement is not needed for many applications, it is known
that agreeing on at most k > 1 different values is still hard: There exists no
algorithm for k-set agreement that tolerates k crash faults in the asynchronous
setting for n > k processes [9,30,37]. In contrast, approximate agreement –
agreeing on values that are sufficiently close to one another – can be considerably
easier [8,18,22,23,34,38].

1.1 Graphical Approximate Agreement

In this work, we study solvability and complexity of approximate agreement
when the set of input and output values reside on a graph. Consider a distributed
system with n processes and let G = (V,E) be a connected graph. The graph G is
not necessarily related to the communication topology of the distributed system,
but it is assumed to be known by all processes. In approximate agreement on G,
each process pi is given a node xi ∈ V as input and has to output a node yi ∈ V
subject to the following constraints:
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– agreement: every two output values are adjacent in G, and
– validity: each output value lies on a shortest path between two input values.

Note that the output values form a clique. Figure 1(a) gives an example of graph-
ical approximate agreement on a tree. Prior work has mostly focused on the cases
when G is a path [8,18,22,23,38], a graph whose clique graph is a tree [3], or a
chordal graph [35], i.e., a graph that contains no induced cycle of length greater
than three.

Approximate Agreement on a Path. The special case when G is a path is well-
understood. This case is typically studied in the continuous setting, where the
values reside on the real line and the goal is to output values within distance
ε > 0 of each other. A discrete version of the problem can be obtained by
considering integer-valued inputs and outputs and taking ε = 1. In the shared-
memory setting, Attiya, Lynch, and Shavit [8] showed that the step complexity
of wait-free solutions using single-writer registers is Θ(log n). Using multi-writer
registers, Schenk [38] established that the step complexity of obtaining agreement
is O(log D), where D is the maximum distance between two input values.

In asynchronous message-passing systems, Dolev, Lynch, Pinter, Stark and
Weihl [18] showed that approximate agreement can be solved with f < n/5
Byzantine faults. This was improved by Abraham, Amit, and Dolev [1] to allow
f < n/3 Byzantine faults, matching a lower bound by Fischer, Lynch, and Mer-
ritt [24]. Efficient algorithms tolerating more benign faults in the synchronous
and asynchronous message-passing settings were given by Fekete [22,23].

Approximate Agreement Under Minimal Path Validity. Rybicki and Nowak [35]
studied approximate agreement on chordal graphs under a different validity con-
dition, where output values have to lie on a minimal path between any two input
values. A path in G is minimal if no two non-consecutive nodes in the path are
connected by an edge, i.e. if v0, . . . , vk is a minimal path and 0 ≤ i < j−1 ≤ k−1,
then {vi, vj} �∈ E. This validity condition is weaker, since every shortest path
between two nodes is a minimal path, but the converse is not true. Figures 1(b)–
(c) illustrate the difference between minimal and shortest paths. If G is chordal,
then there exists an algorithm tolerating f Byzantine faults in the asynchronous
message-passing model for n > (ω(G) + 1)f processes, where ω(G) is the size of
the largest clique in G [35].

Approximate Gathering on Graphs. Alcántara, Castañeda, Flores-Peñaloza, and
Rajsbaum [3] investigated approximate agreement with the following weaker
clique gathering validity condition: if all inputs values are adjacent, then each
output value has to be one of the input values. Their validity condition arises
from considering an approximate gathering problem for robots on a graph. This
condition is weaker than shortest path and minimal path validity: for example,
in the instances given in Figs. 1(b)–(e), any set of outputs that lie on a clique
would satisfy clique gathering validity.

They showed that this problem is solvable in a wait-free manner on graphs
whose clique graphs are trees and on graphs of radius one (i.e., graphs with a
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Table 1. Algorithms for asynchronous approximate agreement on graphs.

Graph class Validity condition Fault model Reference

Clique graph is a tree Clique gathering Wait-free [3]

Radius one Wait-free [3]

Chordal Minimal paths Byzantine, n > (ω + 1)f [35]

Paths Shortest paths Wait-free [8,38]

Paths Byzantine, n > 3f [1]

Nicely bridged or radius
one

Wait-free This work

Any 1-resilient This work

dominating set of size one). A clique graph K(G) of G is the graph where vertices
of K(G) are the maximal cliques of G and two vertices of K(G) are adjacent if
they correspond to cliques with a common vertex. Note that there are chordal
graphs whose clique graphs are not trees; for example, see Fig. 1(b).

Approximate Agreement on Cycles. When G is a cycle of length c, approximate
agreement under minimal path validity and clique gathering validity are the
same problem. We refer to this special case as c-cycle agreement. When c = 3,
the problem is trivial, since each process can output its input.

Castañeda, Rajsbaum, and Roy [12] showed that 2-set agreement reduces to
c-cycle agreement, for c ≥ 4. This implies that there is no algorithm for approxi-
mate agreement on c-cycles (under both minimal and shortest path validity) for
c ≥ 4 that tolerates 2 crash faults in in asynchronous shared memory systems
consisting of registers. Hence, approximate agreement on cycles of length at least
4 is harder than on paths and chordal graphs.

1.2 Contributions

In this work, we establish additional positive and negative results on the solv-
ability and complexity of graphical approximate agreement.

Positive Results. We present a wait-free asynchronous algorithm for n ≥ 2 pro-
cesses that solves approximate agreement on a large subclass of bridged graphs,
and on any radius one graph. A bridged graph is a graph in which each of its
cycles of length at least 4 contains 2 vertices that are connected by a shorter
path than either path in the cycle connecting them [20,21]. All chordal graphs
are bridged, but the converse is not necessarily true; for an example, see Fig. 1(c).

Our algorithm solves the graphical approximate agreement problem on all
chordal graphs and a large class of non-chordal graphs of arbitrary large radius.
This includes graphs of radius one and graphs whose clique graphs are trees.
Thus, our algorithm handles all graphs handled by previous algorithms, while
guaranteeing a stronger validity condition. See Table 1 for a comparison.
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In addition, we give a 1-resilient asynchronous algorithm for graphical
approximate agreement using only registers on any connected graph for n ≥ 2
processes. Note that, when n = 2, this algorithm is wait-free. In the full ver-
sion [6], we also present an f -resilient synchronous algorithm for the fully-
connected message-passing model with n > f processes. The algorithm solves
approximate agreement on any connected graph G in �f/2�+�log2 diam(G)	+1
rounds, where diam(G) is the diameter of G.

Negative Results. We provide a new, direct proof of the impossibility of approx-
imate agreement on cycles of length c ≥ 4. It uses a generalisation of Sperner’s
Lemma to convex polygons. It follows from known simulation techniques [11,27]
that there is no 2-resilient asynchronous algorithm using registers and any f -
resilient synchronous algorithm requires at least �f/2� + 1 rounds for n > f
processes. Furthermore, we present a simplified version of the existing reduction
from k-set agreement to cycle agreement and use it to extend the impossibility
of graphical approximate agreement to a larger class of graphs.

Extension-Based Proofs. In the full version [6], we show that extension-based
proofs [4], such as valency arguments, are not powerful enough to show the
impossibility of 4-cycle agreement in the non-uniform iterated snapshot model.
Note that this result does not follow from the fact that there are no extension-
based proofs of the impossibility of 2-set agreement in the non-uniform iterated
snapshot model [5], even though there is a reduction from 2-set agreement to
c-cycle agreement for c ≥ 4.

2 Related Work

Multidimensional Approximate Agreement. Mendes, Herlihy, Vaidya and
Garg [33] generalised approximate agreement to the multidimensional setting,
where the input values are points in m-dimensional Euclidean space R

m, for
m > 0. In the multidimensional approximate agreement problem, the output
values should be within distance ε > 0 of one another and be contained in the
convex hull of the input values of the non-faulty processes. When m = 1, this is
approximate agreement on a line. Multidimensional approximate agreement on
R

m is solvable with f Byzantine faults in the asynchronous completely-connected
message-passing setting if and only if n > (m+2)f [33]. In the synchronous set-
ting, the problem is solvable if and only if n > max{3f, (m + 1)f}. Recently,
Függer and Nowak [26] established asymptotically tight convergence rates for
multidimensional approximate agreement by removing the dependence on the
dimension m of the space.

Unlike approximate agreement on the real line, it is not straightforward
to obtain a discrete version of multidimensional approximate agreement when
m ≥ 2. For example, in the two-dimensional integer lattice Z

2 ⊆ R
2, one can

find a pair of points arbitrarily far apart such that they are the only integral
points in their convex hull. In this case, solving approximate agreement is the
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same as solving consensus. More generally, Herlihy and Shavit [29] showed that
approximate agreement in a multidimensional setting with Euclidean convex
hulls cannot be solved in a wait-free manner when processes communicate using
registers if the space of values has holes of size ε. Since the Euclidean convex
hull of two antipodal points around the hole consists of only the two points,
outputting values within distance ε of one another in this convex hull would
amount to solving consensus.

Barycentric agreement [28] is a multidimensional problem that can be solved
wait-free manner: processes are given inputs that lie on a simplex σ of a simpli-
cial complex and must output values that are on a simplex of the barycentric
subdivision of σ. This problem can be solved, for example, using m-dimensional
approximate agreement [34].

Approximate Robot Gathering in Graphs. Robot gathering problems have been
studied in the continuous setting [2,15], but we focus on the discrete setting,
where n robots reside on nodes in a graph G. The inputs represent the initial
positions of the robots, the outputs represent the final positions of the robots,
and the goal is that the outputs are close to one another.

Exact gathering of asynchronous robots, where the goal is to get all robots
to the same vertex, has been studied extensively in various models. See a recent
survey of Cicerone, Di Stefano, and Navarra [14]. Castañeda, Rajsbaum, and
Roy [12] and Alcántara, Castañeda, Flores-Peñaloza, and Rajsbaum [3] studied
several variants of approximate gathering of asynchronous robots moving on
a graph that communicate via snapshots. In edge gathering [3, Definition 4],
agreement is satisfied if all outputs belong to the same edge. Validity requires
that (i) if all inputs values are the same, then the output values are the same
as the input values, and (ii) if all inputs belong to the same edge, then the
output values also belong to this edge. The 1-gathering task [3, Definition 5] is
a relaxation of edge gathering, where agreement is satisfied if the output values
form a clique, and validity requires that the output values must be a subset of
the input values if the input values form a clique.

Note that neither edge gathering or 1-gathering solve graphical approximate
agreement, as the validity constraint of graphical approximate agreement is
stronger: each output value has to lie on some shortest path between two input
values. The difference is best illustrated by the simple case of a path, where
approximate agreement requires that the outputs always lie between the min-
imal and maximal input values, while edge gathering and 1-gathering do not
have this requirement.

Edge gathering is solvable if and only if G is a tree [3]. On cliques, edge
gathering is the same as the 2-set agreement task, whereas 1-gathering and
graphical approximate agreement are trivial. For 1-gathering, Alcántara et al. [3]
gave an algorithm for trees, which can also be used to solve 1-gathering on any
graph whose clique graph is a tree.

When the graph G is a cycle of length c ≥ 4, edge gathering and 1-gathering
are the same as c-cycle agreement. Castañeda et al. [12] and Alcántara et al. [3]
gave a clever reduction showing that this problem is as hard as 2-set agreement
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for n = 3 processes. In Sect. 4, we give a direct proof of this result. Moreover, in
Sect. 6, we simplify and adapt the reduction from 2-set agreement to prove that
wait-free graphical approximate agreement is impossible on a much larger class
of graphs.

3 Models

We consider distributed systems with n processes, where at most f processes
may fail by crashing. In particular, we focus on the setting where processes
communicate using atomic snapshot objects, which can be implemented from
registers. We also consider the synchronous message-passing model under fully-
connected communication topologies.

Asynchronous Shared Memory Models. In the f-resilient non-uniform iterated
snapshot (f -NIS) model, n processes, p0, . . . , pn−1, communicate using an infinite
sequence, S1, S2, . . . , of shared single-writer atomic snapshot objects. A single-
writer atomic snapshot object has n components, each of which has initial value
−. It supports two atomic operations, update and scan. An update(x) by process
pi changes the value of component i to x �= −. A scan returns the value of each
component.

Each process performs an update on a snapshot object, starting with S1, and
then repeatedly performs scans of this object until at most f components have
value −. (Note that, if f = n − 1, then one scan of the snapshot object suffices,
since the process has already performed an update on its own component.) Next,
it updates its state and applies a function, Δ, to its new state to determine
whether it should output a value. If the value of Δ is not ⊥, then pi outputs this
value and terminates. If the value of Δ is ⊥, then, at its next step, it updates the
next snapshot object in the sequence with a value determined by its new state.

Note that it suffices to consider schedules where all accesses to each snapshot
object occur before any accesses to the next snapshot object in the sequence.
This is because if process pj performs its update of a particular snapshot object
after process pi performs its scans to this object, then it is indistinguishable to
both processes how much later this occurs.

A configuration consists of the contents of each shared object and the state of
each process. From any configuration C, a scheduler decides the order in which
the processes take steps. The sequence of processes selected by the scheduler
is called a schedule from C. Given a finite schedule α from C, we use Cα to
denote the resulting configuration. An algorithm is wait-free if there is no infinite
schedule from any initial configuration.

The non-uniform iterated immediate snapshot (NIIS) model, introduced by
Hoest and Shavit [31], is like a full-information (n − 1)-NIS model, except that
the scheduler is restricted in how it can schedule processes: It repeatedly selects
a set of processes that are all poised to perform updates on the same snapshot
object. Each of the processes in the set performs its update. Then, each of these
processes performs one scan of this snapshot object. Note that, since each process
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performs an update to a snapshot object before performing a scan, the scan will
return a vector containing at most n− 1 components with value −. Initially, the
state of process pi consists of its identifier, i, and its input. When it performs
an update, the value it uses is its current state. After performing a scan, its new
state consists of i and the result of the scan.

Each initial configuration in the NIIS model or f -NIS model corresponds
to a simplex (or an n-vertex clique) containing one vertex for each process,
which specifies its input. The collection of all such simplexes is called the input
complex (or input graph). Likewise, for any algorithm, each reachable terminal
configuration corresponds to a simplex (or n-vertex clique) containing one vertex
for each process, which specifies its state, including the value it outputs. The
collection of all such simplexes (or n-vertex cliques) is called the protocol complex
(or protocol graph). We may assume that the sets of possible states of different
processes are disjoint. There is an edge between two vertices if they represent
the states of different processes and there is a reachable configuration containing
both these states.

A nice feature of the NIIS model is that the protocol complex of any wait-
free algorithm can be obtained from the input complex by performing a finite
number of non-uniform chromatic subdivisions of simplexes. In the special case
when there are n = 3 processes, each simplex is a triangle and the non-uniform
chromatic subdivision of a simplex is a triangulation of the simplex. Likewise,
in the (n − 1)-NIS model, Alistarh, Aspnes, Ellen, Gelashvili, and Zhu [5] have
shown that the protocol graph of any wait-free, full-information algorithm can be
obtained from the input graph by performing a finite number of subdivisions of
n-vertex cliques. For deterministic, wait-free computation, both the NIIS model
and the (n − 1)-NIS model are equivalent to the asynchronous shared memory
model in which processes communicate using shared registers (which support
only read and write) [10].

The Synchronous Message-Passing Model. In the synchronous message-passing
model, there is no uncertainty regarding the relative speeds of processes. A
computation is divided into synchronous rounds. In each round, each process
sends its entire state to every other process. Any message sent by a non-faulty
process in round r is guaranteed to arrive at its destination before the end of
round r. A synchronous algorithm is an f -resilient solution to a task using T
rounds if all non-crashed processes decide on an output value by the end of round
T in any execution with at most f crashes.

4 Impossibility of Asynchronous Wait-Free Cycle
Agreement

In this section, we give a proof of the following result.

Theorem 1. For c ≥ 4, there is no wait-free algorithm for the c-cycle agreement
problem among n ≥ 3 processes in the NIIS model.
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Fig. 2. (a) A triangulation T of a pentagon. (b) A Sperner labelling of T with the
edges of the graph G′ superimposed in orange. (c) The subcomplex H for c = 7. (d)
The subcomplex H for c = 8. (Color figure online)

Our proof relies on a slight generalisation of Sperner’s lemma to convex
polygons, originally shown by Atanassov [7] and generalised to convex polytopes
of any dimension by de Loera, Peterson, and Su [16]. However, for us, a special
case in the two-dimensional setting suffices.

Let H be a polygon with c vertices and let T be a triangulation of H. A
Sperner labelling of T is a function from the vertices of T to the set {0, . . . , c − 1}
such that each vertex of H gets a different label and each vertex on the boundary
of T between two vertices of H gets the same label as one of those two vertices.
Please see Figs. 2(a) and (b).

Lemma 1. Let H be a convex polygon with c vertices. Any Sperner labelling of
a triangulation of H has a triangle whose vertices have three different labels.

Proof. Let T be a triangulation of H and consider any Sperner labelling of T .
Without loss of generality, suppose there are two adjacent vertices v0 and v1 of
H labelled with 0 and 1, respectively. Consider the graph G′ = (V ′ ∪ {v∗}, E′),
where V ′ is the set of triangles of T . There is an edge in E′ between triangles τ
and τ ′ if and only if they have exactly two vertices in common, one of which is
labelled 0 and the other of which is labelled 1. There is an edge in E′ between
v∗ and triangle τ if and only if two of the vertices of τ lie on the boundary of T
between v0 and v1 and they have different labels. This is illustrated in Fig. 2(b).

Each of the nodes of T on the boundary between v0 and v1 is labelled by
0 or 1. The labels of the nodes on this path change an odd number of times,
since v0 and v1 have different labels. Thus, there are an odd number of edges
on the boundary whose endpoints are labelled 0 and 1, so v∗ has odd degree.
If a triangle has two nodes labelled 0 and one node labelled 1 or vice versa, it
has degree 2 in G′. If a triangle has one node labelled 0, one node labelled 1,
and one node with some other label, it has degree 1 in G′. Otherwise, it has
degree 0 in G′.

The handshaking lemma [19] says that any finite graph contains an even
number of nodes with odd degree. Since v∗ has odd degree, there exists a triangle
τ ∈ V with odd degree. The vertices of this triangle have three different labels.



96 D. Alistarh et al.

Proof of Theorem 1. Let H denote the part of the input complex for c-cycle agree-
ment among 3 processes p0, p1, and p2, consisting of the simplexes corresponding
to the following c − 2 input configurations:

– p0 has input 3a, p1 has input 3a + 1, and p2 has input c − 3a − 1, for 0 ≤ a ≤
�(c − 3)/6�.

– p1 has input 3a + 1, p2 has input c − 3a − 1, and p0 has input c − 3a − 2, for
0 ≤ a ≤ �(c − 4)/6�.

– p1 has input 3a + 1, p2 has input 3a + 2, and p0 has input c − 3a − 2, for
0 ≤ a ≤ �(c − 5)/6�.

– p2 has input 3a + 2, p0 has input c − 3a − 2, and p1 has input c − 3a − 3, for
0 ≤ a ≤ �(c − 6)/6�.

– p2 has input 3a + 2, p0 has input 3a + 3, and p1 has input c − 3a − 3, for
0 ≤ a ≤ �(c − 7)/6�.

– p0 has input 3a + 3, p1 has input c − 3a − 3, and p2 has input c − 3a − 4, for
0 ≤ a ≤ �(c − 8)/6�.

Note that H contains c vertices, one for each possible input value. The cases
c = 7 and c = 8 are illustrated in Figs. 2(c) and (d). The processes p0, p1, and
p2 are denoted by the colours red, white, and blue, respectively. The border of
H is a polygon H with c vertices.

Consider any wait-free algorithm for 3 processes in the NIIS model. Let S

denote its protocol complex. It is finite, since the algorithm is wait-free. Let T

denote the subcomplex of S consisting of all terminal configurations reachable
from configurations in H, where each vertex is labelled with the output value
it contains. The vertices and edges of T form a triangulation T of H. For each
input value x ∈ {0, . . . , c − 1}, there is a vertex vx on the boundary of T that
corresponds to the solo execution by some process pi with input x. If it is not
labelled by the value x, then the algorithm does not solve c-cycle agreement.
The edges on the border of T between vx and vx′ , where x′ = (x + 1) mod c,
correspond to executions by only two processes, one with input x and the other
with input x′. If the endpoints of all such edges are not labelled by x or x′, the
algorithm does not solve c-cycle agreement. Label each vertex of T with the label
of the corresponding vertex in T. If the algorithm is correct, then this is a Sperner
labelling. By Lemma 1, the triangulation T contains a triangle whose vertices
have three different labels. The corresponding configuration is the result of an
execution in which the three processes output different values, so the algorithm
cannot be solving c-cycle agreement among three processes.

Since all but three processes can crash before taking any steps, any algorithm
that solves c-cycle agreement among n ≥ 3 processes is also an algorithm that
solves c-cycle agreement among 3 processes. Therefore no such algorithm exists.

5 Impossibility of Extension-Based Proofs

Extension-based proofs were introduced by Alistarh, Aspnes, Ellen, Gelashvili
and Zhu [4] to model inductive impossibility arguments, such as the valency-
based impossibility of consensus in asynchronous message-passing systems by
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Fisher, Lynch and Paterson [25]. These are in contrast to the combinatorial
arguments used to show the impossibility of set agreement [9,30,37]. It is known
that extension-based proofs cannot be used to prove the impossibility of (n−1)-
set agreement among n > 2 processes in the NIIS model [4] or in the (n−1)-NIS
model [5].

In the full version of the paper [6], we show that extension-based proofs
cannot be used to prove Theorem 1 in the (n − 1)-NIS model. This is the first
application of the extension-based proof framework to a task other than set
agreement. We emphasize that this result does not follow directly via reduction
from the result for k-set agreement. The main source of novelty in our argument
is in carefully extending their adversarial algorithm to the c-cycle agreement
task.

Theorem 2. There is no extension-based proof of the impossibility of a wait-
free algorithm solving 4-cycle agreement for n ≥ 3 processes in the (n − 1)-NIS
model.

6 Impossibility Results via Reductions

In this section, we show that the impossibility of wait-free cycle agreement
implies the impossibility of 2-resilient cycle agreement in the asynchronous
shared memory model (where processes communicate by reading from and writ-
ing to registers) and a lower bound on the round complexity of cycle agreement
in the synchronous message passing model. Finally, we show that approximate
agreement is impossible on graphs that admit a certain labelling of the vertices.

There Exists no 2-Resilient Asynchronous Algorithm. A task is colourless if the
input of any process may be the input of any other process, the output of any
process may be the output of any other process, and the specifications of valid
outputs only depend on the set of inputs of the processes. Cycle agreement is
an example of a colourless task. The BG simulation technique [11] shows that
the impossibility of wait-free algorithms for a colourless task for n ≥ 3 processes
implies the impossibility of 2-resilient algorithms for that task.

Theorem 3. [11] If there exists a k-resilient asynchronous algorithm for n > k
processes that solves a colourless task, then there is a wait-free asynchronous
algorithm for (k + 1) processes that solves the task.

Together with Theorem 1, the BG simulation immediately implies that there
is no 2-resilient asynchronous algorithm for the cycle agreement problem.

Corollary 1. For any n ≥ 3 and c ≥ 4, there is no 2-resilient asynchronous
algorithm that solves c-cycle agreement.
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Time Lower Bounds for Synchronous Algorithms. We can now lift the impossi-
bility results to time lower bounds for the synchronous model using the round-
by-round simulation by Gafni [27], who showed the following.

Theorem 4. [27] Let 0 < k < f < n be such that n − k − f > 0. Fix T ≤
f/k. Suppose there exists a synchronous f-resilient algorithm for n nodes that
solves a colourless task in T rounds. Then there exists a k-resilient asynchronous
algorithm that solves the task.

Applying Corollary 1 and Theorem 4, we obtain a time lower bound for syn-
chronous algorithms.

Corollary 2. For any n > f ≥ 0, any f-resilient synchronous message-passing
algorithm for c-cycle agreement requires at least �f/2� + 1 rounds.

Graphs on Which Approximate Agreement is Impossible. We now show that
approximate agreement is hard on graphs that admit a certain labelling of its
vertices. We do so by a reduction from 2-set agreement among n ≥ 3 processes.
In this problem, each process has an input value in {0, 1, 2} and, if it does not
crash, it must output one of the inputs such that at most two different values
are output.

A labelling 	 : V → {0, 1, 2} of the vertices of a graph G = (V,E) is a lower
bound labelling if the following conditions hold:

1. G contains no triangle with three different labels and
2. G contains a cycle C in which exactly one vertex has label 1 and its two

neighbours in C have labels 0 and 2.

It is easy to check that any cycle of length c ≥ 4 admits a lower bound labelling:
pick three consecutive vertices, label them with 0, 1, 2, and label all other vertices
with 2. A wheel graph, which consists of a cycle and one central vertex that is
a neighbour of all vertices in the cycle, does not admit a lower bound labelling.
On the other hand, if one edge adjacent to the central vertex is removed, the
resulting graph does admit a lower bound labelling: label the other endpoint of
the removed edge with 1, label one of its neighbours with 0, and label all other
vertices with 2.

Theorem 5. Suppose G is a graph that admits a lower bound labelling. Then
there is no wait-free algorithm among n ≥ 3 processes that solves graphical
approximate agreement on G.

Proof. Consider a lower bound labelling 	 of G. Let C be a cycle in G that
contains exactly one vertex, v1, with label 1, a neighbour v0 of v1 with label
0, and a neighbour v2 of v1 with label 2. Let A be a wait-free approximate
agreement algorithm on the path C \ {v1}.

To obtain a contradiction, suppose there is a wait-free algorithm B for graph-
ical approximate agreement on G. The following wait-free algorithm solves 2-set
agreement:
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– Processes with input value x ∈ {0, 2} run the approximate agreement algo-
rithm A on the path C \ {v1} using vx as input. The vertex each of these
processes outputs in A is used as its input for algorithm B.

– Processes with input value 1 use v1 as their input for algorithm B.
– Each process pi outputs the label 	(yi) of the vertex yi it outputs in B.

By the agreement property of graphical approximate agreement, the values out-
put in B lie on a clique. The first property of a lower bound labelling implies
that the nodes in this clique have at most two distinct labels. Thus, at most two
different values are output by the processes.

If there are three distinct input values, then validity is immediately satisfied.
If all input values are the same, then all output values are this input value,
since this is true for algorithms A and B. It remains to consider instances of
set agreement with exactly two input values. First, suppose the inputs for set
agreement are in {0, 1}. All processes with input 0 output v0 in algorithm A,
since v0 is the only value input to A. Thus, each process uses either v0 or v1 as
its input to algorithm B. As v0 and v1 are adjacent in G, each process outputs
one of these two values in B, by validity of graphical approximate agreement.
Hence, each process outputs a value in {	(v0), 	(v1)} = {0, 1} for set agreement,
satisfying validity. The case {1, 2} is symmetric.

Now, suppose that the inputs for set agreement are in {0, 2}. Then each
process uses either v0 or v1 as its input to algorithm A. Their outputs in A
and, hence their inputs to algorithm B, all lie on some edge {u, v} on the path
C \ {v1}. By validity of graphical approximate agreement, each process outputs
either u or v in B. From the second property of a lower bound labelling, all
values in C \ {v1} are labelled with either 0 or 2. Thus, each process outputs 0
or 2 for set agreement, satisfying validity.

7 Upper Bounds for Asynchronous Systems

We conclude with upper bounds for graphical approximate agreement: a
1-resilient algorithm on general graphs and a wait-free algorithm on any nicely
bridged graph for n ≥ 2 processes.

Let G = (V,E) be a connected graph. For any set U ⊆ V , the subgraph
of G induced by U is the graph G[U ] = (U,F ), where F = {e ∈ E : e ⊆ U}.
The distance between two vertices u and v in G is denoted by d(u, v). The
eccentricity ε(v) of a node v ∈ V is max{d(u, v) : u ∈ V }. The diameter of G is
diam(G) = max{ε(v) : v ∈ V } and the radius rad(G) of G is min{ε(v) : v ∈ V }.
For any nonempty set U ⊆ V , let D(U) = max{d(u, v) : u, v ∈ U}. In particular,
diam(G) = D(V ).

7.1 A 1-Resilient Algorithm for General Graphs

The intuitive idea for solving approximate agreement on G, assuming at most
one process crashes, is simple: First use 2-set agreement to reduce the number
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of input values to at most 2. Then run approximate agreement on a path whose
endpoints are these input values, which takes �log2 diam(G)	 steps.

There is an easy 1-resilient algorithm for 2-set agreement. However, the sec-
ond step is not immediate, as there may be many paths of G on which the
approximate agreement algorithm could be run. However, since all processes
know the graph G, we can avoid this difficulty by fixing in advance a shortest
path between every pair of vertices. The rest of this section is dedicated to the
following result.

Theorem 6. Let G = (V,E) be a connected graph. Then for all n ≥ 2, there
exists a 1-resilient algorithm which solves approximate agreement on G.

Solving 2-Set Agreement. Fix a total order on V . For any nonempty subset
X ⊆ V , let min(X) be the smallest element of X under this order. Let xi(0) ∈ V
be the input of process pi and let T = �log2 diam(G)	. We will use a single-writer
atomic snapshot object, S0, whose components are initialised with the special
value −. Each process pi:

– performs update on component i of the snapshot object S0, setting it to the
value xi(0),

– repeatedly performs scan on the snapshot object S0 until at least n − 1 com-
ponents have values other than −,

– lets Xi(0) be the set of vertices returned by its last scan, and
– lets xi(1) = min(Xi(0)).

Approximate Agreement on a Path. For any two vertices u, v ∈ V , fix a shortest
path between u and v in G and let g(u, v) be a fixed node in the center of
this path. Then d(u, g(u, v)), d(v, g(u, v)) ≤ �d(u, v)/2	. For any nonempty set
X ⊆ V of size at most two, define ψ(X) = u if X = {u} and ψ(X) = g(u, v) if
X = {u, v}. We will use a sequence S1, . . . , ST of single-writer atomic snapshot
objects, whose components are initialised with the special value −. For 1 ≤ t ≤
T , each process pi:

– performs update on component i of the snapshot object St, setting it to the
vertex xi(t),

– repeatedly performs scan on the snapshot object St until at least n − 1 com-
ponents have values other than −,

– lets Xi(t) be the set of vertices returned by its last scan, and
– lets xi(t + 1) = ψ(Xi(t)).

The output of process pi is the value xi(T + 1).

Correctness. Let 0 ≤ t ≤ T . If process pi crashes before computing Xi(t), we
define Xi(t) to be the empty set. Observe that each process pi first performs
update on St with xi(t) before performing scan on St. Thus, if pi computes
Xi(t), then Xi(t) is nonempty.

Each component of St is updated at most once. Since scan is an atomic
operation, the set of vertices returned in a scan is a subset of the set of vertices
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returned in any later scan. Therefore, Xi(t) ⊆ Xj(t) or Xj(t) ⊆ Xi(t) for any
i and j. Each process continues performing scan until it crashes or St contains
at most one −. Thus {Xj(t) : 0 ≤ j ≤ n − 1} contains at most two nonempty
sets. Since xj(t+1) is a function of Xj(t), it follows that {xj(t+1) : Xj(t) �= ∅}
contains at most two different vertices. These are the only values that are used
to update components of St+1, so Xi(t + 1) ⊆ {xj(t + 1) : Xj(t) �= ∅}. Hence,
|Xi(t + 1)| ≤ 2 and, if Xi(t + 1) �= ∅, then xi(t + 2) = ψ(Xi(t + 1)) is defined.

Let X(t) =
⋃{Xi(t) : 0 ≤ i < n}. We use X(T + 1) to denote the set of

output values. Note that X(t) ⊆ V for 0 ≤ t ≤ T + 1 and X(0) is a subset of
the input values. If t ≥ 1, then X(t) ⊆ {xj(t) : Xj(t − 1) �= ∅}, so |X(t)| ≤ 2.

Lemma 2. Let 1 ≤ t ≤ T . Then D(X(t + 1)) ≤ �D(X(t))/2	.
Proof. If Xi(t) = X(t) for every nonempty set Xi(t), then xi(t + 1) = ψ(X(t)).
Hence X(t+1) will contain only one vertex and D(X(t+1)) = 0. Otherwise, Xi(t)
is a nonempty, proper subset of X(t) for some 0 ≤ i < n. Recall that |X(t)| ≤ 2,
so Xi(t) = {u} and X(t) = {u, v} for some vertices u �= v. Since Xj(t) ⊆ Xi(t)
or Xi(t) ⊆ Xj(t) for all 0 ≤ j < n, it follows that every nonempty set Xj(t)
is either equal to {u} or {u, v} and xj(t + 1) is either equal to ψ({u}) = u or
ψ({u, v}) = g(u, v). By definition of g, we have that d(u, g(u, v)) ≤ �d(u, v)/2	.
Since X(t + 1) ⊆ {u, g(u, v)}, it follows that D(X(t + 1)) ≤ �D(X(t))/2	.

Proof of Theorem 6. We verify that the agreement and validity properties of
graphical approximate agreement are satisfied. We proceed by induction to show
that vertices in X(t+1) lie on some shortest path between the values in X(t) for
all 1 ≤ t ≤ T . The case t = 1 is true because X(1) ⊆ X(0). Suppose the claim
holds for some X(t) such that 1 ≤ t ≤ T . By definition of g and ψ, all values
in X(t + 1) lie on some shortest path between the values in X(t). Thus, validity
is satisfied. Since X(1) ⊆ V , D(X(1)) ≤ diam(G). As T = �log2 diam(G)	,
Lemma 2 implies that the distance d(u, v) between any two output values u, v ∈
X(T +1) is max{d(u, v) : u, v ∈ X(T +1)} = D(X(T +1)) ≤ �diam(G)/2T 	 ≤ 1.

The Synchronous Case. In the full version of the paper [6], we extend the same
algorithmic idea to the synchronous message-passing setting under crash faults.

Theorem 7. Let G be a connected graph. For any 0 ≤ f < n, there exists
an f-resilient synchronous message-passing algorithm for n processes that solves
approximate agreement on G in �f/2� + �log2 diam(G)	 + 1 rounds.

7.2 A Wait-Free Asynchronous Algorithm for Nicely Bridged
Graphs

The center of G is the set {v ∈ V : ε(v) = rad(G)} of nodes with minimum
eccentricity in G. A graph G is k-self-centered if every vertex has eccentricity k.
This means that every vertex is in the center of G and diam(G) = rad(G) = k. A
graph is chordal if it does not contain any induced cycles of length greater than
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three. The 3-sun, also known as the Hajós graph, is obtained from a triangle
{u, v, w} by subdividing each of its edges and connecting the resulting three
vertices {x, y, z} to be a clique. This graph is 2-self-centered and chordal.

A set K ⊆ V of nodes is (shortest path) convex if, for any u, v ∈ K, all
nodes on all shortest paths between u and v are contained in K. For any U ⊆ V ,
the convex hull 〈U〉 of U is the smallest convex superset of U . If A ⊆ B, then
〈A〉 ⊆ 〈B〉. A vertex v is simplicial in the graph G if the neighbours of v in G
form a clique.

Bridged and Nicely Bridged Graphs. A subgraph H of G is isometric if the
distances between any two vertices of H are the same in H and G. A graph is
bridged if it contains no isometric cycles of length greater than three [20]. All
chordal graphs are bridged, but a bridged graph may contain induced cycles
of length greater than five. We say that G = (V,E) is nicely bridged if any
2-self-centered subgraph H = G[S], induced by a convex set S ⊆ V , is chordal.

We now list some useful properties of bridged graphs. Farber proved the
following result about the radius and diameter of bridged graphs [20].

Lemma 3. For any bridged graph G, we have 3 · rad(G) ≤ 2 ·diam(G)+2. If G
is bridged and does not contain an induced 3-sun as a subgraph, then 2 ·rad(G) ≤
diam(G) + 1 holds.

We use the following fact due to Farber and Jamison [21, Theorem 6.5].

Lemma 4. If G = (V,E) is bridged, then D(〈U〉) = D(U) for any U ⊆ V .

The previous two lemmas can be used to show the following simple result.

Lemma 5. Suppose G is a bridged graph and U ⊆ V is a nonempty set. Then
the induced subgraph H = G[〈U〉] is bridged and satisfies diam(H) = D(〈U〉).

The Algorithm. For any nonempty set of vertices X ⊆ V , we choose a vertex
ψ(X) from the subgraph H = G[〈X〉] induced by 〈X〉 as follows: If the center
of H contains a vertex that is non-simplicial in H, then let ψ(X) be any such
vertex. Otherwise, let ψ(X) be any vertex in the center of H. By definition,
ψ(X) has minimum eccentricity in H. Since ψ(X) is a vertex in the convex hull
of X, it is on some shortest path between two vertices in X.

Let xi(0) be the input of process pi and let T ∗ = �log3/2 diam(G)	 + 1. The
processes communicate using a sequence S0, . . . , ST of single-writer snapshot
objects, where T = max{|V |, T ∗}. In each iteration 0 ≤ t ≤ T , each process pi

– performs update on component i of the snapshot object St, setting it to xi(t),
– performs scan on the snapshot object St,
– defines Xi(t) be the set of vertices returned by its scan, and
– sets xi(t + 1) = ψ(Xi(t)).

Once pi has computed xi(T +1), the process outputs this vertex and terminates.
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Sketch of Correctness. As before, if pi crashes before computing the set Xi(t),
we define Xi(t) to be the empty set. We let X(t) =

⋃{Xi(t) : 0 ≤ i < n} and
use X(T + 1) to denote the set of output vertices. We need to show that all the
vertices in X(T + 1) are contained in a clique. The main challenge is showing
that the vertices in X(t) get closer together as t increases. First, we can show
using, Lemmas 3–5 that, for 0 ≤ t ≤ T ∗, if the set of values X(t) does not form
a clique, then the diameter of X(t + 1) is roughly two thirds the diameter of
X(t).

Lemma 6. Let 0 ≤ t ≤ T ∗. Then D(X(t + 1)) ≤ 2
3 (D(X(t)) + 1).

We can apply Lemma 6 repeatedly to ensure that we quickly end up in a subgraph
with diameter at most two.

Lemma 7. If G[〈X(t)〉] has radius one, then X(t + 1) is a clique.

Thus, after reaching a subgraph of radius 1, one more iteration suffices. More-
over, the algorithm solves the problem on any (possibly non-bridged) graph of
radius 1. If the graph does not contain an induced 3-sun, then the algorithm
converges in T ∗ + 1 iterations. However, these two lemmas do not guarantee
progress when the convex hull of X(t) has diameter and radius 2.

In bridged graphs, the algorithm converges either to a clique or to a set
whose convex hull induces a 2-self-centered subgraph. If G is nicely bridged, i.e.,
any 2-self-centered convex subgraph is chordal, our algorithm makes progress,
because every chordal graph has a simplicial vertex [17]. However, our approach
does not work for all bridged graphs, as there are non-chordal 2-self-centered
bridged graphs without any simplicial vertices. The details of the proof of the
following theorem appear in the full version of this paper [6].

Theorem 8. For any nicely bridged connected graph G, there is a wait-free
algorithm for n ≥ 2 processes that solves graphical approximate agreement on G.
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Abstract. This work examines strategies to handle large shared data
objects in distributed storage systems (DSS), while boosting the num-
ber of concurrent accesses, maintaining strong consistency guarantees, and
ensuring good operation performance. To this respect, we define the notion
of fragmented objects: concurrent objects composed of a list of fragments
(or blocks) that allow operations to manipulate each of their fragments
individually. As the fragments belong to the same object, it is not enough
that each fragment is linearizable to have useful consistency guarantees
in the composed object. Hence, we capture the consistency semantic of
the whole object with the notion of fragmented linearizability. Then, con-
sidering that a variance of linearizability, coverability, is more suited for
versioned objects like files, we provide an implementation of a distributed
file system, calledCoBFS, that utilizes coverable fragmented objects (i.e.,
files). In CoBFS, each file is a linked-list of coverable block objects. Pre-
liminary emulation of CoBFS demonstrates the potential of our approach
in boosting the concurrency of strongly consistent large objects.

Keywords: Distributed storage · Large objects · Linearizability ·
Coverability

1 Introduction

In this paper we deal with the storage and use of shared readable and writable
data in unreliable distributed systems. Distributed systems are subject to per-
turbations, which may include failures (e.g., crashes) of individual computers, or
delays in processing or communication. In such settings, large (in size) objects
are difficult to handle. Even more challenging is to provide linearizable consis-
tency guarantees to such objects.
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Researchers usually break large objects into smaller linearizable building
blocks, with their composition yielding the complete consistent large object.
For example, a linearizable shared R/W memory is composed of a set of lin-
earizable shared R/W objects [3]. By design, those building blocks are usually
independent, in the sense that changing the value of one does not affect the oper-
ations performed on the others, and that operations on the composed objects are
defined in terms of operations invoked on the (smallest possible) building blocks.
Operations on individual linearizable registers do not violate the consistency of
the larger composed linearizable memory space.

Some large objects, however, cannot be decomposed into independent build-
ing blocks. For example, a file object can be divided into fragments or blocks,
so that write operations (which are still issued on the whole file) modify indi-
vidual fragments. However, the composition of these fragments does not yield a
linearizable file object: it is unclear how to order writes on the file when those
are applied on different blocks concurrently. At the same time, it is practically
inefficient to handle large objects as single objects and use traditional algorithms
(like the one in [3]) to distribute it consistently.

Related Work: Attiya, Bar-Noy and Dolev [3], proposed an algorithm, collo-
quially referred to as ABD, that emulates a distributed shared R/W register in
message-passing, crash-prone, asynchronous environments. To ensure availability,
the object is replicated among a set of servers and, to provide operation ordering,
a logical timestamp is associated with each written value. ABD tolerates replica
server crashes, provided a majority of servers do not fail. Write operations involve
a single communication round-trip. The writer broadcasts its request to all servers
and it terminates once it collects acknowledgments from some majority of servers.
A read involves two round-trips. In the first, the reader broadcasts a request to
all servers, collects acknowledgments from some majority of servers, and it discov-
ers the maximum timestamp. To ensure that any subsequent read will return a
value associated with a timestamp at least as high as the discovered maximum,
the reader propagates the value associated with the maximum timestamp to at
least a majority of servers before completion, forming the second round-trip. ABD
was later extended for the multi-writer/multi-reader model in [20], and its perfor-
mance was later improved by several works, including [11,13–16]. Those solutions
considered small objects, and relied on the dissemination of the object values in
each operation, imposing a performance overhead when dealing with large objects.

Fan and Lynch [12] attempted to reduce performance overheads by separat-
ing the metadata of large objects from their value. In this way, communication-
demanding operations were performed on the metadata, and large objects were
transmitted to a limited number of hosts, and only when it was “safe” to do so.
Although this work improved the latency of operations, compared to traditional
approaches like [3,20], it still required to transmit the entire large object over the
network per read and write operation. Moreover, if two concurrent write oper-
ations affected different “parts” of the object, only one of them would prevail,
despite updates not being directly “conflicting.”

Recently, Erasure-Coded (EC) approaches have gained momentum and have
proved being extremely effective in saving storage and communication costs,
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while maintaining strong consistency and fault-tolerance [7,8,10,18,19,22]. EC
approaches rely on the division of a shared object into coded blocks and deliver a
single block to each data server. While very appealing for handling large objects,
they face the challenge of efficiently encoding/decoding data. Despite being sub-
divided into several fragments, reads and writes are still applied on the entire
object value. Therefore, multiple writers cannot work simultaneously on different
parts of an object.

Value continuity is important when considering large objects, oftentimes over-
seen by distributed shared object implementations. In files, for example, a write
operation should extend the latest written version of the object, and not over-
write any new value. Coverability was introduced in [23] as a consistency guar-
antee that extends linearizability and concerns versioned objects. An implemen-
tation of a coverable (versioned) object was presented, where ABD-like reads
return both the version and the value of the object. Writes, on the other hand,
attempt to write a “versioned” value on the object. If the reported version is
older than the latest, then the write does not take effect and it is converted into
a read operation, preventing overwriting a newer version of the object.

Contributions: In this work we set the goal to study and formally define the
consistency guarantees we can provide when fragmenting a large R/W object
into smaller objects (blocks), so that operations are still issued on the former
but are applied on the latter. In particular, the contributions of this paper are
as follows:

– We define two types of concurrent objects: (i) the block object, and (ii) the
fragmented object. Blocks are treated as R/W objects, while fragmented
objects are defined as lists of block objects (Sect. 3).

– We examine the consistency properties when allowing R/W operations on
individual blocks of the fragmented object, in order to enable concurrent
modifications. Assuming that each block is linearizable, we define the precise
consistency that the fragmented object provides, termed Fragmented Lin-
earizability (Sect. 4).

– We provide an algorithm that implements coverable fragmented objects.
Then, we use it to build a prototype implementation of a distributed file
system, called CoBFS, by representing each file as a linked-list of coverable
block objects. CoBFS adopts a modular architecture, separating the object
fragmentation process from the shared memory service, which allows to fol-
low different fragmentation strategies and shared memory implementations.
We show that CoBFS preserves the validity of the fragmented object and
satisfies fragmented coverability (Sect. 5).

– We describe an experimental development and deployment of CoBFS on
the Emulab testbed [1]. Preliminary results are presented, comparing our
proposed algorithm to its non-fragmented counterpart. Results suggest that
a fragmented object implementation boosts concurrency while reducing the
latency of operations (Sect. 6).

Due to space limitations we refer the reader to [2] for missing proofs in this work.
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2 Model

We are concerned with the implementations of highly-available replicated con-
current objects that support a set of operations. The system is a collection of
crash-prone, asynchronous processors with unique identifiers (ids) from a totally-
ordered set I, composed of two main disjoint sets of processes: (a) a set C of
client processes ids that may perform operations on a replicated object, and
(b) a set S of server processes ids that each holds a replica of the object. Let
I = C ∪ S.

Processors communicate by exchanging messages via asynchronous point-
to-point reliable1 channels; messages may be reordered. Any subset of client
processes, and up to a minority of servers (less than |S|/2), may crash at any
time in an execution.

Executions, Histories and Operations: An execution ξ of a distributed algo-
rithm A is an alternating sequence of states and actions of A reflecting the evolu-
tion in real time of the execution. A history Hξ is the subsequence of the actions
in ξ. We say that an operation π is invoked (starts) in an execution ξ when the
invocation action of π appears in Hξ, and π responds to the environment (ends
or completes) when the response action appears in Hξ. An operation is complete
in ξ when both its invocation and matching response actions appear in Hξ in
that order. A history Hξ is sequential if it starts with an invocation action and
each invocation is immediately followed by its matching response; otherwise, Hξ

is concurrent. Finally, Hξ is complete if every invocation in Hξ has a matching
response in Hξ (i.e., each operation in ξ is complete). We say that an operation
π precedes in real time an operation π′ (or π′ succeeds in real time π) in an exe-
cution ξ, denoted by π → π′, if the response of π appears before the invocation
of π′ in Hξ. Two operations are concurrent if neither precedes the other.

Consistency: We consider linearizable [17] R/W objects. A complete history
Hξ is linearizable if there exists some total order on the operations in Hξ s.t. it
respects the real-time order → of operations, and is consistent with the semantics
of operations.

Note that we use read and write in an abstract way: (i) write represents any
operation that changes the state of the object, and (ii) read is any operation
that returns that state.

3 Fragmented Objects

A fragmented object is a concurrent object (e.g., can be accessed concurrently
by multiple processes) that is composed of a finite list of blocks. Section 3.1
formally defines the notion of a block, and Sect. 3.2 gives the formal definition of
a fragmented object.

1 Reliability is not necessary for the correctness of the algorithms we present. It is just
used for simplicity of presentation.
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3.1 Block Object

A block b is a concurrent R/W object with a unique identifier from a set B. A
block has a value val(b) ∈ Σ∗, extracted from an alphabet Σ. For performance
reasons it is convenient to bound the block length. Hence, we denote by B� ⊂ B,
the set that contains bounded length blocks, s.t. ∀b ∈ B� the length of |val(b)| ≤
�. We use |b| to denote the length of the value of b when convenient. An empty
block is a block b whose value is the empty string ε, i.e., |b| = 0. Operation
create(b,D) is used to introduce a new block b ∈ B�, initialized with value D,
such that |D| ≤ �. Once created, block b supports the following two operations:
(i) read()b that returns the value of the object b, and (ii) write(D)b that sets the
value of the object b to D, where |D| ≤ �.

A block object is linearizable if is satisfies the linearizability properties [17,21]
with respect to its create (which acts as a write), read, and write operations. Once
created, a block object is an atomic register [21] whose value cannot exceed a
predefined length �.

3.2 Fragmented Object

A fragmented object f is a concurrent R/W object with a unique identifier from
a set F . Essentially, a fragmented object is a sequence of blocks from B, with
a value val(f) = 〈b0, b1, . . . , bn〉, where bi ∈ B, for i ∈ [0, n]. Initially, each frag-
mented object contains an empty block, i.e., val(f) = 〈b0〉 with val(b0) = ε. We
say that f is valid and f ∈ F� if ∀bi ∈ val(f), bi ∈ B�. Otherwise, f is invalid.
Being a R/W object, one would expect that a fragmented object f ∈ F�, for
any �, supports the following operations:

– read()f returns the list 〈val(b0), . . . , val(bn)〉, where val(f) = 〈b0, b1, . . . , bn〉
– write(〈D0, . . . , Dn〉)f , |Di| ≤ �,∀i ∈ [0, n], sets the value of f to 〈b0, . . . , bn〉

s.t. val(bi) = Di,∀i ∈ [0, n].

Having the write operation to modify the values of all blocks in the list
may hinder in many cases the concurrency of the object. For instance, consider
the following execution ξ. Let val(f) = 〈b0, b1〉, val(b0) = D0, val(b1) = D1,
and assume that ξ contains two concurrent writes by two different clients, one
attempting to modify block b0, and the other attempting to modify block b1:
π1 = write(〈D′

0,D1〉)f and π2 = write(〈D0,D
′
1〉)f , followed by a read()f . By

linearizability, the read will return either the list written in π1 or in π2 on f
(depending on how the operations are ordered by the linearizability property).
However, as blocks are independent objects, it would be expected that both
writes could take effect, with π1 updating the value of b0 and π2 updating the
value of b1. To this respect, we redefine the write to only update one of the
blocks of a fragmented object. Since the update does not manipulate the value of
the whole object, which would include also new blocks to be written, it should
allow the update of a block b with a value |D| > �. This essentially leads to the
generation of new blocks in the sequence. More formally, the update operation
is defined as follows:
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– update(bi,D)f updates the value of block bi ∈ f such that:
• if |D| ≤ �: sets val(bi) = D;
• if |D| > �: partition D = {D0, . . . , Dk} such that |Dj | ≤ �,∀j ∈ [0, k],

set val(bi) = D0 and create blocks bj
i , for j ∈ [1, k] with val(bj

i ) = Dj , so
that f remains valid.

With the update operation in place, fragmented objects resemble store-collect
objects presented in [4]. However, fragmented objects aim to minimize the com-
munication overhead by exchanging individual blocks (in a consistent manner)
instead of exchanging the list (view) of block values in each operation. Since the
update operation only affects a block in the list of blocks of a fragmented object,
it potentially allows for a higher degree of concurrency. It is still unclear what are
the consistency guarantees we can provide when allowing concurrent updates on
different blocks to take effect. Thus, we will consider that only operations read
and update are issued in fragmented objects. Note that the list of blocks of a
fragmented object cannot be reduced. The contents of a block can be deleted by
invoking an update with an empty value.

Observe that, as a fragmented object is composed of block objects, its oper-
ations are implemented by using read, write, and create block operations. The
read()f performs a sequence of read block operations (starting from block b0 and
traversing the list of blocks) to obtain and return the value of the fragmented
object. Regarding update operations, if |D| ≤ �, then the update(bi,D)f opera-
tion performs a write operation on the block bi as write(D)bi . However, if |D| > �,
then D is partitioned into substrings D0, . . . , Dk each of length at most �. The
update operation modifies the value of bi as write(D0)bi . Then, k new blocks
b1i , . . . , b

k
i are created as create(bj

i ,Dj),∀j ∈ [1, k], and are inserted in f between
bi and bi+1 (or appended at the end if i = |f |). The sequential specification of a
fragmented object is defined as follows:

Definition 1 (Sequential Specification). The sequential specification of a
fragmented object f ∈ F� over the complete sequential history H is defined as
follows. Initially val(f) = 〈b0〉 with val(b0) = ε. If at the invocation action of
an operation π in H has val(f) = 〈b0, . . . , bn〉 and ∀bi ∈ f, val(bi) = Di, and
|Di| ≤ �. Then:

– if π is a read()f , then π returns 〈val(b0), . . . , val(bn)〉. At the response action
of π, it still holds that val(f) = 〈b0, . . . , bn〉 and ∀bi ∈ f, val(bi) = Di.

– if π is an update(bi,D)f operation, bi ∈ f , then at the response action of π,
∀j 
= i, val(bj) = Dj, and

• if |D| ≤ �: val(f) = 〈b0, . . . , bn〉, val(bi) = D;
• if |D| > �: val(f) = 〈b0, . . . , bi, b

1
i , . . . , b

k
i , bi+1, . . . , bn〉, such that

val(bi) = D0 and val(bj
i ) = Dj ,∀j ∈ [1, k], where D = D0|D1| · · · |Dk

and |Dj | ≤ �,∀j ∈ [0, k].2

2 The operator “|” denotes concatenation. The exact way D is partitioned is left to
the implementation.
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4 Fragmented Linearizability

A fragmented object is linearizable if it satisfies both the Liveness (termina-
tion) and Linearizability (atomicity) properties [17,21]. A fragmented object
implemented by a single linearizable block is trivially linearizable as well. Here,
we focus on fragmented objects that may contain a list of multiple linearizable
blocks, and consider only read and update operations. As defined, update oper-
ations are applied on single blocks, which allows multiple update operations to
modify different blocks of the fragmented object concurrently. Termination holds
since read and update operations on the fragmented object always complete. It
remains to examine the consistency properties.

Linearizability: Let Hξ be a sequential history of update and read invocations
and responses on a fragmented object f . Linearizability [17,21] provides the
illusion that the fragmented object is accessed sequentially respecting the real-
time order, even when operations are invoked concurrently3:

Definition 2 (Linearizability). A fragmented object f is linearizable if, given
any complete history H, there exists a permutation σ of all actions in H such
that:

– σ is a sequential history and follows the sequential specification of f , and
– for operations π1, π2, if π1 → π2 in H, then π1 appears before π2 in σ.

Observe, that in order to satisfy Definition 2, the operations must be totally
ordered. Let us consider again the sample execution ξ from Sect. 3. Since we
decided not to use write operations, the execution changes as follows. Ini-
tially, val(f) = 〈b0, b1〉, val(b0) = D0, val(b1) = D1, and then ξ contains
two concurrent update operations by two different clients, one attempting to
modify the first block, and the other attempting to modify the second block:
π1 = update(b0,D′

0)f and π2 = update(b1,D′
1)f (|D′

0| ≤ � and |D′
1| ≤ �), fol-

lowed by a read()f operation. In this case, since both update operations operate
on different blocks, independently of how π1 and π2 are ordered in the permu-
tation σ, the read()f operation will return 〈D′

0,D
′
1〉. Therefore, the use of these

update operations has increased the concurrency in the fragmented object.
Using linearizable read operations on the entire fragmented object can ensure

the linearizability of the fragmented object as can be seen in the example pre-
sented in Fig. 1(a). However, providing a linearizable read when the object
involves multiple R/W objects (i.e., an atomic snapshot) can be expensive or
impact concurrency [9]. Thus, it is cheaper to take advantage of the atomic
nature of the individual blocks and invoke one read operation per block in the
fragmented object. But, what is the consistency guarantee we can pro-
vide on the entire fragmented object in this case? As seen in the example
of Fig. 1(b), two reads concurrent with two update operations may violate lin-
earizability on the entire object. According to the real time ordering of the
operations on the individual blocks, block linearizability is preserved if the first
3 Our formal definition of linearizability is adapted from [5].
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(a) (b)

Fig. 1. Executions showing the operations on a fragmented object. Figure (a) shows
linearizable reads on the fragmented object (and serialization points), and (b) reads
on the fragmented object that are implemented with individual linearizable reads on
blocks.

read on the fragmented object should return (D′
0,D1), while the second read

returns (D0,D
′
1). Note that we cannot find a permutation on these concurrent

operations that follows the sequential specification of the fragmented object.
Thus, the execution in Fig. 1(b) violates linearizability. This leads to the defini-
tion of fragmented linearizability on the fragmented object, which relying on the
fact that each individual block is linearizable, it allows executions like the one
seen in Fig. 1(b). Essentially, fragmented linearizability captures the consistency
one can obtain on a collection of linearizable objects, when these are accessed
concurrently and individually, but under the “umbrella” of the collection.

In this respect, we specify each read()f operation of a certain process, as a
sequence of read()b operations on each block b ∈ f by that process. In particular,
a read operation read()f that returns 〈val(b0), . . . , val(bn)〉 is specified by n + 1
individual read operations read()b0 ,..., read()bn , that return val(b0), ..., val(bn),
respectively, where read()b0 →, . . . ,→ read()bn .

Then, given a history H, we denote for an operation π the history Hπ which
contains the actions extracted from H and performed during π (including its
invocation and response actions). Hence, if val(f) is the value returned by
read()f , then H read()f contains an invocation and matching response for a read()b

operation, for each b ∈ val(f). Then, from H, we can construct a history H|f that
only contains operations on the whole fragmented object. In particular, H|f is the
same as H with the following changes: for each read()f , if 〈val(b0), . . . , val(bn)〉
is the value returned by the read operation, then we replace the invocation of
read()b0 operation with the invocation of the read()f operation and the response
of the read()bn block with the response action for the read()f operation. Then,
we remove from H|f all the actions in H read()f .

Definition 3 (Fragmented Linearizability). Let f ∈ F� be a fragmented
object, H a complete history on f , and val(f)H ⊆ B the value of f at the end of
H. Then, f is fragmented linearizable if there exists a permutation σb over all
the actions on b in H, ∀b ∈ val(f)H , such that:
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– σb is a sequential history that follows the sequential specification of b4, and
– for operations π1, π2 that appear in H|f extracted from H, if π1 → π2 in H|f ,

then all operations on b in Hπ1 appear before any operations on b in Hπ2 in σb.

Fragmented linearizability guarantees that all concurrent operations on dif-
ferent blocks prevail, and only concurrent operations on the same blocks are
conflicting. Consider two reads r1 and r2, s.t. r1 → r2; then r2 must return a
supersequence of blocks with respect to the sequence returned by r1, and that
for each block belonging in both sequences, its value returned by r2 is the same
or newer than the one returned by r1.

5 Implementing Files as Fragmented Coverable Objects

Having laid out the theoretical framework of Fragmented Objects, we now
present a prototype implementation of a Distributed File System, we call
CoBFS.

When manipulating files it is expected that a value update builds upon the
current value of the object. In such cases a writer should be aware of the lat-
est value of the object (i.e., by reading the object) before updating it. In order
to maintain this property in our implementation we utilize coverable lineariz-
able blocks as presented in [23]. Coverability extends linearizability with the
additional guarantee that object writes succeed when associating the written
value with the current version of the object. In a different case, a write opera-
tion becomes a read operation and returns the latest version and the associated
value of the object. Due to space limitations we refer the reader to [23] for the
exact coverability properties.

By utilizing coverable blocks, our file system provides fragmented coverability
as a consistency guarantee. In our prototype implementation we consider each
object to be a plain text file, however the underlying theoretical formulation
allows for extending this implementation to support any kind of large objects.

File as a Coverable Fragmented Object: Each file is modeled as a frag-
mented object with its blocks being coverable objects. The file is implemented
as a linked-list of blocks with the first block being a special block bg ∈ B,
which we call the genesis block , and then each block having a pointer ptr to
its next block, whereas the last block has a null pointer. Initially each file con-
tains only the genesis block; the genesis block contains special purpose (meta)
data. The val(b) of b is set as a tuple, val(b) = 〈ptr, data〉.
Overview of the Basic Architecure: The basic architecture of CoBFS
appears in Fig. 2. CoBFS is composed of two main modules: (i) a Fragmen-
tation Module (FM), and (ii) a Distributed Shared Memory Module (DSMM).
In summary, the FM implements the fragmented object while the DSMM imple-
ments an interface to a shared memory service that allows read/write operations

4 The sequential specification of a block is similar to that of a R/W register [21], whose
value has bounded length.
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Fig. 2. Basic architecture of CoBFS

on individual block objects. Following this architecture, clients may access the
file system through the FM, while the blocks of each file are maintained by
servers through the DSMM. The FM uses the DSMM as an external service to
write and read blocks to the shared memory. To this respect, CoBFS is flexible
enough to utilize any underlying distributed shared object algorithm.

File and Block ID Assignment: A key aspect of our implementation is the
unique assignment of ids to both fragmented objects (i.e., files) and individual
blocks. A file f ∈ F is assigned a pair 〈cfid, cfseq〉 ∈ C × N, where cfid ∈ C
is the universally unique identifier of the client that created the file (i.e., the
owner) and cfseq ∈ N is the client’s local sequence number, incremented every
time the client creates a new file and ensuring uniqueness of the objects created
by the same client.

In turn, a block b ∈ B of a file is identified by a triplet 〈fid, cid, cseq〉 ∈ F ×
C × N, where fid ∈ F is the identifier of the file to which the block belongs, cid ∈
C is the identifier of the client that created the block (this is not necessarily the
owner/creator of the file), and cseq ∈ N is the client’s local sequence number of
blocks that is incremented every time this client creates a block for this file (this
ensures the uniqueness of the blocks created by the same client for the same file).

Distributed Shared Memory Module: The DSMM implements a distributed
R/W shared memory based on an optimized coverable variant of the ABD algo-
rithm, called CoABD [23]. The module exposes three operations for a block
b: dsmm-readb, dsmm-write(v)b, and dsmm-create(v)b. The specification of each
operation is shown in Algorithm 1. For each block b, the DSMM maintains its
latest known version verb and its associated value valb. Upon receipt of a read
request for a block b, the DSMM invokes a cvr-read operation on b and returns
the value received from that operation.

To reduce the number of blocks transmitted per read, we apply a simple yet
very effective optimization (Algorithm 2): a read sends a read request to all
the servers including its local version in the request message. When a server
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Algorithm 1. DSM Module: Operations on a coverable block object b at client p

1: State Variables:
2: verb ∈ N initially 0; valb ∈ V initially ⊥;

3: function dsmm-read( )b,p
4: 〈verb, valb〉 ← b.cvr-read()
5: return valb
6: end function

7: function dsmm-create(val)b,p
8: 〈verb, valb〉 ← b.cvr-write(val, 0)
9: end function

10: function dsmm-write(val)b,p
11: 〈verb, valb〉 ← b.cvr-write(val, verb)
12: return valb
13: end function

Algorithm 2. Optimized coverable ABD (read operation)

1: at each reader r for object b
2: State Variables:
3: tgb ∈ N

+ ×W initially 〈0, ⊥〉; valb ∈ V , init.
⊥;

4: function cvr-read( )
5: send 〈read, verb〉 to all servers � Query

Phase
6: wait until

|S|+1
2 reply

7: maxP ← max({〈tg′, v′〉})
8: if maxP.tg > tgb then
9: send (write, maxP ) to all servers
10: � Propagation Phase

11: wait until
|S|+1

2 servers reply

12: 〈tgb, valb〉 ← maxP
13: end if
14: return(〈tgb, valb〉)
15: end function

16: at each server s for object b
17: State Variables:
18: tgb ∈ N

+×W initially 〈0, ⊥〉; valb ∈ V , init.
⊥;

19: function rcv(M)q � Reception of a message
from q

20: if M.type 
= read and M.tg > tgb then
21: 〈tgb, valb〉 ← 〈M.tg, M.v〉
22: end if
23: if M.type = read and M.tg ≥ tgb then
24: send(〈tgb, ⊥〉) to q � Reply without

content
25: else
26: send(〈tgb, valb〉) to q � Reply with

content
27: end if
28: end function

receives a read request it replies with both its local tag and block content only
if the tag enclosed in the read request is smaller than its local tag; otherwise
it replies with its local tag without the block content. Once the reader receives
replies from a majority of servers, it detects the maximum tag among the replies,
and checks if it is higher than the local known tag. If it is, then it forwards
the tag and its associated block content to a majority of servers; if not then
the read operation returns the locally known tag and block content without
performing the second phase. While this optimisation makes a little difference on
the non-fragmented version of the ABD (under read/write contention), it makes
a significant difference in the case of the fragmented objects. For example, if
each read is concurrent with a write causing the execution of a second phase,
then the read sends the complete file to the servers; in the case of fragmented
objects only the fragments that changed by the write will be sent over to the
servers, resulting in significant reductions.

The create and write operations invoke cvr-write operations to update the
value of the shared block b. Their main difference is that version 0 is used during
a create operation to indicate that this is the first time that the block is written.
Notice that the write in create will always succeed as it will introduce a new,
never before written block, whereas operation write may be converted to a read
operation, thus retrieving and returning the latest value of b. We refer the reader
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to [23] for the implementation of cvr-read and cvr-write, which are simple variants
of the corresponding implementations of ABD [3]. We state the following lemma:

Lemma 1. The DSMM implements R/W coverable block objects.

Proof (Proof Sketch). When both the read and write operations perform two
phases, the correctness of the algorithm is derived from Theorem 10 in [23]. It
is easy to see that the optimization does not violate linearizability. The second
phase of a read is omitted when all the servers reply with a tag smaller or equal
to the local tag of the reader r. Since however, a read propagates its local tag to
a majority of servers at every tag update, then every subsequent operation will
observe (and return) the latest value of the object to be associated with a tag
at least as high as the local tag of r. �

Fragmentation Module: The FM is the core concept of our implementation.
Each client has a FM responsible for (i) fragmenting the file into blocks and
identify modified blocks, and (ii) follow a specific strategy to store and retrieve
the file blocks from the R/W shared memory. As we show later, the block update
strategy followed by FM is necessary in order to preserve the structure of the
fragmented object and sufficient to preserve the properties of fragmented cov-
erability. For the file division of the blocks and the identification of the newly
created blocks, the FM contains a Block Identification (BI) module that utilizes
known approaches for data fragmentation and diff extraction.

Block Identification (BI): Given the data D of a file f , the goal of BI is to
break D into data blocks 〈D0, . . . , Dn〉, s.t. the size of each Di is less than a
predefined upper bound �. By drawing ideas from the RSYNC (Remote Sync)
algorithm [25], given two versions of the same file, say f and f ′, the BI tries
to identify blocks that (a) may exist in f but not in f ′ (and vice-versa), or (b)
they have been changed from f to f ′. To achieve these goals BI proceeds in
two steps: (1) it fragments D into blocks, using the Rabin fingerprints rolling
hash algorithm [24], and (2) it compares the hashes of the blocks of the current
and the previous version of the file using a string matching algorithm [6] to
determine the modified/new data blocks. The role of BI within the architecture of
CoBFS and its process flow appears in Fig. 3, while its specification is provided
in Algorithm 3. A high-level description of BI has as follows:

– Block Division: Initially, the BI partitions a given file f into data blocks
based on its contents, using Rabin fingerprints. This scheme allows to divide f
into blocks of at most size �, which are identified by their hashes (fingerprints).
When used in two versions of the same file, the scheme guarantees that only
the hash of changed blocks (and at most their respective next blocks) will be
affected. To this end, any data that may cause a changed block to overflow
will yield new blocks.

– Block Matching: Given the set of blocks 〈D0, . . . , Dm〉 and associated block
hashes 〈h0, . . . , hm〉 generated by the Rabin fingerprint algorithm, the BI tries
to match each hash to a block identifier, based on the block ids produced
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Fig. 3. Example of a writer x writing text at the beginning of the second block of a text
file with id fid = 7. The hash value of the existing second block “4bad..” is replaced
with “d595..” and a new block with hash value “8223..” is inserted immediately after.
The block bid = x 7-x 2 and the new block bid = x 7-x 4 are sent to the DSM.

during the previous division of file f , say 〈b0, . . . , bn〉. We produce the vector
〈h(b0), . . . , h(bn)〉 where h(bi) = hash(val(bi).data) from the current blocks
of f , and using a string matching algorithm [6] we compare the two hash
vectors to obtain one of the following statuses for each entry: (i) equal, (ii)
modified, (iii) inserted, (iv) deleted.

– Block Updates: Based on the hash statuses computed through block match-
ing previously, the blocks of the fragmented object are updated. In particular, in
the case of equality, if a hi = h(bj) then Di is identified as the data of block bj .
In case of modification, e.g. (h(bj), hi), an update(bj , {Di})f,p action is then
issued to modify the data of bj to Di (Lines 10:15). In case new hashes (e.g.,
〈hi, hk〉) are inserted after the hash of block bj (i.e., h(bj)), then the action
update(bj , {val(bj).data,Di,Dk})f,p is performed to create the newblocks after
bj (Lines 17:22). In our formulation block deletion is treated as a modification
that sets an empty data value thus, in our implementation no blocks are deleted.

FM Operations: The FM’s external signature includes the two main opera-
tions of a fragmented object: readf , and updatef . Their specifications appear in
Algorithm 3.

Read Operation - read()f,p: To retrieve the value of a file f , a client p may
invoke a readf,p to the fragmented object. Upon receiving, the FM issues a series
of reads on file’s blocks; starting from the genesis block of f and proceeding to
the last block by following the pointers in the linked-list of blocks comprising
the file. All the blocks are assembled into one file via the Assemble() function.
The reader p issues a read for all the blocks in the file. This is done to ensure
the property stated in the following lemma:

Lemma 2. Let ξ be an execution of CoBFS with two reads ρ1 = readf,p and
ρ2 = readf,q from clients p and q on the fragmented object f , s.t. ρ1 → ρ2. If
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Algorithm 3. Fragmentation Module: BI and Operations on a file f at client p

1: State Variables:
2: H initially ∅; � ∈ N;
3: Lf a linked-list of blocks, initially 〈bg〉;
4: bcf ∈ N initially 0;

5: function fm-block-identify( )f,p
6: 〈newD, newH〉 ← RabinFingerprints(f, �)
7: curH = hash(Lf )
8: � hashes of the data of the blocks in Lf

9: C ← SMatching(curH, newH)
10: � blocks modified
11: for 〈h(bj), hk〉 ∈ C.mods s.t.
12: h(bj) ∈ curH, hk ∈ newH do
13: D ← {Dk : Dk ∈ newD
14: ∧ hk = hash(Dk)}
15: fm-update(bj , D)f,p
16: end for
17: � blocks inserted
18: for 〈h(bj), S〉 ∈ C.inserts s.t.
19: h(bj) ∈ curH, S ⊆ newH do
20: D ← {Di : hi ∈ S ∧ Di ∈ newD
21: ∧ hi = hash(Di)}
22: fm-update(bj , D)f,p
23: end for
24: end function

25: function fm-read( )f,p
26: b ← val(bg).ptr
27: Lf ← 〈bg〉 � reset Lf

28: while b not NULL do
29: val(b) ← dsmm-read()b,p
30: Lf .insert(val(b))
31: b ← val(b).ptr
32: end while
33: return Assemble(Lf )
34: end function

35: function fm-update(b, D = 〈D0, D1, . . . ,
Dk〉)f,p

36: for j = k : 1 do
37: bj ← 〈f, p, bcf++〉 � set block id
38: val(bj).data = Dj � set block data
39: if j < k then
40: val(bj).ptr = bj+1 � set block

ptr
41: else
42: val(bj).ptr = val(b).ptr
43: � point last to b ptr
44: end if
45: Lf .insert(val(bj))
46: dsmm-create(val(bj))bj
47: end for
48: val(b).data = D0
49: if k > 0 then
50: val(b).ptr = b1 � change b ptr if

|D| > 1
51: end if
52: dsmm-write(val(b))b
53: end function

ρ1 returns a list of blocks L1 and ρ2 a list L2, then ∀bi ∈ L1, then bi ∈ L2 and
version(bi)L1 ≤ version(bi)L2 .

Update Operation - update(b,D)f,p: Here we expect that the update opera-
tion accepts a block id and a set of data blocks (instead of a single data object),
since the division is performed by the BI module. Thus, D = 〈D0, . . . , Dk〉, for
k ≥ 0, with the size |D| =

∑k
i=0 |Di| and the size of each |Di| ≤ � for some maxi-

mum block size �. Client p attempts to update the value of a block with identifier
b in file f with the data in D. Depending on the size of D the update operation
will either perform a write on the block if k = 0, or it will create new blocks and
update the block pointers in case k > 0. Assuming that val(b).ptr = b′ then:

– k = 0: In this case update, for block b, calls write(〈val(b).ptr,D0〉, 〈p, bseq〉)b.
– k > 0: Given the sequence of chunks D = 〈D0, . . . , Dk〉 the following block

operations are performed in this particular order:
→ create(bk = 〈f, p, bcp++〉, 〈b′,Dk〉, 〈p, 0〉) ** Block bk ptr points to b′ **

→ . . .
→ create(b1 = 〈f, p, bcp++〉, 〈b2,D1〉, 〈p, 0〉) ** Block b1 ptr points to b2 **

→ write(〈b1,D0〉, 〈p, bseq〉)b ** Block b ptr points to b1 **
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The challenge here was to insert the list of blocks without causing any con-
current operation to return a divided fragmented object, while also avoiding
blocking any ongoing operations. To achieve that, create operations are exe-
cuted in a reverse order: we first create block bk pointing to b′, and we move
backwards until creating b1 pointing to block b2. The last operation, write, tries
to update the value of block b0 with value 〈b1,D0〉. If the last coverable write
completes successfully, then all the blocks are inserted in f and the update is
successful ; otherwise none of the blocks appears in f and thus the update is
unsuccessful. This is captured by the following lemma:

Lemma 3. In any execution ξ of CoBFS, if ξ contains an π =
update(b,D)f,p, then π is successful iff the operation b.cvr-write called within
dsmm-write(val(b))b,p, is successful.

Lemma 4. In any execution ξ of CoBFS, if a readf,p operation returns a list
L = 〈bg, b1, . . . , bn〉 for a file f , then val(bg).prt = b1, val(bi).ptr = bi+1, for
1 ≤ i < n − 1, and val(bn).ptr = ⊥.

This leads us to the following:

Theorem 1. CoBFS implements a R/W Fragmented Coverable object.

Proof. By Lemma 1 every block operation in CoBFS satisfies coverability and
together with Lemma 2 it follows that CoBFS implements a coverable frag-
mented object satisfying the properties presented in Definition 3. Also, the BI
ensures that the size of each block is limited under a bound � and Lemma 4
ensures that each operation obtains a connected list of blocks. Thus, CoBFS
implements a valid fragmented object.

6 Preliminary Evaluation

To further appreciate the proposed approach from an applied point of view,
we performed a preliminary evaluation of CoBFS against CoABD. Due to
the design of the two algorithms, CoABD will transmit the entire file per
read/update operation, while CoBFS will transmit as many blocks as neces-
sary for an update operation, but perform as many reads as the number of
blocks during a read operation. The two algorithms use the read optimization of
Algorithm 2. Both were implemented and deployed on Emulab, [26], a network
testbed with tunable and controlled environmental parameters.

Experimental Setup: Across all experiments, three distinct types of dis-
tributed nodes are defined and deployed within the emulated network envi-
ronment as listed below. Communication between the distributed nodes is via
point-to-point bidirectional links implemented with a DropTail queue.

– writer w ∈ W ⊆ C: a client that dispatches update requests to servers.
– reader r ∈ R ⊆ C: a client that dispatches read requests to servers.
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– server s ∈ S: listens for reader and writer requests and is responsible for
maintaining the object replicas according to the underlying protocol they
implement.

Performance Metrics: We assess performance using: (i) operational latency,
and (ii) the update success ratio. The operational latency is computed as the sum
of communication and computation delays. In the case of CoBFS, computational
latency encompasses the time necessary for the FM to fragment a file object
and generate the respective hashes for its blocks. The update success ratio is the
percentage of update operations that have not been converted to reads (and thus
successfully changed the value of the indented object). In the case of CoABD,
we compute the percentage of successful updates on the file as a whole over the
number of all updates. For CoBFS, we compute the percentage of file updates,
where all individual block updates succeed.

Scenarios: Both algorithms are evaluated under the following experimental sce-
narios:

– Scalability: examine performance as the number of service participants
increases.

– File Size: examine performance when using different initial file sizes.
– Block Size: examine performance under different block sizes (CoBFS only).

We use a stochastic invocation scheme in which reads are scheduled randomly
from the intervals [1...rInt] and updates from [1...wInt], where rInt, wInt =
4sec. To perform a fair comparison and to yield valuable observations, the results
shown are compiled as averages over five samples per each scenario.

Scalability Experiments: We varied the number of readers |R|, the num-
ber of writers |W |, and the number of servers |S| in the set {5, 10, 15, 20, 25,
30, 35, 40, 45, 50}. While testing for readers’ scalability, the number of writers and
servers was kept constant, |W |, |S| = 10. Using the same approach, scalability of
writers, and in turn of servers, was tested while preserving the two other types
of nodes constant (i.e. |R|, |S| = 10 and |R|, |W | = 10 respectively). In total,
each writer performed 20 updates and each reader 20 reads. The size of the initial
file used was set to 18 kB, while the maximum, minimum and average block sizes
(Rabin fingerprints parameters) were set to 64 kB, 2 kB and 8 kB respectively.

File Size Experiments: We varied the fsize from 1 MB to 1 GB by doubling
the file size in each simulation run. The number of writers, readers and servers
was fixed to 5. In total, each writer performed 5 updates and each reader 5 reads.
The maximum, minimum and average block sizes were set to 1 MB, 512 kB and
512 kB respectively.

Block Size Experiments: We varied the minimum and average bsizes of
CoBFS from 1 kB to 64 kB. The number of writers, readers and servers was
fixed to 10. In total, each writer performed 20 updates and each reader 20 reads.
The size of the initial file used was set to 18 kB, while the maximum block size
was set to 64 kB



122 A. Fernández Anta et al.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 4. Simulation results for algorithms CoABD and CoBFS.
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Results: Overall, our results suggest that the efficiency of CoBFS is inversely
proportional to the number of block operations, rather than the size of the file.
This is primarily due to the individual block-processing nature of CoBFS. More
in detail:

Scalability: In Figure 4(a), the operational latency of updates in CoBFS remains
almost unchanged and smaller than of CoABD. This is because CoABD writer
updates a rather small file, while each CoBFS writer updates a subset of blocks
which are modified or created. The computational latency of FM in CoBFS
is negligible, when compared to the total update operation latency, because of
the small file size. In Figure 4(c), we observe that the update operation latency
in CoABD increases even more as the number of servers increases. As more
updates are successful in CoBFS, reads may transfer more data compared to
reads in CoABD, explaining their slower completion as seen in Fig. 4(b). Also,
readers send multiple read block requests of small sizes, waiting each time for a
reply, while CoABD readers wait for a message containing a small file.

Concurrency: The percentage of successful file updates achieved by CoBFS are
significantly higher than those of CoABD. This holds for both cases where the
number of writers increased (see Fig. 4(a)) and the number of servers increased
(see Fig. 4(c)). This demonstrates the boost of concurrency achieved by CoBFS.
In Figure 4(a) we notice that as the number of writers increases (hence, concur-
rency increases), CoABD suffers greater number of unsuccessful updates, i.e.,
updates that have become reads per the coverability property. Concurrency is
also affected when the number of blocks increases, Fig. 4(d). The probability
of two writes to collide on a single block decreases, and thus CoBFS eventu-
ally allows all the updates (100%) to succeed. CoABD does not experience any
improvement as it always manipulates the file as a whole.

File Size: Figure 4(d) demonstrates that the update operation latency of CoBFS
remains at extremely low levels. The main factor that significantly contributes
to the slight increase of CoBFS update latency is the FM computation latency,
Fig. 4(e). We have set the same parameters for the Rabin fingerprints algorithm
for all the initial file sizes, which may have favored some file sizes but burdened
others. An optimization of the Rabin algorithm or a use of a different algorithm
for managing blocks could possibly lead to improved FM computation latency;
this is a subject for future work. The CoBFS update communication latency
remains almost stable, since it depends primarily on the number and size of
update block operations. That is in contrast to the update latency exhibited in
CoABD which appears to increase linearly with the file size. This was expected,
since as the file size increases, it takes longer latency to update the whole file.

Despite the higher success rate of CoBFS, the read latency of the two algo-
rithms is comparable due to the low number of update operations. The read laten-
cies of the two algorithms with and without the read optimization can be seen in
Fig. 4(f). The CoABD read latency increases sharply, even when using the opti-
mized reads. This is in line with our initial hypothesis, asCoABD requires reads to
request and propagate the whole file each time a newer version of the file is discov-
ered. Similarly, when read optimization is not used in CoBFS, the latency is close
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of CoABD. Notice that each read that discovers a new version of the file needs to
request and propagate the content of each individual block. On the contrary, read
optimization decreases significantly the CoBFS read latency, as reads transmit
only the contents of the blocks that have changed.

Block Size: From Figs. 4(g) (h) we can infer that when smaller blocks are used,
the update and read latencies reach their highest values. In both cases, small
bsize results in the generation of larger number of blocks from the division of
the initial file. Additionally, as seen in Fig. 4(g), the small bsize leads to the gen-
eration of more new blocks during update operations, resulting in more update
block operations, and hence higher latencies. As the minimum and average bsizes

increase, lower number of blocks need to be added when an update is taking place.
Unfortunately, smaller number of blocks leads to a lower success rate. Similarly,
in Fig. 4(h), smaller block sizes require more read block operations to obtain the
file’s value. As the minimum and average bsizes increase, lower number of blocks
need to be read. Thus, further increase of the minimum and average bsizes forces
the decrease of the latencies, reaching a plateau in both graphs. This means that
the emulation finds optimal minimum and average bsizes and increasing them
does not give better (or worse) latencies.

7 Conclusions

We have introduced the notion of linearizable and coverable fragmented objects
and proposed an algorithm that implements coverable fragmented files. It is then
used to build CoBFS, a prototype distributed file system in which each file is
specified as a linked-list of coverable blocks. CoBFS adopts a modular archi-
tecture, separating the object fragmentation process from the shared memory
service allowing to follow different fragmentation strategies and shared memory
implementations. We showed that it preserves the validity of the fragmented
object (file) and satisfies fragmented coverability. The deployment on Emulab
serves as a proof of concept implementation. The evaluation demonstrates the
potential of our approach in boosting the concurrency and improving the effi-
ciency of R/W operations on strongly consistent large objects.

For future work, we aim to perform a comprehensive experimental evaluation
of CoBFS that will go beyond simulations (e.g., full-scale, real-time, cloud-based
experimental evaluations) and to further study parameters that may affect the
performance of the operations (e.g., file size, block size, etc.), as well as to build
optimizations and extensions, in an effort to unlock the full potential of our
approach.
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Abstract. The interest in dynamic processes on networks is steadily
rising in recent years. In this paper, we consider the (α, β)-Thresholded
Network Dynamics ((α, β)-Dynamics), where α ≤ β, in which only struc-
tural dynamics (dynamics of the network) are allowed, guided by local
thresholding rules executed by each node. In particular, in each discrete
round t, each pair of nodes u and v that are allowed to communicate
by the scheduler, computes a value E(u, v) (the potential of the pair) as
a function of the local structure of the network at round t around the
two nodes. If E(u, v) < α then the link (if it exists) between u and v
is removed; if α ≤ E(u, v) < β then an existing link among u and v is
maintained; if β ≤ E(u, v) then a link between u and v is established if
not already present.

The microscopic structure of (α, β)-Dynamics appears to be simple,
so that we are able to rigorously argue about it, but still flexible, so that
we are able to design meaningful microscopic local rules that give rise
to interesting macroscopic behaviors. Our goals are the following: a) to
investigate the properties of the (α, β)-Thresholded Network Dynamics
and b) to show that (α, β)-Dynamics is expressive enough to solve com-
plex problems on networks.

Our contribution in these directions is twofold. We rigorously exhibit
the claim about the expressiveness of (α, β)-Dynamics, both by design-
ing a simple protocol that provably computes the k-core of the network
as well as by showing that (α, β)-Dynamics are in fact Turing-Complete.
Second and most important, we construct general tools for proving sta-
bilization that work for a subclass of (α, β)-Dynamics and prove speed
of convergence in a restricted setting.
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1 Introduction

The interplay between the microscopic and the macroscopic in terms of emer-
gent behavior shows an increasing interest. The most striking examples come
from biological systems that seem to form macroscopic structures out of local
interactions between simpler structures (e.g., computation of shortest paths by
Physarum Polycephalum [23], or of maximal independent sets by the fly’s ner-
vous system [1]). The underlying common characteristic of these systems is the
emergent behavior at the macroscopic level out of simple local interactions at the
microscopic level. This is one of the reasons why in the last years there has been
a surge in the analysis and design of elementary and fundamental primitives in
distributed systems under restrictive assumptions on the model [9]. In some of
these examples, the dynamic processes are purely structural with respect to the
network. These examples include network generation models [7,29], community
detection [32], “life-like” cellular automata [27], robot motion [25] and go all the
way up to fundamental physics as a candidate model for space [30,31]. In view
of this recent trend, a stream of work is devoted to the study of such dynamics
per se, without a particular application in mind (e.g., [14]). Motivated by such
a plethora of examples, we study the stabilization properties of protocols that
affect solely the structure of networks.

Henceforth, we will use the term dynamic network to represent networks that
change due to some process, although in the literature one can find other terms
like adaptive networks, time-varying networks, evolving networks and temporal
networks that essentially refer to the same general idea of time-dependent net-
works w.r.t. structure and states. The study of the processes that drive dynamic
networks and their resulting properties has been the focus of many different fields
but in general one can discern between two distinct viewpoints without exclud-
ing overlap: a) complex systems viewpoint (physics, sociology, ecology,
etc.): the main focus is on modeling (e.g., differential/difference equations, cel-
lular automata, etc. - see [26]) and qualitative analysis (by means of mean field
approximations, bifurcation analysis etc.). The main questions here are of qual-
itative nature and include phase transitions, complexity of system behavior,
etc. Rigorous analysis is not usual and simulation is the main tool for provid-
ing results. b) computational viewpoint (mainly computer science and
communications): the main focus is on the computational capabilities (com-
putability/complexity) of dynamic networks in various settings and with differ-
ent assumptions. The main approach in computer science is based on rigorous
proofs while in communications it is based on experimentation.

When designing local rules aiming at some particular global/emergent behav-
ior, it is usually difficult, or at the very least cumbersome, to prove correctness
[9]. This is why most studies in complex systems of this sort are based on experi-
mental evidence for their correctness. Thus, it is very important to prove general
results about protocols, and not argue about them in a case-by-case fashion. In
this paper, we study a dynamic network driven by a simple protocol that is
executed by each node in a synchronous manner. The protocol is the same for
all nodes and can only affect the structure of the network and not the state
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of edges or nodes. The locality of the protocol is defined with respect to the
available interactions for each node that are defined by a scheduler. We define
the (α, β)-Dynamics in Sect. 2 and we also discuss related work. In Sect. 3, we
discuss a particular protocol that computes the α-core and the (α − 1)-crust
[8] of an arbitrary provided network. In Sect. 4 we provide guarantees on the
speed of stabilization for a subclass of (α, β)-Dynamics while in Sect. 5 we pro-
vide a proof of stabilization for a more general class of such protocols. In this
way, we provide general results for (α, β)-Dynamics that may be directly applied
elsewhere, e.g., in the case of restricted Network Automata [27]. In Sect. 6 we
prove that (α, β)-Dynamics is Turing-Complete. Finally, in Sect. 7 we discuss
some extensions of the proposed model and we conclude in Sect. 8.

2 Preliminaries

Assume that an undirected simple network G(0) = (V,E(0)) evolves over time
(discrete time) based on a set of rules. We represent the network at time t
by G(t) = (V,E(t)). We denote the distance between two nodes u, v in G(t) as
d(t)(u, v). Let n = |V |, m(t) = |E(t)| and let NG(t)(u) be the set of all neighbors
of node u and dG(t)(u) be the degree of node u in network G(t). We define
∣
∣E(t)(u, v)

∣
∣ to be the number of edges between u and v at time t (either 0 or 1),

and more generally
∣
∣E(t)(U)

∣
∣ to be the number of edges between nodes in the

set U ⊆ V at time t. It follows that
∣
∣E(t)(NG(t)(u) ∩ NG(t)(v))

∣
∣ is the number

of edges between common neighbors of u and v at time t. Let G(t)[S] represent
the induced subgraph of the node set S ⊆ V in G(t). The potential of a pair of
nodes u and v at round t is a function related to this pair and is represented
by E(t)

G(t)(u, v) : G(t)[S] → R, for some S ⊆ V . The domain of the potential is
the induced subgraph G(t)[S] defined by the set of nodes S that are at the local
structure around nodes u and v. This local structure is defined explicitly by the
potential function. In this paper, S consists of all nodes that are within constant
distance from u or from v (the constant is 1 throughout the paper, except for
Sect. 6 where it is 3). We write E(t)(u, v) or E(u, v) when the network and the
time we are referring to are clear from the context. An example of such a function
defined in [32] that is used to detect communities in networks is the following:

E(u, v) = |NG(t)(u) ∩ NG(t)(v)| + |E(t)(u, v)| + |E(NG(t)(u) ∩ NG(t)(v))|

The potential is equal to the number of common neighbors between u and v plus
the number of edges between u and v (0 or 1) plus the number of edges between
the common neighbors of u and v.

Finally, let f : N2 → R be a continuous function having the following two
properties: i) Non-decreasing, that is f(x, y + ε) ≥ f(x, y) for ε > 0 (similarly
f(x+ε, y) ≥ f(x, y)) and ii) Symmetric, f(x, y) = f(y, x). The second property is
related to the fact that we consider undirected networks. We call these functions
proper.
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2.1 (α, β)-Dynamics - Thresholded Network Dynamics

Informally, the (α, β)-Thresholded Network Dynamics ((α, β)-Dynamics hence-
forth) in its general form is a discrete-time dynamic stateless network of agents
G(t) = (V,E(t)). It is stateless because the dynamics driven by the protocol
depend only on the structure of the network and not on state information stored
in each node/edge. The dynamics involve the edges of the network while the set
of agents is static. All interactions are pairwise and are defined by a scheduler.
For each interaction, the two involved nodes execute a protocol that affects the
edge between them. The execution of the protocol and all communication is
carried out on the network G(t), while the scheduler is responsible for the deter-
mination of the interactions that activate the execution of the protocol between
pairs of nodes in G(t).

The protocol is consistent, in the sense that it comes to the same decision
about the existence of the edge between u and v, both when executed by u and
by v. This requires the potential of an arbitrary edge (u, v) to be computationally
symmetric, in the sense that E(u, v) is the same when computed in u and in v.
The execution evolves in synchronous discrete time rounds. In the following, the
edge e(t) is also used as a boolean variable. In particular, when e(t) = 0 then
e(t) /∈ E(t), while e(t) = 1 means that e(t) ∈ E(t). Let α and β be parameters
that correspond to a lower and an upper threshold, respectively. Initially, the
network G(0) is given as well as the constant thresholds α and β. Formally,
(α, β)-Dynamics is a triple (G(0),S,A(α, β)) defined as follows:

– G(0) = (V,E(0)) : A network of nodes V and edges E(0) between nodes at
time 0. This is the network where the dynamic process concerning the edges
is performed. Each node v ∈ V has a distinct id and maintains a routing table
with all its edges.

– S : The scheduler that contains the pairwise interactions between nodes.
We represent it by a possibly infinite series of sets of pairwise interactions
C(t). Each set C(t) contains the pairwise interactions between nodes activated
at time step t in the network G(t). An interaction between nodes u and v,
assumes direct communication between u and v irrespective of whether u
and v are connected by an edge in G(t). In the following, by slightly abusing
notation, we will refer to C(t) as the scheduler for time step t.

– A(α, β) : The protocol executed in each round by each node participating in
the pairwise interactions defined by the scheduler C(t) in order to update net-
work G(t) to network G(t+1). The (α, β)-Dynamics is defined for the following
family of protocols:

Protocol A(α, β) at node u for a pairwise interaction (u, v) ∈ C(t):
Compute the potential E(u, v).

1. If E(u, v) < α then edge (u, v)(t+1) = 0.
2. If α ≤ E(u, v) < β then edge (u, v)(t+1) = (u, v)(t).
3. If E(u, v) ≥ β then edge (u, v)(t+1) = 1.
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The computational capabilities of each node are similar to a LOG-space Tur-
ing machine. Each node has two different memories, the input memory as well as
the working memory. The input memory contains the local structural informa-
tion of the network necessary for the computation of the potential function at
node u. The potential function reads the input memory and its value is computed
by using the working memory. We allow only protocols that require polynomial
time w.r.t. the size of the input memory keeping the working memory logarithmic
(asymptotically) in size w.r.t. the size of the input memory.

The complexity of the protocol depends solely on the definition of the potential
function, since the rest of the protocol are simple threshold comparisons. Similarly
to dynamics [9] - although no relevant formal definition exists [10] - we require our
protocol to be simple and lightweight and to realize natural, local and elementary
rules subject to the constraint that structural dynamics are considered. To this
end, we require the potential function to respect the following constraints:

1. The potential function has access to a small constant distance c away from
the two interacting nodes.

2. The potential function must be indistinguishable with respect to the nodes -
thus not allowing for special nodes (e.g., leaders) [10]1.

3. The potential function must be network-agnostic, in the sense that it is
designed without having any access to the topology of G(0).

These restrictions combined with the computational capabilities of nodes do
not allow the protocol to use shortcuts for computation in terms of hardwired
information in the potential function (node ids) or in terms of replacing large
subgraphs by other subgraphs.

In each round, the protocol is executed by the nodes that participate in the
pairwise interactions (u, v) determined by the scheduler. A pairwise interaction
between nodes u and v requires the computation of the potential between the two
nodes and then a decision ismade as for the edge between thembased on the thresh-
olds α and β. Each round of the computation for node u (symmetrically for v) is
divided into the following phases: (1) u sends messages to its local neighborhood
(with the exception of v, if edge (u, v) exists) requesting information related to the
computation of the potential function, (2)u receives the requested information and
stores it in the input memory, (3) u sends its information to v, (4) u receives v’s
information and stores it in the input memory, (5) u computes the potential using
the working memory and (6) it decides as for the edge (u, v) w.r.t. thresholds.

The consistency of the protocol guarantees that the result of its execution is
the same for u and v. In accordance to the Local model, there is no restriction on
the size of the messages. Finally, direct communication is assumed (in phases (3)
and (4)) between the interacting nodes u and v irrespective of the existence of edge
(u, v). In the example of the potential function given in Sect. 2, each round executes
at u (symmetrically for v) as follows: (1) u sends messages to all its neighbors, (2)
u receives messages carrying information about its neighbors and their edges, (3)
u sends its gathered information to v, (4) u receives the gathered information from

1 Therefore, we only use identifiers of nodes for analysis purposes.
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v, (5) u computes the potential between u and v and (6) it makes a decision about
edge (u, v) and appropriately updates its connection information.

(α, β)-Dynamics is stateless, in the sense that the dynamics driven by the
algorithm A consider only the structure of the network. No states that are stored
at nodes or edges are considered in the dynamic evolution expressed by (α, β)-
Dynamics. Although nodes have memory to store connections to their neighbors
that change due to the dynamic process and to store the additional information
required for the computation of the potential function, no additional states are
used to impose changes in the network. As a result, the network G(t) completely
defines the configuration of the system at time t. We say that G(t) yields G(t+1),
when a transition takes place from G(t) to G(t+1) after time step t, represented

as G(t) C(t)

−−−→ G(t+1), which is the result of the A protocol for all pairwise inter-
actions encoded in C(t). Similarly, we write G(t) � G(t′), for t′ > t, if there

exists a sequence of transitions G(t) C(t)

−−−→ G(t+1) C(t+1)

−−−−→ · · · C(t′−1)

−−−−−→ G(t′). An
execution of (α, β)-Dynamics is a finite or infinite sequence of configurations
G(0), G(1), G(2), . . . such that for each t, G(t) yields G(t+1), where G(0) is the
initial network.

We say that the algorithm converges or stabilizes when ∃t such that ∀t′ > t it
holds that G(t) = G(t′), meaning that the network does not change after time t.
The output of the (α, β)-Dynamics is the network that results after stabilization
has been reached. The time complexity of the protocol is the number of steps
until stabilization. The time complexity of the protocol heavily depends on C(t).
If, for example, there exists a T where for all t ≥ T it holds that C(t) is always
the null set, then the algorithm stabilizes although it would not stabilize for a
different choice of C(t). To avoid stalling, we employ the weak fairness condition
[2,3] that essentially states that all pairs of nodes interact infinitely often, thus
imposing that the scheduler cannot avoid a possible change in the network. In
the case of the protocol described in Sect. 3, we will be very careful as to the
definition of C(t) w.r.t. time complexity while for our stabilization theorems we
either assume a particular C(t) or allow it to be arbitrary. However, in the latter
case we do not claim bounds on the time complexity, only eventual stabilization.
Note that it is not our goal in this paper to solve the problem of termination
detection.

At this point, a discussion on the scheduler S is necessary. The scheduler C(t)

at time t supports parallelism since it is a set of pairwise interactions that has size
at most

(
n
2

)

. Thus, many pairwise interactions may be activated in each step. For
example, consider the case where all

(
n
2

)

possible edges are contained in C(t). This
means that simultaneously the potential is computed for all possible pairwise
interactions and the edges are updated analogously. In [32], a serialization of
this case is used to detect communities in networks. In general, we may assume
anything about the scheduler (adversarial, stochastic, etc.). Arguing about an
arbitrary set of pairwise interactions for each t is the most general case, since
A can make no assumption at all about the pairwise interactions that will be
activated within each round but the fairness condition must be employed in order
to argue about stabilization.
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On a more technical note, the scheduler has two different but not necessarily
mutually exclusive uses. On the one hand, the scheduler models restrictions set
by the environment on the interactions (e.g., random interactions in a passive
model). On the other hand, it is used as a tool for analysis reasons, to describe
the communication links that the protocol A enforces on G(t) (e.g., when a node
communicates with all nodes at distance 2). The scheduler cannot and should
not cheat, that is to be used in order to help A carry out the computation. In
this paper, we present some general results w.r.t. the choice of the scheduler. For
example, C(t) may be adversarial for all t, satisfying the fairness condition, while
our algorithms are still able to stabilize (see Sects. 3 and 5). Although (α, β)-
Dynamics may seem to be a rather restricting setting, the freedom in defining
the potential and the parameters α and β allow us to have very rich behavior -
in fact, we show that (α, β)-Dynamics is Turing-Complete.

2.2 Related Work

The main work on dynamic networks stems either from computer science or from
complex systems and is inherently interdisciplinary in nature. In the following,
we only highlight results that are directly related to ours (a more extensive dis-
cussion can be found in [20]). In computer science, a nice review of the dynamic
network domain [22] proposes a partitioning of the current literature into three
subareas: Population Protocols [3,4], Powerful Dynamic Distributed Systems
(e.g., [24]) and models for Temporal Graphs (e.g., [11]). (α, β)-Dynamics can
be compared to Population Protocols, where anonymous agents with only a
constant amount of memory available interact with each other and are able to
compute functions, like leader election. Their scheduler determines the set of
pairs of nodes among which one will be chosen for computation at each time
step. The choice is made by a scheduler either arbitrarily (adversarial scheduler)
or uniformly at random (uniform random scheduler). The uniform scheduler is
used for designing various protocols due to the probabilistic accommodations for
analysis it provides. The major differences to our approach are with respect to
dynamics and the scheduler. Population protocols study state dynamics while in
our case we study stateless structural dynamics. In addition, in our approach,
the scheduler consists of a set of pairwise interactions, thus allowing for many
computations between pairs of nodes during a time step (parallel time). This
parallelism of the scheduler may “artificially” reduce the number of rounds but
it can also complicate the protocol leading to interesting research questions.
Similarly to population protocols, the notion of dynamics [9,10] that refers to
distributed processes that resemble interacting particle systems considers simple
and lightweight protocols on states of agents. (α, β)-Dynamics could be cast in
such a framework as purely structural dynamics that on the one hand supports
simple, uniform and lightweight protocols while on the other hand requires neces-
sarily the communication of structural information between nodes. In the same
manner, motivated by population protocols, the Network Constructors model
also studies state dynamics that affect the structure of the network resulting
in structural dynamics as well, and thus it is much closer to (α, β)-Dynamics.
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In [20,21] the authors study what stable networks can be constructed (like paths,
stars, and more complex networks) by a population of finite-automata. Among
other complexity related results they also argue that the Network Constructors
model is Turing-Complete. Our main differences to the network constructors
model are the following:

1. Our motivation comes from the complex systems domain as well, and thus
we are more interested in as general as possible convergence/stabilization
theorems apart from particular network constructions (like the α-core in our
case).

2. They use states for the structural dynamics while in our case the dynamics
are stateless. This means that Network Constructors use states that change
according to the protocol, which in turn drive the structural changes of the
network (coupled dynamics). In our case, we use only the knowledge of the
structure of the network to make structural changes.

3. They always start from a null network while we start from an arbitrary one.

In the study of complex systems, one of the tools used for modeling is cellular
automata. Cellular automata use simple update rules that give rise to interesting
patterns [6,15]. Structurally Dynamic Cellular Automata (SDCA) that couples
the topology with the local site 0/1 value configuration were introduced in [17].
They formalize this notion and move to an experimental qualitative analysis of
its behavior for various parameters. They left as an extension (among others) of
SDCA purely structural CA models in which there are no value configurations as it
holds in the (α, β)-Dynamics studied in this paper. A model for coupling topology
with functional dynamics was given in [27], termed Functional Network Automata
(FNA), and was used as a model for a biological process. They also defined the
restricted Network Automata (rNA), which as (α, β)-Dynamics allows only for
stateless structural network dynamics. rNA forces every possible pair of interac-
tions to take place, meaning that for all t it holds that C(t) contains all

(
n
2

)

possible
edges of the n nodes. All their results are qualitative and are based on experimen-
tation. By using the machinery built in Sect. 5 we show that for the family of proto-
cols we consider, rNA always stabilizes. To further stimulate the reader as for the
need of looking at (α, β)-Dynamics, the author in [25] looked at modular robots
as an evolving network with respect only to their topology. The author defined a
graph topodynamic, which in fact is a local program common to all modules of the
robot, that turns a tree topology to a chain topology conjecturing that stabiliza-
tion is always achieved but to the best of our knowledge it is still unresolved.

3 Taking the Minimum

As a motivation and exhibition of (α, β)-Dynamics, we first discuss the following
interesting example. We define the potential of a pair of nodes u and v as E(u, v) =
min{dG(t)(u), dG(t)(v)}, that is the potential is equal to the minimum degree of the
two nodes. This potential function respects all constraints described in Sect. 2.1.
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It is interesting to notice the similarity of our process, and the process of
acquiring the k − core (or complementary the (k − 1) − crust) of a simple undi-
rected graph [8,28].

Definition 1. The k-core H of a graph G is the unique maximal subgraph of
G such that ∀u ∈ H it holds that degH(u) ≥ k. All nodes not in H form the
(k − 1)-crust of G.

The k-core plays an important role in studying the clustering structure of net-
works [19]. In [8] it was proved that the following process efficiently computes
the k-core of a graph:

Lemma 1. Given a graph G and a number k, one can compute G’s k-core by
repeatedly deleting all nodes whose degree is less than k.

The following theorem states that stabilization to the k-core is achieved for an
arbitrary scheduler S. Furthermore, the stabilization occurs after O(m) rounds
of changes in the network, where m is the number of edges in G. Note that
this is not the time complexity of the protocol, since there may be many idle
rounds between rounds with changes, depending on the scheduler. The proof of
the theorem can be found in the full version of our paper [13].

Theorem 1. When E(u, v) = min{dG(t)(u), dG(t)(v)}, (α, β)-Dynamics for any
value of α ≤ n − 1 < β and any scheduler S, stabilizes in a network where all
isolated nodes form the (α − 1)-crust and the rest the α-core of G(0) in O(m)
rounds where changes happen, where m is the number of edges in G(0).

A final note concerns the time complexity. Note that the aforementioned
theorem does not state anything about the time complexity of the protocol, it
just states the maximum number of rounds where a change happens. We can
compute the time complexity if we describe the scheduler. If we assume that
∀t : C(t) = E(t), that is the scheduler contains all edges and only those of the
G(t) network then the time complexity is O(n). This is because, at each round
it is guaranteed that one node will become isolated unless stabilization has been
achieved. Similarly, if we assume a uniform scheduler that chooses one pair of
nodes uniformly at random in each time step, then the (α, β)-Dynamics stabilizes
in O(mn2 log m) steps by a simple application of the coupon collector problem
on the selection of edges.

4 (α, β)-Dynamics with α = β and a Proper Potential
Function on the Degrees

We study the (α, β)-Dynamics where the potential is any symmetric non-
decreasing function on the degrees of its two endpoints. We prove that in this
case (α, β)-Dynamics stabilizes while the time complexity is O(n), assuming that
α = β and that for all t, C(t) contains all

(
n
2

)

possible pairwise interactions. All
proofs can be found in the full version of our paper [13]. More formally, we
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define the potential of a pair (u, v) to be E(u, v) = f(dG(t)(u), dG(t)(v)), where
f is a proper (symmetric and non-decreasing in both variables) function. Since
f is proper, the potential function is computationally symmetric and thus the
protocol is consistent.

For the network G(t), let R(t)(u, v) be an equivalence relation defined on
the set of nodes V for time t, such that (u, v) ∈ R(t) iff dG(t)(u) = dG(t)(v). The
equivalence class R

(t)
i corresponds to all nodes with degree d(R(t)

i ), where i is the
rank of the degree in decreasing order. Thus the equivalence class R

(t)
1 contains

all nodes with maximum degree in G(t). Assuming that n = |V |, the maximum
number of equivalence classes is n−1, as the degree can be in the range [0, n−1]
and no pair of nodes (u, v) with degrees dG(t)(u) = 0 and dG(t)(v) = n − 1 can
exist. Let |G(t)| be the number of equivalence classes in G(t).

We prove by induction that in this setting, (α, β)-Dynamics always stabilizes
in at most |G(0)|+1 steps. To begin with, the clique Kn as well as the null graph
Kn both stabilize in at most one step, for any value of β. The following renor-
malization lemma describes how the number of equivalence classes is reduced
and is crucial to the induction proof.

Lemma 2. If d(R(t)
1 ) = n − 1, ∀t ≥ c, c ∈ N, and the subgraph G(c) \ R

(c)
1

stabilizes for any value of β and proper function f , then G(c) stabilizes as well.
Similarly, if d(R(t)

|G(t)|) = 0, ∀t ≥ c, c ∈ N, and the subgraph G(c)\R
(c)

|G(c)| stabilizes

for any value of β and proper function f , then G(c) stabilizes as well. The time
it takes for G(c) to stabilize is the same as the time it takes for the induced
subgraph to stabilize for both cases.

The following theorem establishes stabilization in linear time.

Theorem 2. When α = β, f is proper, E(u, v) = f(dG(t)(u), dG(t)(v)), and
the scheduler contains all

(
n
2

)

possible pairwise interactions in each time step,
(α, β)-Dynamics with input G(0) stabilizes in at most |G(0)| + 1 steps.

5 (α, β)-Dynamics Stabilization for Arbitrary Scheduler

In this section, we prove stabilization (with no speed bound) for any α ≤ β
in an adversarial setting where the scheduler S may be completely arbitrary
subject to the fairness condition. In addition, we further generalize by chang-
ing the definition of potential, from E(u, v) = f(dG(t)(u), dG(t)(v)) to E(u, v) =
f(gG(t)(u), gG(t)(v)), for a family of functions gG : Rk → R, k ∈ N. We call a
function gG(u) degree-like if it only depends on the neighborhood NG(u) of node
u and has the following property: assuming that the neighborhood of node u
at time t is NG(t)(u), and the neighborhood of v at time t′ is NG(t′)(v), and
NG(t)(u) ⊇ NG(t′)(v), then we require that gG(t)(u) ≥ gG(t′)(v). The reason we
extend the notion of degree is to represent more interesting rules as shown in
the toy model of social dynamics of Sect. 7.
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The potential function is computationally symmetric since f is proper and g
is common for u and v. The protocol in Sect. 4 is a special case of this protocol,
where g is the degree of the node, the scheduler contains all

(
n
2

)

possible pairwise
interactions at each time step and α = β. We first need the following definition:

Definition 2. A pair (t,D) is |D| − Done if t ∈ N, D ⊆ V and ∀u ∈ D it
holds that their neighborhood does not change after time t. That is, NG(t′)(u) =
NG(t)(u), for t′ ≥ t.

Our stabilization proof repeatedly detects |D| −Done pairs with increasing |D|.
When D = V , all neighborhoods do not change, and thus the process stabilizes.

Lemma 3. If there exists a |D| − Done pair (t,D) at round t with |D| < |V |,
then ∃t′ > t such that at round t′ there exists a (|D| + 1) − Done pair (t′,D′).

Proof. The core idea is to find a time-step t1 where a node u �∈ D maximizes g,
as specified in the next paragraph; if u never drops any edge in subsequent time
steps, we prove that its neighborhood is stabilized, and we extend D by u; if it
drops an edge with a node w, this node w is not able to preserve any other edge,
due to the selection of u, and we are able to extend D by w.

More formally, we denote by t1 ≥ t the time-step where there is some node
u �∈ D such that gG(t1)(u) ≥ g

G(t′
1)(v), for all t′1 ≥ t1 and v �∈ D. If there are

many choices for t1 and u, we pick any t1 and u such that u has the highest
degree possible. Note that, later in time (say at t′1 > t1), it is entirely possible
that u’s neighborhood shrinks and thus its g value drops (g

G(t′
1)(u) < gG(t1)(u)).

It is guaranteed that t1 exists, as there are finitely many graphs with |V | nodes,
and finitely many nodes. Thus, there are finitely many values of gG(u) to appear
after time t. Additionally, the fairness condition guarantees that the pairwise
interaction between u and v will be eventually activated, for any v.

If u never drops any edge after t1, then its neighborhood can only grow or
stay the same. But if its neighborhood grows, due to the properties of function
g, its value will not drop and the degree of u will increase. However, the way we
picked u and t1 does not allow this. We conclude that the neighborhood of u does
not change after time t1, and thus we can extend D by {u}, that is (t1,D ∪{u})
is (|D| + 1) − Done. Else, if u drops an edge after t1, let t2 > t1 be the first
time step that a neighbor w of u in G(t2−1) is not a neighbor of u in G(t2).
Since u’s neighborhood stays the same until t2 − 1, it follows that gG(t1)(u) =
gG(t2−1)(u). The neighborhood of w does not grow at subsequent time steps, that
is N

G(t′
2)(w) ⊇ N

G(t′
2+1)(w), t′2 ≥ t2 − 1. To prove this, we show that w never

forms a new edge after t2 − 1. Suppose it does at t′2 + 1 for the first time. Then
w forms an edge with some node v �∈ D, due to the definition of D. However,
we know that β ≥ α > f(gG(t2−1)(u), gG(t2−1)(w)) = f(gG(t1)(u), gG(t2−1)(w)) ≥
f(g

G(t′
2)(v), g

G(t′
2)(w)), due to f being non-decreasing, g being degree-like, and

the definition of u and t1. Thus, an edge between v and w cannot be formed.
We conclude that the neighborhood of w can only shrink after time t2. But

there are only finitely many options for the neighborhood of w, and thus there is
a time t3 ≥ t2 where the neighborhood of w is the same in all subsequent graphs.
Therefore, we can extend D by {w}, that is (t3,D ∪ {w}) is (|D| + 1) − Done.
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Theorem 3. For E(u, v) = f(gG(t)(u), gG(t)(v)), (α, β)-Dynamics stabilizes for
any α ≤ β, proper function f , degree-like function g and arbitrary scheduler S
subject to the fairness condition.

Proof. It trivially holds that (0, ∅) is 0 − Done. By applying Lemma 3 once, we
increase the size of D by 1. Thus, by applying it |V | times, we end up with a
|V |−Done pair (t, V ). Since all neighborhoods stay the same for all future steps,
G(t′) = G(t) for all t′ ≥ t.

Theorem 3 can directly prove stabilization of the protocol in Sect. 3.

6 Turing-Completeness

In this section we describe the (α, β)-Dynamics that is able to simulate Rule 110,
a one-dimensional Cellular Automaton (CA) that Cook proved to be Turing-
Complete [12] (for a discussion on CA and Rule 110, see the appendix of the
full version of our paper [13]). Thus, we prove that (α, β)-Dynamics is Turing-
Complete as well, meaning that it is computationally universal since it can simu-
late any Turing machine (or in other terms any algorithm). Due to space restric-
tions, we only describe our construction; all lemmas and proofs can be found in
the full version of our paper [13].

Definition 3. Rule 110 is a one-dimensional CA. Let cell(t)(i) be the binary
value of the i-th cell at time t. If cell(t)(i) = 0, then cell(t+1)(i) = cell(t)(i + 1).
Else, cell(t+1)(i) is 0 if cell(t)(i − 1) = cell(t)(i + 1) = 1, and 1 otherwise.

Let CN (t)(u, v) = |NG(t)(u) ∩ NG(t)(v)| be the number of common neighbors
of u and v at time t, and CE(t)(u, v) =

∣
∣E(CN (t)(u, v))

∣
∣ be the number of edges

between the common neighbors of u and v at time t. For the following simulation
we assume w.l.o.g. that α = β and that the scheduler S contains all possible

(
n
2

)

interactions, for all time steps. The potential between nodes u and v is defined
as follows:

E(t)(u, v) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

β + 60 + CE(t)(u, v) − CN(t)(u, v) if 66 ≤ CN(t)(u, v) + |E(t)(u, v)| ≤ 70
β + 12 − CE(t)(u, v) if CN(t)(u, v) + |E(t)(u, v)| = 71
β − |E(t)(u, v)| if 40 ≤ CN(t)(u, v) ≤ 41
β − 1 + |E(t)(u, v)| otherwise

The first 2 branches are the ones that are actually related to Rule 110. The
rest of them are only used to ensure technical details, namely that some pairs of
nodes always flip the status of their connection (Branch 3), effectively providing
us with a clock, and some of them always preserve it (Branch 4).

As required, computing the function only uses a constant number of words in
the working memory, which have logarithmic size in bits compared to the input
memory (which contains the neighborhoods of u and v), and requires polynomial
time in the size of the input memory. For example, to compute CN (t)(u, v),
one could iterate over all pairs (u′, v′) such that u ∈ NG(t)(u), v ∈ NG(t)(v),
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and increment a counter initially set to zero, every time u′ = v′. Similarly, to
compute CE(t)(u, v), one can iterate over quadruples u′, u′′, v′, v′′ and increment
a counter whenever u′ = v′, u′′ = v′′ and there exists an edge between u′ and
u′′. Additionally, the potential function only depends on nodes at a constant
distance (at most 1) from either u or v, and it is network-agnostic (not assuming
access on the topology of G(0)). Finally it is computationally symmetric and
thus the protocol is consistent.

Informally, our simulation of Rule 110 consists of the following steps. First,
we design a primitive cell-gadget (henceforth PCG) that stores binary values,
but fails to capture Rule 110 since it doesn’t distinguish between the left and
the right cell. Then, by making use of the PCG as a building block, we build
the main cell-gadget (henceforth CG) that is used to simulate a single cell of
the CA. Then, each time step from Rule 110 is simulated using 2 rounds of the
(α, β)-Dynamics; on the first round, some PCGs acquire their proper value while
on the second round, the rest of the PCGs copy the correct value from the ones
that already acquired it. Finally, the two steps are merged into one in order to
achieve stabilization of the dynamics when Rule 110 has also stabilized.

For clarity purposes, we slightly abuse notation, and we count the rounds of
the (α, β)-Dynamics by multiples of 0.5 instead of 1. Thus, we write that the
sequence of configurations is G(0), G(0.5), G(1)..., where configurations G(t+0.5),
for t ∈ N, are transitional states of the network and have no correspondence
with cell states of the CA.

In order to construct the PCG and the CG, we first construct two auxiliary
gadgets, the always-on (x, y)-gadget and the flip (x, y)-gadget. The always-on
(x, y)-gadget is simply a clique of 22 nodes. 20 of them have no edges to other
nodes in the network, while 2 of them (namely x and y) may be connected with
other nodes. The flip (x, y)-gadget is basically two always-on (x, y)-gadgets, with
nodes x and y being the same for both gadgets, with the exception that the edge
between x and y may not exist. See Fig. 1 for both of these gadgets. We later
show that, under certain conditions, the edge between x and y always exists in
an always-on gadget, and flips its state at each time step, in a flip gadget.

A PCG consists of a pair of nodes (h, l), such that the existence of an
edge between them corresponds to value 1 and otherwise it corresponds to
value 0, and 60 auxiliary nodes a1, . . . a60. Furthermore, for each of the 120
pairs of the form (h, ai) and (l, ai), there exists a corresponding (h, ai) and
(l, ai)−flip gadget. When we have two different PCGs, say A and B, we write
A(h), A(l), A(a1), . . . , A(a60) for the nodes of A and similarly B(h), B(l), B(a1),
. . . , B(a60) for the nodes of B. We write A(t) to denote the value of A at time t;
in other words A(t) = |E(t)(A(h), A(l))|.

In order to connect two different PCGs (say A and B) we add 4 always-
on gadgets: the always-on (A(h), B(h)) gadget, the always-on (A(h), B(l)) gad-
get, the always-on (A(l), B(h)) gadget and the always-on (A(l), B(l)) gadget, as
shown in Fig. 1. Intuitively, this relates CE(t)(A(h), A(l)) to the sum of values
of the connected PCGs.
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x y
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x y

21 22 40. . .
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160 . . . 60′1′ . . .
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l′

Fig. 1. To the left, we have an always-on (x, y) gadget. In the middle, we have a flip
(x, y) gadget; the dotted line between (x, y) denotes that this particular edge may or
may not exist. To the right, we have two PCGs. The dashed lines denote flip gadgets,
the dotted lines denote that these particular edges may or may not exist. The con-
tinuous lines denote always-on gadgets; these 4 always-on gadgets is how we connect
PCGs.

The i-th CG that corresponds to the i-th cell (we write CG(i)) consists of 4
PCGs, which we identify as A1(i), A2(i), B1(i) and B2(i). At time t = 0, the
edge in each flip gadget of A1(i), A2(i) exists, while the edge in each flip gadget of
B1(i), B2(i) does not exist. We connect each Aj(i) with each Bk(i) (4 connections
in total, where each connection uses 4 always-on gadgets, as depicted in Fig. 1).
In order to connect CG(i) (cell i) with CG(i + 1) (cell i + 1) we connect Aj(i)
with Aj(i + 1), and Aj(i) with Bj(i + 1). A CG is said to have value 0 if all
4 of its PCGs are set to 0 and 1 if all PCGs are set to 1. We guarantee that
no other case can occur in G(t), t ∈ N, although this is not guaranteed for the
intermediate configurations G(t+0.5), t ∈ N.

To conclude the construction of G(0), each cell of Rule 110 corresponds to
a CG in G(0), and neighboring cells have their corresponding CGs connected.
Finally, we set the value of its CG (that is the value of its 4 PCGs) equal to the
initial value of the corresponding cell.

Using this construction, and by a direct (but quite tedious) case study, we
prove that between integer time steps, the only differences in G(t) correspond to
the edges defining the values of the CGs. Furthermore, the values of the CGs
correspond exactly to the values of the simulated Rule 110 at the same integer
time step. Finally, by taking advantage of the locality of our model, we describe
a general technique allowing us to skip the intermediate time steps of our current
construction, effectively simulating Rule 110. The proof of our final theorem can
be found in the full version of our paper [13].

Theorem 4. The (α, β)-Dynamics is Turing-Complete.

7 Extensions

We briefly discuss two straightforward extensions of (α, β)-Dynamics and provide
related examples. To begin with, we can add static information to nodes/edges
(e.g., weights). This information is encoded by the potential function and does
not change with time. The degree-like function defined in Sect. 5 can be used to
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assign a time-independent importance factor (e.g. a known centrality measure
in G(0)) while letting g(u) be the sum of these factors of nodes in NG(t)(u).
To demonstrate it, we provide a small example with a toy model inspired by
Structural Balance Theory [16] of networks with friendship and enmity relations
[5]. This example is more reminiscent of population dynamics rather than dis-
tributed protocols. Assume that the network of agents corresponds to people
(nodes) with friendship relations (edges). Each agent v is defined by how nice
she is n(v), how extrovert she is x(v) as well as by the set of her enemies EN (v).
We wish to design a model that captures how friendships change in this setting
when enemies do not change2 as well as when friendships are lost in case of very
few common friends, while friends are made in the opposite case.

To define the social dynamics we need to define the scheduler and the poten-
tial function that essentially describe our toy model. The scheduler captures the
interactions between the agents enforced by the model. This toy model is only
for the purpose of highlighting our convergence results and we do not claim to
realistically capture certain social phenomena. The scheduler is defined as fol-
lows: (a) if two agents u and v are enemies then they never become friends (no
pairwise interaction between them in C(t), for any t), (b) if two agents u and v
are not connected by an edge in G(t) (they are not friends) but their distance
is at most the sum of their extrovertedness, then they interact - that is, if at
time t it holds that 1 < dist(u, v) ≤ x(u) + x(v) then there is an edge (u, v) in
C(t), (c) if two agents are connected by an edge in G(t), then there is a pairwise
interaction between them in C(t) if their number of common friends is ≤ γ. If
their common friends are > γ then their friendship is strong and it will not be
affected at this round, and thus no edge in C(t) is introduced. This concludes
the description of the scheduler.

As for the potential function, we define the potential between u and v in
G(t) to be E(u, v) = (n(u)+

∑

w∈N(u) n(w))+(n(v)+
∑

w∈N(v) n(w)), capturing
our intuition that friendships are created or stopped based on how nice the two
agents and their neighbors are. This is a computationally symmetric function
and thus the protocol is consistent. The function g corresponds to the sum of
the niceness of a node plus the niceness of its neighbors and thus it is degree-
like. The function f is proper since it is a simple sum between u and v w.r.t.
the output of the function g in each node. Thus, (α, β)-Dynamics on this social
network stabilizes by Theorem 3 (the proof holds without any modification, even
in this somewhat extended version of (α, β)-Dynamics). Theorem 3 also allows
us to add any rules w.r.t. the scheduler S like imposing a maximum number
of friends, allowing for additional random connections (to achieve long-range
interaction), etc. Similarly, we can change the definition of potential and still
prove stabilization as long as the assumptions of Theorem 3 are valid. If these
assumptions are violated, as it would be in the case of a potential function that
applies to a subset of neighbors (e.g., common neighbors between u and v), then
a new analysis is required to prove stabilization, if stabilization can be reached.

2 The permanence of enmity is in fact not exactly compatible with structural balance
theory on networks.



142 E. Kipouridis et al.

Finally, the scheduler allows us to remove the assumption of permanence on
enmity by allowing under certain conditions particular pairwise interactions,
thus dynamically changing the set EN (v).

Another straightforward generalization is to allow for general stateless pro-
tocols A targeting at providing algorithmic solutions for specific problems. An
example of such a generalization is given below for constructing a spanning
star. We show in simple terms the stateless approach when compared to state-
dependent approaches for constructing a network (e.g., Network Constructors
model [20,21]). In some sense, we already provide such an example of explicit
network construction in the case of the α-core. We assume a uniform random
scheduler, that is, in our model we assume that in each time step a pairwise
interaction is chosen uniformly at random. In [20] they provide a simple proto-
col that uses states on the nodes, which, starting from the null graph, constructs
the spanning star in optimal Θ(n2 log n) expected time. We discuss a protocol
A that computes a spanning star starting from any network. It is reminiscent
of the random copying method [18] for generating power law networks. It would
be interesting to find out whether hub-and-spoke networks (essentially star net-
works) can be generated by some similar social process. In this case, the prob-
ability of choosing pairwise interactions should be related to the degree of the
involved nodes, leading to the definition of a non-uniform random scheduler.

To describe the protocol let u and v be two nodes that interact at time t as
determined by the scheduler. If no edge exists between them, an edge (u, v) is
added. Assume w.l.o.g. that d

(t)
G (u) > d

(t)
G (v). Then, the protocol dictates that all

edges of v are to be moved to u. In case d
(t)
G (u) = d

(t)
G (v) �= 1, we break symmetry

(symmetry breaking was also needed in [20] by the scheduler) by tossing a fair
coin in each node as to which node is going to transfer its neighbors. The nodes
communicate the result of their toss and if found equal no change happens in
the current round, otherwise we again move all edges from the one node to the
other. If d

(t)
G (u) = d

(t)
G (v) = 1 then let x and y be the only neighbors of u and v

respectively. If d
(t)
G (x) = d

(t)
G (y) = 1, x and y toss a fair coin and if it happens

to be different one of these nodes will be the root of a tree with three leaves.
Otherwise, the same process is applied on x and y as in u and v. Note that in
this case the degrees of x and y cannot be both equal to 1.

On the positive side, the difference of this protocol to the one given in [20]
is that no state dynamics are used and we start from an arbitrary network.
However, on the negative side, a pairwise interaction between u and v may affect
all nodes up to distance 2 since no states are used that could allow us to move
these edges incrementally in future interactions. Correctness is proved based on
the observation that in each round when a leaf node has its degree increased then
the connected components of the network are reduced, otherwise either a node
becomes a leaf or nothing happens due to the symmetry breaking mechanism.
Because of this stalling due to symmetry breaking, the time complexity analysis
is more involved but we conjecture only by a polylogarithmic factor away from
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the one in [20] (due to moving the edges). The protocol could be simplified in
order to change only the neighborhood of u and v, but the time complexity
would increase substantially. To exploit parallel time, we could allow for more
interactions per round as long as those are not affecting each other.

8 Conclusion

(α, β)-Dynamics are stateless structural dynamics of a network. The protocol
allows for two thresholds that affect the existence of the edges in the pairwise
interactions determined by the scheduler at each time step. Since the dynamics
are purely structural, the output of the protocol is another network, and thus
(α, β)-Dynamics can be considered as a network transformation process. Such
a process for example has been used in [32] to detect communities. In fact,
the authors wondered whether conditional convergence could be proved. It is a
matter of technical details to show that for regular networks one can choose α
and β such that the protocol never stabilizes.

For future research, it would be very interesting to look at the notion of
parallel time in (α, β)-Dynamics. Another interesting research direction is to see
the effect of higher order structural interactions as well as look at how the model
is affected when messages are restricted in size (in accordance to the Congest
model from distributed computing). Finally, inspired by the computation of the
α-core in Sect. 3, a very interesting question is to look at more involved problems
w.r.t. emergent behavior from simple protocols.
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Abstract. A distributed computing system is a collection of processors that com-
municate either by reading and writing from shared memory or by sending mes-
sages over some communication network. Most prior biologically inspired dis-
tributed computing algorithms rely on message passing as the communication
model. Here we show that in the process of genome-wide epigenetic modifica-
tions, cells utilize their DNA as a shared memory system. We formulate a par-
ticular consensus problem, called the epigenetic consensus problem, that cells
attempt to solve using this shared memory model and then present algorithms,
derive expected run time and discuss, analyze and simulate improved methods for
solving this problem. Analysis of real biological data indicates that the computa-
tional methods indeed reflect aspects of the biological process for genome-wide
epigenetic modifications.

1 Introduction

The entire DNA of a single human cell is two meters long, composed of three billion
base pairs, and includes about 25,000 genes in it. A gene is a short section of DNA. The
purpose of genes are to store information. Most genes contain the information needed
to make functional molecules called proteins. Only about one percent of the DNA is
made up of protein-coding genes.

The DNA in all the cells of our body is the same, so how can a human (or an
organism in general) have different cell types yet one genome? That is, in what sense
a neuron is different from a skin cell, given that they both have the same DNA? The
answer is that each cell expresses, or turns on, only a fraction of its genes. The rest of
the genes are repressed, or turned off. Thus, that set of genes that are expressed in a
neuron is different from the set that is expressed in a skin cell.

The expression of some genes (i.e., which genes are on or off) in our body cells are
changing all the time. For example, environmental influences, such as a person’s diet,
stress, and exposure to pollutants, impact gene expression. In this context, epigenetics
refers to modifications in a cell that do not change the DNA and affect gene activity
by activating or deactivating genes. It has been observed that initiating the process of
changing the expression of a gene requires many proteins in a cell to coordinate their
activates. However, it is not well understood how such coordination is achieved. In this
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paper, we propose such an explanation by describing an algorithm that each protein is
“executing”, which achieves the desired observed coordination.

Before we proceed, let us explain the issue of gene expression a bit more. Like vir-
tually all large-scale computing platforms, cellular and molecular systems are mostly
distributed, consisting of entities that interact, coordinate, and reach decisions without
central control [28]. To date, coordination in such processes was almost always dis-
cussed in the context of message passing. Famous examples include neural networks
[8] where neurons communicate by passing messages along synapses, cellular decision
processes where cells communicate by secreting proteins [2,36] and protein interaction
networks where proteins physically interact to achieve a common goal [43].

While message passing is indeed a useful and dominant method for distributed bio-
logical computing, some biological processes utilize another method for coordination.
This method is similar to the method of communicating via shared memory, studied
intensively in distributed computing, and utilizes modification to the DNA (i.e., leav-
ing marks on the DNA but not changing the DNA itself), which can be sensed (read)
by other participating entities. This process is termed epigenetics and involves several
different groups of proteins, which could largely be divided into three groups: readers,
writers, and erasers [31].

Epigenetic refers in part to post-translational modifications of the histone proteins
on which the DNA is wrapped. Such modifications play an essential role in the regula-
tion of gene expression, and so are themselves highly regulated and consistent across
large stretches of the genome [24,31]. In particular, when switching between cell states
(for example, changing gene expression when facing stress or during development),
a coordinated set of modifications is required such that expression programs that are
necessary for these states can be executed.

The DNA is packaged into a small volume to fit into the nucleus of a cell. Stretches
of about 170 base pairs (of the DNA) are wrapped around octets of histone proteins to
form nucleosomes [11]. These and other DNA-associated proteins make up the chro-
matin. Researchers have been cataloging chromatin proteins and their modifications,
to segregate chromatin’s complexity into discrete numbers of chromatin states [7].
Chromatin-state mapping promises to reveal many secrets of genome function, how
cells inherit acquired states, how chromatin directs functions such as transcription and
RNA processing, and how chromatin alterations contribute to disease response and pro-
gression.

There are several types of (protein) histone modifiers that regulate transcriptional
activity by changing chromatin states. As mentioned, these modifiers can be broadly
categorized into three classes: readers, writers, and erasers [31]. As their names suggest,
writers can add specific modifications (but cannot erase existing ones), while erasers
can remove specific modifications but cannot add others. Readers are the executers, and
while their activity is the goal of these modifications, we would not discuss them from
now on since their involvement in the process is limited to the outcome, whereas we are
focused here on understanding the process of reaching consensus as discussed below.

Several specific types of histone modifiers have been discovered, including acety-
lation, methylation, phosphorylation, ubiquitination, and so on [31]. While each has its
own interpretation, in this paper, we generalize all of them to focus on the interplay
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between writers and erasers rather than on the specific histone modification type. How-
ever, we note that a number of modifiers (including both erasers and writers) were shown
to act on the exact same locations [42], which corresponds to a number of different type
of processors that may access the same memory location in a shared memory system.
Coordination between writers and erasers for these sites is required to maintain a con-
sistent state across the genome.

Although a lot of recent work in the biological literature has focused on histone
modifications and the specific proteins that regulate gene expression, to the best of our
knowledge, no prior work discussed the issue of global coordination between writers
and erasers, which is essential for activation or deactivation of genes. We often see
precisely the same histone marks (i.e., marks that are left by the writers) for a stretch of
DNA (within the same DNAmolecule) [24]. However, how such a consensus is reached
by the different writers for a particular mark is still not clear. Our goal in this paper is
to understand better how such a consensus may be reached.

To this end, we model the histone modifiers as two different types of writer pro-
cessors and two different types of eraser processors that communicate by accessing a
shared memory array (a stretch of DNA), and for such a setting formally define the epi-
genetic consensus problem. We first discuss a simple algorithm for solving the problem
and then present a more sophisticated algorithm, that better matches various biological
assumptions, and discuss its run time both theoretically and in simulations.

2 Model

We assume a shared memory array with N memory locations, which corresponds to a
linear DNA stretch with N total histones that can be modified (N is a large number
– and these histones cover hundreds of thousands of DNA bases). Recent biological
results indicate that such stretches of DNA, often anchored by CTCF bindings sites,
are likely to be jointly modified when switching between cell states [37]. Thus, our
focus here is on achieving a consensus assignment for such stretches when cells need
to switch between different biological states (i.e., changing gene expression).

Although our processors mimic memory-less proteins, to model some protein’s
behaviours (such as movement in a given direction), we assume that each processor
has only two bits of memory which, for example, prevents it from counting (assuming a
bigger memory is biologically unrealistic). While there could be several types of mod-
ifications, many of them can co-exist (each changing a different histone residue). For a
specific residue most of the modification are restricted to two possible values and so we
assume here that only two values can be written to each location of the array, denoted
by 0 and 1. Again, following the biological model we allow each processor to be either
a writer or an eraser [23].

We assume that two types of writers, 0-writers and 1-writers, are assigned to each
DNA stretch. W0 denotes the number of 0-writers and W1 denotes the number of 1-
writers. Similarly, we have sets of erasers for 0 and for 1, such that 0-erasers can only
erase 0 and 1-erasers can only erase 1. Following recent studies [40], we assume that the
generation of writers and erasers is similarly regulated and so the number of 0-erasers,
E0 = W1 and the number of 1-erasers, E1 = W0.
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To switch between states (changing gene expression), cells transcribe (generate)
new writers and erasers for the modification needed (for example, when changing from
0 to 1). When changing from 0 to 1, the new 1-writers will usually outnumber the
existing 0-writers. However, we cannot expect these 0-writers to completely disappear,
at least not within the time scales needed for changing the state. Thus, we assume that
at any given time, the number of one type of writers is larger than the number of the
other type, and the convergence time of our algorithms will depend on this assumption.

Each of the N locations in the shared memory can be in one of three states: Empty
(V), 0 or 1. A state transition of a single memory location can occur from V to 0 (1)
by a 0 (1) writer and from 0 (1) to V by a 0 (1) eraser. However, a transition from
0 (1) to 1 (0) cannot occur. That is, a 0 state needs to be erased first and only then
can be written by a 1-writer. It is assumed that reading a memory location and then
possibly updating its value is done as one atomic step. In addition, it is assumed that
all locations are initially empty. This assumption is based on studies showing that all
marks are completely erased before being rewritten in certain reprogramming events
[41]. To address cases where there is no global erasing of markers, in Sect. 9, we relax
this assumption and explain how it can be easily removed. More precisely, we show in
Sect. 9 that with a tiny change to our algorithm it satisfies the self-stabilization property,
that is, starting from any initial assignment of values to the memory locations (i.e.,
starting from any configuration) the algorithm always produce the desired final result
[12,14].

The shared memory locations are anonymous. That is, they do not have names that
the processors a priori agreed upon [39]. Each one of the processors (i.e., writers and
erasers) starts by accessing a random location in the array. Thereafter, in its next step, a
processor may access one of the two locations which are adjacent to the location it has
accessed in its previous step. One may view the processors as mobile agents that are
moving between locations in the shared array.1

The writers and erasers do not have a (global) sense of direction. That is, they do
not a priori agree on which side of the array is the left side and which side is the right
side. We assume that writers and erasers are asynchronous, nothing is assumed about
their relative speed. The time efficiency of an asynchronous algorithm is often of crucial
importance. However, it is difficult to find the appropriate definition of time complexity,
for systems where nothing is assumed about the speed of the processors. Thus, for
measuring time, we will assume that a single step of a processor takes at most one time
unit.

Assume that a computation is taking place through time and that every step of every
processor takes some amount in the interval (0, 1]. That is, there is an upper bound 1 for
step time but no lower bound. Thus, for example, if during some period of time, where
two processors are taking steps, one processor takes 100 steps while the other takes 5
steps, then the total time that has elapsed is at most 5 time units.

1 In particular, a processor does not have to remember the address (name) of the last memory
location it has accessed which will require log N bits of local memory. It only needs to remem-
ber one bit which represents the direction in which it is moving. (Recall, that we have assumed
that each processor has two bits of local memory.).
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Under the assumption that a single step of a processor takes at most one time unit,
the time complexity of an algorithm is defined as the maximum number of time units
(also called “big steps”) that are required for the algorithm to converge (i.e., to termi-
nate) [10,25,33,38]. For the rest of the paper, by a step of the algorithm, we mean a “big
step” which takes one time unit and where each correct processor that started partici-
pating in the algorithm has taken at least one step. For example, in Sect. 4 we derive the
expected number of big steps (i.e., time units) for our consensus algorithm to converge.

3 The Epigenetic Consensus Problem

The epigenetic consensus problem is to design an algorithm in which all processors
reach an agreement based on their initial opinions. In our context, reaching an agree-
ment is expressed by guaranteeing a consensus outcome of either 0 or 1 for all N
memory locations.2 An epigenetic consensus algorithm is an algorithm that produces
such an agreement, assuming only writers and erasers as defined previously.

More formally, the problem is defined as follows. There are a fixed number ofW0 0-
writers, W1 1-writers, E0 0-erasers, and E1 1-erasers. Recall that W1 = E0 and W0 =
E1. Initially, each one of the N memory locations is empty, and upon termination, the
value of each location is either 0 or 1. The requirements of the epigenetic consensus
problem are that there exists a decision value v ∈ {0, 1} such that,

– Agreement: With probability 1, the value of each one of the N memory locations is
eventually v, and does not change thereafter.

– Majority: When there is a strong majority of v-writers, then, with high probability,
the final decision value (i.e., the final value of each one of the locations) is v.

– Validity: The final value of each location is a value of some writer.

We point out that the first requirement has two parts. The first (the agreement part) is that
all N memory locations eventually contain the same value, and the second (the termina-
tion part) is that eventually the memory locations do not change their agreed-upon value.
In the second requirement, a strong majority of v-writers means that Wv/W1−v ≥ 3
(recall that v ∈ {0, 1}). We use a ratio of 3 to 1 here. However, we note that while
recent studies have shown that over-expression of specific writers leads to a change of
consensus value, as we assume, the actual ratio in real biological processes has not yet
been fully determined [16]. The third requirement ensures that if W0 = 0 then the deci-
sion cannot be on the value 0, and similarly if W1 = 0 then the decision cannot be on
the value 1. Thus, it precludes a solution that always decides 1 (resp. 0). The consensus
problem defined above is also called binary consensus as the decision value v is either
0 or 1. A generalization of the problem where the v is taken from a larger set is not
considered in this paper.

The consensus problem is a fundamental coordination problem and is at the core
of many algorithms for distributed applications. The problem was formally presented
in [26,30]. Many (deterministic and randomized) consensus algorithms have been pro-
posed for shared memory systems. Few examples are [1,4,5,21,27,32,35]. Dozens of

2 An agreement on 0 (resp. 1) may correspond to an instruction to deactivate (resp. activate) a
specific gene.
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papers have been published on solving the consensus problem in various messages pass-
ing models. Few examples are [13,15,18–20]. For a survey on asynchronous random-
ized consensus algorithms see [3].

4 Algorithms

4.1 A Naive Algorithm

Before we present our main algorithm, we first discuss a straightforward but non-
desirable solution that is easy to analyze. In this solution, the erasers do not participate.
Writers compete on writing the leftmost memory location and the value written into
that location becomes the final agreed upon value. This is done as follows. Assume v
is the written value. The v-writers continue writing v into all the locations. The major
downside of this solution is that the probability of ending with the majority value is
p = W1/(W0 +W1) (assuming a 1 majority) which is usually very dangerous for cells
since there is a constant probability of not reaching the desired state. Furthermore, this
solution assumes that all the writers have the same orientation (i.e., they a priori agree
on which side is the left side) which is an unacceptable assumption. We present below
a much better solution.

4.2 The Epigenetic Consensus Algorithm

While the algorithm above will finish in Θ(N) steps, as mentioned, it might not lead to
the desired outcome. Instead, we propose to rely on recent biological observations that
indicate that stretches of consecutive 1’s (resp. 0’s) are locally extended until they reach
other stretches of 1’s (resp. 0’s) [6]. Based on this, we propose the following algorithm.
Let v ∈ {0, 1}.
– Each of the writers and erasers starts at a random location. Their direction is also
chosen randomly.

– Rule for a v-writer: The writer starts moving in the chosen direction. If it sees an
empty location, it writes v and moves on to the next location. When a v-writer
reaches the end of the stretch, it reverses its direction and continues.

– Rule for a v-erasers: The v-eraser starts moving in the chosen direction. When it
sees a value v which is preceded by the value 1−v, it erases the v. Otherwise, it just
moves on. When a v-eraser reaches the end of the stretch, it reverses its direction
and continues.

When the values of two consecutive non-empty locations are different, we call that
a collision. The algorithm will run until all the locations’ values are non-empty and
until all collisions are resolved. Intuitively, each time there is an empty location after
a collision is resolved, assuming W1 > W0, the probability that the value 1 will be
written is higher, and thus the algorithm will eventually converge. Another version of
the algorithm we considered, forces a writer to spin (wait) when it notices a collision.
Simulations indicate that the spinning version is more efficient than the non-spinning
one, but this version is harder to analyze.
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5 Analysis: Preliminaries

We prove that the algorithm satisfies the majority requirement and compute the expected
runtime. We do that by applying known results about biased random walks in one
dimension. More precisely, we use the following well-known solution to the gambler’s
ruin problem [17,34].

5.1 The Gambler’s Ruin Problem with Ties Allowed

Consider a gambler who at each play of the game has probability p of winning one unit,
probability q of losing one unit, and probability r of not winning or losing (p+q+r = 1;
0 < p, q < 1). (In gambling terminology, when r > 0 a bet may result in a tie.) Assume
successive plays of the game are independent, what is the probability that starting with
0 ≤ i ≤ N units, the gambler’s fortune will reach N before reaching 0.

Lemma 1 (The gambler’s ruin lemma [17,34]). Let fi denotes the probability that
starting with i units, 0 ≤ i ≤ N , the gambler’s fortune will eventually reach N . Then,
assuming p �= q,

fi =
1 − (q/p)i

1 − (q/p)N

Lemma 1 is true regardless of the value of r (i.e., regardless of whether ties are allowed
or not). As N → ∞, if p > q, there is a positive probability that the gambler’s fortune
will converge to infinity; whereas if p < q, then, with probability 1, the gambler will
eventually go broke when playing against an infinitely rich adversary. (When p = q and
r = 0, fi = i/N .) Even though casino gamblers are destined to lose, some of them
enjoy the process. Lets figure out how long their game is expected to last.

Lemma 2 (Expected playing time [17]). Let Ei be the expected number of bets before
going home (broke or a winner), starting with i units, 0 ≤ i ≤ N . Then, assuming
p �= q,

Ei =
((

N

p − q

)[
1 − (q/p)i

1 − (q/p)N

]
− i

p − q

) (
1

p + q

)

Without ties (i.e., when r = 0) the right term equals 1. The expression is much simpler
in the following cases. When p > 1/2, r = 0 and both i and N are large, Ei ∼
(N − i)/(2p − 1). This seems to make sense since the gambler is expected to win
1p − 1(1 − p) = 2p − 1 units on every bet and starting with i units, the gambler needs
to win additional N − i units. On the other hand, when p < 1/2, r = 0 and N − i is
large, Ei ∼ i/(1− 2p). This seems to make sense since the gambler is expected to lose
1(1 − p) + (−1)p = 1 − 2p units on every bet and the gambler started with i units.
(When p = q and r = 0, Ei = i(N − i).)

Finally, the sum of the probabilities that, starting with i units, the gambler’s fortune
will reach N or the gambler will eventually go broke is known to be 1, so we need not
consider the possibility of an unending game. That is, for every p > 0, the probability
that the game never ends is 0.
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5.2 Chernoff Bound

One can encounter many flavors of Chernoff bounds. We will use the following version,

Theorem 1 (Chernoff Bound [22]). Let X =
∑n

i=1 Xi where Xi = 1 with prob-
ability pi and Xi = 0 with probability 1 − pi, and all Xi are independent. Let
μ = E(X) =

∑n
i=1 pi. Then,

Pr(X ≥ (1 + δ)μ) ≤ e− δ2
2+δ µ for all δ > 0

5.3 Additional Assumptions About the Model

We state below a few assumptions that capture important aspects of our model, and
simplify the analysis of the epigenetic consensus algorithm. Recall that it is assumed
that W1 = E0 and W0 = E1. The value that is written into an empty memory location
depends on the ratio between the 1-writer and 0-writers at that location. In an asyn-
chronous system it is not possible to exactly tell what this ratio is at any given time.
However, this ratio is, of course, going to be affected by the overall ratio between the
different types of writers. Thus, to abstract away from all the physical details (such as,
the time it takes to write, erase, move to the next location, etc.), which may affect the
current location of a process, we assume the following,

Assume that a value (0 or 1) is written at a certain location. The probability that
the value written in that location is v ∈ {0, 1} is Wv/(W0 + W1).

The assumption implies that a value that is written does not depend on past history.
Thus, there are no probabilistic dependencies between the values written into different
(empty) memory locations. Let Xv be the number of values v ∈ {0, 1} that are written
into the N memory locations for the first time (i.e., for each location we consider the
first value written into it). By definition, Xv + X1−v = N . By the assumption above,
E(Xv) = (N × Wv)/(W0 + W1).

Given physical space constraints, when resolving a collision on the chromatin, only
one value in one of the two adjacent locations participating in the collision can be
erased, but not both values. That is, because of their physical size, either a 0-eraser or
a 1-eraser may observe a specific collision but not both at the same time. Given this
biological observation, from now on we will assume the following,

An eraser reads two adjacent locations, and possibly erases one of them, in
one atomic step. Thus, when a collision is resolved, only one value in one of
the two adjacent memory locations participating in the collision can be erased.
Furthermore, in case of a collision, the probability that the value erased is v ∈
{0, 1} is Ev/(E0 + E1).

Thus, there are no dependencies between erasers which attempt to access overlapping
(or the same) collisions concurrently. Finally, for simplicity, we assume that before the
first value is erased, each one of the N locations is written at least once.
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6 Analysis: The Probability of Reaching Agreement on the
Majority Value

We prove that the epigenetic algorithm satisfies the majority requirement.

Theorem 2 (Satisfying the majority requirement). Assume W1 > W0. The proba-
bility that the final decision value is 1 is more than

(
1 − (W0/W1)4W0N/(W0+W1)

)
×

(
1 − e−W0N/(3(W0+W1))

)

Corollary 1. Assume W1/W0 ≥ 3. The probability that the final decision value is 1 is
more than (

1 − (1/3)N
) ×

(
1 − e−N/12

)

Thus, when there is a strong majority of v-writers then, with high probability, the final
decision value is v. We prove the theorem by applying the known result about the Gam-
bler’s ruin problem as captured in Lemma 1, and by using Chernoff bound (i.e., Theo-
rem 1).

For the rest of the section we prove Theorem 2. Let us focus on update-steps in
which, in an attempt to resolve a collision, a value is erased and then a value is written
in the same location. An update-step may result a change in the number of 1’s (and
hence also of 0’s). There are three such types of update-steps which we will name win,
lose and tie. A win step is when a collision (of 01 or 10) is changed into 11. A lose step
is when a collision (of 01 or 10) is changed into 00. A tie step is when a collision is not
changed (a value is erased and then the same value is written). So, the number of 1’s
increases by one in a win step, it decreases by one in a lose step and it does not change
in a tie step.

Recall that W1 = E0 and W0 = E1, and the probability of erasing 0 or writing 1
is W1/(W0 + W1). Let P be the probability that the number of 1’s increases (and 0’s
decreases) in an update-step; let Q be the probability that the number of 0’s increases
(and 1’s decreases); and let R be the probability that the number of 1’s and 0’s does not
change. Then,

P =
(

W1

W0 + W1

)2

; Q =
(

W0

W0 + W1

)2

; R = 1 − P − Q.

Assume that all the memory locations are not empty. Let i denotes the initial number
of 1’s, after each one of the N locations is written once. Notice that, by definition, the
initial number of 0’s is N − i. The question that we are interested in is, what is the
probability that starting with i values of 1 (after each of the locations is written once),
the final decision value (i.e., the final value of each one of the N locations) is 1?

This question is identical to the question asked in the gambler’s ruin problem that
we just analyzed. Going broke is analogous to reaching agreement on 0, where going
home winner with a fortune of N is analogous to reaching agreement on 1. Winning
one unit with probability p is analogous to a win step with probability P , losing one
unit with probability q is analogous to a lose step with probability Q, and not losing
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or winning with probability r is analogous to a tie step with probability R. Finally, the
gambler starting with i units is analogous to assuming that the initial number of 1’s is i.
Thus, by Lemma 1 we get,

Lemma 3. Let fi denote the probability that starting with initially i values of 1, 0 ≤
i ≤ N , the final decision value (i.e., the final value of each one of the N locations) is 1.
Then, assuming P �= Q,

fi =
1 − (Q/P )i

1 − (Q/P )N
=

1 − (W0/W1)2i

1 − (W0/W1)2N

For the rest of the section, let μ0 denotes the expected initial number of 0’s. Clearly,
μ0 = W0N/(W0 +W1). Thus, when assuming that W1 > W0, we get that 0 ≤ 2μ0 ≤
N . By Lemma 3,

Lemma 4. Assume W1 > W0. The probability that the final decision value is the
majority value 1, when starting with at least 2μ0 values of 1, is at least

1 − (W0/W1)4µ0

1 − (W0/W1)2N
≥ 1 − (W0/W1)4µ0

The Probability of Starting with at Least 2µ0Values of 1
In Lemma 4, we computed the probability that the final decision value is the majority
value 1, conditioned on starting with at least 2μ0 values of 1. Using Chernoff Bound
(Theorem 1), it is possible to compute the probability of starting with at least 2μ0 values
of 1.

Lemma 5. Assume W1 > W0. Let X1 be the initial number of 1’s. Then,

Pr (X1 ≥ 2μ0) > 1 − e−µ0/3

Proof. Recall that μ0 is the expected initial number of 0’s (μ0 = W0N/(W0 + W1)).
Let X0 be the initial number of 0’s. By substituting μ0 for μ and 1 for δ in Theorem 1
(Chernoff Bound) we get that,

Pr (X0 ≥ 2μ0) ≤ e−µ0/3 (1)

That is, the probability of starting with at least 2μ0 values of 0 is at most e−µ0/3, which
implies that,

Pr (X1 ≥ 2μ0) > 1 − e−µ0/3 (2)

That is, the probability of starting with at least 2μ0 values of 1 is more than
1 − e−µ0/3. 	

Putting it all Together
First, in Lemma 4, we computed the probability that the final decision value is the
majority value 1, conditioned on starting with at least 2μ0 values of 1. Then, in
Lemma 5, we computed the probability of starting with at least 2μ0 values of 1. Mul-
tiplying these two probabilities gives us the probability that the final decision value is
1. Thus, assuming W1 > W0, the probability that the final decision value is 1 is more
than (

1 − (W0/W1)4µ0
) ×

(
1 − e−µ0/3

)
This completes the proof of Theorem 2. 	
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7 Analysis: Computing the Expected Number of Steps

Recall that it is assumed that W1 = E0 and W0 = E1. Next, we compute the expected
number of big steps (i.e., time units) needed to until reaching agreement, when execut-
ing the epigenetic consensus algorithm. (Time complexity is defined in Sect. 2.)

Theorem 3. Let T be the number of steps needed to reach agreement (on either 0 or
1). Then, assuming W1 > W0,

E[T ] ≤ 2(W0 + W1)4 N2

W 4
1 − W 4

0

Corollary 2. Assuming W1/W0 ≥ 3, E[T ] ≤ 6.4N2

Proof. Recall that an update-steps is an attempt to resolve a collision, in which a value
is erased and then a value is written in the same location. An update-step may result
a change in the number of 1’s (and hence also of 0’s). There are three such types of
update-steps which we have named win, lose and tie. A win step, which can happen
with probability P , is when a collision is changed into 11. A lose step, which can
happen with probability Q, is when a collision is changed into 00. A tie step, which can
happen with probability R, is when a collision is not changed. The values of P , Q and
R are as in the previous section.

We first focus on computing the expected number of update-steps of the epigenetic
consensus algorithm. This question is identical to the question about the expected num-
ber of steps in the gambler’s ruin problem from Sect. 5. As explained in the previous
section, going broke is analogous to reaching agreement on 0, where going home win-
ner with a fortune of N is analogous to reaching agreement on 1. Winning one unit
with probability p is analogous to a win step with probability P , losing one unit with
probability q is analogous to a lose step with probability Q, and not losing or winning
with probability r is analogous to a tie step with probability R. Finally, the gambler
starting with i units is analogous to assuming that the initial number of 1’s is i.

Let Ui be the number of update-steps until consensus is reached, starting with ini-
tially i values of 1, 0 ≤ i ≤ N . By Lemma 2,

E[Ui] =
((

N

P − Q

)[
1 − (Q/P )i

1 − (Q/P )N

]
− i

P − Q

) (
1

P + Q

)
(3)

The assumption that W1 > W0 implies that P > Q, and thus we can simplify (3) as
follows,

E[Ui] ≤
(

N

P − Q
− i

P − Q

) (
1

P + Q

)
=

N − i

P 2 − Q2
(4)

Since P = (W1/(W0 + W1))2 and Q = (W0/(W0 + W1))2, we get that

E[Ui] ≤ (W0 + W1)4(N − i)
W 4

1 − W 4
0

(5)
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Fig. 1. Distribution of number of steps to reach consensus. Plots summarize 300 random runs of
the algorithm. a) low and b) high level of competitions between 1-writers and 0-writers. µ denotes
the average time to reach consensus.

Let U be the number of update-steps until consensus is reached. Then,

E[U ] ≤ max
i∈{1,...,N−1}

E[Ui] ≤ (W0 + W1)4(N − 1)
W 4

1 − W 4
0

(6)

So far we have computed, E[U ], the expected number of update-steps of the epigenetic
consensus algorithm. Next, we compute the expected number of (big) steps in general.
For update-steps to take place, we need the erasers and writers to arrive at the collision
locations. So, for a single update-step, in the worst case, we may need to wait for N −1
steps until the eraser arrives and an addition N − 1 steps until the writer arrives. Thus,
for each update-steps, in the worst case, we should count 2N − 2 additional steps. That
is, counting a total of 2N − 1 steps for each update-step. In addition, in the worst case,
we should add N (big) steps for the first writes into the N memory location. Thus, from
(6) and as explained above, it follows that

E[T ] ≤ (W0 + W1)4(N − 1)
W 4

1 − W 4
0

× 2(N − 1) + N ≤ 2(W0 + W1)4 N2

W 4
1 − W 4

0

(7)

This completes the proof of Theorem 3. 	

Remark: The analysis leads to a runtime of O(N2) steps. However, it assumes a
single collision being resolved each time. In practice, we have multiple collisions that
can be resolved in parallel. Initially, the number of collisions is a linear function of the
number of 0’s. If the number of collisions remains a linear function of the number of
0’s then in O(N) steps we would resolve O(N) collisions, which would lead to at most
O(N lgN) runtime. Unfortunately, as Fig. 2a) shows based on simulations, this is not
the case. The epigenetic consensus algorithm leads to a rapid decrease in the number of
collisions while not decreasing the number of 0’s at the same rate. This means that long
stretches of 0’s (and 1’s) form, leading to a small number of collisions while still having
a large number of 0’s. One way to overcome this is to change the algorithm to better
mimic what biology does. Specifically, in biology we observe that erasers and writers
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Fig. 2. a) Number of zeros and collisions vs steps in the algorithm. While the initial number
of collisions is a linear function of the number of 0’s, we observe that towards the end of the
algorithm there are very few collisions while the number of 0’s remains relatively high. b) Com-
parison between the proposed original model and a revised model that allows writers to attach
themselves with the erasers and the writers wait until a collision is resolved. Here we can see that
the waiting version is faster at both competition level compared to the original model.

interact during the establishment of a new state [40]. We hypothesize that an algorithm
that utilizes these ideas can indeed lead to a faster runtime as the simulation analysis
below shows.

8 Simulations and Analysis of Real Biological Data

We performed simulations of our proposed algorithm at two different levels of compe-
titions between the 1-writers and 0-writers. Figure 1 shows the probability distribution
of the number of steps to reach consensus. To simulate high level of competition we
used W1 = 50,W0 = 40, p = 0.56 (p = W1/(W0 + W1)). To simulate low level of
competition we used W1 = 50,W0 = 32, p = 0.60. For both cases, N = 1000. As
expected, at low level of competition consensus is achieved much faster. The average
number of steps taken to reach consensus is 2.08K compared to 5.93K for the high
level of competition.

Figure 2(a) shows the change in the number of zeros and collisions as the algorithm
progresses towards consensus. As can be seen from the figure, initially the number of
collisions is linear in the number of 0’s. However, the algorithm proposed leads to a
quick drop in the number of collisions while the number of 0’s remains fairly high
which means that collisions cannot be resolved in parallel. We also simulated an alter-
native, which allows 1-writers to attach to 0-erasers (forming a writer-eraser complex
though not guaranteeing atomicity). As before, erasers continue to scan the DNA until
they reach a collision. However, in the revised version erasers wait at the collision site to
see what value was written and if the new value leads to another collision they attempt
to erase again until the collision is resolved. As mentioned above, if the ratio of erasers
from the two types is not 1, it would always converge to a consensus. While we are
unable to prove a better worst case runtime for such a method, simulations indicate that
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Fig. 3. Different histone modifiers competing for the same residue, Histone 3 Lysine 9 (H3K9).
Latent Kaposi Sarcoma-Associated Herpesvirus Genomes (Resolution 250 bp). Two types of
histone modifiers are competing to put acetylation and methylation marks on the residue. We can
see stretches of regions with only methylation or acetylation marks, showing regional consensus.

it leads to much faster convergence when compared to the epigenetic consensus algo-
rithm (Fig. 2b). Coupled with recent biological observations [29] these results indicate
that this method is likely much faster than our current proposed algorithm while still
not requiring any memory for the processors.

We have also looked at recent epigenetic data to see if the assumptions we made
about increasing stretches using collisions rather than randomly changing location are
observed in real data. Figure 3 presents results from a recent study by Gunther et al.
[24] in which two different types of marks, acetylation and methylation are competing
for the same residue H3K9 (and so can be thought of as 0 and 1). As can be seen,
and in agreement with our local consensus formulation, there is regional consensus of
these marks. The methylation mark is strong in the region that lies between 30K bps to
60K bps and again from 105K bps to 120K bps. The acetylation marks are almost non
existent in these regions, demonstrating regional consensus of methylation marks in the
DNA and the likely impact of collisions on the establishement of such regions.
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Fig. 4. Increase in histone modification intensity from the initial stage of infection (slkp) to 5
days post infection (5dpi). We can see that the later time point has higher overall consensus of
methylation histone mark. (Color figure online)

These consensus states are dynamically regulated in response to stress or for estab-
lishing a new state during development. Figure 4 shows results from a temporal study
by Gunther et al. [24] in which cells are gradually moving towards consensus of tri-
methylation marks of Histone 3 Lysine 4 (H3K4) residue as a response to Kaposi Sar-
coma infection. The blue lines indicate presence of the H3K4me3 mark. The figure
presents two time points, the first is at onset of infection (when the virus is applied)
while the second one is from a sample 5 days post infection. As can be seen, after 5
days we observe a higher level of consensus than at the onset of infection indicating
that collisions continue to be resolved until full consensus is reached. Most likely, in
this case, the reason for the increase is the activation of additional modifiers at the later
time points which lead to changes in the ratio of 1-writers and 0-writers and erasers.
We note that the studies performed to-date are looking at a collection at cells at once
and so only report average data. New technologies are enabling us, for the first time, to
observe these events at a single cell resolution [9] and we expect that these results will
further help us infer the specific algorithms utilized by cell to reach consensus.

9 Discussion

To date, the study of “algorithms in nature” at the molecular and cellular levels, i.e.,
how collections of molecules and cells process information and solve computational
problems, was discussed mainly in the context of networks and message passing [28].
This paper attempts to study biologically inspired distributed computing algorithms in
the context of molecular shared memory systems.

We have focused on the process of genome-wide epigenetic modifications in which
cells utilize DNA as a shared memory array to establish a new state (i.e., changing gene
expression). We formulated the new epigenetic consensus problem that these modifiers
need to solve and presented algorithms and their expected run time. We have also dis-
cussed and simulated improved methods for solving the problem, which rely on addi-
tional recent biological insights. By analyzing real biological data we show that the
decisions made in the algorithms we presented, to focus on collisions, indeed reflect
experimental results for the establishment of new cell states using epigenetics.

Robustness is a desired property of cellular and molecular systems. That is, they
should be able to recover and restore their original state after a disturbance (a transit
failure) without any outside intervention. Our epigenetic consensus algorithm is robust,
as it can tolerate a limited number of arbitrary memory location (value) changes and
processor failures.
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Our consensus algorithm is “one-shot,” and we would also like to cover the “long-
lived” version in which we may switch again possibly many times (i.e., repeated con-
sensus). Also, we assume that all the shared memory locations are initially empty and it
would be nice to be able to remove this assumption, especially when a need to establish
a new state arises. A tiny change to our algorithm achieves the above desired properties.
This is done by assuming that a v-eraser “once in a while” (i.e., at random) uncondi-
tionally erase v, even when there is no collision. In such a case, if the ratio between the
number of 0-erasers and 1-erasers changes significantly, the decision value will change
as well. Thus, with this tiny change (which is biologically justified) the algorithm is
self-stabilizing – agreement is reached starting from any configuration (i.e., from any
assignment of values to the memory locations).

There are several, possibly faster, variants of our epigenetic consensus algorithm
that are theoretically interesting, but require making assumptions that are not acceptable
from a biological standpoint. For example, we may assume that each writer is in one of
two states: active or inactive. Initially, all writers are active. In an active state, a writer
behaves as before (scans and writes in empty locations). In an inactive state, a writer
scans the array but never writes. Let k1 and k2 be small positive integers. An active
(resp. inactive) v-writer becomes inactive (resp. active) if the value in all the last k1
(resp. k2) locations it has visited is 1− v (resp. v). Such a solution requires each writer
to have a few additional bits of local memory, which is biologically unrealistic.
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1 Introduction

We study the heterogeneous weighted delivery (HWD) problem introduced in
[2] where k heterogeneous mobile agents (e.g., robots, vehicles, etc.), initially
positioned on vertices of an n-vertex edge-weighted graph G, have to deliver m
messages. Each message is initially placed on an individual source vertex of G
and needs to be delivered to some individual target vertex of G. Each agent ai can
move along the edges of G and carry at most one message at any time. Messages
cannot be duplicated by the agents but they can be picked up and dropped off
at any vertex of G. This allows agents to collaboratively deliver messages by
exchanging them at intermediate locations. Agent ai consumes energy at a rate
of ci per unit of traveled distance and the goal is that of delivering all messages
using the minimum overall amount of energy.

The above problem finds natural applications in logistics, e.g., transporting
large amount of goods using motor lorries and cargo airplanes [4], parcel delivery
using a fleet of drones [9], or mission planning using unmanned autonomous
vehicles [17].

Among other results, the authors of [2] show that the HWD problem is
NP-hard even with a single agent, while it can be solved in polynomial time
when a single message needs to be delivered. Moreover, they also design a
polynomial-time approximation algorithm achieving an approximation ratio of
4maxi ci

mini ci
, which yields a 4-approximation whenever all agents are identical but

can be arbitrarily large if the agents’ energy consumption rates vary wildly.
This can indeed happen since the algorithm actually ignores the agents’ energy
consumption.

In this paper we are interested in designing approximation algorithms achiev-
ing approximation ratios that are independent of the agents’ energy consumption.

This scenario has been considered in [4] where the authors describe a 2-
approximation fixed-parameter (FPT) algorithm with respect to the parameter
m, i.e., an algorithm whose time complexity is O(f(m) · poly(k, n,m)), for some
(fast-growing) function f(m) depending only on m. This implies a polynomial-
time 2-approximation for m = O(1). They leave open the problem of designing
polynomial-time O(1)-approximations for m = ω(1) and k = O(1). We deem
this scenario as particularly significant as one can reasonably expect the number
of agents to be small when compared to the number of messages to be delivered
and/or the environment (modelled by the graph G).
We provide the following results:

– An 8-approximation FPT algorithm running in time O∗(2
k(k+1)

2
)
.1 Notice

that our algorithm requires polynomial-time whenever k = O(
√

log n),
thus answering the aforementioned open problem of [4]. We also show how

1 The O∗(·) notation hides polynomial factors in the size of the instance.
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the above algorithm can be modified to obtain a polynomial-time 4k∗-
approximation algorithm, where k∗ ≤ k is the number of agents actually
used by any optimal solution.

– Another very natural scenario is when the fleet of agents consists of few types
of vehicles, i.e., the energy consumption rates belong to a small set of values.
Although no constant approximation is known for a general number of types,
we show how to design a polynomial-time 36-approximation algorithm for the
special case of two types of agents.

– Finally, we design an approximation algorithm for the general HWD problem
achieving an approximation ratio of Õ(log3 n).2

1.1 Related Work

As we already mentioned, the HWD problem has been introduced in [2] where
the authors address also other related problems like bounding the increase in
energy consumption resulting from denying cooperation between agents (i.e., by
requiring each message to be carried by exactly one agent).

In [4] the HWD problem is considered in a non-cooperative scenario in
which consumption rates are private. In this setting, the goal is that of
designing energy-efficient truthful mechanisms. Along the way, the authors
develop a 2-approximation FTP algorithm w.r.t. m, with a time complexity
of O∗(e2

√
m · (m/e)m) and a 3.6-approximation algorithm with time complexity

O∗(km) for the HWD problem.
A variant of the HWD problem in which the objective is that of optimizing

the maximum amount of energy consumed by any agent has been considered in
[1,10,11], while the problem in which the total time needed to collaboratively
deliver a message need to be minimized is studied in [9]. Hybrid measures that are
combinations of both the total energy consumption and the minimum amount
of time needed by the agents to deliver all messages (measured w.r.t. the edge
weights) have also been studied [3,5].

The setting in which there are locations that need to be visited instead of
messages to be delivered can often be modelled as generalizations of the travelling
salesman problem. Some examples of such problems have been considered, e.g.,
in [14–17].

Finally, problems in which we are given an initial configuration of agents on
graph that need to be rearranged into some final configuration while minimizing
some function of the traveled distance have been studied in [6–8,13].

2 Preliminaries and Notation

We are given an undirected graph G = (V (G), E(G)) of n vertices where each
edge e ∈ E(G) has a positive real valued length le. There are k agents a1 . . . ak

and each agent ai is located on a vertex pi ∈ V (G) and has a real positive

2 The ˜O(f(·)) notation is a shorthand for O(f(·) poly log f(·)).
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weight ci representing the unitary movement cost incurred by the agent while
traversing the graph edges. More precisely, every time agent ai traverses an edge
e it consumes energy equal to ci · le. There are m messages that have to be
delivered by the agents; message mj is represented by a pair (sj , tj) meaning
that the message is initially placed at the source vertex sj ∈ V (G) and has to be
delivered at the target vertex tj ∈ V (G). Each agent can simultaneously carry
at most one message, and is allowed to drop-off/pick-up any message on/from
any vertex of the graph. We will use dG(x, y) to denote the distance between
vertices x and y in G, i.e., the length of a shortest path from x to y w.r.t. the
edge lengths. A schedule is a sequence of moves that every agent performs. There
are 3 types of moves allowed:

– agent ai moves from the vertex where it is located, say u, to vertex v via the
edge (u, v) ∈ E(G);

– agent ai located at vertex u picks-up message mj that is also placed on u;
– agent ai drops-off a message it is carrying on the vertex where it is located.

A schedule is feasible if the following conditions hold:

– every pick-up move of message mj located on a vertex x �= sj is preceded by
a drop-off of the same message on x;

– An agent ai can only pick-up (resp. drop-off) a message mj if it is not carrying
any message (resp. if it is carrying mj).

Given a schedule S it is possible to compute its cost. Let di be the total distance
traveled by agent ai in S, then cost(S) =

∑k
i=1 di · ci. The goal is to compute a

schedule S that minimizes its total cost cost(S).
An agent ai is active in a schedule S if ai carries at least one message in

S. A restricted schedule is a schedule such that (i) every message mj is carried
by a single agent with exactly one pick-up and one drop-off involving mj (ii)
each agent ai returns to its starting location pi as its last move. The following
theorem from [2] shows that we can restrict our attention to restricted schedules
if we are interested in computing approximate solutions.

Theorem 1 ([2]). Let S∗ be an optimal schedule for a given instance. There
exists a restricted schedule S such that cost(S) ≤ 2 · cost(S∗).

From now on we will only consider restricted schedules (unless otherwise stated).
For the sake of simplicity a restricted schedule S can be thought as consisting
of a collection of k ordered sets S1, . . . , Sk, where Si is the sequence of messages
delivered by agent ai. Indeed, once Si is known, a minimum-cost strategy for
agent ai is to deliver all the messages contained in Si one-by-one and by always
moving along shortest paths.3 Another nice property of restricted schedules is

3 If the agent ai is at vertex v, carries no message, and, according to its schedule Si

shall deliver message mj , then ai moves from v to sj via a shortest path first, then
picks-up message mj from sj , next moves from sj to tj via a shortest path, and
finally drops-off message mj on tj .
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that two restricted schedules can be joined together in order to obtain a new
restricted schedule whose cost is upper bounded by the sum of the costs of the
original schedules. More precisely, given two restricted schedules S1 and S2, we
denote by S1 ◦S2 the restricted schedule in which each agent ai first delivers all
the messages so as in S1 and then delivers all the messages so as in S2. Observe
that cost(S1 ◦ S2) ≤ cost(S1) + cost(S2).

Due to space limitations, the proofs of Sect. 4 are omitted and will appear in
the full version of the paper.

3 The Constant Approximation Algorithm for Few
Agents

In this section we design a 8-approximation algorithm whose time complexity is
exponential in k. We also show how to adapt such algorithm in order to obtain
a polynomial time algorithm achieving an approximation ratio of O(k∗), where
k∗ ≤ k is the number of active agents in an optimal solution.

3.1 Auxiliary Graph

We start by introducing an auxiliary graph that will be useful in the description
of our approximation algorithms. Since we are working with restricted schedules,
we can simplify the graph G by defining an auxiliary graph H as follows: For
each message mj , V (H) contains a copy of the vertices sj , tj and, for each choice
of 1 ≤ j, j′ ≤ m, the set E(H) contains an edge (sj , tj′) of length dG(sj , tj′) (see
Fig. 1(a) for an example). Given a subgraph H ′ of H, we let l(H ′) =

∑
e∈E(H′) le

denote the total length of H ′.
Now, given a restricted schedule S, we can highlight the edges on the graph

H that correspond to the paths followed by the agents in S. Formally, let M =
{(sj , tj) ∈ E(H) | 1 ≤ j ≤ m} be the set of edges that correspond to
the paths from each source to its respective target. The set of highlighted
edges for a schedule S is ES = M ∪ {(tj , sj′) ∈ E(H) | an agent in S delivers
mj′ immediately after delivering mj}.

In the rest of the paper, we denote by l(S) the overall sum of lengths of
highlighted edges for S, i.e., l(S) =

∑
e∈ES

le. Finally, given M ′ ⊆ M , we say
that a restricted schedule S is a restricted schedule w.r.t. M ′ if S delivers all and
only the messages mj corresponding to the edges (sj , tj) in M ′.

3.2 The Case of 1 Active Agent

To describe the algorithm, we first provide a simple procedure that computes a
O(1)-approximate solution for the case in which an optimal restricted schedule
S∗ contains only 1 active agent. Such a simple procedure, that we call Tour(T ),
takes as input a subgraph T of H, where T is a tree that spans the edges in
M (i.e., M ⊆ E(T )), and computes a restricted schedule S with only 1 active
agent (see Fig. 1(b)). More precisely, consider any Eulerian tour that visits each
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Fig. 1. (a): the auxiliary graph H. (b): Example of the tour Tour(T ) of the tree T .
Green edges correspond to messages whose source and target vertices are depicted as
circles and squares, respectively. Agent ai starts from its position pi, joints the tour at
the closest source sμ(2), and goes back to pi. The sequence of messages it delivers in
the corresponding restricted schedule is μ(2), μ(3), μ(4), μ(5), μ(6), μ(1).

edge of T twice. Let μ(h) be the message that corresponds to the h-th edge
of M , say (sj , tj), that is traversed from sj to tj in the Eulerian tour. Clearly,
the overall length of such a tour is 2l(T ). The procedure computes a restricted
schedule Si for every agent i = 1, . . . , k and outputs the cheapest one. In the
schedule Si all messages are delivered by ai. More precisely, if j is the index such
that μ(j) corresponds to the message whose start position sμ(j) is closest to the
initial position pi of ai, then 〈μ(j), μ(j +1), . . . , μ(j +m− 1)〉, where indices are
computed modulo m, is the ordered sequence of messages delivered by ai in Si.

Lemma 1. Let S̃ be a restricted schedule w.r.t. M and let T be a tree such that
M ⊆ E(T ) and l(T ) ≤ αl(S̃), for some α ≥ 1. Then, the schedule S returned by
procedure Tour(T ) satisfies cost(S) ≤ 2αcost(S̃).

Proof. Let ai be a minimum-weight active agent in S̃. Let sj be the message
source that is closest to pi. Let j′ be the index of the first message that is picked-
up by ai in S̃. Using the facts that α ≥ 1 and cidG(pi, sj′) + cil(S̃) ≤ cost(S̃),
we have that the cost of S is at most

cost(S) ≤ cost(Si) = 2cidG(pi, sj) + 2cil(T )

≤ 2cidG(pi, sj′) + 2αcil(S̃) ≤ 2αcost(S̃). �

Corollary 1. Let S∗ be an optimal restricted schedule and T a minimum-cost
tree containing M . If there is only one active agent in S∗, then the call of Tour(T )
outputs a schedule S such that cost(S) ≤ 2cost(S∗).

Proof. Since ES∗ induces a tree that contains M , we have that l(T ) ≤ l(S∗).
Using Lemma 1 with α = 1, the cost of the restricted schedule S that is output
by the call of Tour(T ) satisfies cost(S) ≤ 2cost(S∗). �
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3.3 How to Deal with More Active Agents

To deal with more than one active agent in an optimal restricted schedule S∗,
we need to consider other schedules that provide good approximate solutions
whenever the schedule computed by the call to Tour(T ) on a minimum-cost tree
T that contains M does not guarantee a constant approximation. To do this, we
need to introduce the concept of well-separated partitioning of M .

For a given restricted schedule S w.r.t. M and a set M ′ ⊆ M we denote
by SM ′ the subschedule of S induced by M ′. More precisely, SM ′ is obtained
from a copy of S in which we delete all the messages in M \ M ′. We say that
a partition of M into two sets M ′ and M \ M ′, denoted by 〈M ′,M \ M ′〉, is
well-separated w.r.t. S if every active agent in S carries only messages that are
either in M ′ or in M \ M ′. By definition, given a restricted schedule S and
a 2-partition 〈M ′,M \ M ′〉 of M that is well-separated w.r.t. S, we have that
S = SM ′ ◦ SM\M ′ = SM\M ′ ◦ SM ′ and thus cost(S) = cost(SM ′) + cost(SM\M ′).
As the following lemma suggests, we can use a recursive algorithm to compute
good approximate schedules.

Lemma 2. Let S̃ be a restricted schedule w.r.t. M , 〈M ′,M \ M ′〉 a 2-partition
of M that is well-separated w.r.t. S̃, and let α ≥ 1 be a fixed value. Let S′ be a
restricted schedule w.r.t. M ′ such that cost(S′) ≤ αcost(S̃M ′). Similarly, let S′′

be a restricted schedule w.r.t. M ′′ = M \ M ′ such that cost(S′′) ≤ αcost(S̃M ′′).
Finally, let S = S′ ◦ S′′. Then, cost(S) ≤ αcost(S̃).

Proof. We have cost(S) ≤ cost(S′) + cost(S′′) ≤ αcost(S̃M ′) + αcost(S̃M ′′) =
αcost(S̃). �

Let H̃ be a subgraph of H such that M ⊆ E(H̃) and let S be a schedule w.r.t.
M . We say that H̃ is separable w.r.t. S if there exists a subgraph H ′ of H̃ that
contains only entire connected components of H̃ and such that 〈M ′,M \ M ′〉,
with M ′ = M ∩ E(H ′), is well-separated w.r.t. S. See Fig. 2 for an example
where the graph H̃ consists of a forest of 6 trees.

Our algorithm, whose pseudocode is provided in Algorithm1, takes a set M
of messages and an integer k as inputs and returns a 8-approximate restricted
schedule S of M with at most k active agents. To do so, the algorithm computes
(i) a minimal (w.r.t. vertex deletions) minimum-cost forest F of k trees such that
M ⊆ E(F ), and (ii) a tree T with E(F ) ⊆ E(T ) that is obtained by augmenting
F with a minimum-cost set of k − 1 edges. Clearly, T is a minimum-cost tree
that contains all the edges of M .

Next, the algorithm computes a set of candidate schedules and outputs the
cheapest of them. One candidate schedule considered by the algorithm is the one
returned by the call of Tour(T ). As we will show, the cost of such a schedule is
at most 4 times the cost of an optimal (fixed) restricted schedule S∗, under the
assumption that F is not separable w.r.t. S∗.

To deal with the case in which F is separable w.r.t. S∗, the algorithm first
guesses a subforest F ′ of F such that 〈M ′,M \ M ′〉, with M ′ = M ∩ E(F ′),



174 D. Bilò et al.

Algorithm 1: Schedule(M,k) outputs a restricted schedule w.r.t. M
with at most k active agents.
1 Let F be a minimum-cost forest of k trees such that M ⊆ E(F )
2 Let T be a minimum-cost tree such that E(F ) ⊆ E(T )
3 if k > 1 then
4 foreach forest F ′ containing from 1 up to k − 1 connected components of F

do
5 M ′ ← M ∩ E(F ′)
6 SF ′ ← Schedule(M ′, 1) ◦ Schedule(M \ M ′, k − 1)

7 return the cheapest schedule among all the SF ′ and Tour(T )

is a well-separated 2-partition of M w.r.t. S∗, and then recursively solves two
corresponding subinstances. More precisely, the algorithm computes a schedule
S′ w.r.t. M ′ = M ∩ E(F ′) with 1 active agent only and a schedule S′′ w.r.t.
M ′′ = M \ M ′ with at most k − 1 active agents, and adds the solution SF ′ =
S′ ◦ S′′ to the candidate set. As we will prove, cost(S′) ≤ 4cost(S∗

M ′) as well as
cost(S′′) ≤ 4cost(S∗

M ′′). Hence, cost(SF ′) ≤ 4cost(S∗).
To optimize the overall time complexity so as it is bounded by O∗(2k(k+1)/2),

the forest F ′ guessed by the algorithm is not separable w.r.t. S∗
M ′ ; furthermore,

the number of active agents in S∗
M ′ is upper bounded by the number of connected

components of F ′. As proved in the next lemma, this is enough to guarantee
that the restricted schedule S′ with only 1 active agent so as computed by the
algorithm satisfies cost(S′) ≤ 4cost(S∗

M ′).

Lemma 3. Let S̃ be a restricted schedule w.r.t. M with k′ active agents, F be a
minimal (w.r.t. vertex removal) minimum-cost spanning forest of at least k′ trees
such that M ⊆ E(F ), and T be a minimum-cost tree such that E(F ) ⊆ E(T ). If
F is not separable w.r.t. S̃, then the schedule S w.r.t. M returned by the call of
Tour(T ) satisfies cost(S) ≤ 4cost(S̃).

Proof. The set of highlighted edges E
˜S induces a forest F̃ of k′ paths that

contains all edges of M . As a consequence

l(F ) ≤ l(F̃ ) = l(S̃). (1)

Let k′′ ≥ k′ be the number of connected components of F and let
e1, . . . , ek′′−1 be the k′′ − 1 edges of E(T ) \ E(F ). Since F is not separable
w.r.t. S′, there are k′′ −1 distinct highlighted edges f1, . . . , fk′′−1 ∈ E

˜S \M such
that l(eh) ≤ l(fh) for every h = 1, . . . , k′′ − 1. As a consequence,

k′′−1∑

h=1

l(eh) ≤
k′′−1∑

h=1

l(fh) ≤ l(S̃). (2)

If we combine (1) with (2) we obtain l(T ) = l(F )+
∑k′′−1

h=1 l(eh) ≤ 2l(S̃). There-
fore, using Lemma 1, we have that cost(S) ≤ 4cost(S̃). The claim follows. �
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Fig. 2. Illustration of Lemma 4. The forest F consists of k = 6 trees T1, . . . , T6. The
schedule ˜S is depicted as ˜k = 5 walks of its active agents. Let Λi = M ∩ E(Ti). Forest

F is separable w.r.t. ˜S and 〈Λ1 ∪ Λ2 ∪ Λ3 ∪ Λ4, Λ5 ∪ Λ6〉 is well-separated w.r.t. ˜S. The
subforest F ′ computed by the algorithm is F1 = {T1, T2, T3, T4}.

We are now ready to prove the correctness of the algorithm.

Lemma 4. Let S̃ be a restricted schedule w.r.t. M with k̃ active agents. Algo-
rithm1 called on inputs M and k ≥ k̃ returns a restricted schedule S w.r.t. M
such that cost(S) ≤ 4cost(S̃).

Proof. Let F be the forest of k trees as computed by the algorithm. Let T be the
tree as computed by the algorithm. Clearly, the cost of the schedule S returned
by the algorithm is at most the cost of the schedule S′ that is computed by the
call of Tour(T ). The proof is by induction on k̃.

For the base case k̃ = 1, we have that F is not separable w.r.t. S̃. Therefore,
by Lemma 3, cost(S′) ≤ 4cost(S̃). Hence, cost(S) ≤ 4cost(S̃).

For the inductive case k̃ ≥ 2 we divide the proof into two cases according to
whether F is separable w.r.t. S̃ or not. If F is not separable w.r.t. S̃, then, by
Lemma 3, cost(S′) ≤ 4cost(S̃); hence, cost(S) ≤ 4cost(S̃).

Now, we consider the case in which F is separable w.r.t. S̃. We claim that
there exists a subforest F ′ of F such that (see Fig. 2):

(i) 〈M ′,M \ M ′〉, with M ′ = M ∩ E(F ′), is a well-separated 2-partition of M

w.r.t. S̃;
(ii) F ′ is not separable w.r.t. S̃M ′ ;
(iii) the number of active agents in S̃M ′ is at most the number of trees in F ′.

Let 〈F1, . . . , Fk′〉, with 2 ≤ k′ ≤ k̃, be the (unique) partition of the trees in
F such that each Fi is not separable w.r.t. S̃Mi

, where Mi = M ∩ E(Fi), and
every active agent in S̃ carries only messages that are all contained in a same set
Mi. By definition, any forest Fi satisfies both (i) and (ii). To see that at least
one of the forests Fi’s also satisfies (iii), let ki be the number of trees contained
in Fi and let Ai be the set of active agents in S̃Mi

. By definition, we have that
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the sets Ai’s are pairwise disjoint. Therefore,
∑k′

i=1 |Ai| = k̃. Since there are at
least as many trees in F as active agents in S̃, it must be the case that ki ≥ |Ai|
for at least one i, as otherwise k =

∑k′

i=1 ki <
∑k′

i=1 |Ai| = k̃ ≤ k thus obtaining
a contradiction.

Let M ′ = M∩E(F ′) and M ′′ = M\M ′. By Lemma 3, the recursive call of the
algorithm on inputs M ′ and 1 returns a schedule S′ whose cost is upper bounded
by 4cost(S̃M ′). Furthermore, using induction, the schedule S′′ computed by the
algorithm on inputs M ′′ and k − 1 satisfies cost(S′′) ≤ 4cost(S̃M ′′) as S̃M ′′

contains at most k̃ − 1 active agents. �

We can finally state the main result of this section.

Theorem 2. Algorithm 1 computes a 8-approximate solution in O∗(2k(k+1)/2)
time.

Proof. By Lemma 4, the cost of the schedule returned by the algorithm is at
most 4 times the cost of an optimal restricted schedule. Hence, using Theorem 1,
the algorithm computes a 8-approximate solution.

Regarding the time complexity, the algorithm called with parameter k com-
putes at most 2k candidate solutions, i.e., one for each possible subset of
trees contained in F , regardless of the set M provided in input. Moreover,
to compute each candidate solution, the algorithm makes two recursive calls:
the first one with parameter 1, that takes polynomial time w.r.t the input
size, and the second one with parameter k − 1. Since each candidate solu-
tion is computed in polynomial time, the time complexity of the algorithm is
O∗

(∏k
h=1 2h

)
= O∗

(
2

∑k
h=1 h

)
= O∗ (

2k(k+1)/2
)
. The claim follows. �

3.4 O(k∗)-Aproximation

We show how to modify Algorithm 1 to obtain a polynomial time algorithm that
returns a 4k∗-approximate schedule, where k∗ is the number of active agents in
a (fixed) optimal schedule (not necessarily restricted). The algorithm, whose
pseudocode is given in Algorithm 2, computes the minimum-cost forest F of
two trees T1, T2 such that M ⊆ E(F ) and augments it with the minimum-cost
edge to get a minimum-cost tree T that contains M . The algorithm returns the
cheapest of the following two schedules:

– the schedule returned by the call of Tour(T ), which, as we will see, provides
a 4k∗-approximate solution when some agent of the optimal solution crosses
the cut induced by T1 and T2;

– the schedule obtained by merging the two restricted schedules returned by
the recursive calls on M ∩ E(Ti), with i = 1, 2.

Lemma 5. Let S̃ be a restricted schedule w.r.t. M with at most k̃ active agents.
Algorithm2 computes a restricted schedule S w.r.t. M with at most k̃ active
agents and such that cost(S) ≤ 2k̃cost(S̃).
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Proof. The proof is by induction on the size of M . For the base case in which
|M | = 1 we have that E(T ) = M . Therefore, l(T ) ≤ l(S̃). Hence, from Lemma 1,
the cost of the schedule returned by the call of Tour(T ) is at most 2cost(S̃).

To show the inductive case, we divide the proof into two cases, according to
whether 〈M ′,M \ M ′〉 is well-separated w.r.t. S̃ or not. When 〈M ′,M \ M ′〉 is
well-separated w.r.t. S̃, then, by inductive hypothesis, Schedule2(M ′) returns
a restricted schedule S1 w.r.t. M ′ such that cost(S1) ≤ 2k̃1cost(S̃M ′), where k̃1
is the number of active agents in S̃M ′ . Similarly, Schedule2(M \ M ′) returns a
restricted schedule S2 w.r.t. M \M ′ such that cost(S2) ≤ 2(k̃ − k̃1)cost(S̃M\M ′),
as k̃ − k̃1 is the number of active agents in S̃M\M ′ . Therefore, the cost of the
restricted schedule returned by Algorithm 2 is upper bounded by

cost(S1 ◦ S2) ≤ cost(S1) + cost(S2) ≤ 2k̃1cost(S̃M ′) + 2(k̃ − k̃1)cost(S̃M\M ′)

< 2k̃cost(S̃).

Now consider the case in which 〈M ′,M \ M ′〉 is not well-separated w.r.t. S̃. We
prove that l(T ) ≤ k̃l(S̃) and use Lemma 1 to derive that the cost of the tour
returned by the algorithm – whose cost is upper bounded by the cost of the tour
returned by the call of Tour(T ) – is at most 2k̃cost(S̃). Let e′ be the (unique)
edge of T that is not in F . Since 〈M ′,M \ M ′〉 is not well-separated w.r.t. S̃,
there is an active agent of S̃ that delivers at least one message of M ′ and at least
one message of M \ M ′. This implies that such agent must traverse an edge in
E

˜S whose length is lower bounded by le′ . Now, let F ′ be a minimal (w.r.t. vertex
deletion) minimum-cost subforest of F with k̃ trees such that M ⊆ E(F ′). Since
E

˜S induces a forest F̃ of k̃ pairwise vertex-disjoint paths such that M ⊆ E(F̃ ),
we have that l(F ′) ≤ l(F̃ ). Furthermore, since e′ is the longest edge of T , we
also have that each of the k̃ − 1 edges of E(T ) \ E(F ′) has a length of at most
le′ ≤ l(F̃ ). Therefore,

l(T ) = l(F ′) +
∑

e∈E(T )\E(F ′)

le ≤ l(F̃ ) + (k̃ − 1)le′ ≤ k̃l(F̃ ) ≤ k̃l(S̃). �

Since it is easy to see that there exists a restricted schedule with at most k∗

active agents whose cost is at most twice the cost of an optimal (not restricted)
schedule (e.g., by discarding all non-active agents in an optimal solution from
the input instance and invoking Theorem 1), we have the following theorem:

Theorem 3. Algorithm 2 computes a 4k∗-approximate schedule in polynomial
time, where k∗ is the number of active agents in an optimal schedule.

Proof. The time complexity of Algorithm 2 is polynomial since there are O(m)
recursive calls in total. Let S∗ be an optimal (not necessarily restricted) schedule
with k∗ active agents and let S̃ be a restricted schedule, with at most k∗ active
agents, and such that cost(S̃) ≤ 2cost(S∗) (see Theorem 1). From Lemma 5, the
cost of the schedule returned by Algorithm2 is at most 2k∗cost(S̃) and hence
upper bounded by 4k∗cost(S∗). �
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Algorithm 2: Schedule2(M) outputs a 4k∗-approximate restricted sched-
ule w.r.t. M .
1 compute a minimum-cost forest F of H with 2 trees T1, T2 such that M ⊆ E(F )
2 let T be a minimum-cost tree such that E(F ) ⊆ E(T )
3 if |M | > 1 then S′ ← Schedule2(M ′) ◦ Schedule2(M \ M ′), where

M ′ = M ∩ E(T1)
4 return the cheapest schedule between S′ and Tour(T )

4 Agents of Two Types

In this section, we design a constant-factor approximation algorithm for the case
in which each agent has one of two possible unitary movement costs, which we
can assume (w.l.o.g.) to be 1 and γ ≥ 1. The idea is to reduce our problem to
the 2-Depot Heterogeneous Traveling Salesman (2-HTSP) problem for which a 3-
approximation exists [17]. For technical convenience, we describe such reduction
via a chain of reductions from/to intermediate problems. For each intermediate
reduction, we prove that feasible solutions for a problem can be converted into a
feasible solution for the other problem (and vice versa) by losing only a constant
factor in the cost of the solution. We describe the chain of the reductions in the
reverse order, starting from the 2-HTSP problem and arriving to our problem.

In the 2-HTSP problem we are given a set P of destinations that need to be
visited by two heterogeneous vehicles that start from distinct depots {δ1, δ2}.
The set P is partitioned in three subsets P1, P2, and P1,2. The destinations in
P1 and P2 must be visited by the first and the second vehicle, respectively, while
each destination in P1,2 can be visited by either of the vehicles. The traveling
cost between two destinations depends on the vehicle: for i ∈ {1, 2}, let Gi be a
complete undirected graph with vertex set V (Gi) = {δi} ∪ Pi ∪ P1,2. Each edge
e ∈ E(Gi) has a non-negative weight wi(e), and the edge weights satisfy the
triangle inequality. A feasible solution of 2-HTSP consists of two tours T1, T2

where Ti is a closed walk in Gi that contains all the vertices in Pi ∪ {δi}, and
each destination in P1,2 is in one of T1 and T2. The goal is to find a solution
that minimizes cost(T1, T2) =

∑
e∈E(T1)

w1(e)+
∑

e∈E(T2)
w2(e). We will use the

following result from [17]:

Theorem 4 ([17]). There is a polynomial-time 3-approximation algorithm for
2-HTSP.
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4.1 Reducing 2-VWHTSP to 2-HTSP

We generalize the 2-HTSP problem by adding a non-negative weight wi(v) to
each vertex in V (Gi) \ {δi} and by redefining the cost function as cost(T1, T2) =∑

e∈E(T1)
w1(e) +

∑
v∈V (T1)

w1(v) +
∑

e∈E(T2)
w2(e) +

∑
v∈V (T2)

w2(v), where
we assume that w(δi) = 0 for technical convenience. We name this generalized
problem 2-depot Vertex-weighted Heterogenous Traveling Salesman Problem (2-
VWHTSP). Intuitively, we want to minimize the sum of the weights of the
vertices visited by the two agents in addition to the cost of the respective tours.4

We now show how to reduce an instance I of 2-VWHTSP to an instance
I ′ of 2-HTSP. We will refer to the objects (graphs, edge weights, costs, . . . ) in
the definition of I ′ using the prime superscript. The instance I ′ is identical to
I except for the absence of vertex weights, and for the fact that edge weights
are redefined as w′

i(u, v) = wi(u, v) + wi(u)+wi(v)
2 . Next lemma shows that I ′ is

indeed a valid instance of 2-HTSP.

Lemma 6. The edge-weights of the graphs G′
1 and G′

2 in I ′ satisfy the triangle
inequality.

Notice that a feasible solution (T1, T2) for 2-VWHTSP is also a feasible solu-
tion for 2-HTSP and vice versa. The following lemma relates the cost of a solution
in the two problems.

Lemma 7. cost(T1, T2) = cost′(T1, T2).

Combining Lemma 6, Lemma 7, and Theorem 4 we immediately obtain the
following upper-bound on the approximability of 2-VWHTSP.

Corollary 2. 2-VWHTSP admits a polynomial-time 3-approximation algo-
rithm.

4.2 Reducing VWHTSP to 2-VWHTSP

We now further generalize the 2-VWHTSP problem. The VWHTSP is defined
similarly to 2-VWHTSP except that we allow multiple vehicles to tour each
graph Gi. Formally, we are given a set P of destinations partitioned into three
sets P1, P2, and P1,2, and two non-empty sets D1 and D2 of depots. Each depot in
Di hosts a vehicle of type i. The traveling costs for vehicles of type i are encoded
using a complete undirected graph Gi with vertex set V (Gi) = Di ∪ Pi ∪ P1,2.
Each edge e ∈ E(Gi) has a non-negative weight wi(e) and edge weights satisfy
the triangle inequality. Similarly, each vertex v ∈ V (Gi) \ Di has a non-negative
weight wi(v), and we let wi(δ) = 0 if δ ∈ Di. A solution is a collection T of
tours, one from each depot δ ∈ D1 ∪ D2. The tour Tδ corresponding to a depot
δ ∈ Di is either empty or it is a closed walk in Gi that includes vertex δ. The
solution T is feasible if each destination in P is contained in at least one tour
in T .
4 Since the edge weights in G1 (resp. G2) satisfy the triangle inequality, we can assume

that no vertex appears more than once in T1 (resp. T2).
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The cost of T (to be minimized) is the sum of the costs of each individual tour,
where the cost of a tour Tδ ∈ T with δ ∈ Di is

∑
e∈E(Tδ)

wi(e)+
∑

v∈V (Tδ)
wi(v).

We reduce this problem to 2-VWHTSP by identifying all the depots of vehi-
cles of the same type into a single depot and considering the metric closure of
the resulting graphs. More precisely, given an instance I of VWHTSP, we define
an instance I ′ of 2-VWHTSP in this way (we use the prime superscript to refer
to the objects in the definition of I ′): The set of destinations P ′ in I ′, and its
partition into P ′

1, P ′
2, and P ′

1,2, coincide with the respective sets in I. There are
two depots δ′

1 and δ′
2. In order to define the edge weights of G′

i, consider the
edge-weighted (multi-)graph Hi obtained from Gi by identifying all vertices in
Di into a single vertex δ′

i. The weight w′
i(u, v) of an edge (u, v) ∈ E(G′

i) is the
distance between u and v in Hi. Finally, each vertex v ∈ V (Gi)\{δi} has weight
w′

i(v) = wi(v).

Lemma 8. Let T be a feasible solution for I. There exists a feasible solution
(T ′

1, T
′
2) for I ′ such that cost′(T ′

1, T
′
2) ≤ cost(T ).

Lemma 9. Let (T ′
1, T

′
2) be a feasible solution for I ′. There exists a feasible solu-

tion T for I such that cost(T ) ≤ 2cost′(T ′
1, T

′
2).

From Corollary 2, Lemma 8, and Lemma 9 it follows that:

Corollary 3. VWHTSP admits a polynomial-time 6-approximation algorithm.

4.3 Reducing the HWD Problem to VWHTSP

As final step, we reduce the instance of our problem where all the agents have a
unitary movement cost of either 1 or γ to an instance of VWHTSP.

Definition 1. A restricted schedule with delivery receipt (RSDR) is a restricted
schedule in which, whenever an agent delivers a message mj on tj, it immediately
travels back to sj without picking up any other message along the way.

As a consequence of the constrained structure of a RSDR, one can easily observe
the following:

Remark 1. For any RSDR S, there is always a RSDR S′ with cost(S′) ≤ cost(S)
and S′ is such that: (i) for each vertex v ∈ G, all agents initially placed on v
except (possibly) for the agent with minimum unit cost, are not active in S′,
and (ii) for each vertex v, all the messages with source vertex v are delivered by
the same agent a, and no other message is delivered in-between by a.

Thanks to the above properties, we will henceforth assume (w.l.o.g.) that in
our input instance at most one agent is initially positioned on each vertex, and
that all source vertices of the messages to be delivered are distinct.5

We now show that RSDRs provide good approximations of restricted schedules.
5 Indeed, we can discard all agents starting from the same vertex, except for one with

minimum unit cost (selected arbitrarily in case of ties). We can further consolidate
all messages with the same source u into a single “batch” message to be delivered to
a new dummy vertex v. The distance from u to v is exactly the sum of the distances
from u to the respective destinations of the replaced messages.
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Lemma 10. There exists a RSDR S such that cost(S) ≤ 3cost(OPTR), where
OPTR is an optimal restricted schedule.

At this point we are ready to define the instance I of VWHTSP. The depots
D1 (resp. D2) in I are the initial positions of the agents ai such that ci = 1
(resp. ci = γ). The sets P1 and P2 are empty, while P1,2 = {s1, . . . sm} is the set
of all the source vertices. Every (u, v) ∈ E(G1) has weight w1(u, v) = dG(u, v),
while every (u, v) ∈ E(G2) has weight w2(u, v) = γ · dG(u, v). For each vertex
si ∈ P1,2, we set w1(si) = 2dG(si, ti) and w2(si) = 2γ · dG(si, ti).

Lemma 11. Let S be a feasible RSDR. There exists a feasible solution T of I
such that cost(T ) ≤ cost(S).

Lemma 12. Let T be a feasible solution for I. There exists a feasible RSDR S
such that cost(S) ≤ cost(T ).

By using Lemma 11, Lemma 12, Lemma 10, Corollary 3, and Theorem 1, we
immediately have:

Theorem 5. There is a polynomial-time 36-approximation algorithm for the
HWD problem when all agents have a unitary movement cost of either 1 or γ.

5 A Polylogarithmic Approximation for the General Case

In this section we describe an approximation algorithm for the general case
achieving an approximation ratio of O(log2 n · log min{n,m} · log log n) =
Õ(log3 n). The idea is to reduce our problem to the group Steiner tree prob-
lem.

The group Steiner tree problem is the following. Let H be an undirected
graph in which each edge e ∈ E(H) has a non-negative weight w(e). Let B be
a collection of non-empty subsets of V . The objective is to find a group Steiner
tree, i.e., a minimum weight subgraph of H that is a tree and contains at least
one vertex from each of the groups.

Theorem 6 ([12]). The group Steiner tree problem admits a polynomial-time
O(log2 |V (H)| · log |B| · log log |V (H)|)-approximation algorithm.

Given an instance of HWD, we construct an instance I of group Steiner tree
as follows: for each agent ai we create a copy Gi of G in which each edge (u, v)
has a weight wi(u, v) = ci · luv. For each message mj , we add a vertex μj to
Gi and an edge (sj , μj) of weight ci · dG(s,tj). The graph H is obtained by
starting from the disjoint union of all k graphs Gi, adding an additional vertex
r, and adding an edge of weight 0 from r to vertex pi in the copy of Gi, for each
i = 1, . . . , k. There is one group bj ∈ B for each message mj , and it consists
of all the vertices μj in the copies of G1, . . . , Gk. See Figs. 3(a) and (b) for an
example.
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Fig. 3. (a) The graph G of our instance of HWD. The source and destination vertices
sj and tj of each message mj are depicted as a colored square and a colored circle,
respectively (different colors correspond to different messages). Edge weights are not
shown. (b) The graph H of the instance I of group Steiner tree. Vertices μj are depicted
using triangles colored with the same colors of the vertices sj and tj of the correspond-
ing message. The edges of a feasible group Steiner tree T are shown in red. (c) A set
of walks on G obtained from an Eulerian tour of T , which collectively induce a feasible
RSDR S. The portions of a walk in which an agent transports a message mj from
st to tj and then travels back to sj are drawn with the same color of sj and tj . The
remaining portions of the walk are shown in red. Notice that agent a2 is not active in
S. (Color figure online)

Lemma 13. Let S be a feasible RSDR. There is a group Steiner tree for I of
total weight at most cost(S).

Proof. Given S, we denote by Wi the walk in G performed by agent ai according
to S. To prove the claim we show how to find, for each i = 1, . . . , k, a subgraph
G′

i of Gi of total weight at most ci ·
∑

e∈E(Wi)
le and such that if ai delivers

message mj then G′ contains vertex μj .
The group Steiner tree from H can then be obtained by selecting any span-

ning tree of the graph resulting from the union of all Gis together with all the
edges incident to r.

We now decompose the walk Wi into an alternating sequence of sub-walks
〈α1, β1, α2, β2, . . . , αh, βh, αh+1〉 where βj corresponds to the portion of the walk
in which ai carries its j-th delivered message mj from sj to tj and then travels
back to sj (as required by the definition of RSDR), while αjs represents the
portions of Wi in which ai travels from the initial position of a message to the
next (or from/to pi in case of α1 and αh+1).

The subgraph Gi is obtained as the union of the edges in
⋃h

j=1 E(αj) with
the edges (sj , μj) corresponding to message mj delivered in some βj . �

Lemma 14. Let T be a group Steiner tree for I of total weight wT . There is a
feasible RSDR S such that cost(S) ≤ 2wT .

Proof. For each agent ai, we call Ti the subgraph of T induced by the vertices in
Gi. Notice that Ti is a (possibly empty) tree. We will use Ti to build a schedule
Si for agent ai. The schedule S will be the union of all schedules S1, . . . , Sk.
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If Ti is empty then Si is also empty. Otherwise we must have pi ∈ V (Ti)
and set Mi of messages delivered by ai contains exactly the messages mj for
which the edge (sj , μj) of Gi is also in Ti. The act of delivering these messages
by travelling from their sources sj to their target tj and then back to sj , as
required by the definition of RSDR, costs exactly 2

∑
mj∈Mi

w(sj , μj).
Notice that all vertices μj for mj ∈ Mi must be leaves in Ti. Therefore the

graph T ′
i obtained from Ti by deleting all such μj is still a tree. The order in

which the messages mj ∈ Mi are delivered by ai according to Si is the order in
which the corresponding vertices sj are first visited by an Eulerian tour of T ′

i

(that visits each edge twice) starting from pi (see Figs. 3(b) and(c)). The energy
consumed by ai to travel from the source of a message to the next (and from/to pi

and the beginning/end of the schedule) is at most the total weight of the Eulerian
tour, i.e., twice the weight of the edges in E(T ′

i ). We can hence conclude that the
contribution of Si to cost(S) is at most 2

∑
e∈E(Ti)

w(e), implying that cost(S)
is at most twice the weight of T . �
We are now ready to state the main result of this section.

Theorem 7. There is a polynomial time O(log2 n · log min{m,n} · log log n)-
approximation algorithm for the HWD problem.

Proof. The graph H in the instance I of group Steiner tree consists of the k
graphs Gi plus the additional vertex r. By Remark 1 we can assume that k ≤ n
and, since |V (Gi)| = O(n) we have |V (H)| = O(kn) = O(n2). The number |B| of
groups in I coincides with the number of messages m, which can be assumed to
be at most n (see again Remark 1). The claim follows by combining Lemma 14,
Lemma 13, and Theorem 6. �
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with Non-uniform Speeds. In: Günlük, O., Woeginger, G.J. (eds.) IPCO 2011.
LNCS, vol. 6655, pp. 235–247. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-20807-2 19

15. Malik, W.A., Rathinam, S., Darbha, S.: An approximation algorithm for a symmet-
ric generalized multiple depot, multiple travelling salesman problem. Oper. Res.
Lett. 35(6), 747–753 (2007). https://doi.org/10.1016/j.orl.2007.02.001

16. Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for the multiple TSP with
a fixed number of depots. Informs J. Comput. 27(4), 636–645 (2015). https://doi.
org/10.1287/ijoc.2015.0650

17. Yadlapalli, S., Rathinam, S., Darbha, S.: 3-approximation algorithm for a two
depot, heterogeneous traveling salesman problem. Optim. Lett. 6(1), 141–152
(2012). https://doi.org/10.1007/s11590-010-0256-0

https://doi.org/10.1007/978-3-662-55751-8_8
https://doi.org/10.1007/978-3-642-22935-0_6
https://doi.org/10.1007/978-3-642-45346-5_6
https://doi.org/10.1016/j.tcs.2016.09.007
https://doi.org/10.1007/978-3-030-25027-0_12
https://doi.org/10.1007/978-3-030-25027-0_12
https://doi.org/10.1007/978-3-642-45346-5_9
https://doi.org/10.1007/978-3-662-43951-7_36
https://doi.org/10.1145/276698.276719
https://doi.org/10.1145/276698.276719
https://doi.org/10.1145/1541885.1541891
https://doi.org/10.1007/978-3-642-20807-2_19
https://doi.org/10.1007/978-3-642-20807-2_19
https://doi.org/10.1016/j.orl.2007.02.001
https://doi.org/10.1287/ijoc.2015.0650
https://doi.org/10.1287/ijoc.2015.0650
https://doi.org/10.1007/s11590-010-0256-0


Graph Exploration by Energy-Sharing
Mobile Agents

Jurek Czyzowicz1, Stefan Dobrev2, Ryan Killick3, Evangelos Kranakis3(B),
Danny Krizanc4, Lata Narayanan5, Jaroslav Opatrny5, Denis Pankratov5,

and Sunil Shende6
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possibly different, amount of energy. The goal of the exploration problem
is for every edge in the graph to be traversed by at least one agent. The
amount of energy used by an agent to travel distance x is proportional
to x. In our model, the agents can share energy when co-located: when
two agents meet, one can transfer part of its energy to the other.

For an n-node path, we give an O(n + k) time algorithm that either
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1 Introduction

The emergence of swarm robotics has inspired a number of investigations into the
capabilities of a collection of autonomous mobile robots (or agents), each with
limited capabilities. Such agents cooperate and work collaboratively to achieve
complex tasks such as pattern formation, object clustering and assembly, search,
and exploration. Collaboration on such tasks is achieved by, for example, decom-
posing the task at hand into smaller tasks which can be performed by individual
agents. The benefits of the collaborative paradigm are manifold: smaller task
completion time, fault tolerance, and the lower build cost and energy-efficiency
of a collection of smaller agents as compared to larger more complex agents.
Somewhat surprisingly, for example, a recent paper [16] shows that two agents
can search for a target at an unknown location on the line with lower total energy
costs than a single agent.

In this paper, we study the problem of collective exploration of a known
edge-weighted graph by n mobile agents initially placed at arbitrary nodes of
the graph. Many variants of the graph exploration problem have been studied
previously; see Sect. 1.2 for a description of some of the related work. For our
work, the goal of exploration is that every edge of the graph must be traversed
by at least one agent. The weight of an edge is called its length. Every agent is
equipped with a battery/energy container that has an initial amount of energy;
the initial energies of different agents can be different. We assume that moving
length x depletes the battery of an agent by exactly x.

Clearly then, for exploration to be possible, the sum of the initial energies
of all agents has to be at least E , the sum of all edge weights. However total
energy E may not be sufficient; the initial placement of the agents plays a role in
deciding if exploration is possible with the given energies. To see this, consider
exploration by 2 agents of a path with 4 nodes, where each of the 3 edges has
length 1. If the agents are initially placed at the two endpoints of the path, then
total energy 3 suffices to explore the path. However if the two agents are initially
placed at the middle two nodes of the path, it is not difficult to see that total
energy 4 is necessary to complete the exploration.

In addition to initial placement of agents, and the total amount of energy, the
initial energy distribution also affects the existence of an exploration strategy. To
see this, suppose the 2 agents are placed at the middle nodes of the 4-node path.
Consider first an energy distribution in which both agents have initial energy 2.
Then one exploration strategy would be for both agents to explore half of the
center edge, and turn around to travel to the endpoint. Next consider an energy
distribution in which agent 1 has energy 3 + ε for some 0 < ε ≤ 1 and the agent
2 has energy 1 − ε. It is easy to see that exploration is impossible, even though
the total energy of both agents is the same as in the first distribution.

Recently, several researchers have proposed a new mechanism to aid collabo-
ration: the capability to share energy. In other words, when two agents meet, one
can transfer a portion of its energy to the other. It is interesting to investigate
what tasks might be made possible with this new capability, given the same ini-
tial amounts of energies. In [6,12–14,26], researchers have studied the problems of
data delivery, broadcast, and convergecast by energy-sharing mobile agents.
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In the example described above, where agent 1 has energy 3 + ε for some
0 < ε ≤ 1 and the agent 2 has energy 1 − ε, if energy transfer is allowed, agent 1
(with the higher energy) can first go to the endpoint closer to its initial position,
then turn around, reach agent 2, and transfer its remaining energy ε to agent
2. This enables agent 2 to reach the other endpoint, thereby completing the
exploration.

This simple example shows that energy-sharing capabilities make graph
exploration possible in situations where it would have been impossible other-
wise. Note that an algorithm for exploration with energy sharing requires not
only an assignment of trajectories to agents that collectively explore the entire
graph, but also an achievable schedule of energy transfers. In this paper, we are
interested in exploration strategies for edge-weighted graphs by energy-sharing
mobile agents. We give a precise definition of our model and the collaborative
exploration problem below.

1.1 Model

We are given a weighted graph G = (V,E) where V is a set of n vertices (or
nodes), E a set of m edges, and each edge ai ∈ E is assigned a real number wi,
denoting its length. We have k mobile agents (or robots) r1, r2, . . . , rk placed at
some of the vertices of the graph. We allow more than one agent to be located in
the same place. Each mobile agent (or agent for short) ri can move with speed
1, and initially possesses a specific amount of energy equal to ei for its moves.
An agent can move in any direction along the edges of the graph G, it can stop
if needed, and it can reverse its direction of moving either at a vertex, or after
traversing a part of an edge. The energy consumed by a moving agent is linearly
proportional to the distance x traveled; to simplify notation it is assumed to be
equal to x. An agent can move only if its energy is greater than zero.

An important feature of our model is the possibility of energy sharing between
agents: when two agents, say ri and rj , i �= j, meet at some time at some location
in the graph, agent ri can transfer a portion of its energy to rj . More specifically,
if e′

i and e′
j are the energy levels of ri and rj at the time they meet then ri can

transfer to rj energy 0 < e ≤ e′
i and thus their energies will become e′

i − e and
e′
j + e, respectively.

In our model, each agent is assigned a trajectory to follow. We define a tra-
jectory of an agent to be a sequence of edges or parts of edges that starts at the
agent’s initial position and forms a continuous walk in the graph. In addition,
a trajectory specifies a schedule of energy transfers, i.e., all points on this walk
(could be points different from vertices) where the agent is to receive/transfer
energy from/to other agents, and for each such point the amounts of energy
involved. We call a set of trajectories valid if the schedules of energy transfers
among trajectories match, and energy levels are sufficient for the movement of
agents. More specifically, for every transfer point on a trajectory of agent ri where
energy is to be received/transferred, there is exactly one agent rj , j �= i, whose
trajectory contains the same transfer point transferring/receiving that amount of
energy to/from ri, and the transfers can scheduled on a time line. Furthermore,
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the energy of an agent, initially and after any energy transfer, must be always
sufficient to continue to move along its assigned trajectory. We are interested in
solving the following general problem of collaborative exploration:

Graph Exploration Problem: Given a weighted graph G = (V,E) and
k mobile agents r1, r2, . . . , rk together with their respective initial energies
e1, e2, . . . , ek and positions s1, s2, . . . , sk in the graph, find a valid set of tra-
jectories that explore (or cover) all edges of the graph.

1.2 Related Work

The problems of exploration and searching have been investigated for over fifty
years. The studied environments were usually graphs (e.g. [1,18,23,27]) and
geometric two-dimensional terrains (e.g. [2,4,17]). The goal of such research was
most often the minimization of the time of the search/exploration that was
proportional to the distance travelled by the searcher. The task of searching
consists of finding the target placed at an unknown position of the environment.
The environment itself was sometimes known in advance (cf. [4,8,14,23]) but
most research assumed only its partial knowledge, e.g. the type of graph, the
upper bound on its size or its node degree, etc. Remarkably, there exist hundreds
of papers for search in an environment as simple as a line (cf. [3]). The task of
exploration consisted of constructing a traversal of the entire environment, e.g.
in order to construct its map (see [22,27]). It is worth noting that performing a
complete graph traversal does not result in acquiring the knowledge of the map
(see [10]).

Most of the early research on search and exploration has been done for the
case of a single searcher. When a team of collaborating searchers (also called
agents or robots) is available, the main challenge is usually to partition the task
among the team members and synchronize their efforts using available means
of communication, cf. [5,9,19,21]. Unfortunately, for the centralized setting,
already in the case of two robots in the tree environment known in advance,
minimizing its exploration time is NP-hard, e.g., see [21].

The case of robots that can share energy has been recently studied for the
tasks of data communication, [6,12–14,26]. In this research the robots are dis-
tributed in different places of the network, each robot initially possessing some
amount of energy, possibly distinct for different robots. The energy is used pro-
portionally to the distance travelled by the robot. The simplest communication
task is data delivery (see [6,7,11,12]), where the data packet originally placed in
some initial position in the environment has to be carried by the collaborating
robots into the target place. Remarkably, when the robots cannot share energy,
data delivery is an NP-hard problem even for the line network, (see [11]). When
the robots are allowed to exchange a portion of energy while they meet in the
tree of n nodes, [12] gives the O(n)-time solution for the data delivery. For energy
sharing robots, the authors of [13] study the broadcast problem, where a single
packet of data has to be carried to all nodes of the tree network, while [12] inves-
tigates also the convergecast problem, where the data from all tree nodes need to
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be accumulated in the memory of the same robot. In both cases efficient commu-
nication algorithms are proposed. A byproduct of [14] is an optimal exploration
algorithm in the special case when all robots are initially positioned at the same
node of the tree. When the energy sharing robots have small limited memory,
able to carry only one or two data packets at a time, the simplest case of the
data delivery problem is shown to be NP-hard in [6]. Further, in [20] bounds are
proved in an energy model where robots can communicate when they are in the
same node and the goal of robot team is to jointly explore an unknown tree.

1.3 Results of the Paper

We start in Sect. 2 with exploration of a path. Given an initial placement and
energy distribution for k energy-sharing agents on an n-node path, we give an
O(n+k) algorithm to generate a set of valid trajectories whenever the exploration
of the path is possible. We also show that a path can always be explored if the
total energy of energy-sharing agents is 3

2 times the total weight of edges in
the path. In contrast, we show that there are energy configurations for which
any total amount of energy is insufficient for path exploration without energy
sharing.

In Sect. 3 we study exploration of trees. We first observe that without energy
sharing the exploration of trees is NP-complete. Then, for an n-node tree, we
give an O(n + �k2) algorithm that finds an exploration strategy if one exists,
where � is the number of leaves in the tree.

In Sect. 4, we consider exploration of general graphs. We show that the prob-
lem is NP-hard even for 3-regular graphs. In addition, we show that it is always
possible to find an exploration strategy if the total energy of the agents is at
least twice the total weight of the edges; moreover, this is asymptotically optimal,
even for trees.

Therefore our results show that allowing energy to be shared between agents
makes exploration possible in many situations when it would not be possible
without sharing energy. Furthermore, the total energy needed for exploration is
at most twice (at most 3/2) the total weight of the edges in the graph (path
respectively), while there is no upper bound on the total energy needed for
exploration if agents cannot share energy, even when the graph to be explored
is a path. Due to space limitations, all missing proofs can be found in [15].

2 Exploring a Path

In this section we consider the case when the graph is a simple path on n nodes;
without loss of generality, we assume that the path is embedded in the horizontal
line segment [0, 1], and we will refer to the movements of agents in their trajec-
tories as being left/right movements on the segment. Clearly, in case the graph
is given in the usual graph representation, this embedding can be obtained in
O(n+k) time. The path exploration problem can therefore be restated as follows:
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Problem 1 (Segment Exploration). Given mobile agents r1, r2, . . . , rk with ener-
gies e1, e2, . . . , ek, located initially in positions 0 ≤ s1 ≤ s2 ≤ · · · ≤ sk ≤ 1 of
a line segment [0, 1], respectively, find a set of valid trajectories of these agents
that explore the segment, if possible.

A trajectory ti of agent ri explores a closed sub-segment ai of [0, 1] containing
si. Let b�

i , br
i be the left, right end point of this sub-segment. We want to find a

valid set of trajectories, i.e., a set that explores the line segment [0, 1], and there
exists a schedule for energy transfers such that every agent has enough energy
to follow its trajectory.

We first observe that in the case of exploring a line segment with the possi-
bility of energy sharing some assumptions on the shape of valid trajectories can
be made without loss of generality.

1. The segments a1, a2, . . . , ak explore (or cover) [0, 1] and they don’t overlap,
i.e., b�

1 = 0, br
n = 1, and br

i = b�
i+1 for 1 ≤ i ≤ k − 1.

2. Trajectory ti starts at si, goes straight to one of the endpoints of ai. When
both endpoints are different from si, it turns around and goes straight the
other endpoint of ai. Thus, in this case the trajectory covers doubly a sub-
segment between si and the endpoint where it turns around, and the trajec-
tory has a doubly covered part and a singly covered part.

3. A transfer of energy between two agents ri and ri+1 may occur only at their
meeting point br

i . Thus at br
i exactly one of the following occurs:

(a) There is no energy transfer.
(b) There is energy transfer from ri to ri+1. In that case ti+1 does not end

at that point, it ends at br
i+1, and either b�

i+1 = si+1 or b�
i+1 is a point

where the trajectory ti+1 turns around to the right.
(c) There is energy transfer from ri+1 to ri. In that case ti does not end at

that point, it ends at b�
i and either br

i = si or br
i is a point where the

trajectory ti turns around to the left.

The next lemma, stated without proof, specifies two additional restrictions
that can be imposed on the nature of valid trajectories that will be applied by
our algorithm.

Lemma 1. Assume that the segment [0, 1] can be explored by a set of valid
trajectories T = {t1, t2, . . . , tk} of the agents. Then there is a canonical set of
valid trajectories T ′ = {t′1, t

′
2, . . . , t

′
k} that explore the segment such that

(i) If agent ri receives energy from a right (left) neighbour then it receives it at
its initial position si, and its trajectory may only go in straight line segment
from si to the left (right).

(ii) For each trajectory, its singly covered part is at least as long as its doubly
covered part.

We now describe a recursive, linear time algorithm for Problem1 to find
canonical trajectories as described in Lemma 1 above. The trajectories are
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assigned to agents from left to right, determining whether more energy needs
to be transferred to complete the coverage on the left, or some surplus energy is
to be transfused to agents on the right. If i is the index of the leftmost agent not
used in the exploration of initial sub-segment [0, �i] and if tri is the energy deficit
(negative) or surplus (positive) left after exploring this sub-segment using only
agents 1 through (i−1), then the procedure call Path(i, �i, tri) decides whether
a solution to the exploration problem for the remaining sub-segment [�i, 1] is
possible via canonical trajectories. It does so by greedily deploying agent i to
use the least amount of energy to cover at least the segment [�i, si]: if this does
not lead to energy deficit, then the trajectory of agent ri is allowed to cover as
much of the segment [si, si+1] as it can, which determines the position �i+1.

Procedure. Path(i, �i, tri)
1: if tri ≤ 0 then
2: if ei < si − �i + tri then � Case 1.1 (deficit increases)
3: # ri waits to receive energy |tri+1| from ri+1. Trajectory ti is

from si to �i. Transfer |tri| of energy to ri−1

4: �i+1 ← si

5: tri+1 ← ei + tri − (si − �i)
6: else if ei ≥ si − �i + tri then � Case 1.2 (deficit eliminated)
7: # Using the values of �i, si and ei − |tri|, select a canonical

trajectory ti originating in si, located between �i and si+1 as
in Cases 1.2.1 to 1.2.3. Transfer |tri| of energy to ri−1

8: tri+1 ← ei + tri − length(ti)
9: �i+1 ← right endpoint(ti)

10: else � Case 2: (Energy surplus)
11: # A surplus of energy at �i implies that �i = si. The trajectory

ti of ri is “from si to the right, but at most to si−1”.
12: �i+1 ← si + min{si+1 − si, si + ei + tri}
13: tri+1 ← tri + ei − (min{si+1 − si, si + ei + tri} − si))
14: if (i < k) then return Path(i + 1, �i+1, tri+1)
15: else if (�k+1 < 1) or (trk+1 < 0) then � Insufficient energy
16: return with solvable ← false
17: else
18: return with solvable ← true

Then, a recursive call to Path is made with arguments i + 1, �i+1 and the
resulting energy deficit or surplus tri+1. For an easier understanding of the algo-
rithm, the description below is annotated in detail and Fig. 1 provides an example
for each case encountered in the algorithm.

We use the following lemma to simplify the proof of the main theorem of this
section.
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Fig. 1. Assignment of a trajectory to agent ri by Procedure Path. The trajectory
established in each case is in red on the right part of the figure. Cases 1.1 to 1.2.3 deal
with an energy deficit prior to an assignment of a trajectory to ri, and Case 2 deals
with a surplus of energy. In Cases 1.2.1 to 1.2.3 the deficit is eliminated. (Color figure
online)

Lemma 2. Let t1, t2, . . . , ti−1 be the trajectories and �i, tri be the values estab-
lished by Procedure Path after i − 1 recursive calls, 0 ≤ i ≤ k + 1. These
trajectories explore the segment [0, �i] using in total energy (

∑i−1
j=1 ej) − tri and

this is the minimum energy required by the agents to explore the segment [0, �i].
Furthermore, if tri < 0 (deficit) then �i = si−1, if tri > 0 (surplus) then �i = si,
and if tri = 0 then si−1 ≤ �i ≤ si.

Proof. The proof is done by induction on i and omitted for lack of space. ��
Theorem 1. Assume we are given mobile agents r1, r2, . . . , rk with energies
e1, e2, . . . , ek, located initially in positions s1 ≤ s2 ≤ · · · ≤ sk of a line segment
[0, 1] respectively. Let rk+1 be an additional “dummy agent” at position 1 with
zero energy. Then the procedure call Path(1, 0, 0) on this instance runs in O(k)
time and terminates with solvable being true if and only if there are trajectories
of agents that explore the line segment [0, 1].

Proof. It is clear from the description of the algorithm that it is linear in k.
When the algorithm terminates with solvable being true, it is straightforward
to see that a schedule can be determined for the agents, that creates a valid
trajectory for each agent. To wit, in Round 1 all agents that receive no energy
follow their trajectory and do the energy transfers as calculated. Notice that
energy is received by agents when in their initial positions.

In Round i all agents that receive energy in Round i−1 follow their trajectory
and do the energy transfers as calculated. Therefore, if the algorithm terminates
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with solvable being true, the exploration of segment [0, 1] is possible, and our
algorithm returns valid trajectories for the agents to achieve this coverage. Thus
we only need to show that the exploration of the segment [0, 1] is not possible
when the algorithm terminates with solvable being false. In fact, solvable is
set to false in the algorithm only if either trk+1 < 0 or �k+1 < 1. By Lemma 2, if
trk+1 < 0 then we can cover the segment up to lk+1 = sk ≤ 1 but we need more
than the given (

∑k
j=1 ej) in energy. If trk+1 = 0 and �k+1 < 1 then [0, �k+1]

is the maximum segment that can be explored by the agents using (
∑k

j=1 ej)
energy. In both cases, the exploration of the entire segment [0, 1] is impossible
with the given initial positions and energies. ��

Consider the case when we apply our algorithm to an input instance with
the sum of energies

∑k
1 ei ≥ 3

2 . Since in each trajectory the part covered doubly
is less or equal the part covered singly, the energy deficit/surplus trk+1 obtained
after assigning a trajectory to agent rk is at most

∑k
1 ei − 3

2 , and it cannot
be negative. Also �k+1 cannot be less than 1 since there would be an unused
surplus of energy of at least

∑k
1 ei − 3�k+1

2 > 0. Thus with
∑k

1 ei ≥ 3
2 the

algorithm terminates with valid exploration trajectories for the segment.
On the other hand when the input instance consists of a single agent r1

located at point 0.5, the energy needed by r1 to cover the segment [0, 1] is equal
to 3

2 .

Corollary 1. The segment [0, 1] can always be explored by k agents with canon-
ical trajectories if the sum of their initial energies is at least 3

2 , but exploration
may be impossible in some instances if the sum is less than 3

2 .

Remark 1. If agents cannot share energy, regardless of k, exploration is impossi-
ble in an input instance where all k agents are co-located at 0, each with energy
equal to 1−ε, which gives total energy greater than k−1. Thus, without energy-
sharing, there is no upper bound on the total energy of agents that guarantees
exploration of a path. We have also constructed a linear algorithm for the explo-
ration of a path by agents that cannot share energy, however we cannot include
it in this paper due to the limit on the number of pages.

3 Exploring a Tree

In this section we consider a restricted case of the graph exploration problem,
specifically when the graph is a tree. First we observe that, without energy
exchange, there is a straightforward reduction from the partition problem show-
ing that the exploration is NP-hard even on a star graphs: Given an instance
of the partition problem S = {a1, a2, . . . , an}, let T =

∑n
i=1 ai/2. We construct

a star graph, with n + 2 edges incident on the central node. Of these, n edges
have weight a1/2, a2/2, . . . , an/2 respectively, and two additional edges each have
cost T . Assume two agents are at the central node of the star graph with energy
3T/2 each. Then there is a partition of the set S if and only if the there is an
exploration strategy (without energy sharing) for the two agents on the star
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graph. However, for energy-sharing agents located on a tree we derive below a
polynomial exploration algorithm (see also [21]).

Let T be an edge-weighted tree with k agents distributed across the n nodes
of T with possibly several agents per node each of them with some non-negative
energy. To simplify the design of our algorithm, we first preprocess the tree to
transform it to a rooted binary tree where all the agents are located only at the
leaves of the tree. We obtain such a tree from the initial tree T in four stages: (a)
by taking all the agents at every non-leaf vertex v and shifting them to a new
leaf node lv that is added to the tree and connected to v via a zero-weight edge,
(b) by repeatedly splitting vertices of degree more than 3 into trees of maximum
degree 3 using zero-weight edges, (c) by collapsing any path with internal vertices
of degree 2 into an edge whose weight equals the cumulative weight of the path,
and (d) by converting the resulting 3-regular unrooted tree into a rooted one
by splitting one of its edges and making its midpoint be the root of the tree.
Without loss of generality, we will denote this new, rooted tree as T . We note
these preprocessing steps have complexity O(n + k). Our problem can be stated
as follows:

Problem 2 (Tree Exploration). Let T be a rooted, edge-weighted binary tree
obtained by preprocessing an unrooted edge-weighted tree with k agents at its
nodes, so that all the agents are now located at leaves in T and have their given
initial energies. For every node v, let av be the initial number of agents inside
subtree Tv and let ev be the sum of their initial energies. Let we ≥ 0 be the
weight of edge e. If possible, find a set of valid trajectories for the agents that
explore every edge of T using only the given initial energies.

Now, consider any feasible exploration for the tree witnessed by a set of tra-
jectories for the agents. The successful exploration of a subtree Tv may either
have necessitated additional energy brought into the subtree from outside, or
there may be a surplus of energy that could have gone out of the subtree to
explore other parts of the tree. Also, exploration may have needed a transfer of
agents into the subtree (over and above its av agents) or may have been accom-
plished with some agents made available to leave the subtree and contribute to
the exploration of the rest of the tree.

We formalize this idea as follows. Let B[v, i] denote the maximum possible
total surplus energy that can leave the subtree Tv after it is fully explored so
that i agents can leave the subtree with this total energy. Note that i counts
only the balance of agents that depart from the tree, not individual arrivals and
departures. Thus, we allow for i being negative (i.e., i agents enter the tree on
balance), or B[v, i] being negative (i.e., −B[v, i] amount of energy is needed to
be brought in from outside Tv to explore it fully). We remark that:

(i) when i ≤ 0 and B[v, i] ≥ 0, it means that an agent carrying excess
energy must leave Tv but nevertheless, the overall balance of agents enter-
ing/leaving Tv is non-positive.

(ii) the B[v, i] values do not take into consideration the energy expenditure that
would be required to explore the edge from v to its parent node in the tree.
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(iii) for node v, the value of i can only be in the interval [−k +av, av], because,
on balance, at most av agents can leave Tv and at most k − av can enter it.

In order to simplify the calculation of B[], we extend the definition of B[]
to edges as well: Let e = (u, v) where u is the parent of v. As described above,
B[v, ∗] denotes the surplus energy leaving subtree Tv. B[e, i] will denote the
surplus energy available at u along edge e with a balance of i agents that could
transit through u from the direction of v. We observe that agents do spend
energy traversing e itself and can also stop in the middle of e, and hence the
values B[e, ∗] and B[v, ∗] are different. Since node u has exactly two child edges
below it, we can compute the B[u, ∗] values by suitably combining the B[] values
of these edges.

It remains to show how to calculate B[v, ∗] and B[e, ∗] for each v and e. In
principle, we can consider all the possibilities of what the agents can do, but in
reality it is enough to consider only the best possible activity with the desired
balance of agents. The calculation is performed by calling procedures HandleV-
ertex and HandleEdge (described below in pseudocode) respectively for each
vertex and for each edge of T . The computation proceeds in a bottom-up manner
starting from leaves, with the boolean arrays done[v] and done[e] being used
to ensure this flow. In order to simplify the presentation in HandleEdge, we
assume that the assignment B[e, i] ← y is shorthand for B[e, i] ← max(B[e, i], y)
(with the initial values B[e, ∗] being initialized to −∞).

Our main result in this section is the following:

Theorem 2. After transforming an unrooted tree with a specified distribution
of initial agent locations and energies, procedure HandleVertex, when applied
to the root of the resulting rooted binary tree, correctly solves the tree exploration
problem for the original tree in O(n+�k2) time. It does so by correctly computing
the optimal B[v, i] values for every vertex v and all relevant i values for that

Procedure. HandleVertex(v)
1: if v is a leaf then
2: for i = −k + av to av do
3: B[v, i] ← ev

4: else � v has two child edges e′ and e′′

5: wait until done[e′] and done[e′′]
6: for i = −k + av to av do
7: B[v, i] ← maxi′+i′′=i(B[e′, i′] + B[e′′, i′′])
8: done[v] ←true
9: if v is the root then

10: if there is B[v, i] ≥ 0 with i ≥ 0 then
11: return solvable
12: else
13: return not solvable
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vertex, in conjunction with procedure HandleEdge that correctly computes the
optimal B[e, i] for every edge e and all relevant i values for that edge.

Procedure. HandleEdge(e)
Require: e = (u, v) where v is a child of u
1: wait until done[v]
2: for i = −k + av to av do
3: if B[v, i] ≤ 0 then
4: if i < 0 then
5: B[e, i] ← B[v, i] − |i|we � Case 1a
6: else
7: B[e, i] ← B[v, i] − (i + 2)we � Cases 2a, 3a and 4a
8: else if i ≤ 0 then � B[v, i] > 0
9: if B[v, i] > (2 + |i|)we then

10: B[e, i] ← B[v, i] − (2 + |i|)we � Cases 1c and 2c
11: else if i < 0 then
12: B[e, i] ← i(we − B[v, i]/(2 + |i|)) �

Case 1b
13: else � i = 0
14: B[e,−1] ← (B[v, 0] − 2we)/2 � Case 2b
15: B[e, 0] ← B[v, 0] − 2we � Case 2b’
16: else � i > 0 and B[v, i] > 0
17: if B[v, i] ≥ iwe then
18: B[e, i] ← B[v, i] − iwe � Cases 3c and 4c
19: else � i > 0 and B[v, i] < iwe

20: B[e, i] ← −(i + 2)(we − B[v, i]/i) �

Cases 3b” and 4b
21: if i = 1 then
22: B[e,−1] ← B[v, 1] − we � Case 3b
23: B[e, 0] ← 2(B[v, 1] − we) � Case 3b’
24: done[e] ←true

The proof of Theorem 2 hinges on an inductive argument that shows that the
B[] values are correctly computed in a bottom-up manner starting at the leaves
and working our way up the tree. The base case for the induction is for the leaf
nodes, and follows directly from the construction (line 3 of HandleVertex: all
the energy in a leaf node is surplus and can be utilized to explore the rest of the
tree).

Our induction hypothesis is established by proving two concomitant lemmas.

Lemma 3. Let e = (u, v) be an edge in T with u being the parent of v. If the val-
ues B[v, ∗] have been correctly computed, then procedure HandleEdge correctly
computes B[e, ∗], where ∗ stands for all relevant values of i.
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Lemma 4. Let v be an internal vertex with two child edges e′ and e′′. If B[e′, ∗]
and B[e′′, ∗] have been correctly computed, then procedure HandleVertex cor-
rectly computes B[v, ∗] where ∗ stands for all relevant values of i.

It is easy to see after the O(n + k) time preprocessing step to convert the
original tree into a full binary tree, each leaf of the tree and subsequently, each
edge of the tree can be processed in O(k) time. To obtain the B[] values for
any internal node, we need to combine the k-vectors associated with the child
edges (in step 7 of HandleVertex). Observe that there are two classes of
internal nodes in the converted tree. The first class correspond to O(k) nodes
that contained a subset of agents in the original tree. Each such node, generated
in stage (a) of the conversion phase, has a child that is a leaf in the converted tree
(containing the same subset of agents). The second class contains the internal
nodes generated in stage (b) of the conversion phase, as well as the nodes that
were of degree at least 3 in the original tree, and the root obtained in stage (d).
Observe that there are at most � nodes in the second class. Let v be an internal
node of the first class and let v′ be its child that was added in preprocessing
that has taken the v’s agents. By construction, all the B[v′, ∗] values are equal
to ev′ , and since the weight of e′ is 0, B[e′, ∗] = ev′ as well. Hence, for such a
node v we have B[v, ae′ + ae′′ − i] = ev′ + maxi

j=0 B[e′′, ae′′ − i] which can be
for i = 0 to k computed in time O(k). Consequently, the overall complexity of
HandleVertex called for all O(k) internal nodes of class one is O(k2). On the
other hand, for each of O(�) internal nodes from class two, the max function
from step 7 of HandleVertex may be computed in O(k) time, which leads
to O(�k2) overall complexity of all the calls of the HandleVertex procedure
for nodes of the second class. Applying Lemma4 to the root of the tree, it is
clear that the algorithm correctly decides whether or not the binary tree can be
explored fully, and the computation takes O(�k2) time after the preprocessing
step.

We further remark that if exploration is indeed feasible then in the same
time complexity, standard post-processing, top-down techniques can be used to
recover the trajectories (and the schedules) for the agents from the computed
B[] values by combining the schedules locally computed at each vertex and edge.
The choice of the root vertex is arbitrary (after preprocessing) and does not influ-
ence the decision outcome – however, it does influence the computed schedule
and the amount of energy left in the root, and there may be multiple feasible
solutions (one for each i ≥ 0 in the root’s B[] values). This completes the proof
of Theorem 2.

4 General Graphs

Unfortunately, while the exploration problem for segments and trees admits very
efficient solutions, for general graphs, exploration becomes intractable (unless
P = NP). Indeed, we show that the graph exploration problem is NP-hard even
in the case of 3-regular graphs by using a reduction from the Hamiltonian cycle
problem. We also give an approximation algorithm.
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4.1 NP Hardness for 3-Regular Graphs

Let G be a 3-regular graph on n nodes. We construct a graph M by replacing
each edge e = (u, v) of G by a meta-edge gadget m(u, v) from Fig. 2 case a),
where a and b are chosen so that a > 5nb where n is the number of vertices of
G. In addition, each meta-vertex (i.e., an image m(v) of a vertex v of G) starts
with one agent and 3a + 5b energy.

Note that the overall energy is (3a + 5b)n, while the overall weight of the
edges (3n/2 of them in a 3-regular graphs) is 3n(a + b). Hence, a length at most
2bn can be crossed twice. As a > 5bn, this means no a-edge is crossed twice and
at most 2n of b-edges are crossed twice.

Fig. 2. a) the meta-edge gadget, b) covering gadget using one agent c) efficient covering
of the gadget using two agents d) covering gadget using two agents so that at least one
agent exits the gadget (Color figure online)

Lemma 5. If only one agent x enters (w.l.o.g. from m(u)) a meta-edge e =
m(u, v), a total of 2a + 4b energy is spent ensuring e is fully explored. In such
case x ends up in m(v).

Lemma 6. Assume two agents x and y enter a meta-edge e = m(u, v) from
m(u) and m(v), respectively, and ensure e is fully explored. If no agent leaves e
then the total energy spent in e is at least 2a + 2b. If one or both agents leave
e then all the leaving agents leave to the same meta-vertex, and the total energy
spent in e is more than 2a + 4b.

Note that the second case of Lemma 6 is worse than Lemma 5 in terms of
total energy expenditure, due to the extra cost of c (or 2c). Still, it might be
justified if the blue agent does not have enough energy for case b), or if the red
agent does not have enough energy for case c).

Lets call a meta-edge light if it is covered by the first part of Lemma 6 (Fig. 2,
case c)), otherwise it is heavy. Observe that each light meta-edge consumes 2
agents, while each heavy meta-edge consumes an excess of 2b energy compared
to the weight of its edges. This yields:

Lemma 7. If there is an exploration strategy for the input graph, the number
of heavy edges is exactly n.
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By Lemma 5 and the second part of Lemma 6, a heavy meta-edge is traversed
in one direction – lets call the halves outgoing and incoming.

Consider the directed graph H = (V,E′) formed by the heavy meta-edges,
i.e., e = (u, v) ∈ E′ iff e is a heavy meta-edge from m(u) to m(v).

Lemma 8. Each vertex of H has at least one incoming edge.

Proof. As both light and outgoing edges consume agents, if v had no incoming
edge, it would need 3 agents. Since each vertex starts with 1 agent, it is not
possible for v to have 3 agents without an agent coming via an incoming edge.

��
Because the number of heavy edges is exactly n, the heavy edges form a

vertex-disjoint (vertex) cycle cover of H, i.e., each meta-vertex has one incoming,
one outgoing and one light edge.

The problem is that the disjoint cycle cover is solvable in polynomial time.
Hence, we need to modify the input so that there is a solution to the exploration
problem if and only if the heavy edges form a single cycle of length n.

This is done by modifying the input into I as follows:

– the three edges incident to the initial vertex have weights adjusted to a + εn
for some small ε < b/3n,

– the energy at the initial vertex is 3a + 5b + (2n)ε
– the energy at all other meta-vertices is 3a + 5b + ε

Lemma 9. If the graph G is Hamiltonian then there is an exploration solution
to the modified input I.

Proof. Select the direction of the Hamiltonian cycle, its edges will be the heavy
meta-edges. The explorer agent starting in the initial vertex takes all the energy
available there and follows the Hamiltonian cycle. It collects 2a + 4b + ε energy
in each of the meta-vertices it crosses, while spending 2a + 4b on each heavy
meta-edge. The agents located at other meta-vertices wake-up when the explorer
arrives, take a + b energy and explore half of the incident light meta-edge.

Note that when the explorer reaches i-th meta-vertex (not counting the ini-
tiator), it has a + b + εn + i − 1) energy remaining, except when it returns to
the initiator, when it has only a + b + εn energy as the last meta-edge it crossed
has an extra εn cost. This is just sufficient to cover half of the incident light
meta-edge, which is the last part not yet covered. ��
Theorem 3. The exploration problem is NP-hard for 3-regular graphs.

Proof. Suppose there is an exploration solution for I. We claim that then the
graph G is Hamiltonian. Note that since the sum of all ε is less than b, Lemma 7
and Lemma 8 still hold. Hence, the only way meta-edges incident to the starting
vertex can be covered is if the agent returning to the starting vertex carries
a + b + εn energy. As the agent can gain only ε energy in each vertex it crosses
(the remainder is used-up on crossing the heavy meta-edge and covering half of
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the incident light meta-edge), it needs to visit all n meta-vertices in order to
collect sufficient energy, i.e., it has performed Hamiltonian cycle. The theorem
then follows since the Hamiltonian cycle problem for 3-regular graphs is known
to be NP-complete. ��

4.2 An Approximation Algorithm for General Graphs

Even though the graph exploration problem is NP-hard, it is still possible to
obtain an efficient approximation algorithm for exploring arbitrary graphs that
has an energy-competitive ratio at most 2. Specifically, the algorithm uses at
most twice as much energy as the cumulative sum of the edge weights of the
graph. First we state without proof a well-known result for agents on a cycle for
which the reader is referred to [25] [Paragraph 3, Problem 21].

Lemma 10. For any cycle and any initial positions of the agents there is an
algorithm which explores the cycle if and only if the given sum of the energies of
the agents is not less than the length of the cycle.

Lemma 10 has some important consequences. Recall that a graph G is Eule-
rian if it is connected and all its vertices have even degrees.

Theorem 4. For any Eulerian graph and any initial positions of the agents
there is an algorithm which explores the graph provided that the sum of the
energies of the agents at the start is not less than the sum of the edges of the
given graph. Moreover, the algorithm has optimal energy consumption.

Proof. Assume we have agents in such a graph so that the sum of the energies
of the agents is at least equal to the sum of the length of the edges of the
graph. Since the graph is Eulerian we can construct a cycle which traverses all
the edges of the graph exactly once. By Lemma 10 there is an algorithm which
assigns trajectories to the given sequence of agents and covers the entire graph.
This proves Theorem 4. ��
Theorem 5. Any graph can be explored by energy-sharing agents if the sum of
their initial energies is at least twice the sum of edge weights. Moreover, this
constant 2 cannot be improved even for trees.

Proof. The original graph, say G = (V,E), is not necessarily Eulerian. However,
by doubling the edges of the graph we generate an Eulerian graph G′ = (V,E′).
The sum of the weights of the edges of G′ is equal to twice the sum of the weights
of the edges of G. Theorem 4 now proves that the graph G can be explored if
the sum of their initial energies is at least twice the sum of edge weights in the
graph.

Consider a star graph with 2k leaves, all edges are of weight 1, for a total
weight of 2k. Assume that we have k agents in the leaves of the star, and one
agent in the center of the star. Agents in the leaves have energy 0, and the
agent in the center 4k − 1. To explore the graph the center agent can traverse
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2k − 1 edges of the star twice and one edge once. It is easy to see that no other
strategy can do it with less energy. Thus the energy of the middle agent cannot
be any lower, and asymptotically, total energy in this instance equal to 4k − 1
approaches the double of the cost of the edges. ��
Remark 2. An improvement of the competitive ratio 2 of Theorem5 is possible
in specific cases by using a Chinese Postman Tour [24] (also known as Route
Inspection Problem). Namely, in polynomial time we can compute the minimum
sum of edges that have to be duplicated so as to make the graph Eulerian, and
this additional sum of energies is sufficient for the exploration.

Assume we have a fixed configuration C of k agents r1, r2, . . . , rk in a given
graph G. We say that energy assignment E = e1, e2, . . . , ek to agents in configu-
ration C is minimal if exploration is possible with energies in E, but impossible
when the energy level of any one agent is decreased. Let |E| =

∑k
i=1 ei. We now

investigate how large the ratio |E1|/|E2| can be for two minimal assignments E1

and E2 of a given configuration C,

Claim. For any configuration of agent C and any two minimal energy assign-
ments E1 and E2 the ratio |E1|/|E2| ≤ 2, and this is asymptotically optimal.

5 Conclusion

We studied graph exploration by a group of mobile agents which can share
energy resources when they are co-located. We focused on the problem of decid-
ing whether or not it is possible to find trajectories for a group of agents initially
placed in arbitrary positions with initial energies so as to explore the given
weighted graph. The problem was shown to be NP-hard for 3-regular graphs
while for general graphs it is possible to obtain an efficient approximation algo-
rithm that has an energy-competitive ratio at most 2 (and this is shown to be
asymptotically optimal). We also gave efficient algorithms for the decision prob-
lem for paths, trees, and Eulerian graphs. The problem considered is versatile
and our study holds promising directions for additional research and interesting
open problems remain by considering exploration with 1) optimal total energy
consumption, 2) agents with limited battery capacity, 3) energy optimal place-
ment of mobile agents, 4) time vs energy consumption tradeoffs for mobile agents
with given speeds, 5) additional topologies, as well as 6) combinations of these.
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Abstract. We study the problem of evacuating two agents from a
tree graph, through an unknown exit located at one of the nodes.
Initially, the agents are located at the same starting node; they
explore the graph until one of them finds the exit through which
they can evacuate. The task is to minimize the time it takes until
both agents evacuate, for a worst case placement of the exit. We
consider two communication models, global communication where
the agents can communicate at any time, and local communication
where the agents can only communicate if they are at the same node
at the same time. We show that the problem is NP-hard in both
cases. We then present a 4/3-approximation algorithm for global
and a 3/2-approximation algorithm for local communication.

1 Introduction

Imagine that two robots are trapped in a building. They have a map of the
building, but most exits marked on the map are in fact blocked. Their goal is
to find an exit that is still available, and evacuate. Armed with the map they
devise a strategy to find an exit and evacuate as quickly as possible. How should
they divide the work of checking all the locations for an available exit? In what
order should they explore the locations? Should they meet up at some predefined
location to exchange information?

More formally, we consider a group of k agents whose task is to find an exit
node in a weighted graph G = (V,E) and evacuate all agents through this exit.
The agents all start at common node r, which we call the root. In the beginning,
they know the graph and the edge weights and that at least one exit exists at
one of the nodes, but not the location of the exit(s). In this paper, we study
the case of k = 2 agents, one single exit, the graphs we consider will be trees.
We are interested in worst case analysis so we can assume a single exit without
loss of generality. Moreover two agents on a tree is the most fundamental case,
encompassing already the challenges, trade-offs and insights of the more general
setting. We will distinguish between two communication models. In the local
model agents can only explicitly exchange information when they are at the same
node at the same time. In the global model agents can exchange information at
any time independent of their locations. Global communication is equivalent to
a single central algorithm controlling all the agents.
c© Springer Nature Switzerland AG 2021
T. Jurdziński and S. Schmid (Eds.): SIROCCO 2021, LNCS 12810, pp. 204–221, 2021.
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The objective will be to minimize the time for all agents to evacuate the
graph. In other words we minimize the last exit time, or evacuation time. We can
view this problem as a two player game, where one player defines the exploration-
evacuation strategy for all the agents and the second player, the adversary, then
chooses the worst possible exit location for this strategy.

An optimum algorithm is one that achieves the minimum worst case evacua-
tion time. We first show that minimizing the worst case evacuation time for two
agents in a tree is NP-hard. This motivates the search for approximation algo-
rithms. Their performance is measured by the approximation ratio: The ratio
of the worst case evacuation time of the given algorithm and the worst case
evacuation time of an optimum algorithm.

We start our search in the global communication setting and show that a
simple bi-directional depth-first search (DFS) strategy has an approximation
ratio of 7/5. As our first major result, we then present the Longest Path Global
Algorithm and show that it has a tight approximation ratio of 4/3. We then
focus on the local communication setting and start again by showing that the
simple bi-directional approach gives an approximation ratio of 2. As our second
major result, we strengthen this result with a centroid-based algorithm, proving
a tight approximation ratio of 3/2. Finally we ask how much worse local com-
munication can be compared to global communication on the same graph and
bound the worst case ratio of the two models between 4/3 and 3/2. We finish
with concluding remarks, pointing the reader to a whole range of open questions
for future work.

2 Related Work

One of the most fundamental classes of problems in the context of mobile agents
are search problems. These include a whole range of related problems, such
as ants searching for food [15,16,21], graph exploration [9,17,18], rendezvous
problems [6,11–13,19], patrolling robots [25,26], and pursuit-evasion games [4,
5,22]. Another example are graph evacuation problems, where one or more agents
search for an exit, through which they can evacuate. Evacuation problems are
of two main types; geometrical problems, where agents need to evacuate some
shape, such as a triangle, a square or a disk [20,24,28], and evacuation problems
on graphs. The latter type has not been explored to a great extent; the problem
has been considered on lines [1,3] and so-called m-rays [7,8,29], but not on
general graphs. Borowiecki et al. [23] consider the problem of evacuating multiple
agents from distinct nodes using multiple exits, but this problem is very different
from ours with a focus on avoiding congestion and bottlenecks.

Another related problem is swarm exploration [14]. A swarm of mobile agents
starting at the root of a tree has to visit every node, whilst staying within a
distance of d, where d is called the range of the swarm. Unlike swarm exploration,
graph evacuation does not put a hard constraint on the distance between agents,
the agents stay close only when it is optimal.
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To the best of our knowledge, our work is the first to consider evacuating two
agents from a tree or graph through a single unknown exit. Although the geomet-
ric setting already leads to elaborate strategies and interesting insights [24,28],
graphs are a much more general and more widely applicable setting for multi-
agent evacuation.

A related graph exploration problem is the multiple Traveling Salesmen Prob-
lem (mTSP) [10]. The mTSP is a generalization of the well-known traveling
salesman problem (TSP), where more than one salesman is allowed to be used
in the solution. Unlike mTSP, in graph evacuation one also has to consider how
far apart the agents get during the exploration, as they eventually all have to
converge to the exit.

3 Preliminaries

We start with an example to illustrate some important aspects of the problem.

r

v1

v2

v3

v4

1

a

1

1

Fig. 1. An instance of tree evacuation. The agents start at r and d(r, v2) = a > 0.

Take a look at Fig. 1. Let’s first consider local communication. We observe
that there are two competing strategies that could be optimal, depending on the
value of a. The first is for the agents to stay together and explore everything
together starting with v1, then v2, v3, and finally v4. By staying together, they
can both evacuate immediately as soon as they find an exit. On the other hand
the exploration is not parallelized and as such is not very efficient. The worst
case is when the exit is located at v4 giving an evacuation time of a + 5.

The second strategy is for the agents to split up at the beginning. The agents
explore v1 and v3 in parallel, meeting up at v2 to share information at time
t = a + 2. The agents now know exactly where the exit is and can head straight
there. The worst case is when the exit is at v1 giving a total time of 2a+3. This
strategy demonstrates the importance of the agents meeting to share information
in the local communication setting.

Which strategy is better depends on the value of a. This example illuminates
the two key aspects of the problem: to explore the graph efficiently in parallel,
and to stay close enough in case the exit is found. A good algorithm has to
balance these two (orthogonal) goals.

Let us now consider the same example with global communication to make
another interesting observation. Let a = 4. We notice that the optimum strategy
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depends on whether the agents can abort traversing an edge when they are part
way across. If they cannot, then splitting up would give a worst case evacuation
time of 2a + 1 = 9 with the exit at v1, and staying together would also give a
worst case evacuation time of a+5 = 9. However if they can abort traversing the
long edge, then the strategy of splitting up gives the optimum evacuation time
7. We will assume throughout the rest of the paper that agents can traverse an
edge part way.

We start by showing that it is NP-hard to find the optimal strategy on trees.

Lemma 1. Consider weighted tree evacuation with k = 2 agents. Finding a
strategy to minimize the worst case evacuation time is NP-hard.

Proof. We show this by reduction from Partition [2]. Let S = (a1, a2, . . . , an)
be a multiset of positive integers, i.e., an instance of partition with

∑
i ai = 2M .

We construct the following star graph:

– Add root node r
– For each ai ∈ S, we add node vi and edge ei = (r, vi) with weight w(ei) = ai

– In addition we add node vn+1 and edge en+1 = (r, vn+1) with weight
w(en+1) = 2M

Let r be the starting node for the agents. Then this gives an instance of graph
evacuation. We claim that there is a strategy with worst case evacuation time
4M if and only if there is a solution to the partition problem.

For the simple direction, if there is a solution to the partition problem, then
the agents can explore nodes {r, v1, . . . , vn} and return to r in time 2M . If either
agent finds the exit, say at vi, then the agents can evacuate in additional time
ai ≤ 2M , giving at most 2M + ai ≤ 4M in total. On the other hand if the exit
is at vn+1, since the agents have already checked all the other vertices at time
2M , they can go straight to vn+1 together and exit in total time 2M + 2M .

Now suppose there is no solution to the partition problem. The agents can
still choose to explore all nodes {r, v1, . . . , vn} first, leaving vn+1 till last. So first
suppose node vn+1 is explored last. Then the adversary places the exit at vn+1.
Since there is no solution to the partition problem, exploring the other nodes
and returning to r requires time strictly greater than 2M in total. So one of the
agents will require strictly more than 2M + 2M = 4M to reach the exit. On
the other hand, suppose the agents visit node vn+1 before exploring one of the
nodes, say vj . Then the adversary places the exit at vj and the agent visiting
vn+1 has to return, requiring at least 4M + aj ≥ 4M + 1 to reach the exit at vj .

Thus, deciding whether the optimum worst case evacuation time is greater
than 4M is as hard as partition, so tree evacuation with 2 agents is NP-hard. ��

Note that we do not use anywhere in the proof that the communication model
is local or global. Note also that the proof can easily be extended to k > 2 agents,
for example by simply adding k − 2 edges of length M .

Since finding the optimal strategy is NP-hard we will be looking for approx-
imation algorithms. We use the following general lower bound on the cost OPT
of the optimal algorithm to prove these approximation ratios.
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Lemma 2. Let TSP be the length of the shortest traversal of all vertices of a
graph G = (V,E), i.e. the solution to the traveling salesperson problem. Then
OPT ≥ TSP/2.

Proof. For any order in which the agents explore the vertices, the adversary can
choose the last node they explore to be the exit. That means, the two agents
must together visit all vertices. Moreover, since they start and finish at common
vertices (the root and the exit), they together perform a complete traversal of
the graph. The length of the shortest traversal is TSP , so at least one of the
agents must travel a distance of at least TSP/2, implying OPT ≥ TSP/2. ��

This lemma applies to general graphs and any communication model. Since
the shortest traversal of a tree graph uses every edge exactly twice, we get the
following corollary for trees.

Corollary 3. For a tree, OPT ≥ W where W is the total weight of the tree.

Now we can prove an algorithm has an approximation ratio of at most c by
showing that it always requires at most cW time to evacuate the agents.

Example 4. The best approximation ratio we can hope for using only this lower
bound, OPT ≥ W , is 3/2 for either communication model.

r

v1 v2

l l

Fig. 2. Example of a tree graph with optimum worst case evacuation time OPT = 3
2
W .

If the agents split up and reach v1 and v2 at the same time, then one of the agents
will exit at time 3l. If the agents do not split, then whichever leaf they explore first,
the adversary can place the exit at the other, so that the agents again need 3l time to
evacuate. Note also that W = 2l.

See Fig. 2 for an example of a tree with OPT = 3
2W . Clearly no algorithm can

do better than this, so we cannot get a better approximation ratio than 3/2 if we
rely solely on the lower bound OPT ≥ W . To prove a better approximation ratio,
we would need a tighter analysis between the approximation algorithm and an
optimum algorithm. Therefore, motivated by Example 4, we give another lower
bound for OPT .

Lemma 5. Let v1, v2 be any two nodes of a tree rooted at r, with d(r, v1) ≥
d(r, v2). And let Pi denote the path from r to node vi. Then OPT ≥ d(r, v1) +
2d(v2, P1), where d(v2, P1) = minu∈P1 d(v2, u) is the shortest distance between
v2 and any node on the path P1.
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Proof. Note that the adversary can force the two agents to explore all of the
vertices in the graph, in particular both v1 and v2. Of course the agents can split
up, whereby they visit v1 and v2 in parallel, but the adversary can place the exit
at the node explored later by the agents. Therefore at least one of the agents
visits both nodes. This gives a lower bound for OPT of

OPT ≥ min{d(r, v1) + d(v1, v2), d(r, v2) + d(v2, v1)}
= d(r, v2) + d(v2, v1)
= d(r, v1) + 2 min

u∈P1
d(v2, u)

= d(r, v1) + 2d(v2, P1)

��
In particular, applying Lemma5 to v1 and v2 in Fig. 2 gives us a tight lower

bound for OPT . The lemma gives OPT ≥ 3l, and 3l is indeed the optimum.

4 Global Communication

In the global setting, a simple way to evacuate a general graph is for the two
agents to follow a traversal of the graph in opposite directions.

Algorithm 1: Bi-directional traversal (BiT)
input : A graph G with 2 agents at node r
output: The agents explore and evacuate the graph

1 Find a shortest traversal R of G
2 while the exit is not found do
3 The two agents traverse R in opposite directions starting from r
4 Both agents go directly to the exit

Lemma 6. Algorithm1 (BiT) has an approximation ratio of exactly 7/5 for
2-agent global evacuation on trees.

We omit the proof due to space restrictions.1 To achieve a better approxi-
mation ratio, we will use what we call a longest path approach. Given a tree, let
the path PL from root r to vL be a longest path starting at r and let L denote
its length. In a longest path approach, both agents explore the tree sequentially
along PL. In other words, an agent passes through each edge of PL at most once
during exploration, making excursions to explore subtrees along the way. Note
that this is an optimal strategy for a single agent to explore a tree.

Let E′ be the set of all edges not in PL, with weight w(E′) = W − L. The
edges in E′ form subtrees rooted along the path PL. We would like each agent
to explore half of E′. Let w be the walk from r to vL of length 2W − L that
traverses every edge on PL once and all other edges twice (via a DFS along
each subtree). Furthermore, let w′ be the (non-connected) walk w\PL of length
2(W − L). Let p be the midpoint of w′.
1 The full version is available on our website: https://disco.ethz.ch/publications.

https://disco.ethz.ch/publications
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Algorithm 2: Longest Path Algorithm (LPA)
input : A tree G with 2 agents at its root r, the longest path PL, the walk w

and the point p as defined previously
output: The agents explore and evacuate the graph

1 while the exit is not found do
2 The two agents explore the graph in parallel
3 Agent 1 traverses w up to point p, then takes the shortest path from p to vL

4 Agent 2 takes the shortest path from r to p and then traverses the
remaining part of w to vL

5 Both agents go directly to the exit

Following this algorithm, the agents arrive at vL at the same time (if the exit
is not found earlier), since they both traverse PL, half of w′ and the shortest
path from p to PL. In particular, the only part of E′ they both explore is the
shortest path from p to PL.

r

vp

vL

T1

Tp

Tk

p

(a)

r

ṽ1v1

ṽ2 v2

vL

(b)

Fig. 3. (a) The longest path algorithm (LPA). The longest path PL is the path from
r to vL. Tp is the subtree containing point p as described in the algorithm, and vp

is the root of Tp on PL. Agent 1 explores the red edges and agent 2 the blue edges.
(b) An upper bound (red) on d(v1, v2) for a longest path algorithm. The node vL is
the furthest node from r, and v1 and v2 are the locations of the agents. (Color figure
online)

Lemma 7. If the two agents follow a longest path approach, then

max{d(v1, vL), d(v2, vL)} ≥ d(v1, v2)

at all times, where v1 and v2 are the positions of the agents at some time during
exploration.
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Proof. Let ṽi be the furthest node along PL that agent i has reached. With-
out loss of generality, we assume that ṽ1 is closer to the root than ṽ2. See
Fig. 3a. Thus, the distance between the agents is d(v1, ṽ1) + d(ṽ1, ṽ2) + d(ṽ2, v2)
while the distance between agent 1 and vL is d(v1, vL) = d(v1, ṽ1) + d(ṽ1, ṽ2) +
d(ṽ2, vL). We observe that d(ṽ2, v2) cannot be greater than d(ṽ2, vL), as oth-
erwise v2 would be further away from the root than vL. We conclude that
max(d(v1, vL), d(v2, vL)) ≥ d(v1, v2). ��
Theorem 8. Algorithm2 (LPA) has an approximation ratio of exactly 4/3 for
2-agent global evacuation on trees.

Proof. We defer the lower bound for the approximation ratio to Example 9. In
the following we prove the upper bound.

Let LPA be the worst case evacuation time of the LPA algorithm. With-
out loss of generality assume the exit is found by agent 1 at a node v1 at
time t1 and that the second agent is at position v2 at this moment. The
evacuation time is then t1 + d(v1, v2). But if the adversary had placed the
exit at vL, then by Lemma 7 the evacuation time would have been at least
t1 + max{d(v1, vL), d(v2, vL)} ≥ t1 + d(v1, v2). Therefore the worst case evacua-
tion time occurs when the exit is at vL. The agents reach vL at the same time
at

LPA = d(r, vL) +
2(W − L)

2
+ d(p, vp) = W + d(p, vp)

where p is as described in the algorithm and vp is the closest node on PL to p,
in other words the root of the subtree containing p.

Let L2 = d(p, vp) ≤ L. Applying Lemma 5 to p and vL gives a lower bound
of OPT ≥ L+2L2. Combining this with the lower bound from Corollary 3 gives
us the approximation ratio:

LPA

OPT
≤ W + L2

max{W,L + 2L2}
If L2 ≤ W/3, then we get the result with the lower bound of W . On the other
hand if L2 > W/3, then W + L2 < 4L2 and since L ≥ L2, also L + 2L2 ≥ 3L2;
thus we have LPA

OPT < 4L2
3L2

= 4/3. ��
Example 9. 4/3 is a lower bound for the approximation ratio of any algorithm
based on the longest path approach.

See Fig. 4 for an example of a tree where any algorithm visiting the furthest
leaf last can only achieve an approximation ratio of at least 4/3. Therefore LPA
is a best possible algorithm based on the longest path approach and the analysis
in Theorem 8 is tight.
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r

v1

v2

v3 v4 v5

2

1

1
1

1

Fig. 4. Example of a tree where any algorithm visiting the furthest leaf last can achieve
an approximation ratio of at best 4/3. If the agents explore v1 last, then they first
explore in the direction of v2; they can visit v3 and v4 respectively, returning to v2 at
time 3. The exit can still be at v1 or v5 so the best the agents can do is split up (or
explore v5 and then v1 together), but with the exit at v1, the agent(s) exploring v5 will
only reach the exit at time 8. On the other hand, an optimum strategy would be for
agents 1 and 2 to explore v1 and v3 respectively; if the exit is found, they can evacuate
in time 6, and otherwise agent 2 continues by exploring v4, before the agents meet at
v2 at t = 5; and now the exit can be reached in 1 step. This gives an approximation
ratio of 8/6 = 4/3.

5 Local Communication

We turn our attention to the local communication model. Local communication
is of course weaker than global communication and indeed there are graphs,
where agents with local communication need significantly more time to evacuate
in the worst case. We will show such examples at the end of the section, but first
we present approximation algorithms for this communication model.

Example 10. Depth-first search (DFS) has an approximation ratio of 2 for 2-
agent local evacuation on trees.

This observation is immediate. The length of a DFS traversal is 2W , so if the
agents walk together along the DFS route, they will evacuate in time at most
2W . This can be improved slightly by ending the traversal at vL, giving 2W −L.

Next we propose an algorithm to improve this approximation ratio to 3/2.
We start with some definitions, before giving an outline of the algorithm.

Definition 11 (child subtree, centroid). Given a tree G and a node v, a
child subtree of v is defined as the connected subtree of G containing v and a
connected component of G\{v}. A node with k neighbours has k child subtrees.

Given a tree G and a point p on edge (u, v), a child subtree of p is defined as
above by treating p as a node of the graph. In other words, a child subtree of p is
defined as the connected subtree of G containing p and a connected component
of G without the edge (u, v). A point p on an edge has 2 child subtrees. Note that
both child subtrees only contain part of the edge (u, v).

Given a weighted tree G with total weight W , the centroid of G is defined as
the vertex or point c, such that all child subtrees of c have weight at most W/2.
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We include a DFS-like algorithm for finding the centroid of a tree in the full
version of the paper. Note that the centroid is unique for trees with positive edge
weights, but this uniqueness is not needed in the algorithm. We can now give an
outline of our algorithm for 2-agent local tree evacuation.

A key ingredient of the algorithm is that we use the centroid of the tree (c)
as a meeting point in each iteration. The advantage of meeting at c is that every
node of the graph is at distance at most W/2. So in particular if either agent
finds the exit, then after meeting at c they can evacuate together in additional
time at most W/2. This means we can safely assign a budget of W to each
agent for exploring the child subtrees of c, see Fig. 6. Taking these budgets into
account, the algorithm assigns child subtrees to the agents. We call the union of
the unassigned child subtrees T . Note that T is a (connected) tree rooted at c.

Another key ingredient of the algorithm is that the agent with more leftover
budget, can use its extra budget to start exploring T with a careful subroutine,
which ensures that the unexplored edges form a connected subtree whilst guar-
anteeing a certain amount of further exploration. We start by presenting this
subroutine and then we present the full algorithm.

Algorithm 3: Single Agent Lightest Subtree Algorithm (SALSA)
input : A tree G rooted at r with total weight W = w(G)

An agent with an exploration budget B = W + Δ, Δ ≤ W
output: Agent traverses a subtree of G in time at most B, starting and

finishing at r. It leaves an unexplored connected subtree rooted at r1
(possibly on an edge) with weight at most W − Δ and d(r, r1) ≤ Δ.

1 if B > w(G) then
2 if r has a single child then
3 if d(r, r.child) ≥ Δ then
4 Move Δ units along the edge e(r, r.child) and place r′ here
5 B′ = B − 2Δ
6 G′ = G \ {r} ∪ {r′}
7 else
8 r′ = r.child
9 Go to r′

10 B′ = B − 2d(r, r′)
11 G′ = G \ {r}
12 else
13 Traverse lightest (lowest total weight) unexplored child subtree T1 of r

with DFS
14 r′ = r
15 B′ = B − 2w(T1)
16 G′ = G \ T1 ∪ {r}
17 Call SALSA(G′, r′, B′)
18 Go back to r

19 else
20 r1 = r
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Lemma 12. Algorithm3 is correct. That is, it always terminates, the agent
traverses a subtree of G rooted at r in total time at most B, and the agent leaves
an unexplored connected subtree rooted at r1 with total weight at most W − Δ
and d(r, r1) ≤ Δ.

See Fig. 5(a) for an illustration of Algorithm3 and see Fig. 5(b) for an example
showing that the analysis in Lemma 12 is tight.

r

r1

v3 r2

v4

v5

1

2 1

7
9

(a)

r

r1

v2
v3

Δ + 2ε

W−Δ
2

− ε
W−Δ

2
− ε

(b)

Fig. 5. (a) Illustration of SALSA. Let W = 20 and Δ = 5. Budget B = 20 + 5. First,
the agent goes to r1, then v3, then r2 and has budget B′ = 25 − 8 = 17 left. The
unexplored graph has weight w(G′) = 16 < B′, so the agent continues by exploring the
lightest child subtree, v4. Since B′ = 17 ≥ 2(7), this is fine. After this, the agent does
not have enough budget to explore further. Total budget used is 2(11) = 22 ≤ 25 and
the agent leaves an unexplored subtree of weight 9. This is less than W − Δ = 20 − 5,
as claimed in Lemma 12. (b) Worst case scenario showing that W − Δ is tight for the
weight of the unexplored subtree. Budget is B = W +Δ. After moving to r1, the agent
has budget B′ = W + Δ − 2(Δ + 2ε) < 2

(
W−Δ

2
− ε

)
left, so it can explore neither v2

nor v3. Instead the agent returns to r and r1 becomes the new root.

Proof. We prove that before each recursive call of the algorithm, G′ is an unex-
plored connected tree and its weight has decreased by at least the same amount
as the decrease in Δ′ = B′ − W ′, where W ′ = w(G′). In addition, we have to
show the agent’s movements never exceed the budget B′. By recursively calling
the algorithm until termination, this proves the lemma.

If r has a single child further away than Δ, then we are done since the agent
can simply explore up to distance Δ along the edge and then return to r. This
leaves an unexplored connected subtree rooted at r′ as required. Clearly the
budget is enough to do this and go back to r, since B = W + Δ ≥ 2Δ.
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If r has a single child closer than Δ, then the agent can move to the child
at a cost of d := d(r, r.child). The agent will incur the same cost again when
returning to r at the end so we decrease the budget by 2d. Note that G′ is still
an unexplored connected subtree. Moreover the weight of G′ is d smaller than
the weight of G at the start of the call. So we have

W ′ = w(G′) = W − d

B′ = B − 2d = W + Δ − 2d = W ′ + (Δ − d)

which implies Δ′ = Δ − d.
For the remaining cases, we use the fact that a node r can have at most

1 child subtree of total weight greater than 1
2 (W + Δ). This is clear, else G

would have weight greater than W + Δ ≥ W , which is not possible. Therefore
we always have enough budget in line 13 of the algorithm to explore the lightest
unexplored child subtree T1. Since we explore a whole child subtree T1 and leave
all other child subtrees unexplored, G′ is still an unexplored connected subtree.
The weight of G′ has decreased by w(T1) at a cost of 2w(T1) budget, and the
agent does not have to traverse any of T1 on the way back to r at the end. So
with d = w(T1) we have the same equations as above.

Finally note that when we explore a whole child subtree, then we do not
increase d(r, r′), but we do decrease Δ′; and when we explore an edge, then we
increase d(r, r′) by the same amount as we decrease Δ′. Therefore we ensure
that we always have d(r, r′) ≤ Δ. ��

Theorem 13. Algorithm4 (CMA) has an approximation ratio of exactly 3/2
for 2-agent local evacuation on trees.

Proof. We include a lower bound example for the approximation ratio in the full
version of the paper. Similarly, an algorithm for finding the centroid of a tree
can be found in the full version.

For the upper bound we show that in each iteration of Algorithm4 the agents
explore the graph with a time to weight ratio of at most 3

2 . Moreover after every
iteration the agents are left with an unexplored connected tree G′, rooted at
r′, with both agents located at r′. And in the final iteration, when the agents
evacuate, they find the exit and evacuate in time at most 3

2w(G′). Combining
these claims, we can conclude that the agents find the exit and evacuate in time
at most 3

2W . Together with Corollary 3 this proves the theorem.
We denote the child subtrees of the centroid by {Tr′ , T1, T2, . . . , Tk}, where

the degree of the centroid is k + 1 and Tr′ is the subtree containing the starting
node r′. If r′ = c, Tr′ is the empty set and c has degree k. The child subtrees T1 to
Tk are ordered by increasing weight, i.e., w(Ti) ≥ w(Ti−1) for all i ≥ 2. Note that
by definition of the centroid w(Ti) ≤ W/2 for all i = r′, 1, . . . , k. The algorithm
assigns Tr′ to agent 1. The algorithm then assigns each subtree in decreasing
order of weight to the two agents, preferring always agent 1. Let W1 and W2

denote the total weights of subtrees assigned to agents 1 and 2 respectively.
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Algorithm 4: Centroid Meeting Algorithm (CMA)
input : A tree G with 2 agents at its root r with total weight W
output: The agents explore and evacuate the graph

1 G′ = G, r′ = r
2 while the exit is not found do
3 Find the centroid of G′ and call it c. Let d = d(r′, c)
4 Agent 1 gets a budget of B1 = w(G′)
5 Agent 2 gets a budget of B2 = w(G′)
6 We assign the child subtrees of c to the agents as follows
7 begin
8 We assign the child subtree Tr′ containing r′ to agent 1 and decrease

the agent’s budget by 2w(Tr′) − d (if r′ = c, we choose Tr′ to be an
empty set)

9 While agent 1’s budget allows, we assign the unassigned child subtrees
of c to agent 1 in decreasing order of weight, always at cost 2 times the
weight

10 We decrease agent 2’s budget by d (cost to get to c)
11 While agent 2’s budget allows, we assign the unassigned child subtrees

of c to agent 2 in decreasing order of weight, always at cost 2 times the
weight

12 Let T be the union of the remaining unassigned subtrees

13 Agents 1 and 2 explore their assigned subtrees in parallel, finishing at c
14 Let b be the first agent to arrive at c at time tb, let a be the second agent to

arrive at ta and let B = ta − tb

15 if B > w(T ) then
16 Agent b starts to explore T using SALSA with budget B (while agent a

finishes)
17 G′, r′ = unexplored connected subtree and its root returned by SALSA
18 The agents meet at c and go to r′

19 else
20 Agent b waits for agent a at c
21 G′ = T , r′ = c

22 The agents meet at c and go directly to the exit

Agent 1 can fully explore its subtrees and reach c at time 2W1 − d, where
d := d(r′, c) is the distance from the starting node to the centroid. Agent 2 can
fully explore its subtrees and reach c at 2W2 + d.

Claim: W1 + W2 ≥ W/2

Assume the claim is not true for a contradiction, and W1 + W2 < W/2. Since
w(Ti) ≤ W/2 for all child subtrees, we must have at least two child subtrees
T1 and T2, which cannot be explored by either agent. We can assume w(T1) ≤
w(T2). Then since W1 + W2 + w(T1) + w(T2) ≤ W , we must have 2w(T1) ≤
W − (W1 + W2). And since T1 does not fit into either agent’s budget, we have
the inequalities
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(a) Case 1: w(T ) < B
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(b) Case 2: w(T ) ≥ B

Fig. 6. Illustration of the two cases in Algorithm 4. In case 1, the agent with more
budget left explores T with SALSA. In case 2, the agents do not explore T in this
iteration.

2W1 − d + (W − (W1 + W2)) ≥ 2W1 − d + 2w(T1) > W

2W2 + d + (W − (W1 + W2)) ≥ 2W2 + d + 2w(T1) > W

which by adding up imply 2W > 2W . Since this is a contradiction, we conclude
that the claim is true.

Among the two agents, let agent a have a larger exploration time than agent b.
Then we know the following about their respective exploration times ta and tb.

ta = max{2W1 − d, 2W2 + d}
tb = min{2W1 − d, 2W2 + d}

ta + tb = 2(W1 + W2) ≥ W (1)
ta + tb + 2w(T ) = 2W (2)

We now consider the two cases from the algorithm (see Fig. 6):

Case 1: B > w(T )

In this case agent b explores T using SALSA with budget B = ta − tb. We can
apply Lemma 12 and we know that agent b can explore an additional weight of
at least Δ = B − w(T ) = ta − tb − w(T ), leaving an unexplored subtree rooted
at the new root r′ (reassigned in line 17) at distance d(c, r′) ≤ Δ.
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Before the end of the iteration, the agents meet at the centroid c and then
move to the new root r′. Using the above equations, we show that the iteration
has efficient exploration with a time to weight ratio of at most 3

2 :

total explored =
ta + tb

2
+ (ta − tb − w(T ))

time = ta + (ta − tb − w(T ))

time
total explored

=
4ta − 2tb − 2w(T )
3ta − tb − 2w(T )

(2)
=

5ta − tb − 2W

4ta − 2W

(1)

≤ 6ta − 3W

4ta − 2W
=

3
2

Case 2: B ≤ w(T )

In this case we argue that even without any extra exploration by SALSA, the
agents must have already explored efficiently with a time to weight ratio of at
most 3

2 . By our claim, we have

ta − tb ≤ w(T ) ≤ W

2

(1)

≤ 1
2

(ta + tb) .

Adding ta + tb to the left and right sides we get 2ta ≤ 3(ta + tb)/2. The agents
have explored (ta + tb)/2 in time ta giving

time
total explored

=
2ta

ta + tb
≤ 3

2
.

Thus we have shown that exploration is done with the required efficiency in
each iteration. What remains to be shown is that in the final iteration, the agents
find the exit and evacuate in time at most 3

2w(G′). However this is clear from the
choice of the meeting location c and the budgets w(G′). Since the agents meet
at the centroid, any exit they find in the current iteration can be at a distance of
at most 1

2w(G′). And since they both arrive by t = w(G′), the evacuation time
can be at most 3

2w(G′) as required. ��
We finish with a lower bound on the worst case ratio between two agents

with global communication versus two agents with local communication. Clearly,
agents with global communication can always do at least as well as agents with
local communication. However, what about in the worst case? How much worse
can local communication be? We return to Fig. 4 to give an example where OPTL

is strictly larger than OPTW . Recall that OPTW = 6 and that any strategy
visiting v1 last would give an evacuation time of at least 8. Therefore with local
communication we also explore v1 and v3 first. But now the agents have to meet
at r to share the information; if they meet at v2 it will be too late. But meeting
at r leaves v4 and v5 unexplored, and the agents will have worst case evacuation
time of 8, giving OPTL = 8.

Together with Theorem 13 and Lemma 3, we bound the worst case ratio of
local communication over global communication between 4/3 and 3/2.
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6 Conclusion

To the best of our knowledge, our work is the first that considers evacuating
two agents from a tree through a single unknown exit. We first show that the
problem is NP-hard, motivating the search for approximation algorithms. Our
main results are a 4/3-approximation algorithm for the global communication
setting and a 3/2-approximation algorithm for the local communication setting.

The paper leaves a multitude of open questions for further research. One
could search for better approximation algorithms to improve the approximation
ratios. One could consider other communication models, such as blackboard
communication [27] or communication with a limited radius. This paper focused
on trees, but one could look at other graph classes. One could look at the case
with more agents (k > 2) or different objectives, e.g., minimizing the average
exit time of the agents. One could also consider the stochastic setting, where
the exit is at a given node with some predetermined probability and the agents
minimize the expected evacuation time. One could even look at a game theoretic
scenario, where agents behave selfishly and do not go out of their way to inform
the other agents about the exit location. How would this change the exploration
strategy?

Acknowledgements. We would like to thank Nicolas Marxer and Tobias Zwahlen
for fruitful discussions and the anonymous reviewers for their helpful comments.
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Abstract. We study the problem of treasure hunt in a graph by a mobile
agent. The nodes in the graph are anonymous and the edges at any node
v of degree deg(v) are labeled arbitrarily as 0, 1, . . . , deg(v)−1. A mobile
agent, starting from a node, must find a stationary object, called treasure
that is located on an unknown node at a distance D from its initial posi-
tion. The agent finds the treasure when it reaches the node where the
treasure is present. The time of treasure hunt is defined as the number
of edges the agent visits before it finds the treasure. The agent does not
have any prior knowledge about the graph or the position of the treasure.
An Oracle, that knows the graph, the initial position of the agent, and
the position of the treasure, places some pebbles on the nodes, at most
one per node, of the graph to guide the agent towards the treasure.

We target to answer the question: what is the fastest possible treasure
hunt algorithm regardless of the number of pebbles are placed?

We show an algorithm that uses O(D log Δ) pebbles to find the trea-
sure in a graph G in time O(D log Δ+log3 Δ), where Δ is the maximum
degree of a node in G and D is the distance from the initial position of
the agent to the treasure. We show an almost matching lower bound of
Ω(D log Δ) on time of the treasure hunt using any number of pebbles.

Keywords: Treasure hunt · Mobile agent · Anonymous graph ·
Pebbles

1 Introduction

1.1 Model and Problem Definition

Treasure hunt by a mobile agent is a well-studied problem in networks and related
areas. A mobile agent, starting from an initial position, has to find a stationary
object, called treasure. In practice, a treasure can be a missing person in a
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dark cave and a mobile robot must find the person. In networks applications,
a software agent must find a computer virus or valuable data resource in a
computer connected in a network.

The network is modeled as a graph where the nodes are unlabeled. The edges
at a node v of degree deg(v) are labeled as 0, 1, . . . , deg(v) − 1 arbitrarily. Thus,
each edge has two port numbers associated with it at each of its incident vertices.
A mobile agent, starting from a node, must find the treasure which is situated
in an unknown node at distance D. The agent have no prior knowledge about
the network or the value of D. The agent finds the existence of the treasure
only when it reaches the node where the treasure is situated. The agent moves
according to a deterministic algorithm where at each node, it chooses a port
and move to the next node using the chosen port. At the start, the agent only
knows the degree of the initial node. From a node u, when the agent reaches
node v by using the port p at u, it learns the degree of the node v, and the
port q at v through which it reaches v. For a network with maximum degree Δ,
using a simple depth first search based algorithm, the agent can find the treasure
in time O(ΔD). But many practical applications required a faster treasure hunt
algorithm. For example, consider the application of finding a person inside a mine
by a mobile robot. The person may be lost and injured due to a sudden accident
and therefore he or she must be found as fast as possible. In such scenarios,
some external help is provided to the robot/agent in order to guide it towards
the desired location faster. Two kind of external helps are mentioned in literature
while solving network related problems using single of multiple agents. The first
kind, such external help is provided to the agent by an oracle which gives some
additional information in the form of a binary string, called advice [15,20]. One
other way of providing this external help is to assign small labels to the nodes
of the graph [9] such as road signs that may help to guide the agent(s) to follow
a desired path. In this paper, we consider the second type of scenario where
pebbles can be placed at the nodes as external information. An agent, looking
at the placement of the pebbles, learns in which way it must traverse to find the
treasure. To be specific, we consider the problem where some pebbles are placed
in some nodes of the network by an oracle who knows the initial position of the
agent and the position of the treasure. The position of the pebbles guides the
agent towards the treasure. At any node, at most one pebble can be placed. The
agent can see a pebble only after reaching that node. In this paper, we study
what is the fastest possible algorithm for treasure hunt in anonymous graphs
with pebbles. To be specific, we aim design the fastest algorithm for treasure
hunt when any number of pebbles can be placed in the network.

1.2 Our Results

➤ We present an algorithm that finds the treasure in an anonymous graph in
O(D log Δ+log3 Δ)-time using O(D log Δ) pebbles, where Δ is the maximum
degree of a node in the graph and D is the distance from the initial position
of the agent to the treasure.
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➤ We prove that even if we supply any number of pebbles, any algorithm
must require Ω(D log Δ)-time to find the treasure in an anonymous graph.

Due to lack of space, all the proofs of the theorems and lemmas, and all the
figures are omitted. The details can be found in [14].

1.3 Related Work

Treasure hunt by a mobile agent is well-studied [3,6,7,10,12,17,20,24] during
the last few decades. In [3], Beck et al. introduced the problem of deterministic
treasure hunt on a line. The authors proposed a deterministic algorithm with
competitive ratio 9 and proved that this ratio is the best that can be achieved
in case of line. A generalized version of [3] was studied by Demaine et al. [10] by
considering cost of turns that agent makes along with the cost of the trajectory.
Bouchard et al. [7] considered the treasure hunt problem in plane and showed a
much improved bound with the assumption of angle information.

In the book [1], several problems related to treasure hunt are discussed. Most
of the algorithms surveyed in this book are randomized. One such is the random-
ized treasure hunt in a star, where the treasure is present in one of the m rays
passing through a common point [17]. In [20,24], it is shown that the problem
of treasure hunt and the problem of rendezvous in graphs are closely related.
Ricardo et al. studied the problem of finding an unknown fixed point on a line
and in a grid [2]. More generalized studies are done in [16,18], where the objec-
tive is to search an unknown line in a plane. The author studied the problem
of finding a target in a ring in [23] by multiple selfish agents participates and a
game theoretic solution is proposed. Also, treasure hunt in a plane and in a grid
by multiple agents are studied in [12,13,19]. In [12,19], the agents are considered
to have bounded memory. Treasure hunt in plane is studied in [22] in the advice
model. Treasure hunt in a tree network is studied in [4], where random faulty
hints are provided to the agents. Treasure hunt in arbitrary graph is also studied
in [6] considering the agent has unlimited memory. The game of pursuit-evasion,
a closely related problem to treasure hunt, is considered in [5,8], where set of
pursuers try to catch a fugitive trying to escape. Also treasure hunt in terrain in
presence of obstacles was introduced in [21]. Another related problem is graph
exploration and Disser et al. [11] recently proved a tight bound on number of
pebbles required for a single mobile agent with constant memory to explore an
undirected port labelled graph.

2 The Treasure Hunt Algorithm

In this section, we provide an O(D log Δ+log3 Δ)-time algorithm for the treasure
hunt problem using O(D log Δ) pebbles.

Let G be a graph with maximum degree Δ ≥ 210. If Δ < 210, then the
algorithm described for the case when all nodes on the path from s to t are of
‘small’ degree (these small degree nodes are defined as light nodes later) can be
applied.
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Let s, t ∈ G be the starting point of the agent, and position of the treasure
in G, respectively. Let P be the shortest path between s and t of length D.
Without loss of generality, we assume that the degree of the node s is at least
2. Otherwise, the first degree-3 node along P starting from s can be considered
as the starting position of the agent. For any node v ∈ G, by deg(v), we denote
the degree of the node v. Let αv = 1 + �log deg(v)�. For any node w ∈ G, by
w(0), w(1), . . . , w(deg(w) − 1), we denote the neighbors of w that are connected
through port numbered 0, 1, . . . , deg(w)−1, at w respectively. For any two strings
Γ1 and Γ2, by ‘Γ1 · Γ2’, we mean concatenation of Γ1 and Γ2. For any binary
string Γ , by Γ (i, j), we denote the substring of Γ starting from the i-th bit of
Γ to the j-th bit of Γ . For two nodes u, v ∈ G, we denote the shortest distance
between u and v in G by dist(u, v).

Before providing the formal description of the algorithm, we give a high level
idea of the pebble placement and discuss how these pebbles guide the agent
towards the treasure. To help the reader understand the algorithm better, we
describe the idea for trees first and then generalize this idea for general graphs.

High Level Idea of the Algorithm in a Tree Network: Here we assume
that G is a rooted tree with root s. Let Li be the set of nodes that are at distance
i from s. Let P = (s =) v0, v1, . . . , vD−1, vD (= t) be the path from s to t, and
let p0, p1, . . . , pD−1 be the sequence of port numbers corresponding to the path
P such that from the node v�, the node v�+1 can be reached by taking the edge
with port number p�. For any node v ∈ Lj , let its i-th neighbor be the adjacent
node in Lj+1 to which v is connected via i-th largest port going to Lj+1. The
pebbles are placed at the children of the nodes in P such that the placement
of the pebbles corresponds the binary representation of the port numbers along
the shortest path from the current node. To be more specific, let b0b1 . . . bm−1

be the binary representation of the integer pj , where m = 1 + �log deg(vj)�.
For 0 ≤ i ≤ m − 1, place a pebble at i-th neighbor of vj , if bi = 1. Hence,
from the point of view of a node vj ∈ Li, each of its neighbors in Li+1 either
contains a pebble or does not contain a pebble. Visiting each of the neighbor
in increasing order of the port numbers and ignoring the port that connects to
the parent of the current node, the agent, from the current node, can learn the
binary representation of the integer pj , by realizing a node with pebble as ‘1’
and a node without pebble as ‘0’. Hence, the placement of pebbles in the above
manner helps us to “encode” the port labeled path from s to t and the agent,
with the help of this encoding, learn the port numbers from each node in P that
leads to the next node towards the treasure.

Extending the Idea for General Graphs: The above method of pebble place-
ment for trees can not be directly extended to general graphs. This is because
in a rooted tree, no two nodes have common children. Hence, once the encod-
ing is done after placing the pebbles, the agent can unambiguously decode this
encoding. However, in the case of graphs, two consecutive nodes on P may have
neighbors in common. Hence, if a pebble is placed on such a common neighbor,
the agent can not distinguish for which node the pebble is placed. Also, since
the nodes are anonymous, there is no way the agent can identify whether it is
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visiting a node that is a common neighbor to the previous or next node. We
resolve this difficulty by encoding in the neighbors of a set of “high”degree nodes
that do not share neighbors. These nodes are called milestones (we define this
formally later). The details are explained below.

We say that a node is heavy if its degree is at least 80�log Δ� + 106 (the
reason for choosing this magical number is discussed in Remark 1). Otherwise,
we say that the node is light. Let T be the breadth first search (BFS) tree, rooted
at s, and for 0 ≤ i ≤ D, let Li denotes the set of nodes that are at a distance i
from s. Clearly, s ∈ L0, and t ∈ LD. Let P = (s =) v0, v1, . . . , vD−1, vD (= t),
be the shortest path from s to t, and let p0, p1, . . . , pD−1 be the sequence of port
numbers corresponding to the path P such that from the node v�, the node v�+1

can be reached by taking the edge with port number p�, for 0 ≤ � < D. For
0 ≤ i ≤ D − 1, let Bi be the binary representation of the integer pi of length xi,
where xi = 1 + �log deg(vi)�.

First, consider a special case where each vi, 0 ≤ i ≤ D − 1, is light. A
simple algorithm will work in this case: place a pebble at each of the nodes vi,
for 1 ≤ i ≤ D − 1. The agent, at the starting node s, set CurrentNode = s.
At each step, the agent visits all the neighbors of the CurrentNode and move
to the neighbor v, (except the node from where it reaches to CurrentNode)
that contains a pebble. It then sets CurrentNode = v. The agent continues to
explore in this way until the treasure is found. Since all the nodes on P are light,
the time for treasure hunt is O(D log Δ). If not all nodes are light on P , then
a set of nodes called milestones are used to code the sequence of port numbers
corresponding to the path P . We define a set of nodes as milestones in a recursive
manner. To define the first milestone, we consider the following four cases based
on the position of the heavy nodes in the BFS tree T : i) the node s is heavy, ii)
the node s is light and a node in L1 is heavy, iii) all the nodes in L0 ∪ L1 are
light and a node in L2 is heavy, and iv) all the nodes in L0 ∪ L1 ∪ L2 are light
and j ≥ 3 is the smallest integer for which Lj contains a heavy node that is at a
distance 3 from vj−3. From now onward, we distinguish these four cases as Case
H, Case L-H, Case L-L-H, and Case L-L-L, respectively.

The first milestone is defined based on the above four cases as follows.

– Case H: milestone1 = s.
– Case L-H: Let w be the node with maximum degree in L1. If multiple nodes

with maximum degree exists, then w is chosen as the node to which s is
connected by the edge with minimum port number. Set milestone1 = w.

– Case L-L-H: Let w be the node with maximum degree in L2. If multiple
nodes with maximum degree exists, then w is chosen as the node to which s
is connected by a path of length 2 which is lexicographically shortest among
all other paths to nodes with same degree. Set milestone1 = w.

– Case L-L-L: If j = 4, and v1 ∈ {s(0), s(1)}, then consider the set W =
{w ∈ Lj |dist(s(0), w) = 3 or dist(s(1), w) = 3}. Let w be the node in W
whose degree is maximum among all nodes in W . If multiple nodes with
maximum degree exists, then the node with maximum degree to which s
is connected via lexicographically shortest path of length 4 is chosen as w.
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Set milestone1 = w. On the other hand, If j > 4 or v1 �∈ {s(0), s(1)}, let
W = {w ∈ Lj |dist(vj−3, w) = 3}. Let w be the node with maximum degree
in W . If multiple nodes with maximum degree exists then w is chosen as the
node to which vj−3 is connected by a path of length 3 that is lexicographically
shortest among all other nodes with same degree. Set milestone1 = w.

The subsequent milestones are defined recursively as follows. For i ≥ 1, let
milestonei ∈ Lj . The first heavy node on P that is at a distance at least 3 from
vj is defined as milestonei+1.

Intuitively, we encode in the neighbors of the milestones in a similar fashion
as described above for the case of tree network. As the milestones are at least 3
distance apart, no two of them have common neighbors and hence decoding can
be done unambiguously. However, there is another difficulty, that is the agent
does not have any knowledge about the graph and hence does not know the
value of Δ, the maximum degree of the graph. This restrict the agent to learn
whether a node is heavy or light just by looking at its degree. We overcome this
difficulty by placing some ‘markers’. By looking at these markers the agent can
identify the possible position of the first milestone. Once the agent identify the
first milestone, finding the other milestones are easy as the path towards the
next milestone is carefully coded at the neighbors of the current milestone. If s
itself is a heavy node, then it is defined as the first milestone. In order to help
the agent to learn that this is the case, two pebbles are placed at s(0), and s(1),
one at each. If s is light and a node in L1 is heavy, then a pebble is placed at
s(0) and no pebble at s(1). For Case L-L-H, a pebble is placed at s(1) and no
pebble is placed at s(0). For the Case L-L-L, no pebbles are placed in either of
the first two neighbors of s.

Another set of ‘markers’ are used to indicate the distance between two con-
secutive milestones. How these markers are placed will be explained later where
formal descriptions of the pebble placements is provided.

We give the details of the pebble placement algorithm and the corresponding
treasure hunt algorithm by the mobile agent below.

Pebble Placement: The placement of pebbles are done in three phases.

Phase 1: Placing pebbles at s(0) and s(1)

• Case H: Place one pebble each at s(0) and s(1).
• Case L-H: Place a pebble at s(0).
• Case L-L-H: Place a pebble at s(1).
• Case L-L-L: No pebble is placed either at s(0) or at s(1).

Phase 2: Placing pebbles to encode the path between milestone1 to
milestone2

• Case H: Here milestone1 is the node s itself. Notice that, two pebbles are
already placed at s(0) and s(1) during phase 1 to represent the marker corre-
sponding to Case H. The other neighbors of s are used to encode the path P ′
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from s to milestone2. To be specific, if the distance from s to milestone2 is at
most 5, then the entire path P ′ is coded in the neighbors of s. Otherwise, if the
distance from s to milestone2 is more than 5, then the first three port numbers
and the last three port numbers are encoded at the neighbors of s. The difficulty
here is to make the agent learn that how far milestone2 is from s. To overcome
this situation, another set of markers are encoded using the nodes s(2) and s(3).
The case that milestone2 is at distance 3, at distance 4, at distance 5 and at
distance at least 6 are represented by markers ‘11’, ‘10’, ‘01’, and ‘00’, respec-
tively and pebbles are placed similarly as explained in Phase 1. If milestone2
is at distance at least 6 from milestone1, the entire path from milestone1 to
milestone2 is not coded. Instead, the first three and the last three sequence of
port numbers are coded in the neighbors of milestone1. Once the agent learns
this coding, can compute the first three ports and the light nodes in between are
used to guide the agent towards milestone2. Here the difficulty is how to make
the agent learn where the encoding ends as the neighbors which are not used for
encoding may be mistaken as ‘0’s. To overcome this difficulty, instead of simple
binary encoding of the sequence of port numbers as explained in Case H, we use
a transformed binary encoding: replace every ‘1’ by ‘11’ and every ‘0’ by ‘10’ of
Γ . The advantage of this transformed encoding is that it does not contains the
substring 00. The formal pebbles placement is described based on the distance of
the second milestone as follows. Let � be an integer such that milestone2 = v�.

1. [� = 3]: Here the path from milestone1 to milestone2 is v0, v1, v2, v3 and the
corresponding sequence of port numbers is p0, p1, p2. Let Γ ′ = B0 · B1 · B2

and Γ = 11 · Γ ′.
2. [� = 4]: Here the path from milestone1 to milestone2 is v0, v1, v2, v3, v4 and

the corresponding sequence of port numbers is p0, p1, p2, p3. Let Γ ′ = B0 ·B1 ·
B2 · B3 and Γ = 10 · Γ ′.

3. [� = 5]: Here the path from milestone1 to milestone2 is v0, v1, v2, v3, v4, v5
and the corresponding sequence of port numbers is p0, p1, p2, p3, p4. Let Γ ′ =
B0 · B1 · B2 · B3 · B4 and Γ = 01 · Γ ′.

4. [� ≥ 6]: Here the path from milestone1 to milestone2 is v0, v1, . . . v� and the
corresponding sequence of port numbers is p0, p1, . . . p�. As mentioned earlier,
the sequence of port numbers p0, p1, p2, p�−3, p�−2, p�−1 is coded in this case.
Let Γ ′ = B0 · B1 · B2 · B�−3 · B�−2 · B�−1 and Γ = 00 · Γ ′.

Let Γ̂ be the transformed binary encoding of Γ and z be the length of the
string Γ̂ . For 1 ≤ i ≤ z, place a pebble on s(1 + i), if the i-th bit of Γ̂ is 1. If
� ≥ 7, then place a pebble on each of the nodes v4, . . . , v�−3.

• Case L-H: In this case, the first milestone is selected as one of the neighbor w
of s. Note that w may not be on the shortest path from s to t. For this reason we
encode the path (or a subpath of the path) from s to milestone2 in the neighbors
of w. The agent, while executing the treasure hunt algorithm, first arrives at w,
decode the path which is encoded in the neighbors of w, returns back to s and
then moves according to this learned path.
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In order to encode the path from s to milestone2, a similar approach as in
Case H can be applied. The sequence of port numbers from s to milestone2 is
encoded in the neighbors of w. As before, this is done based on the distance
from s to milestone2. However, a difficulty arises as s(0) and/or s(1) may also
be neighbors of w and there is no way for the agent to learn through which port
w is connected to s(0) or s(1). We overcome this difficulty in the following way.

Let Γ be the binary string of length z that we want to encode in the neighbors
of w. Let N1(w), N2(w), . . . , N5(w) be 5 sets of disjoint neighbors of w and the
cardinality of each set is z. Since s(0) and/or s(1) may be neighbors of w, at least
3 of these 5 neighbor sets of w does not contain both s(0) and s(1). This implies
that, if Γ is coded in each of these five sets, it is possible to code Γ correctly in
the nodes of three sets. To be specific, the nodes of each of the Ni(w) to encode
Γ , and if s(0) or s(1) appears in this set then skip the corresponding bits of Γ
while placing pebbles at the time of coding. The separation between the sets
Ni(w) can be learned by two consecutive zeros as the encoding is done using
transformed binary encoding.

The formal description of the placement of pebbles in this case is given below.
Let milestone2 = v�. Note that as per the definition of milestones, l ≥ 4.

1. [� = 4]: Here the path from s to milestone2 is v0, v1, v2, v3, v4 and the corre-
sponding sequence of port numbers is p0, p1, p2, p3. Let Γ ′ = B0 · B1 · B2 · B3

and Γ = 11 · Γ ′.
2. [� = 5]: Here the path from s to milestone2 is v0, v1, v2, v3, v4, v5 and the

corresponding sequence of port numbers is p0, p1, p2, p3, p4. Let Γ ′ = B0 ·B1 ·
B2 · B3 · B4 and Γ = 10 · Γ ′.

3. [� = 6]: Here the path from s to milestone2 is v0, v1, v2, v3, v4, v5, v6 and
the corresponding sequence of port numbers is p0, p1, p2, p3, p4, p5. Let Γ ′ =
B0 · B1 · B2 · B3 · B4 · B5 and Γ = 01 · Γ ′.

4. [� ≥ 7]: Here the path from s to milestone2 is v0, v1, . . . v� and the cor-
responding sequence of port numbers is p0, p1, . . . , p�. In this case, the
sequence of port numbers p0, p1, p2, p3, p�−3, p�−2, p�−1 is coded. Let Γ ′ =
B0 · B1 · B2 · B3 · B�−3 · B�−2 · B�−1 and Γ = 00 · Γ ′.

Let Γ̂ be the transformed binary encoding of Γ and z is the length of Γ̂ . Let
Ni(w), for 1 ≤ i ≤ 5, be the set z consecutive neighbors of w starting from
the node w((i − 1)(z + 2)). To be specific, Ni(w) = {w((i − 1)(z + 2)), w((i −
1)(z + 2) + 1), . . . , w(((i − 1)(z + 2) + z − 1)}. For each i, 1 ≤ i ≤ 5, pebbles
are placed at the nodes of Ni(w) as follows. For 1 ≤ a ≤ z, if the a-th bit
of Γ̂ is 1, then place a pebble at the node w((i − 1)(z + 2) + a − 1) only if
w((i − 1)(z + 2) + a − 1) �∈ {s(0), s(1)}. If � ≥ 8, then place a pebble at each of
the nodes v5, . . . , v�−3.

• Case L-L-H: The placement of pebbles in this case is similar to the placement
in Case L-H. The path coded in the neighbors of w is a subpath of the path
P starting from s. As before, depending on the position of the milestone2,
different sequences of port numbers are coded in the neighbors of milestone1.
Since milestone1 ∈ L2 in this case, s(0), s(1) may be connected to milestone1.
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For this reason, as before, the subpath is coded in five disjoint sets of neighbors
of milestone1.

Formal description of placements of pebbles in this case in described below.
Let milestone2 = v�. As per the definition of milestones, � ≥ 5.

1. [� = 5]: Here the path from s to milestone2 is v0, v1, v2, v3, v4, v5 and the
corresponding sequence of port numbers is p0, p1, p2, p3, p4. Let Γ ′ = B0 ·B1 ·
B2 · B3 · B4 and Γ = 11 · Γ ′.

2. [� = 6]: Here the path from s to milestone2 is v0, v1, v2, v3, v4, v5, v6 and
the corresponding sequence of port numbers is p0, p1, p2, p3, p4, p5. Let Γ ′ =
B0 · B1 · B2 · B3 · B4 · B5 and Γ = 10 · Γ ′.

3. [� = 7]: Here the path from s to milestone2 is v0, v1, v2, v3, v4, v5, v6, v7 and
the corresponding sequence of port numbers is p0, p1, . . . , p�. In this case, the
sequence of port numbers p0, p1, p2, p3, p4, p5, p6 is coded. Let Γ ′ = B0 · B1 ·
B2 · B3 · B4 · B5 · B6 and Γ = 01 · Γ ′.

4. [� ≥ 8]: Here the path from s to milestone2 is v0, v1, . . . v� and the corre-
sponding sequence of port numbers is p0, p1, . . . , p�. In this case, the sequence
of port numbers p0, p1, p2, p3, p4, p�−3, p�−2, p�−1 is coded. Let Γ ′ = B0 · B1 ·
B2 · B3 · B4 · B�−3 · B�−2 · B�−1 and Γ = 00 · Γ ′.

Let Γ̂ be the transformed binary encoding of Γ and z is the length of Γ̂ .
Let Ni(w), for 1 ≤ i ≤ 5, be the set z consecutive neighbors of w starting from
the node w((i − 1)(z + 2)). To be specific, Ni(w) = {w((i − 1)(z + 2)), w((i −
1)(z + 2) + 1), . . . , w(((i − 1)(z + 2) + z − 1)}. For each i, 1 ≤ i ≤ 5, pebbles
are placed at the nodes of Ni(w) as follows. For 1 ≤ a ≤ z, if the a-th bit
of Γ̂ is 1, then place a pebble at the node w((i − 1)(z + 2) + a − 1) only if
w((i − 1)(z + 2) + a − 1) �∈ {s(0), s(1)}. If � ≥ 8, then place a pebble at each of
the nodes v5, . . . , v�−3.

Remark 1. It can be noted that maximum of 8 port numbers must be coded
in this case in each of the five disjoint sets of neighbors of milestone1. The
transformed binary representation of each port can be of at most 2(1 + �log Δ�)
length. Also, two bits are used as marker to represent the distance between first
and second milestones. Hence in each set, a string of length 16(1 + �log Δ�) + 2
is coded. Therefore, over all, among 5 sets, the nodes that are used to code the
sequences of port numbers is 80�log Δ� + 90. Also there are two zeros must be
coded in between two consecutive sets to show separations between them and at
the end at least 8 nodes kept blank (this is because if s(1) appears in one of the
first 4 blank nodes after these 5 sets). Hence the degree of milestone1 must be at
least 80�log Δ� + 106. Since every milestone is heavy, and Δ ≥ 210 (for Δ ≥ 210,
Δ ≥ 80�log Δ� + 106), therefore, such a coding can be done in the neighbors of
milestone1.

• Case L-L-L: This is the case where the two nodes s(0) and s(1) that are
used for markers are not connected to milestone1 as milestone1 ∈ Lj , for some
j ≥ 3. Hence, it is easy to code the paths in the neighbors of milestone1 like
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Case H. The only difference here is, the subpath coded is a path starting from
vj−3. Depending on the position of milestone2, either the sequence of port num-
ber corresponding to the entire path from vj−3 to milestone2 or the sequence
pj−3, pj−2, pj−1, pj , pj+1, pj+2, and the last three ports before milestone2 are
coded. For every light nodes starting from v1 to vj−3, a pebble is placed on these
nodes that guides the agent towards milestone1. One more difficulty here is the
case when v1 ∈ {s(0), s(1)}, as we can not place a pebble in any of the nodes
s(0), s(1), otherwise it is not possible to recognize the Case L-L-L. To overcome
this difficulty, we place a pebble at s, if milestone1 ∈ L3. Now, the agent, start-
ing from s, first identify the Case L-L-L by not seeing any pebbles in s(0), and
s(1). If s contains a pebble, the agent learns that milestone1 ∈ L3. The coding
in the neighbors of milestone1 is done in the same way as described for Case H.

The formal description of the pebble placement is as follows. Let j be the
integer such that w = milestone1 ∈ Lj and let � be the integer such that
milestone2 = v�.

1. [� − j = 3]: Here the path from vj−3 to milestone2 is vj−3, vj−2, vj−1, vj ,
vj+1, vj+2, vj+3 and the corresponding sequence of port numbers is pj−3,
pj−2, pj−1, pj , pj+1, pj+2. Let Γ ′ = Bj−3 · Bj−2 · Bj−1 · Bj · Bj+1 · Bj+2 and
Γ = 11 · Γ ′.

2. [� − j = 4]: Here the path from vj−3 to milestone2 is vj−3, vj−2, vj−1, vj ,
vj+1, vj+2, vj+3, vj+4 and the corresponding sequence of port numbers is
pj−3, pj−2, pj−1, pj , pj+1, pj+2, pj+3. Let Γ ′ = Bj−3 · Bj−2 · Bj−1 · Bj · Bj+1 ·
Bj+2 · Bj+3 and Γ = 10 · Γ ′.

3. [� − j = 5]: Here the path from vj−3 to milestone2 is vj−3, vj−2, vj−1, vj ,
vj+1, vj+2, vj+3, vj+4, vj+5 and the corresponding sequence of port numbers
is pj−3, pj−2, pj−1, pj , pj+1, pj+2, pj+3, pj+4. Let Γ ′ = Bj−3 · Bj−2 · Bj−1 · Bj ·
Bj+1 · Bj+2 · Bj+3 · Bj+4 and Γ = 01 · Γ ′.

4. [� − j ≥ 6]: Here the path from vj−3 to milestone2 is vj−3, vj−2 . . . v�

and the corresponding sequence of port numbers is pj−3, pj−2, . . . p�−1.
Here, the sequence of port numbers pj−3, pj−2, pj−1, pj , pj+1, pj+2, pj+3,
p�−3, p�−2, p�−1 is coded. Let Γ ′ = Bj−3 · Bj−2 · Bj−1 · Bj · Bj+1 · Bj+2 ·
Bj+3 · B�−3 · B�−2 · B�−1 and Γ = 00 · Γ ′.

Let Γ̂ be the transformed binary encoding of Γ and z be the length of the
string Γ̂ . For 1 ≤ a ≤ z, place a pebble at w(a − 1) if the a-th bit of Γ̂ is 1.
If � − j ≥ 7, then place a pebble at each of the nodes vj+4, . . . v�−3. Also, for
2 ≤ i ≤ j − 3, place a pebble at each of the node vi. If j = 4, place a pebble at
s. If v1 �∈ {s(0), s(1)}, then place a pebble at v1.

Phase 3: Placing pebbles to encode paths between other milestones
The coding of the paths between milestonej to milestonej+1, for j ≥ 2 are done
in the similar fashion as described in Case H. The only difference here is the
encoding is done in the neighbors of milestonej starting from milestonej(0).
For the last milestone, the path from the last milestone to the treasure is coded
in the same way as described for the other cases.
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Let the total number of milestones be y. For m = 2, 3, . . . , y − 1, let vj be
the node on P such that milestonem = vj and milestonem+1 = v�. For m = y,
set � = t.

1. � − j ≤ 3 then � ≤ j + 3. The path from vj to v� is vj , vj+1 . . . v� and
the corresponding sequence of port numbers is pj , pj+1, . . . , p�−1. Let Γ ′ =
Bj · Bj+1 · · · B�−1 and Γ = 11 · Γ ′.

2. � − j = 4 then � = j + 4. The path from vj to v� is vj , vj+1, vj+2, vj+3, vj+4

and the corresponding sequence of port numbers is pj , pj+1, pj+2, pj+2, pj+3.
Let Γ ′ = Bj · Bj+1 · Bj+2 · Bj+3 and Γ = 10 · Γ ′.

3. � − j = 5 then � = j + 5. The path from vj to v� is vj , vj+1, vj+2,
vj+3, vj+4, vj+5 and the corresponding sequence of port numbers is pj , pj+1,
pj+2, pj+2, pj+3, pj+4. Let Γ ′ = Bj ·Bj+1 ·Bj+2 ·Bj+3 ·Bj+4 and Γ = 10 ·Γ ′.

4. If �−j ≥ 6, and � �= t then let Γ ′ be the binary representation of the sequence
of port numbers pj , pj+1, pj+2, p�−3, p�−2, p�−1. If � = t then Γ is the binary
representation of the sequence of port numbers pj , pj+1, pj+2. Γ = 00 · Γ ′.

Let Γ̂ be the transformed binary encoding of Γ and z be the length of Γ̂ . For
1 ≤ a ≤ z, place a pebble at w(a − 1) if the a-th bit of Γ is 1. If � − j ≥ 7, then
place a pebble at each of the nodes vj+4, . . . vt−3. If � = t, then place a pebble
at each of the nodes vt−2 and vt−1.

Treasure Hunt by the Mobile Agent. The agent follows the algorithm
TreasureHunt (Algorithm1) to find the treasure. Starting from the node s, it
first visits the two nodes s(0) and s(1). If pebbles are found at both the nodes,
then the agent follows Subroutine H; If a pebble is found at s(0) but no pebble
is found at s(1), then the agent follows Subroutine L-H; If a pebble is found at
s(1) but no pebble is found at s(0), then the agent follows Subroutine L-L-H,
otherwise the agent follows Subroutine L-L-L if no pebbles are found in either
of these two nodes.

Algorithm 1: TreasureHunt

1 Starting from s, the agent visits two nodes s(0), and s(1) one by one and comes
back to s.

2 if Both the nodes s(0), and s(1) contains a pebble each then
3 Subroutine H (Algorithm 2)
4 else if s(0) contains a pebble and s(1) does not contain any pebble then
5 Subroutine L-H (Algorithm 3)
6 else if s(0) does not contain any pebble and s(1) contains a pebble then
7 Subroutine L-L-H (Algorithm 4)
8 else if Neither s(0) nor s(1) contains a pebble then
9 Subroutine L-L-L (Algorithm 5)
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Algorithm 2: Subroutine H

1 CurrentNode = s.
2 The agent visits the neighbors of s starting from s(2), in the increasing order of

the port number through which s is connected to them until it finds two
consecutive neighbors where no pebbles are placed.

3 Let Γ̂ = b2b3 . . . bz be the binary string where bi is 1 if a pebble is found at s(i)
and the last two nodes visited in the previous step by the agent are s(z + 1) and
s(z + 2). Let Γ be the string such that Γ ′ is the transformed binary encoding of
Γ .

4 CurrentIndex = 3. MinDistance = 3
5 FindNextMilestone(b2, b3, Γ, MinDistance) (Algorithm 7)
6 Progress(CurrentNode) (Algorithm 8)

If two pebbles are found at each of the nodes s(0) and s(1), the agent
learns that s is heavy. According to Subroutine H, the agent visits the nodes
s(2), s(3), . . . until it found two nodes s(z + 1) and s(z + 2) such that no peb-
bles are found in both of these nodes. Let Γ̂ = b2b3 . . . bz be the binary string
such that bi = 1 if a pebble is found at s(i), else bi = 0. Let Γ be the string
obtained from Γ̂ by replacing each ‘11’ by ’1’ and each ‘10’ by 0 of Γ̂ from
left to right, taking two bits at a time. The first two bits of Γ represents the
distance of milestone2 from s. The agent, knowing the degree of s, compute
αs = 1 + �log deg(s)�. Let q0 be the integer that is represented by the substring
Γ (3, 4 + αs). The agent moves along the port p to reach the node v1. Once it
moves to v1, it learns its degree and computes αv1 . It then compute the integer
q1 that is coded in the substring Γ (5+αs, 6+αs +αv1). The agent moves along
the port q1 to reach the node v2. The agent continues to move this way dis-
tances 3,4,5, if the first two bits represent the markers ‘11’,‘10’,‘01’, respectively
to reach milestone2. For the marker ‘00’ represented by s(2) and s(3), the agent
moves distance 3 as per the above strategy, to reach a node v3. It then visits
all the neighbors of v3 and move to the neighbor that contains a pebble. This
process continues until for a node, none of its neighbors contains any pebble.
In this case, the agent retrieve the next three ports encoded in the rest of the
substring of Γ , one by one and moving to the respective node and move along
three edges to reach to milestone2.

If a pebble is found in s(0) but no pebble is found in s(1), the agent learns
that milestone1 ∈ L1. In this case, it executes Subroutine L-H. The agent
visits all the neighbor of s and finds the neighbor w with maximum degree.
In case of tie, the agent moves to the node with maximum degree to which s is
connected via smallest port number. This node w is milestone1. The agent, after
moving to w from s, starts visiting all the neighbors of w one by one until it finds
four consecutive neighbors w(z), w(z + 1), w(z + 2), and w(z + 3) none of which
contain any pebble. The agent construct the binary string Γ ′ = b0b1 . . . bz−1,
where bi = 1 if a pebble was found at w(i), else bi = 0. This string is split into
substrings that are separated by the substring ‘00’ and the agent computes the
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substring Γ̂ whose occurrence among these substrings is maximum. Let Γ be the
string obtained from Γ̂ by replacing each ‘11’ by ‘1’ and each ‘10’ by ‘0’ of Γ̂
from left to right, taking two bits at a time. The agent computes the ports one
by one as described for Subroutine H and move towards the second milestone.
The only difference here is after computing Γ , the agent comes back to s from
milestone1 and the path coded at Γ starts from s.

Algorithm 3: Subroutine L-H

1 The agent visits all the neighbors of s and let w be the node that have the
maximum degree among all the neighbors of s. In case where multiple nodes
with maximum degree exists, let w be the node to which s is connected via the
smallest port number.

2 The agent moves to w. Let q be the incoming port at w of the edge (s, w).
3 The agent visits the neighbors of w in the increasing order of the port number

through which w is connected to them until it finds four consecutive neighbors
where no pebbles are placed.

4 Go back to s from w using port number q. CurrentNode = s.
5 Let Γ ′ = b0b1 . . . bz′ be the binary string where bi is 1 if a pebble is found at

w(i) and the last four nodes visited in the previous step by the agent are
w(z′), w(z′ + 1), w(z′ + 2), w(z′ + 3).

6 Partition Γ ′ into substrings that are separated by two consecutive zeros. Let Γ̂
be the string that matches with most of these substrings. Let Γ be the string
such that Γ̂ is the transformed binary encoding of Γ .

7 CurrentIndex = 3. MinDistance = 4
8 FindNextMilestone(b, b′, Γ, MinDistance) (Algorithm 7)
9 Progress(CurrentNode) (Algorithm 8)

Algorithm 4: Subroutine L-L-H

1 The agent visits all the neighbors of s and let w be the node the maximum
degree node in L2 to which s is connected through the lexicographically shortest
path.

2 The agent moves to w.
3 The agent visits the neighbors of w in the increasing order of the port number

through which w is connected to them until it finds four consecutive neighbors
where no pebbles are placed.

4 Go back to s.
5 CurrentNode = s.
6 Let Γ ′ = b0b1 . . . bz′−1 be the binary string where bi is 1 if a pebble is found at

w(i) and the last four nodes visited in the previous step by the agent are
w(z′), w(z′ + 1), w(z′ + 2), w(z′ + 3).

7 Partition Γ ′ into substrings that are separated by consecutive zeros. Let Γ̂ be
the string that matches with most of these substrings. Let Γ be the string such
that Γ̂ is the transformed binary encoding of Γ .

8 MinDistance = 5. CurrentIndex = 3
9 FindNextMilestone(b, b′, Γ, MinDistance) (Algorithm 7)

10 Progress(CurrentNode) (Algorithm 8)
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Algorithm 5: Subroutine L-L-L

1 CurrentNode = s.
2 Visit all the neighbors of CurrentNode.
3 if Treasure is found then
4 Stop and terminate.
5 if a pebble found at a node v then
6 Move to v. Set CurrentNode = v. Go to Step 1.
7 else
8 if CurrentNode �= s then
9 Visit all the paths from CurrentNode of length 3. Let w be the node of

maximum degree connected to CurrentNode by the lexicographically
shortest path of length 3.

10 Move to w. Store the incoming ports of the path from v to w in a stack.

11 else
12 if s contains a pebble then
13 Go to Step 8.
14 else
15 Move to s(0). Let q be the port number of the edge (s, s(0)) at s(0).

Visit all the neighbors of s(0).
16 if a pebble is found at a neighbor v of s(0) then
17 Move to v. Set CurretNode = v. Go to Step 1.
18 else
19 Return to s using port q from s(0). Move to s(1). Let q′ be the

port number of the edge (s, s(1)) at s(1). Visit all the neighbors
of s(1).

20 if a pebble is found at a neighbor v of s(1) then
21 Move to v. Set CurretNode = v. Go to Step 1.
22 else
23 Move back to s. Go to Step 8.

24 The agent visits the neighbors of w in the increasing order of the port number
through which w is connected to them until it finds two consecutive neighbors
where no pebbles are placed.

25 Let Γ = b0b1 . . . bz−1 be the binary string where bi is 1 if a pebble is found at
the node w(i) and the last two nodes visited in the previous step by the agent
are w(z) and w(z + 1). Let Γ be the string such that Γ̂ is the transformed
binary encoding of Γ .

26 Move back to CurrentNode using the path stored in the stack. Set
CurrentIndex = 3, MinDistnace = 6.

27 Algo FindNextMilestone(b, b′, Γ, MinDistance)(Algorithm 7)
28 Progress(CurrentNode) (Algorithm 8)

If a pebble is found at s(0) but no pebble at s(1), the agent learns that
milestone1 ∈ L2. In this case, the agent executes Subroutine L-L-H. From
s, it explores all possible paths of length 2 and moves to the maximum degree
node in L2 to which s is connected through the lexicographically shortest path.
After moving to w, the agent computes the binary string Γ in the same way
as described in case of Algorithm3 and proceed towards the second milestone.
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Here, the string Γ that is computed by the agent, codes the path starting from
s and the agent, after learning Γ , moves back to s and moves forward according
to subpath coded in Γ towards the second milestone.

If no pebbles are found at both s(0) and s(1), the agent learns that milestone1
is in Lj , for some j ≥ 3 and executes Subroutine L-L-L. It then visits all the
neighbors of s and identify the node v1 by finding a neighbor with a pebble.
Here, as mentioned in the pebble placement algorithm, the problem occurs when
v1 ∈ {s(0), s(1)}, as these two nodes are already used as marker and therefore
no pebble can be placed here. In this case, the agent considers both s(0) and
s(1) as possible candidates for v1.

Once milestone2 is reached, the agent moves according to Algorithm8. Until
the treasure is found, the agent, learn the sequence of port numbers that leads
towards the next milestone by visiting the neighbors of the current milestone.
Then following this sequence of port numbers and using the pebbles placed on
the light nodes, the agent moves to the next milestone. This process continues
until the treasure is found.

During the execution of the treasure hunt algorithm, the agent uses a set of
global variables, CurrentNode, MinDistance, and CurrentIndex. The variable
CurrentNode denotes the node from which the current call of the algorithms
are executed. The MinDistance variable stores the integers which is the mini-
mum number of ports that are coded in the neighbor of the current milestone.
The CurrentIndex indicates the position of the binary string (represents the
sequence of port numbers towards the next milestone) from which the coding of
the port number along the shortest path from CurrentNode starts.

Algorithm 6: Movement(i,x,Γ )

1 Let p be the integer that is represented by the substring constructed from
Γ (i, x).

2 The agent move from the current node to the node u to which the current node
is connected via port p.

3 if Treasure found then
4 Stop and terminate.
5 else
6 CurrentNode = u. CurrentIndex = x + 1

The following lemmas and the theorem ensure the correctness of the proposed
algorithm.

Lemma 1. Starting from the node s, the agent successfully reaches to
milestone1 in O((dist(s,milestone1) log Δ + log3 Δ))-time.

In the next two lemmas, we prove that from milestone1 the agent reaches
to milestone2 for each of the different cases. The first lemma proves this for the
Case H and Case L-L-L and the second lemma proves this for the Case L-H and
Case L-L-H.
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Algorithm 7: FindNextMilestone(a, b, Γ, i)

1 if a = 1 and b = 1 then
2 for j ← 1 to i do
3 Movement(CurrentIndex,αCurrentNode,Γ ) (Algorithm 6)

4 else
5 if a = 1 and b = 0 then
6 for j = 1 to i + 1 do
7 Movement(CurrentIndex,αCurrentNode,Γ )

8 else
9 if a = 0 and b = 1 then

10 for j = 1 to i + 2 do
11 Movement(CurrentIndex,αCurrentNode,Γ )

12 else
13 for j = 1 to i do
14 Movement(CurrentIndex,αCurrentNode,Γ )
15 while a pebble is found in some neighbor of CurrentNode do
16 Move to the neighbor u of CurrentNode that contains a pebble.

CurrentNode = u
17 for i = 1 to 3 do
18 Movement(CurrentIndex,αCurrentNode,Γ )

19 Progress(CurrentNode) (Algorithm 8)

Algorithm 8: Progress(CurrentNode)

1 The agent visits the neighbors of CurrentNode starting from CurrentNode(0),
in the increasing order of the port number through which CurrentNode is
connected to them until it finds two consecutive neighbors where no pebbles are
placed.

2 Let Γ̂ = b0b1 . . . bz be the binary string where bi is 1 if a pebble is found at the
node connected to s through port i and the last two nodes visited in the
previous step by the agent are s(z + 1) and s(z + 2). Let Γ be the string such
that Γ̂ is the transformed binary encoding of Γ .

3 Let b, b′ be the first two bits of Γ .
4 CurrentIndex = 3. MinDistance = 3
5 FindNextMilestone(b, b′, Γ, MinDistance) (Algorithm 7)
6 Progress(CurrentNode) (Algorithm 8)

Lemma 2. The agent successfully reaches to milestone2 form milestone1 for
Case H and Case L-L-L.

Lemma 3. The agent successfully reaches to milestone2 from milestone1 for
Case L-H and Case L-L-H.

Lemma 4. After reaching milestonej, for some j ≥ 2, the agent successfully
either reaches to milestonej+1, if exists, or finds the treasure.

We now present our final result in the following theorem.
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Theorem 1. The agent finds the treasure in O(D log Δ + log3 Δ)-time.

3 Lower Bound

In this section, we show a lower bound Ω(D log Δ) for time of treasure hunt. To
be specific, we construct a class of instances of treasure hunt such that if the
time for treasure hunt is ‘short’, then any algorithm using any number of pebbles
can not find the treasure within this short time for some instances.

Let T be a complete tree of height D where the degree of the root r and each
internal node is Δ. There are Δ · (Δ−1)D−1 leaves in T . Let p = Δ · (Δ−1)D−1

and u1, . . . , up be the leaves of T in lexicographical ordering of the shortest path
from the root r. For 1 ≤ i ≤ p, we construct an input Bi as follows. The tree T
is taken as the input graph, r as the starting point of the agent, and ui as the
position of the treasure. Let B be the set of all inputs Bi, 1 ≤ i ≤ p.

The following lemma is useful to prove the final lower bound result.

Lemma 5. For any treasure hunt algorithm A taking t-time, then for all possible
placements of pebbles, there are at most 2t possible sequences of port numbers
the agent may follow for the treasure hunt.

The following theorem proves the lower bound result.

Theorem 2. There exists a tree with maximum degree Δ (≥ 2) and diameter
D (≥ 3) such that any deterministic algorithm must require Ω(D log Δ)-time for
the treasure hunt irrespective of the number of pebbles placed on the nodes of G.

4 Conclusion

We propose an algorithm for the treasure hunt problem that finds the treasure in
an anonymous graph in O(D log Δ + log3 Δ)-time. We also prove a lower bound
of Ω(D log Δ). Clearly, there is a small gap between the upper and lower bounds,
however, the gap is smaller than any polynomial of Δ. A natural open question
is to find tight upper and lower bounds for the problem. Another interesting
problem is to study trade-off between number of pebble and time for treasure
hunt in anonymous networks.
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Abstract. To address the raising demand for strong packet delivery
guarantees in networking, we study a novel way to perform graph
resource allocation. We first introduce allocation graphs, in which nodes
can independently set local resource limits based on physical con-
straints or policy decisions. In this scenario we formalize the distributed
path-allocation (PAdist) problem, which consists in allocating resources
to paths considering only local on-path information—importantly, not
knowing which other paths could have an allocation—while at the same
time achieving the global property of never exceeding available resources.

Our core contribution, the global myopic allocation (GMA) algorithm,
is a solution to this problem. We prove that GMA can compute uncon-
ditional allocations for all paths on a graph, while never over-allocating
resources. Further, we prove that GMA is Pareto optimal with respect
to the allocation size, and it has linear complexity in the input size.
Finally, we show with simulations that this theoretical result could be
indeed applied to practical scenarios, as the resulting path allocations are
large enough to fit the requirements of practically relevant applications.

1 Introduction

Allocating resources such as bandwidth in a network has proven to be a diffi-
cult problem from both a theoretical and practical perspective: in many cases,
networks consist of independent nodes without central controller and without a
global view of the topology and available resources. Furthermore, these nodes
often have their own policies on how to allocate resources. To the best of our
knowledge, the theoretical networking literature is lacking solutions that address
this distributed setting. In this paper, we consider allocation graphs, directed
graphs consisting of independent nodes augmented with local policies, i.e., the
amount of resources each node allocates for transit between any pair of neigh-
bors. While we interpret the resources as bandwidth, other interpretations—like
computations on behalf of the neighbors—are possible as well.

For any path in the allocation graph, we want to myopically compute a static
allocation, i.e., based only on the local policies of on-path nodes. This allocation
should guarantee that no local allocation is ever exceeded, even when all path
allocations in the network are fully used simultaneously. This is resource allo-
cation is therefore unconditional, since the size of one allocation is completely
c© Springer Nature Switzerland AG 2021
T. Jurdziński and S. Schmid (Eds.): SIROCCO 2021, LNCS 12810, pp. 243–261, 2021.
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independent of any other allocation, and not determined by an admission pro-
cess, and thus cannot be influenced by single off-path nodes. In particular, nodes
do not need to keep track of allocations as each individual allocation is valid inde-
pendently of whether or not any other allocations are used. We formalize the
problem of finding the size of such allocations as the distributed path alloca-
tion (PAdist) problem. Two major questions then arise: (i) Can unconditional
resource allocation indeed be performed in a distributed setting, where nodes
have only partial information on the network, without creating over-allocation?
And (ii), since an allocation is implicitly created for every path in the network,
can allocations be large enough to be useful in practice?

Our work addresses these problems, finding that it is possible to both avoid
over-allocation and create allocations that meet the demands of a number of
modern critical applications at the same time. We show this constructively, by
proposing the first unconditional resource allocation algorithm: the global myopic
allocation (GMA) algorithm. GMA interprets each node’s local allocations both
as capacity limits that must not be exceeded and as policy decisions about the
relative importance of links to neighbors. It efficiently computes allocations that
scale with these local policies, and ensures that capacities are not over-allocated.
We prove that GMA fulfills all desired properties and that it is Pareto optimal
with respect to all other algorithms that solve the PAdist problem. Finally, we
simulate GMA on random graphs, chosen to model real-world use cases; we
evaluate the size of the resulting path allocations and show that they are viable
for practical applications.

Practical Relevance of the PAdist Problem. Over the past decades, com-
puter networks have predominantly relied on the best-effort paradigm. End-
points run congestion-control algorithms to prevent a congestion-induced col-
lapse of the network [11,13], but no further guarantees for packet delivery or
quality of service can be given. This has been shown to work reasonably well for
many applications like web browsing, but it is becoming increasingly clear that
it is far from optimal in terms of performance and fairness [7,19].

Although the networking community has developed several protocols to
reserve resources for individual connections [3,4,16], none of them has seen wide-
spread adoption because of their high complexity and poor scalability. These
drawbacks arise in all these systems as they offer conditional allocations: end-
points can select the amount of resource to allocate, the rationale being that sup-
ply and demand will eventually lead to optimal resource utilization. However,
this also means that all nodes have to store information about all individual
requests, and check that new requests do not exceed resource capacity.

An unconditional resource allocation system based on the GMA algorithm
avoids this problem. In a network of compliant sources using such a system, nodes
do not need to keep track of allocations as each allocation is valid independently
of whether or not any other allocations are used. Further, GMA guarantees
that no over-allocation of bandwidth—and therefore congestion—occurs. Thus,
strong delivery guarantees can be provided to the communications in this net-
work, without the overhead required by conditional systems. Appendix A of the
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full paper [10] presents overview of the critical applications that would benefit
the most from an unconditional resource allocation system.

2 Preliminaries: Formalizing Resource Allocation

We now introduce the formalism we use throughout the paper, and characterize
the path-allocation (PA) problem. Although the PA problem arises from an
applied networking context (as some of the terminology also suggests), we seek
to provide a formulation that is not tied to networking, such that our solution
can also be applied to other areas. Therefore, we define the problem with the
abstraction of allocation graphs.

Allocation Graphs. We augment the standard directed graph definition, com-
prising nodes and edges, with a set of interfaces at every node.1 An interface
denotes the end of one of the edges attached to a node, while a local inter-
face, which is not associated with any edge, represents internal sources or sinks
(these concepts are shown in Figs. 1a and 1b on page 6). In an allocation graph,
a resource—a generic quantity of interest—is associated with edges, and is a
measure of supply. The capacity of an edge is a fixed, positive real number
that represents the maximum amount of resource it can provide;2 it is denoted
by cap(k)

i,IN, for the capacity of the edge incoming to interface i of node k, and

cap(k)
i,OUT for the outgoing edge. Further, we assume that an allocation matri M (k)

is given for each node k. Allocation matrices are illustrated in Figs. 1b and 1c. An
entry M

(k)
i,j in the allocation matri, called pair allocation, denotes the maximum

amount of resource that can be allocated in total to all the paths incoming at
interface i and outgoing at interface j. Allocation matrices are non-negative and
not necessarily symmetric. We call the maximum amount of resource that can
be allocated from an interface i to every other interface the divergent, and the
maximum amount of resource that can be allocated from every other interface
towards an interface j the convergent. They are calculated as the sum of rows
or columns of M (k), respectively:

DIV
(k)
i =

∑

j

M
(k)
i,j , CON (k)

j =
∑

i

M
(k)
i,j . (1)

The matrix M (k) must be defined to fulfill ∀i. DIV
(k)
i ≤ cap(k)

i,IN,CON (k)
i ≤

cap(k)
i,OUT, that is, neither DIV

(k)
i nor CON (k)

i respectively exceed the capacity
of the incoming and outgoing edges, connected to interface i of node k.

Intuitively, an interface pair (i, j) is the logical connection between two inter-
faces of a node, and thus a pair allocation expresses the maximum amount of
resource the node is willing to provide from one neighbor to the next. Allocation
1 A node can be thought of as, e.g., an autonomous system in the Internet, or any

other entity part of a distributed system that acts independently from other entities.
2 We use dimensionless values for the resource; in practice, these could correspond to,

e.g., bandwidth (in Gbps)) or computations per second.
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matrices can therefore be seen as a way for nodes to encode policies on the level
of service they want to grant to each pair of neighbors.

In this model, we represent a path of � nodes N1, . . . ,N � as a list of nodes
and interface pairs π = [(N1, i1, j1), (N2, i2, j2), . . . , (N �, i�, j�)].3 To simplify
the presentation, we will omit the nodes from the list when they are implicitly
clear; we will also use the abbreviation M

(k)
i,j ≡ M

(Nk)

ik,jk . We say that a path is
terminated, if the first interface of the first pair and the second interface of the
last pair are local interfaces. Otherwise the path is called preliminary. A path is
considered simple or loop-free, if it contains each node at most once. Furthermore,
we use πk to denote the preliminary prefix-path of length k of some terminated
path π of length � (πk = [(i1, j1), (i2, j2), . . . , (ik, jk)] for 1 ≤ k < �). Finally, we
call a path valid, if M

(1)
i,j , . . . ,M (�)

i,j > 0, otherwise it is invalid.

The PA Problem. We are interested in the problem of allocating the resource
on an allocation graph to paths. A path allocation is created when a certain
amount of resource is allocated for that path, exclusively reserving this amount
on every edge and interface pair of the path and thus making it unavailable for
any other path. If the sum of the path allocations traversing an edge exceeds
the capacity of the edge, we say that the edge is over-allocated. Similarly, an
interface pair (ik, jk) is over-allocated if this sum is larger than its corresponding
pair allocation M

(k)
i,j .

Given an allocation graph and information on the allocation matrices, the PA
problem is to calculate a path allocation for any path π in this graph with the
following constraint:

C1 No-over-allocation: For all allocation graphs, even if there is an allo-
cation on every possible valid path in the graph, no edge and no interface
pair is ever over-allocated.4

Solving the PA problem then requires finding an algorithm A that can compute
such path allocation. We intentionally left underspecified the precise input that
such an algorithm receives, as it depends on whether the algorithm is centralized
or distributed. If centralized, A’s input is the whole network topology, as well
as the allocation matrices of all the nodes. Thus, the centralized PA problem
can be viewed as a variant of the multicommodity flow problem [9], with the
additional constraint that pair allocations have to be respected.

In the distributed version of the PA problem (PAdist), the algorithm has to
run consistently on each node, with partial information about the allocation
graph. Since nodes on a path are assumed to be able to exchange information,
we restrict this information by requiring A’s input to contain only information
about the path for which the path allocation is computed. This is captured by
the following definition:
3 This definition implicitly includes edges. Also, we assume that the interfaces match,

i.e., j(k−1) and i(k) are interfaces at opposite ends of the same directed edge.
4 Paths with loops, and of arbitrary length, are also included in this definition.
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The PAdist problem is to solve the PA problem with this additional restriction:

C2 Locality: The path allocation is a function of the on-path allocation
matrices M (1), . . . ,M (�) only.

Among the set of algorithms that fit this definition, we are naturally interested in
the ones that lead to higher path allocations. Since a precise optimality condition
on the algorithm depends on the practical application for which it is used, we
generally postulate that meaningful algorithms provide path allocations that
cannot be strictly increased. This is captured by Pareto optimality:

Opt Optimality: Consider the class of all algorithms fulfilling the require-
ment of either PA or PAdist. Algorithm A from this class is (Pareto) optimal
if there is no other algorithm B from the same class that can provide at
least the same path allocation for every path of every allocation graph,
and a strictly better allocation for at least one path. Formally, if there
exists a graph with a path π for which B(π) = A(π) + δ with δ > 0, then
there exists at least one other path π′, possibly in a different graph, where
B(π′) = A(π′) − δ′ with δ′ > 0.5

In addition, we specify three supplementary properties that make an algorithm
more amenable to practical settings. First, the algorithm should provide non-zero
allocations for all valid paths, second, we require the algorithm to be efficient
in the length of the path and the size of the on-path allocation matrices, and
lastly, we enforce stricter requirements on the policy of individual nodes with
the monotonicity property: if a node increases one of its pair allocations, we
expect all path allocation crossing the interface pair to at least not decrease.
Increasing one pair allocation also increases the corresponding divergent and
convergent, while all other pair allocations that contribute to this convergent or
divergent remain the same. Therefore the relative contribution of the increased
pair allocation becomes higher, while the relative contribution of the other pair
allocations decreases. This way, a node’s allocation matrix can also be under-
stood as a policy that defines the relative importance of its neighbors. Since a
path containing loops might traverse the same node both through a pair allo-
cation with increased importance and through one with decreased importance,
monotonicity is only meaningful in the context of simple paths.6

S1 Usability: For every valid path π, the resulting allocation is positive
(Aπ > 0).

S2 Efficiency: Algorithm A should have at most polynomial complexity as a
function of input size. Specifically, for PAdist this means polynomial in the

5 The loose constraint that π′ is possibly in a different graph comes from the fact that
because of the locality property in the PAdist problem, the algorithm has no way to
differentiate two graphs having a path with the same nodes and allocation matrices.

6 For ik1 �= ik2 , increasing M
(k)
i1,j

decreases the relative contribution of M
(k)
i2,j

(Eq. (1)).
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total size of the allocation matrices of on-path nodes. This is a relatively
loose requirement, we will show a linear algorithm in the following.

S3 Monotonicity: If the pair allocation of some node k on a simple path
π is increased and all other allocations remain unchanged, the resulting
allocation must not decrease: M

(k)
i,j ≤ M̃

(k)
i,j =⇒ Aπ ≤ Ã(π).

The challenge of devising an optimal PAdist algorithm is clear: A can only rely
on a myopic view of the path, without any further knowledge about the larger
graph. However, it has to achieve the global constraints of Pareto-optimality and
no-over-allocation, which consider the result of performing allocations on all valid
paths. In the remainder of the paper, we present the global myopic allocation
(GMA) algorithm as a solution to the PAdist problem. GMA fulfills requirements
C1 and C2, and is optimal according to Opt, which we formally prove in Sect. 4.
Furthermore, we prove in Appendix E of the full paper [10] that GMA also
satisfies all the supplementary requirements (S1–S3). An additional property,
extensibility, is presented and proven in Appendix F of the full paper [10].

Fig. 1. Example of an allocation graph. Pair allocations are represented in Fig. 1a
by dashed lines—their size shown by the number in the respective node. If two interfaces
are not connected by dashed lines, their pair allocation is zero. All pair allocations are
bidirectional, as shown in Fig. 1b. For clarity, we use globally unique interface identifiers.
Fig. 1a also shows paths π1 and π2, used in the examples (π3 is the reverse of π2).

3 Introducing the GMA Algorithm

We present the GMA algorithm in three steps: starting from a simple first-cut
approach, at each step we present a refinement of the previous algorithm. This
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section is meant to provide a profound yet intuitive understanding of the GMA
algorithm and its properties—accompanied by the example in Fig. 1—leading to
the final formulation of GMA in Eq. (10).

3.1 Step 1: Towards No-Over-Allocation

As a first attempt to achieve no-over-allocation, we take the pair allocation of
the first node on a path, and multiply it by the ratio of the pair allocation and
the divergent for each of the traversed interface pairs. With this approach, each
node receives a preliminary allocation from the previous node, fairly splits it
among all interfaces according to the pair allocations, and passes it on to the
next node. This leads to the following formula:

A1π = M
(1)
i,j ·

�∏

k=2

M
(k)
i,j

DIV
(k)
i

. (2)

Example Consider the path π1 = [(A1, a, b), (A, c, d), (B, e, f), (C, g, h)] in
Fig. 1. Then, Eq. (2) results in an allocation A1(π1) = 1 · 1

2 · 2
4 · 1

4 = 1
16 .

To understand the idea behind this formula we consider some node k with inter-
face i, connected through this interface to a neighboring node n. If node n can
guarantee that the sum the preliminary allocations of all preliminary paths going
towards node k is at most DIV

(k)
i , then A1 ensures that for each of node k’s

interfaces j, the sum of all preliminary allocations of all preliminary paths going
through (i, j) is at most M

(k)
i,j . If all neighbors can provide this guarantee, no

pair allocation of node k will be over-allocated, which implies that also none
of its convergents will be over-allocated. If node k’s convergents are smaller or
equal to the corresponding divergents of its neighbors, also node k can give this
guarantee to all of its neighbors. Therefore A1 will never cause over-allocation,
if every node’s convergents are smaller or equal to the corresponding divergents
of its neighbors—which is an assumption we want to get rid of.

Example The graph in Fig. 1a ensures that the divergent of a node
is always larger than the convergent of the previous node when going
upwards. Going downwards, this is not the case. Indeed, already two paths
π2 = [(B, r, e), (A, d, c), (A1, b, a)] with A1(π2) = 2 · 1

2 · 1
1 = 1 and π3 =

[(C, h, g), (B, f, e), (A, d, c), (A1, b, a)] (reverse of π1) with A1(π3) = 1· 24 · 12 · 11 =
1
4 together cause an over-allocation of interface pairs (d, c) and (b, a).

3.2 Step 2: A General Solution for No-Over-Allocation

As over-allocation with A1 can only occur when some node’s convergent is
larger than the corresponding divergent of its neighbor, we can normalize
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each preliminary allocation to compensate this disparity. More concretely, if
CON (k−1)

i > DIV (k)
j for an on-path node k, the preliminary allocation from

node k − 1 is multiplied with:

DIV (k)
j

CON (k−1)
i

· M
(k)
i,j

DIV (k)
j

=
M

(k)
i,j

CON (k−1)
i

. (3)

Adapting Eq. (2) to this modification gives rise to the following formula:

A2π = M
(1)
i,j ·

�∏

k=2

M
(k)
i,j

max{CON (k−1)
j ,DIV

(k)
i }

. (4)

Example We find A2(π3) = 1· 24 · 14 · 12 = 1
16 = A2(π1); A2(π2) = 2· 14 · 12 = 1

4 .

This algorithm will never cause over-allocation, which follows directly from our
proof in Sect. 4.1. Unfortunately, A2 is neither monotonic nor Pareto opti-
mal. We can see why this is the case by taking a closer look at the contri-
bution of some node k to the calculated allocations, which consists of the values
(DIV

(k)
i ,M (k)

i,j ,CON (k)
j ). In Eq. (4), the only subterm depending on those values

is

M
(k)
i,j

max{CON (k−1)
j ,DIV

(k)
i } · max{CON (k)

j ,DIV (k+1)
i }

. (5)

Increasing M
(k)
i,j by δ > 0, and thus, implicitly, also DIV

(k)
i and CON (k)

j by δ, can
potentially contribute twice to the denominator and only once to the nominator
of Eq. (5), thereby reducing all the allocations going through the interface (i, j).

Example Consider increasing the pair allocation (c, d) to M̃
(A)
c,d = 9, leaving

everything else unchanged. Then, Ã2(π2) = 2 · 9
10 · 1

10 = 18
100 < 1

4 = A2(π2).

In general, A2 provides suboptimal allocations when there is a node k with
“superfluous allocations”, i.e., where DIV

(k)
i > CON (k−1)

j and CON (k)
j >

DIV (k+1)
i . We explain how to strictly improve this and present GMA in the

next section.

3.3 Step 3: Monotonic and Pareto-Optimal Allocations

The main idea to resolve the violation of monotonicity and optimality is to
implicitly scale down the three-tuple of a node k with superfluous allocations to
(s · DIV

(k)
i , s · M

(k)
i,j , s · CON (k)

j ) for 0 < s < 1, such that either s · DIV
(k)
i ≤

CON (k−1)
j or s · CON (k)

j ≤ DIV (k+1)
i . The intuition is that a third algorithm,
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based on A2 but with scaled-down three-tuples, does not cause over-allocation
while observing monotonicity. We will prove later in Sect. 4 that this statement
holds.

For some arbitrary path, we now want to find a way to optimally scale down
the three-tuple (DIV

(k)
i ,M (k)

i,j ,CON (k)
j ) of each node k. The result is a new

algorithm that takes the original inputs, scales them down implicitly, and finally
uses A2 to compute the allocation.

As we prove in Appendix B of the full paper [10], down-scaling improves the
resulting path allocation only for the case—as considered above—in which super-
fluous allocations are present (DIV

(k)
i > CON (k−1)

j and CON (k)
j > DIV (k+1)

i ).7

It is therefore sufficient to scale down the divergent of node k to the convergent of
node k − 1, any further scaling will not improve the allocation. This observation
results in the following iterative algorithm.

On a path π with � nodes, we start from node 1. As there is no previous node,
scaling is not possible, and the scaling factor is f (1) = 1. At the second node, the
convergent of the first node can either be smaller than the divergent of the second
node, or larger. In the first case, we scale down the three-tuple of the second node
by CON (1)

j /DIV (2)
i . In the second, no scaling down is possible. In both cases we

thus scale down the three-tuples of node 2 by f (2) = min{1,CON (1)
j /DIV (2)

i },
and so the first factor of the product in Eq. (4) becomes

M
(2)
i,j · f (2)

max{CON (1)
j ,DIV (2)

i · f (2)}
=

M
(2)
i,j · f (2)

CON (1)
j

. (6)

At the third node this case distinction is repeated. However, recall that the
convergent of the second node might have been scaled down, so we have to
use the value (f (2) · CON (2)

j ) instead of CON (2)
j in the computation. Therefore,

taking f (3) = min{1, (CON (2)
j · f (2))/DIV (3)

i }, we obtain the third factor of the
product in Eq. (4):

M
(3)
i,j · f (3)

max{CON (2)
j · f (2),DIV (3)

i · f (3)}
=

M
(3)
i,j · f (3)

CON (2)
j · f (2)

. (7)

Continuing this expansion, we can define the scaling factors f recursively for
each node as

f (1) = 1; f (k) = min
{

1,
CON (k−1)

j · f (k−1)

DIV
(k)
i

}
. (8)

Overall, we modify Eq. (4) in the following way:

G(π) = M
(1)
i,j ·

�∏

k=2

M
(k)
i,j · f (k)

CON (k−1)
j · f (k−1)

= f(�) ·
∏�

k=1 M
(k)
i,j

∏�
k=2 CON (k−1)

j

, (9)

7 CON
(k−1)
i and DIV

(k+1)
i might have already been scaled down.
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which is equivalent to computing A2 on the scaled-down input three-tuples. The
last step follows from rearranging indices and realizing that f (k) can be factored
out recursively, apart from the first (f (1) = 1) and the last one. Instead of this
recursive formulation, Eq. (9) can also be written as a direct formula (the proof
can be found in Appendix C of the full paper [10]).

The global myopic allocation (GMA) algorithm:

G(π) = min
x

(
x−1∏

k=1

M
(k)
i,j

CON (k)
j

· M
(x)
i,j ·

�∏

k=x+1

M
(k)
i,j

DIV
(k)
i

)
(10)

Example Consider again our example of Fig. 1a with M̃
(A)
c,d = 9. In this

case we have DIV (A)
d = 10 > CON (B)

e = 4 and CON (A)
c = 10 > DIV (A1)

b = 1.
The three-tuple of A can thus be scaled down by a factor of 4

10 . Using Eq.
(10) for the path π2, we find that the argument of the minimum is A1 and
G(π2) = 2

4 · 9
10 · 1 = 9

20 > 18
100 = Ã2(π2).

4 Proofs of GMA’s Properties

In this section, we prove that GMA’s computation described in Eq. (10) satisfies
the properties defined in Sect. 2. We prove the core property C1 in Sect. 4.1
and Opt in Sect. 4.2. Locality (C2) follows directly from Eq. (10), as the com-
putation only involves allocation-matrix entries of the nodes on the path. The
supplementary properties S1–S3 are proven in Appendix E of the full paper [10].

4.1 Proof of No-Over-Allocation (C1)

In this subsection we prove that there is no resource overuse of any of the pair
allocation M

(k)
i,j , which, by the fact that convergent and divergent of an interface

must be smaller than the capacity of the edge connected to it, implies that there
is also no overuse on any edge of the graph. In the context of this proof, the +
operator is not only used for addition, but also for list concatenation. We denote
the set of non-local interfaces of some node k as I (k)

ext . We will use the notation
M

(k)
i,j (π) to state more precisely which path the variable refers to. We want to

prove that for every node k and all of its interface pairs, the corresponding pair
allocation is greater than or equal to the sum of all resource allocations of all
paths going through that interface pair. For this we distinguish the following
cases an interface pair can be assigned to, and prove each case individually:

Case 1: The interface pair starts from a local interface: (⊥, j)
Case 2: The interface pair ends in a local interface: (i,⊥)
Case 3: The interface pair starts and ends in non-local interfaces: (i, j)
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Case 1: We will prove a stronger statement, captured by the following lemma:

Lemma 1. For an arbitrary node A and an arbitrary non-local interface jA, let
Sx
t be the set of terminated paths of length at most x that start in (⊥, jA), and

Sx
p the set of preliminary paths of length exactly x that start in (⊥, jA). Then

∀x ≥ 1 :
∑

π∈Sx
p

G(π) +
∑

π∈Sx
t

G(π) ≤ M
(A)
⊥,j . (11)

We emphasize that, by the definition in Eq. (10), GMA not only allows to calcu-
late allocations on terminated, but also on preliminary paths. The lemma implies
our original statement, i.e., ∀x ≥ 1:

∑
π∈Sx

t
G(π) ≤ M

(A)
⊥,j .

Proof. We prove Lemma 1 by induction over x for arbitrary A and jA.

Base Case (x = 1): We have S1
p = { [(⊥, jA)] } and S1

t = {}, which directly

implies
∑

π∈S1
p
G(π) +

∑
π∈S1

t
G(π) = M

(A)
⊥,j ≤ M

(A)
⊥,j .

Inductive Step

Induction Hypothesis: For a particular x:
∑

π∈Sx
p

G(π) +
∑

π∈Sx
t

G(π) ≤
M

(A)
⊥,j .

To Show:
∑

π∈Sx+1
p

G(π) +
∑

π∈Sx+1
t

G(π) ≤ M
(A)
⊥,j .

Definitions: For some preliminary path π of length �, let node Z be the node
that is connected to j� and let the corresponding interface of Z be iZ . We define
the local extension of a path π as Eloc(π) := { π + [(iZ ,⊥)] }, the non-local
extension of a path π as Eext(π) := ∪

jZ∈I
(Z)
ext

{ π + [(iZ , jZ)] } and their union as
E(π) := Eloc(π) ∪ Eext(π).

Proof

∑

π∈Sx+1
p

G(π) +
∑

π∈Sx+1
t

G(π) =

⎛

⎝
∑

π∈Sx
p

∑

φ∈Eext(π)

G(φ)

⎞

⎠ +

⎛

⎝
∑

π∈Sx
t

G(π) +
∑

π∈Sx
p

∑

φ∈Eloc(π)

G(φ)

⎞

⎠

(12a)

=
∑

π∈Sx
p

∑

φ∈E(π)

G(φ) +
∑

π∈Sx
t

G(π) (12b)

=
∑

π∈Sx
p

∑

φ∈E(π)

min

(
G(π) · M

(Z)
i,j

DIV (Z)
i

,
�∏

k=1

M
(k)
i,j

CON (k)
j

· M
(Z)
i,j

)
+

∑

π∈Sx
t

G(π) (12c)
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≤
∑

π∈Sx
p

∑

φ∈E(π)

M
(Z)
i,j

DIV (Z)
i

· G(π)+
∑

π∈Sx
t

G(π) =
∑

π∈Sx
p

G(π)+
∑

π∈Sx
t

G(π) ≤ M
(A)
⊥,j (12d)

In the step from Eq. (12b) to Eq. (12c), we used the fact that when extending
the path, the argument of the minimum of Eq. (10) either stays the same, or the
newly added node now minimizes the formula, which follows directly from Eq.
(9). The transition in Eq. (12d) follows from

∑
φ∈E(π) M

(Z)
i,j = DIV (Z)

i .

Case 2: The proof is exactly the same as for case 1, except that we extend the
path in the backward instead of the forward direction. The only change required
is the adaptation of the definitions of local and non-local extensions of a path
and we use

∑
φ∈E(π) M

(Z)
i,j = CON (Z)

j .

Case 3: Choose an arbitrary node A. Then choose arbitrary non-local interfaces
iA, jA ∈ I (A)

ext of node A. Using exactly the same procedure as for the proof of
case 2, but using (iA, jA) as the interface pair where the paths “end” (it does
not terminate in a local interface), we can show that the sum of all resource
allocations for all paths ending in (iA, jA) is always smaller or equal to M

(A)
i,j . We

then choose an arbitrary path π that ends in (iA, jA). Using the same procedure
as for the proof of case 1, but using (iA, jA) as the interface pair where the paths
“begin” (it does not start in a local interface) and setting M̂

(A)
i,j := G(π), we can

show that the sum of the resource allocations of all the (terminated) paths that
extend π never exceeds G(π). It follows that the sum of the resource allocations
of all the paths going through (iA, jA) never exceeds M

(A)
i,j . 
�

4.2 Proof of Optimality (Opt)

In this section we show that GMA is optimal according to Opt, which means
that there is no better local (C2) algorithm that does not over-allocate any edge
or interface pair (C1). As every invocation of a local algorithm is only based
on the nodes of one path, and is oblivious of all the other nodes of the graph,
in order to prevent overuse the algorithm has to consider all possible graphs
containing this path. This insight is central for the proof of optimality and is
formalized in the following lemma:

Lemma 2. For every allocation graph and every one of its paths π, there exists
another allocation graph that contains a path with the same sequence of allocation
matrices, where the pair allocation M

(x)
i,j of some on-path node x is fully utilized

(there is no available resource left) if there is a GMA allocation on every path
containing (x, ix, jx) in this new graph.

Proof. Let π be an arbitrary path of an arbitrary allocation graph, and let x be
the index for which Eq. (10) is minimized. We construct a new allocation graph
around π as follows:
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– Remove all the nodes that are not part of π.
– Keep the on-path nodes, their interfaces, and their allocation matrices as they

are.
– For every node, create identical copies of the node for each of its occurrences

on the path (multiple copies, in case the path contains loops) and only keep
the edges to the previous and subsequent node on the path.

– For all these on-path nodes, attach new nodes to the non-local interfaces that
are not already part of π. Those new nodes only have one local and one non-
local interface (the interface through which they are attached to the on-path
node).

– For every node k ∈ {1, . . . ,x − 1} and each of its interfaces ĩ to which a new
node was attached, the pair allocation (from its local to its non-local interface)
of the new node is set to DIV (k)

˜i
. This implies that also the divergent (at the

local interface) and the convergent (at the non-local interface) of the new
node are equal to DIV (k)

˜i
.

– For x, the newly attached nodes can have arbitrary allocation-matrix entries.
– For every node k ∈ {x + 1, . . . , �} and each of its interfaces j̃ to which a new

node was attached, the pair allocation (from its non-local to its local interface)
of the new node is set to CON (k)

˜j
. This implies that also the divergent (at

the non-local interface) and the convergent (at the local interface) of the new
node are equal to CON (k)

˜j
.

Given that there is a GMA allocation on every possible path (in our new graph)
going through (ix, jx), we want to show that M

(x)
i,j is fully utilized. We charac-

terize all possible paths for three cases: If 1 < x < � (case 1), a path starts at
a local interface of some node k ≤ x − 1 or at the local interface of some of its
attached nodes, and ends at a local interface of some node m ≥ x + 1 or at the
local interface of some of its attached nodes. If x = 1 (case 2), every path starts
at the local interface of x, and ends at a local interface of some node k ≥ 2 or
at the local interface of some of its attached nodes. If x = � (case 3), every path
starts at a local interface of some node k ≤ �−1 or at the local interface of some
of its attached nodes, and ends at the local interface of node �.

Case 1: We use the following notation in order to simplify our proof:

au(u) =
M

(u)
i,j

CON (u)
j

, b(u) =
M

(u)
i,j

DIV (u)
i

(13)

Let Ru be the sum of all allocations of all the nodes k ∈ {1, . . . ,x − 1} starting
either at a local interface or at the local interface of some of its attached nodes,
and ending either at a local interface of node u or at the local interface of some
of its attached nodes, divided by M

(x)
i,j . Thus, we need to prove

M
(x)
i,j ·

�∑

u=x+1

Ru = M
(x)
i,j ⇔

�∑

u=x+1

Ru = 1. (14)
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We formulate two lemmas, which are proven in Appendix D of the full paper [10]:

Lemma 3. For a1, . . . , ax > 0:
∏x

i=1 ai +
∑x

k=1

(
(1 − ak) · ∏x

i=k+1 ai

)
= 1.

Lemma 4. R� =
∏�−1

k=x+1 b(k) and Ru = (
∏u−1

k=x+1 b(k)) · (1 − b(u)) (for x + 1 ≤
u ≤ � − 1).

These lemmas immediately imply our proof goal:

�∑

u=x+1

Ru =
�−1∑

u=x+1

Ru + R� =
�−1∑

u=x+1

u−1∏

k=x+1

b(k) · (1 − b(u)) +
�−1∏

k=x+1

b(k) = 1. (15)

Case 2+3: The proofs follow a simplified structure of the proof of case 1. 
�
Theorem 1. GMA is Pareto optimal among all algorithms in the sense of Opt.

Proof. This follows directly from Lemma 2: for a given path (nodes with their
associated allocation matrices) there always exists a graph containing that path,
where increasing the allocation calculated by GMA will cause overuse, which
can only be prevented by decreasing allocations on other paths. 
�

5 GMA Provides Meaningful Allocations

A potential limitation of GMA is the size of the allocations it provides. We proved
that GMA’s path allocations are small enough that, even if all the paths have an
allocation, no over-allocation occurs. In this section we show that GMA’s path
allocations are still large enough to satisfy the requirements of the critical appli-
cations that motivate this work (details in Appendix A of the full paper [10]). We
do this by simulating GMA on random graphs, thereby exploring the trade-offs
between graph topology and the resulting GMA allocation sizes.

5.1 Simulation Setup

Graph Topology. We use the well-known Barabási–Albert random graph
model to generate allocation graphs [2]. This algorithm is designed to produce
scale-free random graphs, which are found to well approximate real-life techno-
logical networks [6].

At the topological level, the size of a GMA allocation for some path depends
on (i) the degree of the nodes on the path, as it determines the size of the
allocation matrix, (ii) the length of the path, since Eq. (10) contains an iterative
product on each node on the path, and (iii) the capacity of each on-path edge
(discussed in the next paragraph). We aggregate the first two metrics at the
graph level by considering the average node degree and the diameter of the
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graph, i.e., the length of the longest path.8 Therefore, we generate 275 random
graphs for our simulations, with 8 to 2048 nodes, varying average degree and
diameter. Additional details on graph generation can be found in Appendix G
of the full paper [10].

Resources and Allocation Matrices. In the simulations, we model the vary-
ing bandwidth of real-world network links by assigning different capacities to the
edges of graphs. To assign capacity to edges based on a degree–gravity model:
the capacity of a (directed) edge is selected proportionally to the product of the
degrees of its adjacent nodes [15]. We discretize these values to 10 different levels
from 40 to 400. This choice is motivated by real networks, where more connected
nodes also tend to have higher forwarding capabilities.

Based on these edge capacities, we then create the allocation matrices.
Although each node might have different policies, simulating those policies
for the nodes introduces many additional degrees of complexity, beyond the
scope of this evaluation. Therefore, we assume a simple proportional sharing
policy to construct an allocation matrices, which we obtain by performing
the following three steps for each node k and all its interfaces i and j: (i)
M

(k)
i,j ← cap(k)

i , while for the local interface ⊥, M
(k)
⊥,j ,M

(k)
i,⊥ ← maxi{cap(k)

i };

(ii) M
(k)
i,j ← M

(k)
i,j · cap(k)

j /CON (k)
j ; (iii) if DIV

(k)
i > cap(k)

j , then M
(k)
i,j ←

M
(k)
i,j · cap(k)

i /DIV
(k)
i .

Path Selection. In this simulation, the goal is to create path allocations
between every pair of nodes. Motivated again by networking practice, we con-
sider allocations made on k-shortest paths, with k ∈ {1, 2, 3}. For k = 1, we
create allocations on the single-shortest path for every pair of nodes. However,
GMA can compute an allocation for any path in the graph. Therefore, if two
nodes are able to use multiple paths simultaneously, the total allocation for the
pair is the aggregate of the allocations on the individual paths. We then create
allocations on the 2- and 3-shortest paths for every pair of nodes, and evaluate
the advantage that multipath communication can provide.

Metrics: α-cover. Given a source node, the size of the GMA allocations to
different destination nodes can vary greatly, and computing average statistics
does not reflect the binary nature of critical application requirements: either
the allocation exceeds the minimum usability threshold, or the allocation is not
useful (see Appendix A of the full paper [10] for details).

Therefore, we introduce a new metric to aggregate this information and com-
pare the effectiveness of GMA across different topologies, called α-cover. Given
a source node in a graph and a path selection strategy, the node’s α-cover is
the fraction of destination nodes to which the sum of the path allocations com-
puted over the available paths is more than α. Therefore, α-cover captures the
size of the sub-graph with which the source node can communicate using an

8 These two factors are closely related with each other and to the number of nodes
in the graph: keeping the number of nodes fixed, a graph with higher average node
degree will inevitably have smaller diameter.
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Fig. 2. Minimum, maximum, and median single-path 10−4-cover . The high-
lighted markers show the max ✚, median ●, and min ✖ cover for one specific graph
(which is further analyzed in Figs. 5 and 6 in Appendix G).

adequately-sized GMA allocation. For example, a node with a 10−4-cover of 0.7
can reach 70 % of the nodes in the graphs with an allocation of at least 10−4.
Naturally, higher values of α-cover are better. We define the median α-cover of a
graph as the median of the α-covers of its nodes (and similarly for minimum and
maximum). While different applications will require different values of α, we use
a 10−4-cover in all simulations. Again, this is motivated by practical considera-
tions: if we set 1 unit of resource = 1 Gbps, 10−4 units correspond to 100 kbps.
The applications that motivate this work, such as blockchains and inter-bank
transaction clearing, can comfortably operate within this boundary.

5.2 Results

For each of the generated graphs, Fig. 2 relates its minimum, maximum, and
median 10−4-cover to the number of nodes, where we used the single shortest
path selection scheme. We see that all graphs have a median cover in the upper
50 % range, while the minimum cover decreases to just a few percent for graphs
with a high number of nodes. Graphs with lower median cover are the ones that
have low or high diameter, as Fig. 5 in Appendix G shows. This confirms the
observation that large allocation matrices (low diameter) or long paths (high
diameter) decrease the size of allocations. Further, in all graphs, we find at least
one node with cover greater than 89 %, and observe that the cover increases with
the degree of the nodes: central nodes have therefore better cover, an important
property in practical applications. An example is shown in Fig. 5 in Appendix G.

Figure 3 in Appendix G of the full paper [10] shows the improvement in the
median cover of the graphs when using the 2- or 3-shortest path selection schemes
in place of the single shortest path selection scheme. We see high returns for using
additional paths, reaching over 120 % increase over single-path cover when using
three paths instead of one. Graphs with lower number of nodes benefit less from
the additional paths, as many already achieve perfect cover. A higher k could
further increase the cover, but this exploration is left to future work.
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6 Related Work

Flow Problems and Algorithms. A class of theoretical problems that are
related to our path-allocation problem are multi-commodity flow problems, which
have been studied extensively since the 1950s [9]. The variant which is most
closely related to our setting is the maximum concurrent flow problem [17], where
fairness between different commodities is taken into account, but the ratios are
set by a central controller. All variants differ from our PAdist problem in that
they (i) do not consider independent nodes with their own properties and (ii)
require a global knowledge of the topology. They have thus been applied mostly
to centrally controlled networks [8].

Resource Allocation in Networks. Bandwidth guarantees were a central con-
cept of virtual-circuit architectures like ATM [16]. For today’s IP-based Internet,
bandwidth reservations have been proposed in the Integrated Services (IntServ)
architecture [4], in which they are negotiated through the Resource Reserva-
tion Protocol (RSVP) [5]. However, due to its high reliance on in-network state,
IntServ has never been widely adopted. Further, these systems do not specify
how much bandwidth should be allocated to flows. The Internet overwhelmingly
relies on congestion control [11,13] as a distributed mechanism for bandwidth
allocation between flows, which provides no guarantees to the communication
partners and has no support to implement traffic policies. There exists a wide
range of traffic-engineering systems suitable to intra-domain contexts, such as
MPLS [14] with OSPF-TE [12] and RSVP-TE [1] or SDN-based solutions [18].
However, in contrast to GMA, which supports autonomous nodes, all these sys-
tems require a central controller.

7 Discussion and Conclusion

In this paper, we revisit an old networking and distributed-systems problem—
how to allocate resources in a network of independent nodes when no central
controller is available. After introducing the formalism of allocation graphs, in
which each node is associated with local allocations based on available resources
and policies, we ask a novel question: can an algorithm compute resource allo-
cations for all paths in an allocation graph, without causing over-allocation, and
relying only on local information? This is the foundation of the PAdist problem.
We answer with our global myopic allocation (GMA) algorithm, showing how
these local decisions give rise to meaningful and sustainable global allocations.
Further, we prove that these allocations are Pareto-optimal, and therefore cannot
be trivially improved.

Relevance to Networking. The allocations calculated through GMA are static
and depend only on the policies of on-path nodes; in particular, they are inde-
pendent of other allocations and resource demands. They thus provide strong
minimal resource guarantees that are valid under all networking conditions and
are particularly relevant for applications where centralized solutions based on
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dedicated network infrastructure are too expensive or inherently impossible.
By their very nature, these guaranteed allocations are smaller than what can
be achieved through dynamic resource-allocation systems. However, our simula-
tions show that, even under conservative assumptions, GMA provides sufficient
communication bandwidth to virtually all pairs of nodes in small to medium-
sized networks. Thus, GMA-based allocations with strong availability guaran-
tees could complement other systems with higher network utilization but weaker
guarantees, such as best-effort traffic.

Future Work. The novel results on graph resource allocation presented in this
paper open many new and exciting avenues for future research, both theoretical
and applied. First of all, this paper did not explore the fairness implications of
GMA allocations. The properties of monotonicity and Pareto-optimality, along
with the proportional use of pair allocations in the computation, point towards
a strong neighbor-based fairness notion. We leave the analysis of such a notion to
future work. Second, we see great potential for further research on PAdist algo-
rithms. For instance, Pareto optimality does not satisfy the question of whether
GMA is optimal in a global sense, i.e., whether it maximizes a function over
all path allocations—their sum, for example. The discovery of globally optimal
PAdist algorithms could lead to interesting theoretical advancements, with pro-
found practical implications.

Finally, in this paper we have discussed how allocations can be computed in
a distributed setting. This is orthogonal to the development of specific protocols
necessary to communicate and authenticate necessary information and enforce
the allocations. Future research could focus on the development of such a proto-
col and investigate its interplay with other networking paradigms like best-effort
traffic and congestion control.
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Abstract. In the multiparty equality problem, each of the n nodes starts
with a k-bit input. If there is a mismatch between the inputs, then at
least one node must be able to detect it. The cost of a multiparty equality
protocol is the total number of bits sent in the protocol. We consider the
problem of minimizing this communication cost under the local broadcast
model for the case where the underlying communication graph is undi-
rected. In the local broadcast model of communication, a message sent by
a node is received identically by all of its neighbors. This is in contrast
to the classical point-to-point communication model, where a message
sent by a node to one of its neighbors is received only by its intended
recipient.

Under point-to-point communication, there exists a simple protocol
which is competitive within a factor 2 of the lower bound [1]. In this
protocol, a rooted spanning tree is fixed and each node sends its entire
input to its parent in the tree. On receiving a value from its child, a
node compares it against its own input to check if the two values match.
Ignoring lower order additive terms, a more complicated protocol comes
within a factor 4/3 of the lower bound and is tight for certain classes of
graphs [1]. Tight results, ignoring lower order terms, are also known for
complete graphs [2,9].

We study the multiparty equality problem under the local broadcast
model. Recently, our work has shown that the connectivity requirements
for Byzantine consensus are lower in the local broadcast model as com-
pared to the classical model [7,8]. In this work,

1. we identify a lower bound for the multiparty equality problem in this
model.

2. we first identify simple protocols, wherein nodes are restricted to
either transmit their entire input or not transmit anything at all,
and find that these can cost Ω(log n) times the lower bound using
existing example for the set cover problem [12].
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3. we then design a protocol to solve the problem within a constant
factor of the lower bound.

Keywords: Communication complexity · Multiparty equality · Static
protocols · Local broadcast

1 Introduction

In this paper, we study the multiparty equality problem, wherein n nodes are
connected via an arbitrary undirected graph G = (V,E). Each node u ∈ V
starts with a k-bit input x(u). If x(u) �= x(v) for two distinct nodes u, v ∈ V ,
then at least one node in the graph must be able to detect the mismatch. The
cost of a multiparty equality protocol is the total number of bits sent in the
protocol. We want to minimize this communication cost.

This problem has been studied under the point-to-point communication
model by Alon et al. [1] and Liang and Vaidya [9]. Under the point-to-point
communication model, all links are private so that when a node transmits a
message to a neighbor in the network, the other neighbors do not receive the
message. Here, we consider the local broadcast communication model where a
message sent by a node is received identically by all of its neighbors in the com-
munication network. This communication model is inspired by wireless networks
where a message sent by a wireless device is received by all devices in its imme-
diate vicinity. Recently, it has been shown that the connectivity requirements
for the Byzantine consensus problem are lower in the local broadcast model as
compared to the point-to-point model [7,8].

To see the difference between the two communication models, consider the
scenario where a node u intends to communicate its entire k-bit input with all
of its neighbors. In the point-to-point communication model, node u will have
to transmit its entire input on each of the incident edges separately. In contrast,
in the local broadcast model, node u will have to transmit its input only once
and all of its neighbors will receive the input identically.

When a node u transmits � bits, under point-to-point channels, exactly �
bits are received by the recipient node. However, under local broadcast, each
neighbor of u receives � bits. So while the total number of bits transmitted in a
protocol under the point-to-point model is exactly the same as the total number
of bits received, this is not the case under the local broadcast model. The optimal
protocols can be different depending on whether they minimize the number of
bits transmitted or the number of bits received. We discuss these two different
cost functions in Sect. 3. In this paper, we focus on the transmission cost.

We study static protocols [1,9], where the transmitting nodes (as well as the
number of bits transmitted by the nodes) for each round of the protocol are pre-
determined and independent of the inputs. We make the following contributions.
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1. We give a lower bound on the transmission cost of multiparty equality under
the local broadcast model.

2. We first introduce simple protocols, where each node can either transmit its
entire input or not transmit at all. When a node receives a value from its
neighbor, it compares it against its own input to check if the two values
match. Under local broadcast, such simple protocols are related to special
dominating sets. With point-to-point channels, the simple protocols consist
of fixing a rooted spanning tree, with each node transmitting its input value
to its parent. In the classical setting, these are competitive within a factor 2 of
the corresponding lower bound [1]. Unfortunately, under the local broadcast
model, we find that the simple protocols can be a factor Ω(log n) worse than
the identified lower bound.

3. We show that there exist static protocols that solve the multiparty equality
problem within a constant factor of the lower bound. These are linear proto-
cols in the sense that the value transmitted by any node is a linear function
(over a finite field) of its input. This is in contrast with the point-to-point
model where linear protocols do not perform any better than the simple pro-
tocols [1].

The best known protocol for arbitrary graphs under point-to-point communi-
cation is by Alon et al. [1]. It is a non-linear protocol that achieves a competitive
factor of 4/3 against the lower bound, ignoring lower order additive terms. For
certain classes of graphs, it is in fact optimal. Tight results, ignoring lower order
terms, are also known for complete graphs [2,9] using non-linear protocols. Our
results show that while there is no separation between linear and simple proto-
cols in the point-to-point model, there is a clear separation between them in the
local broadcast model.

The rest of the paper is organized as follows. We introduce the notation
in Sect. 2. In Sect. 3, we formalize the problem and discuss the cost measure
under the local broadcast model. A lower bound is given in Sect. 4. We present
and analyze simple protocols in Sect. 5. In Sect. 6, we design a protocol that is
competitive within factor 4 of the lower bound. Finally, we conclude in Sect. 7
and identify some open problems.

2 Notation

We consider an undirected communication graph G = (V,E) of size |V | = n,
which is fixed in advance. Throughout, we assume that the communication graph
is connected, since the problem is not solvable in disconnected graphs. Each node
u has a k-bit binary input x(u).

Two nodes u and v are neighbors if uv ∈ E is an edge in G. The neighborhood
of a node u is the set of neighbors of u. It is denoted

N(u) :=
{
v | uv ∈ E

}
.

The number of neighbors of u is the degree of node u, denoted by

d(u) :=
∣
∣N(u)

∣
∣ .



Testing Equality Under the Local Broadcast Model 265

We use N+(u) to denote the set containing neighbors of u and u itself,

N+(u) := N(u) + u.

Above, “+” denotes the union of a set with a singleton. We extend the definition
of neighborhood to sets so that the neighborhood of a set S is the set of nodes
not in S that have a neighbor in S,

N(S) :=
{
v ∈ V − S | uv ∈ E, u ∈ S

}
.

For a set of nodes S ⊂ V ,

• S is the set V − S.
• a cut is a partition (S, S) of V .
• the set of edges that cross a cut (S, S) is denoted by

E(S, S) :=
{

uv ∈ E | u ∈ S, v ∈ S
}

.

• the boundary B(S, S) of a cut (S, S) is the set of nodes that have a neighbor
on the other side of the cut, i.e.,

B(S, S) :=
{

u | ∃uv ∈ E(S, S)
}

.

• edges within the set S are denoted by

E [S] :=
{
uv | u, v ∈ S

}
.

A subgraph of G is a graph whose node set and edge set are subsets of V
and E respectively.

• For a subset of nodes U ⊂ V , G[U ] is a subgraph of G node-induced by U ,
with node set U and edge set E[U ].

• With a slight abuse of terminology, for a subset of edges F ⊂ E, G[F ] is a
subgraph of G edge-induced by F , where all the endpoints of edges in F form
the node set and F is the edge set. More specifically, the node set of G[F ] is
given by

{
u | ∃uv ∈ F

}
.

3 Problem Statement and Cost Function

In the Multiparty Equality Problem, each node u starts with a k-bit binary input
x(u) and must output a single bit 0 or 1, meeting the following criteria. If all
nodes have the same input, then all nodes must output 0. However, if there is a
mismatch x(u) �= x(v), for any two distinct nodes u, v, then at least one node in
the graph must output 11.

1 Note that the node detecting a mismatch between inputs can propagate this to the
rest of the graph with an overhead that is independent of k, but not of n.
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Communication between nodes is via local broadcast. A message sent by a
node u is received identically and reliably by each neighbor of u. Moreover, each
neighbor can correctly identify u to be the transmitter of the message.

As in [1] and [9], we consider only the static protocols where the transmitters
at each time step are pre-determined by the protocol and are independent of the
inputs. We consider protocols where the total number of bits c(u) transmitted
by a node u is independent of the inputs. Note that under the local broadcast
model, when a node u transmits c(u) bits, a total of d(u)c(u) bits are received
by all the neighbors of u combined.

In the point-to-point model, a message transmitted by a node u is received by
exactly one neighbor of u. So the total number of bits transmitted in a protocol
is exactly the same as the total number of bits received. In contrast, in the local
broadcast model, the number of bits transmitted is smaller than the number of bits
received by factor equal to the degree of the transmitting node. Correspondingly,
there are the following two cost functions. The transmission cost of a protocol is
the total number of bits transmitted by all the nodes in the graph,

∑

u∈V

c(u).

The reception cost of a protocol is the total number of bits received by all the
nodes in the graph,

∑

u∈V

d(u)c(u).

In this paper, we consider the transmission cost of protocols.

4 Lower Bound

The two party equality problem was introduced by Yao [13], who showed that
both parties combined must transmit at least k bits to solve the problem. Note
that, for two parties, the point-to-point model and the local broadcast model
are equivalent. This argument can be extended for n ≥ 3 parties by considering
two-way partitions of the node set [1,3]. Let (S, S) be an arbitrary cut of V .
Consider the set of executions where all nodes in S always have the same input
and all nodes in S always have the same input. Then this is equivalent to the
two party equality problem. Thus, by the two party lower bound, there must be
at least k bits shared across the cut.

Consider any multiparty equality protocol under the local broadcast model.
Let c(u) be the number of bits transmitted by a node u in the protocol. Then for
any cut (S, S), we have that there must be at least k bits transmitted across the
cut. Under the local broadcast model, when a node transmits a message, it is sent
identically on all its incident edges. Therefore, the total number of bits transmitted
by the nodes at the boundary of the cut (S, S) must be at least k, i.e.,

∑

u∈B(S,S)

c(u) ≥ k.



Testing Equality Under the Local Broadcast Model 267

Using y(u) := c(u)/k to normalize the transmission by each node, we get the
following linear program.

Linear Program P:

minimize: k ·
∑

u∈V

y(u) (1)

subject to:
∑

u∈B(S,S)

y(u) ≥ 1 ∀(S, S) : ∅ �= S � V (2)

y(u) ≥ 0 ∀u ∈ V. (3)

We use P to denote the above linear program given by Eqs. 1–3. The cost of P
is the value of its optimal solution.

Theorem 1. The cost of any static protocol that solves the multiparty equality
problem under the local broadcast model is at least the cost of P.

The proof is an extension of the arguments for two parties. For any cut (S, S),
one can contract all nodes in S into one node and all nodes in S into another to
get a two party problem.

Proof. Suppose, for the sake of contradiction, that a static protocol solves the
multiparty equality problem but has a cost less than the optimal solution to P.
Then, there exists a cut (S, S) such that

∑
u∈B(S,S) c(u) < k for this protocol.

By the pigeon hole principle, there exist two inputs α and β such that the nodes
in B(S, S) all transmit the same messages in the following three cases:

1. every node in the graph has input α.
2. every node in the graph has input β.
3. all nodes in S have input α and all nodes in S have input β.

Since all nodes in S (resp. S) output 0 in case 1 (resp. case 2), therefore, all
nodes output 0 in case 3, a contradiction.

5 Simple Protocols

In this section, we consider simple protocols where some subset of nodes is chosen
to transmit their entire input. On receiving transmission from any of its neigh-
bors, a node u compares the received value against its own input. If the values
match for all the received messages, then u outputs 0. Otherwise, u outputs 1.

Definition 1. A protocol is simple if every node either transmits its entire
input, or does not transmit at all.

This set of protocols is related to what is called the weakly connected dominat-
ing set of a graph. Consider a subset S ⊂ V of nodes. Let F := E [S] ∪ E(S, S)
be the set of edges that are incident on at least one node in S. Let H := G [F ] be
the subgraph of G edge-induced by F . Then S is a weakly connected dominating
set of G if H is a connected spanning subgraph of G.
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Proposition 1. A simple protocol solves the multiparty equality problem if and
only if the set S ⊂ V of nodes chosen to transmit their entire input is a weakly
connected dominating set of G.

Proof. We consider the two directions separately:

⇒ Consider a simple protocol that solves the multiparty equality problem by
choosing a set S ⊂ V of nodes to transmit their entire input. We show that
S is a weakly connected dominating set of G. Let F := E [S] ∪ E(S, S) and
H := G [F ].
1. H is a spanning subgraph of G: Suppose for the sake of contradiction that

there is a node u �∈ H. Then u neither sends nor receives any transmissions.
Then no node in the graph G can distinguish between the case where all
nodes in G have the same input and the case where u has a different input
than the rest of the graph. This is a contradiction to the initial assumption
that the protocol solves the multiparty equality problem.

2. H is a connected graph: Suppose for the sake of contradiction that H is
not a connected graph so that there are at least two connected components
A and B of H. Note that no messages are transmitted between A and B.
Then no node in G can distinguish between the case where all nodes in
G have the same input and the case where nodes in A have a different
input than nodes in B. This is a contradiction to the initial assumption
that the protocol solves the multiparty equality problem.

⇐ Suppose that S ⊂ V is a weakly connected dominating set of G. As before,
let F := E [S] ∪ E(S, S) and H := G [F ]. Consider the corresponding simple
protocol where nodes in S transmit their entire input, while all nodes compare
the received values against their own input. Clearly no mismatch is detected
when all nodes in G have the same input, and so all nodes output 0. So
consider the case where two nodes u, v have mismatching inputs x(u) �= x(v).
Since H is a connected spanning subgraph of G, so there exists at least one
uv-path P in H. Furthermore, because x(u) �= x(v) so there exist two adjacent
nodes w, z in P such that x(w) �= x(z). By construction of H, either w ∈ S
or z ∈ S (or both). WLOG assume that w ∈ S and it transmits its entire
input in the protocol. Then z will receive a value different than its input and
will output 1.

Note that the total cost of transmission is k ·|S| where |S| is the size of the
weakly connected dominating set. The minimum weakly connected dominating
set problem has been studied in the literature [4–6,11] and is known to be NP-
complete.

As mentioned in Sect. 1, simple protocols in the point-to-point model are
supported on a rooted spanning tree of G. These are within a factor 2 of the
optimal and one can not do any better with linear protocols [1]. Even on complete
graphs, non-linear protocols are needed to achieve the optimal cost [2,9]. Under
local broadcast, it is easy to see that simple protocols are optimal for complete
graphs (one node transmits its entire input). Unfortunately, the simple protocols
suffer a gap of Ω(log n) against the lower bound on arbitrary graphs.
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Proposition 2. There exist a family of graphs such that the cost of P is O(k)
while any dominating set has size Ω(k · log n).

Proof (Proof Sketch). The family of graphs is based on Example 13.4 in [12]
for establishing a lower bound on the integrality gap of a linear programming
relaxation of the set cover problem. Using a common approximation preserving
reduction from the set cover to the dominating set problem, one can get a graph
G with the following properties. G has two parts A and B, both of size n/2.
A is a complete graph and B is an independent set. Each node in A (resp. B)
has exactly (n + 2)/4 neighbors in B (resp. A). Furthermore, any dominating
set has size at least log2((n + 2)/2).

We now give a solution y to P. Pick an arbitrary node s ∈ A. Assign y(s) := 1.
For each node u ∈ A − s, assign

y(u) :=
1∣

∣N(u) ∩ B
∣
∣

=
4

n + 2
.

For each node u ∈ B, assign y(u) := 0. To see that y is indeed a solution to P,
consider an arbitrary cut (S, S). WLOG assume that s ∈ S. By construction of
G (recall that A is a complete graph), if A − S is non-empty, then s ∈ B(S, S)
and we have that

∑

u∈B(S,S)

y(u) ≥ y(s)

= 1,

as required. So assume that S ⊇ A. Consider any node t ∈ S ⊆ B. We have that
∑

u∈B(S,S)

y(u) ≥
∑

u∈N(t)

y(u)

≥
∑

u∈N(t)

4
n + 2

= 1.

The first inequality follows from the fact that all of t’s neighbors are in A ⊆ S,
and so B(S, S) ⊇ N(t). The second inequality follows from y(u) ≥ 4/(n + 2) for
each u ∈ N(t), since N(t) ⊂ A. Finally, the equality follows from the fact that t
has exactly (n + 2)/4 neighbors by construction.

Recall that, by construction, any dominating set has size at least
log2((n + 2)/2). This is a lower bound for any weakly connected dominating
set as well. Therefore, any simple protocol has cost at least k · log2((n + 2)/2).
On the other hand, the solution y to P given above has value



270 M. S. Khan and N. H. Vaidya

k ·
∑

u∈V

y(u) = k
(
y(s) +

∑

u∈A−s

y(u)
)

= k
(
1 +

(n

2
− 1

) 4
n + 2

)

= k
(
1 + 2

(n − 2
n + 2

))

≤ 3k.

Therefore, the cost of P is at most 3k.

6 Upper Bound

In this section, we constructively establish an upper bound on the multiparty
equality problem, as stated in the following theorem.

Theorem 2. For sufficiently large k, there exists a protocol that solves the mul-
tiparty equality problem with a cost of at most 4 times the cost of P.

We design a protocol that solves the multiparty equality problem under the
local broadcast model. We start with an optimal solution y of the linear program
P in Sect. 4. Note that y is an optimal solution to P for all values of k > 0. Since
the linear program has integer entries, y(u) is rational for each node u. Let q be
an even integer such that q · y(u) is an integer for all u. Define two integers m
and � as follows.

m := q ·
∑

u

y(u),

� :=
q

2
.

For simplicity, we assume k is an integral multiple of both q and �. To design
our protocol, we will use an (m, �)-Reed-Solomon code [10] over Galois field
GF (2k/�). Note that a code-word in this code consists of m symbols, with each
symbol size being k/� bits. Such a Reed-Solomon code exists so long as 2k/� > m.
To satisfy this property, we assume that k is sufficiently large. In a Reed-Solomon
(RS) code, k input bits are represented using � symbols from GF (2k/�), each sym-
bol representing k/� bits of the input. These � symbols are then encoded into m
symbols to obtain the corresponding code-word. Given any � out of the m sym-
bols of a code-word, the corresponding k-bit input can be correctly determined.
We view the encoding of each of the m symbols as a function {0, 1}k → {0, 1}k/�,
since we will be applying the encodings to different inputs. Of the m total sym-
bols in the code-word, each node u is assigned q·y(u) of them in the protocol.
We describe how the nodes use these symbols later.

In the protocol, nodes are either red or blue. We describe how they are
colored later. A red node broadcasts its entire input to its neighbors and always
outputs 0. A blue node u computes its q·y(u) code symbols on its input x(u) and
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broadcasts them to its neighbors. A blue node u performs checks (as discussed
below) on all transmissions received from its neighbors. If all checks pass, then
it outputs 0. Otherwise, it outputs 1. On receiving a transmission from a red
neighbor r, u checks if the received value x(r) is the same as x(u). On receiving
a transmission from a blue neighbor b, u computes the corresponding q · y(b)
code symbols on its own input x(u) and checks if they match with the received
code symbols from b.

We now describe how to color the nodes for the protocol. We color the nodes
in rounds. Initially, all nodes are colored white. In each round, at least one white
node gets colored either red or blue. At the end, all nodes will be colored either
red or blue. Let Wi, Bi, and Ri denote the set of white, blue, and red nodes at
the end of round i, with W0 = V and B0 = R0 = ∅. In each round, we maintain
that

1. the red and blue subgraph G[Ri ∪ Bi] is connected, and
2. no white node is a neighbor of a red node.

In round 1, we select an arbitrary node and color it red. All its neighbors are
colored blue. In round i, we select an arbitrary white neighbor u ∈ N(Bi−1) of
a blue node. Note that until all nodes are colored red or blue, such a white node
always exists. There are two cases to consider.

1. If
∑

v∈N+(u)∩Wi−1

y(v) ≥ 1
2
,

then we color u red and its white neighbors blue:

Ri := Ri−1 + u,

Bi := Bi−1 ∪ (
N(u) ∩ Wi−1

)
,

Wi := Wi−1 \ (
N+(u) ∩ Wi−1

)
.

2. Otherwise we have that
∑

v∈N(u)∩Bi−1

y(v) =
( ∑

v∈N+(u)

y(v)
)

−
( ∑

v∈N+(u)∩Wi−1

y(v)
)

≥ 1 − 1
2

=
1
2
.

The first equality follows from the fact that 1) u itself is white, and 2) each
neighbor of u is either white or blue, so that N+(u) can be partitioned into
N+(u) ∩ Wi−1 and N(u) ∩ Bi−1. The inequality follows because
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∑

v∈N+(u)

y(v) ≥ 1 from Eq. 2 in P with S = {u},

and
∑

v∈N+(u)∩Wi−1

y(v) <
1
2
.

In this case, we color u blue:

Ri := Ri−1,

Bi := Bi−1 + u,

Wi := Wi−1 − u.

Note that while the design of the protocol relies on knowing the solution to
P, the protocol itself is distributed where each red or blue node can run its part
locally. In the following lemma, we use the coloring rounds i ≥ 1 to inductively
prove the correctness of the protocol.

Lemma 1. For each i ≥ 1, the protocol solves the multiparty equality problem
in the subgraph G[Ri ∪ Bi].

Proof. We proceed inductively. For the base case, i = 1. We have that R1 = r
and B1 = N(r). If there is no mismatch between inputs, then clearly all nodes
output 0. If there is a mismatch, then it must necessarily be between r and a
blue node b ∈ N(r). Since node r broadcasts its entire input, so node b is able
to check that x(r) �= x(b) and so outputs 1, as required.

For the inductive step, assume that the protocol solves the multiparty equal-
ity problem in the subgraph G[Ri−1 ∪ Bi−1]. We show that it also solves the
problem in the subgraph G[Ri ∪ Bi]. If there is a mismatch between inputs of
two nodes in Ri−1 ∪ Bi−1, then we are done by induction. So assume that all
nodes in Ri−1 ∪ Bi−1 have the same input. Let u ∈ N(Bi−1) be the white node
selected in round i. There are two corresponding cases to consider.

1. u got colored red in round i. Let b ∈ Bi−1 ∩ N(u) be a neighbor of u which
was blue at the end of round i − 1. Recall that all nodes in Ri−1 ∪ Bi−1 have
identical input. If x(u) �= x(b), then b will output 1, as required. So suppose
x(u) = x(b). Therefore all nodes in Ri ∪ Bi−1 have identical input. Consider
an arbitrary node b′ ∈ Bi − Bi−1 which got colored blue in round i. By
construction, b′ ∈ N(u). So b′ receives the entire input of u. If x(b′) �= x(u),
then b′ will output 1. If x(b′) = x(u), then b′ will output 0, as required.

2. u got colored blue in round i. Recall that u is the only node that got colored
either red or blue in round i, i.e., Wi−1 − Wi = {u}. Also, we have that

∑

v∈N(u)∩Bi−1

y(v) ≥ 1
2
.

So u must have received a total of at least q/2 = � code symbols from nodes
in Bi−1. u re-computes these code symbols on its own input x(u) and checks
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against the received values. Since all nodes in Bi−1 have the same input, by
the property of RS codes, u outputs 0 if and only if x(u) is the same as the
inputs of nodes in Bi−1.

Therefore the protocol solves the multiparty equality problem in the subgraph
G[Ri ∪ Bi], as required.

The following lemma bounds the transmission cost of the protocol.

Lemma 2. The cost of transmission of the protocol is at most 4k · ∑u∈V y(u).

Proof. The total number of bits transmitted by the red nodes is k times the
number of red nodes, say t. Let i1 < i2 < · · · < it be the rounds where nodes
r1, r2, . . . , rt got colored red. We have that

t =
t∑

j=1

1

≤
t∑

j=1

(
2 ·

∑

v∈N+(rj)∩Wij−1

y(v)
)

≤ 2 ·
∑

u∈V

y(u).

For the first inequality, recall that
∑

v∈N+(rj)∩Wij−1
y(v) ≥ 1/2 for all j ∈ [1, t]

since rj got colored red in round ij . For the last inequality, note that N+(rj) ∩
Wij−1 and N+(rj′)∩Wij′ −1 are disjoint for any distinct j, j′ ∈ [1, t]. To see this,
assume j < j′ so that N+(rj) ∩ Wij′ −1 is empty because rj got colored red and
its neighborhood blue in round ij . Thus, the total number of bits transmitted
by red nodes is upper bounded by 2k · ∑u∈V y(u).

For the blue nodes, recall that each blue node u transmits q · y(u) code sym-
bols, each of which consists of k/� bits. So, the total number of bits transmitted
by the blue nodes is at most

k

�
·
∑

u∈V

q · y(u) =
2k

q
· q ·

⎛

⎝
∑

u∈V

y(u)

⎞

⎠

= 2k ·
∑

u∈V

y(u),

where the first equality follows from � = q/2.
It follows that the total number of bits transmitted by both the red and the

blue nodes in the protocol is at most 4k · ∑
u∈V y(u).

Proof (Proof of Theorem 2). A protocol that solves the multiparty equality prob-
lem is given in this section. The proof of correctness follows from Lemma 1 while
the transmission cost is bounded in Lemma 2.
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7 Conclusion and Open Problems

In this paper we have studied the multiparty equality problem under the local
broadcast model on arbitrary graphs. We established a lower bound to the trans-
mission cost using two-way partitions of nodes. We identified simple protocols
and observed that they can cost Ω(log n) times the lower bound in certain graphs.
This is in contrast to the point-to-point model where simple protocols are within
a factor 2 of the lower bound [1]. We also presented linear protocols, based on
Reed-Solomon codes, that cost at most 4 times the lower bound.

We finish the paper with some open problems:

1. Can the lower bound be improved? Note that the lower bound for the point-to-
point communication model [1] is also based on two-way partitions of nodes.
If a better lower bound exists for the local broadcast model, can the same
technique be used to improve the lower bound for the point-to-point model,
or vice versa?

2. Can we improve on the given upper bound?
3. In this work, we considered the transmission costs of the protocols (Sect. 3).

What do the protocols look like if they minimize reception cost instead?
Let costP (G) be the cost of an optimal protocol under point-to-point com-
munication on a graph G. Let costT (G) and costR(G) be the transmission
and reception costs of corresponding optimal protocols under local broadcast
on a graph G. Then we have the following relationship between the three
quantities.

costT (G) ≤ costP (G) ≤ costR(G).

The first inequality follows from the fact that any protocol Pp designed for
the point-to-point model can be converted into a protocol Pb for the local
broadcast model by having each node broadcast all the messages it transmits
in P , without paying any additional transmission cost. The second inequality
follows from the fact that any protocol Pb designed for the local broadcast
model can be converted into a protocol Pp for the point-to-point model by
having each node transmit all of its messages in Pb to all of its neighbors via
point-to-point transmissions in Pp, without paying any additional reception
cost.

4. A more generalized problem is where each node is assigned a weight. This
weight is the per bit cost paid for communication by the node. This model
generalizes both the transmission and reception cost variants.

5. In this work, we have considered static protocols (see Sect. 3) where the trans-
mitters at each time step and the number of bits transmitted by each node are
both independent of the input. Do “dynamic” protocols perform any better
under local broadcast?
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Abstract. The problem of A privately transmitting information to B
by a public announcement overheard by an eavesdropper C is consid-
ered. To do so by a deterministic protocol, the inputs of the players
must be correlated. Dependent inputs are traditionally represented using
a deck of cards. There is a publicly known signature (a,b, c), where
n = a + b + c + r, and A gets a cards, B gets b cards, and C gets
c cards, out of the deck of n cards. Using a deterministic protocol, A
decides its announcement based on her hand.

Using techniques from coding theory, Johnson graphs, and additive
number theory, a novel perspective inspired by distributed computing
theory is provided, to analyze the amount of information that A needs
to send, while preventing C from learning a single card of her hand. In
one extreme, the generalized Russian cards problem, B wants to learn
all of A’s cards, and in the other, B wishes to learn something about A’s
hand.

Keywords: Johnson graphs · Russian cards problem · Information
theoretic security · Combinatorial cryptography · Constant weight
codes

1 Introduction

The idea that card games could be used to achieve security in the presence of
computationally unbounded adversaries proposed by Peter Winkler [31] led to a
long research line active up to now, see survey in [27]. It motivated Fischer and
Wright [18] to consider card games, where A,B,C draw cards from a deck D of
n cards, as specified by a signature (a,b, c), with n = a + b + c + r. Nobody
gets r cards, while A gets a cards, B gets b cards, and C gets c cards.

Fischer and Wright thought of the cards as representing correlated random
initial local variables for the players, that have a simple structure. They were
interested in knowing which distributions of private initial values allow A and B
to obtain a key, that remains secret to C. Their protocols mostly use random-
ization, and they are information-theoretic secure. However, they do not keep
the cards of A and B secret from C.
c© Springer Nature Switzerland AG 2021
T. Jurdziński and S. Schmid (Eds.): SIROCCO 2021, LNCS 12810, pp. 277–295, 2021.
https://doi.org/10.1007/978-3-030-79527-6_16
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Another research line started with an in depth, combinatorial and epistemic
logic study of van Ditmarsch [12] of the Russian cards problem, presented at the
Moscow Mathematics Olympiad in 2000, where the cards of A and B should be
kept secret from C. Here A, B and C draw (3, 3, 1) cards, respectively, from a
deck of 7 cards. First A makes an announcement that allows B to identify her
set of cards, while C cannot deduce a single card of A. After the announcement
of A, B knows the cards of each player, and hence he may announce C’s card,
from which C learns nothing, but allows A to infer the cards of B. The problem
has received a fair amount of attention since then1 e.g. [1,2,7–9,13,14,24,29,30],
in its generalized form of signature (a,b, c), and other variants, including multi-
round, multiplayer, and different security requirements. Solutions are based either
on modular arithmetic or on combinatorial designs.

The original solution for (3, 3, 1) uses modular arithmetic, where A announces
the sum of her cards modulo 7, and then B announces C’s card [25]. For the
general case when c = 1 (and r = 0), solutions exist that announce the cards sum
modulo an appropriate prime number greater or equal to n [7]. These solutions
use only two announcements. A solution using three announcements for (4, 4, 2)
is reported in [13], and a four-step protocol where C holds approximately the
square of the number of cards of A is presented in [9].

The relation to Steiner triple system and combinatorial designs goes back to
1847 Kirkman [23]. Using combinatorial designs Cordón-Franco et al. [9] prove
that solutions exist when a is a power of a prime, and present the first solutions
when c > a. The solution used 4 communication steps, as opposed to the usual
2-step protocols. Albert et al. [2] show that there is no 2-step solution if c ≥ a − 1.

In addition to the papers mentioned above, through our new perspective, we
have uncovered relations with other areas: intersecting families of sets, coding
theory, additive number theory, and distributed computability.

The New Approach. Given a publicly known signature (a,b, c), for a deck D of
n = a + b + c + r cards, the basic problem underlying the situations described
above, is to design a safe protocol PA, so that A makes a public announcement,
PA(a), based on her hand, a. From the announcement PA(a), and using his own
hand, b, B should learn something about A’s hand. The announcement PA(a)
is deterministically determined by the input of A, and the knowledge of the
signature. No randomized solutions are considered in this paper.

In the language of e.g. [7,9,13], a protocol PA should be informative for B
and safe from C. A protocol is safe if C does not learn any of the cards of A. It
is informative, if B learns the hand of A.

We introduce the notion of a protocol being minimally informative, where
the goal is that B learns something about the hand of A. We prove that when
c + r = 1, this is equivalent to B learning one card of A. If c + r > 1 then B
learns even less; he learns that A has one of the cards of a set s, |s| = c + r.

We formalize this setting based on distributed computability [21], and more
specifically when the least amount of communication is studied [11]. Using this

1 The r = 0 case is mostly considered here, as well as in the secret key research line.
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formalization, we show that a protocol can be viewed as a coloring of the set
of vertices Pa(D), all subsets of size a of D, PA : Pa(D) → M, for the set of
messages M that A may send. Thus, Pa(D) is the set of vertices of a Johnson
graph J(n,a), where n = |D|. We are interested in the question of how small can
M be, i.e., the number of bits, log2 |M|, that A needs to transmit to implement
either and informative or a minimally informative safe protocol.

We show in Theorem 2 that PA is informative if and only if PA is a proper
coloring of the d-distance Johnson graph Jd(n,a), d = c + r. Vertices a, a′ of
Jd(n,a) are adjacent whenever a−d ≤ |a∩a′|. In particular, we have a Johnson
graph when d = 1.

It is well-known that there is a family of maximal cliques of J(n,a) of size
a + 1, e.g. [19]. It turns out, that the inputs of A that B with input b considers
possible, form a maximal clique of Jc+r(n,a), denoted Kp(b̄). The clique Kp(b̄)
consists of all hands a ⊂ b̄, |a| = a, and hence p =

(
a+c+r

a

)
. Similarly, the hands

that C considers possible with input c form a clique Kp(c̄) of Jb+r(n,a), and
such cliques are of size p =

(
a+b+r

a

)
.

We show also in Theorem 2 that PA is minimally informative if and only
if PA colors at least one edge of each clique Kp(b̄) with two different colors.
In contrast, informative requires that PA colors every edge of Kp(b̄) with two
different colors.

Thus, the chromatic number of Jd(n,a) determines the number of messages
needed for a protocol PA to be informative. There are many interesting open
questions concerning the chromatic number of Johnson graphs [19, Chapter 16].
Upper bounds have been thoroughly studied for special cases, because they imply
lower bounds on codes e.g. [5,15]. In addition to some special cases, only the triv-
ial lower bound implied by the maximal cliques is known. Briefly, it is known that
n/2 ≤ χ(J(n,a)) ≤ n, often the chromatic number is a little bit smaller2. Indeed,
using coding theory techniques we show the easy result that there is an infor-
mative protocol when c + r = 1 with |M| = n different messages (Lemma 5),
and the more difficult new result for the general case, c + r ≥ 1, that (2n)c+r

different messages suffice, i.e., to properly color Jc+r(n,a) (Lemma 6). It follows
that Θ((c + r) log n) bits are needed and sufficient for an informative protocol;
the lower bound is implied by the size of the maximal cliques of Jc+r(n,a), more
details in Sect. 6.

Remarkably, only 1 bit suffices for minimal information transmission, when
b < �n/2�. We study the minimal information problem in Sect. 4, where we
present this and other results. We show that if additionally c ≤ �n/2� − 2 the
1-bit protocol is also safe. Also, we present a reduction from an informative
protocol, showing that when c+r = 1, as a grows from 3 up to roughly n/2, the
number of different messages goes down from n/3 to 2, for a safe and minimally
informative protocol. We find it surprising that there is a 1-bit protocol for
(3, 3, 1), with a 1-bit message, A can transfer one of her cards to B, privately.

2 Apparently there is no n,a where it is known that χ(J(n,a)) < n−2. In some special
cases the exact number has been determined.
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Proper coloringKp(c̄)

Kp(b̄)

Not proper coloring

y ∈ a

y �∈ a′

Kp(b̄) ⊂ Kp(c̄)

PA(a) = PA(a′)

While the informative property requires that
all vertices of each maximal clique Kp(b̄) are
colored differently by PA, the safety property
requires the opposite, that not all vertices of
each maximal clique Kp(c̄) are colored differently.
Thus, a protocol PA can be informative and safe
only if b > c. In this case, while Kp(c̄) induces a
clique in Jb+r(n,a), it does not induce a clique
in Jc+r(n,a).

Safety requires that for each card y, there is a hand of A that includes y, and
another that does not include it, both equally colored, in the complement of the
hand of C.

We consider the protocol χmodn in Sect. 5, that sends the sum of the cards
modulo n, for c + r = 1, and show that it is informative and safe, for a,b ≥ 3,
n ≥ 7. Indeed, while informative is a coding theory property, safety is an additive
number theory property. We prove safety using simple shifting techniques [19],
getting a generalization and simplification of results of [7].3 Thus, only two addi-
tional messages are needed to make an informative protocol, also safe (w.r.t. the
best known solutions). We present an informative protocol for the general case
c + r ≥ 1 based on more involved coding theory ideas and discuss safety, in
Sect. 6, but a detailed treatment is beyond the scope of this paper.

The Appendix includes additional details and some proofs, the other proofs
are in a companion technical report [27], together with an extensive discussion
of related work, and additional results.

2 Secure Information Transmission

The model and the problem are defined here, adapting the distributed computing
formalization of [21] to the case of an eavesdropper. In Sect. 2.1 we present the
representation of the inputs to A,B,C as a simplicial complex, which determines
the Johnson graphs that will play a central role in this paper. In Sect. 2.2 a
protocol is defined.

2.1 The Input Complex

Let D = {0, . . . , n − 1}, n > 1, be the deck of n distinct cards. An element in
the deck is a card. A subset x of cards is a hand, x ∈ P(D). We may say for
short that x, |x| = m, is an m-set or m-hand, namely, if x ∈ Pm(D), the subsets
of D of size m. A deal = (a, b, c) consists of three disjoint hands, meaning that
cards in a are dealt to A, cards in b to B, and cards in c to C. We say that
the hand is the input of the process. We call γ = (a,b, c) the signature of the
deal = (a, b, c) if |a| = a, |b| = b and |c| = c, following the notation introduced
3 Cordón-Franco et al. [7] show that χmodn is safe when n is prime using

[10, Theorem 4.1], analogous to the Cauchy-Davenport theorem, except for (4, 3, 1),
(3, 4, 1).
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by Fischer and Wright [17]. We assume that A, B and C are aware of the deck
and the signature.

It has been often assumed that n = a+b+c, but as we shall see, it is natural
to consider the case where nobody gets r cards, n = a+b+ c+ r. While A and
B get at least one card, a,b ≥ 1, C may get none c ≥ 0.

All possible deals for a given signature over D are represented by a simplicial
complex. The vertices are of the form (Y, y), Y ∈ {A,B,C}, and y a hand.
Such a vertex is called a Y -vertex. The input complex I(a,b, c), or I for short,
for signature γ = (a,b, c) is defined as follows. The facets of I are all the sets
{(A, a), (B, b), (C, c)}, where a, b, c is a deal of signature γ. The input complex
I consists of all such facets, together with all their subsets.

Notice that the A-vertices of I are in a one-to-one correspondence with all
subsets of size a of D, Pa(D), the B-vertices with Pb(D), the C-vertices with
Pc(D). Indeed, when c = 0, there is a single vertex for C in I.

Example 1. In distributed computing the
input complex with a signature γ = (1, 1, 1)
for three processes has been considered,
representing that processes get distinct
input names from a set of n names [3]. The
figure from [22] shows that in the case of
n = 4, the complex is a torus subdivided
into triangles. The vertices of each triangle
are colored black, gray, and white to repre-
sent the three processes. Inside the vertex
is the card dealt to the corresponding process.

2.2 Informative and Safe Protocols

Fix an input complex I over D, n = a + b + c + r. The announcement of A is
defined by a deterministic function PA(a) = M , for each input vertex (A, a) ∈ I,
where M belongs to M, the domain of possible messages that A may send. We
say that PA is the protocol of A. For B, there is a decision function δB(b,M)
that produces a set of cards in P(D), based on the input b of B, and the message
M received4.

In the language of e.g. [7,9,13], a protocol should be informative for B and
safe from C. If a protocol is informative, B should learn the hand of A. We define
also the notion of minimally informative. The goal is that B learns something
about the hand of A, after listening to an announcement M made by A.

More precisely, byPA beingminimally informativewemean that if b is the input
of B, then it is not the case that A sends the same message, on all of her possible
inputs. If this is the case, clearly B does not learn anything from her message, as

4 Since we have fixed D and the input complex I, implicitly PA(a) and δB(b, M)
depend on these parameters, in addition to the specific input a, resp. (b, M). This
is what we mean when we say that the players know the input complex.
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by just looking at his input b, he knows in advance which message A will send. As
we shall see in Theorem 2, this is equivalent to B learning that A has one of the
cards of a set s, |s| = n−a−b. Thus, if n = a+b+ c+ r, with c+ r = 1, then B
should learn one of the cards in the hand of A. When b = 1, B should learn that
A has one of the cards in a set s, |s| = n − a − 1, more than the trivial guess s,
s = D\b, where b is B’s input card. When c+r = 0 without any communication B
knows the hand of A, so it does not make sense to define a protocol where B learns
less information. Notice that when c+ r ≥ 1, we have that n − a−b ≥ 1, and the
following minimally informative definition makes sense.

Definition 1 (Informative and minimally informative). Let PA be a pro-
tocol. If there exists δB, such that for any given input edge {(A, a), (B, b)} ∈ I,
with M = PA(a),

– δB(b,M) = a, the protocol is informative,
– for c + r ≥ 1, δB(b,M) = s ∈ Pc+r(D), such that a ∩ s 
= ∅, the protocol is

minimally informative.

The previous definition does not talk about C. Indeed, it is based only on
the graph which is the subcomplex of I induced by the A-vertices and the B-
vertices. A protocol is safe if C cannot tell who holds even a single card (that she
does not hold). Consider a deal I = {(A, a), (B, b), (C, c)} ∈ I. Let PA(a) = M
be the announcement sent by A, and denote it also by PA(I). Two deals I, I ′ ∈ I
are initially indistinguishable [4] to C with input c if (C, c) ∈ I, I ′. And they are
indistinguishable after the protocol, if additionally PA(I) = PA(I ′). We require
then that for C there are always two indistinguishable inputs of A, a, a′, after
the protocol, such that x ∈ a and x 
∈ a′ or else x 
∈ a and x ∈ a′. More precisely,
for a vertex (C, c), let M be a possible message, namely, such that there exists
I = {(A, a), (B, b), (C, c)} ∈ I, and PA(I) = M . For a hand c, let c̄ = D\c, and
� the symmetric difference operator.

Definition 2 (Safety). A protocol PA is safe, if for any (C, c), any x ∈ c̄, and
any possible message M for (C, c), there are edges I = {(A, a), (C, c)} ∈ I, and
I ′ = {(A, a′), (C, c)} ∈ I, with PA(I) = PA(I ′) = M such that x ∈ a�a′.

Notice that while a,b ≥ 1, the previous definition applies even when c = 0.

3 Protocol as Vertex Coloring

We represent subcomplexes of I as Johnson graphs in Sect. 3.1. We reformulate
the information transmission problem as vertex colorings of Johnson graphs in
Sect. 3.2. Implications of the reformulation are presented in Sect. 3.3.

3.1 Representing Indistinguishability by Johnson Graphs

The situation when B has input b is represented by a vertex (B, b) ∈ I. The A-
vertices that B considers possible with input b, are the A-neighbors of (B, b) in
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I. Thus, we define (following [11], but used since [32] in information theory) the
graph GB in terms of I, as follows. The vertices of GB consist of all the A-vertices
of I. There is an edge joining two vertices (A, a), (A, a′) if and only if there are
edges in I connecting them with the same vertex (B, b). To analyze GB , we omit
the id A from the vertices, and let V (GB) = Pa(D). Thus, for two distinct
a, a′ ∈ Pa(D), {a, a′} ∈ E(GB) iff ∃b ∈ Pb(D) such that a, a′ ⊆ b̄ = D − b. If
r = c = 0, and n = a + b, there are no two such distinct deals a, a′, and the
graph has no edges.

The graph GC is defined analogously, on the same set of vertices, V (GC) =
Pa(D). When C has input c there is a vertex (C, c) ∈ I. The A-vertices that C
considers possible with input c, are the A-neighbors of (C, c) in I. Thus, for two
distinct a, a′ ∈ Pa(D), {a, a′} ∈ E(GC) iff ∃c ∈ Pc(D) such that a, a′ ⊆ c̄.

Lemma 1. For a, a′ ∈ V (GB), n = a+ b+ c + r, r ≥ 0, we have that {a, a′} ∈
E(GB) iff a−(c+r) ≤ |a∩a′|. Similarly, {a, a′} ∈ E(GC) iff a−(b+r) ≤ |a∩a′|.
Definition 3 (Distance d Johnson graph). For a set of n elements, the
graph Jd(n,m), 0 ≤ d ≤ m, has as vertices all m-subsets. Two vertices a, a′ are
adjacent whenever m − d ≤ |a ∩ a′|. When d = 1, we have a Johnson graph,
denoted J(n,m).

We have our basic theorem for the rest of the paper.

Theorem 1. The graph GB for signature (a,b, c) is equal to the graph
Jc+r(n,a). In particular, GB is a Johnson graph, J(n,a), exactly when c+r = 1.
Similarly, GC is equal to Jb+r(n,a).

The vertices of A that B considers possible with input b, are the A-neighbors
of (B, b) in I. They are denoted Kp(b̄), where b̄ = D− b. They induce a clique in
GB (overloading notation the clique itself is also sometimes denoted by Kp(b̄)).
The vertices in Kp(b̄) are all a ⊆ b̄ with |a| = a. Thus, when B has input b, B
considers possible that A has any input a, a ∈ Kp(b̄). Notice that if c + r = 0
and n = a + b, then B with input b considers possible only one input for A,
namely, b̄. In this case, E(GB) = ∅.

Lemma 2. For each hand b of B, the possible inputs of A induce a clique Kp(b̄)
in GB, p =

(
n−b
a

)
, consisting of all a ∈ Pa(D), such that a ⊂ b̄. Similarly, for

GC , the vertices Kp(c̄) consisting of all a ∈ Pa(D) such that a ⊂ c̄, induce a
clique in GC .

We have illustrated the following in the figure of the Introduction.

Remark 1 (Subgraphs). If b ≤ c then Jb+r(n,a) is a subgraph of Jc+r(n,a) on
the same set of vertices. Hence, for each b ∈ Pb(D), c ∈ Pc(D), both Kp(b̄) and
Kp(c̄) induce cliques in Jc+r(n,a). Furthermore, if b ⊆ c, then Kp(c̄) ⊆ Kp(b̄).
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3.2 Protocol as Vertex Coloring of a Johnson Graph

Consider a protocol PA for signature (a,b, c), with n = a + b + c + r. In light
of Theorem 1, we take the view of PA as a vertex coloring, PA : Pa(D) → M.
For vertex (A, a) ∈ I, PA(a) is the message M ∈ M, sent by A when she has
input a. We assume that PA is surjective. The set of A-vertices colored M is
P−1
A (M).5

Recall that a vertex coloring of a graph is proper if each pair of adjacent
vertices have different colors. The following theorems reformulate the informative
and safety notions of Definitions 1 and 2.

Theorem 2 (Informative characterization). Let PA : Pa(D) → M be a
protocol.

– PA is informative if and only if PA is a proper vertex coloring of Jc+r(n,a).
– When c + r ≥ 1, PA is minimally informative if and only if for each b ∈

Pb(D) there is some edge {a, a′} in the clique Kp(b̄) of Jc+r(n,a), such that
PA(a) 
= PA(a′).

By Lemma 10, for the case when c+ r = 1 (recall Theorem 1), we have that
B learns at least one card of A (Lemma 11).

Recall from Sect. 3.1 the graph GC . The vertices of GC consist of all the A-
vertices of I. There is an edge joining two vertices (A, a), (A, a′) if and only if
there are edges in I connecting them with the same vertex (C, c). Then, V (GC) =
V (GB) = Pa(D), and for two distinct hands a, a′ of size a, {a, a′} ∈ E(GC) iff
∃c ∈ Pc(D) such that a, a′ ⊆ c̄ = D − c. Namely, we have the graph Jb+r(n,a),
where Kp(c̄) induces a clique, for every c ∈ Pc(D). In the following the set of col-
ors of vertices of a clique is denoted, PA(Kp(c̄)) = {M | P (a) = M,a ∈ Kp(c̄)}.
The following equivalence is straightforward.

Theorem 3 (Safety characterization). Let PA : Pa(D) → M. The follow-
ing conditions are equivalent.

1. PA is safe.
2. Consider any c ∈ Pc(D), and any y ∈ c̄. For each M ∈ PA(Kp(c̄)), there

exist a, a′ ∈ Kp(c̄) with PA(a) = PA(a′) = M such that y ∈ a�a′.

In a two-step protocol first A and then B makes an announcement, both
heard by C. If a protocol PA is informative and safe, and r = 0, one may assume
that PB , the protocol of B, is simply to announce C’s set of cards.

Corollary 1. There is a 2-step solution for the Russian problem (a,b, c), n =
a + b + c + r with A making the first announcement, if and only if there is a
safe proper coloring of Jc+r(n,a).

5 Thus, P−1
A (M) is equivalent to an “announcement” by A in the terminology of [2],

or the “alternative hands” for A, in the notation of [12, Proposition 24].
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3.3 General Bounds

For a protocol PA : Pa(D) → M, the protocol P̄A : Pn−a(D) → M is defined
by

P̄A(a) = PA(ā),

where as usual, ā = D\a. The following main result of the section shows that
there is a safe proper coloring of J(n,a) iff there is a safe proper coloring of
J(n, n − a). Remarkably, this result does not hold for minimally informative
protocols (see Corollary 3).

Theorem 4 (duality). Assume c + r = 1, so n = a + b + 1. A protocol PA

is informative and safe for (a,b, c) if and only if the protocol P̄A is informative
and safe for (b + 1,a − 1, c).

For instance, there is solution for the (4, 2, 1) case, because it is equivalent
to a solution to (3, 3, 1), the classic Russian cards case6. However, there is no
solution for the (2, 4, 1) case, as we show in the next theorem (and was observed
in [2]). The reason is that in this case we get the graph J(7, 2), which has no safe
proper coloring. Thus, while we assume that A makes the first announcement;
to analyze the other case, one may exchange values of a and b. It may be more
convenient that A makes the first announcement, or that B makes it, in terms
of both solvability and communication complexity. For the first case, a coloring
has to be found for J(n,a), and for the second case, one for J(n,b).

Theorem 5. If c + r ≥ min {a, n − a} − 1, c ≥ 1, then there is no safe proper
coloring of Jc+r(n,a).

Recall that a protocol can be informative and safe only if b > c (Remark 3).
Thus, combining this fact with Theorem 5, we get the following, that includes
several particular cases of interest, some previously observed7.

Corollary 2. There is no informative and safe protocol if c ≥ b or if c + r ≥
min {a, n − a} − 1, c ≥ 1.

4 Minimal Information Transmission

We study first the protocol, χ2, that sends the sum of the cards modulo 2. We
show in Sect. 4.1 that χ2 is minimally informative only if b < �n/2�. Thus, χ2

is not minimally informative for the classic Russian cards case (3, 3, 1).
In Sect. 4.2 we describe how to transform an informative protocol into a

minimally informative protocol. Applying the reduction to χmodn, when c+r = 1,

6 This is the example of [2], “we get a 7-line good announcement for (4, 2, 1). It may
further be observed that this is the complement of a 7-line good announcement for
(3,3,1) as found above (for no apparent reason related to designs)”.

7 Using two different proof techniques, it was shown that if a ≤ c + 1, there is no
informative and safe solution (r = 0), in [2, Corollary 2]) and [29, Theorem 6].
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as a grows from 3 up to roughly n/2, the number of different messages goes down
from n/3 to 2.

This reduction shows that there is a safe minimally informative protocol for
the Russian cards case (3, 3, 1) using 3 messages. Finally, we present a solution to
the Russian cards case using only 2 messages, in Sect. 4.1. Given that there is no
uniform safe informative protocol using 6 messages [27], indeed this 2-message
protocol splits color classes of an informative protocol.

4.1 Minimal Information with 2 Messages

For signature (a,b, c), with n = a+b+c+r, consider a protocol χ2 : Pa(D) →
{0, 1}, defined by

χ2(a) =
∑

x ∈ a (mod 2).

The Protocol χ2 is Minimally Informative. Recall Lemma 2. For each input
vertex (B, b) denoting that B gets hand b, there are m =

(
n−b
a

)
possible hands

ai for A, corresponding to vertices (A, ai). In Jc+r(n,a) these vertices form a
maximal clique Kp(b̄) of GB , p =

(
n−b
a

)
, consisting of all hands a ⊂ b̄, |a| = a.

If b ≥ �n/2� then for b of size b, b̄ may consist of cards of the same parity, and
thus all a ⊂ b̄, |a| = a have the same parity, and χ2 is not minimally informative.

Lemma 3. Assume that c + r ≥ 1, a ≥ 1, b < �n/2�. Then χ2 is a minimally
informative protocol.

The Protocol χ2 is Safe. Lemma 3 implies that χ2 is minimally informative
when n = 7,a = 3,b = 2, c = 2, r = 0, namely, for J2(7, 3). But it is not safe,
because if C has hand {1, 3} and the announcement is 0 she knows that A does
not have card 5. Or if the announcement is 1, she knows that A has card 5. More
generally, the number of odd cards in D is �n/2�. If c = �n/2� − 1 then when C
holds c odd cards she can deduce from the announcement whether A holds the
remaining odd card. Thus, assume that c ≤ �n/2� − 2, and additionally, a ≥ 2
(Remark 4).

In Sect. 5.2 we discuss the modulo n case and the relation of proving safety
with additive number theory. The proof for the modulo 2 case provides a simple
illustration of the ideas.

Lemma 4. Assume that a,b ≥ 2 and c ≤ �n/2�−2. Then χ2 is a safe protocol.

Combining Lemma 3 and Lemma 4 we get the following theorem.

Theorem 6. Let n = a + b + c + r. If a,b ≥ 2, c ≤ �n/2� − 2, c + r ≥ 1, and
b < �n/2�, then χ2 is minimally informative and safe.

Thus, for example, when n = 7, a = 3, b = 2, c = 1, r = 1, namely, J2(7, 3),
then χ2 is both minimally informative and safe. Similarly for n = 7, a = 4,
b = 2, c = 1, r = 0, namely, J(7, 4). Which is interesting, because it shows that
the duality Theorem 4 does not hold for minimally informative protocols; notice
that J(7, 4) ∼= J(7, 3), but χ̄2 is not minimally informative for J(7, 3) (neither
is χ2). More generally, we get the following.
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Corollary 3. Assume c + r = 1. Then, χ2 is minimally informative and safe,
whenever a > �n/2� − 1 and b < �n/2�.

The Russian Cards Case with Two Messages. The following protocol χ
is a minimally informative 2-coloring of J(7, 3).

χ−1(0) = {012, 013, 014, 015, 016, 023, 024, 025, 036, 046, 056, 126, 134, 135,

234, 236, 245, 246, 345, 356, 456}
χ−1(1) = {026, 034, 035, 045, 123, 124, 125, 136, 145, 146, 156, 235, 256, 346}
The solution was found by Zoe Leyva-Acosta and Eduardo Pascual-Aseff,

using a computer program.

4.2 Reducing Informative to Minimally Informative Protocols

As observed in Sect. 4.1, the protocol χ2 is not minimally informative when
a ≤ �n/2� − 1 or b ≥ �n/2�, and thus, in particular, for the Russian cards
problem (3, 3, 1), r = 0. We present here a protocol for this case, based on the
χmodn protocol studied in Sect. 5. Notice that the protocol χmodn is safe and
informative when c + r = 1.

The protocol uses the idea that, merging two color classes of a protocol PA,
P−1
A [M ] ∪ P−1

A [M ′], leads to a new protocol that preserves safety (but possibly
not informative properties). Actually, the idea works for any safe and informative
protocol PA : Pa(D) → M. If |M| = m, let us denote M = Zm.

If PA : Pa(D) → Zm is a safe proper coloring of Jc+r(n,a), c+r ≥ 1, define
the protocol, P

[p]
A : Pa(D) → Z�m/(p−1)�, where

P
[p]
A (a) = PA(a) (mod �m/(p − 1)�),

p =
(
a+c+r

a

)
=

(
n−b
a

)
.

Theorem 7 (Information reduction). If PA is a safe and informative pro-
tocol then P

[p]
A is a safe and minimally informative protocol. Thus, if m is the

different number of messages used by PA, then �m/(p − 1)� is the number of
messages used by P

[p]
A .

In the case of c + r = 1, the protocol χmodn studied in Sect. 5 is a safe
and informative protocol (Theorem 8), using n different messages. In this case,
p = a + 1. Thus we have the following.

Corollary 4. The protocol χ
[a+1]
modn is minimally informative and safe for a,b ≥

3, c + r = 1, using �n/a� different messages.

Notice that not every minimally informative safe protocol can be obtained by
reduction from an informative protocol. Theorem 6 states that χ2 is minimally
informative and safe in some cases where

c ≥ b or c + r ≥ min {a, n − a} − 1. (1)
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For instance, the case of signature (6, 6, 8), r = 0, satisfies the hypothesis of the
theorem and hence χ2 is minimally informative and safe. But recall that in such
cases (1) there is no informative and safe protocol (Corollary 2).

5 The Modular Protocol χmodn for c + r = 1

For signature (a,b, c), with n = a + b + c + r, consider the protocol χmodn :
Pa(D) → Zn, defined by

χmodn(a) =
∑

x ∈ a (mod n).

All operations in this section are modulo n, working in Zn, even when not explic-
itly stated. We show that χmodn is informative and safe when c + r = 1. It is
easy to see that χmodn is not informative when c+ r > 1, and more complicated
techniques are needed, discussed in Sect. 6.

5.1 χmodn Is Informative and Coding Theory

The result that χmodn is informative when c + r = 1 is known and easy [7].
But our perspective that this is equivalent to being a proper vertex coloring of
J(n,a) exposes the connection with coding theory. It is actually the argument
(generalized in Sect. 6 to c + r > 1) behind the proof that shows a lower bound
on A(n, 4, w), the maximum number of codewords in any binary code of length
n, constant weight w, and Hamming distance 4 [20, Theorem 1].

Lemma 5. For c + r = 1, χmodn is a proper vertex coloring of J(n,a), for
1 ≤ a < n.

5.2 If c + r = 1 Then χmodn Is Safe

Now we show that when c + r = 1, the codes described in Sect. 5.1, defined by
χ−1
modn, are safe. We prove it using the additive number theory properties [27].

Theorem 8. The protocol χmodn is informative and safe when c+r = 1, a,b ≥
3, n ≥ 7.

This theorem generalizes and simplifies results of [7].8

8 In [7, Corollary 9] it is shown that the protocol is safe when n prime, with a proof
based on a non-trivial theorem by Dias da Silva and Hamidoune [10, Theorem 4.1].
Which is analogous to the Cauchy-Davenport theorem, the first theorem in additive
group theory [26]. Then, this result was extended to [7, Theorem 13], proving that
a protocol that announces the sum of the cards modulo p is safe, except for (4, 3, 1),
(3, 4, 1), where p is the least prime greater than or equal to a + b + 1.
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6 Informative Transmission: The General Case c + r ≥ 1

In this section we discuss an informative solution when c + r ≥ 1. As far as we
know, this is the first general informative protocol, and there is no safe and infor-
mative general solution known. Swanson et al. [30] discuss informative protocols
and their relation to combinatorial designs. They explain the combinatorial dif-
ficulty of the case c + r ≥ 1.

We are now behind the classic coding theory proof that shows a lower bound
on A(n, 2δ, w), the maximum number of codewords in any binary code of length
n, constant weight w, and Hamming distance 2δ. Namely, the proof that shows
that the vertices in χ−i

modn in this case define a binary code of length n, constant
weight w, and Hamming distance 2δ. We reuse the coding theory argument
from [20, Theorem 4]. Let q be a primer power (positive integer power of a
single prime number), q ≥ n. Let the elements of the Galois field GF(q) be
w0, w1, . . . , wq−1. For a vertex a of Jd(n,a), let ai = 1 if i ∈ a, and else ai = 0.
Namely, for the following lemma we view a as a vector a = (a0, . . . , an−1) ∈ F

n
a .

Define χ̄(a) to be the vector (χ1(a), χ2(a), . . . , χd(a)),

χ1(a) =
∑

ai=1

wi,

χ2(a) =
∑

i<j
ai=aj=1

wiwj ,

χ3(a) =
∑

i<j<k
ai=aj=ak=1

wiwjwk,

· · ·

(2)

Then, for v ∈ GF(q)d, the set of vertices colored v is χ̄−1(v).

Lemma 6. χ̄ is a proper vertex coloring of Jd(n,a), d ≥ 1, d < min{a, n − a}.
Thus, the set of colors needed is of size at most qd. Which implies that there is

always a set of size at most (2n)d to properly color Jd(n,a), because Bertrand’s
postulate states that there is a prime p such that n < p ≤ 2n.

On the other hand, there is a corresponding (asymptotically in terms of n,
for c+ r constant) lower bound9. Namely, by Lemma 2, the cliques Kp(b̄) in GB

have size p =
(
a+c+r

a

)
, and by Lemma 7, Jd(n,m) ∼= Jd(n, n − m). Thus,

Theorem 9. Θ((c + r) log n) bits are needed and sufficient for an informative
protocol.

9 Recall that
(
z+k
k

)
= kz

Γ(z+1)
(1 + z(z+1)

2k
+ O(k−2)), as k → ∞. Thus, in more detail,

the lower bound in the number of bits is Θ((c + r) log n − (c + r) log(c + r)).
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7 Conclusions

We have presented a new perspective inspired by distributed computing on the
basic problem of safe information transmission from A to B in the face of an
eavesdropper C. The formalization in terms of Johnson graphs, facilitated using
known results about these graphs, closely related to coding theory, and moti-
vated developing new additive number theory proofs. We were able thus to prove
new results, as well as explaining and unifying previously known results. We con-
sidered the standard informative notion, requiring the B learns the hand of A,
and defined the new notion, of minimal information transfer.

Many interesting avenues remain for future work. Some problems would imply
solutions in coding theory, where much research has been done. A detailed study
of the general case d ≥ 1 is beyond the scope of this paper. The colorings for
minimal information transmission do not seem to have been studied before, and
many cases remain open.

Many other interesting problems remain open, about the relation with com-
binatorial designs (that has been thoroughly studied e.g. [30]), about stronger
security requirements e.g. [24], about fault-tolerant solutions [21], and more than
two parties e.g. [14], and randomized protocols [16]. It would be interesting to
understand the role of Johnson graphs in multi-round protocols; there exists
work from the secret sharing side e.g. [17], from the Russian cards side [9,13],
and from the distributed computing side [6,11].

Acknowledgements. We would like to thank Jorge Armenta, Hans van Ditmarsch,
Zoe Leyva-Acosta, and Eduardo Pascual-Aseff for their many comments. This work
was supported by the UNAM-PAPIIT project IN106520.

A Appendix

It is easy to see and well-known that J(n,m) is isomorphic to J(n, n − m). The
same holds for the distance d version.

Lemma 7. The following are isomorphic graphs Jd(n,m) ∼= Jd(n, n − m).

Remark 2 (Maximal cliques). There are two families of maximal cliques in
J(n,m). For the first, take all n − m + 1 of the m-subsets that contain a fixed
(m − 1)-subset; for the second, take the m-subsets of a fixed set of size m + 1.
When n = 2m the cliques in these two families have the same size. Maximality of
the cliques is implied by Erdös–Ko–Rado Theorem [19, Chapter 6]. In the case of
Jd(n,m), we have already encountered one family in Lemma 2. For each (m+d)-
subset b̄, there is a clique in Jd(n,m), denoted Kp(b̄). The vertices of Kp(b̄) are
all m-subsets of b̄. We will encounter the other family as well, K ′

p(b). A clique
K ′

p(b) is obtained by taking the m-subsets that contain a fixed (m−d)-subset b.
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We recall a simple but useful shifting technique in Johnson graphs, and even
more generally in intersecting set families [19], we use the following version. For
a hand a, and cards i, j, with i 
∈ a, j ∈ a,

aij = (a\j) ∪ {i} ,

denoted by an arc a
ij−→ aij . Notice that, {a, aij} ∈ E(J(n,m)), and if a′ is

reachable from a by d arcs, then {a, a′} ∈ E(Jd(n,m)).
For a hand s, we say that a′ is s-reachable from a if there is a directed path

from a to a′ defined by a (possibly empty) sequence of arcs
ij−→, all of them with

i ∈ s. (For the following cf. [28, Lemma 1]).

Lemma 8. Let a ∈ V (Kp(b̄)). Let s = b̄\a. Thus, |s| = d. Then, V (Kp(b̄)) is
the set of s-reachable vertices from a.

Proof. First, notice that a is s-reachable from itself. Now, let a′ be any other
vertex of Kp(b̄). If 2d′ = |a�a′|, d′ ≤ d, order the cards in a\a′ as x1, . . . , xd′

and those in a′\a as x′
1, . . . , x

′
d′ . Then, a′ is reachable from a by the path

a = a0
x′
1x1−→ a1

x′
2x2−→ a2 · · · x′

d′xd′−→ ad′ = a′.

Lemma 9. Let Kp(b̄) be a clique of Jd(n,m). For any set of k vertices, 1 ≤
k < p, {a1, . . . , ak} ⊂ Kp(b̄), there exists a set s ⊂ b̄, |s| = d, such that for any
ai, ai ∩ s 
= ∅.
Proof. Pick a ∈ Kp(b̄) not in {ai}. Let s = b̄\a, |s| = d. Since Kp(b̄) is the set of
s-reachable vertices from a (Lemma 8), all other vertices in Kp(b̄) are s-reachable
from a, s = b̄\a. And hence, for the subset {ai} of those vertices, we have that
for any ai, ai ∩ s 
= ∅.

In particular, when d = 1, the following holds.

Lemma 10. Consider J(n,m) and any Km+1(b̄). For any set of k vertices,
1 ≤ k ≤ m + 1, {a1, . . . , ak} ⊆ Km+1(b̄), it holds that | ∩ ai| = m + 1 − k.

Proof. Consider the ai vertices in order a1, . . . , ak, and the shiftings

a1
x′
1x1−→ a2

x′
2x2−→ a3 · · · ak−1

x′
k−1xx−1−→ ak,

where ai+1\ai = x′
i and ai\ai+1 = xi. Thus, by induction on i, for each i ≥ 1,

|a1 ∩ a2 ∩ . . . ∩ ai| = m + 1 − i.

Lemma 11. Let c + r = 1. For a minimally informative protocol PA, there
exists a decision function for B, δB, such that when the hand of A is a and
PA(a) = M , then δB(b,M) = x, for some x ∈ a.

The following argument is similar to [12, Proposition 29].
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Lemma 12. Let a ≥ 2, c ≥ 1, PA be a safe protocol. Consider any M . For any
vertex a ∈ P−1

A (M), any z ∈ a, and any card y, there must be another vertex
a′ ∈ P−1

A (M) that also includes card z, and y ∈ a�a′.

Remark 3 (Safety).

– Informative requires PA to be a proper vertex coloring of Jc+r(n,a), while
safety requires that PA is not a proper vertex coloring of Jb+r(n,a). Thus,
by Remark 1, a protocol can be informative and safe only if b > c. In this
case, while Kp(c̄) induces a clique in Jb+r(n,a), it does not induce a clique
in Jc+r(n,a), by Remark 2. (cf. [2, Lemma 2]).

– Joining color classes P−1
A [M ] ∪ P−1

A [M ′] of a protocol preserves safety, but
not necessarily informative properties (see Sect. 4.2).

Remark 4 (The assumption a ≥ 2). A simple consequence of Theorem 3 is that
we should concentrate on the case that a ≥ 2. If a = 1 then a safe protocol
PA must always send the same message M . Otherwise, if PA(y) 
= PA(y′) for
y, y′ ∈ D, then when C has a hand c, such that y, y′ ∈ c̄, then when C hears
PA(y) she knows that A does not have card y′. Thus a safe protocol PA cannot
be minimally informative, and thus cannot be informative either.

Theorem 4. Assume c+ r = 1, so n = a+b+ 1. A protocol PA is informative
and safe for (a,b, c) if and only if the protocol P̄A is informative and safe for
(b + 1,a − 1, c).

Proof. There are two cases: c = 1, r = 0, and c = 0, r = 1. First we show the
equivalence for the informative property, in both cases.

Notice that n − a = b+ 1. By Lemma 7, we have that J(n,a) ∼= J(n, n − a),
under the isomorphism f(a) = ā. Thus, if PA is an informative, i.e., proper
vertex coloring of J(n,a), then P̄A(a) = PA(f(a)) is a proper vertex coloring of
J(n, n − a).

Now, consider the case c = 1, r = 0, and assume that PA is safe for (a,b, 1).
That is, for every card c ∈ Pc(D), c = 1, y ∈ c̄, and M ∈ PA(Kp(c̄)), there
exists a, a′ ∈ Kp(c̄), PA(a) = PA(a′) = M such that y ∈ a�a′.

To prove that P̄A is safe, we need to consider a card c ∈ Pc(D), and the
vertices of K ′

p(c̄) in J(n, n − a), which are ā ∈ Pn−a(D), such that ā ⊆ c̄.
Let y ∈ c̄, ā ∈ K ′

p(c̄) with P̄A(ā) = M . Suppose y ∈ a (the case when y 
∈ a
is similar). Thus, PA(a) = M and c ∈ a. By Lemma 12 there exists a′ ∈ Pa(D),
y 
∈ a′, PA(a′) = M , such that c ∈ a′.

Now, let a′ ∈ Pa(D), y 
∈ a′, PA(a′) = M , with c ∈ a′. Then, c is in
both a and a′, and hence c is in neither ā nor ā′. Namely, ā, ā′ ∈ K ′

p(c̄). But
P̄A(ā) = PA(ā′) = M . And we are done, because y ∈ ā�ā′.

For the converse, assume PA is safe for (b+1,a−1, 1) = (n−a,a−1, 1), and
consider c ∈ Pc(D), and the vertices of Kp(c̄) in J(n,a), which are a ∈ Pa(D),
such that a ⊆ c̄.

Let y ∈ c̄, a ∈ Kp(c̄) with PA(a) = M . Suppose y ∈ a (the case when y 
∈ a
is similar). Consider ā, and hence P̄A(ā) = PA(a). Thus, c ∈ ā. By Lemma 12
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there exists ā′ ∈ Pn−a(D), y 
∈ ā′, P̄A(ā′) = M , such that c ∈ ā′. Then, c is
in both ā and ā′, and hence c is in neither a nor a′. Namely, a, a′ ∈ Kp(c̄). But
PA(a) = PA(a′) = M . And we are done, because y ∈ a�a′.

Finally, we prove the safety equivalence, for the second case, where c = 0, r =
1. Solving the weak Russian cards problem for the case (a,b, 0) is equivalent to
solving it for the case (b + 1,a − 1, 0). This case is easier, it does not need
Lemma 12. If PA is safe for (a,b, 0), then we take c and c̄ as the empty set.
Then, for any y ∈ D, and M , there exists a, a′ such that PA(a) = PA(a′), such
that y ∈ a�a′. Then, y ∈ ā�ā′, which is what is needed for P̄A to be safe, since
P̄A(ā) = P̄A(ā′). The converse is similar.
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Abstract. In this work we extend the recently proposed synchronous
broadcast algorithm amnesiac flooding to the case of intermittent com-
munication channels. In amnesiac flooding a node forwards a received
message in the subsequent round. There are several reasons that render
an immediate forward of a message impossible: Higher priority traffic,
overloaded channels, etc. We show that postponing the forwarding for
one or more rounds prevents termination. Our extension overcomes this
shortcoming while retaining the advantages of the algorithm: Nodes don’t
need to memorize the reception of a message to guarantee termination
and messages are sent at most twice per edge. This extension allows to
solve more general broadcast tasks such as multi-source broadcasts and
concurrent broadcasts for systems with bounded channel capacities.

1 Introduction

Broadcasting is the task of delivering a message from one network node to all
other nodes. Broadcast algorithms constitute a fundamental component of many
distributed systems and are often used as subroutines in more complex algo-
rithms. There are numberless applications of broadcast. Demers et al. discuss
the maintenance of a database replicated at many sites in a large corporate
network [3]. Each database update can be injected at various nodes, and these
updates must be propagated to all nodes in the network. The replica become
fully consistent only when all updating activity has stopped and the system has
become quiescent. The efficiency of the broadcasting algorithm determines the
rate of updates the system can handle.

A common broadcasting algorithm is flooding. The originator v0 of a message
m forwards m to all neighbors and when a node receives m for the first time, it
sends it to all its neighbors in the communication graph G(V,E). Flooding uses
2|E| messages and terminates after at most εG(v0) + 1 rounds, εG(v0) denotes
the maximal distance of v0 to any other node. In this form flooding is a stateful
algorithm, it requires each node to keep a record of already forwarded messages.
This requires storage per node in the order of the number of broadcasted mes-
sages. Since nodes are unaware of the termination of the broadcast, these records
have to be stored for an unknown time.
c© Springer Nature Switzerland AG 2021
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For synchronous distributed systems stateless broadcasting algorithms are
known. Hussak and Trehan proposed amnesiac flooding (AAF) [6]. Every time a
node receives message m, it forwards it to those neighbors from which it didn’t
receive m in the current round. In contrast to classic flooding, a node may for-
ward a message twice. Surprisingly amnesiac flooding terminates and each mes-
sage is sent at most twice per edge. Crucial for the termination of AAF is that the
forwarding of messages is always performed in the round immediately following
the reception. We show in Sect. 4 that algorithm AAF no longer terminates when
message forwarding is suspended for some rounds. There can be several reasons
for suspending forwarding, when traffic with a priority higher than broadcast has
to be handled, or when the capacity of a communication channel is exhausted due
to several concurrent broadcasts. Surprisingly it requires only a simple extension
to make AAF to work correctly despite a limited number of suspensions. Our first
contribution is the extended algorithm AAFI described in Sect. 4.

Our first result enables us to prove that algorithm AAF is also correct for
multi-source broadcasting, i.e., several nodes broadcast the same message m in
different rounds, provided a broadcast of m is invoked before m reaches the
invoking node from another broadcast. In Sect. 5 we prove that in this case AAF

delivers m after at most Diam(G) rounds and forwards m at most 2|E| times.
If the communication channel is unavailable f times then AAFI delivers m after
at most Diam(G) + 2f rounds, m is still forwarded at most 2|E| times.

While algorithm AAFI is of interest on its own, it can also be used to solve
the general task of multi-message broadcast in systems with bounded channel
capacities. Multi-message broadcast means that multiple nodes initiate broad-
casts of different messages, even when broadcasts from previous initiations have
not yet terminated. If channel capacities are bounded, nodes can forward only
a limited number of messages per round. Bounded channel capacities occur in
communication systems utilizing TDMA, where communication is performed in
fixed length slots and therefore only b messages can be sent in one round. If more
than b messages are in the sending queue, then the forwarding of some messages
has to be postponed for at least one round. In Sect. 6 we present two algorithms
AAFIS and AAFIF for this task. The advantage of these algorithms is that compared
to classic flooding besides the unavoidable message buffer no state information
has to be maintained. Theorem 1 summarizes our third contribution.

Theorem 1. Let S be a sequence of message broadcasts (identical or different
messages) by the nodes of a graph G(V,E) in arbitrary rounds under the restriction
that a broadcast of message m is invoked before m reaches the invoking node from a
broadcast of another node. If in each round each node can send at most b messages
to each neighbor algorithm AAFIF eventually terminates and delivers each message
of S. Nodes don’t need to memorize the reception of a message. If G is bipartite
each message is forwarded |E| times, otherwise 2|E| times.
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2 State of the Art

Broadcasting as a service in distributed systems can be realized in two ways:
Either by using a pre-constructed structure such as a spanning tree or by per-
forming the broadcast each time from scratch. In the first case a broadcast can
be performed with n − 1 messages. In the second case a broadcast can be real-
ized by 2(n − 1) messages by traversing the graph in a DFS style and carrying
the identifiers of the visited nodes along with the messages. This requires mes-
sages that store up to n node identifiers. If the message size is restricted to o(n)
and only a fixed number of messages can be sent per round per link then each
deterministic broadcast algorithm has message complexity Ω(|E|), Thm. 23.3.6
[9]. For a detailed analysis of broadcast algorithms we refer to Sec. 23 of [9].

In this work we focus on broadcast algorithms that do not rely on a pre-
constructed structure and use limited communication channels. The most basic
algorithm of this category is flooding as described above. Flooding uses 2|E|
messages and terminates after at most εG(v0) + 1 rounds, these bounds hold in
the synchronous and asynchronous model [9]. It requires each node to maintain
for each message a record that the message has been forwarded. These records
have to be kept for an unknown time. This requires storage per node proportional
to the number of disseminated messages. Amnesiac flooding AAF overcomes this
limitation in synchronous systems and is thus stateless [6]. AAF delivers a broad-
casted message twice to each node. Thus, we have to distinguish between delivery
and termination time. AAF delivers a message (resp. terminates) for an initiator
v0 on any finite graph in at most εG(v0) (resp. εG(v0) + Diam(G) + 1) rounds,
where Diam(G) is the diameter of G. The termination time compared to stan-
dard flooding increases almost by a factor of 2. Amnesiac flooding was also
analyzed for sets of initiators [13]. A stateless broadcasting algorithm with the
same time complexity as classic flooding has recently been proposed in [11].

A problem related to broadcast is rumor spreading. It describes the dissemi-
nation of information in networks through pairwise interactions. A simple model
for rumor spreading is that in each round, each node that knows the rumor,
forwards it to a randomly chosen neighbor. For many topologies, this strategy
is a very efficient way to spread a rumor. With high probability the rumor is
received by all vertices in time Θ(log n), if the graph is a complete graph or a
hypercube [4,5]. New results about rumor spreading can be found in [8].

Intermittent channel availability is no issue for classic flooding and thus has
not been considered. Broadcasting in distributed systems with bounded channel
capacities has received little attention. Hussak et al. consider a model where a
node can send only a single message per edge per round [7]. They propose a vari-
ant of amnesiac flooding to handle many nodes invoking broadcasts of different
messages in different rounds. They show that their algorithm terminates, but
delivery to all nodes is only guaranteed in the case that a single node broadcasts
different messages. Our work is more general and uses a different approach.

Raynal et al. present a broadcast algorithm suited for dynamic systems where
links can appear and disappear [10]. Some algorithms of [7] also maintain their
properties in case edges or nodes disappear over time. Casteigts et al. analyze
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broadcasting with termination detection in time-varying graphs [2]. They prove
that the solvability and complexity of this problem varies with the metric consid-
ered, as well as with the type of a priori knowledge available to nodes. Adamek
et al. present a stateless planar geocasting algorithm relying on coordinates [1].

3 Notation and Model

In this work G(V,E) denotes a finite, connected, undirected graph with n = |V |.
Let v, u ∈ V , dG(v, u) denotes the distance between v and u in G, N(v) the set of
neighbors and εG(v) the eccentricity of v in G, i.e., the greatest distance between
v and any other node in G. Diam(G) denotes the maximum eccentricity of any
node of G. An edge (u,w) ∈ E is called a cross edge with respect to a node v0
if dG(v0, u) = dG(v0, w). Δ denotes the maximal node degree in G. Each node
has a unique id and is aware of the ids of its neighbors but does not have any
knowledge about graph parameters such as the number of nodes or diameter.

The goal of a broadcasting algorithm is to disseminate a message created by
a node to all nodes of the network. Messages are assumed to be distinguishable,
each having unique id. No message is lost in transit. A broadcast is said to
terminate when all network events (message sends/receives) that were caused by
that broadcast have ceased. A broadcast message is said to have been delivered,
if it has been received by all the nodes in the network.

In this paper we consider synchronous distributed systems, i.e., algorithms
are executed in rounds of fixed length and all messages sent by all nodes in a
particular round are received and processed in the next round. In Sect. 6 we
assume that in each round each node can only send a constant number b of
messages to a subset of its neighbors. This can be realized by a network-level
broadcast, where each message contains the identifiers of the receivers. This
requires O(b log n) bits in each messages. Besides this, each message has just
enough space to contain the information to be disseminated. In particular two
messages cannot be aggregated into one.

4 Handling Intermittent Channels

In this section we extend AAF so that it operates correctly with intermittent
channel availabilities. Algorithm 1 recaps the details of amnesiac flooding AAF

as described in [6]. A node that wants to flood a message m sends m to all
neighbors. Every time a node receives m, it forwards it to those neighbors from
which it didn’t receive m in the current round. The code in Algorithm 1 shows the
handling of a single message m. If several messages are broadcasted concurrently,
each requires its own set M .

An attempt to handle channel unavailabilities is to postpone the sending of
some messages to the next round when the channel is again available. Messages
received in the mean time are treated as before, the senders are inserted into M .
Unfortunately, this modification of AAF may not terminate. Figure 1 presents an
illustrative example. In the graph depicted in the top left node v0 broadcasts a
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Algorithm 1: Algorithm AAF distributes a message m in the graph G

input : A graph G = (V,E), a subset S of V , and a message m.

In round 1 each node v ∈ S sends message m to each neighbor in G;
Each node v executes in every round i > 1

M := N(v);
foreach receive(w,m) do

M := M \ {w};

if M �= N(v) then
forall u ∈ M do send(u,m);

message m in round 0. Suppose that node v2 (resp. v3) cannot send messages
in rounds 2, 3 and 4 (resp. in round 2). We show that forwarding messages in
the first available round may prevent termination. In the first round v0 sends m
to v1, v2 and v3. In round 2 nodes v2 and v3 cannot forward m and postpone
the sending. Node v3 postpones this to round 3. In this round v2 also receives
a message from v1. In rounds 3 and 4 node v2 in addition receives a message
from node v5. These three events cannot be handled immediately and are also
postponed. In round 5 the channel becomes available for node v2, but in the
meantime v2 has received a message from all its neighbors and thus AAF will not
send m to any of v2’s neighbors. From this round on the channel is continuously
available and thus AAF can be executed in its original form. In round 9 the
algorithm reaches the same configuration as in round 5. Thus, the algorithm
does not terminate.

Fig. 1. A naive extension of algorithm AAF does not terminate in case of intermittent
channel availability. The configuration of round 5 repeats itself in round 9.
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There is no striking reason for the failure of this naive attempt to fix AAF. To
analyze the failure we reconsider the proof of termination of the original algo-
rithm AAF in [13]. This paper introduces for a given graph G and a broadcasting
node v0 the bipartite auxiliary graph G(v0) and shows that executions of AAF on
G and G(v0) are tightly coupled. G(v0) is a double cover of G that consists of two
copies of G, where the cross edges with respect to v0 are removed. Each cross
edges is replaced by two edges leading from one copy of G to the other. Figure 2
depicts G(v0) for the graph shown in Fig. 1 (see Def. 3 in [13] for details).

Fig. 2. The dashed lines on the left show the cross edges of G (v0 is the broadcasting
node). The graph G(v0) is shown on the right, dashed edges are the replacement edges.

An important observation is that G(v0) is bipartite and that in every round
of AAF the nodes that send messages have the same color in a 2-coloring of graph
G(v0). Figure 3 shows the separation of the nodes of G(v0) into two color classes
for the graph in Fig. 2. An analysis of the execution of Fig. 1 shows that in some
rounds, nodes with different colors forward the message (e.g., in round 3).

Fig. 3. Concurrently forwarding nodes in AAF either all belong the top or bottom row.

4.1 Algorithm AAFI

The last observation leads to the following extension of AAF for intermittent
availabilities. If a message cannot be forwarded in the current round, it will
be postponed until the next available round with the same parity, i.e., if the
blocked round is odd (resp. even), the message will be forwarded in the next
available odd (resp. even) round. This approach guarantees that as in AAF all
nodes that concurrently send messages belong to same of the two node sets.
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Algorithm 2 shows a realization AAFI of this idea. Compared to AAF the new
algorithm maintains two sets for the senders of the message in the variable M ,
one for messages that arrive in odd rounds and one for even rounds. The parity
is maintained by the Boolean variable parity. The initialization of parity does not
need be the same for all nodes. The symbol ⊥ is used to indicate that no message
has arrived in rounds with the specified parity. This is needed to distinguish this
situation from the case that a node wants to broadcast a message, in this case
M [parity] is assigned the empty set. If we insert a node w into M [parity] when
M [parity] = ⊥ then M [parity] = {w} afterwards. Messages sent in round i are
received in round i + 1. Hence, in round 1 no message is received.

Algorithm 2: Algorithm AAFI distributes a message m in the graph G

Initialization
parity := true;
M [true] := M [false] := ⊥;

Upon receiving message m from w:
M [parity].add(w);

if channel is available and M [parity] �= ⊥ then
forall u ∈ N(v) \ M [parity] do send(u,m);
M [parity] := ⊥;

At the end of each round
parity := ¬parity;

function broadcast(m)
M [parity] := ∅;

Figure 4 shows an execution of algorithm AAFI for the graph of Fig. 1, given
that node v2 (resp. v3) cannot send in rounds 2 to 4 (resp. 2). The execution
terminates after round 5, with no indeterminacy the algorithm would already
terminate in 4 rounds (see [12] for details).

Fig. 4. Execution of AAFI for the graph of Fig. 1. Round 1 is the same as in Fig. 1. In
round 6 node v2 does not need to forward the message because, it received messages
from all neighbors in odd rounds (1, 3, 5). Whereas v2 has to send a message to v0 in
round 5 because it only received the message from v1 and v5 in even rounds 2 and 4.
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Clearly this extension of AAF is no longer stateless, but because of message
buffering no stateless algorithm can handle channel unavailabilities.

4.2 Correctness and Complexity of Algorithm AAFI

To formally describe a node’s channel availability for message forwarding the
concept of an availability scheme is introduced. Let A : V ×N −→ {true, false}
be a predicate. Node v can send a message in round cv only if A(v, cv) = true. A
is called an availability scheme for G and v0 if the number of pairs (v, i) ∈ V ×N

with A(v, i) = false is bounded by a constant c. Note that this concept is only
used in the formal proof. Nodes do not need to have a common round counter.
The availability scheme for Fig. 1 is A(v2, 2) = A(v2, 3) = A(v2, 4) = A(v3, 2) =
false and true otherwise. WLOG we always assume that A(v0, 1) = true.

For a given availability scheme A we construct a directed bipartite graph
BA(v0) such that the execution of AAFI on G with respect to A is equivalent to
the execution of amnesiac flooding AAF on BA(v0). The starting point for the
construction of BA(v0) is the double cover G(v0) of G as defined in Sect. 4. To
keep the notation simple we will omit the reference to the originating node v0
and refer to the two graphs as BA and G.

First we extend the definition of the availability scheme A to all nodes of G,
i.e., A : V ∪ V ′ ×N −→ {true, false}. For each node v′ ∈ V ′ let A(v′, i) = A(v, i)
for all i ∈ N. The nodes of BA are of two different types: copies of nodes of G
and so called dummy nodes. We define BA inductively, layer by layer. There can
be copies of the same node v of G on several layers of BA, but the nodes of a
single layer of BA are copies of different nodes of G. Therefore, we do not cause
ambiguity when we denote the copies of the nodes by their original names. The
construction of BA is based on a function originator, that assigns to each node
v of BA a set of neighbors of v in G. This function is also defined recursively.

Layer 0 of BA consists of copy of v0 with originator(v0) = ∅. Layer 1 consists
of copies of the neighbors of v0 in G, these are also the neighbors of v0 in G. All
layer 1 nodes are successors of v0 and the originator of these nodes is {v0}. Next
assume that layers 0 to i with i ≥ 0 are already defined including the function
originator. We first define the nodes of layer i + 1 and afterwards the function
originator. For each node of layer i we also define the successors. We do this first
for nodes which are copies of nodes of G and afterwards for dummy nodes.

Let v be a node of layer i that is a copy of a node of G. If originator(v) =
NG(v) then v has no successor in layer i + 1. Assume originator(v) �= NG(v).
First consider the case A(v, i+1) = true. Let U = NG(v)\originator(v). For each
u ∈ U we do the following: If layer i + 1 already contains a copy of u then we
make it a successor of v. Otherwise, we insert a new copy of u into layer i + 1
and make it a successor of v. If A(v, i + 1) = false then we create a new dummy
node, insert it into layer i + 1, and make it the single successor of v. Finally, let
v be a dummy node of layer i and w its single predecessor in layer i − 1. If layer
i + 1 already contains a copy of w then we make it a successor of v. Otherwise,
we create a new copy of w, insert it into layer i + 1, and make it v’s successor.
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To define originator for each node v of layer i + 1 let pred(v) be the set
of predecessors of a node v in B. With predd(v) we denote the dummy nodes
in pred(v). Since dummy nodes only have a single predecessor we denote the
predecessor in this case also by pred(v). If v is not a dummy node then we define

originator(v) =
⋃

w∈predd(v)

originator(w) ∪ pred(v)\predd(v)

otherwise originator(v) = originator(pred(v)). Note that BA is bipartite, since
nodes of the same layer are not connected. Figure 5 shows the graph BA for
the graph of Fig. 1 and availability scheme A. The dummy nodes are labeled a
to d. We have originator(a) = originator(b) = {v0}, originator(c) = {v1}, and
originator(d) = {v0, v5}. Also, originator(v2) = {v0, v5, v1′} in layer 5.

Fig. 5. The graph BA for the availability scheme A has four dummy nodes.

We orient the edges of G by executing a breadth-first search starting in v0.
The union of the successors and predecessors of a node in G are precisely the
neighbors of the node in G. The next lemma follows from Lemma 5 of [13].

Lemma 1. Let v be a node of layer i ≥ 0 of G. The predecessors of v in G are
copies of the nodes in G that send in round i of an execution of AAF a message
to v and the successors of v in G receive a message from v in round i + 1.

Proof. Suppose that a node w sends in round i a message to a node v. By Lemma
5 of [13] w is a node of layer i − 1 and either v or v′ is a successor of w in B or
w′ is a node of layer i − 1 and v′ is a successor of w. Note that in B a node of
G and its copy cannot be in the same layer. The second statement also follows
from this lemma. 	


Let A be any availability scheme for G and v0. Lemma 2 is easy to prove.

Lemma 2. Let v be a node of G. For each copy u of v in BA we have NG(v0)(v) =
originator(u) ∪ succ(u). If none of the predecessors of v in B is a dummy node
then NG(v0)(v) = pred(u) ∪ succ(u).
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To illustrate the last lemma we consider the execution from Fig. 4 and the
corresponding graph BA in Fig. 5. Let i = 4 and consider node v2. The copy of
v2 on layer 4 is called v2′ . Figure 5 shows that originator(v2) = {v5, v1}. From
Fig. 4 we see that node v2 receives a message from node v1, i.e., v1 ∈ v2.M [parity].
Since A(v2, 3) = false node v2 could not send a message in round 3. Hence the
sender v1 of the message received in round 3 is still in v2.M [parity]. This yields
v2.M [parity] = {v5, v1}, since A(v2, 1) = true.

For an availability scheme A and k ≥ 0 we define a new availability scheme
Ak as follows. We consider the nodes of BA in any arbitrary but fixed order and
define a total order on the set of pairs (v, i) ∈ V × N with A(v, i) = false as
follows: (v, i) < (w, j) if and only if i < j or i = j and v < w. Then we define
Ak(v, i) = false for all but the first k pairs (v, i), i.e., Ak has value false for
exactly k pairs (v, i). Note that there exists c ≥ 0 such that A = Ac.

Lemma 3. There is a one-to-one mapping between the edges of G and those
edges of BA that are not incident to a dummy node.

Proof. It suffices to prove that the lemma holds for each Ak with k ≥ 0. The
proof is by induction on k. If k = 0 then the result is trivially true since BA0 = G.
Assume the theorem is true for k ≥ 1. Consider the graph BAk−1 . Let (v, i) be
the kth pair with A(v, i) = false. If layer i − 1 of BAk−1 contains no copy of v
then BAk−1 = BAk

and we are done. Suppose there exists a copy of v on layer
i − 1 of BAk−1 . We inductively define two sequences of sets Xj , Xj (j ≥ 1) of
nodes of BAk−1 (see Fig. 6). Nodes of Xj , Xj are in layer i − 1 + j of BAk−1 .
X1 is the set of nodes of layer i that have v as the single predecessor in layer
i − 1 and X1 = succ(v) \ X1, where succ(v) denotes the successors in BAk−1 .
Thus, each node in X1 has besides v another predecessor in layer i− 1. Suppose
we already defined Xj−1,Xj−1. Then Xj is the set of nodes of layer i − 1 + j
that have only predecessors in Xj−1, i.e., pred(Xj) ⊆ Xj−1. Xj consists of those
nodes of layer i − 1 + j that have predecessors in Xj−1 and in Xj−1, i.e., for
each w ∈ Xj we have pred(w) ∩ Xj−1 �= ∅ and pred(w) ∩ Xj−1 �= ∅. Hence,
succ(Xj−1) = Xj ∪̇Xj . Note that none of the nodes of Xj , Xj are dummy
nodes, therefore NG(u) = pred(u) ∪ succ(u) for each u ∈ Xj ∪ Xj by Lemma 2.
Since the theorem is true for Ak−1, there exist t such that Xt = ∅. Note that
Xj �= ∅ for j = 1, . . . t − 1 while Xj can be empty for any j.

Next, we show how BAk
can be derived from BAk−1 . The two graphs coincide

completely in the first i − 1 layers. In subsequent layers nodes that are not
reachable from v in layer i − 1 also are identical. The single successor of v in
layer i is the dummy node. This node itself has as successor a copy of v on layer
i+1. Clearly this copy of v is also the successor of all nodes in X1 in layer i. The
successors of the copy of v on layer i+1 are copies of the nodes of set X1. Nodes
in X2 on layer i + 1 are the predecessors of nodes in X1. All these statements
are an immediate consequence of Lemma 2. Similarly it follows that each layer
i − 1 + j for j ≥ 3 contains copies of the nodes of set Xj−2. Their predecessors
are copies of the nodes in Xj−3 and Xj−1.
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Fig. 6. The top row illustrates the definition of Xj and Xj for BAk−1 . The lower row
displays the changes in BAk compared with BAk−1 . The last row indicates the number
of the layer. The symbol indicates that there can be several edges.

Thus, in BAk
some edges from BAk−1 are reversed: The orientation of edges

from Xj to Xj+1 and from v to X1 is reversed. This analysis also shows that
BAk

only has two additional edges, those adjacent to the new dummy node. In
the worst case, BAk

consists of two more layers compared to BAk−1 . 	

To ease the formulation of the next lemma we introduce another definition.

Let u be a node of G. For a copy of u in layer i of BA we denote the originators in
BA of this copy of v by originatori(v). Furthermore, the set M [parity] of node u
immediately before checking channel availability in round i during an execution
of AAFI on G is denoted by v.M i[parity].

Lemma 4. Let u be a non-dummy node of layer i of BA. Then u.M i[parity] =
originatori(u).

Proof. We use the notation introduced in the proof of Lemma 3. As before we
prove by induction on k that the lemma holds for Ak. If k = 0 then the result
holds by Lemma 1 since BA0 = G. Assume the lemma is true for k ≥ 1. We
consider the graph BAk−1 . Let (v, i) be the kth pair with A(v, i) = false. If in
layer i−1 of BAk−1 there exists no copy of v then BAk−1 = BAk

and we are done.
Suppose there exists a copy of v on layer i − 1 of BAk−1 . From Fig. 6 we see that
we only have to consider the cases u = v, u ∈ Xj , and u ∈ Xj . Remember that
there are no dummy nodes in Xj , Xj .

First consider the case that u is the copy of v in layer i + 1 in BAk
(see

Fig. 6). In round i + 1 in BAk
the nodes in X1 do not receive the message from

v because A(v, i) = false. Since each node in X1 still receives the message from
another node, each of them must forward the message in round i to v. Hence,
v.M i+1[parity] = v.M i−1[parity] ∪ X1. On the other hand originatori+1(v) =
originatori−1(v) ∪ X1. By induction originatori−1(v) = v.M i−1[parity].

Next consider the case u ∈ X1. Then u is on layer i+2 of Bk. Since in BAk−1

each node in X1 receives in round i only the message from v, node v sends the
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message to each node in X1 in round i+1. Furthermore, since for BAk−1 each node
in X2 received in round i+1 a message from a node in X1, each node of X2 sends
BAk

the message to at least one node of X1. In particular node u receives in round
i+2 the message from its predecessors in X2 for BAk

. Clearly, u does not receive
the message from any other node. Thus, u.M i+2[parity] = originatori+2(u). The
cases u ∈ Xj with j > 1 and u ∈ Xj with j ≥ 1 can be proved similarly. 	

Lemma 5. During round i of an execution of AAFI on G a node v sends the
message to a neighbor w if and only if the copy of v in layer i − 1 of BA is the
predecessor of a copy of w in layer i of BA.

Proof. If during the execution of AAFI node v sends messages in round i to w then
A(v, i) = true and N(v) �= v.M [parity]. By the Lemma 4 we have w ∈ N(v) \
originator(v). Thus, by construction w is a successor of v in BA. Conversely, if w
is successor of v in BA then A(v, i) = true and v ∈ N(v) \ originator(v). Again
Lemma 4 gives the desired result. 	


The last lemma implies that executing AAFI on G is equivalent to executing
AAF on BA. The reason is that BA is bipartite and executing AAF on a bipartite
graph starting at the root is equivalent to synchronous flooding the bipartite
graph. This is formulated in the following theorem.

Theorem 2. Let G be a graph G and A an availability scheme for G. Let f =
|{(v, i) | A(v, i) = false}|. Algorithm AAFI delivers a broadcasted message (resp.
terminates) after at most Diam(G) + 2f (resp. 2Diam(G) + 2f + 1) rounds. If
G is bipartite each message is forwarded |E| times, otherwise 2|E| times.

Proof. Lemma 5 implies that AAFI terminates after d rounds where d is the height
of BA. The proof of Lemma 3 shows that each pair (v, i) with A(v, i) = false
increases the depth by at most 2. By Thm. 1 of [13] the depth of G is at most
2Diam(G) + 1. By Lemma 3 and Lemma 4 AAFI sends 2|E| messages. 	


5 Multi-source Broadcasts

A variant of broadcasting is multi-source broadcasting, where several nodes
invoke a broadcast of the same message, i.e., with the same message id, pos-
sibly in different rounds. This problem is motivated by disaster monitoring: A
distributed system monitors a geographical region. When multiple nodes detect
an event, each of them broadcasts this information unless it has already received
this information. Multi-source broadcasting for the case that all nodes invoke
the broadcast in the same round was already analyzed in [13]. This variant can
be reduced to the case of single node invoking the broadcast by introducing a
virtual source v∗ connected by edges to all broadcasting nodes.

In this section we consider the general case where nodes can invoke the
broadcasts in arbitrary rounds. First we show that broadcasting one message
with algorithm AAF also terminates in this case and that overlapping broadcasts
complement each other in the sense that the message is still forwarded only 2|E|
resp. |E| times. Later we extend this to the case of intermittent channels.
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Theorem 3. Let v1, . . . , vk be nodes of G that initiate a broadcast of the same
message m in rounds r1, . . . , rk. Each broadcast is invoked before m reaches the
invoking node. Algorithm AAF delivers m after Diam(G) rounds and terminates
after at most 2Diam(G) + 1 rounds and m is forwarded at most 2|E| times.

Proof. WLOG we assume r1 = 0. For each i with ri > 0 we attach to node vi a
path Pi = ui

1, . . . , u
i
ri with ri new nodes, i.e., ui

r1 is connected to vi by an edge.
The extended graph is called G◦. Let S = {ui

1 | ri > 0} ∪ {vi | ri = 0}. If in
G◦ all nodes in S broadcast in round 0 message m then in round ri + 1 each
node vi sends m to all its neighbors in G. Thus, the forwarding of m along the
edges of G is identical in G and G◦. By Thm. 1 of [13] algorithm AAF delivers m
after dG◦(S, V ◦) rounds and terminates after at most dG◦(S, V ◦)+1+Diam(G◦)
rounds, V ◦ is the set of nodes of G◦. Also, in G◦ message m is forwarded at most
twice via each edge. Thus, in G message m is forwarded at most 2|E| times.

To prove the upper bounds for the delivery and termination time we recon-
sider the proof of Thm. 1 of [13]. This proof constructs from G◦ a new graph G∗

by introducing a new node v∗ and connecting it to all nodes in S. It is then shown
that the termination time of invoking the broadcast in G◦ by all nodes of S in
round 0 is bounded by d − 1, where d is the depth of the bipartite graph G(v∗)
corresponding to G∗. Note that we are only interested in the termination time
of the nodes of G in G◦. Thus, we only have to bound the depth of the copies of
the nodes of G in G(v∗). Since broadcasts are invoked before m is received for
the first time we have ri ≤ eccG(v1). Thus, the depth of the first copy of each
node has depth at most eccG(v1) + 1 ≤ Diam(G) + 1 in G(v∗). Hence, delivery
in G takes place after Diam(G) rounds. The second copy of each node of G is
at most in distance 1 + Diam(G) from one of the first copies of the nodes of G
in G(v∗). Thus, termination in G is after at most 2Diam(G) + 1 rounds. 	


The stated upper bounds are the worst case. Depending on the locations of
the nodes vi and the values of ri the actual times can be much smaller. Next we
extent Theorem 3 to tolerate intermittent channel availabilities.

Theorem 4. Let A be an availability scheme for a graph G. Let v1, . . . , vk be
nodes of G that broadcast the same message m in rounds r1, . . . , rk. Each broad-
cast is invoked before m reaches the invoking node. Algorithm AAFI delivers m
(resp. terminates) in at most Diam(G) + 2f (resp. 2Diam(G) + 2f + 1) rounds
after the first broadcast with f = |{(v, i) | A(v, i) = false}|. Message m is for-
warded at most 2|E| times.

Proof. In the proof of Theorem 3 it is shown that broadcasting the same message
m in different rounds by different nodes is equivalent to the single broadcast of
m by a single node v∗ in the graph G∗. Applying Theorem 2 to G∗ and v∗

shows that AAF delivers m to all nodes of G∗ for any availability scheme. Hence,
Theorem 3 also holds for any availability scheme. 	
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6 Multi-message Broadcasts

While algorithm AAFI is of interest on its own, it can be used as a building block
for more general broadcasting tasks. In this section we consider multi-message
broadcasts, i.e., multiple nodes initiate broadcasts, each with its own message,
even when broadcasts from previous initiations have not completed. We consider
this task under the restriction that in each round each node can forward at most
b messages to each of its neighbors. Without this restriction we can execute one
instance of AAF for each broadcasted message. Then each messages is delivered
(resp. the broadcast terminates) in ecc(v0) (resp. ecc(v0)+1+Diam(G)) rounds
[13]. The restriction enforces that only b instances of AAF can be active in each
round, additional instances have to be suspended. First consider the case b = 1.

Multi-message broadcast can be solved with an extension of algorithm AAFI.
We use an associative array messTbl to store the senders of suspended messages
according to their parity. Message identifiers are the keys, the values correspond
to variable M of Algorithm 2. Any time a node v receives a message m with
identifier id from a neighbor w it is checked whether v.messTbl already contains
an entry with key id for the current parity. If not, a new entry is created. Then
w is inserted according to the actual value of parity into v.messTbl[id]. When all
messages of a round are received all values in v.messTbl with the current parity
are checked, if a value equals N(v) then it is set to ⊥. In this case v received
message id from all neighbors and no action is required. After this cleaning step,
an entry of messTbl is selected for which the value with the current parity is not
⊥. Selection is performed according to a given criterion. The message belonging
to this entry is sent to all neighbors but those listed in the entry. Finally the entry
is set to ⊥. The details of this algorithm can be found in [12]. The delivery order
of messages depends on the selection criterion. The variant of this algorithm
which always selects the method with the smallest id is called AAFIS .

Theorem 5. Algorithm AAFIS eventually delivers each message of any sequence
of broadcasts of messages with different identifiers. If G is bipartite, each message
is forwarded |E| times, otherwise 2|E| times.

Proof. The message with the smallest identifier id1 is always forwarded first
by AAFIS . Thus, this message is forwarded as in amnesiac flooding. Hence, it is
delivered after at most 2Diam(G)+1 rounds after it is broadcasted [13]. Next we
define an availability scheme A1: A1(v, i) = false if during round i of algorithm
AAFIS node v forwards message id1, otherwise let A1(v, i) = true. Then the
message with the second smallest identifier id2 is forwarded as with algorithm
AAFI for availability scheme A1. Thus, by Theorem 2 this message is eventually
delivered. Next define availability scheme A2 similarly to A1 with respect to the
messages with ids id1 and id2 and apply again Theorem 2, etc. 	


Forwarding the message with the smallest id is only one option. Other selec-
tion criteria are also possible, but without care starvation can occur. The variant,
where the selection of the forwarded message is fair, is called AAFIF . Fairness in
this context means, that each message is selected after at most a fixed number
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of selections. This fairness criteria limits the number of concurrent broadcasts.
If message selection is unfair for one of the nodes, then continuously inserting
new messages results in starvation of a message. We have the following result.

Theorem 6. If in each round each node can forward only one message to each of
its neighbors algorithm Algorithm AAFIF eventually terminates and delivers each
message of any sequence of broadcasts of messages with different identifiers. If
G is bipartite, each message is forwarded |E| times, otherwise 2|E| times.

Proof. Whenever the associative array messTbl of a node is non-empty, the node
will forward a message in the next round with the adequate parity. The fairness
assumption implies that whenever m is inserted into w.messTbl for a node w
then after a bounded number of rounds it will be forwarded and removed from
w.messTbl. Thus, the forwarding of m makes progress.

Let m be a fixed message that is broadcasted in some round im. Denote by
fj the number of forwards of message m up to round j. For each j we define an
availability scheme Aj as follows: Aj(v, i) = true for all i > j and all v ∈ V .
Furthermore, Aj(v, i) = true for i ≤ j and v ∈ V if during round i node v
forwards message m. For all other pairs let Aj(v, i) = false. Hence, there are only
finitely many pairs (v, i) such that Aj(v, i) = false. Clearly for all j, message m
is forwarded during the first j rounds as with algorithm AAFI with respect to Aj .
Thus, by Theorem 2 fj ≤ 2m. Hence, there exist jm ≥ im such that in round
jm each node has received the message and after this round the message is no
longer in the system. Hence, the result follows from Theorem 2. 	


The case b > 1 is proved similarly. We only have to make a single change to
AAFIF . After the cleaning step we select up to b entries of messTbl and send the
corresponding messages. The proof of Theorem 7 is similar to that of Theorem 6.

Theorem 7. If in each round each node can forward at most b ≥ 1 messages
to each of its neighbors algorithm AAFIF eventually terminates and delivers each
message of any sequence of broadcasts of messages with different identifiers. If
G is bipartite, each message is forwarded |E| times, otherwise 2|E| times.

Finally, Theorem 1 follows directly from Theorem 4 and Theorem 7.

7 Discussion and Conclusion

In this paper we proposed extensions to the synchronous broadcast algorithm
amnesiac flooding. The main extension allows to execute the algorithm for sys-
tems with intermittent channels. While this is of interest on its own, it is the basis
to solve the general task of multi-message broadcast in systems with bounded
channel capacities. The extended algorithm delivers messages broadcasted by
multiple nodes in different rounds, even when broadcasts from previous invoca-
tions have not completed, while each of the messages is forwarded at most 2|E|
times. The main advantage of amnesiac flooding remains, nodes don’t need to
memorize the reception of a message to guarantee termination.
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We conclude by discussing two shortcomings of amnesiac flooding. AAF deliv-
ers a broadcasted message twice to each node. To avoid duplicate delivery, nodes
have to use a buffer. Upon receiving a message m a node checks whether the id
of m is contained in its buffer. If not then m is delivered to the application and
m’s id is inserted into the buffer. Otherwise, m’s id is removed from the buffer
and not delivered. This also holds for algorithm AAFIF .

Amnesiac flooding satisfies the FIFO order, i.e., if v0 broadcasts a message m
before it broadcasts message m′ then no node delivers m′ unless it has previously
delivered m. This is no longer guaranteed for AAFI: Suppose that v0 broadcasts
m resp. m′ in rounds i resp. i + 1. Let w ∈ N(v0) with A(w, i + 2) = false and
A(v, j) = true for all other pairs. Then w forwards m′ in round i + 3 while it
forwards m in round i + 4. Thus, a neighbor u of w receives m′ before m.
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Abstract. In fault-tolerant distance labeling we wish to assign short
labels to the vertices of a graph G such that from the labels of any three
vertices u, v, f we can infer the u-to-v distance in the graph G \ {f}. We
show that any directed weighted planar graph (and in fact any graph in
a graph family with O(

√
n)-size separators, such as minor-free graphs)

admits fault-tolerant distance labels of size O(n2/3). We extend these
labels in a way that allows us to also count the number of shortest paths,
and provide additional upper and lower bounds for labels and oracles for
counting shortest paths.

Keywords: Forbidden-set distance labels · Planar graphs ·
Fault-tolerant distance labels · Counting shortest paths

1 Introduction

Computing distances in graphs is one of the most basic and important problems
in graphs theory, both from theoretical and practical points of view. In this work
we consider distance labeling schemes, in which one preprocesses a network to
assign labels to the vertices, so that the distance between any two vertices u and
v can be recovered from just the labels of u and v (and no other information).
The main criteria of interest are foremost the size of the label, and to a lesser
extent the time it takes to recover the distance from a given pair of labels (query
time). Distance labeling schemes are useful in the distributed setting, where it is
advantageous to be able to infer distances based only on local information such
as the labels of the source and destination. This is the case in communication
networks or in disaster stricken areas, where communication with a centralized
entity is infeasible or downright impossible.

Considering the latter scenario of disaster management, it is not only likely
that a disastrous event makes communication with a centralized entity impos-
sible, but also that parts of the network are affected by the disaster, and that
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only shortest paths that avoid affected parts of the network should be consid-
ered when computing distances. Forbidden-set distance labeling schemes assign
labels to vertices, so that, for any pair of vertices u and v, and any set F of failed
vertices, the length of a shortest u-to-v path that avoids all vertices in F can be
recovered just from the labels of u, v, and of the vertices in F . In this work we
study forbidden-set distance labeling schemes in directed planar networks. We
also study the extension of such schemes to capture not only the distance from
u to v, but also the number of distinct u-to-v shortest paths.

For unweighted graphs, we measure the label size in bits. For weighted graphs
and queries concerning lengths of the shortest paths, we assume that the distance
between any two nodes fits in a single machine word, and measure the label size
in words. For queries concerning the number of shortest paths, unless mentioned
otherwise, we assume that the number of shortest paths between any two nodes
fits in a single machine word, and measure the label size in words.

1.1 Related Work

Labeling schemes provide a clean and natural model for studying how to dis-
tribute information about a graph. Problems considered in this model include
adjacency [4–6,10,30,42], flows and connectivity [27,32,36], and Steiner tree [41].
See [43] for a recent survey. We specifically focus on distance labeling schemes.

Distance Labeling Schemes. Embedding distance information into labels was
studied by Graham and Pollak [25] in the 1970’s in the so-called squashed cube
model. In 2000, Peleg [40] formalized the notion of distance labeling schemes,
and provided schemes with polylogarithmic label size (in bits) and query time for
trees, interval graphs and permutation graphs. Gavoille et al. [22] showed that for
general graphs, the label size is Θ(n), and for trees, Θ(log2 n). For (unit-weight)
planar graphs they showed a lower bound of Ω(n1/3), and an upper bound of
O(

√
n log n) bits. The upper bound was recently improved to O(

√
n) [24], but

the rare polynomial gap between the lower and upper bound remains an inter-
esting and important open problem. For weighted planar graphs Gavoille et al.
gave tight (up to polylogarithmic factors) Θ̃(n1/2) upper and lower bounds.

Approximate Distance Labeling Schemes. Since exact distance labels typically
require polynomial size labels [22], researchers have sought smaller labels that
yield approximate distances. Gavoille et al. [21] studied such labels for general
graphs and various graph families. Specifically, for planar graphs, they presented
O(n1/3 log n)-bit labels that provide a 3-approximation of the distance. In the
same year, Gupta et al. [26] presented smaller 3-approximate labels, requir-
ing only O(log2 n) bits, and Thorup gave (1 + ε)-approximate labels of size
O(log n/ε), for any fixed ε > 0 [44]. The latter result was generalized to H-
minor free graphs by Abraham and Gavoille in [3].

Forbidden-Set Distance Labeling Schemes. Forbidden-set labels were introduced
in the context of routing labels by Feigenbaum et al. [18,19], and studied by
several others [1,2,14,15,45]. Exact forbidden-set labeling schemes of polyloga-
rithmic size are given in [15,45] for graphs of bounded treewidth or cliquewidth.
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For unweighted graphs of bounded doubling dimension, forbidden-set labels with
polylogarithmic size and (1+ε)-stretch are also known [2]. For undirected planar
graphs, and for any fixed ε > 0, Abraham et al. [1] presented a forbidden-set
labeling scheme of polylogarithmic size such that a (1 + ε)-approximation of the
shortest path between vertices u and v that avoids a set F of failed vertices
can be recovered from the labels of u, v, and the labels of the failed vertices in
Õ(|F |2) time1.

Other Related Work. There are many other concepts related to distances in the
presence of failures. In the replacement paths problem we are given a graph
along with a source and sink vertices, and the goal is to efficiently compute
all shortest paths between the source and the destinations for every possible
single-edge failure in the graph. In planar graphs this problem can be solved
in nearly linear time [16,35,46]. For the single source, single failure version of
the problem (i.e. when only the source vertex is fixed at construction time, and
the query specifies just the target and a single failed vertex), Baswana et al. [8]
presented an oracle with size and construction time O(n log4 n) that answers
queries in O(log3 n) time. Building upon this oracle, they then present an oracle
of size Õ(n2/q) supporting arbitrary distance queries subject to a single failure
in time Õ(q) for any q ∈ [1, n1/2]. The authors of [13] show how to construct
in Õ(n) time an oracle of size Õ(n) that, given a source vertex u, a target
vertex v, and a set F of k faulty vertices, reports the length of a shortest u-
to-v path in G \ F in Õ(

√
kn) time. They further show that for any r ∈ [1, n]

there exists an Õ(nk+1

rk+1

√
nr)-size oracle that answers queries in time Õ(k

√
r).

Recently, Italiano et al. [28] gave an oracle of size O(n log n) and construction
time O(n log2 n/ log log n) that supports reachability queries subject to a single
failure in time O(log n).

Another related concept is that of dynamic distance oracles. Here a graph is
preprocessed so as to efficiently support distance queries between arbitrary pairs
of vertices as well as updates to the graph. Updates may include deletion of
edges or vertices (decremental updates), or also addition of new edges and ver-
tices (fully dynamic). Fakcharoenphol and Rao [17] presented distance oracles
that require Õ(n2/3) and Õ(n4/5) amortized time per update and query for non-
negative and arbitrary edge-weight updates respectively2. The space required by
these oracles is O(n log n). The extensions of this result in [13,29,31,33] yield a
dynamic oracle that can handle arbitrary edge weight updates, edge deletions
and insertions (not violating the planarity of the embedding) and vertex dele-
tions, as well as answer distance queries, in Õ(n2/3) time each.

Counting Shortest Paths. In the (non-faulty) counting version of shortest paths
labeling, given the labels of vertices s and t we wish to return the num-
ber of shortest s-to-t paths in G (i.e. paths whose length is equal to d(s, t)).

1 The Õ(·) notation suppresses logO(1) n factors.
2 Though this is not mentioned in [17], the query time can be made worst case rather

than amortized by standard techniques.
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This problem (without faults) was recently studied in [9] where labels3 of size
Θ(

√
n) were constructed under the assumption that the number of shortest paths

between any two nodes fits in a constant number of machine words. In the gen-
eral case where the numbers consist of L bits, the obtained labels consist of
O(

√
n · L) bits. As already observed in [9], it is easy to construct an unweighted

graph where L = n − 1 making the labels consist of Θ(n1.5) bits, that is, more
than in a naive encoding storing the whole graph in every label. However, the
following simple construction shows that we cannot hope to construct labels
consisting of o(n) bits without bounding L: given n bits b0, . . . , bn−1 we con-
struct a graph consisting of a path s = u0 − u1 − · · · − un−1 and another path
v1−v2−· · ·−vn = t in which every edge is duplicated (i.e., there are two parallel
edges between each pair vi, vi+1). Finally, for every i = 0, . . . , n − 1 such that
bi = 1, we add an edge ui − vi+1. Then the number of shortest s-to-t paths is
exactly

∑n−1
i=0 bi · 2n−1−i, and so by an encoding argument the total number of

bits in the labels of s and t must be at least n. Therefore, when counting shortest
paths we will measure the size of a label in the number of machine words, each
long enough to store the number of shortest paths between any two nodes in the
graph.

We highlight one interesting application where our scheme for counting short-
est s-to-t paths that avoid nodes v1, v2, . . . , vk can be modified to obtain a better
bound on the sizes of the labels in bits. Say that instead of counting such short-
est paths we would like to check if avoiding nodes v1, v2, . . . , vk increases the
length of the shortest path. In such case, we only need to check if the number
of shortest s-to-t paths that avoid nodes v1, v2, . . . , vk is nonzero. Because the
number of shortest paths is always at most 2n, by well known properties of prime
numbers, choosing a random prime p consisting of Θ(k · log n) bits guarantees
that with high probability, for every s, t, v1, v2, . . . , vk, the number of shortest
paths counted modulo p is nonzero if and only if the number of shortest paths
is nonzero. Our scheme (as well as the scheme of [9]) can be used for counting
modulo p, so we obtain labels consisting of Õ(

√
n · k) bits for such queries.

1.2 Our Results

– In Sect. 3 we present a single-fault distance labeling scheme (forbidden-set
labeling scheme for a set of cardinality 1). The label size is O(n2/3), the
query time is Õ(

√
n), and time to construct all labels is Õ(n5/3). Our labeling

scheme extends (with no overhead in the label size) to a labeling scheme for
counting shortest paths (with a single fault).

– In Sect. 4 we extend the counting labels of [9] to the following fault-tolerant
variant. Given the labels of vertices s, t, v1, v2, . . . , vk, we wish to return the
number of s-to-t paths that avoid vertices v1, . . . , vk and whose length is
equal to d(s, t) (the original s-to-t distance in G). We show that the labeling
of [9] (with labels of size Õ(

√
n)) actually works in this more general setting.

3 In [9], the authors actually considered the oracle version of the problem, but their
solution can be easily applied for labeling as well.
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A naive query to such labeling takes Õ(
√

n·k2) time, we show how to improve
this to Õ(

√
n · k).

– In Sect. 5 we show a lower bound of Ω(
√

nL) on the label-size (in bits) for
counting shortest paths (without faults), in graphs in which the number of
distinct shortest paths between any two nodes consists of at most L bits.

– In the full version of this paper [7] we show a lower bound (conditioned on the
hardness of online boolean matrix-vector multiplication) on dynamic oracles
for counting shortest paths. We prove that for such oracles, either the query
time or the update time must be Ω(

√
n) (up to subpolynomial factors).

We focus on planar graphs but in fact all our results (except for the efficient
preprocessing time and query time in Sect. 3) hold for any graph family with
O(

√
n)-size separators (such as H-minor free graphs and bounded genus graphs).

This is also the case for the standard (i.e. without failures) labeling scheme of
Gavoille et al. [22]. However, while their Õ(n1/2)-size labels are obtained with a
straightforward application of separators, our O(n2/3)-size (fault-tolerant) labels
are obtained with a non-standard and intricate use of separators.

A main open question that is left unanswered by our work is the existence
of non-trivial forbidden-set distance labels tolerating more than a single fault.
Labels for approximate distances [1] also rely on separators, and do handle mul-
tiple failures. In the failure-free case, the labels of [1] consist of distances to a
small (logarithmic) sample of vertices on some separators, called connections.
To handle failures, the label of each vertex u also stores the failure-free labels
of the connections of u. This only increases the label-size by a polylogarithmic
factor. In case of exact distances, the size of the failure-free labels is Ω(

√
n), so

this approach seems unsuitable.
Another natural open question is whether the gap between our O(n2/3)-

size fault-tolerant labels and the Õ(n1/2)-size labels without failures is actu-
ally required and tight. We observe that the existing lower bound technique of
Gavoille et al. cannot be extended to show a lower bound above Ω(

√
n) for

fault-tolerant labels. The reason is that their technique uses a global argument
showing that if we wish to encode the distances between a subset S of k ≤ √

n
vertices then all their labels together require size Ω(k2). However, even in the
presence of (any number of) failures, encoding distances can be done with total
size Õ(k2) (simply store for every u, v ∈ S the length of the shortest u-to-v path
that is internally disjoint from S).

2 Preliminaries

Throughout the paper we consider as input a weighted directed planar graph G,
embedded in the plane. We assume that the input graph has no negative length
cycles. We can transform the graph in a standard way, in O(n log2 n

log log n ) time, so
that all edge weights are non-negative and distances are preserved [39].
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Separators and Recursive Decompositions. Miller [37] showed how to compute a
Jordan curve that intersects the graph at a set of nodes Sep(G) of size O(

√
n)

and separates G into two pieces with at most 2n/3 vertices each. Jordan curve
separators can be used to recursively separate a planar graph until pieces have
constant size. The authors of [34] show how to obtain a complete recursive decom-
position tree T of G in O(n) time. T is a binary tree whose nodes correspond to
subgraphs of G (called pieces), with the root being all of G and the leaves being
pieces of constant size. We identify each piece P with the node representing it
in T (we can thus abuse notation and write P ∈ T ), with its boundary ∂P
(i.e. vertices that belong to some separator along the recursive decomposition
used to obtain P ), and with its separator Sep(P ). We denote by T [P,Q] the
P -to-Q path in T (and also use T (P,Q], T [P,Q), and T (P,Q)).

An r-division [20] of a planar graph, for r ∈ [1, n], is a decomposition of the
graph into O(n/r) pieces, each of size O(r), such that each piece P has O(

√
r)

boundary vertices (denoted ∂P ). Another desired property of an r-division is
that the boundary vertices lie on a constant number of faces (called holes) of
the piece. For every r larger than some constant, an r-division with few holes
is represented in the decomposition tree T of [34]. It is convenient to describe
the r-division by truncating T at pieces of size O(r), that also satisfy the other
required properties. We refer to those pieces (the leaves of T after truncation) as
regions and denote by Ru the region containing vertex u (if u belongs to multiple
regions, we arbitrarily designate one of them as Ru).

Dense Distance Graphs and FR-Dijkstra. The dense distance graph of a set
of vertices U that lie on a constant number of faces of a planar graph H,
denoted DDGH(U) is a complete directed graph on the vertices of U . Each edge
(u, v) has weight dH(u, v), equal to the length of the shortest u-to-v path in H.
DDGH(U) can be computed in time O((|U |2 + |H|) log |H|) using the multiple
source shortest paths (MSSP) algorithm [11,33]. Thus, computing DDGP (∂P )
over all pieces of the recursive decomposition of G requires time O(n log2 n) and
space O(n log n). We next give a –convenient for our purposes– interface for
FR-Dijkstra [17], which is an efficient implementation of Dijkstra’s algorithm
on any union of DDGs. The algorithm exploits the fact that, due to planarity,
certain submatrices of the adjacency matrix of DDGH(U) satisfy the Monge
property (A matrix M satisfies the Monge property if, for all i < i′ and j < j′,
Mi,j + Mi′,j′ ≤ Mi′,j + Mi,j′ [38]). The interface is specified in the following
theorem, which was essentially proved in [17], with some additional components
and details from [31,39].

Theorem 1 [17,31,39]. Given a set Y of DDGs, Dijkstra’s algorithm can be run
on the union of any subset of Y with O(N) vertices in total (with multiplicities)
and an arbitrary set of O(N) extra edges in time O(N log2 N).



Fault-Tolerant Distance Labeling for Planar Graphs 321

3 Single-Fault Labeling for Reporting Shortest Paths

Warm-up. As a warm-up, we first sketch a simple labeling scheme that assigns a
label of size O(n4/5) to each vertex. Consider an r-division for r = n4/5, and let
R be the set of its regions. The label of each vertex u consists of the following:

(a) The r-division R. Space: O(n/r).
(b) For each region R in the r-division, the length of the shortest path in G,

among paths that are internally disjoint from R, from u to
⋃

P∈R ∂P , and
from

⋃
P∈R ∂P to u. There are O(n/r) regions and for each of them we store

O(n/r · √
r) distances. Space: O(n2/r3/2).

(c) The region Ru and the ∂Ru-to-∂Ru distances in G \ {u}. Space: O(r).

The space is thus O(n/r + n2/r3/2 + r) = O(n4/5).
Let us now consider a query (u, v, f), and assume, for simplicity, that no two

of u, v and f are contained in a single region. We have two cases. If there is a
shortest u-to-v path in G \ {f} that is vertex-disjoint from Rf , then the u-to-
∂Rv distances among paths internally-disjoint from Rf (item (b)), together with
Rv, which is stored for v (item (c)), allow us to retrieve the length of this path.
In the other case, we employ the u-to-∂Rf distances among paths internally-
disjoint from Rf (item (b)), the information stored in item (c) for f , and the
∂Rf -to-v distances among paths internally-disjoint from Rf (item (b)).

It is not difficult to combine this approach with the distance-labeling scheme
of Gavoille et al. [22] for the failure-free setting to obtain labels of size O(n3/4).
(Item (b) has to be modified to store distances to separators of ancestors of Ru

instead of distances to
⋃

P∈R ∂P , requiring O(n3/2/r) space.) In the approach
that we present below, we rely on separators in a more sophisticated and delicate
manner to obtain labels of size O(n2/3).

The Label. Recall that an r-division is represented by a decomposition tree T ,
whose root corresponds to G. The internal nodes of T correspond to pieces of G.
The two children of a piece P ∈ T are the subgraphs of P external and internal
to Sep(P ). The leaves of T are the regions of the r-division.

The label of each vertex u in G consists of the following information:

(i) The entire recursive decomposition tree T . Space: O(n/r).
(ii) For each region R in the r-division, the shortest path distances in G from

u to ∂R among paths that are internally disjoint from R. There O(n/r)
regions and each of them has O(

√
r) boundary nodes. Space: O(n/

√
r).

(iii) The region Ru and the ∂Ru-to-∂Ru distances in G \ {u}. Space: O(r).
(iv) For each piece P ∈ T with sibling Q, for each p ∈ ∂P \Q, the shortest path

distance from u to p in G \ (P ∪ Q) ∪ {p}, and the shortest path distance
from p to u in G \ Q. Space: O(

∑
P∈T ∂P ) = O(n/

√
r), c.f. [23].

(v) For each ancestor piece P of Ru in T , for each vertex p of Sep(P ) \ ∂P ,
the shortest path distance from u to p among paths in P \ ∂P that are
internally disjoint from Sep(P ), and the shortest path distance in P \ ∂P
from p to u. Space: O(

√
n), c.f. [23].
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The overall space required by the above five items is O(n/r+n/
√

r+r+n/
√

r+√
n), which is O(n2/3) for r = n2/3.

The Query. Upon query (u, v, f) we say that a path is a (u, v, f)-path if it is a
u-to-v path in G that avoids f , and we seek the shortest (u, v, f)-path, which
we denote by S. Let X denote the lowest node in T that is an ancestor of Rf

and of at least one of {Ru, Rv}. Let us assume without loss of generality that X
is an ancestor of Ru. We return the minimum of the following three:

1. S includes a vertex of ∂Rf .
The length of this path is found with a SSSP computation on the (non-planar)
graph G1 whose vertices are u, v, and ∂Rf \ {f} and whose edges are in one-
to-one correspondence with the distances specified below, i.e. for each a-to-b
distance, there is an edge from a to b with length equal to that distance:

– the u-to-∂Rf \ {f} distances from item (ii) in u’s label (or the u-to-
∂Rf \ {f} distances in Rf \ {f}, which can be computed from item (iii),
if Ru = Rf );

– the ∂Rf \ {f}-to-∂Rf \ {f} distances from item (iii) in f ’s label;
– the ∂Rf \ {f}-to-v distances from item (ii) in v’s label (or the ∂Rf \ {f}-

to-v distances in Rf \ {f}, which can be computed from item (iii), if
Rv = Rf ).

2. S avoids Rf but includes a boundary vertex of some piece on T [X,Rf ].
The length of this path is found with a SSSP computation on the graph G2

whose vertices are u, v, and ∂P of all nodes P that are siblings of some node Q
on the X-to-Rf path in T . The edges are in one-to-one correspondence with
the u-to-∂P distances from item (iv) in u’s label and the ∂P -to-v distances
from item (iv) in v’s label.

3. S avoids all boundary vertices of all the pieces on T [X,Rf ].
This is required only for the case where the lowest common ancestor of Ru

and Rv is not an ancestor of Rf (otherwise, it is an ancestor of X and a u-
to-v path cannot avoid the boundary vertices of X). The length of this path
is found with a SSSP computation on the graph G3 whose vertices are u, v,
and Sep(P ) \ ∂P of all nodes P on T (X,Ru). The edges are in one-to-one
correspondence with the u-to-Sep(P ) distances from item (v) in u’s label and
the Sep(P )-to-v distances from item (v) in v’s label. If Ru = Rv, the shortest
path may not cross any of these separators; in that case the distance may be
retrieved by a single SSSP computation in Ru \ {f} (item (iii)).

Correctness. Let us consider the three options for the shortest (u, v, f)-path S
(an illustration is provided in Fig. 1).

1. S includes a vertex of ∂Rf . Let a (resp. b) denote the first (resp. last) vertex
of S that belongs to ∂Rf \ {f}. The path S can be partitioned into a u-to-a
prefix, an a-to-b infix, and a b-to-v suffix. All three subpaths are represented
in G1, and all paths represented in G1 do not include f .
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2. S avoids Rf but includes a boundary vertex of some piece on T [X,Rf ].
First observe that all u-to-v paths in G2 avoid some (not necessarily proper)
ancestor of Rf and therefore also avoid f . To see that S is represented in
G2, let Q denote the unique piece on T (X,Rf ] such that S avoids Q but
visits its sibling P (such a piece Q must exist because S avoids Rf but visits
some piece on T [X,Rf ]). Since S visits P it must visit some vertex of ∂P .
Let p be the first such vertex of S. Partition S into a shortest u-to-p path in
G \ (Q ∪ P ) ∪ {p} and a shortest p-to-v path in G \ Q. These two subpaths
are represented in G2.

3. S avoids all boundary vertices of all the pieces on T [X,Rf ]. If S does not
visit ∂Ru (and thus Ru = Rv) then we find S with an SSSP computation in
Ru \ {f}. Otherwise, S visits a separator vertex in of some piece that is a
proper ancestor of Ru. Let P be the rootmost such piece. Since S avoids ∂X
we have that S is restricted to X and hence P is a descendant of X. In fact, P
must be a proper descendant of X (otherwise, S visits Sep(X) and therefore
visits the boundary of both child-pieces of X including the one on T [X,Rf ],
a contradiction). We therefore have that P ∈ T (X,Ru) and S is restricted to
P . Also observe that S avoids ∂P because otherwise S must visit a separator
vertex of some ancestor of P , contradicting P being rootmost. Let p be the
first vertex of S that belongs to Sep(P ). S can be decomposed into a shortest
path from u to p in P \ ∂P that is internally disjoint from Sep(P ), and a
suffix that is a shortest path from p to v in P \ ∂P ; S is thus represented in
G3. To see that no path represented in G3 contains f , observe that P may
contain f , but since Rf is not a descendant of P , f must be a vertex of ∂P
and so is not visited by any path represented in G3.

We thus arrive at the following result.

Theorem 2. Given a directed planar graph G of size n, with real edge-lengths,
we can assign an O(n2/3)-size label to each vertex of G such that upon query
(u, v, x), where u, v, x ∈ V (G), the length of the shortest u-to-v path in G \ {x}
can be retrieved from the labels of u, v and x.

Remark 1. Any graph G of size n from a family of graphs that hereditarily
admits O(

√
n)-size separators (such as H-minor free graphs and bounded genus

graphs) can be recursively decomposed so that we get an r-division (perhaps
not with the few-holes property). As our labeling scheme does not require the
few-holes property, Theorem 2 actually applies to any such graph family.

Extension for Counting. We now show how to extend our single-fault labeling
from reporting u-to-v shortest paths in G \ {f} to counting the number of u-to-
v shortest paths in G \ {f}. Our modification does not increase the label size
(assuming that each number we store fits into a single word, see the discussion
in the introduction). However, the efficient query algorithm cannot be applied,
leading to Õ(n2/3) query time.

In order to extend the labeling scheme for counting, for every u-to-v shortest
path distance which is stored in our label, we also store the number of such
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u-to-v shortest paths. The change in query time is that instead of the SSSP
computations on G1, G2, G3 we use an SSSP computation that counts shortest
paths. That is, for each edge in Gi there is a value representing its multiplicity
(the value we added to the label), and we want to compute the number of
shortest paths with respect to the multiplicities. This extension can be achieved
by a trivial extension to Dijkstra’s algorithm, resulting in Õ(n2/3) query time
(In contrast, FR-Dijkstra has no known extension for counting shortest paths).
The following lemma proves the correctness of our labeling scheme.

Rf

u

v

f

a

b

(a) Case 1.

Rf

X

P

Q

u

p v

(b) Case 2.

Rf

X
P

u

p

v

(c) Case 3.

Fig. 1. An illustration of the 3 different cases that arise for the query. In the figures we
assume that u, v �∈ Rf and the different colors in each path represent its decomposition
as defined in the proof of correctness. In the figure for Case 2, the blue piece denotes
Rf , while the siblings of its ancestors in T (X,Rf ] are denoted by different scales of
gray; the deeper the piece is in T , the darker its color. Piece Q is denoted be the
red-dashed rectangle. For Case 3, the setting is the same and in our illustration P is
the child of X that is not an ancestor of Rf . Sep(P ) is denoted by green. (Color figure
online)

Lemma 1. Every shortest path from u to v in G \ {f} is represented exactly
once in the query graphs G1, G2, G3.

Proof. The same argument as in the correctness subparagraph proves that every
shortest path is represented at least once in the query graphs. It remains to show
that every path is represented at most once. Let us consider the three cases for
a shortest (u, v, f)-path:
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1. S includes a vertex of ∂Rf . S is not represented in G2, G3 because every path
that is represented there must avoid an ancestor of Rf . S is represented
exactly once in G1 because it has a unique decomposition into subpaths
S1S2S3 where S1 is from u to the first vertex b1 of S in ∂Rf , S2 is from
b1 to the last vertex b2 of S in ∂Rf , and S3 is from b2 to v.

2. S avoids Rf but includes a boundary vertex of some piece on T [X,Rf ]. S is
not represented in G1 because all the paths that are represented there touch
Rf , it is also not represented in G3 since every path there avoids all boundary
vertices of all pieces in T [X,Rf ]. To prove that S is represented in G2 exactly
once we again show that S can be uniquely decomposed into three subpaths
in G2. Let P be the sibling of some piece Q ∈ T [X,Rf ] s.t. S visits P , and
let p ∈ ∂P ∩ S. If P is not the deepest such piece, then S also visits Q but
the edge (p, v) in G2 counts only paths in G \ Q, hence S is not represented
as a u − p − v path in G2. If P is the deepest such piece but p is not the first
vertex in ∂P that S visits, then the u-to-p subpath of S is not represented as
an edge (u, p) in G2 since only paths in G \ (P ∪ Q) ∪ {p} are.

3. S avoids all boundary vertices of all the pieces on T [X,Rf ]. S is not repre-
sented in G1, G2 because every path that is represented there touches some
piece in T [X,Rf ]. It is counted exactly once in G3 by a similar argument to
case 2 above: S is counted once in G3 by the first separator vertex that S visits
in the rootmost piece that it visits. Finally, in the case where Ru = Rv = Rf ,
we perform Dijkstra (with its extension for counting) on Ru \ ∂Ru.

Efficient Queries for Planar Graphs. We can easily achieve Õ(n2/3) query-time,
since this is the size of the graphs that we construct and can thus perform
Dijkstra for SSSP computations. This query time applies to any graph family
with

√
n-size separators, such as minor-free graphs. On planar graphs, in order to

perform queries more efficiently we have to assume random access to the labels
of vertices u, v and x; retrieving them would require O(n2/3) time. We present
an Õ(

√
n)-time query algorithm for planar graphs at the expense of increasing

the labels’ size by polylogarithmic factors.
Let us now formally state the main result of [8].

Theorem 3 [8]. Given a weighted directed planar graph G of size n and a source
s ∈ V (G), we can construct in O(n log4 n) time an O(n log4 n)-size data struc-
ture, that upon query (v, x), for v, x ∈ V (G), returns the s-to-v distance in
G \ {x} in time O(log n).

Cases 2 & 3. G2 and G3 are of size O(
√

n) and they can be constructed in O(
√

n)
time from the labels of u, v and f . We can compute SSSPs in these graphs in
O(

√
n log n) time using Dijkstra’s algorithm. We handle the subcase of Case 3 in

which Ru = Rv and the sought shortest path does not cross ∂Ru as follows. The
label of u additionally stores the single-source single-failure distance oracle of
Theorem 3 for graph Ru \ (∂Ru \ {u}) and source u. It occupies Õ(r) = Õ(n2/3)
additional space. Upon query, we simply query this oracle with (v, x).
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Case 1. This is the only involved case, as G1 can be of size Θ(r) = Θ(n2/3) and
we aim at performing SSSP computations in time Õ(

√
n). Let us note that the

distances of u to ∂Rf \ {f} in the case that Ru = Rf can be computed in time
Õ(

√
r) = Õ(n1/3) if we have stored the oracle of Theorem 3 for graph Ru and

source u in the label of u. The case Rv = Rf can be treated analogously.
In order to perform efficient SSSP computations we resort to FR-Dijkstra

(Theorem 1). We first make a minor modification to item (iii) of the label so
that the Monge property required for FR-Dijkstra is satisfied: instead of storing
∂Ru-to-∂Ru distances in G \ {u}, we instead store ∂Ru-to-∂Ru distances in
R \{u} and ∂Ru-to-∂Ru distances in G\ ((R \∂R)∪{u}). This ensures that the
set of vertices over which the DDGs are built lie on a constant number of faces
of the reference graph. The size of the label is unaffected by this modification.
We can then use Theorem 1 in a straightforward way to compute the sought
shortest path in time Õ(

√
r) = Õ(n1/3).

Efficient Preprocessing for Planar Graphs. The labels can be naively constructed
in O(n2) time. This is true for any graph family with

√
n-size separators. For

planar graphs, we show that the construction time can be improved to Õ(n5/3).
The complete recursive decomposition of G, required for item (i), can be

computed in O(n) time [34]. For the rest of the items, we use MSSP data struc-
ture for an appropriate subgraph of G, or of the reverse graph of G, i.e. G with
all its edges reversed.

The multiple-source shortest paths (MSSP) data structure [33] represents all
shortest path trees rooted at the vertices of a single face g in a planar graph. It
can be constructed in O(n log n) time, requires O(n log n) space, and can report
any distance between a vertex of f and any other vertex in the graph in O(log n)
time. Using a simple modification of the underlying graph, presented in [13], we
can ensure that MSSP returns the length of the shortest path that is internally
disjoint from a prespecified subset of the vertices of g.

To compute the information required for item (ii) of the labels, we build an
MSSP data structure for the reverse graph of G \ (R \ ∂R) for each piece R
in the r-division and each of the O(1) holes g on which the vertices of ∂R lie.
We then query the sought distances. The time required to construct the MSSP
data structures is Õ(n2/r) = Õ(n4/3) and the time required for computing the
distances is Õ(n2/

√
r) = Õ(n5/3). The precomputations for items (iii), (iv) and

the first part of item (v) can be done analogously –for item (iii) we store the
distances described in the description of the efficient query implementation.

For the second part of item (v), we can not make use of MSSP, as the shortest
path from u to p ∈ Sep(P ) is allowed to cross Sep(P ). We can instead build
an Õ(|P |)-size exact distance oracle for P \ ∂P in Õ(|P |3/2) time that answers
distance queries in Õ(|P |ε) time, for any constant ε > 0 [12]; we pick ε = 1/6.
We then query this oracle for the all distances we need to compute in P \ ∂P .
Over all pieces, the preprocessing time is Õ(n3/2) and the sought distances are
retrieved in Õ(n3/2 · n1/6) = Õ(n5/3)

To wrap up, the global preprocessing time is Õ(n5/3) and is upper bounded
by the total size of the labels up to polylogarithmic factors.
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4 Labeling for Counting Shortest Paths

In this section we design labels such that given the labels of any k + 2 vertices
s, t, v1, v2, . . . , vk, we should return the number of s-to-t paths that avoid vertices
v1, . . . , vk and whose length is equal to d(s, t) (the original s-to-t distance in G).
Note that this is the same as returning the number of shortest s-to-t paths in
G \ {v1, v2, . . . , vk} only if the length of the shortest s-to-t path does not change
when {v1, v2, . . . , vk} fail. We show that the labeling of [9] (with labels of size
O(

√
n)) actually works in this more general setting and show how to perform a

query in Õ(
√

n·k) time. We assume in this section that edge weights are positive.

The Label. We first compute a complete recursive decomposition of G. The label
of each vertex v in G then consists of the following information:

(i) For each ancestor piece P of v, for every u ∈ Sep(P ), the number p1(v, u)
and length d1(v, u) of all v-to-u shortest paths in P \ Sep(P ) ∪ {u}.

(ii) For each ancestor piece P of v, for every u ∈ Sep(P ), the number p2(u, v)
and length d2(u, v) of all u-to-v shortest paths in P \ ∂P .

In what follows, in the case that u is in many separators of ancestor pieces of
v, when referring to d1(v, u), p1(v, u), d2(u, v) and p2(u, v) we mean the values
computed for the rootmost such piece.

The Query - Without Faults. When there are no faulty vertices, every s-to-
t shortest path Q in G is uniquely determined by a piece P in the recursive
decomposition and a vertex u ∈ Sep(P ). The piece P is the rootmost ancestor
piece of s in the recursive decomposition s.t. Q visits Sep(P ) and therefore does
not visit ∂P . Such a piece P must be an ancestor of both s and t. The vertex
u ∈ Sep(P ) is the first vertex of Sep(P ) visited by Q. Q can thus be decomposed
into a prefix Q1 in P \Sep(P )∪{u} from s to u, and a suffix Q2 in P \ ∂P from
u to t. For every possible u we have the number of such Q1 in (i) of s and the
number of such Q2 in (ii) of t. We therefore add the term p1(s, u) · p2(u, t) to
the answer. However, we only wish to add this term if d(s, u) + d(u, t) = d(s, t)
(otherwise, we are counting non-shortest paths). We have d(s, u) + d(u, t) from
the labels of s and t. We compute d(s, t) as follows. Let A[v] be the union of
separator vertices of all ancestors of v. Then

d(s, t) = min
u∈A[s]∩A[t]

(d1(s, u) + d2(u, t)), (1)

and the overall query is computed as

paths(s, t) =
∑

u∈A[s]∩A[t] s.t
d1(s,u)+d2(u,t)=d(s,t)

p1(s, u) · p2(u, t) (2)

It takes Õ(
√

n) time to perform such query because there are O(
√

n) vertices
in A[s]∩A[t] and for each of them we perform Õ(1) calculations. We also compute
d(s, t) beforehand in Õ(

√
n) time.
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The Query - with Faults. We begin with an Õ(
√

n · k2) time query and then
improve this to Õ(

√
n · k). We order the faulty vertices in the increasing order

of their distances from s in G, and index them v1, . . . , vk accordingly. For con-
venience we refer to s as v0 and to t as vk+1. Denote by R[j] the number of
s-to-vj shortest paths in G that avoid v1, . . . , vj−1. Denoting by paths(vi, vj)
the number of vi-to-vj shortest paths in G we obtain the recurrence:

R[j] = paths(s, vj) −
∑

i<j s.t.
d(s,vi)+d(vi,vj)=d(s,vj)

R[i] · paths(vi, vj) (3)

To see why this recurrence holds, it suffices to show that every shortest path Q
in G from s to vj that visits at least one of v1, . . . , vj−1 is counted in the second
term exactly once. It is clear that every such path Q is counted at least once,
because it can be decomposed into a prefix composed of a shortest path from
s to the first vi that Q visits (i.e. is counted by R[i]) and a suffix composed
of a vi-to-vj path (i.e. counted by paths(vi, vj)). To see why every path Q is
counted at most once, notice that every such path Q visits the faulty vertices
monotonically with respect to their ordering. In other words, if Q visits some vi

and then some vj then i < j. This holds because if vi is on a shortest path from
s to vj then d(s, vi) < d(s, vj), and by our ordering of the faulty vertices i < j.
Since R[i] only counts paths that are internally disjoint from failed vertices, the
only time Q is counted is when we count paths of the form s � vi � vj , where
vi is the first faulty vertex Q visits.

Given R[1], . . . , R[j−1] we can compute R[j] in Õ(
√

n·j) using the recurrence.
For each faulty vertex vi with i < j we perform a paths(vi, vj) query as described
above which takes Õ(

√
n) time, so the overall complexity is Õ(

√
n · k2).

Improved Query Time. We now show how to improve the query time from
Õ(

√
n · k2) to Õ(

√
n · k). In order to achieve this, we cannot afford to compute

paths(vi, vj) for every pair i, j. Instead, we will express R[j] as a summation
over O(

√
n) terms that we can compute in Õ(1) time.

By combining Eqs. (2) and (3), and since paths(s, vj) can be computed in Õ(
√

n)
time, we get that computing R[j] boils down to computing the following double
summation:

∑

i<j s.t.
d(s,vi)+d(vi,vj)=d(s,vj)

R[i]
∑

u∈A[vi]∩A[vj ] s.t
d1(vi,u)+d2(u,vj)=d(vi,vj)

p1(vi, u) · p2(u, vj) (4)

The above sum counts all s-to-vj shortest paths Q that can be decomposed into
three parts:

Q1 - a shortest s-to-vi path in G (for some vi) that avoids v1, . . . , vi−1.
Q2 - a shortest vi-to-u path in P \ Sep(P ) ∪ {u} for some u ∈ Sep(P ), where
P is defined as the rootmost ancestor of vi s.t. Q touches Sep(p) (u is the
first vertex of Sep(P ) in Q2).
Q3 - a shortest u-to-vj path in P \ ∂P .
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We use the same decomposition into Q1, Q2, Q3 but sum the terms differently.
Denoting D(s, u) = mini(d(s, vi) + d1(vi, u)) we compute:

∑

u∈A[vj ] s.t.
D(s,u)+d2(u,vj)=d(s,vj)

p2(u, vj)
∑

i<j s.t. u∈A[vi] and
d(s,vi)+d1(vi,u)=D(s,u)

R[i] · p1(vi, u) (5)

Let us explain Eq. (5). Denote the inner summation term (in blue) as Fj(u). Fj(u)
counts the number of combinations for Q1Q2 by iterating over every faulty vertex
vi where i < j and u ∈ A[vi]. For a fixed vi, the number of such combinations is
R[i]·p1(vi, u). Among all Q1Q2 combinations, we only want to sum combinations
Q1Q2 that have length d(s, u). Ideally, this could be imposed by adding the
condition d(s, vi) + d1(vi, u) = d(s, u) to the inner sum. However, we cannot
compute d(s, u) because we do not have the label of u. Instead, we add the
condition d(s, vi) + d1(vi, u) = D(s, u) where D(s, u) = mini(d(s, vi) + d1(vi, u))
(observe that D(s, u) ≥ d(s, u)). This condition is easy to check using d1(vi, u)
stored in the label of vi and the value d(s, vi) which can be computed beforehand
using Eq. (1). The counting remains correct because in the outer sum we check
that D(s, u) + d2(u, vj) = d(s, vj) which only holds if D(s, u) = d(s, u) (because
when D(s, u) > d(s, u) then by the triangle inequality we have that D(s, u) +
d2(u, vj) > d(s, u) + d2(u, vj) ≥ d(s, vj)). Note that even if D(s, u) = d(s, u) it
may be that D(s, u) + d2(u, vj) > d(s, vj). This happens in the case that there
are no s-to-vj shortest paths that visit u. In other words, we check that a path
Q1Q2Q3 is shortest by verifying that d(s, vi) + d1(vi, u) + d2(u, vj) = d(s, vj).
This is true iff D(s, u) = d(s, u) and d2(u, vj) = d(u, vj) which means that
Q1Q2Q3 is indeed a shortest path.

Observe that in the inner sum we consider only i < j. This is because for
i ≥ j none of the paths from s to vj that visit vi is shortest due to the ordering
of the faulty vertices.

As for the outer sum, it counts the number of Q3 paths for every u ∈ A[vj ].
Overall, we iterate over every u ∈ A[vj ] and multiply Fj(u) (the number of Q1Q2

paths) by p2(u, vj) (the number of Q3 paths) and obtain the answer.
Overall, in the j’th iteration we compute R[j] using the Fj(u) values accord-

ing to Eq. (5). Notice that Fj+1(u) is either equal to Fj(u) or to Fj(u) + R[j] ·
p1(vj , u). We can therefore compute Fj+1(u) for every u ∈ A[vj ] using the just
computed R[j] and Fj(u). This takes total Õ(

√
n) time and Õ(

√
n · k) time over

all the k + 2 iterations.
In order to check the distance restrictions in the summations we precompute

d(s, vj) for every 0 ≤ j ≤ k + 1 and D(s, u) for every u ∈ ⋃
0≤i≤k+1 A[vi]. The

former (d(s, vj)) is computed using (1), and the latter (D(s, u)) is computed by
iterating over every i and u ∈ A[vi] and maintaining the minimum value for each
D(s, u). Thus, the precomputation of D(s, u) and d(s, vj) takes Õ(

√
n · k) time.
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5 A Lower Bound on Labels for Counting Shortest Paths

In this section we prove the following lower bound on labeling schemes for count-
ing shortest paths (without faults) in graphs such that the number of distinct
shortest paths between any two nodes consists of at most L bits.

The proof is a modification of the approach of Gavoille et al. [22] for standard
distance labeling. Their proof proceeds by assigning weights to the edges of a√

n × √
n grid graph so that the shortest path from the i-th node in the first

column to the j-th node in the first row consists of j−1 horizontal edges, followed
by i − 1 vertical edges. Then, the proof hides a single bit in every intersection
by creating or not a shortcut. The shortest paths defined above are still of the
same form, up to using the shortcut in case it exists: horizontal edges, possibly
a shortcut, and then vertical edges.

Theorem 4. Any labeling scheme for counting shortest paths in planar graphs
such that the number of distinct shortest paths between any two nodes consists
of at most L bits requires labels consisting of Ω(

√
nL) bits.

Proof. Let us consider a
√

m × √
m grid graph, weighted as in the proof of

Gavoille et al. from [22]. In every intersection, instead of a single s-to-t shortcut,
we introduce an O(L)-size gadget – essentially the one described in the intro-
duction, in our proof that labels of o(n) bits cannot exist if L is unbounded.

More specifically, suppose that we are given L−1 bits b0, . . . , bL−2. Each edge
of the gadget will have weight equal to 1/L times the weight of the shortcut in
the proof of Gavoille et al. The gadget consists of a path s = u0−u1−· · ·−uL−1

and another path v1 − v2 − · · · − vL = t in which every edge is duplicated
(i.e., there are two parallel edges between each pair vi, vi+1). Finally, for every
i = 0, . . . , L − 2 such that bi = 1, we add an edge ui − vi+1. The number of
shortest s-to-t paths in the gadget is exactly

∑L−2
i=0 bi · 2L−1−i. Note that this

number is congruent to 0 modulo 2. The size of the graph is n = Θ(mL).
Now, the number of shortest paths from the i-th node in the first column

to the j-th node in the first row is 1 if all bi’s are equal to 0 for the gadget
at intersection (i, j); otherwise it is equal to

∑L−2
i=0 bi · 2L−1−i. Hence, each pair

(i, j) allows us to recover Θ(L) distinct bits. Thus, the labels must consist of
Ω((

√
m − 1)2L/(2

√
m − 1)) = Ω(

√
mL) = Ω(

√
nL) bits.

We leave the problem of closing the gap between this Ω(
√

nL) lower bound
and the O(

√
nL) upper bound open for further investigation.
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Abstract. We show that the dominating set problem admits a con-
stant factor approximation in a constant number of rounds in the
LOCAL model of distributed computing on graph classes with bounded
expansion. This generalizes a result of Czygrinow et al. for graphs with
excluded topological minors.
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1 Introduction

A dominating set in an undirected and simple graph G is a set D Ď V (G) such
that every vertex v P V (G) either belongs to D or has a neighbor in D. The
Minimum Dominating Set problem takes as input a graph G and the objective
is to find a minimum size dominating set of G. The decision problem whether a
graph admits a dominating set of size k is NP-hard [23] and this even holds in
very restricted settings, e.g. on planar graphs of maximum degree 3 [17].

Consequently, attention shifted from computing exact solutions to approx-
imating near optimal dominating sets. The simple greedy algorithm computes
an lnn approximation (where n is number of vertices of the input graph) of a
minimum dominating set [21,29], and for general graphs this algorithm is near
optimal – it is NP-hard to approximate minimum dominating sets within factor
(1 ´ ε) ln n for every ε ą 0 [10].

Therefore, researchers tried to identify restricted graph classes where better
(sequential) approximations are possible. The problem admits a PTAS on classes
with subexponential expansion [19]. Here, expansion refers to the edge density of
bounded depth minors, which we will define in detail below. Important examples
of classes with subexponential expansion include the class of planar graphs and
more generally classes that exclude some fixed graph as a minor. The dominat-
ing set problem admits a constant factor approximation on classes of bounded
degeneracy (equivalently, of bounded arboricity) [5,28] and an O(ln γ) approx-
imation (where γ denotes the size of a minimum dominating set) on classes of
bounded VC-dimension [7,14]. In fact, the greedy algorithm can be modified to
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yield a constant factor approximation on graphs with bounded degeneracy [22]
and an O(ln γ) approximation on biclique-free graphs (graphs that exclude some
fixed complete bipartite graph Kt,t as a subgraph) [33]. However, it is unlikely
that polynomial-time constant factor approximations exist even on K3,3-free
graphs [33]. The general goal in this line of research is to identify the broadest
graph classes on which the dominating set problem (or other important problems
that are hard on general graphs) can be approximated efficiently with a certain
guarantee on the approximation factor. These limits of tractability are often
captured by abstract notions, such as expansion, degeneracy or VC-dimension
of graph classes.

In this paper we study the distributed time complexity of finding dominating
sets in the classic LOCAL model of distributed computing, which can be traced
back at least to the seminal work of Gallager, Humblet and Spira [16]. In this
model, a distributed system is modeled by an undirected (connected) graph G,
in which every vertex represents a computational entity of the network and
every edge represents a bidirectional communication channel. The vertices are
equipped with unique identifiers. In a distributed algorithm, initially, the nodes
have no knowledge about the network graph. They must then communicate and
coordinate their actions by passing messages to one another in order to achieve
a common goal, in our case, to compute a dominating set of the network graph.
The LOCAL model focuses on the aspects of communication complexity and
therefore the main measure for the efficiency of a distributed algorithm is the
number of communication rounds it needs until it returns its answer.

Kuhn et al. [25] proved that in r rounds on an n-vertex graphs of maxi-
mum degree Δ one can approximate minimum dominating sets only within a
factor Ω(nc/r2

/r) and Ω(Δ1/(r`1)/r), respectively, where c is a constant. This
implies that, in general, to achieve a constant approximation ratio, we need
at least Ω(

√
log n/ log log n) and Ω(log Δ/ log log Δ) communication rounds,

respectively. Kuhn et al. [25] also presented a (1 ` ε) ln Δ-approximation in that
runs in O(log(n)/ε) rounds for any ε ą 0, Barenboim et al. [6] presented a deter-
ministic O((log n)k´1)-time algorithm that provides an O(n1/k)-approximation,
for any integer parameter k ě 2. More recently, the combined works of Rozhon,
Ghaffari, Kuhn, and Maus [18,32] provide an algorithm computing a (1 ` ε)-
approximation of the dominating set in poly(log(n)/ε) rounds [32, Corollary
3.11].

For graphs of degeneracy a (equivalent to arboricity up to factor 2), Lenzen
and Wattenhofer [28] provided an algorithm that achieves a factor O(a2) approx-
imation in randomized time O(log n), and a deterministic O(a log Δ) approxi-
mation algorithm with O(log Δ) rounds. Graphs of bounded degeneracy include
all graphs that exclude a fixed graph as a (topological) minor and in particular,
all planar graphs and any class of bounded genus.

Amiri et al. [1] provided a deterministic O(log n) time constant factor approx-
imation algorithm on classes of bounded expansion (which extends also to con-
nected dominating sets). Czygrinow et al. [8] showed that for any given ε ą 0,
(1 ` ε)-approximations of a maximum independent set, a maximum matching,
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and a minimum dominating set, can be computed in O(log∗ n) rounds in planar
graphs, which is asymptotically optimal [27].

Lenzen et al. [26] proposed a constant factor approximation on planar graphs
that can be computed in a constant number of communication rounds (see
also [35] for a finer analysis of the approximation factor). Wawrzyniak [34]
showed that message sizes of O(log n) suffice to give a constant factor approx-
imation on planar graphs in a constant number of rounds. In terms of lower
bounds, Hilke et al. [20] showed that there is no deterministic local algorithm
(constant-time distributed graph algorithm) that finds a (7 ´ ε)-approximation
of a minimum dominating set on planar graphs, for any positive constant ε.

The results for planar graphs were gradually extended to classes with
bounded genus [2,3], classes with sublogarithmic expansion [4] and eventually
by Czygrinow et al. [9] to classes with excluded topological minors. Again, one
of the main goals in this line of research is to find the most general graph classes
on which the dominating set problem admits a constant factor approximation
in a constant number of rounds (Fig. 1).

bounded degree

excluded
topological

minor
subexponential

expansion

bounded expansion

bounded degeneracy

planar

bounded genus

excluded minor

Fig. 1. Inclusion diagram of the mentioned graph classes.

We take a step towards this goal and generalize the result of Czygrinow
et al. [9] to classes of bounded expansion. The notion of bounded expansion
was introduced by Nešetřil and Ossona de Mendez [30] and offers an abstract
definition of uniform sparseness in graphs. It is based on bounding the density
of shallow minors. Intuitively, while a minor is obtained by contracting arbitrary
connected subgraphs of a graph to new vertices, in an r-shallow minor we are
only allowed to contract connected subgraphs of radius at most r.

A class of graphs has bounded expansion if for every radius r the set of
all r-shallow minors has edge density bounded by a constant depending only
on r. We write ∇r(G) for the maximal edge density of an r-shallow minor of
a graph G. Of course, every class C that excludes a fixed graph H as a minor
has bounded expansion. For such classes there exists an absolute constant c such
that for all G P C and all r we have ∇r(G) ď c. Special cases are the class of
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planar graphs, every class of graphs that can be drawn with a bounded number of
crossings, and every class of graphs that embeds into a fixed surface. Every class
of intersection graphs of low density objects in low dimensional Euclidean space
has polynomial expansion, that is, the function ∇r is bounded polynomially in r
on C . Also every class C that excludes a fixed graph H as a topological minor has
bounded expansion. Important special cases are classes of bounded degree and
classes of graphs that can be drawn with a linear number of crossings Further
examples include classes with bounded queue-number, bounded stack-number or
bounded non-repetitive chromatic number and the class of Erdös-Rényi random
graphs with constant average degree d/n, G(n, d/n), has asymptotically almost
surely bounded expansion. See [19,31] for all these examples.

Hence, classes of bounded expansion are much more general than classes
excluding a topological minor. On the other hand, maybe not surprisingly, when
performing local computations, it is not properties of minors or topological
minors, but rather of shallow minors that allow the necessary combinatorial
arguments in the algorithms. This observation was already made in the study of
the kernelization complexity of dominating set on classes of sparse graphs [11–
13,15,24]. On the other hand, degenerate classes are those classes where only
∇0(G) is bounded. These classes are hence more general than classes of bounded
expansion.

The algorithm of Czygrinow et al. [9] is based on an quite complicated itera-
tive process of choosing dominating vertices from so called pseudo-covers. Based
on the fact that classes with excluded topological minors in particular exclude
some complete bipartite graph Kt,t as a subgraph it is proved that this iterative
process terminates after at most t rounds and produces a good approximation
of a minimum dominating set.

In this paper we make three contributions. First, we simplify the arguments
used by Czygrinow et al. and give a much more accessible description of their
algorithm. Second, we identify the property that ∇1(G) is bounded by a con-
stant as the key property that makes the algorithm work. Classes with only
this restriction are even more general than bounded expansion classes, hence,
we generalize the algorithm to the most general classes on which it (and sim-
ilar approaches based on covers or pseudo-covers) can work. We demonstrate
that the pseudo-covering method cannot be extended e.g. to classes of bounded
degeneracy. Finally, Czygrinow et al. explicitly stated that they did not aim to
optimize any constants, and as presented, the constants in their construction
are enormous. We optimize the bounds that arise in the algorithm in terms of
∇1(G). Even though the constants are still large, they are by magnitudes smaller
than those in the original presentation.

Theorem 1. There exists a LOCAL algorithm that for any given graph G and
an upper bound on ∇1(G) as input computes in a constant number of rounds
a dominating set of size O(∇1(G)4t∇1(G)`t) · γ(G), where t ď 2∇1(G) ` 1 is
minimum such that Kt,t Ę G.
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Before we go into the technical details let us give an overview of the algorithm.
The algorithm works in three steps, in each step (i P {1, 2, 3}) computing a small
set Di that is added to the dominating set.

1. Compute the set D1 of all v such that N(v) cannot be dominated by a
small number (the constant 2∇1(G)) of vertices different from v. Remove D1

from G and mark all its neighbors as dominated. The fact that |D1| is lin-
early bounded in γ(G) goes back to work of [26] and we prove our bounds in
Lemma 1.

2. In parallel for every vertex v “ v1 we compute all so called domination
sequences v1, . . . , vs, defined formally in Definition 3. This step is based on the
construction of pseudo-covers as in the work of Czygrinow et al. [9]. We add
all vertices vs to the set D2. We prove that this set is small compared to γ(G)
in Lemma 10. Remove D2 from G and mark its neighbors as dominated.

3. All remaining vertices have small degree, as proved in Corollary 2, and hence
in a final step we can add all non-dominated vertices to a set D3. We finally
return the set D1 Y D2 Y D3.

The main open question that remains in this line of research is whether we
can compute constant factor approximations of minimum dominating sets in a
constant number of rounds in classes of bounded degeneracy.

2 Preliminaries

In this section we fix our notation and prove some basic lemmas required for
the algorithm. We use standard notation from graph theory and refer to the
literature for extensive background. For an undirected and simple graph G we
denote by V (G) the vertex set and by E(G) the edge set of G. We also refer
to the literature, for the formal definition of the LOCAL model of distributed
computing.

A graph H is a minor of a graph G, written H � G, if there is a set {Gv :
v P V (H)} of pairwise vertex disjoint and connected subgraphs Gv Ď G such
that if {u, v} P E(H), then there is an edge between a vertex of Gu and a vertex
of Gv. We call V (Gv) the branch set of v and say that it is contracted to the
vertex v.

For a non-negative integer r, a graph H is an r-shallow minor of G, written
H �r G, if there is a set {Gv : v P V (H)} of pairwise vertex disjoint connected
subgraphs Gv Ď G of radius at most r such that if {u, v} P E(H), then there is
an edge between a vertex of Gu and a vertex of Gv. Observe that a 0-shallow
minor of G is just a subgraph of G.

We write ∇r(G) for maxH�rG |E(H)|/|V (H)|. Observe that ∇0(G) denotes
the maximum average edge density of G and 2∇0(G) bounds the degeneracy
of G, which is defined as maxHĎG δ(H). Here, δ(H) denotes the minimum degree
of H. A class C of graphs has bounded expansion if there is a function f : N Ñ N

such that ∇r(G) ď f(r) for all graphs G P C . This is equivalent to demanding
that the degeneracy of each r-shallow minor of G is functionally bounded by r.
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We write Ks,t for the complete bipartite graph with partitions of size s and t,
respectively. Observe that Kt,t has 2t vertices and t2 edges, hence, if ∇0(G) ă
t/2, then G excludes Kt,t as a subgraph.

For a graph G and v P V (G) we write N(v) “ {w : {v, w} P E(G)} for
the open neighborhood of v and N [v] “ N(v) Y {v} for the closed neighborhood
of v. For a set A Ď V (G) let N [A] “ Ť

vPA N [v]. We write Nr[v] for the set of
vertices at distance at most r from a vertex v. A dominating set in a graph G
is a set D Ď V (G) such that N [D] “ V (G). We write γ(G) for the size of a
minimum dominating set of G. For W Ď V (G) we say that a set Z Ď V (G)
dominates or covers or is a cover of W if W Ď N [Z]. Observe that we do not
require Z X W “ H as Czygrinow et al. do for covers.

The following lemma is one of the key lemmas used for the algorithm. It goes
back to [26].

Lemma 1. Let G be a graph. Then there are less than 2γ(G) vertices v with
the property that N(v) cannot be dominated by at most 2∇1(G) vertices different
from v.

Proof. Let γ “ γ(G) and ∇1 “ ∇1(G) and assume that there are 2γ such
vertices a1, . . . , a2γ . We proceed towards a contradiction. Let {d1, . . . , dγ} be a
minimum dominating set. At least γ of the ai’s are not in this dominating set.
We can hence assume w.l.o.g. that {a1, . . . , aγ} and {d1, . . . , dγ} are two disjoint
sets of vertices.

We build a 1-shallow minor H of the graph G with the following 2γ branch
sets. For every i ď γ, we have a branch set Ai “ {ai} and a branch set Di “
N [di]\({a1, . . . , aγ}YŤ

jăi N [dj ]Y{di`1, . . . , dγ}). We call the associated vertices
of H a′

1, . . . , a
′
γ , d′

1, . . . , d
′
γ .

Since {d1, . . . , dγ} is a dominating set of G and by assumption on N(ai),
we have that in H, every a′

i is connected to at least 2∇1 ` 1 of the d′
i. We

therefore have that |VH | “ 2γ and |EH | ě γ(2∇1 ` 1), hence |EH | ą |VH |∇1,
a contradiction.

Note that we cannot locally determine the number ∇1(G). We must hence
assume that it is given with the input. Observe that similarly, the algorithm of
Czygrinow et al. works with the assumption that the input excludes a complete
graph with t vertices as a topological minor. This implies a bound on the edge
density of topological minors in G, which can be seen as being given with the
input.

The algorithm proceeds in three phases. The first phase is based on Lemma 1
as follows. In the LOCAL model we can learn the distance-2 neighborhood N2[v]
of every vertex v in 2 rounds, and then locally check whether N(v) can be
dominated by at most 2∇1(G) vertices.

We let D1 be the set of all vertices that do not have this property. By
Lemma 1 we have |D1| ď 2γ(G). We remove D1 from the graph and mark
all its neighbors as dominated in one additional round.
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In the following we fix a graph G and we assume that N(v) can be dominating
by at most 2∇1(G) vertices different from v for all v P V (G). We write ∇1

for ∇1(G) and we let t ď 2∇0(G) ` 1 be the smallest positive integer such
that G excludes Kt,t as a subgraph. Note that this number is not required as
part of the input. We let k :“ 2∇1.

Example 1. A planar n-vertex graph has at most 3n ´ 6 edges. A minor of a
planar graph is again planar, hence for planar graphs G we have ∇r(G) ď 3 for
all r ě 0 and k “ 2∇1(G) ď 6.

We also fix a minimum dominating set D of G of size γ. The following lemma
is proved exactly as Lemma 1.

Lemma 2. There are less than 2γ vertices v with the property that N(v) cannot
be dominated by at most 2∇1 vertices from D and different from v.

Unfortunately, we cannot determine these vertices locally, as it requires
knowledge of D, however, this structural property is very useful for our further
argumentation.

Denote by D̂ the set of all vertices v whose neighborhood cannot be
dominated by 2∇1 vertices of D different from v. Let D′ “ D Y D̂.

According to Lemma 2, D′ contains at most 3γ vertices. Let us stress that D′

will never be computed by our LOCAL algorithm. We only use its existence in
the correctness proofs.

We can apply these lemmas to obtain a constant factor approximation for a
dominating set only if ∇1(G) is bounded by a constant. For example in graphs
of bounded degeneracy in general the number of vertices that dominate the
neighborhood of a vertex can only be bounded by γ(G). Hence, the approach
based on covers and pseudo-covers that is employed in the following cannot be
extended to degenerate graph classes.

Example 2. Let G(γ,m) be the graph with vertices vi for 1 ď i ď γ, wj for 1 ď
j ď m and sj

i for 1 ď i ď γ, 1 ď j ď m. We have the edges {v1, w
j} for 1 ď j ď

m, hence v1 dominates all wj . We have the edges {wj , sj
i} for all 1 ď i ď γ, 1 ď

j ď m, hence, the sj
i are neighbors of wj . Finally, we have the edges {vi, s

j
i},

that is, vi dominates the ith neighbor of wj . Hence, for m ą γ, G(γ,m) has a
dominating set of size γ and m vertices whose neighborhood can be dominated
only by γ(G) vertices. Lemma 1 implies that γ ă 2∇1, and as we can choose m
arbitrary large, we cannot usefully apply Lemma 1. Furthermore, G(γ,m) is
2-degenerate, showing that these methods cannot be applied on degenerate graph
classes (Fig. 2).
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Fig. 2. A 2-degenerate graph where for many v P V (G) the set N(v) can only be
dominated by at least γ vertices different from v.

3 Covers and Pseudo-covers

Intuitively, the vertices from a cover of a set W can take different roles. A few
vertices of a cover may cover almost the complete set W , while a few others are
only there to cover what was left over. The key observation of Czygrinow et al.
is that in classes that exclude some Kt,t as a subgraph, there can only be few of
such high degree covering vertices, while there can be arbitrarily many vertices
that cover at most t´1 vertices of W (the same vertices can be covered over and
over again). This observation can be applied recursively and is distilled into the
following two definitions. Recall that by the processing carried out in the first
phase of the algorithm we know that every neighborhood N(v) can be covered
by k “ 2∇1 vertices different from v. We recall all fixed parameters for easy to
find reference.

- G : fixed graph.
- γ : γ(G).
- ∇1 : ∇1(G).
- t : smallest integer such that G excludes Kt,t as a subgraph
- D1 : defined and computed in Lemma 1.
- D : fixed dominating set of G of size γ (not computed).
- D̂ : defined in Lemma 2 (not computed).
- D′ : D Y D̂ (not computed).

Following the presentation of [9], we name and fix these constants for the
rest of this article.
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- k :“ 2∇1.
- α :“ 1/k.
- � :“ 8∇1/α2 ` 1 “ 4k3 ` 1.
- q :“ 4k4.

Definition 1. A vertex z P V (G) is α-strong for a vertex set W Ď V (G) if
|N [z] X W | ě α|W |.

The following is the key definition by Czygrinow et al. [9].

Definition 2. A pseudo-cover (with parameters α, �, q, k) of a set W Ď V (G)
is a sequence (v1, . . . , vm) of vertices such that for every i we have

– |W \
Ť

jďm N [vj ]| ď q,
– vi is α-strong for W \

Ť
jăi N [vj ],

– |N [vi] X (W \
Ť

jăi N [vj ])| ě �,
– m ď k.

Intuitively, all but at most q elements of the set W are covered by the (vi)iďm.
Additionally, each element of the pseudo-cover dominates both an α-fraction
of what remains to be dominated, and at least � elements. Note that with our
choice of constants, if there are more than q vertices not covered yet, any vertex
that covers an α-fraction of what remains also covers at least � elements.

The next lemma shows how to derive the existence of pseudo-covers from the
existence of covers.

Lemma 3. Let W Ď V (G) be of size at least q and let Z be a cover of W with k
elements. There exists an ordering of the vertices of Z as z1, . . . , zk and m ď k
such that (z1, . . . , zm) is a pseudo-cover of W .

Proof. We build the order greedily by induction. We order the elements by neigh-
borhood size, while removing the neighborhoods of the previously ordered ver-
tices. More precisely, assume that (z1, . . . , zi) have been defined for some i ě 0.
We then define zi`1 as the element that maximizes |N [z] X (W \

Ť
jďi N [zj ])|.

Once we have ordered all vertices of Z, we define m as the maximal integer
not larger than k such that for every i ď m we have:

– zi is α-strong for W \
Ť

jăi N [zj ], and
– |N [zi] X (W \

Ť
jďi N [zj ])| ě �.

This made sure that (z1, . . . , zm) satisfies the last 3 properties of a pseudo-
cover of W . It only remains to check the first one. To do so, we define W ′ :“
W \

Ť
iďm N [zi]. We want to prove that |W ′| ď q. Note that because Z covers W ,

if m “ k we have W ′ “ H and we are done. We can therefore assume that m ă k
and W ′ ‰ H. Since Z is a cover of W , we also know that (zm`1, . . . zk) is a cover
of W ′, therefore there is an element in (zm`1, . . . zk) that dominates at least a
1/k fraction of W ′. Thanks to the previously defined order, we know that zm`1
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is such element. Since α “ 1/k, it follows that zm`1 is α-strong for W ′. This,
together with the definition of m, we have that |N [zi] X (W \

Ť
jďi N [zj ])| ă �

meaning that |N [zm`1] X W ′| ă �. This implies that |W ′|/k ă �. And since
� “ q/k, we have |W ′| ă q. Hence, (z1, . . . , zm) is a pseudo-cover of W .

While there can exist unboundedly many covers for a set W Ď V (G), the nice
observation of Czygrinow et al. was that the number of pseudo-covers is bounded
whenever the input graph excludes some biclique Ks,t as a subgraph. We do not
state the result in this generality, as it leads to enormous constants. Instead, we
focus on the case where small covers exist, that is, on the case where ∇1(G) is
bounded and optimize the constants for this case.

Lemma 4. Let W Ď V (G) of size at least 8∇1/α2. Then there are at most
4∇1/α vertices that are α-strong for W .

Proof. Assume that there is such a set W with at least c :“ 4∇1/α vertices that
are α-strong for W . We build a 1-shallow minor H of the graph G with |W |
branch sets. Each branch set is either a single element of W , or a pair {w, a},
where w is in W and a is an α-strong vertex for W , connected to w, and that
is not in W . This is obtained by iteratively contracting one edge of an α-strong
vertex with a vertex of W . This is possible because α|W | ą c, so during the
process and for any α-strong vertex we can find a connected vertex in W that
is not part of any contraction.

Once this is done, we have that |VH | “ |W |. For the edges, each of the
α-strong vertices can account for α|W | many edges. We need to subtract c2

from the total as we do not count twice an edge between two strong vertices.
Therefore |EH | ě cα|W | ´ c2. Note also that because |W | ě 8∇1/α2, we have
that 2∇1 ě (4∇1)2/(α2|W |). All of this together leads to:

|EH |
|VH | ě cα|W | ´ c2

|W | ě 4∇1 ´ (4∇1)2

α2 W | ě 4∇1 ´ 2∇1 ą ∇1

This contradicts the definition of ∇1.

This leads quickly to a bound on the number of pseudo-covers.

Lemma 5. For every W Ď V (G) of size at least �, the number of pseudo-covers
is bounded by 2(4∇1(G)/α)k.

The proof of the lemma is exactly as the proof of Lemma 7 in the presentation
of Czygrinow et al. [9], we therefore refrain from repeating it here.

We write T (v) for the set of all pseudo-covers of N(v) and P(v) for the
set of all vertices that appear in a pseudo-cover of N(v).

Corollary 1. For every v P V (G) with |N(v)| ą �, we have |T (v)| ď 2(2k2)k

and |P(v)| ď 2k(2k2)k ď (2k)2k`1.
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4 Finding Dominators

Recall that by Lemma 2 for every v P V (G) we can cover N(v) with at most k
vertices from D′. To first gain an intuitive understanding of the second phase of
the algorithm, where we construct a set D2 Ď V (G), let us consider the following
iterative procedure.

Fix some v P V (G). Let v1 “ v and B1 :“ N(v) and assume |B1| ě
kt´1(2t´1). We consider s vertices v1, v2 . . . , vs as follows. Choose as v2 an arbi-
trary vertex different from v1 that dominates at least kt´2(2t´1) vertices of B1,
that is, a vertex that satisfies |N [v2]XB1| ě kt´2(2t´1). Note that any vertex v2
that dominate a 1/k-fraction of B1 can be such vertex, i.e. it is enough for v2 to
be α-strong for B1.

Let B2 :“ N(v2)XB1. Observe that we consider the open neighborhood of v2
here, hence B2 does not contain v2. Hence, |B2| ě kt´2(2t´1)´1 ě kt´2(2t´2).
We continue to choose vertices v3, . . . inductively just as above. That is, if the
vertices v1, . . . , vi and sets B1, . . . , Bi Ď V (G) have been defined, we choose the
next vertex vi`1 as an arbitrary vertex not in {v1, . . . , vi} that dominates at least
kt´i´1(2t´ i) vertices of Bi, that is, a vertex with |N [vi`1]XBi| ě kt´i´1(2t´ i)
and let Bi`1 :“ N(vi`1) X Bi, of size at least kt´i´1(2t ´ i ´ 1).

Lemma 6. Assume |N(v)| ě kt´1 ·(2t´1). Let v1, . . . , vs be a maximal sequence
obtained as above. Then s ă t and D′ X {v1, . . . , vs} ‰ H.

Proof. Assume that we can compute a sequence v1, v2, . . . , vt. By definition,
every vi is connected to every vertices of Bt. For every 1 ď i ď t we have
|Bi| ě kt´i(2t´i) and therefore |Bt| ě t. This shows that the two sets {v1, . . . , vt}
and Bt form a Kt,t as a subgraph of G. Since this is not possible, the process
must stop having performed at most t ´ 1 rounds.

We now turn to the second claim of the lemma. Assume that v1, v2, . . . , vs is a
maximal sequence for some s ă t. We assume v1 /P D̂, otherwise, we are done, as
D̂ Ď D′. Because s ă t, we have that Bs is not empty. Because Bs Ď B1 “ N(v1),
we have that Bs can be dominated with at most k elements of D (by definition
of D̂), and in particular by at most k elements of D′. Therefore, there must
be an element v of D′ that dominates a 1/k fraction of Bs. If v was not one
of the v1, . . . , vs, we could have continued the sequence by defining vs`1 :“ v.
Since the sequence is maximal, v must be one of the v1, . . . , vs, which leads to
D′ X {v1, . . . , vs} ‰ H.

We aim to carry out this iterative process in parallel for all vertices v P
V (G) with a sufficiently large neighborhood. Of course, in the process we cannot
tell when we have encountered the element of D′. Hence, from the constructed
vertices v1, . . . , vs we will simply choose the element vs into the dominating
set. Unfortunately, this approach alone can give us arbitrarily large dominating
sets, as we can have many choices for the vertices vi, while already v1 was
possibly optimal. We address this issue by restricting the possible choices for the
vertices vi.
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Definition 3. For any vertex v P V (G), a k-dominating-sequence of v is a
sequence (v1, . . . , vs) for which we can define sets B1, . . . , Bs such that:

– v1 “ v, B1 Ď N(v1),
– for every i ď s we have Bi Ď N(vi) X Bi´1,
– |Bi| ě kt´i(2t ´ i ` (t ´ i)q)
– and for every i ď s we have vi P P(vi´1).

A k-dominating-sequence (v1, . . . , vs) is maximal if there is no vertex u such that
(v1, . . . , vs, u) is a k-dominating-sequence.

Note that this definition requires |N(v)| ě kt´1(2t ´ 1 ` (t ´ 1)q). For a
vertex v with a not sufficiently large neighborhood, there are no k-dominating-
sequences of v. We show two main properties of these dominating-sequences.
First, Lemma 7 shows that a maximal dominating sequence must encounter D′

at some point. Second, with Lemma 8 to 10, we show that collecting all “end
points” of all maximal dominating sequences results in a set D2 of size linear in
the size of D′. While D′ cannot be computed, we can compute D2.

Lemma 7. Let v be a vertex and let (v1, . . . , vs) be a maximal k-dominating-
sequence of v. Then s ă t and D′ X {v1, . . . , vs} ‰ H.

Proof. The statement s ă t is proved exactly as for Lemma 6.
To prove the second statement we assume, in order to reach a contradiction,
that D′ X {v1, . . . , vs} “ H. We have that Bs Ď N(vs), and remember that
N(vs) can be dominated by at most k elements of D′. By Lemma 3, we can
derive a pseudo-cover S “ (u1, . . . , um) of N(vs), where m ď k and every ui

is an element of D′. Let X denote the set (of size at most q) of vertices not
covered by S. As S contains at most k vertices there must exist a vertex u in S
that covers at least a 1/k fraction of Bs \ X. By construction, we have that
|Bs| ě kt´s · (2t ´ s ` (t ´ s)q) ě k(t ` q) because s ă t. Therefore |Bs \ X| ě k
and we have

|N [u] X Bs| ě |Bs| ´ q

k
ě kt´s(2t ´ s ` (t ´ s)q) ´ q

k
,

hence

|N [u] X Bs| ě kt´s(2t ´ s ` (t ´ s ´ 1)q)
k

ě kt´s´1(2t ´ s ` (t ´ s ´ 1)q),

and therefore

|N(u) X Bs| ě |N [u] X Bs| ´ 1 ě kt´s´1(2t ´ s ´ 1 ` (t ´ s ´ 1)q).

So we can continue the sequence (v1, . . . , vs) by defining vs`1 :“ u. In conclusion
if (v1, . . . , vs) is a maximal sequence, it contains an element of D′.

The goal of this modified procedure is first to ensure that every maximal
sequence contains an element of D′ and second, to make sure that there are not
to many possible vs (which are the elements that we pick for the dominating
set). This is illustrated in the following example and formalized right after that.
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Example 3. Consider the case of planar graphs. Since these graph exclude K3,3,
i.e. t “ 3, we have that every maximal sequence is of length 1 or 2. For every
v of sufficiently large neighborhood we consider every maximal k-dominating-
sequence (v1, vs) of v. We then add vs to the set D2. We want to show that |D2|
is linearly bounded by |D′| and hence by γ(G).

If s “ 1, then we have vs P D′ and we are good.
If s “ 2, we have two possibilities. If v2 is in D′, we are good. If however, v2

is not in D′, then v1 is in D′. Additionally, v2 is in some pseudo-cover S of v1,
i.e. v2 P P(v1).

By Corollary 1, we have |P(v1)| ď (2k)2k`1 (and in fact this number is much
smaller in the case of planar graphs). Therefore we have |D2| ď ((2k)2k`1`1)|D′|.

We generalize the ideas of Example 3, by explaining what a “few possible
choices” in the discussion before Definition 3 means.

Lemma 8. For any maximal k-dominating-sequence (v1, . . . , vs), and for any
i ď s ´ 1, we have that

– vi`1 P P(vi),
– |N(vi)| ě �, and
– |P(vi)| ď (2k)2k`1.

Proof. By construction vi`1 P P(vi), furthermore, vi dominates at least Bi, and
|Bi| ě kt´i(2t ´ i ` (t ´ i)q) ě q ą �. We conclude with Colloary 1.

We now for every v P V (G) compute all maximal k-dominating-sequences
starting with v. Obviously, as every vi in any k-dominating-sequences of v dom-
inates some neighbors of G, we can locally compute these steps after having
learned the 2-neighborhood N2[v] of every vertex in two rounds in the LOCAL
model of computation.

For a set W Ď V (G) we write P(W ) “ Ť
vPW P(v). Remember that the

definition of P(v) requires that |N(v)| ą �. We simply extend the notation with
P(v) “ H if |N(v)| ď �. We now define

P(1)(W ) :“ P(W )

additionally, for 1 ă i ă t

P(i)(W ) :“ P(P(i´1)(W ))

and finally, for every 1 ď i ď t

P(ďi)(W ) :“
ď

1ďjďi

P(j)(W ).

Using Lemma 8, for every k-dominating-sequence (v1, . . . , vs) we have that
vs P P(ďk)(v1). More generally, for every i ď s, we have that vs P P(ďt)(vi).
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We define D2 as the set of all u P V (G) such that there is some vertex
v P V (G), and some maximal k-dominating-sequence (v1, . . . , vs) of v
with u “ vs.

This leads to the following lemma.

Lemma 9. D2 Ď P(ďt)(D′).

Proof. This uses the observation made above the statement of this lemma,
together with Lemma 7.

Note that while we don’t know how to compute D′, this section explained how
to compute D2 in 2 rounds with the LOCAL model of computation.

Lemma 10. |D2| ď (2k)t(2k`1) · |D′|

Proof. Corolloary 1 gives us that |P(v)| ď 2k(2k2)k for every v P V (G) with
|N(v)| ą �. As P(W ) ď ∑

vPW

|P(v)|, we have P (W ) ď |W | · (2k)2k`1. A naive

induction yields that for every i ď t,

|P(ďi)(W )| ď ci|W |,

where c “ (2k)2k`1. Hence with this and Lemma 9 we have

|D2| ď (2k)t(2k`1) · |D′|

5 Cleaning up

We now show that after defining and computing D2 as explained in the previous
section, every neighborhood is almost entirely dominated by D2. More precisely,
for every vertex v of the graph |{v′ P N(v) : v′ /P N(D2)}| ă kt´1(2t´1`(t´1)q)
holds.

Before explaining why this holds, note that it implies that, in particular, the
vertices of D have at most kt´1(2t´1`(t´1)q) non-dominated neighbors. Since
every vertex is either in D or a neighbor of some element in D, this implies that
in the whole graph there are at most kt´1(2t ´ 1 ` (t ´ 1)q) · γ non-dominated
vertices left.

We can therefore define D3 :“ {v P V (G) : v /P N(D2)} and have that
|D3| ď kt´1(2t ´ 1 ` (t ´ 1)q) · γ, and that D1 Y D2 Y D3 is a dominating
set of G.

We now turn to the proof of the above claim.

Lemma 11. For every vertex v of the graph, the following holds:

|{v′ P N(v) : v′ /P N(D2)}| ă kt´1(2t ´ 1 ` (t ´ 1)q).
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Proof. Assume, for the sake of reaching a contradiction, that there is a vertex v
such that |{v′ P N(v) : v′ /P N(D2)}| ě kt´1(2t ´ 1 ` (t ´ 1)q).

We then define B1 :“ {v′ P N(v) : v′ /P N(D2)}.
Exactly as in the proof of Lemma 7, we have that B1 can be dominated by

at most k elements of D′. Hence by Lemma 3, we can derive a pseudo-cover
S “ (u1, . . . , um) of B1, where m ď k and every ui is an element of D′. This
leads to the existence of some vertex u in S that covers at least a 1/k fraction
of B1 \ X. This yields a vertex v2, and a set B2.

We can then continue and build a maximal k-dominating-sequence (v1, . . . vs)
of v. By construction, this sequence has the property that every vi dominates
some elements of B1. This is true in particular for vs, but also we have that
vs P D2, hence a contradiction.

Corollary 2. The graph contains at most kt´1(2t´1`(t´1)q)·γ non-dominated
vertices. In particular, the set D3 has at most this size.

6 The Algorithm

In this final section we summarize the algorithm.

1. Compute the set D1 of all v such that N(v) cannot be dominated by 2∇1(G)
vertices different from v. Remove D1 from G and mark all its neighbors as
dominated.

2. In parallel for every vertex v “ v1 compute all k-domination sequences
v1, . . . , vs. Add all vertices vs to the set D2. Remove D2 from G and mark its
neighbors as dominated. This is done as follows.
We can learn the neighborhood N2[v] for every vertex v in 2 rounds. In the
LOCAL model we can then compute the pseudo-covers without further com-
munication. In two additional rounds can compute the domination sequences
from the pseudo-covers (as we need to consider only elements from N2[v1]).
We report in 2 additional rounds that vs belongs to D2 and one more round
to mark the neighbors of D2 as dominated.

3. In the final round we add all non-dominated vertices to a set D3 and return
the set D1 Y D2 Y D3.

According to Lemma 1, Lemma 10 and Colloary 2 the algorithm computes
a 2 ` 3(2k)t(2k`1) ` kt´1(2t ´ 1 ` (t ´ 1)q) approximation. This is an absolute
constant in O(∇4t∇1`t

1 ) depending only on ∇1(G), as also t ă 2∇1.

7 Conclusion

We simplified the presentation and generalized the algorithm of Czygrinow et
al. [9] from graph classes that exclude some topological minor to graph classes C
where ∇1(G) is bounded by an absolute constant for all G P C. This is a property
in particular possessed by classes with bounded expansion, which include many
commonly studied sparse graph classes.
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It is an interesting and important question to identify the most general graph
classes on which certain algorithmic techniques work. The key arguments of
Lemma 1 and Lemma 2 work only for classes with ∇1(G) bounded by an absolute
constant. We need different methods to push towards classes with only ∇0(G)
bounded, which are the degenerate classes.

The obtained bounds are still large, but by magnitudes smaller than those
obtained in the original work of Czygrinow et al. [9]. It will also be interesting
to optimize the algorithm for planar graphs, where additional topological argu-
ments can help to strongly optimize constants and potentially beat the currently
best known bound of 52 [26,35].
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Abstract. The minimum directed spanning tree (MDST) problem has
until recently not been studied in distributed computing models. This
fundamental task generalizes the well-studied minimum spanning tree
problem, by asking for a minimum weight spanning tree rooted at some
specified node of a directed network. In their DISC 2019 paper [9], Fis-
cher and Oshman reduce the MDST problem to the single-source shortest
path (SSSP) problem, with a polylogarithmic increase in running time.
This holds both in the Congest and Congested Clique models.

Fischer and Oshman further suggest the possibility that an approxi-
mate SSSP algorithm could be leveraged in computing an approximate
MDST. We extend their analysis to show that this is indeed the case: For
ε > 0, using a (1 + ε)-approximation to SSSP running in R rounds we
can compute a (1 + ε)-approximate MDST in Õ(R) rounds (Õ-notation
neglects polylogarithmic factors in the number n of nodes in the graph.).
In particular, this implies the following improvements in the state of the
art for (1 + o(1))-approximation of MDST.

– An Õ(n1−2/ω+o(1)) ⊂ Õ(n0.158)-round Congested Clique algorithm,
where ω < 2.373 is the fast matrix multiplication exponent [3].

– An Õ(λ2)-round Congested Clique algorithm in graphs where each
edge has an at most factor λ ≥ 1 heavier reverse edge [1].

– An Õ(λ2(
√

n + D))-round Congest algorithm in the same family of
graphs [1]. For λ ∈ logO(1) n, the resulting running time of Õ(

√
n+D)

is unconditionally tight up to a polylogarithmic factor [21].

1 Introduction

Finding the minimum-weight spanning tree (MST) of a weighted undirected
graph is a fundamental problem, which is well-studied in both sequential and dis-
tributed settings. In the more general minimum directed spanning tree (MDST)
problem, we are given a weighted directed graph G = (V,E,w) and a node
r ∈ V . The goal is to determine a minimum-weight spanning tree rooted at r.
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In this work, we study the task of finding a directed spanning tree (DST)
rooted at r whose weight is at most by a factor of 1+ε larger than the optimum,
or solving (1 + ε)-approximate MDST for short, in the Congest and Congested
Clique models.

The Congest and Congested Clique Models. In the Congest model, the network is
represented by a weighted n-node graph G = (V,E,w), where each node v ∈ V has
a unique O(log n)-bit identifier. Initially, each node knows only its identifier and
the weights of its incident edges, and it must determine which of its incident edges
belong to the DST the algorithm chooses. Computation proceeds in synchronous
compute-send-receive rounds, and we seek to minimize the number of communi-
cation rounds until all nodes have determined their local output and terminated.
Message size is restricted to O(log n) bits, where each node may send a different
message to each of its neighbors in each round. To avoid the complication that dis-
tances cannot be encoded by a single message, we follow the common convention to
assume that edge weights are integers from a range that is polynomially bounded
in n. The Congested Clique model is identical, except that each node may send an
O(log n)-bit message to each other node, not just its neighbors.

State of the Art. While both the MST and the MDST problem have been exten-
sively studied in the sequential setting, there is a surprising disparity in the
distributed context. In all likelihood, the MST problem is the most well-studied
task in the Congest model, and it received substantial attention in the Con-
gested Clique as well. In contrast, despite its many applications, the community
completely ignored the MDST problem until recently. Drawing inspiration from
sequential [7,10] and PRAM algorithms [17], Fischer and Oshman [9] presented
a reduction of MDST to single-source shortest path in directed graphs (SSSP),
the task of computing a shortest path tree with given root s. Their reduction
incurs a round overhead of logO(1) n. Plugging in the currently best known algo-
rithms for SSSP, one obtains a randomized Õ(

√
nD1/4 + D)-round Congest [4]

and a deterministic Õ(n1/3)-round Congested Clique [3] algorithm, respectively.
Moreover, Fischer and Oshman show that in both models, MDST is at least

as hard as finding a shortest path between two designated nodes s, t ∈ V . Thus,
the round complexity of MDST is wedged in between those of SSSP and s-t path
in both models. In Congest, even approximating s-t path in undirected graphs
or an MST require Ω̃(

√
n + D) rounds [8,20,21]. In the Congested Clique, no

non-trivial lower bounds are known, and finding even slightly super-constant
such bounds would imply long-sought statements on circuit complexity [6].

However, the complexity of (directed) SSSP and s-t path are incompletely
understood in either model, with polynomial gaps between upper and lower
bounds. In addition, it is an open question whether approximation is easier.
Currently, faster (1 + ε)-approximate SSSP algorithms for non-negative weights
are known for the Congested Clique [3] and for special cases in Congest [1].
Thus, a reduction based on SSSP approximation is of interest. Indeed, Fischer
and Oshman conjecture that a (1 + ε)-approximation to SSSP can be leveraged
in their reduction to obtain a (1 + ε)�log n�-approximation to MDST [9].
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Our Contribution. We prove the stronger result that using a (1+ε)-approximate
SSSP algorithm in the Fischer-Oshman framework, without modification, results
in a (1 + ε)-approximation to MDST. This implies the following theorems.

Theorem 1. For ε > 0, denote by TSSSP(n,D, ε) the round complexity of a
(1 + ε)-approximate SSSP Congest algorithm on directed n-node graphs with
non-negative weights and (undirected) diameter D. Then a (1 + ε)-approximate
MDST can be computed in Õ(TSSSP(n,D, ε)) rounds in the Congest model.

Theorem 2. For ε > 0, denote by TSSSP(n,D, ε) the round complexity of a (1+
ε)-approximate SSSP Congested Clique algorithm on directed n-node graphs with
non-negative weights and (undirected) diameter D. Then a (1 + ε)-approximate
MDST can be computed in Õ(TSSSP(n,D, ε)) rounds in the Congested Clique.

We note that the restriction to non-negative edge weights is natural when using
approximation algorithms, as negative edge weights could cancel out with pos-
itive weights to result in a very light MDST despite heavy edges. This would
decouple the notions of SSSP and MDST approximation to the point of mean-
inglessness, where, e.g., only an exact MDST has a negative total weight. Thus,
any multiplicative MDST approximation would have to be an exact solution.

The above results are derived by generalizing the analysis of Fischer and
Oshman in a model-independent way. Thus, whenever their framework can be
applied, the same holds for our generalization1. However, for the sake of con-
ciseness we confine the presentation to these two prominent models. In these
models, pluggin in the most recent SSSP approximations yields the following.

Corollary 1 ([3,15]). For ε > 0, in the Congested Clique a (1 + ε)-approxima-
te MDST with non-negative weights can be found in n1−2/ω+o(1) ⊂ O(n0.158)
rounds, where ω is the matrix multiplication exponent in the Congested Clique.

Corollary 2 ([1]). Suppose G = (V,E,w) satisfies that for each (u, v) ∈ E,
it holds that (v, u) ∈ E and 0 ≤ w(u, v) ≤ λw(v, u). Then, for ε > 0, in the
Congested Clique a (1+ε)-approximate MDST can be found in Õ(λ2/ε2) rounds.

Corollary 3 ([1]). Suppose G = (V,E,w) satisfies that for each (u, v) ∈ E, it
holds that (v, u) ∈ E and 0 ≤ w(u, v) ≤ λw(v, u). Then, for ε > 0, in the Congest
model a (1+ε)-approximate MDST can be found in Õ((

√
n+D)λ2/ε3/2) rounds

w.h.p2. Deterministic correctness (i.e., only the running time bound could be
violated) can be achieved in Õ((

√
n + D)λ2/ε3) rounds w.h.p.

Note that for λ ∈ logO(1) n this matches the lower bound of Ω̃(
√

n + D) for
shortest s-t path approximation from [21] up to a polylogarithmic factor.

1 For example, [9] also discusses a modification to the Congest model in which directed
edges enable communication in one direction only. Similarly, we expect that the
approach is efficient in the k-machine and semi-streaming models.

2 W.h.p. stands for with high probability, which means with probability at least 1 −
1/nc for a freely chosen, but fixed constant c > 0.
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On the technical level, we obtain our results by generalizing the analysis of the
Fischer-Oshman framework. Intuitively, one might expect that it is sufficient to
plug in the approximate SSSP algorithm instead of an exact routine. This turns
out to be correct, but proving it requires to overcome a technical hurdle.

The exact MDST algorithm by Edmonds [7] heavily exploits that the graph
manipulations it performs do not change the “remaining” MDST. More precisely,
it first computes an edge set that may contain cycles, contracting these cycles
whenever they are formed. It then updates edge weights in such a way that the
set of MDST edges that are still to be selected are not affected by such changes.
Once the selected subgraph is spanning, i.e., all nodes can be reached from r,
Edmonds iteratively uncontracts all selected cycles and determines for each of
them which edge has to be removed to obtain an MDST.

Fischer and Oshman simulate Edmonds algorithm in a manner that paral-
lelizes well, yet can be efficiently implemented in distributed models. As their
algorithm computes the same MDST as the one by Edmonds, the main challenge
they face is efficient implementation. In contrast, our main obstacle is to relate
the computed DST to an optimal MDST. Since we do not solve SSSP exactly, we
choose different edges as Edmonds’ algorithm, which in turn means that future
SSSP instances might differ wildly from those in the exact algorithm. Hence,
while we can build on [9] for an efficient implementation, our challenge is to
argue that the computed DST is actually a good approximation to an MDST.

Facing this challenge from scratch would be a difficult task. As the immediate
connection to an MDST breaks down, it is unclear how the complex evolution of
the intermediate subgraphs could be tied to an MDST by an ad hoc argument.
Even if one could be found, it would likely result in a proof repeating many of
the steps for the exact setting.

We follow a different route, by re-interpreting the run of the approximation
algorithm as a run of the exact algorithm on an approximation of the input graph.
The effect of the modifications of the graph on the weight of an MDST can be
easily bounded. The modifications of the graph are limited to scaling all edge
weights by factor 1+ε and performing some simple changes to the graph forcing
the exact algorithm to contract the exact same regions as the approximation
algorithm. This also means that the exact algorithm incurs the same cost as the
approximation algorithm on the original graph. Since the MDST of the modified
graph is at most by factor 1 + ε more costly than the original graph (as the
original edge set is still present, albeit with factor 1 + ε larger cost), the same
follows for the approximate solution on the original graph. Overall, this results
in a proof of the conjecture by Fischer and Oshman, without the need for any
non-trivial modification to their algorithmic framework.

Further Related Work

Sequential MDSTComputation. Gabow et al. [10] provided an efficient implemen-
tation of an approach proposed independently by Edmonds [7], Bock [2] and, Chu
and Liu [5], with step complexity O(m + n log n). The algorithm goes through a
series of steps, also called Edmonds steps, and at each step, every vertex (except
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the root r) selects the lightest incoming edge, remembers its weight, and subtracts
it from the weight of all the incoming edges. The idea is that to reach a vertex, we
need to pay at least as much as its lightest incoming edge. Then, all zero-weight
cycles are contracted and we continue these steps recursively until there is only one
component left. The sum of the weights subtracted by vertices through these steps
is equal to the cost of an MDST of the graph. Finding an MDST requires a careful
but simple unpacking of the contractions.

Lovasz’ Algorithm. The framework by Fischer and Oshman can be seen as a
less aggressive way of parallelizing Edmonds steps than in Lovasz’ PRAM algo-
rithm [17]. For �log n� iterations, Lovasz performs an all-pairs shortest paths
computation to find shortest paths that, similar to Edmonds approach, could
be selected sequentially into an MDST. As in each of the iterations, each of the
components induced by the currently selected edges but the one containing r
is guaranteed to connect to another component, in the end only a single com-
ponent remains. Then a similar unpacking procedure yields an MDST. The key
observation by Fischer and Oshman is that it is perfectly sufficient to find for
each component the shortest path leaving it (when flipping the directions of all
edges). This more conservative approach avoids that the computations of differ-
ent components “overlap,” which causes the need for an all-pairs shortest path
algorithm for Lovasz, yet also ensures termination within �log n� iterations.

MST in Congest. While the MDST problem has been the neglected child in the
family of global Congest problems, its little brother, finding an MST in an undi-
rected graph, has been showered with attention; we make no attempt at covering
these results here, see [19] for a recent survey. In part, this is likely due to habit,
as MST is a canonical global problem that lends itself well to studying new mod-
els and complexity measures. On the other hand, the problem is closely related
to testing whether a given subgraph is connected. Any MST algorithm can solve
this task, and the lower bound of Ω̃(

√
n + D) due to Das Sarma et al. [21] applies

to both tasks. Due to the Õ(
√

n + D)-round algorithm by Kutten and Peleg [14],
this implies that there appears to be virtually no difference between the two prob-
lems. As many Congest algorithms for global problems need to test subgraphs for
connectivity, this close connection means that insights on MST construction fre-
quently transfer to tasks which appear unrelated at first sight. It also explains why
so many problems turn out to have round complexity Θ̃(

√
n + D).

We remark that for MST, it is known that allowing approximate solutions or
randomization does not make the job easier [8,21]. As discussed above, for the
MDST problem this will depend on whether either makes SSSP (or possibly s-t
path) easier in the considered models, with remains open to date.

MST in the Congested Clique. The Congested Clique was introduced by Lotker
et al. in 2003 [16]3. Naturally, the MST problem served as their guinea pig,

3 In the MST problem, heavy edges can be added without changing the solution.
Hence, decoupling problem and communication graph was formalized only later.
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and they provided an O(log log n)-round algorithm. After more than a decade of
silence, a flurry of results [11–13] culminated in a deterministic constant-round
solution [18].

2 Preliminaries

Let G = (V,E,w) be an n-node directed graph with edge weight function w.
Let S ⊆ V (G) be a vertex set. Then, the corresponding induced subgraph in G
is denoted by G[S] = (S,E′), where E′ = {(u, v) | u, v ∈ S and (u, v) ∈ E(G)}.
Moreover, the weight of subgraph H ⊆ G, denoted by wG(H), is the sum of the
weight of its edges. For any graph H, V (H) and E(H) denote its vertex and edge
set, respectively, and wH its weight function. A subgraph is weakly connected, if
its underlying undirected graph is connected. Weakly connected components are
defined accordingly. For u, v ∈ V , let distG(u, v) be the weight of the shortest
path from u to v in G. Denote by BG(v, r) the ball of radius r around node v,
i.e., {u | distG(u, v) ≤ r}. An s-t path P can be represented as a tuple of its
vertices in the order of appearance, e.g., P = (s, v1, . . . , vk, t).

Contraction of an edge e = (u, v) is the following operation. We combine u
and v into a supernode x that keeps all the incident edges of u and v. Then, self-
loops are removed and in the case of parallel edges between two nodes we only
keep the lightest edge. Contracting a ball BG(v, r) is similar, in that all nodes
inside the ball are merged into a supernode x. However, an edge (u, u′) ∈ (G \
BG(v, r))×BG(v, r) gives rise to edge (u, x) of weight wG(u, u′)+distG(u′, v)−r.
Analogously, outgoing edge (u, u′) ∈ BG(v, r) × (G \ BG(v, r)) results in edge
(x, u′) of weight wG(u, u′) + distG(v, u) − r. Again, self-loops are removed and
only the lightest edge is kept. Finally, we will need to contract “approximate”
balls, where we consider BT (v, r) in a graph G, with T being a tree. In such a
case, we replace the distG terms by distT , even for edges that are present in G,
but not in T . Note that this can result in negative edge weights. In such a case,
the resulting contracted edge will be assigned weight 0.

When referring to an uncontraction, this means to reverse the above process.
If we uncontract a graph with a selected spanning tree T that resulted from
contraction of G, each edge of T induces a marked edge in G, which caused it
to be assigned its weight. For convenience, we refer to this as uncontracting T .

3 Exact MDST Computation

We will modify the Fischer-Oshman approach [9] to provably work with approx-
imate SSSP computations. For an intuitive understanding as well as a formal
proof, it is instructive to revisit their technique.

In the following and throughout this paper, w.l.o.g. let us make the following
assumptions. First, the input graph G = (V,E,w) has indeed a spanning tree
rooted at r, i.e., an MDST rooted at r exists. Otherwise the algorithm will
simply fail to compute such an MDST, and this can be verified fast enough in
the considered models. Second, we assume that there is no edge with endpoint
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r, as no DST with root r contains such an edge. Finally, we assume that all edge
weights are different; any kind of consistent tie-breaking mechanism results in
equivalent behavior.

AVariant of Edmonds’ Algorithm. In MST construction, it is commonly exploited
that the lightest edge of a cut, and in particular the lightest incident edge to each
node, are part of the MST. Crucially, these statements assume a consistent tie-
breaking mechanism in place, which ensures that no cycle can be closed when
selecting all such edges concurrently: it does not matter which edge of a cycle in
which all edges have the same weight is selected, but one edge must be excluded.
In the directed setting, it is no longer arbitrary which edge of a directed cycle of
“candidate edges” is excluded, as for reachability it now matters at which node
the path from the root to the cycle in the MDST ends. Lemma 1 provides a highly
useful structural property of MDSTs corresponding to these observations.

Lemma 1 (implicit in [7]). Define G′ = (V,E,w′) by setting w′(u, v) :=
w(u, v) − min(u′,v)∈E{w(u′, v)} for all (u, v) ∈ E. Then an MDST T of G is
also an MDST of G′, where w(T ) = w′(T ) +

∑
v∈V \{r} min(u′,v)∈E{w(u′, v)}.

Moreover, let E0 := {(u, v) ∈ E |w′(u, v) = 0} denote the pseudo-forest4 given
by the 0-weight edges of G′. Then for each cycle C in E0 there is a unique edge
(u, v) ∈ C \ T .

Proof. Each non-root node has exactly one incoming edge in any DST, so the
weight of each DST rooted at r changes by

∑
v∈V \{r} min(u′,v)∈E{w(u′, v)} when

replacing w by w′. For the second claim, observe that any cycle C in E0 must have
at least one of its edges not be part of T . So assume for contradiction that there is
a cycle C such that |T∩(V \C×C)| > 1. Let (u, v) ∈ T∩(V \C×C) and denote by
(u′, v) ∈ E0 the unique edge in E0 with endpoint v. Then T ′ := T \(u, v)∪(u′, v)
is a DST: there is still some node in C reachable from r in T \ (u, v), which then
inductively applies to all its successors in C, including u′. However, w′(u, v) > 0
and w′(u′, v) = 0 by choice of E0, implying that w′(T ′) < w′(T ), a contradiction
to the already established claim that T is an MDST of G′. ��

Lemma 1 suggests the following procedure to compute an MDST. For each
non-root node select the cheapest incoming edge and subtract its weight from all
incoming edges of the node. Contract the resulting 0-weight cycles and repeat
the process on all the newly created supernodes until no non-root node without
a selected incoming edge remains. At this point, the 0-weight edges form an
MDST of the current graph (this will be shown in the proof of Lemma 2). To
get an MDST of the original graph, we go in the reverse order, uncontracting
the 0-weight cycles of the previous step, and adjusting the MDST to the graph
resulting from uncontraction. To achieve the latter, for each new node without
an incoming edge in the old MDST, we pick a 0-weight incoming edge from the
uncontracted cycle. Lemma 2 shows that this procedure, whose pseudocode is
given in Algorithm 1, indeed yields an MDST of G.
4 By the above assumptions, each non-root node has exactly one 0-weight incoming

edge, while the root has none. However, E0 might contain cycles.
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Algorithm 1. Finding an MDST of a Graph
1: procedure Edmonds(G = (V, E, w))
2: i := 0, G(0) := (V (0), E(0), w(0)) := G

3: while (V (i), {e
(i)
v | v ∈ V (i)}) is not a DST of G(i) do

4: i ← i + 1
5: Each node v ∈ V (i−1) \ {r} sets e

(i)
v := argmin(u,v)∈E(i−1){w(i−1)(u, v)}

6: For each (u, v) ∈ E(i−1), set w(i)(u, v) := w(i−1)(u, v) − w(i−1)(e
(i)
v )

7: Contract all 0-weight cycles, resulting in G(i) = (V (i), E(i), w(i))

8: Set T (i) := {e
(i)
v | v ∈ V (i)} � uncontraction phase

9: while i > 0 do
10: Initialize T (i−1) by the set of edges obtained by uncontracting G(i) to G(i−1)

11: Let X be the set of nodes that have been in a zero-cycle before contraction
12: for each v ∈ X without an incoming edge in T (i) do
13: T (i−1) ← T (i−1) ∪ {e

(i−1)
v } � add its incoming zero-weight edge

14: i ← i − 1

15: return T (0)

Lemma 2 (implicit in [7]). Algorithm 1 computes an MDST of G. Denot-
ing by imax the maximum value of i throughout the procedure, its weight equals
∑imax

i=1

∑
v∈V (i−1)\{r} w(i−1)(e(i)v ).

Proof. Observe that contracting a cycle of weight 0 in a graph without negative
edge weights cannot change the cost of an MDST: Regardless of how an MDST
of the graph after contraction looks like, we can connect all nodes in the cycle at
cost 0 in the original graph, and we can delete a non-cycle edge (of cost at least
0) for each cycle this closes. Because Lines 5 and 6 ensure that the new weights
satisfy this property, applying Lemma 1 inductively to the first while loop shows
that

∑imax
i=1

∑
v∈V (i−1)\{r} w(i−1)(e(i)v ) is precisely the cost of an MDST of G.

Hence, it remains to show that the computed edge set T (0) is indeed an
MDST. To this end, we show by induction that T (i) is an MDST of G(i) for all
i ∈ {0, . . . , imax}. To anchor the induction at i = imax, note that by Lines 5 and
6, it holds that w(imax)(e(i)v ) = 0 for all v ∈ V (imax) and w(imax)(u, v) ≥ 0 for
all (u, v) ∈ E(imax). Hence, by the halting criterion of the first loop, T (imax) is
indeed an MDST of G(imax). Assuming that the claim holds for i > 0, Line 13
and the fact that T (i) is a tree ensure that each non-root node has indegree 1.
Moreover, as T (i) is spanning, we can reach each node v ∈ V (i) from r by taking
the edges in E(i−1) corresponding to the respective path in T (i) and, wherever
a path node gets uncontracted into a cycle C, adding the path in C connecting
the endpoint of the incoming edge to the node with the outgoing edge (or v if
it is on the cycle). Thus, T (i−1) is a spanning pseudo-forest, implying that it
must be a DST. The minimality of w(T (i−1)) follows from the fact that T (i) is
an MDST of G(i), the weight changes of Line 13, and Lemma 1. ��

The Fischer-Oshman Framework. The above observations are promising in that
in each iteration, all (weakly) connected components can operate concurrently.
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Despite the technical obstacle that cycle contraction is problematic in Congest,
because the communication graph does not change, Fischer and Oshman show
how to perform all operations with sufficient efficiency. However, a second, more
important hurdle is that the above procedure might require a lot of iterations.
In the worst case, each added edge closes another cycle rather than reducing the
number of connected components. This means that Ω(n) contractions could be
performed sequentially, resulting in a slow algorithm.

More concretely, note that after selecting the lightest incoming edges, the
resulting subgraph has exactly one cycle in each weakly connected non-root
component. After contraction, we get a forest whose roots are the nodes result-
ing from cycle contraction. These roots are exactly the “new” nodes selecting
new edges, while all other nodes stick to their previously selected edges whose
reduced weight is 0. Such a node selecting a new edge and immediately contract-
ing the resulting cycle is referred to as an Edmonds step. If both endpoints of
the edge selected by an Edmonds step are in the same weakly connected compo-
nent, another cycle within this component is formed, whose contraction might
eliminate no more than a few nodes.

Let H be a non-root component formed by the currently selected edges and
let CH be the unique cycle at the heart of H. The crucial insight Fischer and
Oshman exploit is the following. The iterations of the above Algorithm 1 on H
until an edge into the component is selected are equivalent to running Dijkstra’s
algorithm on the component, where the contracted cycle, CH , is the source, and
we reverse edges. Thus, the selected edges contain a shortest path P of weight
βH from outside the connected component to the (original) cycle. Equivalently,
we can find βH and contract BH(CH , βH), i.e., a ball of radius βH centered at
CH , where edges that are only partially inside the ball lose a respective share of
their weight. Note that this does not affect other components, until the result-
ing 0-weight edge connecting to another component is contracted. Hence, this
operation can be performed on all weakly connected non-root components con-
currently, and Fisher and Oshman formalize how to achieve this using a call to a
single, globally operating SSSP instance. Doing so constitutes a mega-step in the
Fischer-Oshman terminology. As each component gets merged with at least one
other component in a mega-step, the process terminates after at most �log n�
mega-steps.

Fischer and Oshman prove that the necessary bookkeeping and the later
uncontractions can be efficiently implemented in both the Congest and Con-
gested Clique models, rendering the SSSP algorithm the subroutine that domi-
nates the round complexity. In Congest this implementation is rather involved.
Fortunately, as we will show that we can replace the exact SSSP computation
with an approximate one in a blackbox fashion, we can confine our presentation
to the abstract viewpoint of explicitly performing contractions and uncontrac-
tions. We summarize the relevant structural results by Fischer and Oshman as
follows.

Lemma 3 (Fischer and Oshman [9]). Denote by G(i) = (V (i), E(i), w(i)) the
graph after i mega-steps. Denote by H �� {r} a weakly connected component of
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the selected edges and by CH its unique node with indegree 0. Then contracting
BG(i)(CH , βH) simulates multiple Edmonds steps on H.

A mega-step is performed by executing these operations on each weakly con-
nected non-root component and then contracting 0-weight cycles. We stress that,
while the intuition as to why the algorithm is correct remains the same as for
Algorithm 1 – both can be decomposed into a sequence of Edmonds steps –
the iterations of the first loop of Algorithm 1 cannot be consistently mapped to
mega-steps.

Nonetheless, constructing an MDST after contracting the graph into a root
component is done in a similar fashion. One uncontracts in reverse order of the
mega-steps, operating on all components in parallel. In this process, one main-
tains the invariant that the current tree T (i) is an MDST of the current graph
G(i), starting with G(imax). After uncontracting to G(i−1), we need to connect to
the cycle of each component H, which is done by selecting the computed shortest
path πH from outside of H to its cycle. Finally, the remaining nodes without
incoming edge add their previously selected edge of weight 0. This ensures reach-
ability of all nodes in the component, as (i) all path nodes are reachable from the
“parent” component, (ii) all nodes on the cycle are reachable from the endpoint
of the path along the cycle edges, and (iii) the remaining nodes are attached
to the path and cycle nodes by a forest of 0-weight edges. Because T (i) was a
DST, so is T (i−1), and as the weight of the added edges in G(i−1) sums up to∑

H∈H w(i−1)(πH), T (i−1) is an MDST of G(i−1).

Lemma 4 (follows from Lemma 8 in [9]). Let G(i−1) be a graph with a set
of 0-weight components H in accordance with Lemma 3 after i − 1 ≥ 0 mega-
steps. Let G(i) be the graph obtained by contracting for each H ∈ H the ball
BH(CH , βH), where βH is the length of a shortest path πH that has only its first
node outside H and ends in CH . Let T (i) be an MDST of G(i).

Then setting T (i−1) to the edge set resulting from uncontraction of T (i) and
performing the following operation for each H ∈ H yields an MDST:

– uncontract CH (into a 0-weight cycle),
– add the edges of πH inside H (the first edge of πH has been selected in the

uncontraction of T (i)), and
– add each 0-weight edge of H and CH whose endpoint is not a node of πH .

We stress that the proof from [9] requires that the paths πH are shortest paths
only to establish that the cost of the weight of the constructed DST is minimal.
Thus, we have the following corollary.

Corollary 4. Assume the same setting as in Lemma 4, except that the paths
πH are not necessarily shortest paths. Then the construction of the lemma yields
a DST of weight equal to w(i)(T (i)) +

∑
H∈H w(i−1)(πH).

In summary, the challenge for obtaining an approximation algorithm lies in relat-
ing the weight of Corollary 4 to the weight of an MDST.
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4 (1 + ε)-approximate MDST from SSSP Approximation

Throughout this section, we assume that all edge weights are non-negative. The
algorithm maintains this invariant when modifying edge weights. Hence, we can
rely on SSSP approximation algorithms that assume non-negative edge weights
as well. Formally, such an algorithm provides the following output.

Definition 1 ((1 + ε)-approximate SSSP). For a given graph G and root r,
a (1 + ε)-approximate directed SSSP algorithm returns a DST T of G such that
distT (r, v) ≤ (1 + ε) · distG(r, v) for all v ∈ V (G). The output is given by each
v ∈ V (G) \ {r} learning about its parent and distT (r, v).

For the remainder of the section, A denotes an algorithm following the Fischer-
Oshman framework [9] for computing an MDST, while A′ denotes our approx-
imate version, which is obtained by replacing the exact directed SSSP solution
by a (1 + ε)-approximation and using the distances in the tree(s) instead of the
exact ones. Recall that we enforce that the minimum edge weight resulting from
a contraction is 0, cf. Sect. 2, so the approximate SSSP algorithm will always
operate on graphs with non-negative weights.

In this section, we will establish the following theorem.

Theorem 3. If w(u, v) ≥ 0 for all (u, v) ∈ E, A′ computes a (1+ε)-approximate
MDST.

Theorems 1 and 2 readily follow from this theorem and the running time bounds
from [9]. In more detail, besides calling the SSSP subroutine, their framework
uses Õ(

√
n + D) and logO(1) n rounds per mega-step in Congest and the Con-

gested Clique, respectively, yielding running times of Õ(TSSSP(n,D, ε)+
√

n+D)
in Congest and Õ(TSSSP(n,D, ε) in the Congested Clique. In Congest, the lower
bound of Ω̃(

√
n + D) on any polynomial approximation to SSSP [21] implies

that Õ(TSSSP(n,D, ε) +
√

n + D) = Õ(TSSSP(n,D, ε)).

Why Analyzing the use of Approximate SSSP is Challenging. We would like to
replace the exact SSSP computation in the Fischer-Oshman framework with an
approximate one, assuming that the graph has non-negative weights. The trouble
with that lies in the analysis of the algorithm. Where Fischer and Oshman
argue that they simulate Edmonds steps, we run into the obstacle of relating
the computed solution to an optimal one. The sequence of contractions and,
accordingly, uncontractions performed can be vastly different even with only
minor changes in the outcome of the SSSP computation.

A simple attempt at fixing this issue could be to modify the graph to enforce
that the approximately shortest paths found by the subroutine become actual
shortest paths in a slightly distorted topology. Unfortunately, simply scaling
down the edge weights of such paths (or scaling up the non-path edges’ weights)
might not achieve this. A tree that approximates distances to the source up to
factor 1 + ε can still contain edges (p, c) for which parent p and child c satisfy
that distG(p, c) � w(p, c) – the local error can be amortized over a much larger
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distance to the root. This means that we do not have enough information to
adjust edge lengths such that (i) the computed paths become shortest paths and
(ii) the weight of an MDST changes little.

We overcome the above obstacle by modifying both the topology and, at
least on a formal level, also generalizing the solved problem. Intuitively, we still
follow the strategy given above, but we accept that we introduce additional edges
and nodes into the graph. Fortunately, these modifications are necessary only
to create an execution of the Fischer-Oshman algorithm that we can compare
to in order to establish the approximation guarantee; no change whatsoever is
needed in the actual algorithm beyond the discussed replacement of the SSSP
subroutine and performing contractions of the resulting “approximate” balls.

4.1 Shortcuts and Dummy Nodes

The modifications we make to the graph used by the exact algorithm require
some bookkeeping. Denote for each node u ∈ V and each mega-step i by S

(i)
u

the total amount that node u (or the supernodes resulting from it) would sub-
tract from each of its incoming edges from outside the contracted balls during
contractions up to and including mega-step i5. In other words, adding S

(i)
u to

the current weight of an incoming edge restores its weight in the original graph.
Similarly, we apply this to the shortcut edges. We only ever need to add edges
(u, v) that have residual weight β > 0 after the first i−1 mega-steps. To generate
a corresponding edge for U (i), we pick arbitrary nodes u′, v′ ∈ V that ultimately
get contracted into u and v, respectively, and set the weight of (u′, v′) in U (i) to
β + S

(i−1)
v′ .

Simply put, our construction first stretches all edges by factor 1 + ε for A to
obtain U (0), so that opt(U (0)) = (1 + ε)opt(G)6. Then, in mega-step i, we add
“shortcuts” to obtain U (i) from U (i−1). These shortcuts satisfy that (i) they do
not affect any already performed mega-steps when using U (i) as input rather
than U (i−1) and (ii) A performs the same contractions (i.e., with the same ball
centers and radii) on U (i) as A′ on G(i−1) in mega-step i. Thus, after the last
iteration imax, we have a one-on-one mapping of the sequence of contractions of
both algorithms.

Recall that the ball radii are also the cost the exact algorithm charges to its
contractions (cf. Lemma 3), summing up to the weight of the computed MDST
(cf. Lemma 4). A′ charges the same cost to its contractions, corresponding to
the weights of the approximately shortest paths its SSSP subroutine found. As
these weights add up to the cost of the computed DST in the same way as for
A, the weight of the DST of G computed by A′ equals the weight of an MDST
of U (imax). Finally, we show that going from U (i−1) to U (i) can only decrease the
weight of an MDST, implying that opt(U (imax)) ≤ opt(U (0)) = (1 + ε)opt(G).

5 “Would” here indicates that nodes might be inside a contracted region without edges
to the outside.

6 While this may result in non-integral edge weights, they can still be easily represented
with O(log n) bits.



364 C. Lenzen and H. Vahidi

Fig. 1. Dashed red edges represent gadget replacement at a boundary edge and dash
dotted blue edges represent shortcut edges. Note that the contraction of B(v, βv) elim-
inates all the added edges and nodes again; the construction merely ensures that the
exact algorithm contracts exactly B(v, βv). Note that to obtain the graph before con-
tractions, the introduced edges will be connected to some nodes inside the contracted
supernodes (see Definition 2).

Meeting the requirements (i) and (ii) concurrently is tricky. We achieve this
by introducing a gadget that subdivides boundary edges according to our needs,
without affecting the weight of an MDST7. Together with the right shortcut
edges, the resulting gadget shapes BU(i)(v, βv) in the right way without inter-
fering with the algorithm’s prior execution or the weight of an MDST.

Definition 2 (Shortcuts with Dummy Nodes). Consider the graph G(i−1)

after i − 1 mega-steps of the exact algorithm on U (i−1). For each v �= r without
selected incoming edge denote by βv the ball radius computed using the approx-
imate SSSP algorithm (i.e., the distance for leaving the weakly connected com-
ponent in the tree computed by the SSSP approximation algorithm). For each
edge (u, u′) ∈ (V (G(i−1)) \ BG(i−1)(v, βv)) × BG(i−1)(v, βv), we replace the edge
in G(i−1) by the following gadget (see Fig. 1):

– A new dummy node s.
– An edge (u, s) of weight distG(i−1)(u, v) − βv.
– An edge (s, u′) of weight βv − distG(i−1)(u′, v).
– An edge (s, v) of weight βv.

We then obtain U (i) from U (i−1) by adding the dummy nodes and changing the
edge set of U (i) as follows.

– Remove all edges from nodes that are contracted into u to nodes that are
contracted into u′.

7 This holds true under the assumptions that the spanning tree needs not contain the
added vertices, which is sufficient for our purposes.
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– For each new node s and each of its edges, denote by x the endpoint that is
not s and by w its weight. Choose an arbitrary node y ∈ V that got contracted
into x (or x itself if x ∈ V ). Add an edge with endpoints s and y of matching
orientation and weight w + S

(i−1)
y to U (i).

– For each u ∈ BG(i−1)(v, βv), denote by x, y ∈ V nodes that got contracted into
u and v, respectively. Add (x, y) with weight βv + S

(i−1)
y to U (i).

Dummy nodes need not be spanned by a DST, i.e., opt(U (i)) denotes the
minimum cost of a tree rooted at r spanning V (G). To match our needs, A is a
slighty different version of the Fischer-Oshman algorithm, where dummy nodes
do not seek to select edges “on their own.” However, they can take part in the
shortest paths the algorithm selects. These changes are exactly those that make
the algorithm “behave the same way” on U (i) and U (i−1) until mega-step i.

Corollary 5. A computes a lightest tree that is rooted at r and spans V (G).

Proof (Sketch). A simple check of the arguments in Sect. 3 shows that a tree span-
ning all non-dummy nodes is computed. To see optimality, note that it still holds
that if a dummy node takes part in the tree, we need to pay at least the weight
of its lightest incoming edge to include it (cf. Lemma 1). Thus, for each 0-degree
non-root regular node we must pay at least as much as the weight of the shortest
path connecting to it from outside its weakly connected component, as it needs to
get connected to the root component in some way (cf. Lemma 3). ��

To relate opt(U (i)) to opt(G), we first show that the replacement of Definition
2 does not introduce negative cycles or otherwise unduly distort the distance
structure of the graph.

Lemma 5. For any i ≥ 0, in the graph resulting from applying gadgets of Defi-
nition 2 to G(i) the following holds:

1. no negative-weight cycle exists,
2. for each edge (u, u′) ∈ (V (G(i)) \ BG(i)(v, βv)) × BG(i)(v, βv), the distance

from u to v does not change,
3. for each u′ ∈ BG(i)(v, βv) the distance from u′ to v does not change.

Proof. The proof is by induction on i. Note that initially all edges have non-
negative weight, so no negative-weight cycle is present. Let Ei = {e1, . . . , em}
be the set of boundary edges that need to be replaced by a gadget according to
Definition 2. We perform an induction over the individual replacements, where
we maintain the above invariants. For j ∈ [m], let Ĝj be the graph resulting
from replacement of the first j edges of Ei in G(i) (in particular, Ĝ0 = G(i)).

Observe that, after replacement of ej = (u, u′), any cycle involving s contains
(u, s) and either (s, u′) or (s, v). By Definition 2, we have that wĜj

(u, s) +
wĜj

(s, v) = distG(i)(u, v) ≥ 0, so no negative cycle can be formed containing

(u, s) and (s, v). By the induction hypothesis, in Ĝj−1 distances are well-defined



366 C. Lenzen and H. Vahidi

(i.e., non-negative and satisfying the triangle inequality). Therefore, any cycle
involving (u, s) and (s, u′) is of weight at least

wĜj
(u, s) + wĜj

(s, u′) + distĜj−1
(u′, u)

= distG(i)(u, v) − distG(i)(u′, v) + distĜj−1
(u′, u) Definition 2

≥ distG(i)(u, v) − distG(i)(u′, v) + distĜj−1
(u′, v) − distĜj−1

(u, v) Δ-inequality

= 0 I.H.

This shows the first part of the invariant for index j. In particular, w.l.o.g. we
may consider only simple path for the remainder of the proof.

For the second part, it is sufficient to show that the distance from u to v
does not change, as then the same follows for all other considered edges by the
induction hypothesis. To see that this holds true, observe first that the path
(u, s, v) has weight distG(i)(u, v) by construction, implying that distĜj

(u, v) ≤
distG(i)(u, v). To prove that also distĜj

(u, v) ≥ distG(i)(u, v), consider the simple
paths from u to v. If they do not contain s, the induction hypothesis implies that
they are not too light. The remaining paths are (u, s, v) (which we considered)
and simple paths containing (u, s, u′). Any of the latter has weight at least

wĜj
(u, s) + wĜj

(s, u′) + distĜj−1
(u′, v)

= distG(i)(u, v) − distG(i)(u′, v) + distĜj−1
(u′, v) = distĜj−1

(u, v) I.H.

Thus, the second part of the invariant holds for index j.
It remains to show the third part of the invariant. Since the gadget replace-

ment does not affect paths within BG(i)(v, βv), for each u′ ∈ BG(i)(v, βv) we
have that distĜ(j)(u′, v) ≤ dist ˆG(j−1)(u′, v). Assuming for contradiction that
distĜ(j)(u′, v) < dist ˆG(j−1)(u′, v), this must be due to a (simple) path containing
s. By the already established second part of the invariant for index j, such a path
cannot contain both u and u′, as the subpath from u to u′ would have weight at
least distĜj−1

(u, u′), i.e., the invariant would be violated for index j − 1. How-
ever, by Definition 2 the edge (s, v) has weight βv, which equals the weight of
(s, u′) plus distG(i)(u′, v). Thus, if (u, s, v) would be too light, so would be some
path involving both u and u′. The third part of the invariant follows. ��

4.2 Proving Theorem 3

Denote by G(i)′
the graph algorithm A′ computed after i mega-steps. Denote

by T
(i)
v an approximate shortest path tree of G(i−1)′

rooted at v returned by
approximate SSSP algorithm. For each v ∈ V \ {r} with indegree 0, let βv be
the cost of minimum approximate shortest path entering the weakly connected
component of v, according to T

(i)
v . We first prove a one-to-one correspondence

between the mega-steps of A and A′.

Lemma 6. The gadget construction from Definition 2 ensures that after i mega-
steps, V (G(i)) = V (G(i)′

), E(G(i)) = E(G(i)′
), and distG(i) ≥ (1 + ε)distG(i)′ .

Moreover, each contraction uses the same value of βv in A and A′.
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Proof. We prove the claim by induction, where the base case of i = 0 is trivial.
For the step from i−1 to i, we first note that (i) changing U (i−1) to U (i) does not
affect which balls are contracted during the first i − 1 mega-steps and (ii) after
i−1 megasteps, results in the graph created from G(i−1) by applying the gadget
construction and adding for each r �= v ∈ V (G(i−1)) of indegree 0 and each
u ∈ B

T
(i)
v

(v, βv) an edge (u, v) of weight βv. This holds true, because the edges
that are added due to the gadget construction were not inside any previously
contracted balls, and the values S

(i)
x are chosen precisely such that they account

for any weight loss of the new edges during the first i − 1 mega-steps.
Hence, denote the graph resulting from applying the gadget construction

and adding the above edges to G(i−1) by Ĝ, and fix some r �= v ∈ V (G(i−1)) of
indegree 0. Observe first that B

T
(i)
v

(v, βv) ⊆ BĜ(v, βv), as each u ∈ B
T

(i)
v

(v, βv)
has an edge (u, v) of weight βv. In particular, this includes the endpoint of the
path of length βv giving rise to the contraction performed by A′ on G(i−1)′

,
implying that A will contract a ball of radius at most βv around v. Moreover,
for any dummy node s that has been introduced when replacing an edge (u, u′)
with u′ ∈ B

T
(i)
v

(v, βv), there is an edge (s, v) of weight βv. Hence s ∈ BĜ(v, βv).
By the induction hypothesis, it holds that distG(i−1) ≥ (1+ε)distG(i−1)′ , yield-

ing BG(i−1)(v, βv) ≤ BG(i−1)′ (v, βv/(1 + ε)). Due to the approximation gurantee
of the SSSP algorithm, there can be no path shorter than βv/(1 + ε) reaching v
from outside its weakly connected component. By Lemma 5, each node outside
BG(i−1)(v, βv) satisfies that its distance to v is not changed by the gadget con-
struction. Thus, A must contract exactly BG(i−1)(v, βv) = BĜ(v, βv). Moreover,
any edge resulting from (u, u′) and the contraction of BG(i−1)(v, βv) � u′ will
satisfy that its weight is at least distG(i−1)(u, v) − βv, implying that distances
in the graph after contraction are at least as large as if we performed the con-
tractions in G(i−1). Hence, distG(i) ≥ (1 + ε)distG(i)′ follows from the facts that
distG(i−1) ≥ (1 + ε)distG(i−1)′ ≥ dist

T
(i)
v

and that A′ setting a negative edge
weight to 0 can only happen for edges at the boundary of the contracted balls,
which in A are assigned a positive weight. ��
This establishes the desired relation between the weight of the trees constructed
by A and A′, respectively. Denote by imax the number of mega-steps A′ performs
on G.

Corollary 6. A′ on G constructs a DST of the same weight as A on U (imax).

Proof. By Lemma 6, A on U (imax) and A′ on G perform the same sequence of
contractions with the same ball radii. By inductive application of Corollary 4,
they hence compute DSTs of the same weight. ��

Hence, it remains to show that the gadget replacements do not increase the
weight of a tree spanning all (non-dummy) nodes.

Lemma 7. For all i, opt(U (i)) ≤ (1 + ε)opt(G).

Proof. As U (0) = (V,E, (1 + ε)wG), we have that opt(U (0)) = (1 + ε)opt(G).
Thus, it is sufficient to show that opt(U (i)) ≤ opt(U (i−1)) for all i > 0. We show
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first that in the graph G(i−1), the modifications by introducing the gadgets do
not increase the weight of the MDST. To see this, consider an MDST T of G(i−1).
If a gadget removes an edge (u, u′) of T , we replace it by the edges (u, s) and
(s, u′) of the corresponding gadget. By Lemma 5, distances in G(i−1) are well-
defined. Hence, we can apply the triangle inequality to see that the combined
weight of these edges satisfies

wG(i−1)(u, s) + wG(i−1)(s, u′) = distG(i−1)(u, v) − distG(i−1)(u′, v)
≤ distG(i−1)(u, u′) ≤ wG(i−1)(u, u′).

Thus, we obtain a tree T ′ of weight at most wG(i−1)(T ) spanning all but pos-
sibly some of the dummy nodes introduced by the gadgets. Recalling that we
are not required to span dummy nodes, denoting by Ĝ the graph after gadget
replacement we conclude that opt(Ĝ) ≤ opt(G(i−1)).

To complete the proof, we invoke Lemma 6, showing that A performs the
same sequence of contractions with the same ball radii in both U (i−1) and U (i).
By inductively applying Corollary 4, we conclude that

opt(U (i−1)) − opt(U (i)) = opt(Ĝ) − opt(G(i−1)) ≥ 0,

i.e., opt(U (i)) ≤ opt(U (i−1)). ��
By Lemma 4, the DST computed by A is actually an MDST of U (imax). Hence,

by Lemma 7, its weight is opt(U (imax)) ≤ (1 + ε)opt(G). Thus, this completes
the proof of Theorem 3.
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Abstract. Graph clustering is a fundamental technique in data analy-
sis with a vast number of applications in computer science and statis-
tics. In theoretical computer science, the problem of graph clustering
has received significant research attention over the past two decades,
which has led to pivotal algorithmic breakthroughs. However, the design
of most graph clustering algorithms is based on complicated techniques
from computational optimisation, which are not applicable for process-
ing massive data sets stored in physically remote locations.

In this work we present a novel distributed algorithm for graph cluster-
ing. Most of the previous algorithms only work for graphs with balanced-
sized clusters, which restrict their applications in many practical settings.
Our proposed algorithm works for graphs with clusters of arbitrary size
and its performance is analysed with respect to every individual cluster.
In addition, our algorithm is easy to implement, and only requires a poly-
logarithmic number of rounds for many graphs occurring in practice.

Keywords: Distributed computing · Graph clustering · Randomised
algorithms

1 Introduction

Graph clustering, also known as community detection, is one of the most fun-
damental problems in algorithms with applications in distributed computing,
machine learning, network analysis, and statistics. Over the past four decades,
graph clustering algorithms have been extensively studied from both the theo-
retical and applied perspectives [10,21]. On the theoretical side, the problem is
known as graph partitioning and is one of the most fundamental NP-hard prob-
lems. Among the many reasons, we mention its connection to several important
topics in theoretical computer science including the Unique Games Conjecture
and the Small Set Expansion Conjecture. Because of this, most graph clustering
algorithms with better approximation guarantee are based on complicated spec-
tral and convex optimisation techniques [17,22], whose runtime is slow even in
the centralised setting. From the practical point of view, graph clustering is a key
component in unsupervised learning, and has been widely applied in data min-
ing, analysis of social networks, and statistics. In particular, since many graphs
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occurring in practice (e.g. social networks) are stored in physically distributed
servers (sites), designing simple and more practical distributed algorithms, with
better performance, has received a lot attention in recent years [2–4,8,12,23,24].

We study graph clustering algorithms in the distributed setting. We assume
that the input G = (V,E) is an unweighted distributed network over a set of
|V | = n nodes and |E| = m edges. The set of nodes is always fixed and there
are no node failures. Each node is a computational unit communicating only to
its neighbours. We consider the synchronous timing model when, in each round,
a node can either send the same message to all its neighbours or choose not to
communicate. We assume that every node knows the rough size of |V |, which is
not difficult to approximate, however the global structure of G is unknown to
each node. Every node v has a unique1 identifier ID(v) of size O(log(n)). We will
assume that any message sent by a node v will also contain ID(v).

In this work we study the clustering problem when the input G consists of
k well-defined clusters S1, · · · , Sk that form a partition of V , i.e., it holds that
Si ∩ Sj = ∅ for i �= j and

⋃
1≤i≤k Si = V . We allow the nodes in the network

to exchange information with their neighbours over a number of rounds T . At
the end of the T rounds, every node v determines a label indicating the cluster
in which it belongs. Our objective is to design a distributed algorithm which
guarantees that: (1) most nodes within the same cluster would receive the same
label, and (2) every cluster would have its own unique label. The performance
of our algorithm is measured by (1) the total number of proceeded rounds T ,
(2) the approximation guarantee, i.e., how many nodes in each cluster receive
the correct label, and (3) the total message complexity, i.e., the total number of
words exchanged among the nodes.

Structure of Clusters. The performance of a clustering algorithm always
depends on the inherent cluster structure of the network: the more significant the
cluster structure is, the easier the algorithm could approximate it. To quantify
the significance of the cluster structure associated with the underlying graph,
we follow the previous reference [18,19] and introduce the gap assumption. For
any set S ⊂ V , let the conductance of S be

φG(S) � |∂(S)|
vol(S)

,

where ∂(S) = E(S, V \ S) is the set of edges crossing S and V \ S, and vol(S) is
the sum of degrees of nodes in S. We define the k-way expansion of G by

ρ(k) � min
partitions S1,...,Sk

max
1≤i≤k

φG(Si),

and we call a partition {Si}k
i=1 that achieves ρ(k) an optimal partitioning.

One of the basic facts in spectral graph theory is a tight connection between
ρ(k) and the eigenvalues of the normalised Laplacian matrix of G. In particular,
Lee et al. [14] proved the so-called higher-order Cheeger inequality:
1 Every node v can randomly select a number between [1, poly(n)], such that, with

high probability, those numbers are distinct.
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λk

2
≤ ρ(k) ≤ O(k3)

√
λk, (1)

where 0 = λ1 ≤ · · · ≤ λn ≤ 2 are the eigenvalues of the normalised Laplacian
of G. By definition, it is easy to see that a small value of ρ(k) ensures the
existence of disjoint S1, . . . , Sk of low conductance. On the other hand, by (1)
we know that a large value of λk+1 implies that no matter how we partition G
into k + 1 subsets S1, . . . , Sk+1, there will be at least one subset Si for which
φG(Si) ≥ λk+1

2 . To formalise this intuition, we follow the previous reference (e.g.,
[19,23]) and define

ΥG(k) � λk+1

ρ(k)
.

By definition, a large value of ΥG(k) would ensure that G has k well-defined
clusters.

Our Result. Our main result is an improved distributed graph clustering algo-
rithm for inputs with k-well defined clusters. For the ease of presentation, we
assume that G is d-regular, however our algorithm works and the analysis follows
as long as the maximum degree dmax of G and the minimum degree dmin satisfy
dmax/dmin = O(1). Our result is as follows:

Theorem 1 (Main Result). Let G = (V,E) be a d-regular network with
|V | = n nodes, |E| = m edges and k optimal clusters S1, . . . , Sk. If ΥG(k) =
ω

(
k4 log3(n)

)
, there is a distributed algorithm that finishes in T = O

(
log(n)
λk+1

)

rounds, such that the following three statements hold:

1. For any cluster Sj of size |Sj | ≤ log(n), every node u ∈ Sj will determine the
same label. Moreover, this label is ID(v) for some v ∈ Sj.

2. With probability at least 0.9, for any cluster Sj of size |Sj | > log(n), all but
o(|Sj |) nodes u ∈ Sj will determine the same label. Moreover, this label is
ID(v) for some v ∈ Sj.

3. With probability at least 0.9, the total information exchanged among the n

nodes, i.e. the message complexity is Õ
(

n2

λk+1

)
, where Õ(·) hides poly log(n)

factors.

Now we discuss the significance of our result. First of all, notice that
λk+1 = Ω(1) in many practical settings [16,18], and in this case our algorithm
finishes in T = O(log n) rounds. Secondly, our result significantly improves the
previous work with respect to the approximation ratio. As far as we know, the
vast majority of the previous algorithms for distributed clustering are analysed
with respect to the total volume (or number) of misclassified nodes over all
clusters (e.g., [2–4,23]). However, this form of approximation is unsatisfactory
when the underlying graph contains clusters with very unbalanced sizes, since an
upper bound on the total volume (or number) of misclassified nodes could still
imply that nodes from a smaller cluster are completely misclassified. Our current
work successfully overcomes this downside by analysing the approximation guar-
antee with respect to every approximated cluster and its optimal correspondent.
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To the best of our knowledge, such a strong approximation guarantee with
respect to every optimal cluster is only known in the centralised setting [13,19].
We show that such result can be obtained for distributed algorithms as well.

It is not difficult to image that obtaining this strong approximation guarantee
would require a more refined analysis on the smaller clusters, since clusters with
different size might have different orders of mixing time if random walk based
processes are needed when performing the algorithm. Surprisingly, we are able
to show that our algorithm is able to perfectly recover every small cluster. To
the best of our knowledge, such a result of perfectly recovering small clusters is
unknown even for centralised algorithms, and our developed subroutine of small
cluster recovery might have other applications.

Finally, as a key component of our algorithm, we present a distributed sub-
routine which allows most nodes to estimate the size of the cluster they belong.
This subroutine is based on the power method applied to a number of initial vec-
tors. We show that the information retrieved by each node after this process is
sufficient for most nodes to obtain good estimates for the size of their cluster. We
believe that our present algorithm and the developed techniques would inspire
further applications for many different problems concerning multiple and paral-
lel random walks [11,20] or testing clusters of communities in networks [9,15].

Related Work. There is a large amount of work on graph clustering over the
past decades, and here we discuss the ones closely related to ours. First of all,
there have been several studies on graph clustering where the presence of the clus-
ter structure is guaranteed by some spectral properties of the Laplacian matrix
of an input graph. Von Luxburg [16] studies spectral clustering, and discusses
the influence of the eigen-gap on the quality of spectral clustering algorithms.
Peng et al. [19] analyse spectral clustering on well-clustered graphs and show
that, when there is a gap between λk+1 and ρ(k), the approximation guarantee
of spectral clustering can be theoretically analysed. Gharan and Trevisan [18]
designed an approximation algorithm that, under some condition on the rela-
tionship between λk and λk+1, returns k clusters S1, . . . , Sk such that both the
inner and outer conductance of each Si can be theoretically analysed. Allen-Zhu
et al. [1] present a local algorithm for finding a cluster with improved approxi-
mation guarantee under some gap assumption similar with ours.

For distributed graph clustering, the work most related to ours is the dis-
tributed algorithm developed by Sun and Zanetti [23]. In comparison to our
algorithm, the algorithm in [23] only holds for graphs that consist of clusters of
balanced sizes, and the approximation guarantee (i.e., the number of misclassi-
fied nodes) of their algorithm is with respect to the volume of the input graph,
while the approximation guarantee of our algorithm is with respect to every
individual cluster. Becchetti et al. [3] presented a distributed graph clustering
algorithm for the case k = 2, based on an Averaging dynamics process. However,
their analysis holds only for a restricted class of graphs exhibiting sparse cuts.
Becchetti et al. [4] extended the results for a more general class of volume regular
networks with k clusters. Nonetheless, their results apply to reasonably balanced
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networks, which is a setting more restricted than ours. Finally, we would like to
mention a related sequence of work on decomposing graphs into expanders [6,7].
However, we highlight that these algorithms cannot be applied in our setting for
the following reasons: the number of partitioning sets could be much larger than
the initial number of clusters k and the decomposition also allows some fraction
of nodes not to be in any cluster [7].

Notation. We consider the input network G = (V,E) to be an unweighted d-
regular network on |V | = n nodes and |E| = m edges. The n × n adjacency
matrix is denoted AG and is defined as AG(u, v) = 1 if {u, v} ∈ E and AG(u, v) =
0 otherwise. The normalised Laplacian of G is the n × n matrix defined as

LG � I − 1
d

· AG.

We denote the eigenvalues of LG by 0 = λ1 ≤ · · · ≤ λn ≤ 2. For any subset
S ⊆ V , we denote the characteristic vector 1S ∈ R

n by 1S(v) = 1 if v ∈ S and
1S(v) = 0 otherwise. For brevity, we will write 1v whenever S = {v}.

We will consider the setting when the input network G contains k disjoint
clusters S1, . . . , Sk, that form a partition of V . For a given node v ∈ V , we will
denote by S(v) the cluster that contains v. We will write Broadcastu(Message)
whenever a node u sends a Message to its neighbours and we will drop the
subscript u whenever that is clear from the context. We will denote the label
of a node v by L(v) and we will assume that initially L(v) =⊥, for all nodes v.
Throughout our algorithm, some nodes v ∈ V will become active. We will use
the notation v∗ whenever referring to an active node v.

2 Algorithm Description

Our algorithm consists in three major phases: Averaging, Small Detection and
Large Detection, which we will describe individually.

Averaging Phase: The Averaging phase (Algorithm 1) consists in the execution
of n different diffusion processes, one for every node. To each diffusion process,
say corresponding to a node v, we associate a set of vectors {xv

i }i such that, after
every round i, every node u in the network will store the value xv

i (u). The value
xv

i (u) is the mass value that node u received from node v after i rounds. Initially
(round 0) the diffusion process starts from xv

0 = 1√
d
1v, i.e. all mass value 1√

d
is

concentrated at node v with 0 mass to the other nodes. For a general round i,
the vector xv

i is constructed iteratively, via the recursive formula

xv
i (u) =

1
2
xv

i−1(u) +
1
2d

∑

{u,w}∈E

xv
i−1(w), (2)

for any u. We remark that, the only information a node u needs in round i are
the values xv

i−1(w) for all its neighbours w. We note that at any round i, node u



Distributed Detection of Clusters of Arbitrary Size 375

does not need to update the values xv
i for all nodes v in the network. Instead, u

focuses on the diffusion processes started at the nodes which u has already seen
throughout the process. To keep track of the already seen nodes, u maintains
the set Seen(u) (See Line 2 of Algorithm 1).

Now let us discuss the intuition behind this phase. The goal of the diffusion
process started at node v is that, after T = Θ

(
log(n)
λk+1

)
rounds, the entire mass

1√
d

is split roughly equally among all nodes inside the cluster S(v), with very
few of this mass exiting the cluster. A closer look at Eq. (2) tells us that the
diffusion process started at v is nothing but a T -step, 1/2-lazy random walk
process starting from the vector 1√

d
1v. It is well known [5] that, assuming G

is connected, the vectors xv
i will converge to the uniform distribution as i goes

to infinity. However, if the process runs for merely T = Θ
(

log(n)
λk+1

)
iterations,

one should expect the vector xv
T to be close to the (normalised) indicator vector

of the cluster S(v). This is because log(n)
λk+1

corresponds to the local mixing time
inside the cluster S(v). Therefore, after T rounds, we expect for every u ∈ S(v),
the values xv

T (u) to be similar and significantly greater than 0, while for nodes
w /∈ S(v), we expect the values xv

T (w) to be close to 0.
At the end of the Averaging phase, based on the values {xv

T (u)}v each node
u computes an estimate 
u for the size of its cluster. We define the estimates as


u � 3
d · ∑

v [xv
T (u)]2

,

and we will show that, for most nodes u, the estimates satisfy 
u ∈
[|S(u)|, 4|S(u)|] (see Lemma 6).

Algorithm 1. Average (u, T )

Require: A node u, a number of rounds T = Θ
(

log(n)
λk+1

)

1: Set xu
0 (u) = 1√

d
and xv

0(u) = 0 for all v �= u � Initialisation step

2: Seen(u) = {u}.
3: for i = 1 . . . T do
4: Broadcast

({
(xv

i−1(u), ID(v))
∣∣v ∈ Seen(u)

})
5: for all (xv

i−1(w), ID(v)) that u receives do
6: Add v to Seen(u)

7: for all v ∈ Seen(u) do
8: xv

i (u) = 1
2
xv

i−1(u) + 1
2d

∑
w∼u xv

i−1(w). � Update the current status

9: return {xv
T (u)}.

Small Detection Phase: The purpose of this phase is for every node u in a
cluster of small size |S(u)| ≤ log(n) to determine its label. Again, we focus on
the intuition behind this process and we refer the reader to Algorithm 2 for
a formal description. From the perspective of a node u, we would like to use



376 B.-A. Manghiuc

the values {xv
T (u)}v to decide which nodes are in its own cluster. Informally,

the values {xv
T (u)}v∈S(u) should be similar and close to 1√

d|S(u)| since, for every

diffusion process started at v ∈ S(u) we expect the 1√
d

mass to be equally
distributed among all nodes in the cluster. At the same time, we expect the values
{xw

T (u)}w/∈S(u) not to be very large, because they correspond to random walks
started in a different clusters. Therefore, if |S(u)| is not too big, we expect to
see a clear separation between xv

T (u) and xw
T (u), for any v ∈ S(u) and w /∈ S(u).

Since u knows that it is a member of its own cluster, it can use xu
T (u) as a

reference point. Namely u computes the pairwise differences

yv � |xu
T (u) − xv

T (u)|,
for all v and sorts them in increasing order. Let us call yv1 ≤ · · · ≤ yvn

to be
those values. Based on the previous remarks, it should be expected that the first
|S(u)| values are small and correspond to nodes v ∈ S(u). Then, u performs a
binary search to find the exact size of its cluster S(u) (lines 4-10 of Algorithm 2).
Finally, u sets its label to be the minimum2 ID among nodes corresponding to
the smallest |S(u)| values {yvi

}.

Algorithm 2. SmallDetection (u, 
u,RW(u))
Require: A node u, an estimated cluster size �u, a list of values RW(u) = {xv

T (u)}
1: for all v do
2: Compute yv = |xu

T (u) − xv
T (u)|.

3: Sort the values {yv} and call the sorted ones yv1 ≤ · · · ≤ yvn

4: Let ilow = 1, ihigh = �u. � The binary search step
5: while ilow + 1 < ihigh do � At the end of the loop, we have ilow = |S(u)|
6: i = � ilow+ihigh

2
�

7: if yvi < 9

10
√

d·i then
8: ilow = i
9: else

10: ihigh = i.

11: L(u) = minvi

{
ID(vi)

∣∣i ≤ ilow
}

� Determining the label
12: return L(u).

At the end of this phase we would like to stress two important facts. First
of all, it is really crucial that the cluster S(u) has size |S(u)| ≤ log(n). Oth-
erwise, the values {xv

T (u)}v∈S(u) would be too small for u to distinguish them.
Therefore, we cannot use this approach to determine the label of all nodes in
the network. Secondly, we remark that for the algorithm to work, every node u
should be in possession of the value xu

T (u). This can be ensured only if all nodes
start their own diffusion process.

2 The minimum does not play any special role here, it is only used to guarantee
consensus among all nodes in the same cluster. The maximum ID works just as fine.



Distributed Detection of Clusters of Arbitrary Size 377

Large Detection Phase: In this phase, the algorithm will detect the remaining
clusters of large and medium size, that are clusters S with |S| > log(n). The
formal description of this phase can be found in Algorithm 3. Again, a node u in
such a cluster would like to use the values {xv

T (u)}v to determine the composition
of its cluster. Unfortunately, node u cannot trust all values xv

T (u) because of the
error in the diffusion processes caused by some mass exiting the cluster.

To overcome this difficulty, we use a different approach. We want each cluster
Sj to select some representatives, which we will refer to as active nodes. The
label of the cluster Sj will be the minimum ID among the active nodes in Sj .
The purpose of this selection is to avoid the (bad) nodes for which the diffusion
process does not behave as expected. To that extent, we let each node u activate
itself independently (Line 3 of Algorithm 3), with probability

p(u) � 5 · log (100k)

u

.

Since for most nodes 
u ≈ |S(u)|, the probability p(u) is large enough to ensure
that: every cluster will have at least one active node and, in expectation, there
will not be too many active nodes overall. If a node u becomes active, it will
announce this in the network, along with its estimated cluster size 
u. This
happens throughout T rounds of communication (Lines 6–14 of Algorithm 3).
In such a round j, every node v in the network keeps a list Act(v) of the active
nodes v has seen up to round j. Then, v checks which of those active nodes he has
not yet communicated, broadcasts them in a Message (Line 12 of Algorithm 3)
and marks them as Sent. This process ensures that every node v announces each
active node at most once, which significantly reduces the communication cost.

Coming back to node u, at the end of the T rounds u has seen all active
nodes v∗ ∈ Act(u). Node u considers an active node v∗ to be in S(u), if two
conditions are satisfied: 1) its estimated cluster size 
u and 
v∗ are similar and
2) the value xv∗

T is similar to what u expects to see. More precisely, u sets the
threshold

tu � 1
2
√

d
u

,

and considers its set of candidates

Cand(u) �
{

v∗∣∣v∗ ∈ Act(u),

u

4
≤ 
v∗ ≤ 4
u and xv∗

T (u) ≥ tu

}

.

The set of candidates Cand(u) represents the set of active nodes that u believes
are in its own cluster. If Cand(u) �= ∅, then u sets its label to be the
minv∗∈Cand(u) ID(v∗). Otherwise, if u is unlucky so that Cand(u) = ∅, then u ran-
domly chooses an active node v∗ ∈ Act(u) and selects its label as L(u) = ID(v∗)
(Lines 20−23 of Algorithm 3).
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Algorithm 3. LargeDetection (u, 
u,RW(u), T )
Require: A node u, an estimated cluster size �u, a list of values RW(u) = {xv

T (u)},
the number of rounds T

1: Set Act(u) = ∅, Cand(u) = ∅, Sent(v) = false, ∀v � Initialisation step
2: if L(u) =⊥ then

3: Activate u with probability p(u) = 5 log(100k)
�u

. � Activation step

4: if u becomes active then
5: Set Act(u) = {(u, �u)}
6: for j = 1 . . . T do � Propagation step
7: Message = ∅
8: for all (v∗, �v∗) ∈ Act(u) and Sent(v∗) = false do
9: Add (v∗, �v∗) to Message

10: Set Sent(v∗) = true

11: if Message �= ∅ then
12: Broadcast (Message).

13: for all v∗ such that u received (v∗, �v∗) in round j do
14: Add (v∗, �v∗) to Act(u).

15: Set tu = 1

2
√

d·�u

16: for all (v∗, �v∗) ∈ Act(u) do
17: if

�v∗
4

≤ �u ≤ 4�v∗ and xv∗
T (u) ≥ tu then

18: Add v∗ to Cand(u)

19: if Cand(u) �= ∅ then � Labeling step
20: Set L(u) = minv∗∈Act(u) {ID(v∗)}
21: else
22: Choose a random (v∗, �∗

v) ∈ Act(u)
23: Set L(u) = ID(v∗)

24: return L(u).

The Main Algorithm: Now we bring together all three subroutines and present
our main Algorithm 4. We note that once a node u has determined their label,
that will not change in the future. This is because Algorithm 3 can only change
the label if L(u) =⊥ initially. Moreover, even if a node has determined their label
in the Small Detection phase, they still participate in the Large Detection phase
since they are active parts in the Propagation step (Lines 6–14) of Algorithm 3.

3 Analysis of the Algorithm

In this section we analyse our distributed algorithm and prove Theorem 1.
Remember that we assume G is a d-regular network with optimal k clusters
S1, . . . , Sk. Moreover, we work in the regime when G satisfies the assumption
that

ΥG(k) = ω
(
k4 log3(n)

)
. (3)
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Algorithm 4. Cluster (u, n)
Require: A node u, the number of nodes in the network n.

1: Set T = Θ
(

log(n)
λk+1

)
. � Choose λk+1 = 1

poly log(n)
in practice

2: Set L(u) =⊥.
3: Let RW(u) = Average(u, T ). � Perform the Averaging phase
4: Let �u = 3/

(
d

∑
v [xv

T (u)]2
)

be the estimate for |S(u)|.
5: if �u ≤ 4 log(n) then
6: L(u) = SmallDetection (u, �u, RW(u)) � Perform the Small Detection phase

7: L(u) = LargeDetection (u, �u, RW(u), T ) � Perform the Large Detection phase
8: return L(u).

For brevity, we will use Υ instead of ΥG(k). We will structure the analysis of
our algorithm in five subsections. In Subsect. 3.1 we recap some of the results
in [23] and present the guarantees achieved after the Averaging phase of the
algorithm. In Subsect. 3.2 we show that most nodes in the network can obtain
a good estimate for the size of their cluster. In Subsect. 3.3 we deal with the
analysis of the Small Detection phase of the algorithm. We will ultimately show
that for all clusters Sj of size |Sj | ≤ log(n), all nodes u ∈ Sj will determine
the same label, unique for the cluster Sj . In Subsect. 3.4 we analyse the Large
Detection phase of the algorithm. In this phase, most nodes in clusters of size at
least log(n) will decide on a common label that is unique for the cluster. We also
show that the number of misclassified nodes for each cluster is small. Finally, we
conclude with the proof of Theorem 1 in Subsect. 3.5.

3.1 Analysis of the Averaging Phase

Recall that the Averaging phase consists in performing n diffusion processes for
T = Θ

(
log(n)
λk+1

)
rounds. For a node v, its own diffusion process can be viewed as

a lazy random walk starting at xv
0 = 1√

d
1v and following the recursion

xv
i+1 = Pxv

i ,

where
P � 1

2
· I +

1
2d

· AG = I − 1
2
LG

is the transition matrix of the process. It is known that, assuming G is con-
nected, the vectors {xv

i } will converge to the stationary distribution as i goes to
infinity. However, if the power method runs for T = Θ

(
log(n)
λk+1

)
phases, we expect

xv
T ≈ 1√

d·|S(v)| · 1S(v). Sun and Zanetti [23] formalise this intuition and give a
concrete version of the above observation (See Lemma 2). The intuition behind
their result lies in the fact that, for graphs G with k good clusters, there is a
strong connection between the bottom k eigenvectors of LG and the normalised
indicator vectors of the clusters [19].
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We will now introduce the notation required to formalise the above discus-
sion. Let f1, . . . , fk be the bottom k eigenvectors of LG and let {χS1 , . . . , χSk

}
be the normalised indicator vectors of the clusters Si, that is χSi

� 1√
|Si|

1Si
, for

all i. Let χ̃i be the projection of fi onto span{χS1 , . . . χSk
} and let {χ̂i} be the

vectors obtained from {χ̃i} by applying the Gram-Schmidt orthonormalisation3.
For any node v, we define the discrepancy parameter

αv �

√
√
√
√1

d

k∑

i=1

(fi(v) − χ̂i(v))2.

We are now ready to state the result relating xv
T to the indicator vector of

the cluster 1S(v):

Lemma 2 (Adaptation of Lemma 4.4 in [23]). For any v ∈ V , if we run the
lazy random walk for T = Θ

(
log n
λk+1

)
rounds, starting at xv

0 = 1√
d
1v, we obtain

a vector xv
T such that

∥
∥
∥
∥xv

T − 1√
d · |S(v)| · 1S(v)

∥
∥
∥
∥

2

= O

(
k2

d · Υ · |S(v)| + α2
v

)

. (4)

One can view the RHS of (4) as an upper bound for the total error of the
diffusion process that started at v. To that extent, let us define the set of vectors

εv � xv
T − 1√

d · |S(v)| · 1S(v) (5)

and we will use for shortend ε(v,u) = εv(u). It is important to note that the
order of the pair matters, since ε(v,u) corresponds to a diffusion process started
at v, while ε(u,v) corresponds to a diffusion process started at u.

Under this notation, Eq. (4) becomes

∑

u∈V

ε2(v,u) ≤ Cε

(
k2

d · Υ · |S(v)| + α2
v

)

, (6)

for some absolute constant Cε. While one should expect each individual error
ε(v,u) to be relatively small, i.e. O

(
1

|S(v)|
)
, it is not immediately clear why this

should be the case. Indeed, the presence of αv in Eq. (6) can cause significant
perturbation. Given the relatively complicated definition of this parameter, the
only upper bound we are aware of is the following:

Lemma 3. It holds that
∑

v∈V

α2
v = O

(
k2

d · Υ

)

≤ Cα · k2

d · Υ
, (7)

for some absolute constant Cα > 0.
3 For a more detailed discussion of the connection between the sets {fi}, {χSi}, {χ̃i}

we refer the reader to [19].
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3.2 Estimating the Cluster Size

In this section we will show that most nodes in every cluster are able to estimate
approximately the size of their cluster. Recall that the estimate that each node
u computes is


u =
3

d
∑

v [xv
T (u)]2

,

and we want to show that for most nodes u we have that |S(u)| ≤ 
u ≤ 4 · |S(u)|.
To that extent, we split the set of (bad) nodes, that do not obey the above
condition, into two categories:

Bbig �
{

u

∣
∣
∣
∣
∣

u > 4 |S(u)|

}

and Bsmall �
{

u

∣
∣
∣
∣
∣

u < |S(u)|

}

.

Moreover we let
B� � Bbig ∪ Bsmall

and we will show that in each cluster, only a small fraction of nodes can be in
B�. We start with set Bbig and here we show that only a small fraction of nodes
in each cluster can be in Bbig.

Lemma 4. For every cluster Sj it holds that

|Bbig ∩ Sj | ≤ |Sj |
2 · 500k · log(nk)

.

Now we focus on the set Bsmall. In this case, we will prove something stronger,
namely that in each cluster Sj the fraction of nodes estimating some value 
 is
directly proportional to the value of 
. In other words, the smaller the value of

, the fewer the number of nodes will estimate it. This result is crucial for the
analysis of the Large Detection phase. To that extent, we define the level sets

Bi
small �

{

u

∣
∣
∣
∣
∣

u <

|S(u)|
2i−1

}

,

for i = 1, . . . , log(n). The following result formalises our discussion.

Lemma 5. For every cluster Sj and every i = 1, . . . , log(n) it holds that

∣
∣Bi

small ∩ Sj

∣
∣ ≤ |Sj |

2i · 500k · log(nk)
.

Now we are ready to state and prove the main result of this subsection.

Lemma 6. Almost all nodes u ∈ V have a good approximation 
u ≈ |S(u)|.
That is, for every cluster Sj the following conditions hold:
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1. |B�∩Sj |
|Sj | ≤ 1

500k·log nk ;
2. ∀u /∈ B�, it holds that |S(u)| ≤ 
u ≤ 4|S(u)|.
Proof. Applying Lemmas 4 and 5 we have that

|B� ∩ Sj |
|Sj | ≤ |Bsmall ∩ Sj |

|Sj | +
|Bbig ∩ Sj |

|Sj | ≤ 1
500k · log(nk)

.

��

3.3 Analysis of the Small Detection Phase

This subsection is dedicated to the analysis of the Small Detection phase of our
clustering algorithm and thus to the analysis of Algorithm 2. In this section we
will show that our algorithm will perfectly recover all clusters of small size. We
first introduce some notation. Up to a permutation of the indices, without loss
of generality we consider the clusters S1, . . . , Sp such that

|Si| ≤ log(n),

for each 1 ≤ i ≤ p ≤ k. Moreover, we will denote by

A = S1 ∪ · · · ∪ Sp

to be the union of these clusters. The proof of our claim lies on the key obser-
vation that, for nodes u ∈ A, there is a large enough gap between the mass
values of diffusion processes started in the same cluster and processes started
indifferent clusters. This observation is formalised below.

Lemma 7. For any u ∈ A and v ∈ V the following statements hold.

1. If v ∈ S(u), then |xu
T (u) − xv

T (u)| ≤ 1
100

√
d·log(n) ;

2. If v /∈ S(u), then |xu
T (u) − xv

T (u)| ≥ 9
10

√
d·|S(u)|

Now we state and prove the main result of this subsection.

Lemma 8. Let Sj be a cluster such that |Sj | ≤ log(n). At the end of the Small
Detection phase of the algorithm, all nodes u ∈ Sj will agree on a unique label.
Moreover, this label is ID(v), for some v ∈ Sj.

Proof. Let Sj be some cluster of size |Sj | ≤ log(n) and let u ∈ Sj be some
node. Applying Lemma 6, we see that all nodes u ∈ Sj have an approximation
|Sj | ≤ 
u ≤ 4|Sj | ≤ 4 log(n). Therefore every node u ∈ Sj will certainly perform
the Small Detection phase (Line 6 of Algorithm 4).

Firstly, u sorts the values yv = |xu
T (u) − xv

T (u)|, for all v ∈ V . Say the sorted
values are yv1 ≤ · · · ≤ yvn

. Notice that if w1 ∈ Sj and w2 /∈ Sj , by Lemma 7 it
must be that

|xu
T (u) − xw1

T (u)| ≤ 1
100

√
d · log(n)

<
9

10
√

d · |Sj |
≤ |xu

T (u) − xw2
T (u)|.
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Therefore, u knows that the first |Sj | values, namely yv1 , . . . , yv|Sj | correspond
to nodes in its own cluster and the other values correspond to nodes in different
clusters. Thus, u needs to find a pair of consecutive values yvi

≤ yvi+1 such that
vi ∈ Sj and vi+1 /∈ Sj .

To do this, u performs a binary search to find the size of its cluster. At any
intermediate phase, say u considers the value yvi

, for some i, and compares this
with 9

10
√

d·i . If yvi
< 9

10
√

d·i we claim that i ≤ |Sj |. If not, then vi /∈ Sj and by
Lemma 7 we have that

yvi
≥ 9

10
√

d · |Sj |
≥ 9

10
√

d · i
,

which gives the contradiction. Similarly, we can show that if yvi
≥ 9

10
√

d·i then
i > |Sj |.

Once the node u finds the exact size of its cluster |S(u)|, he also knows which
nodes are in the same cluster, i.e. v1, . . . , v|S(u)|. Thus u can set its label to be
the smallest ID among nodes in its cluster. This holds for all nodes u ∈ Sj and
all clusters Sj . ��

3.4 Analysis of the Large Detection Phase

At this point, we will assume all n random walks have been completed, i.e. the T
rounds have been executed and each node u has a list of values {xv

T (u)}v. From
the perspective of u, we would like to use this information to decide which nodes
are in the same cluster as u and which are not. Unfortunately, node u cannot
trust all values xv

T (u) because of the error term ε(v,u). Going back to Eq. (6),
we see that these errors are dependent on the parameters αv. To overcome this
issue, we define the notion of a γ-bad node, that is a node v for which the value
of αv is large relative to its cluster size:

Definition 9. We say that a node u is γ-bad if

αu ≥ γ · Cα · k2

d · Υ · |S(u)| .

The set of γ-bad nodes is denoted by

Bγ �
{

u

∣
∣
∣
∣
∣
αu ≥ γ · Cα · k2

d · Υ · |S(u)|

}

.

One should think about the γ-bad nodes as nodes for which the diffusion pro-
cess does not necessarily behave as expected. Hence we want to avoid activating
them since they are not good representatives for their own clusters. To put it
differently, combining Eq. (6) with the above definition, we have the following
remark:
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Remark 10. For every node v /∈ Bγ it holds that

‖εv‖2 ≤ Cε (1 + Cα · γ) ·
(

k2

d · Υ · |S(v)|
)

≤ 2 · Cε · Cα · γ · k2

d · Υ · |S(v)| .

For the rest of the analysis, we will consider the value

γ � 500k · log(100k). (8)

As for the question of how many γ-bad nodes are inside each cluster, the answer
is not too many and is formalised in the Lemma bellow:

Lemma 11. Let Sj be some cluster. It holds that

|Bγ ∩ Sj | ≤ |Sj |
γ

.

The ultimate goal of the activation process is to select representatives for
each cluster in such a way that the following conditions hold: (1) Every cluster
has at least one active node, (2) The total number of active nodes is small and (3)
No γ-bad node becomes active. Recall that each node activates independently
with probability

p(u) =
5 log(100k)


u
.

For most nodes, i.e. u ∈ V \ B�, the probabilities are good enough to ensure
the three conditions hold. The tricky part is to deal with nodes u ∈ B�. More
precisely, for nodes u such that 
u � |S(u)| and u ∈ Bγ the activation probability
is simply too large to reason directly that no such node becomes active. We
overcome this by first showing that, with high constant probability, no node
u ∈ B� becomes active, and based on this no node in Bγ becomes active as well.
We formalise our discussion in Lemma 12, which is the main technical result of
this subsection.

Lemma 12. With probability at least 0.9, the following statements hold:

A1. No node from B� ∪ Bγ becomes active.
A2. Every cluster Sj contains at least one active node v∗

j ∈ Sj \ B�;
A3. The total number of active nodes is na ≤ 500k · log(100k);

Now we are ready to state the main result of this subsection.

Lemma 13. At the end of the Large Detection phase, with probability at least
0.9, for any cluster Sj of size |Sj | > log(n), all but o(|Sj |) nodes u ∈ Sj will
determine the same label. Moreover, this label is ID(v) for some v ∈ Sj.

Proof (Sketch). We assume the conclusions of Lemma 12 hold. Fix some cluster
Sj . We focus on the nodes u ∈ S′

j = Sj \ B� and assume the other nodes are
misclassified. This is sufficient since, by Lemma 6, |Sj ∩ B�| = o (|Sj |). Let s∗

j be
the active node in Sj of smallest ID. By (A2) and (A1) we know s∗

j exists and
s∗

j /∈ B� ∪Bγ . Let u ∈ S′
j be a misclassified node. By the Algorithm’s description

we know one of the two conditions must happen:
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1. s∗
j /∈ Cand(u)

2. ∃v∗ /∈ Sj , but v∗ ∈ Cand(u)

We look at each condition separately. For the first one, since s∗
j , u ∈ S′

j , it must

be that x
s∗

j

T (u) < tu. This means that the error ε(s∗
j ,u) is large in absolute value:

ε(s∗
j ,u) < − 1

2
√

d|Sj | . But since s∗
j /∈ Bγ , by Remark 10 the total error

∥
∥
∥εs∗

j

∥
∥
∥ cannot

be too large. This means that the first condition can happen only for a small
number o(|Sj |) of nodes. For the second condition the argument is similar. Let
v∗ be an active node such that v∗ /∈ Sj , but v∗ ∈ Cand(u). Since v∗ ∈ Cand(u),
we know that 
u ≈ 
v∗ and that the error ε(v∗,u) is quite large: ε(v∗,u) ≥ tu.
However, by (A1) v∗ /∈ Bγ , so ‖εv∗‖ cannot be too large. Therefore v∗ can be
a candidate for a limited number of u ∈ S′

j . Summing over all active nodes and
using the upper bound (A3) is sufficient to show that condition 2 can happen
only for a small number o(|Sj |) of nodes. ��

3.5 Proof of the Main Result

In this section we bring everything together and prove Theorem 1:

Proof (Proof of Theorem 1)
Number of Rounds. Firstly, let us look at the number of rounds of our
Algorithm 4. We know that the Averaging phase of the algorithm takes T =
Θ

(
log(n)
λk+1

)
rounds. The Small Detection phase does not require any extra rounds

of communication. For the Large Detection phase, we have again T rounds. This
brings the total number of rounds to

2 · T = Θ

(
log(n)
λk+1

)

.

Clustering Guarantee. Secondly, we will look at the clustering guarantees of
Algorithm 4. Let Sj be some cluster of G. If |Sj | ≤ log(n), then by Lemma 8 we
know that all nodes of Sj will choose the same label, that is the minimum ID
among nodes in Sj . If |Sj | > log(n), by Lemma 13 it follows that with proba-
bility at least 0.9 all but o (|Sj |) nodes will determine the same label that is the
ID(v) for some v ∈ Sj .

Communication Cost. Let us first look at the cost for the Averaging phase.
In any round i ≤ T , every node u has to send to all its neighbours the values
{xv

i−1(u)}. This results in a total communication cost of costAvg = O (T · n · m).
Again, for the Small Detection phase there is no cost attached. While for the
Large Detection phase, by Lemma 13 we know that, with probability at least 0.9,
the total number of active nodes is na = O(k log(n)·log(k log(n))). By the design
of Algorithm 3, every node u in the network will broadcast each active node at
most once. Therefore the total communication cost in the Large Detection phase
is costLD = O(m · na) = O(mk · log(k)). This gives in total a communication
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cost of O(costAvg +costLD) = O(T ·n ·m). We remark that, while in general the
number of edges could be m = Θ(n2), we can first apply the sampling scheme
in [23] to sparsify our network and then run our algorithm. The sparsification
ensures that the structure of the clusters, the degree sequence and the parameter
ΥG(k) are preserved up to a small constant factor and the resulting number of
edges becomes m = Õ(n). Thus the final communication cost can be expressed
as Õ(T · n2). ��
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