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Vulnerabilities and Fruits of Smart
Monitoring

Jablonski Adam and Tomasz Barszcz

Abstract “Smart” condition monitoring inherently implies that all other analysis
techniques are “dumb”. If so, how could one explain why for last half century, clas-
sical vibration-based condition monitoring techniques proved their merits in thou-
sands of life-saving case studies? To discuss this concern, the paper briefly analyzes
the process of evolution of condition monitoring systems over the years. For this
purpose, the paper treats a condition monitoring system (CMS) as a part of a larger,
much more complex system. The most important other systems CMS is connected to
are the safety system, SCADA (Supervisory Control and Data Acquisition) and DCS
(DistributedControl System). The outcomeof such a complex systemdepends signif-
icantly on human actions (selection, configuration and operation), and the outcome
of which serves other human actions (maintenance planning). Therefore, the paper
tries to answer the question what is the actual “smartness” of modern systems that
draws so much attention, namely is it the capabilities of smart systems or the hope in
these capabilities? After reading this chapter, the reader would possibly gain some
knowledge where to apply smart monitoring, and where do not.

Keywords Smart monitoring · Classical condition monitoring · Condition
monitoring system

1 Introduction

1.1 The Ultimate System

In a perfect scenario, onewould like to have a conditionmonitoring system,which just
requires sensors mounting followed by pressing the “START” button or by plugging
in the embedded system, and which provides completely reliable information about
each machine part in a form like “Bearing degradation level: 77% (8 weeks to critical
failure)”. If so, why not connect this reliable system to the maintenance planning
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system, and to order parts and schedule repairs automatically? As well as it sounds,
today it would be difficult to find any CEO that would agree to have a system which
takes over financial strategy (turning it into potentially deadly scheme). It seems like
on one hand industry more and more calls for “intelligent”, “smart”, “autonomous”
systems, capable of automatized data collection and analysis, but on the other hand,
manufacturers try to achieve this “smart” status with minimum modifications of
currently offered systems, because these systems are reliable, effective, and most
importantly verified. This paper therefore attempts to explain the actual meaning of
“smart” system, how this “smartness” is achieved, and finally what consequences on
the overall CMS performance “smartness” has. The paper has a conceptual character.

SmartCMS, bydefinition, aims in automationof all actionswithin conditionmoni-
toring, from which the machine-operator graphical interface draws most attention,
simply because it is most eye-appealing, like demonstrated in Fig. 1.

The remaining parts, including selection and configuration stay in the shadow for
the reasons given in the paper. Imagine a beginner that uses equipment, which gives
information like “Large imbalance detected. Stop and fix.” Probably, he would be
very satisfied, and would order immediate repair. On the other hand, if it happened to
an experienced machine operator, he would ask the system for velocity order spec-
trum. As a consequence, system’s advanced diagnostic options (like data selection
and spectrum display) are sometimes desired and sometimes detrimental. For many
years, this observation led CMS manufacturers to prepare a large CMS portfolio,

Fig. 1 Exemplary visualization of a smart CMS [available @ Allied Reliability_eBook_Industrial
Evolution.pdf]
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typically covering from basic, 1 or 2-channel devices with basic scalar diagnostic
estimators, through portable data analyzers and wireless systems, to multi-channel
distributed systems with separated modulus for data collection and data analysis.
Naturally, over the years, many companies prepared platforms, which enable inte-
gration of data from any of listed types of equipment, like Emerson® Plantweb
OpticsTM [1]. Other providers, like Allied Reliability® recommend external PTC
ThingWorx platform [2].

1.2 What Is Smart Monitoring?

It is hard to tell, because nearly all currently available commercial condition moni-
toring systems claim that they are smart. For instance, Smart Condition Monitoring
fromMitsubishi ElectricTM claims to create a “memory map” of a normal operating
condition and to use “sophisticated algorithms” to detect abnormal state and offers
“better understanding” of machine defect due to “higher level network”. Simulta-
neously, GE™ states to use the same algorithms as “big data companies” analyzing
the current behavior and past behavior of the plant. Allied Reliability™ promotes
SMARTCMB™ as a system that is IIOT (Industrial Internet of Things) “ready”,
and that it increases uptime and decreases maintenance cost. Others, [3] emphasize
the role of smartphones in enhancement of the effectiveness of condition monitoring
systems for reliable machinery protection. Finally, some latest solutions like [4] refer
to smart “on-site machine diagnostics” as an alternative to “traditional cloud-based
technology”. Obviously, such contradictory scope might be a bit confusing.

1.3 Smart Systems Versus Smart Staff

Smart CMS offer “easier” installation and “easier” data analysis. In case of system
commissioning, easier installation typically means more default settings within
system configuration. Easier data analysis could be realized in two general ways. In
the first case, automatized machine diagnostics is realized as a simple transformation
of predefined data containers into descriptive information. For instance, the ampli-
tude of shaft order could be tracked and converted to “Imbalance” level. The second
general set of methods refers to Data Science analysis, like pattern recognition or
ANN algorithms. In this case, the operator is somewhat compelled to “believe” in the
system outcome. In both cases, smart systems inevitably subtly yet craftily remove
skilled workers form individual partial actions within entire condition monitoring
process. The key point is to analyze which steps of a human work could be efficiently
replaced by a program, and which could not. Of course, the answer to this question
is not simple; nevertheless, the answer that all the actions could be successfully
replaced seems incorrect today. For practical goals, the paper shows few examples
of successful implementation of smart methods in CMS. Worth mentioning, many
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diagnostic engineers from large companies complain that they regularly undergo
shifting from one department to another, resulting in inability of mastering in a
specific branch of technical science. Consequently, many machine diagnostic engi-
neers do not have a solid background in classical condition monitoring methods;
therefore, they tend to overestimate the capabilities of “smart” systems, believing
them to be a perfect remedy to all their concerns.

2 Evolution of Condition Monitoring Systems

2.1 Early Days

First condition monitoring systems were developed for protection of high value
assets, typically in power generation or chemical industries. The value of machinery
and enormous costs of lost production (not mentioning the need to rebuild the plant
itself) were so immense that it justified very high costs of development. As a result,
the first condition monitoring systems were very expensive as well. The very first
systems used analogue electronics, which was fast replaced by digital circuits.

Since the early days there was a distinction between monitoring and diagnostics.
Monitoring (also referred to as protection) is a must for industrial machinery and
is the first their functionality. Reaction of the system must be taken very fast and
in a fully automated mode. It is necessary to react in milliseconds to an unexpected
sudden event, for instance a broken turbine blade. In such a case the protectedmachine
must be brought to stop before consecutive damage will happen. The second level
is diagnostics, focused on early detection of faults. While protection systems only
calculate few signal features, the diagnostics level involve calculating numerous
advanced signal features, e.g. narrowband rolling bearing features. The system tracks
trends of features and is able to detect early signs of technical state deterioration,
even when the machine is still perfectly functional.

2.2 Expansion of Stationary Distributed Systems

Two major trends shaped the development of CMS, namely rapid development of
digital technologies and—at the same time—equally rapid decrease of IT technology
prices. Since many signal analysis methods were developed, standards (primarily
ISO10816 and ISO7919) were needed to keep compatibility necessary to compare
vibration levels between machines and systems. The protection systems began to
proliferate into more andmore assets. The distinction between the two layers became
standard for critical machinery, e.g. power generation and oil and gas. It was adopted
by standards (API670) which explicitly requires that these two layers should be sepa-
rated into different computer systems.Moreover, failure of the diagnostics layermust
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not compromise the operation of the protection layer. Such a safety was achieved at
the cost of more expensive CMS. In numerous other, less critical applications, where
potential losses are smaller and fault development slower, the approach towards CMS
reliability is not as demanding. It is common to mix the two functions in a single
CMS. Dozens of manufacturers started to develop and offer much simpler (and less
expensive) systems. These were installed in many other industries, starting from
auxiliary machinery in critical plants, to transportation, food, marine to name only a
few.

2.3 Industrial Internet-of-Things

The next big changewas driven by further explosion of IT capabilities at continuously
lower costs mixed with the advent of enhanced communication (including wireless).
More and more machinery could be equipped with a CMS. Decreasing prices could
justify smaller and smaller benefits (though still substantial). Other trends included
cloud based systems, where the data from hundreds of CMS were sent, stored and
analyzed by remote servers. The default tool to access the data became aweb browser.
Other consequence was also decreasing level of skills, as the vibration-based features
were presented to normal machine operators, without any exposure to vibration
analysis.

3 CMS Interaction with Human

3.1 Selection

The true meaning of a suitable selection of CMS is typically underestimated due
to few reasons. Firstly, not many people are familiar with various types of such
systems. If one works with portable equipment exclusively, he will seek for better
portable equipment disregarding stationary systems, and vice-versa. Secondly, CMS
are selected by management staff on the basis of business plans, which generally
boils down to cheapest systems. In this case, the idea is that any CMS is equally good
for the job. Thirdly, in many plants, the equipment is partially or totally inherited,
which limits potential changes, because in nearly all cases, systems from different
manufacturers are not compatible. As a result, in many applications, systems are
not suitable for any significant improvements permanently from the start. As a very
common example of unsuitable selection of CMS elements one could consider a set
of acceleration sensors with 100 mV/g sensitivity for a high-volume machine with
a relatively large transmission ratio, for which the vibration level between front and
back end easily differs by more than order of magnitude. Situation where suitable
sensors with higher sensitivity are installed at locations with smaller vibrations are
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rarely met in practice. Therefore, it might be concluded that fundamental rules of
selection of suitable CMS for individual scenario should be followed prior to consid-
eration of system “smart” features. Other words, it is NOT recommended to select a
system which suits ones needs from available smart systems, but rather to look for a
suitable system without adding any initial value to “smart” class of system.

3.2 Configuration

Among various actions, which refer to the process of machine condition monitoring,
configuration of the system is a major taboo—it is skipped, it is depreciated, and it is
disliked. This popular approach, which underestimates the meaning of CMS config-
uration, is like a minefield, because configuration decides what data is processed,
when it is processed, and how it is processed. Moreover, configuration process itself
is long and costly, yet it does not bring any direct benefit to the operator (or the plant),
so it is treated as a necessary evil. As a result, configuration is omitted during busi-
ness system presentation, and is shifted to support actions. During the first training,
frequently it is found to bemuchmore troublesome than system operation. For begin-
ning users, the less optional the configuration the better. For more advanced users, it
is just the opposite. As a result, it is very difficult to provide a configuration interface,
which would satisfy a large number of users.

Configuration is typically divided into few phases. First phase refers to system
pre-configuration, which is done by the manufacturer and it is exaggerated to make
place for further adjustment. For stationary systems and advanced portable systems,
initial configuration also includes definition of drive train kinetostatics (frequently
called “kinematics”) and narrowband analyses. Each narrowband analysis includes
a configuration subset, which covers spectrum type, spectral range, optional filters,
amplitude type (peak, root-mean square, power, sum), etc. In the third phase, data
is additionally classified into operational states, so that vibrations only in similar
machine dynamic states are compared.

Definitely, successful replacement of human actions within CMS configuration
process is exceptionally attractive. But what exactlywould it meanwhen each config-
uration element is selected individually? Selection of sampling frequency is generally
fixed, so is the length of signals. The location of each sensor is taken either from
norms or from human experience. Next, almost all commercially available systems
automatically calculate narrowband analyses on the basis of MANUALLY prepared
kinetostatic configuration. Is it possible to further automatize any of these parts? So
far, it is noticed that “smart” configuration features are limited to simple actions, like
automatic determination of shaft-related analyses on the basis of the phase marker
(PM) signal or automatic triggering for data storage. An interesting solution for auto-
matic threshold configuration for scalar trend analyses could be found in a modern
AVM4000 system [5], which is based on percentile limits of cumulative distribution
functions. It might be therefore concluded that smart systems should prepare large
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configurations automatically, but this approach might not be correct at all. Alterna-
tively, large static configuration of a system could be skipped, as long as the system
is not expected to give fault identification, i.e. just fault detection and possibly fault
severity assessment.

3.3 Operation

Operation of CMS refers to the direct interaction of a machine operator with the
systemand it is composed of different elements depending on the systemarchitecture.
For unsupervised protection systems, desired system interaction is none. For simple
portable systems, data acquisition is triggered, followed by internal signal processing.
The displayeddata is analyzed by the operator on-site. In case of stationary distributed
systems, data is transferred to some central unit, to which a diagnostic engineer is
connected. Desirably, such systems operate on events, which are signals to the engi-
neers thatmachine needs attention on the basis of the current data. From the operation
point-of-view, smart system could refer to two aspects, namely data transfer and data
analysis. Firstly, in any of mentioned systems, a smart system could be connected
to some network enabling automatic data transfer. This is especially attractive to
portable systems, where such feature significantly saves time.

Secondly, in case of portable and stationary monitoring systems, smart opera-
tion refers to automatic data analysis. This data analysis answers three fundamental
questions:

1. Is there (a new) machine fault?
2. What is the fault element?
3. How serious is the fault?

The first question refers to fault detection, the second to fault identification, while
the third one to severity assessment. In case of a smart vibration-based condition
monitoring system, the first concern is realized by unsupervised anomaly detection.
In this scenario, a classically “permissible” machine technical state is classified as a
“normal” state, while any significant deviation from this state is called an “anomaly”
or “abnormal” state. Although a commonly accepted classification of vibration-based
data science methods does not exist so far, in this paper it is accepted that “machine
learning” covers all unsupervised methods, which operate on predefined scalar diag-
nostic estimators (also called “health indicators”HI or signal “features”), while “deep
learning” refers to all unsupervised methods operating on raw vibration data.

Unsupervised analysis based on scalar diagnostic indicators is a bit tricky. Before
any of such analysis is done, it needs to be stated that three types of indicators exist.
The first group is wideband indicators, whichmeans that they cover “entire” signal in
some domain. These indicators include peak-to-peak (PP), root mean square (RMS),
crest factor, and kurtosis, from both, acceleration and velocity signals. The second
are narrowband indicators, typically calculated in frequency (or order) domain. The
third set refers to indicators, permissible values of which are to be found in norms
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(like velocity RMS from ISO 20816). Starting from the last group, the verification
of permissible vibrations is straightforward; therefore, smart analysis seems to be
pointless. In case of narrowband indicators, the set is limited, and so is the anomaly
detection capability. For wideband indicators, the number of analysis is relatively
small, so it is easy to handle them in a classical way.

Recalling the configuration process described in previous section, note that in a
classical CMS, for every diagnostic indicator, the system stores permissibleWarning
and Alarm levels, which generate an event upon trespass. These considerations
generate following deduction: if one is able to define diagnostic indicators and corre-
sponding threshold levels correctly (classical way), the system should react properly
on the change of the technical condition of the machine; if one is not able to do so,
thenwhy believe thatmore advanced, smart, unsupervisedmachine learningmethods
would work at all?

3.4 Maintenance Planning

Every CMS has the very same ultimate purposes, i.e. to protect life and to reduce
production costs by providing information about (degradation of) technical condition
of the machine. For machine protection systems, this information is sent directly
to a SCADA system, and it has a form of a control electrical signal. For the rest
of vibration-based systems, this information could be described by its form (high-
resolution graph, embedded bar graph, display value, sms, e-mail, sound, light, etc.),
its reliability (formalized as “false alert rate”), and its content (numerical value, shape
of the graph, text description, pictogram, color change, etc.). For classical CMS, these
parameters arewell established andwell understood, and itmight be hence concluded
that any improper performance of such system is caused by improper (faulty or
incomplete) system configuration or data corruption. For instance, overestimated
threshold levels would fail to detect fault. For smart systems, each of described
parameters is somehow difficult. Results of many smart methods are in a form of
some numerical “rate”, which have connotations with the data, but not with machine
elements. The reliability of such methods is hard to determine, because typically
they do not operate on predefined scalar threshold level, which requires a subsequent
interpreter, which generates clear information. Without such interpreter, it could
easily happen that simple set of information generated by a classical architecture
would be transformed by a smart system into elaborated, equivocal data.

4 Recommendations for Selection of Suitable System

If the reader has arrived that far in the chapter, the natural reaction would be to ask,
WHAT is thus the optimal CMS? It is a proper question, but the answer is quite
complex. The selection process is a result of two prior questions, namely what is the
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monitored machine and what are its failure modes? The first one is whether we need
a protection layer or only diagnostics? Are the simplest signal features like rms suffi-
cient or do we need a complex set of dozens of features? The second question should
answer what is the level of expertise of the system users? The “smartness” of CMS
should first focus on efficiency of commissioning, i.e. installation and configuration.
Then, the system should provide timely and sufficient information to its users. As
the popular saying goes, it should be as simple as possible, but not simpler.

5 Summary

The paper starts with a concept of a perfect “smart” vibration-based condition moni-
toring system. Up to now (to the authors’ knowledge), a system which fulfills all
the customer needs does not exist. Moreover, there is not any known theory that
would justify that it is possible to design a fully automatized CMS. Yet, as given
in the paper, CMS providers are racing towards “game changing” systems claiming
systems’ smartness where possible. At the same time, it could be found in [6] that
regardless of the CMS type, only 5% of collected data is actually analyzed in indus-
trial environment, because the rest of the data is insignificant or corrupted. More
details of corrupted data handling are found in [7]. Therefore, the final conclusion
from the paper is that although “smart” condition monitoring offers many attractive
fruits, it is much more vulnerable to inexperienced, new equipment specialists than
classical systems.
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A Tutorial on Canonical Variate Analysis
for Diagnosis and Prognosis

Xiaochuan Li, Tianran Lin, and David Mba

Abstract Canonical variate analysis is a family of multivariate statistical process
monitoring tool for the analysis of paired sets of variables. Canonical variate analysis
has been employed to extract relations between two sets of variables when the rela-
tions have been considered to be non-linear, when the process is non-stationary and
when the dimensionality needs to be reduced to benefit human interpretation. This
tutorial provides the theoretical background of canonical variate analysis. Together
with the industrial examples, this study discusses the applicability of the extensions
of canonical variate analysis to diagnosis and prognosis. We hope that this overview
can serve as a hands-on tool for applying canonical variate analysis in condition
monitoring of industrial processes.

Keywords Canonical variate analysis · Diagnosis · Prognosis

1 Introduction

When a process can be described by two sets of data corresponding to two different
views, investigating the relations between these two aspects may provide new infor-
mation about the functioning of the system. The relations refer to as a mapping of
the variables of one aspect to the variables of the other aspect. For instance, in the
field of medicine, one aspect could be related to the symptoms of the disease and the
other corresponds to the risk factors that could affect the disease. Investigating the
relations between the symptoms and the risk factors can provide more information
on the disease exposure so as to give advices on treatment and cure. These relations
can be studied by means of canonical variate analysis that has been developed for
this purpose.
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Canonical variate analysis (CVA) is a family of multivariate statistical process
monitoring (MSPM) tool. CVA’s MSPM counterparts include principal component
analysis (PCA) [7], independent component analysis (ICA) [10] and partial least-
squares analysis (PLSA) (Kruger and Dimitriadis 2008), etc. These basic MSPM
methods perform well under the assumption that process variables are time inde-
pendent. However, this assumption might not hold true for real industrial processes
since sensory signals affected by noise and disturbances often show strong corre-
lations between the past and future sampling points [11]. Therefore, variants of
the standard MSPM approaches [20, 29, 34] were developed to solve the time-
independency problem, which makes these approaches more suitable for dynamic
process monitoring. In addition to approaches derived from PCA, ICA and PLSA,
canonical variable analysis (CVA) is a method that can explore the relations between
the systems’ past and future status, thereby making it a strong candidate for dynamic
process monitoring.

Although CVA is a linear model, which means it may lead to problems in moni-
toring systems that generally operate under time-varying conditions, but it has also
proven to be high performing in this context if properly managed or modified [14, 25,
28]. This assumption makes it interesting for applications in contexts such as chem-
ical process that operatewith different characteristics in the various processing cycles,
and large-scale rotating machinery such as compressors and gas turbines that involve
switch between high and low working loads. The multivariate statistics technique of
canonical variate analysis allows, unlike other multivariate statistical techniques, to
consider the time dependence of variables during process monitoring. In fact, CVA
can properly identify features and dynamic information of the time series allowing
to find the maximum correlation between past and future measurements [33]. This
characteristic makes it a very suitable technique for real monitoring applications
because the assumption of independence from the time of variables is often wrong in
real production processes [11].Moreover, dimensionality reduction techniques allow
increasing the ability to identify a fault, also increasing the adaptability to new data of
what is proposed [26]. The important role of CVA is even based on the consideration
that industrial processes consist of a large number of process variables operating at
controlled conditions and it could be useful to consider a state-space realization in
such processes [21]. It has also been confirmed that dynamic models constructed
by CVA demonstrate higher accuracy compared to dynamic PCA in terms of diag-
nostics [21]. Time-varying characteristics certainly make condition monitoring more
complex. This means that the state of health of the process, as well as the presence of
a fault, is manifested with values of the parameters of processes that are not constant.

Existing CVA-based methods that have been developed to address the problem of
fault diagnosis can generally be divided into four categories: (1) traditional CVA and
its linear variants. Their applications in industrial processes can be found in [13, 22].
Apart from CVA, its variant—Canonical Variate Dissimilarity Analysis (CVDA)—
which was designed to improve CVA’s ability to detect incipient faults, has been
proven to be effective and superior to the traditional CVA method as stated in [24].
(2) kernel CVA, which was developed to further improve the diagnosis performance
of CVA in the presence of system non-linearities [23], (3) Adaptive CVA. Adaptive
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CVA was developed for the monitoring of dynamic processes where variations in
operating conditions are incurred [14]. (4) Just-in-time-learning based CVA (JITL-
CVA). JITL-CVA was proposed due to the reason that CVA has deficiencies in
handling processes with multiple operating points. JITL-CVA has been proven to
have better fault detection performance that its CVA counterparts while still tracking
changes in the system [6]. This study will discuss in detail how CVA is utilized for
fault diagnosis, and its extension CVDA method will also be reviewed. This tutorial
also discusses how the key tunning parameters are determined through numerical
examples.

Unplanned downtime caused by system failure is costly and can incur large
economic losses and security threats. As a result, predictive maintenance has been
a very active field of research in recent years, where system failures are estimated,
and maintenance is implemented on an as-needed basis. However, it is difficult and
costly to carry out remaining useful life (RUL) prediction when equipment is under
normal conditions since little information about the degradation trend can be found
during this stage. To make a prognostic framework suitable for online monitoring, it
is essential to include a module which can automatically determine prediction start
time such that the RUL prediction is implemented only after certain failures are
detected. CVA can act as a good starting point for prognosis since CVA based moni-
toring index which is based on the deviations between past and future measurements
can be adopted to automatically determine the prediction start time. Additionally, the
constructed monitoring index provides valuable information about the health status
of the equipment, and therefore can be used to predict the RUL. Furthermore, CVA
can be considered as part of the context of the data-driven models, where an a priori
knowledge of the physical structure of the considered context is not necessary. In
this type of model, the available data and their history is manipulated and studied in
order to transform it into useful knowledge for the fault diagnosis process, and conse-
quently for the subsequent decision-making process [1]. This process is called “fea-
ture extraction” and can be performedwith different approaches, themain ones being
the qualitative approach, such as expert qualitative, and quantitative, such as PCA
[30–32]. The contribution presented in this paper for the decision-making process is
strictly representative of a quantitative approach. Numerous are the contexts in which
the decision-making process and its correlation with the fault detection process has
been analysed. The theme highlighted in each of these contributions is the need for
the decision-making process to be effectively cost-effective, ensuring that condition
monitoring do not involve unnecessary maintenance operations, with consequent
unnecessary costs [2]. The same contribution highlights how the joint analysis of
current and past condition monitoring allows, in combination with other elements,
to improve the maintenance decision-making process. This is closely related to the
technique considered in this paper, i.e. CVA, because as previously mentioned it
allows to evaluate the temporal relations between input data.

Generally speaking, CVA-based prognostic method can be categorized into two
different groups: (1) CVA state space model. CVA itself is a state-space model-based
method, and its output can be used to build a state-space model that represents the
dynamics of the system [15]. (2) CVA-based data driven models. The output of CVA
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can serve as a condition indicator of the system, and this condition indicator is often
utilized in combination with predictive data driven models to form a prognostic
scheme [17, 19].

This tutorial starts with an introduction to the original formulation of CVA. The
basic framework and techniques for determining optimal parameters are discussed.
The variants of CVA, including CVDA and adaptive CVA, are illustrated using indus-
trial case studies. The tutorial also discusses the state space-basedCVAandCVA-data
driven methods for systems prognostic analysis. This tutorial acquaints the reader
with canonical variate methods, discusses where they are applicable and what kind
of information can be extracted.

2 Canonical Variate Analysis for Diagnosis

2.1 The Basic Framework of CVA

The aim of this section is to discuss themathematical procedure for the application of
CVA. The fundamental steps for the application of CVA, following what presented
in [13], are presented in this section.

In the case of CVA, the variables of an observation can be partitioned into two data
sets that can be seen as the two aspects/views of the data. CVA application for fault
detection has been proposed in 2010 [22], where the two datasets to correlate are
the past and the future data that are created from the measurements in maintenance
application. In this tutorial, we assume that the observations are standardized to zero
mean and unit variance. The main aim of CVA is to extract and find the maximum
linear relations between the two views.

We consider the multivariate measured data yt ∈ Rn, Rn, where the process
variables are n and t is the sampling time. In order to generate two data matrices
from this measurement, we expand each sampling including p past samples and f
future samples, with the rule p = f . Then the future and the past samples vectors
y f,t ∈ R f n(e.g. y f,t is a vector of size fn) and yp,t ∈ Rpn

are obtained as follows

y f,t = [
yt+1, yt+2, . . . , yt+ f −1

]T
(1)

yp,t = [
yt−1, yt−2, . . . , yt−p

]T
(2)

y f,t and yp,t are then normalized to mean zero vectors ŷ f,t and ŷp,t to avoid the
dominance of process variables with large absolute values.

The first step generates two data matrices from the measured data yt∈Rn, where
the process variables are n and t is the sampling time. This normalization manages
and avoids an excessive influence on the monitoring result of variables with larger
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absolute values. ŷ f,t and ŷp,t are arranged in columns for creating the future obser-
vations matrix Ŷ f ∈ R f nXN and the past observations matrix ŶP ∈ RpnXN where N
= m − p − f + 1 and m represents the number of total samples in yt and t assumes
past and future values.

Ŷ f = [
ŷ f,t+1, ŷ f,t+2, . . . ŷ f,t+N

]
(3)

Ŷp = [
ŷp,t+1, ŷp,t+2, . . . , ŷp,t+N

]
(4)

Constructing the past and future matrices in this way allows each column to have
information from the nearest f /p samples and each row to have measurements in a
chronological order. Ŷ f and Ŷp are the two aspects from which we would like to
evaluate the original observations. The principle behind CVA is to find two positions
in the two data spaces respectively that have images on a new coordinate system
such that the correlations between them is maximized. The positions of the two
data sets can be obtained through techniques of functional analysis. Commonly used
functional analysis include the eigenvalue-basedmethods [9], solving the generalised
eigenvalue problem [4] and the singular value decomposition (SVD) [8]. In this
tutorial, we discuss solving CVA through singular value decomposition.

The SVD method starts with computing the variance matrices of Ŷ f and Ŷp.
According to Samuel and Cao [27], due to the symmetric positive definite property,
the square root factors of the matrices can be found using a Cholesky or eigenvalue
decomposition. By applying the Cholesky decomposition to Ŷ f and Ŷp, a Hankel
matrix H can be formulated as per (5). The SVD decomposes the Hankel matrix H
to find the linear combinations that maximizes the correlation between Ŷ f and Ŷp.

H = �
−1/2
f f � f,p�

−1/2
p,p = U�V T (5)

In (5):

• � f, f and �μ,∞ are the covariance matrices of Ŷ f and Ŷp

• � f,p is the cross-covariance matrix of Ŷ f and Ŷp

Defining r as the order of H, one can define U (6), V (7), and � (8) as:

U = [u1u2, . . . , ur ] ∈ RnpXr (6)

V = [v1, v2, . . . , vr ] ∈ Rnf Xr (7)
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� =

⎡

⎢⎢⎢⎢⎢
⎣

d1 · · · 0
· ·
· ·
· ·
0 dr

⎤

⎥⎥⎥⎥⎥
⎦

∈ RrXr (8)

The columns of U are called left-singular vectors of H and the columns of V are
called right-singular vectors ofH. n is the number of process variables.� is a diagonal
matrix, in which the diagonal elements are called singular values, representing the
degree of correlation between the values in U and V. The positions of past and future

data Ŷ f and Ŷp are obtained from V T�
− 1

2
p,p ∗ Ŷp and V T�

− 1
2

f, f ∗ Ŷ f . But when CVA is
applied for fault detection, a common practice is to further partition the positions into
a state space and a residual space, respectively. In order to do so, � is subsequently
used to truncate the matrix V to Vq (9), using the largest q singular values permit to
truncate, and the details of this process will be illustrated in Sect. 2.2.

Va = [
v1, v2,, . . . , va

] ∈ Rnpxq (9)

Ŷp is then converted in a reduced q-dimensional matrix ζ ∈ RqXn (10) based on

Va, ζ is also referred to as the image of the position V T�
− 1

2
p,p ∗ Ŷp.

ζ = [
Zt=1Zt=2,, . . . , Zt=N

] = K ∗Ŷp (10)

K = V T
q �−1/2

p,p ∈ RqXnp (11)

The residual space ψ is computed as (12).

ψ = [εt=1εt=2, . . . , εt=N ] = G ∗ Ŷp (12)

G = I − VqV
T
q �−1/2

p,p ∈ RnpXnp (13)

Similarly, ψ is the image of the position V T�
− 1

2
f, f ∗ Ŷ f . In (10) and (12) * means

multiplication.
ζ and ψ contain the vectors zt and εt being placed in a descending order,

which represent the canonical correlations between the past and future matrices
in a descending order. This is because vectors zt and εt correspond to the elements
in matrix V, which captures the canonical correlations between the past and future
data through SVD. It is obvious that ζ and ψ are obtained through applying the SVD
and the calculations illustrated in (10)–(13). ζ represents the largest q canonical
correlations, while ψ include the system dynamics are not captured by ζ.

ζ andψ together fully capture the system dynamics and can therefore be utilized to
construct a health indicator that indicates the system status for monitoring purposes.
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The health indicators are constructed with the canonical variates zt and residual
variates εt . Commonly used health indicators are the Hotelling T 2 (14) and Q (SPE)
(15) statistics [9]. The Hotelling T 2 and Q (SPE) are calculated as follows

T 2
t =

q∑

j=1

z2t, j (14)

Qt =
np∑

j=1

ε2t, j (15)

T 2 takes into account the projection of the measurement matrix into the q-
dimensional space, and Q captures the system variations not considered by T 2. In
terms of fault diagnosis, it is possible to assert that the system is in a faulty condi-
tion when the health indicator surpasses a normal threshold, computed with the data
representing the normal operative behavior of the system.

2.2 Determination of the Number of Retained States

An important parameter that affects the diagnosis results is q, i.e. the value that
determines the proven truncation of the matrix V.Different methodologies have been
proposed for the computation of the retained states q. The techniques most popular
are those based on considering the dominant singular values in the matrix Σ. The
“knee point” method was put forward recently, and the basic assumption of this
method is that one can estimate q to be the point where a “knee” appears in the
singular values curve [24]. Figure 1 illustrates how a knee point can be found in
the singular value plot. Another method that is based on dominant singular values is
cross-validation [18]. The principle of this method is to find the optimal q through

Fig. 1 “Knee point” method
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minimizing false alarms during cross-validation. This method can largely guarantee
the false alarm rate when new measurement becomes available. Akaike Information
Criterion has also been adopted to determine the value of q [3].

2.3 Determination of Fault Threshold

To recapitulate, CVA can be applied to transform process data into a one-dimensional
health indicator and consequently can be used to monitor machinery performance
and performance fault diagnosis. This monitoring approach has two stages:

• Afirst training phase, inwhich data related to themachinery during normal healthy
operating conditions are used to define a threshold of normality of the indicator.

• Then there is the actual process monitoring phase. A state of non-health of
the machinery is identified when the machinery health indicator exceeds the
previously calculated threshold.

Since real-world measurements are non-Gaussian processes, fault thresholds for
real-time monitoring need to be computed through a non-Gaussian approach. One
commonly used solution is to estimate the probability density function directly for
these health indicators through a nonparametric approach called kernel density esti-
mation (KDE) [5]. The KDE is a well-established method to estimate the probability
density function for univariate variables, thereby making it particularly suitable for
the estimation of the threshold of CVA health indicators.

Given the probability density function p(x) of a random variable x, the probability
that x is smaller than a specific value c is calculated as follows:

P(x < c) =
c∫

−∞
(x)dx (16)

The estimation of the PDF, p̂(x), of x through kernel Gaussian estimation is given
by the following:

p̂(x) = 1

N · BW
N∑

k=1

K

(
x − xk
BW

)
(17)

where N refers to the number of samples of variable x. BW is the selected bandwidth
of KDE. There is no single perfect way to calculate the BW. However, as suggested
in [22], a rough estimation of the optimal BW can be described as follows:

BW = 1.06σN−0.2 (18)
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where σ is the standard deviation, and N is the number of training data points being
taken into consideration. The kernel function utilized in this study is given by the
following:

K (w) = 1√
2π

e
w2

2 (19)

By replacing randomvariable xwithHotelling’sT 2 andQ statistics, the thresholds
for both health indicators are calculated from the PDFs of T 2and Q health indicators
for a given critical level, α, by solving the following formulas:

T 2
α∫

−∞
P

(
T 2)dT 2 = α (20)

∫ Qα

−∞
P(Q)dQ = α (21)

T 2
α and Qα are the thresholds for the Hotelling’s T 2 and Q statistics, and are the

values that we would like to calculate. The CVA procedure for fault detection is
summarized in Fig. 2. The main purpose of the offline training stage is to compute
the thresholds. The online monitoring involves constructing the Hotelling’s T 2and
Q statistics for test data and comparing them with the thresholds calculated in the
offline stage.

2.4 Extensions of CVA—Canonical Variate Dissimilarity
Analysis

The traditional CVA T 2 and Q health indices may not be sensitive enough for incip-
ient faults [24]. This is due to the reason that T 2 and Q statistics only assess the
variations from one aspect of the original measurement, although the CVA itself
maximizes the correlations between the past and future sets. A new health index,
namely canonical variate dissimilarity analysis (CVDA), was proposed to assess the
dissimilarity between the past and future canonical variates for indicating system
health. The health index adopted by CVDA method is calculated as below.

Motivated by the fact that CVA is able to find the maximum correlations between
past and future sets, one can detect small shifts by investigating how far away
future canonical variates are deviated from past. The CVDA index that quantifies
the distinctions between the past and future sets is computed as

rt = GT
q ŷ f,t − �q K

T
q ŷp,t (22)
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Fig. 2 CVA working principles

�q = diag
(
λ1, λ2, . . . , λq

)
is a diagonal matrix with its diagonal elements being

the first q canonical correlations. rt measures the discrepancies between the past and
future sets and are able to better represents small changes in the system at early stage
of faults, compared with health indices derived from traditional CVA approach [12].

The covariance of rt can be calculated as:

�r = E
(
rr T

) = GT
q E

(
ŷp,t ŷ

T
p,t

)
G + �KT

q E
(
ŷ f,, ŷ

T
f,t

)
KT

q �T

− GT
q E

(
ŷp,t ŷ

T
f,t

)
GT

q �T − �KT
q E

(
ŷ f,t ŷ

T
p,t

)
G

= I + ��T − ��T − ��T = I − ��T (23)

The distinctions between the past and future measurements are centred around a
zero mean under healthy conditions. Hence, a diagnostic health index can be formed
as the squared Mahalanobis distance of the discrepancy features from zero (i.e.
by computing the sum of squares of the dissimilarities rt for each time point t,
standardized by the covariance matrix �:

Td = [
r Tt

(
I − ��T

)
rt

]1/2
(24)
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Apart from the health index, the CVDA and traditional CVA method share the
sameworking process, including the construction of past and future sets (1)–(13), the
determination of the number of retained states and the calculation of fault thresholds.

2.5 Industrial Case Study—Canonical Variate Analysis

The case study concerns a water treatment plants used to purify the water before
entering the production cycle. The failure management of this system is essential
because an incorrect operation of aWTP implies an injection of unpurified water into
the production line. This improper release leads to production losses and significant
economic damage caused by the potential disposal of the production batch. During
a reverse osmosis process, the water is pushed onto the membrane by a pump, which
exerts a higher pressure than the osmotic pressure. The pressure required to overcome
the osmotic pressure depends on the concentration of the feed water: the greater this
concentration, the greater the pressure required. A reverse osmosis systemuses cross-
filtration, more commonly called tangential filtration. In this context, contaminants
are collected within the filter surface. To prevent the accumulation of contaminants,
crossflowfiltration allows thewater to sweep away the accumulation of contaminants
and induces turbulence strong enough to keep the membrane surface clean. The
water purification guarantees that the characteristics of the products are maintained
constant and do not compromise the subsequent operations that will be carried out
on the product.

Following the traditionalCVAmethod explained in Sects. 2.1–2.3, the plant condi-
tionmonitoring data captured during healthy operating conditions lead to the training
of themodel and to the computationof the fault thresholds.After that, the data referred
to the degradation process have been used to validate the trained model. The dataset
used for the training contains 577 measurements and the faulty process contains 170
measurements. The tuning parameter q was set to 25 following the cross validation
method [13].

Figures 3 and 4 provide process monitoring based on the T 2 and Q index respec-
tively. As can be seen from both figures, both health indices successfully detect the
fault at around 460th sampling point, given that the past p window length was set to

Fig. 3 Diagnosis results of T2 index
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Fig. 4 Diagnosis results of Q index

59 (e.g. the actual detection happens at 59 + 460 = 519th sampling point), making
the total error rate for the fault detection process the same both forT 2 andQ, i.e. 7.8%,
thus making it reasonable to assert that both indexes have the same fault sensitivity.
All errors found are attributable to false alarms and not to underestimated dangerous
situations.

3 Canonical Variate Analysis for Prognosis

CVA has been applied for both diagnosis and prognosis purposes. A few researchers
have developed exploratory studies in prognosis by using the CVA method. We
divide them into two categories, i.e., CVA-based data driven models and CVA state
space-based models.

3.1 CVA-Based State Space Models

Apart from being a two-view multivariate statistical approach, CVA is also a state
space model. CVA can be used to build a state space model that represents the
dynamics of the system using condition monitoring measurements. This method
requires that the system has one ormore input (e.g. manipulated/controlled variables)
variables that can be estimated ahead of time by looking at production plan or system
control settings. The ideal behind this method is, given the future system input and
past sensory measurements, to predict future system behavior through the CVA state
space model.

We denote system input as ut and sensory measurements as yt , the CVA linear
state space model can be built as follows [26]:

xt+1 = Bxt + Cut + wt (25)

yt = Dxt + Eut + Lwt + vt (26)



A Tutorial on Canonical Variate Analysis … 23

where xt is the system states, B,C, D, E and L are model coefficient matrices; And
wt and vt are independent white noise. According to the literature [22], canonical
variates calculated through CVA (i.e. (10)) or CVDA (i.e. (22)) can be used to replace
xt if the number of retained states q is no less than the actual order of the system. The
unknown coefficient matrices B, C, D and E can be computed through multivariate
regression as follows

[
B̂ Ĉ
D̂ Ê

]
= Cov

[(
zt+1

yt

)
,

(
zt
ut

)]
· Cov−1

[(
zt
ut

)
,

(
zt
ut

)]
(27)

where zt represents canonical variates calculated through CVA (i.e. (10)), and in the
case of using CVDA, zt should be replaced with the system dissimilarity rt (i.e. (22).

The procedures of performing system behavior prediction is described as follows.

• Obtain the system inputs ut (usually contains manipulated or controlled vari-
ables) and outputs yt (measured performance variables) during the early stages of
performance degradation.

• Build a CVA state space model based on the obtained training data. Calculate
model coefficient matrices as per Eq. (27). Calculate the system states through
CVA (i.e. (10)) or CVDA (i.e. (22))

• Estimate system future inputs by looking at production plans or control settings.
• Predict the system behavior ŷt ( f uture) according to the constructed CVA-based

state space model (25)–(26). The procedure of predicting system behaviors in the
future is actually equivalent to estimating the values of yt for future time instances.
Take yt+1 as an example (assuming system status at time t + 1 is unknown), one
first need to estimate the value of xt+1 as per (25), then substitute xt+1 into (26),
since the only unknown variable in (26) is yt+1, its value can be easily computed.

3.2 Determining the Number of Retained States

Similar to the procedures described in Sect. 2.2, the retained state q (9) is an
important tunning parameter that would affect the performance of CVA state space
model. Although various approaches have been put forward, for instance, the “knee
point” method, determining the dominant singular values and those based on cross-
validation. We suggest to use the cross-validation method, and the idea of this
approach is to find the optimal q through minimizing prediction error during cross-
validation. In order to do so, the training data set need to be divided into two parts,
one for constructing the CVA state space model and computing model coefficient
matrices; the other for determining the optimal number of retained state q.
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Fig. 5 Sensory measurement for prognosis

3.3 Example of Using CVA State Space Model for Prognosis

We demonstrate a case study on a centrifugal compressor. This machine is equipped
with various sensors to enable online condition monitoring. As shown in Fig. 5, the
machine is in the healthy condition during the first 170 samples of operation. A
variable speed drive fault happened afterwards and lasts until the 316 sample. After
that time, the malfunctioning drive was removed and replaced with a new drive.

The training data consists of two sets, namely, training data 1 and training data 2
respectively. Training data 1 is adopted to calculate the model coefficient parameters
(14), and training data 2 is utilized to determine the number of retained state. The
constructed CVA state space model is then validated using the validation data set.

The summedmean absolute andmean absolute percentage error in terms of predic-
tion error over training data 2 are plotted against different numbers of retained states
q in Fig. 6 for the determination of q . q was finally set to 1 to obtain the optimal
model that provides the highest predictive accuracy.

Figures 7and 8 show two exemplary results in terms of the predicted system
behavior over the entire timeframe of degradation. The advantages of CVA state
space model is obvious—it is able to track the stochastic fault developments very
well. But at the same time, it requires the correlations between system input and
output do not change too much during the fault evolution, and the future system
input is available in advance.

3.4 CVA-Based Data Driven Models

The output of CVA T 2 and Td can serve as a health indicator of the system, and
this indicator is often utilized in combination with predictive data driven models to
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Fig. 6 Determination of retained states

Fig. 7 Predicted system future behavior

Fig. 8 Predicted system future behavior
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form a prognostic scheme. If the calculated health indicator shows a strong degra-
dation trend that can be expressed as, say, an exponential regression model, and
simultaneously the historical failure data are scarce. One can predict its future value
through projecting time trend. On the other hand, if the health indicator contains a
lot of stochastic components, making it difficult to project the time trend, but abun-
dant historical failure data are available, one can consider adopting various machine
learning techniques to learn the correlations between these health indicators and
their corresponding remaining useful life (RUL). The learnt model can then serve as
a predictor to estimate the RUL for a new system.

In this section we demonstrate two examples to illustrate how CVA-based data
driven models are applied to carry out prognostic tasks. The role of CVA in these
prognostic models lies in reducing the dimensionality of the measured data, thereby
facilitating the subsequent data-driven predictive methods.

3.4.1 Example 1—Prognosis via Projecting Time Trend

The first example involves degradation data collected from an industrial centrifugal
pump. The measured time series consists of 380 observations and 13 variables. As
shown in Fig. 9, the system is operating under healthy condition for the first 334
samples and then had a performance degradation until the end of the time series. The
readings of the four different bearing-temperature sensors are captured and illustrated
in the figure.

As shown in Fig. 10, we adopted a grey multivariate forecasting model (GMFM)
to fit the health indicator (shown with the blue curve in Fig. 10) calculated through
CVA. This indicator was computed based on the measurements illustrated in Fig. 9.
A small portion of the health indicator at early degradation stages is firstly employed
to train a GMFM prediction model. Then GMFM was used in combination with
particle filter (PF) to perform time trend projection such that the future value of
this health indicator can be estimated with an associated confidence level (GMFM
performs the estimation and PF calculates the confidence level). The estimated health
indicator is compared with the system failure threshold, and the time at which the

Fig. 9 Measurements for prognostic analysis
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Fig. 10 Prognostic results obtained through projecting time trend

predicted health indicator reaches the threshold are considered as the RUL. The
predicted RUL for this machine is demonstrated in Fig. 10 as well. It is observable
from Fig. 10 that the predictive accuracy is lower at the beginning and the estimated
RULs lie well within the ∓ 25% confidence bounds, indicating that model has the
ability to accurately predict the system’s remaining service life. As the prediction
start point approaches the system failure point, the predicted RUL gets closer to
the actual RUL. Overall, Projecting CVA health indicator for RUL prediction is a
promising tool for prognostic analysis when the available historical data is scarce.
For more details regarding this case study, authors are referred to [19].

3.4.2 Example 2—Prognosis via Machine Learning Approaches

This example involves using a machine learning model, namely gradient boosting
tree, to learn the relationship between the various historical CVA degradation indica-
tors and their corresponding RUL values. The learnt model is subsequently adopted
to predict the RUL in the presence a new fault.



28 X. Li et al.

Fig. 11 Measurements for prognostic analysis

The data used in this example was collected from a four-cylinder compressor.
This unit experienced thirteen valve failures. The root cause of these failures was
found to be improper sealing of the valve due to a missing piece from the outer
structure of valve plate. These failures happened at either the head end (HE) or the
crank end (CE) discharge valve. Only temperature sensory data were recorded. Eight
temperature ratios, namely Suction temperature HE/CE cylinder 1–4 and Discharge
temperature HE/CE cylinder 1–4 were utilized by the site engineer for monitoring
the health status of the valves. The calculated health indicators for 13 failure cases
are illustrated in Fig. 11.

In this case study we developed a machine learning approach called just-in-time-
learning (JITL) based gradient boosting decision tree (GBDT) model. The health
indicators as illustrated in Fig. 11 are categorized into two groups, namely, one
consists of the testing machine and the rest forms the training group. The health
indicators in the training group are fed as inputs into the developed JITL-GBDT
model, and the corresponding training outputs are the true RULs of these failure
cases. The trained JITL-GBDT model is then used to predict the RUL for the testing
group. The prognostic results for failure cases 1–12 are illustrated in Fig. 12.We also
compare the JITL-GBDT model with the traditional GBDT predictor. The GBDT
model apparently resulted in overestimated RUL for cases 3, 5, 6, 7 and 10. It also
generated underestimated RUL predictions for case 2. This is mainly due to a rapid
degradation taking place within short time which makes the underlying dynamics
difficult to be captured by the GBDT model. The JITL models, however, overcome
the aforementioned problem, therefore properly captured the degradation patterns in
these situations where abrupt rises took place. However, the main aim of this case
study is to illustrate how CVA can be used in combination with machine learning
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Fig. 12 Prognostic results obtained through machine learning

techniques to predict RUL when historical failure cases are abundant. For more
details regarding this case study, authors are referred to [16].

4 Conclusion

This tutorial presented an overview on the methodological evolution of canonical
variate analysiswith an emphasis on the original linear, canonical variate dissimilarity
analysis, CVA-based state space model and CVA-based data driven model. Succinct
reviews were also conducted on the adaptive and kernel extensions. The purpose was
to explain the theoretical foundations of the variants and to demonstrate how they can
be applied to real-world for diagnosis and prognosis through industrial case studies.
The applicabilities of the different CVA extensions in relation to the properties of
the data were also discussed. The tutorial hopefully can serve as a hands-on tool for
applying CVA-based methods in diagnosis and prognosis analysis.
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A Structured Approach to Machine
Learning Condition Monitoring

Luca Capelli, Giulia Massaccesi, Jacopo Cavalaglio Camargo Molano,
Federico Campo, Davide Borghi, Riccardo Rubini, and Marco Cocconcelli

Abstract The aim of the chapter is to explain the basic concepts of Machine Learn-
ing applied to condition monitoring in Industry 4.0. Machine learning is a common
term used today in different fields, mainly related to an automated and self-learning
routine in adecisional process.This chapter details howaMachineLearning approach
may be structured, starting from a distinction between Supervised and Unsupervised
approaches. These two classes have different advantages and disadvantages that con-
strain their application to specific boundary conditions.MachineLearning techniques
are the core part of a structured methodology for the condition monitoring, but other
phases, such as the pre-processing of data, the feature extraction and the evaluation
of performances, are equally important for the success of a condition monitoring
system. Together with standard parameters used to assess the performances of the
machine learning method, a particular emphasis will be given to the interpretability
of the results that can be determinant in the choice and development of a specific
tool for condition monitoring in an industrial environment.
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1 Introduction

The increasing complexity in automatic machines, combined with the ever-growing
need to keep high quality, reliability and efficiency, requires automatic machineman-
ufacturers to develop a new complex model to improve maintenance strategies [1].
New technologies developed in the field of cyber-physical systems (CPS) and Inter-
net of Things (IoT) systems enable these companies to access a large dataset of field
data. These technologies manage interconnected physical systems, such as actuators
and sensors with cyber-computational capabilities, for example in the case of com-
puter networks, intelligent data management for Big Data and analytical proficiency
[2]. ConditionMonitoring methodologies, also called Condition BasedMaintenance
(CBM), allow a real-time diagnostics of the machine health and detect a possible
failure of the machine with weeks or even months in advance. This enables a Pre-
dictive Maintenance approach. The term Predictive Maintenance has been used for
many years and represents one of the business cases enabled by the fourth industrial
revolution. In its industrial sense, it concerns the identification of an incipient com-
ponent or function failure by the use of data collected from the machine, aggregated
and processed by means of appropriate algorithms. To be effective, the identification
of the fault is to be carried out in good time, i.e. not too late, to allow a reaction
(Time to React), but not too early (Useless Detection Window), which would lead
to change a substantially still healthy component. If the alarm arrives too late (i.e.
there is no time to react) or if the failure causes an unscheduled downtime, there is a
Missed Alarm; while, if it arrives too early, there is a False Positive. These indicators
are fundamental to establish the effectiveness of analytics used in terms of Con-
fusion Matrix, and more particularly in terms of Accuracy (a general but not very
specific indicator), Precision (whichmeasures the goodness of the result compared to
False Positives) and Recall (which measures the goodness of the result compared to
Missed Alarms). Predictive Maintenance therefore offers the possibility of reducing
unscheduled stops and increasing the reliability of the automatic machine. It allows,
eventually, to optimize the production and maintenance planning, and finally, up to
Prescriptive Maintenance, to advise the customer to carry out appropriate operations
and to optimize production plans. For the user, the advantage is to make the pro-
gramming of his production more predictable over medium and long term, above
all avoiding unscheduled stops and reducing maintenance costs. For the manufac-
turer, the opportunity is to understand and fully characterize the behaviour and the
inevitable deterioration ofmachines, in order to provide value to their customers. This
aspect cannot be totally conductedwith an accurate PreventiveMaintenance, because
there is always a statistical queue of deterioration events that occur before the sched-
uled maintenance event. Further opportunities for both the manufacturer and the user
are in turn, to minimize unplanned stops, to discover the root cause of the fault and to
reduce the waste due to the equipment failure, with the result of increasing efficiency
and sustainability. In the industrial field, this approach also transforms human service
work by improving the collaborative human–machine skills for decision-makingwith
respect to maintenance [3]. The collaborative actions between condition-monitoring
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systems and human service operations involve a socio-cyber-physical system (SCPS)
[4]. These systems are linked in a global production network where the interaction
of global and individual decision-makers acts in a different way for each sub-system
[5]. Nowadays many technologies are available for equipment monitoring, starting
from IoT sensors on edge capable of transferring real time data and pre-processing
data to cloud computing. The direct result is Big Data Analysis, which refers to
the capability of analyzing large datasets collected on the cloud, often using expert
systems. In this case, a Machine Learning approach, also known as Data-Driven
approach, is very useful because it uses historical data to create a model of the sys-
tem. The Machine Learning techniques used in CBM can be divided into Supervised
and Unsupervised. The former are used when both the sensor data and informa-
tion about failures are available, while the latter are used only when the sensor data
are available [6, 7]. This paper describes a possible approach to develop Machine
Learning models, starting from the analysis of the root cause of the problem and the
selection of the most appropriate methodologies, and illustrates the main steps and
criticalities. The chapter is organized as follows: Sect. 2 gives a general description
ofMachine Learning andDeep learning; Sect. 3 deals with the steps necessary for the
development of Machine Learning (ML) and Deep Learning (DL) models; Sect. 4
describes a general workflow for the ML and DL model creation in Industry 4.0 and
Sect. 5 explains the conclusions.

2 Machine Learning

Machine Learning is a branch of Artificial Intelligence (AI) that enables a system
to improve its abilities by means of data, while other systems cannot improve their
abilities, since they are fixed by hard coded programs. Machine Learning (ML) algo-
rithms are designed to draw elements of knowledge from data and subsequently
to apply what they have learned. The most used ML algorithms are based on sta-
tistical analysis and data mining. The statistical knowledge is combined with the
techno- logical knowledge of the problem to train algorithms in the best way. A
Machine Learning model is defined as “the output generated when you train your
machine-learning algorithm with data” [8]. In general, as previously mentioned, ML
algorithms can be divided into Supervised and Unsupervised. The former are called
Supervised because the learning of algorithms is driven and overseen by an “expert
teacher”, who labels the data and chooses the most significant pre-processed features
to be given to algorithms. In this case, it is necessary to know the system behavior
previously. InCBM, Supervised techniques translate the competences of experienced
technicians into a model that can be used with a large amount of data and in a large
number of cases. There are several examples ofML classifiers used for fault detection
and fault classification for different equipment [9, 10]. Another example is the use
of regressors, which combine multiple signals to predict the future state of a variable
concerning the health of the system [11]. In the case of Unsupervised algorithms,
input data are not labelled and algorithms are able to automatically find patterns and
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clusters in order to organize data by similarity. This method is suited to the case
in which a large amount of data are unlabelled and consequently a supervision of
input information (e.g. target class labels) is not possible in the learning process.
Unsupervised algorithms are extremely useful for identifying very complex patterns
and their results can be used as input for Supervised algorithms [12].

2.1 Deep Learning

Deep Learning (DL) is a class of ML techniques that uses hierarchical layers of
Artificial Neural Network (ANN) to learn from input data. The ANN tries to emulate
biological neurons, it consists in three or more layers: an input layer, one or more
hidden layers and an output layer. Data enter the input layer, subsequently they are
modified in the hidden layers by applying weights and they give the output in the
last layer. At this point, the difference between the network output and the expected
output is computed and the result is called error. Afterwards the network adjusts the
weights of the inner layers till the error rate is reduced. DL can have several hidden
layers connected to one another; it depends on the complexity of problems. Deep
learning is often usedwith unstructured data, in this case the features of input data are
not pre-computed, but they are directly given as input. For this reason, DL algorithms
require a vast amount of data since, in contrast with Supervised techniques, they have
to learn by themselves the most suitable features for the task.

A Deep Learning Unsupervised algorithm describes any process that tries to learn
a structure and to identify clusters without any identified output or feedback [13].
Deep Learning is based on the fact that the physical problem is not known a-priori.
The behavior of the physics of the system is acquired by observing the system itself
and it is not taught by an external teacher/knowledgeable expert. That is why Unsu-
pervised techniques are useful when the problem cannot be simply described by a
number of variables, operative conditions or features. In CBM a large amount of
data are time series coming from sensors [14]. For the analysis of this type of vari-
ables, the most used DL algorithms are the ones that handle sequential data, such
as Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM) [15] and
Gated Recurrent Unite (GRU). Other types, such as Convolutional Neural Network
(CNN) [16] and Auto-Encoders (AE) [17] are for feature extraction. In conclu-
sion, Fig. 1 illustrates a very useful comparison of the two techniques, which might
help to choose between Machine Learning and Deep Learning. The performances
of Machine Learning are asymptotically dependent on the calculated features, the
completeness and setting of training dataset. DL leverages the amount and the differ-
entiation of input data. If the two approaches are evaluated in function of the amount
of input data, the initial performances of a Machine Learning model are significantly
higher than those of a Deep Learning model. With the increase of input data, it is
possible to notice that the strict dependence of Machine Learning on the constraints
and bounds of human experience limits is asymptotical. Therefore, at a certain point,
a Machine Learning model will reach a limit impossible to be overcome because of
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Fig. 1 Performance
comparison between Deep
Learning (DL) and Machine
Learning (ML) [18]

the constraints imposed by both human knowledge and the algorithms themselves.
On the contrary, a Deep Learning model is not linked to human experience and will
reach and overcome the Machine Learning limits by increasing the quantity of input
data.

2.2 Advantages and Drawbacks of the Machine Learning
Supervised and Unsupervised Techniques in CBM

As previously mentioned, Machine Learning Supervised and Unsupervised tech-
niques represent the two most common methods, in which the algorithms can auto-
matically learn by experience. They are designed to acquire knowledge from exist-
ing data and to use this information for making predictions. Before describing these
approaches, it is necessary to specify the differences among “big”, “medium”, and
“small” dataset. The size of a dataset can greatly impact the effectiveness of the
model. For a Supervised model, the size of a dataset does not only depend on the
number of samples, i.e. the time span of acquisition and the sampling frequency, but
also on the kind of approach that the analyst wants to adopt. A practical example can
be given by the evaluation of the required size of a dataset for a Supervised algorithm
necessary to detect a specific component failure. Supposing that the component under
study has a useful life of 1000h and it is monitored by a vibration sensor, the dataset
can be:

• Small: if a machine data is one-month sampled once per day and the dataset
contains 1 or 2 failure events.

• Medium: if data referring to about 5 machines are one-year sampled twice per
day and the dataset contains at least 4 or 5 failure events.

• Big:if data referring to about 15 machines are sampled three times per day for
more than 5 years and the dataset contains approximately 30 or 50 failure events.
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Fig. 2 Comparison and visualization of the different techniques

Differently, as regardsUnsupervised techniques, the definitionof “big”, “medium”
or “small” dataset strictly depends on the application and on the model accuracy
desired. Every dataset is different, and the number of samples is arbitrary. In this
chapter, a general definition is given according to which a dataset can be:

• Small: if it includes from 102 to about 103 samples.
• Medium: if it includes from 103 to about 50 × 103 samples.
• Big: if it includes 50 × 103 samples or more.

Supervised andUnsupervised approaches have different strengths andweaknesses
that constrain their application to specific cases. The comparison between the two
techniques is described by taking into consideration the five typical different cases
that can be found in the industrial field (Fig. 2).

The five different scenarios are the following:

• Big dataset of unlabelled available data with a low know-how of the equip-
ment. This circumstance can happen when new pieces of equipment are placed on
the field and operators have not a great experience with possible future failures. If
there is a quite large dataset that consists in signals coming from different sensors,
a good approach could be the use of Unsupervised method. De facto, in a situation
in which the conditions of the monitored equipment are not well definable and
limited, a Machine Learning Supervised approach would be too strictly human-
dependent: its use could cause the problem to be bound by the mind-set of the
expert who trains the model. A good choice is the creation of an anomaly detector.
The anomaly detector is a class of Unsupervised algorithms that allows to detect
the behaviour variation of a system without any label. This kind of algorithms is
based on a statistical analysis of the signals by which a “normal” status of the
system is defined. When there are drifts or outliers from the normal behaviour, an
alarm is produced. This method has been used in several cases [19–21].
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• Medium dataset of well-known equipment. This is the case in which the quality
of feedback is well defined; the labelling process is better performed; the state of
the problems in faulty cases is well defined by specific classes; data coming from
the machinery under exam are sampled in different working conditions, they are
well balanced and explanatory of the problems. In this situation, the most suitable
approach is the Machine Learning Supervised. It allows to distinguish different
classes of failures and it can be very specific in class definition. In this way,
the classifier is trained to have an accurate decision boundary in distinguishing
different classes. Knowledgeable experts play a key role in the training of Super-
vised Learning models in manufacturing applications. With their experience, they
can direct the algorithms towards the main classes that can be detected through
some parameters. They well know how the system recognizes some specific mal-
functioning and react to it. In this way, the model can apply this knowledge and
generalize it. A great advantage of Machine Learning is to be able to achieve good
performances with fewer training data than Deep Learning, thanks to the useful
examples identified by experts. An Unsupervised approach is not suggested due
to the dataset size and the human knowledge that can accelerate the training of
Supervised algorithms. The Supervised algorithms are usually faster, simpler and
surprising flexible, if data are well pre-processed and the dataset contains useful
engineered features. De facto, the main characteristic of the Supervised Machine
Learning techniques is the ability to handle large amounts of high-dimensionality
data quickly and reliably, with a small computational cost. Another important
advantage provided by a Supervised Model it is the possibility to have a high
interpretability of the results that help the validation of the model.

• Big amount of data with an incomplete knowledge of the machine. This situ-
ation is the most typical in industry. It is quite difficult to have all the historical
data of the equipment to properly know its past abnormal behaviors or mainte-
nance operations performed to correct a faulty condition. In this case, two possible
approaches are suggested: Semi-Supervised Learning approach and Unsupervised
Learning approach. Semi-Supervised Learning is a hybrid approach in which a
trained expert should go through a small subset of a dataset labelling it. It would
require too much time and it would be an intense and costly operation, but, in the
presence of half-labelled dataset, it is possible to use Deep Learning algorithms
for feature extraction with CNN or AE. Semi-Supervised Learning is a branch
of Machine Learning that aims to combine the tasks of Unsupervised and Super-
vised Learning [22], attempting to improve their performances. It is used just in
those cases in which a combined dataset of a small amount of labelled data and a
large amount of unlabelled data is available. For the classification model, a Semi-
Supervised Learning algorithm classifies and assigns a class to those additional
data points for which the labels are unknown. Labelled data guide the model
for classification, while unlabelled data can help in the construction of a better
classifier algorithm with further information. On the other hand, for clustering
methods, the learning procedure can benefit from the knowledge that certain data
belong to a specific class. As most Machine Learning models, a Semi-Supervised
approach is focused on classification [23]. As regards Unsupervised Learning, it
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is suggested to apply an anomaly detection algorithm, which identifies extreme
points, exceptional events and observations that raise suspicions since they sig-
nificantly differ from the greater part of the data. Typically, these extreme points
are abnormal data, which can be connected to the problems due to some failures
or anomalous processes. Therefore, once data are distinguished into two classes
“normal” or “anomalous” by the anomaly detector, experts can use the know-how
of the machine in order to understand which class includes real failures and which
class includes only normal variations of the system. After that, a new dataset is
created by means of new labels, which are identified by the anomaly detector and
checked by experts. The new dataset is used as input to a classifier to automatize
the classification process.

• Small dataset of data available with a low know-how of equipment. Normally,
with the application of Machine Learning or Deep Learning algorithms, a high
amount of data (Big Data) is required to get a robust result. On the contrary,
human brain can, occasionally, learn from small dataset in an efficient way. A
branch of AI, called Meta-Learning, is scouting this possibility with encouraging
results. Basically, the aim of this approach is to develop, after a brief learning ses-
sion, amodel that can adapt to situations never seen before in a robust way. In some
respect, Meta-Learning is a way to teach the algorithm to “learn how to learn” and
apply it thoroughly. An alternative to these techniques is the use of Data Augmen-
tation approaches, which artificially create, from available data, a larger dataset,
in order to fall into one of the previous categories. This extension of the dataset
is achieved by making new data, with additional slight changes. For example, for
image data, the pictures can be replicated and rotated and/or zoomed [24].

• Small dataset of data available with a high know-how of equipment. When a
small amount of data is available, but the equipment or process is well or deeply
known, a Model Based Machine Learning can be applied. This approach offers
the opportunity to develop tailored solutions for specific scenarios, in a white-box
manner, enabling effective comparisons of trails and errors among different alter-
native models. In this technique the focus is on the model itself, for example on
engineering and domain knowledge aspects rather than on AI methods.

A practical example to understand how to implement the proper approach in a real
environment can be find in the chapter 4 titled A Structured Approach to Machine
Learning for Condition Monitoring: A Case Study, in this same book [25].

3 Development of Classifiers with Machine Learning
Algorithms

In this section all the steps necessary to develop a ML model are described. The
first step is data collection, this step is crucial because the quantity and quality of
the data collected determine the accuracy of the model. After that, it is necessary
to label each branch of data, a dataset is labelled when every instance is associated
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with a class. As regards Condition Monitoring, data labelling starts with the listing
of faulty cases. The aim is to find the period when an issue takes place and which
components, functions and failure modes are involved. In this phase, any information
is retrieved from the field. Knowing the dates when faults take place and the dates
when the components are substituted is critical. These dates determine the threshold
within which a certain component can be considered healthy or faulty. The wrong
labelling can negatively affect the training of the model. This step is also necessary
to classify and cluster the main failure modes of the components and functions of
the system. This analysis could be very useful for the decision on how many classes
are to be predicted by the model. The main types of classification task are:

• Binary Classification. This is the task of classifying the dataset into two classes.
In CBM, these two classes usually refer to a normal and abnormal state. The binary
classification is applied to those cases in which it is not necessary to predict the
type of failure of a certain component, but it is only necessary to predict the state
of that component: if it is “Healthy” or “Faulty”.

• Multi-Class Classification. Unlike Binary Classification, the Multi-class Classi-
fication can describe the evolution of a component during its life and the different
failure modes. Therefore, classes can vary from “Running-in” or “Healthy” to
“Broken” or “Faulty” if the aim is to predict the degradation phase of the system.
On the contrary, if the aim is to predict the specific type of damage of a component,
classes can assume the “Healthy” label and a different label for each known failure
mode.

• Imbalanced Classification. It is a classification method in which the classes of
the training dataset are unequally distributed. Typically, Imbalanced Classification
is a Binary Classification task in which the majority of examples in the dataset
belong to the normal class and the minority to the abnormal class. This situation
is very common in the early stage of the analysis of a new equipment. This prob-
lem requires specialized techniques to change the composition of samples in the
training dataset by under-sampling the majority class or over-sampling the minor-
ity class (Evolutionary Undersampling) [26], Synthetic Minority Oversampling
Technique (SMOTE) [27]).

The next step is data pre-processing. This is the most delicate and critical step in
a Machine Learning process. It can be split into the three following stages:

• Raw data cleaning. In this first phase, raw data sampled from the equipment
under exam are cleaned of several types of problems, such as noise, redundancy of
data and missing data. The sensors, the cables or the recording system used might
be broken and consequently the recorded signals are not consistent. To detect
possible failures of one of the recording system components, it is suggested to use
algorithms that can eliminate the inconsistent data automatically. Another type of
bad data-recording might be caused by a wrong logging policy of acquisition in
which, for instance, the data sampled are not acquired during the desired phase
of work of the machine. A wrong logging policy or a logging issue can lead to
a redundancy of data or a lack of data acquired during the process. During the
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Fig. 3 Scatter plot of: a binary classification dataset, b multi-Class classification dataset

Fig. 4 Imbalanced binary
classification dataset

cleaning phase, all the cases listed above will be excluded from the list of raw data
that will be used to extract features [28] (Figs. 3 and 4).

• Feature extraction. Basic domain knowledge and contextual understanding are
the key to create a structured and high-quality dataset. The result of this step is a
dataset that consists in a collection of features representing examples of different
status of the system. If there is an incomplete knowledge of the features to be used,
DL algorithms can be of help to feature extraction, but only for large datasets.
Another method consists in starting the analysis by computing several features
and subsequently in reducing their number by means of statistical methods, such
as Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), or
the use of ML algorithms that weight input features, for example Random Forest
[29–32].

• Dataset cleaning. The dataset obtained from data pre-processing needs to be
cleaned before being given as input to Machine Learning Supervised algorithms.
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To clean-up the dataset, it is necessary to handle missing values. An improper data
collection could cause a lack of data in the dataset that can be filled with feature
values obtained by interpolation, but this solution could add variance to the dataset.
The dataset often contains features with different unit of measure, magnitude and
range. This can pollute the output of the model. In this case, feature scaling is to be
applied. Feature scaling is a technique used to standardize features in a fixed range.
There aremanyways to scale feature values, themost important are standardization
and normalization. Standardization modifies the features in such a way that their
mean is equal to 0 and standard deviation to 1, while normalization scales the
features between 0 and 1. Feature scaling is often optional and not required, but
sometimes it really influences the Machine Learning models [33, 34].

After the data pre-processing, it is a good practice to visualize the data to search
possible relationships among features or variables and to check if the dataset is
balanced or unbalanced. The balance of the dataset is an important point because, if
the ML model is trained with many data belonging to one class, the model can be
subject to bias. For example, if the input data have only two classes, one of which
containing 90% of input data and the other one containing 10% of input data, the
ML model will be biased towards guessing that the larger part of the system status
belongs to the first class. But it is not true because the dataset is a small representation
of the global status of a system. For this reason, it is important to balance the dataset
as much as possible in order that all the classes are balanced. The ML model usually
needs three different datasets to be developed: train, test, and validation. The first
is used to train the algorithm; the second to test the output of the ML model and
to optimize it; the third is used to validate the real performances of the model. An
exception to the MLmodels is the Bayesian Neural Networks that do not necessarily
require a validation set. The three groups of data (train, test, validation) are to be
balanced and a good practice is to randomize the data order to exclude any bias
produced by a time order of the recorded data. The general rule is to use 70 % of
the dataset as training data, 20 % as validation data (in order to adjust parameters
with the aim of tuning the model) and 10 % as test data (in order to evaluate the
accuracy, recall and precision of the final model). The next step is the choice and
training of the model. Several ML models are used for CMB. Some of them are
well suited to classification (Support Vector Machine [35], Random Forest [36]),
other ones to regression (Neural Network regression [37], LASSO regression [38]),
while other ML models are suitable for time series analysis (RNN, LSTM). The
important thing is to choose a model suited to the task. Subsequently, it is possible
to train the model; each model has its own training time; DL models could need
a dedicated hardware such as GPUs. After the training, the performances of the
model are evaluated through a validation dataset containing data never used in the
training process. Validation represents how the model might perform in the real
environment. Different tools are used for validation. A Confusion Matrix is a table
that allows to measure the performances of a classification algorithm. Each column
contains the actual class, while each row represents the instances in a predicted class.
Four performance metrics are to be considered: Accuracy, Precision, Recall and F1
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Fig. 5 Confusion matrix
nomenclature

Score. Before defining each of them, it is important to define four values related to
a general classification:

• True Positive (TP): number of correct predictions of Positive class.
• True Negative (TN): number of correct predictions of Negative class.
• False Positive (FP): number of incorrect predictions of Positive class.
• False Negative (FN): number of incorrect predictions of Negative class (Fig. 5).

Here is the description of the four performance metrics:

• Accuracy: it measures the overall accuracy of the model classification. It is the
ratio between the number of correct predictions and the number of predictions.

ACCURACY = TP + TN

TP + TN + FP + FN
(1)

• Precision: it measures the accuracy of a class. It specifies how good the algorithm
is for the identification of a Positive class without any false alarms. It is the ratio
between the correct predictions of a class and the sum of the correct and incorrect
predictions of the same class.

PRECISION = TP

TP + FP
(2)

• Sensitivity or Recall: it measures the portion of elements belonging to a class
classified in a correct way. It specifies how good the algorithm is for the identi-
fication of a Positive class without any false alarms. It is the ratio between the
correct predictions of a class and the sum of correct predictions of the same class
and incorrect predictions of the opposite class.

RECALL = TP

TP + FN
(3)

• F1 Score: it is very common to have an excellent Precision with a bad Recall and
vice versa. F1 Score provides a way to express both metrics with a single score.
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Fig. 6 Receiver operating
characteristics (ROC) curve
(green line) and area under
the curve (AUC) (grey area)

This measure is the variant that is very often used when data are unbalanced. It is
calculated as the harmonic mean of Precision and Recall.

F1 = 2
1

RECALL + 1
PRECISION

= 2
PRECISION ∗ RECALL

PRECISION + RECALL
(4)

In order to have a graphical representation of the metrics, the ROC (Receiver
Operating Characteristics) curve (Fig. 6) is used. It represents the TP and the FP in
the same graph. The AUC (Area Under the Curve), which is the area under the ROC
curve, is a good estimator of the quality of the model and represents the degree of
separability between the classes [39].

After the evaluation, the next step is the parameter tuning. The data expert can
optimize the model and test new configurations in order to be more confident about
the chosen model and the results. A possible action is to conduct more tests on the
model performances by means of different training tests and validation datasets. In
this case, if the performances are nearly similar, it means that the dataset has been
balanced and randomized properly. Themodel can also have a problem of overfitting;
in this case, it succeeds in well predicting only some classes because of a problem of
unbalanced dataset, i.e. themodel only recognize itself, and it is not able to generalize
the detection on new data. Another action is to change some parameters of the model.
In parameter tuning, one of the most used variables is learning rate. It defines the
step size used for each learning iteration while the model is minimizing the model
error (loss function). This parameter is fundamental for the accuracy of the model
and for the time used in the training phase.

4 Model Development Workflow

This section describes the way in which ML models can be implemented and opti-
mized for CBM in Industry 4.0. Figure7 represents the main approaches to predict
maintenance problems and they are not exclusive. The main aspects that characterize
each development phase can be summarized as following:
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• Deviation Monitoring:

– Manual or semi-automatic approachwhere human contribution is often required
(Human in the loop).

– It provides early warnings regarding potential failures with or without any
knowledge of other similar failures.

– It requires the knowledge of the system to label its “healthy” conditions.
– It might require the knowledge of admissible working conditions.
– It does not provide any predictions or estimation of the dataset.

• Automatic detection and classification:

– Fully automatic (without Human in the loop) detection of the root causes of the
failure.

– Only modelled failures can be detected and classified.
– It provides additional information on which type of failure will occur and a
confidence level of prediction for the modelized failures.

– Model performances can be measured with precise metrics. Business logics can
smooth false predictions.

– Labelled data are necessary, the model performances are strictly connected to
the quality and quantity of the labelled data.

• Remaining Useful Life:

– Automatic (without Human in the loop) estimation of remaining days or cycles
before the failure.

– The estimation is based on observations and modelling of past failures.
– It is used for long term maintenance of assets.
– Labelled data are necessary, the model performances are strictly connected to
the quality and quantity of the labelled data.

The correct approach can be chosen case by case and it depends on the business
case because of the different effort required. Moreover, the type of point of interest,
quantity and quality of available data and labels contributes to highlight the proper
strategy according to the requirements of each step.

Deviation monitoring phase can provide early warnings or advise about poten-
tial issues. It is usually the first step of analytics in CBM. This phase is mainly
focused on plotting raw data or pre-processed features with the main purpose of
detecting anomalies in the behaviour of the system. This is the most general and
easiest approach to be implemented. It requires only the knowledge of the system
under analysis without any need to gain access to big amounts of historical data and
labels. Limited information on the type of failures and time to failure is usually pro-
vided. This approach implies the human expert in the loop; the expert leverages on
the available information and the knowledge on the system to determine if the actual
condition of the machine is anomalous. This is one of the most common approach
CBM for manufacturing lines especially in those cases where the machines under
monitoring are different fromone another or have differentworking conditions.Devi-
ation monitoring phase is also useful for defining indicators used in the next phases,
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Fig. 7 Condition monitoring landscapes

in particular the observation of the selected indicators leads to confirm their usability
or to narrow down the available information. Furthermore, the observation leads to a
better understanding of the behaviour of the indicators and the functions with respect
to failures and to a redefinition of the business case. As regards rotating machines,
for instance, it is important to select the correct indicator on the basis of the specific
failure mode. Some indicators, such as impulsiveness and energy content of recorded
vibration signals, are very useful and intuitive in the detection of anomalies based
on historical data observation. In case of failure classification, these indicators could
be insufficient as they represent only two characteristics of the vibration signal. An
example is represented in Fig. 8. In this case, the trend of the Root Mean Square
(RMS) of the vibration, that represents the energy content of the signal, is constantly
increasing with the evolution of the failure over time; while kurtosis, that represents
the impulsiveness of the signal, is notmonotonically increasing, but it shows sporadic
peaks some weeks or months before the failure. The behaviour of these indicators
can vary a lot depending on the failure mode.

Typically, in the case of servomotors, these indicators fluctuate during the lifetime,
decreasing to a working level after the initial running-in till a failure takes place for
the damage of the mechanical components. The impulse indicators remain high just
for the short time the failure is generated to come back to a normal or even subnormal
level very rapidly. The indicators can sometimes drop below the normal level when
the energy content and the general vibration level increase. The loss of rigidity in the
system can cause a higher vibration level. In particular, this affects those components
under cyclo-stationary state, which generate high levels of kurtosis even during the
normal working conditions. The increase in noise can sometimes cover the peaks of
the signal normally generated by the cyclo-stationary effect. This makes necessary
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Fig. 8 Indicator behaviour in deviation monitoring phase

a continuous observation of the indicators over time in order to recognize the actual
status of the system. For this reason, a proper observation of the indicators and
choice are crucial for the next automatic detection phase. The main parameters used
for deviation monitoring in rotating machines are the following:

• RMS: it is defined as the square root of mean square;
• Variance: it is the second central moment of a real-valued random variable;
• Skewness: it is the third central moment of a real-valued random variable;
• Kurtosis: it is the fourth central moment of a real-valued random variable;
• Quartiles: they are the 25th, the 50th and the 75th percentiles of the input variable.

Moreover, parameters related to frequency are also used to trend specific indi-
cators over time since they are more connected with failures. They are calculated
starting from the kinematical model of the system and considering all the connected
components, such as gearboxes, motors, valves etc. The information coming from
the model is merged with the information coming from the used sensors, such as
encoders, current sensors and accelerometers. The indicators are calculated on the
basis of the acceleration or velocity (acceleration integral), of the spectrum of the
vibration by computing the energy content (RMS) and the peaks of a specific band-
width corresponding to the characteristics of the failure.

The typical parameters considered are showed in the failuremodematrix in Figs. 9
and 10 The figures illustrate the theoretical importance of the specific spectral com-
ponents in relation to the type of failure, respectively for ball bearing components
in Fig. 9 and Gearboxes in Fig. 10. For each failure mode described in rows, a spe-
cific weight is given to the more probable feature calculated in frequency domain.
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Fig. 9 Ball bearing indicators/failure mode matrix

In this way, it is possible to distinguish and classify failures with similar frequency
component behaviour. For example, the energy content of the described frequency
bandwidth and its normalized variation over time is computed and visualized in a
matrix to cross-correlate the variations with the theorical features behaviour.

Failure classification phase provides outcome on the status of the specific point
of interest by warning if the data are classified as potential failures. This phase is
focused on the development of all the possible procedures useful for automatically
recognizing when the system status changes, but it does not give any information
about the estimated failure time. Alerts can be generated on a binary classification or
a multiclass classification depending on the failure modes of the components under
observation and on the business case. As regards the binary classification, it does not
provide any indications of specific failures, but it only warns about anomalies in the
conditions of the components. For manufacturing machines, the most appropriate
model is always a balance among benefits, simplicity and implementation effort.
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Fig. 10 Gearbox indicators/failure mode matrix

While the multiclass classification is usually done through Machine Learning tech-
niques, the binary classification can be obtained even through a simple threshold
control. The multiclass classification can instead offer the possibility of distinguish-
ing several types of failure, but it also requires a bigger and more detailed dataset.
Data of several failures are to be available for each failure mode so that it is possible
to accurately describe and model the behaviour of monitored failures. Accuracy of
the model in respect to all possible failure modes of that function is proportional
to the number of similar events present in the dataset; unknown failures cannot be
modelized and this decreases the recall generating missed alarms. The main goal of
this phase is to automatize the human experience in detecting anomalies through the
visualization of selected feature variations. Experts are still in the validation loop
to confirm a possible prediction and reinforce the learning of deployed algorithms.
Furthermore, depending on the dataset balance, it is possible to train algorithms in a
unique class. This is useful for detecting deviations from a “normal” path of the data
and subsequently alerting in case of anomalies. Remaining Useful Life phase pro-
vides insights in the remaining life of the component or functions useful for schedul-
ing maintenance interventions and optimizing time and resources. Moreover, it is
suitable for long term asset maintenance. The application of these techniques make
sense only in the case of failures in which time constant between the possible detec-
tion and the failure is considerably high and smoothed enough to be predicted. RUL



A Structured Approach to Machine Learning Condition Monitoring 51

implies a deep knowledge of every failure mode of a specific component and a huge
amount of data of failures to be analysed. In this phase it is crucial the availability
of several component life cycles (from the asset installation to the asset failure) to
characterize the behaviour of the indicators representative of the system status. This
is mainly applied to series of production machines where a big amount of cycles
for each failure mode can be collected, but it is not sustainable in case of different
types of machines or different working conditions. RUL estimation and knowledge
of failure modes are the key steps for prescriptive analytics.

There are different methods and techniques [25] that can be listed for RUL esti-
mation. The methods can be grouped into the following categories:

• Model Based: applying statistical and computational intelligence.
• Analytical Based: applying physics based modelling, possibly based on or vali-
dated by experimental results.

• Knowledge Based: using a collection of information from domain knowledge
experts and interpretating it with computational intelligence.

• Hybrid: using domain knowledge based models and data-driven approaches, in
order to improve accuracy.

The techniques, which can be effectively applied for RUL estimation, are elements
of above-mentioned methods and can be clustered in the following way:

• Statistics: it is the use of techniques based on statistical analysis, such as Statistical
Process Control.

• Experience: it is based on domain knowledge expert judgement; it identifies fea-
tures giving information about the degradation of mechanism or process and can,
in turn, facilitate the preparation of the RUL formula.

• Computational Intelligence: it includes Artificial Neural Networks, Fuzzy Logics,
Bayesian techniques, Support Vector Machines, among other techniques.

• Physics of failure: it relies on parametric data and techniques to characterize the
failure behaviour and evolution over time.

• Fusion: it applies a merge of datasets of different origin.

5 Conclusions

This chapter presents a workflow to select and optimize a proper technique for
Machine Learning in condition monitoring applications. It describes the series of
phases necessary for selecting the best methodology according to the problem under
exam, the points of interest, the availability and consistency of the dataset. In indus-
try, the increasing mechanical complexity of systems and the big diversification of
working conditions require the usage of advanced techniques to detect and classify
anomalies, to optimize maintenance events and reduce unplanned stops. The main
differences between Supervised and Unsupervised techniques are illustrated and
contextualized in typical industrial applications, taking into consideration the most
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relevant aspects of failures, data availability and result interpretability. Furthermore,
the main metrics to measure the performances of the model are explained within the
industrial environment, where precision and recall metrics show undetected failures
or false alarms that can lead to additional costs for customers. In CBM for industry
4.0, experts’ knowledge is combined with powerful statistical tools. In this mixed
approach, a crucial phase is the extraction of the proper features based on the model
of the system and observability of the failure modes. Thanks to this approach, it is
possible to construct a reliable and trustworthy dataset that realistically describes
the behaviour of the system with a good degree of generality. Deep Learning tech-
niques are instead a powerful tool that can be represented as a black box where input
and output data are known, while the features useful for describing the conditions
of the system are unknown. This approach can be used when the phenomena to be
described are unknown or they cannot be represented easily. The feature extraction,
which usually plays a key role in the description and interpretability of the system,
is automatically done by the models on the basis of the input dataset that needs to
be larger than the one used in the Machine Learning case. The fundamental pillar
in the use of ML and DL in industrial environment is the large-scale utilization of
intelligent sensors and IoT devices that allows to collect a large amount of data.
The availability of big datasets, together with the refinement and discovery of new
algorithms, cannot leave the deep knowledge of the phenomena under observation
and the system characterization out of consideration.
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Abstract This chapter details the application of a machine learning condition mon-
itoring tool to an industrial case study. The process follows the content of the corre-
sponding tutorial chapter and is a step-by-step example of the setup of a monitoring
kit in a packaging machine. The case study is particularly interesting since it is
focused on Independent Carts System. This consists of a closed path made up of
modular linear motors having a straight or curved shape and controls a fleet of carts
independently. The application, not so common nowadays, proves the feasibility of
the proposed condition monitoring approach in a non-trivial case, with scanty lit-
erature on it. The target is the diagnostics of ball bearings present in the wheels of
the carts in order to reduce downtime due to the breakage of these components and
to maximize their life cycle cutting down spare part costs. This chapter details the
phase of feature extraction, the Machine Learning methods used, the results and the
metrics for measuring them. Considerations will be made in particular on the accept-
ability/interpretability of the results and the industrial significance of the metrics.
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1 Introduction

The improvement of technology, especially as regards logic controllers, has enabled
linear servo motors to perform tasks that were not possible before. In this way,
mechanical complexity has decreased while software complexity has increased.
The Independent Carts System (Figs. 1 and 2) uses linear motors to control one or
more movers that are constrained by rollers to follow a track. The track can have
different shapes with curved and straight parts and it has a flexible architecture in
order to buildmodular configurations. In thisway, a high-performanceflexible system
can be carried out, with this technology each mover can be controlled independently
[1, 2].The movers can accelerate, decelerate, take an absolute position and produce
forces. The velocity of the movers can be very high with respect to rotary motors,
each mover can move with a velocity of 4m/s.

Thanks to the reduction of moving parts, the maintenance of the components is
reduced with respect to the technology of chain and belt drives. The bearings inside
the rollers are subject to wear and the condition monitoring of this system is chal-
lenging due to the non-stationary working conditions. As a matter of fact each cart
can have a different motion and load profile that can also change during the produc-
tion. The objective of the chapter is to show the use of different Machine Learning
algorithms to detect the damaged bearings. Technical backgrounds and details about
machine learning and its application for condition monitoring can be find in the

Fig. 1 Straigth and curved
linear motors

Fig. 2 XTS system with 12
carts
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chapter 3 titled A Structured Approach to Machine Learning for Condition Monitor-
ing, in this same book [3]. The system taken into account is an XTSBeckhoff System
and the use of Machine Learning algorithms allows to predict the time when a single
cart has to be replaced. This work is organized as follows: Sects. 2 and 3 describe the
Data driven algorithms used for the implementation of the fault detection classifiers.
Section 4 describes the different experiments, the training and the validation of the
different models. Section 5 explains the conclusions of the research.

2 Random Forest

The Random Forest (RF) algorithm was developed by Breiman [4] in 2001. Random
Forest is a machine learning model based on tree bagging. Bagging is a machine
learning ensemble meta-algorithm designed to improve stability and accuracy; it is
used in statistical classification and regression. It also reduces variance and helps
to avoid overfitting. Random Forest consists of an ensemble of simple decision-tree
predictors, each of which gives a class prediction as output and the class that has the
largest number of votes becomes the prediction of the model (Fig. 3).

In the nodes of the trees there are thresholds based on one or more features that
decide if the data must proceed to the left or to the right of the tree. On the contrary,
as regards the leaves, the probabilities are calculated on the basis of the elements
of each class that ends up in a given leaf. As regards classification problems, the
ensemble of simple trees votes for the most popular class. As regards regression
problems, the responses of the trees are averaged to obtain an estimate of the depen-

Fig. 3 Random forest Classifier architecture [7]
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dent variables. The use of tree ensembles can lead to a significant improvement in
prediction accuracy.

3 Deep Learning/Autoencoder

Autoencoders were first introduced in the 80s by Hinton and the PDP group [5] to
solve the problem of “backpropagation without a teacher”. The aim was to train
a model on a dataset with no pre-existing labels and with the minimum human
supervision. Autoencoders are neural networks, used with the purpose of generating
new data, firstly by compressing the inputs into a space of latent variables present
in the middle layer of the model, which are not directly observed but are rather
inferred; secondly by reconstructing the output based on the acquired information.
These latent variables consist in the most salient features extracted from the inputs.
Autoencoders generally use neuron dimensional reduction algorithms in order to
force the model to learn how to represent, with a smaller number of dimensions, the
space represented by all the training set. The Autoencoder network consists of two
parts:

• Encoder: the part of the network that compresses the inputs into a space of latent
variables and which can be represented by the encoding function:

h = f (x) (1)

• Decoder: the part that deals with the reconstructing of the inputs on the basis of
the information previously collected. It is represented by the decoding function:

r = g(h) (2)

Therefore, the Autoencoder, taken as a whole, can be described by the function

d( f (x)) = r (3)

where r is the most similar to the original input x .
There are several variants on the basicmodel,which aim tomake the learned repre-

sentations of the inputs assume useful properties. In this application, theAutoencoder
is mainly used for anomaly detection, by learning to replicate the most salient fea-
tures in the training data. The model is encouraged to learn how to reproduce the
most frequent characteristics of the observations precisely. When facing anomalies,
the model worsens its reconstruction performance. In most cases, only data with
normal instances are used to train the Autoencoder (Fig. 4).
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Fig. 4 Autencoder structure [6]

4 Problem Description

Because of the newness of the Independent Carts Systems and the scarcity of these
machines in a real production plant, there is not yet any knowledge of real damages
of the bearings for the XTS system. Consequently, fictitious damages were created
in order to develop a data-driven monitoring system. They are as similar as possible
to real damages that can occur in the field.

The damages created are the following:

• Rusty damage: it is created by immersing the bearing into a solution of water and
salt for one week. It is considered as a distributed damage.

• Inner race damage: it is created by drilling the inner ring with a tip of 0:2 mm.
It is the lightest damage and it is punctual.

• Outer race damage: it is created by cutting the outer ring of the bearing. It is a
serious damage and it is punctual.

• Blockage damage: it is created by blocking the sphere of the bearing with rust
and metals. It is the most serious damage; it is also very dangerous for the rail, if
it is not recognized quickly (Fig. 5).

After the creation of these four types of damages, it was observed that the rusty
bearing could not rotate. For this reason, rust was removed and the bearing was
lubricated in order to give it the possibility of spinning. In the image below, it is
possible to see the transformation (Fig. 6).
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Fig. 5 Damaged bearing images, from the left to the right: (1) Rusty bearing, (2) Bearing with an
inner ring damage, (3) Bearing with an outer ring damage, (4) Blocked bearing

Fig. 6 From the left to the
right: (1) Bearing during
water treatment (2) Rusty
bearing after the removal of
the rust

4.1 Preliminary Test on Rotary Test Rig

A simplified and hyper-monitored test rig was used to guarantee the correctness of
the artificial damages. The term correctness means the possibility of observing the
damages with machine learning algorithms in a simpler case. This first test also
helps to check if the artificially damaged bearings are too dangerous for the entire
Independent Carts System. In this case, the simplified tests consist in the analysis of
the inner, outer, rusty, blocked damaged bearings and of the healthy one in the rotary
motor test rig (Fig. 7)

Fig. 7 Rotary motor test rig
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The Rotary Motor Test Rig is made up of:

• Servo motor Beckhoff AM8022-0D20-0000
• Shaft connected to the motor on which the bearings are mounted.
• Piezoelectric accelerometers (IFM VSP001) placed at 90 degrees to monitor the
bearing with high precision.

• PLC and driver for the control of the motor and the recording of the accelerometer
signals and the motor signals.

The variables recorded for the tests are the following:

1. The vibrations of the lateral and upper accelerometers recorded for twenty-five
times, with a sampling frequency of 20 kHz, each recording for one hundred
seconds.

2. The current of the servomotors recorded for twenty-five times, with a sampling
frequency of 400 Hz,each recording for one hundred seconds.

Considering that in this test the bearing velocity is equal to 300RPM, about 2500
samples were generated for each type of condition (rusty, inner race damage, outer
race damage, blockage damage and healthy). This dataset has been divided by using
1500 samples of each condition in the training set and 1000 samples of each condition
in the test set. The raw vibration and current data were recorded for the different
typologies of the bearings installed on the Rotary Motor Test Rig and a labelled
dataset was developed. Several features in time domain and frequency domain were
computed for each recording, they were used for the development of a Random
Forest Classifier. The computed features are listed in Appendix. A Random Forest
Classifier was trained and tested to observe if the differences between the damaged
and healthy bearings were detectable. Figure 8 shows the weight that the Random
Forest Classifier gives to the first ten most relevant variables. The higher the weight,
the more important the feature for the classification in a precise configuration of the
Random Forest. To have a complete map of the importance of the features and to find
the most significant ones, several training datasets with different subsets of features
were given to the Random Forest.

The results of these Random Forest models can be summarized by using the
confusionmatrix and accuracy, precision and recall (Fig. 9). Backgrounds and details
about reconstruction error and confusion matrix can be find in [3] (Fig. 10).

From these results, it is possible to deduce that the artificially damaged bearings
are detectable by means of the Random Forest model trained with the vibration vari-
ables or with the current variables. Figure 11 shows the weight that the Random
forest Classifier gives to the first ten most relevant variables but considering current
signals only. The tests show that the current signal gives less information about the
condition of the bearings, most probably due to the sampling rate and the control
loop of the driver. De facto, the current sampling rate is 400 Hz, a lower value in com-
parison with the sampling rate of vibrations that is equal to 20 kHz. Consequently,
the current signal does not allow to analyze if there are resonance phenomena at fre-
quencies higher than 200 Hz, while the vibration signals allow to analyze resonance
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Fig. 8 The importance of all the features evaluated by the Random Forest algorithm. Numbers in
brackets refer to specific parameter detailed in Appendix

Fig. 9 Confusion matrix of the random forest algorithm in the test set, trained on all the features

phenomena up to 10 kHz. The other reason is due to the motor control loop, because
the internal P.I.D of the driver directly changes the supply current of the motor and
this action is overlapped to the current variation due to the bearing damage. Though
there are these drawbacks, the current signal allows to identify the condition of the
bearings, even if with less accuracy.

This separate analysis of current and vibration was made because the signals are
recorded in both Rotary Test Rig and XTS Test Rig. Because of the differences
between the two test rigs, the significance of the two signals changes chiefly because
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Fig. 10 ConfusionMatrix of the RandomForest algorithm in the test set, trained only on the current
features

Fig. 11 Importance evaluated by the Random Forest algorithm trained only with current features.
Numbers in brackets refer to specific parameter detailed in Appendix

in the Rotary Test Rig the accelerometers are placed close to the bearings, while
in the XTS Test Rig they are placed on the fixed frame of motors. De facto, in the
XTS Test Rig the vibrations are not directly linked to each cart and consequently they
reduce their significance. Furthermore, it is possible to observe that, regardless of the
pre-processed signals, all the trained RandomForest models givemore importance to
Skewness, RMS, Kurtosis in comparisonwith the other features. These three features
are already used in the literature on condition monitoring and this is a further proof
of the correct implementation of the Random Forest models.
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4.2 XTS Test Rig

With the certainty that the artificial damages are visible and cannot cause damages
on the Independent Carts System, a test procedure was defined to develop a dataset
with the aforementioned damaged bearings in the XTS test rig. The number of the
movers used to test the faulty bearings and the sequence of tests were decided ran-
domly to reduce the possible environmental variations in the tests and to improve the
repeatability of the tests themselves. The total number of tests is 12 and for each test
the system variables were recorded four times. The test table is shown in Fig. 12.

Each test was run following this standard procedure:

1. Setting of the faulty bearing on the mover indicated by the test.
2. Twenty-minute warming-up of the test rig without any data recording.
3. Forty-second recording of all variables considered.
4. Repetition of the procedure from point three to point four for six times.

The variables taken into consideration are:

• Actual position of each cart, with a sampling rate of 4 kHz.
• Actual velocity of each cart, with a sampling rate of 4 kHz.
• Position and velocity errors expressed as the difference between the actual position
and velocity with respect the real position and velocity, all with a sampling rate of
4 kHz.

• Actual current of each cart, with a sampling frequency of 4 kHz.
• Vibration signals of two accelerometers placed on the top and bottom part of the
frame with a sampling frequency of 20 kHz.

The procedure for creating the test dataset, which is shown in Fig. 12, is the same
procedure used for the training dataset reported in Fig.13

It can be observed that, during the training phase, no data about the blocked
bearing were collected, since this is an extremely invasive damage that can seriously
damage the track of the XTS. In order to train and validate the algorithm, the data

Fig. 12 Training table with the different tests for all the types of damages
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Fig. 13 Test table with the different tests for all the types of damages

Fig. 14 Signal cut in the constant velocity part with respect to the mover position

coming from the XTS Test Rig were pre-processed. The training dataset consists in
12 different tests (Fig. 12), each of them includes 6 records of the system variables
for each mover, while the test dataset consists in 18 different tests (Fig. 13), each of
them includes 6 records of the system variables for each mover. For each recording,
the row signals were divided into laps considering the actual position of each mover
and eliminating the signals recorded along the curved parts of the track. The signals
recorded in the curved parts are eliminated because they show a very high level of
noise. Even the signals recorded on the top strength part of the track are eliminated
because in that zone the movers have a variable motion profile that increases the
complexity of the analysis. Figure 14 shows the part of the recorded signals taken
into consideration after the pre-processing.
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Fig. 15 Random forest weight for each feature. Numbers in brackets refer to specific parameter
detailed in Appendix

The vibrations, which are not referable to the actual position of the mover since
the sensors are placed on the frame and not on each cart, are cut into different
laps considering position 0 of mover 1 as starting point and ending point. Carrying
out different tests on these data, it is noticed that the features of vibrations are not
considered by the Random Forest Classifier because they are not referred to each
mover but to the general system. It can also be noted that the algorithm, trained with
signals recorded in the upper part of the track, tend to overfit the prediction on each
mover. This can be explained considering that the carts have variable velocities in
the upper part of the track and the motion profile is different cart by cart, while they
have a constant velocity in the bottom part. To avoid the aforementioned problems,
the vibration data are not taken into account, but only the other signals recorded in
the bottom zone of the test rig are considered. For each pre-processed signal, the
features of Appendix are calculated.It is important to try to understand the reasons of
the importance given to the features by the Random Forest. This allows to carry out
a robust pre-processing phase, in which it is necessary to select the features useful
to solve the problem, without considering the ones that are only descriptive of the
training set and do not generalize the problem. This leads to avoid the overfitting of
the model.

As regards the scarcely meaningful features, the algorithm gives them a very low
weight, so they are directly discarded. Fig. 15 shows the importance of the first ten
most relevant features evaluated by the RandomForest. It is possible to notice that the
features referred to vibrations are not considered, while the ones referred to current
are the most significant for prediction.
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Fig. 16 Binary Random Forest Classifier final output

It was also evaluated the possibility to use only the ten most important features for
the Random Forest training and test. The comparison between the Random Forest
Classifier based on the ten most important features and the Random Forest Classifier
that uses all the features, except vibrations, shows a higher accuracy prediction in
the second model. For this reason, the output data shown in Fig. 17 regard the
Random Forest Classifier trained with all the features, except vibrations. In order
to evaluate the correctness of the trained algorithm for an industrial target, it is
not possible to take into account only accuracy, recall and precision because it is
necessary also to evaluate the cost of false predictions (false positives) and missed
alarms (false negatives). De facto, if the system under monitoring is crucial and the
cost of sending a service engineer to monitor it, in case of alarm, is low, it is better
to have an algorithm with the lowest number of false negatives, but it is acceptable
to have a large number of false positives. Nevertheless, the opposite case can occur
as regards both the terms of cost and the conditions of the system. For this reason,
a good approach is to evaluate the cost of the possible errors of the algorithm and
give them a weight dependent on the cost. There is no information on the costs and
consequently it was chosen to create a variable in order to tune the model according
to the needs. The "tuned variable" consists in defining a threshold of the number
of predictions referring to faulty bearings before the system predicts a damage by
means of an alarm. The threshold was established on the following basic rule:

• if the model classifies as faulty more than 35% of the recordings regarding amover
in a given test, the global prediction is considered faulty.

Figure 16 shows the results of the binary classification with the Random Forest
Classifier and Fig. 17 shows the complete confusion matrix. In this case the rusty
bearings were not taken into consideration because they did not show a level of
damage that could reduce the performances of the machine
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Fig. 17 Binary Random Forest Classifier Confusion Matrix

4.3 Autoencoder for Anomaly Detection

In order to have an outline of different data-driven techniques, it was chosen to use an
Autoencoder model to monitor the state of the mover bearings of the XTS system. In
this case, the Autoencoder was used for reconstructing the healthy state of the carts
in the best way. De facto, when a bearing suffers a damage, the reconstruction error
increases and by means of this output it is possible to detect the problem. For this
reason, the training datasets of the Autoencoder include only signals of the healthy
carts, while the test datasets include the signals of both healthy and damaged carts
(Fig. 18).

In this case, the data used for training and test are the raw data of current, divided
by cart loops on the XTS path, considering only the bottom part of the path as shown
in Fig. 14. The new training set consists in healthy data, while the test set consists in
all the faulty data plus some healthy data that are not used in the training dataset. In
deep learning models the following functions are greatly important:

• Loss Function: it is the function that has to be minimized or maximized by the
algorithm, it is also called cost function or error function.

• Evaluation Function: it is the function used to compare the real input with it is
own reconstruction, during test phase.

In this specific case, for the training and test of theConvolutionalAutoencoder 1D,
the Mean Squared Error was used both as Loss Function and Evaluation Function.
The main characteristics of the model are listed and briefly explained below:

• Convolutional Autoencoder 1D: in this case the samples are raw data with one
dimension, for this reason this type of Autoencoder was chosen. It is not the

Fig. 18 Convolutional Autoencoder 1D as Anomaly detector, for faulty carts discovery
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most common case of Convolutional Neural Network (CNN) utilization, since it
is usually used for Images (CNN 2D).

• Mean Squared Error or Reconstruction Error: it was used to make the model
converge to a local minimum during training. The more the model reduces it
during the descent phase of stochastic gradient and the more the input is similar
to the output. The more the Loss value of a model is low and the more the features
in the latent space (middle layer of Autoencoder) describe the input correctly.

MSE = 1

N

N∑

i=1

( fi − yi )
2 (4)

• Padding of type Causal: It allows not to violate the temporal order of the samples
with respect to the normal padding that violates this constraint. In this case it has
been very useful, because the samples utilized in training and test of the model are
temporal data.

Figures 19, 20 and 21 shows the reconstruction error distributions for the different
types of bearing conditions in the test set. A smaller reconstruction error is expected
for the healthy samples, while a higher one is expected for the different types of
damages. That is why the Autoencoder used was trained to recognize only the salient
features of the healthy state. It can be noted that the probability distribution of the
reconstruction errors for the same type of damage and cart is the Gaussian one.
The Gaussian distribution of the reconstruction errors of the healthy samples is
the one with the lowest mean. The distribution of reconstruction errors of rusty
samples overlaps the healthy one. This is due to the fact that, after the cleaning, the
rusty bearing was very closed to the healthy state. It is instead observable that the
distributions of reconstruction errors of the inner, outer and blocked damages do not
completely overlap the healthy one. In this way, the Autoencoder allows to generate
thresholds able to separate the healthy samples from the faulty ones.

Fig. 19 Autoencoder reconstruction errors of the mover 5
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Fig. 20 Autoencoder reconstruction errors of the mover 5

Fig. 21 Autoencoder reconstruction errors of the mover 5

Figure 22 shows the results of regression expressed in Confusion Matrix, while
Fig 23 shows the percentages of the samples correctly classified by using a threshold
equal to 0.13 as a discriminator between healthy and faulty samples on the top of the
probabilities calculated by the Autoencoder.

As noticed in Figs. 19, 20 and 21, not all the probability distributions of movers
with healthy bearings are centred on the same value. This is the factor that introduces
the misclassification of some healthy samples as faulty, while the misclassification
of faulty bearings as healthy is due to the small entity of the damages, which makes
faulty bearings similar to the healthy ones.
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Fig. 22 Confusion Matrix
of the Anomaly Detector
without rusty samples

Fig. 23 Percentages of samples correctly classified by using a threshold equal to 0.13 as a dis-
criminator between healthy and faulty samples on the top of the probabilities calculated by the
Autoencoder

5 Conclusions

Since the system taken into account in this specific case is technologically recent,
there is not yet any case of real damaged bearings. In order to overcome the problem,
a methodology, which uses artificial damages, has been created. It allows to explore
data-driven solutions even in the early stages of the development of condition mon-
itoring infrastructures. Both Random Forest and CNN Autoencoder can classify the
different types of damages and the healthy state of bearings correctly, with good pre-
cision, recall and accuracy. De facto, the trained model is considered robust. It is not
too sensitive to the systemvariations, and identifies bearings,which are slightlyworn,
as damaged. In the case under study, for example, the inner damage of bearings is
very light, and it does not affect the system performances. For this reason, the trained
model is very accurate to detect outer ring damaged bearings and blocked bearings,
but it is less accurate to detect inner damaged bearings. The artificial damages were
created to be the most similar as possible to the real ones, there is no certainty that
the machine bearings will have the same type of wear. Consequently, three different
types of failure bearings with different levels of damages were created. Furthermore,
artificial damages do not show the wear evolution of the component over time, but
they represent only a definite state of damage. On the contrary, by monitoring the
system in the field, it is possible to observe the evolution of real damages. This fact
reduces the reliability of the above describedmodels for industrial applications. Nev-
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ertheless, it was essential to generate them in order to understand the most relevant
system variables, the way of cleaning and pre-processing the signals and to find the
most promising algorithms for the detection of the system failures. As amatter of fact,
the trained Random Forest model allows to identify both the harsh artificial damages,
such as block and outer ring damages, and the lightest artificial damages, such as the
inner ring damages, with a good accuracy. On the basis of these performance data, it
is possible to conclude that even in the case of real damages there are considerable
chances of training a robust classifier based on the architecture previously shown.
Moreover, it is convenient to use an Autoencoder model as an Anomaly Detector
in order to overcome the problems observed in the Random Forest Classifier. This
type of model was chosen because it can be trained only with the class of healthy
cases, encouraging it to replicate the most significant features of this class. In this
way, when the machine is in the field, it will be possible to train an Autoencoder
during the first months of operation and subsequently to detect possible anomalies of
the cart behaviour. When the number of machines is relevant and there are labelled
data of healthy and faulty carts, it will be possible to train a Random Forest Model
in order to detect and identify the different types of the machine failures.

Appendix

Let S be a signal composed of K points of amplitude xi :

1. Mean: it is the average of all values of the signal/sample

xm = 1

K
∗

K∑

i=1

x(i) (5)

2. Standard Deviation: it is the deviation from the mean of the signal/sample.

xstd =
√∑K

i=1(x(i) − xm)2

K − 1
(6)

3. Variance: it is the square of Standard Deviation.

xvar =
∑K

i=1(x(i) − xm)2

K − 1
(7)

4. Root Mean Square: it is the square root of the mean of squares of a sig-
nal/sample.

xrms =
√√√√

K∑

i=1

x(i)2

K − 1
(8)
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5. Maximum Amplitude: it is the value of the maximum amplitude of the sig-
nal/sample.

xmax = max(x(i)) (9)

6. Minimum Amplitude: it is the value of the minimum amplitude of the sig-
nal/sample.

xmin = min(x(i)) (10)

7. Peak to Peak Value: it is the difference between maximum and minimum peak
values.

xppv = xmax − xmin (11)

8. Square Root of Amplitude: it is the value of the root of Amplitude.

xsra = (
1

K

K∑

i=1

√|x(i)|)2 (12)

9. Skewness: it is the measure of lack of symmetry in the probability distribution
function.

xskew =
∑K

i=1(x(i) − xm)3

(K − 1)x3std
(13)

10. Skewness Factor: it is the Skewness value divided by the square of the mean of
squares of amplitudes.

xskewFactor =
∑K

i=1(x(i)−xm )3

(K−1)x3std

(1/K
∑

i=1 Kx(i))3
(14)

11. Kurtosis: it is the measure of the spikiness of the signal/sample relative to a
normal distribution.

xkurt =
∑K

i=1(x(i) − xm)4

(K − 1)x4std
(15)

12. Kurtosis Factor: it is the Kurtosis value divided by the square of the mean of
squares of amplitudes.

xkurt Factor =
∑K

i=1(x(i)−xm )4

(K−1)x4std

(1/K
∑

i=1 Kx(i)2)2
(16)
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13. Clearance Factor: it is the ratio of maximum amplitude value to square of mean
of root of absolute values.

xcl f = xmax

(1/K
∑K

i=1

√|x(i)|)2 (17)

14. Shape Factor: it is the value of howmuch the shape of a signal is affected, other
than shifting or scaling.

xs f = xrms

(1/K
∑K

i=1

√|x(i)|) (18)

15. Impulse Factor: it is the ratio of maximum amplitude value to mean of absolute
values.

xi f = xmax

1/K
∑K

i=1 |x(i)|) (19)

16. Crest Factor: it is the ratio between themaximum amplitude and the RMS value
of the signal/sample.

xcf = xmax

xmin
(20)

17. Sum: it is the sum of all signal point values in a sample/signal.

xsum =
K∑

i=1

x(i) (21)

18. Entropy: it is a calculation of the uncertainty and randomness of a sampled
signal.Given a set of probabilities, (p1, p2, ..., pn), the entropy canbe calculated
as:

e(p) = −
K∑

i=1

p(zi )log2p(zi ) (22)

19. Activity: it is the variance of the signal.

Activi t y = σ 2
x (23)

20. Mobility: it is the square root of the ratio of the activity of the first derivative
and the activity of the vibration signal.

Mobili t y = σ
′
x

σx
(24)
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where σ
′
x is the standard deviation of the first derivative of the vibration signal.

21. Complexity: it is calculated as the ratio of mobility of the first derivative and
the mobility of the vibration signal.

Complexi ty =
σ

′′
x

σ
′
x

σ
′
x

σx

(25)

22. Max Power Spectrum: it is the Value of the maximum power of the frequency
spectrum.

x f max = max(Power(n)) (26)

23. Max Envelope: it is the maximum value of the envelope of the signal/sample.

xenv = max(Env) (27)

24. Frequency Center: it is the average of all values of spectrum of the sig-
nal/sample.

fc =
∑K

i=1 f ∗ S(n)
∑K

i=1 S(n)
(28)

25. Root Mean Square Frequency: it is the square root of the mean of squares of
spectrum of a signal/sample.

frms =
√∑K

i=1 f 2 ∗ S(n)
∑

i=1 K S(n)
(29)

26. Root Variance Frequency: it is the deviation from the center of the frequency
of the signal/sample.

fstd =
√∑K

i=1( f − fc)2 ∗ S(n)
∑K

i=1 S(n)
(30)
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Dynamic Reliability Assessment
of Structures and Machines Using
the Probability Density Evolution
Method

Sajad Saraygord Afshari, Ming J. Zuo, and Xihui Liang

Abstract The reliability of a structure or machine is affected by many factors, such
as operating conditions and design quality. Dynamic reliability assessment of struc-
tures and machines has been an important research topic, and many researchers have
tried to address this problem. The Probability Density Evolution Method (PDEM) is
a practical approach for accurate reliability assessment, especially when dealing with
complicated systems or undetermined environmental conditions. This book chapter
presents thePDEMand its applications in dynamic reliability assessment ofmachines
and structures. The PDEM equation uses some basic concepts of probability to esti-
mate the time-varying response of structural and mechanical systems, which can
be used for accurate reliability analysis. The PDEM equation and the step-by-step
procedures for dynamic reliability assessment are explained. The PDEM-based Reli-
ability Assessment Method (PRAM) is presented in two perspectives that are offline
and online PRAM. The offline PRAM is suitable for predicting the reliability in
the future that is useful in the design phase for improving the design of a structure
or machine based on the reliability requirements in the future. The online PRAM
is suitable for the evaluation of the reliability using online monitoring data, which
is beneficial for updating the maintenance policy of the system based on accurate
reliability estimation. A bearing and a cantilevered beam are used as two case studies
for illustrating the applicability and the advantages of PRAM for dynamic reliability
assessment.
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1 Introduction

Most engineering systems are comprised of structural and mechanical components
that are facing different uncertainties due to the inherent randomness in both dynamic
loadings and structural parameters. Reliability analysis is a practical engineering idea
to assess the uncertainties associated with these systems for further increasing the
reliability and reducing risks. Reliability is defined as “the probability of a system or
component, performing its intended functions under specified operating conditions
for a specified period of time” [1]. Many reliability assessment methods have been
developed to calculate the probability of failure in a structural or mechanical system.
Monte Carlos Simulation (MCS), response surface methods (RSM), and first/second
order reliability methods (FORM/SORM) are some of the most common reliability
assessment methods.

Two significant factors affect the accuracy of the reliability estimation. The first
factor is the time-varying operating condition. For example, the rotating speed of
a mechanical component such as a bearing may change versus time, and different
bearings do not experience the same speed profile even when used in the same loca-
tion. The second factor is the degradation of a structure or machinery due to ageing,
corrosion, fatigue, etc. Hence, it is necessary to consider the time-varying condition
and deterioration of structural and mechanical systems for reliability assessment.
By extending the reliability calculation to time-variant machines and structures, new
considerations must be taken: (1) for reliability assessment of time-variant structures
and machines, the failure criteria at different points of time may change because of
the change of dominant failure modes; (2) for time-variant systems, the probability
of system parameters can change as well as the probability of the system response
[2]. Therefore, the common reliability assessment methods become less applicable
for time-variant or dynamic systems [3, 4]. In other words, the method of estimating
reliability using probability density function (PDF) of limit state functions paves
the road for the probabilistic design of structures and machines. However, it is not
accurate enough for a time-varying reliability assessment, hence raising the need to
develop dynamic reliability assessment methods.

Generally, the consideration of randomness in a given system is referred to as
probabilistic system analysis, while the dynamic stochastic analysis describes the
future state of the system using its history plus probabilities of successive changes
[5].Modeling of dynamic systems has been historically initiated by Einstein’s studies
on the Brownian motion [6], where he developed an evolution equation for particles’
density suspended in a fluid and stated it as a diffusion equation. His thoughts were
subsequently boostedbyother scientists, includingFokker (1914), Planck (1917), and
Kolmogorov (1931). As a result of these endeavors, random vibration theory became
a highlighted division of stochastic dynamic analysis in the 1950s [6]. Subsequent
theories and analytical techniques in dealingwith dynamic linear systemswere estab-
lished at the turn of the century and reached a proper maturity level for application
in mechanical and civil engineering fields [7].
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Even with all the above progress in the stochastic analysis of linear systems,
there were still significant challenges for precise response prediction of nonlinear
stochastic dynamical systems. In 2004, Li and Chen presented a Probability Density
Evolution Method (PDEM) according to the principle of preservation of probability
[8], which allowed for randomness propagations in dynamical systems. The method
of PDEM is of great importance and has been applied in different engineering inves-
tigations, such as the prediction of the behavior of a structure or machine or the
reliability assessment of different engineering systems [9–24]. Besides the appli-
cability of the PDEM for the design and analysis of nonlinear stochastic systems,
regarding its substantial capability to predict the systems’ behavior in the future under
uncertain environment and loading, the PDEM has received significant attention for
reliability assessment of mechanical and structural systems.

One of the most common uses of the PDEM-based reliability assessment method
is the dynamic reliability analysis of nonlinear stochastic structures. In this respect,
Chen et al. [25] applied the PDEM to evaluate the instantaneous PDF of the response
of a generalmulti-DOFnonlinear dynamic structure. The reliability is then calculated
through a simple integration over the safe domain. In [26], the PDEM is applied to
estimate the dynamic reliability of an 8-story frame with random parameters, and it
is shown that the method is efficient and accurate compared to other methods from
the literature. The PDEM is also widely used for reliability assessment of structures
under uncertain excitations such as seismic loading [9, 27–30]. Several studies have
also used the PDEM for fatigue life reliability assessment of structures [2, 17, 31]. In
general, when there exists a challenge with nonlinearity, uncertainty, or complexity
of a structure, the PDEM has usually outperformed other existing methods; some
examples of such situations are studied in [25, 32–35].

Not only The PDEM has been widely used for reliability assessment of structural
systems, but also it has been utilized for reliability assessment and performance
prediction of mechanical systems such as bearings, gearboxes, and engines. Yang
et al. [36] used the PDEM to calculate the anomaly distribution of an aero-engine
turbine with an initial crack. They demonstrated that the PDEM outperforms the
Monte Carlo simulation for their case study. In [37] awavelet-based PDEM is applied
for reliability analysis of wind turbines; the use of PDEM for failure analysis of wind
turbines is also investigated in [38]. In [39], random gust is considered using the
PDEM to study the response of a stall flutter system. In [12] the PDEM is used to
calculate the lifetime reliability of an aircraft wing under different damage scenarios.
In [40] the PDEM is utilized to assess the performance of power systems via the
calculation of dynamic probabilistic load flow. It should be noted that the PDEM
equation is mathematics-based, and it can be used for a variety of other applications
such as bistable systems driven by colored noise and Gaussian white noise [33],
reliability of data storage of a gyroscope [41], or reliability-based active control of
dynamic systems [13].

Considering the literature, the PDEM is an excellent method for performance
prediction and dynamic reliability analysis of different dynamic systems. To be more
specific, when facing systems with uncertain properties or considerable changes in
the system or structural properties (for example, degrading systems), or systems
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with high levels of nonlinearity or systems that are operating under time-varying
conditions, the PDEM is a constructive and practical approach. The PDEM is shown
to be more effective than the Monte Carlo simulation and the subset simulation in
many cases and is a feasible method to deal with the reliability analysis of complex
problems [42]. This method has also been verified experimentally in several studies,
such as [12, 43]. To summarize, the key advantages of using the PDEM for reliability
assessment of dynamic systems are as follows: (1)The solution of thePDEMequation
is a time-varying joint PDF of the system response and structural parameters. This
time-varying PDF can considerably enhance the accuracy of reliability assessment
for dynamic systems. (2) In most cases, the computational effort of the PDEM is
considerably low compared to some other reliability assessment methods such as
MonteCarlo simulation anddifferent surrogatemodeling techniques. (3)Unlike other
probability density evolution equations, such as the Liouville equation and Fokker–
Planck equation, this method leads to a family of equations, which are numerically
amenable [44]. (4)Uncertainty andnonlinearity are decoupled in thePDEMequation,
making the PDEM a simple and straightforward approach that can be used together
with many other techniques to cover a wide range of reliability analysis problems.
For example, online condition monitoring data can directly be fed back to the PDEM
equation to update the calculated reliability and increase the accuracy of the estimated
reliability.

In this book chapter, the PDEM equation is presented, and it has been explained
through its physical interpretation and its application in the reliability assessment
of engineering systems. Here, the PDEM-based Reliability Assessment Method
(PRAM) is presented in two viewpoints that are offline and online PRAM. Offline
PRAM is suitable for predicting reliability in the future, the offline term stands for
the situation that we do not need real-time feedback from the system condition, and
we use the initial system model to calculate the dynamic reliability of a system that
is useful in the design phase for improving the design of a structure or machine based
on the reliability requirements in the future. The online PRAM is appropriate for the
reliability analysis using online monitoring data; in other words, the PDEM equation
in online PRAM is constructed using real-time data. Online PRAM is beneficial for
updating the maintenance policy of the system based on accurate reliability estima-
tion. Followed by the introduction of the PRAM, a cantilevered beam and a bearing
are used in this book chapter as two case studies for illustrating the applicability
and the advantages of the PRAM for dynamic reliability assessment of engineering
systems.

The organization of this book chapter is as follows: the PDEM-based reliability
assessment method is described in Sect. 2. Section 3 is dedicated to the dynamic
reliability assessment of structures. The application of the PDEM for dynamic relia-
bility assessment of machines is presented in Sect. 4, followed by the discussion and
future research directions in Sect. 5.
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2 The Probability Density Evolution Method

In this chapter, the probability density evolutionmethod (PDEM) is described. PDEM
is a method for analyzing the evolution of the probability densities of engineering
systems. It is developed based on the principle of preservation of probability. The
PDEM equation is introduced in Sect. 1.1, and some notes and physical interpreta-
tions around the PDEM are given in Sect. 1.2, and in Sect. 1.3, we will explain how
the PDEM can be used for dynamic reliability assessment of engineering systems.

2.1 The PDEM Equation

Generally, the PDEM equation can be derived for any dynamic system based on the
system’s equation of motion. The dynamic behavior of a general multi-degree-of-
freedom (MDOF) system can be stated as the following equation [6]:

M(�)Ẍ(t) + C(�)Ẋ(t) + f(�,X) = F(�, t) (1)

where at a given time t,Ẍ,Ẋ, andX represent the acceleration, velocity, and displace-
ment vector, respectively (they are all of the N order, which is equal to the degree
of freedom), F is a random or deterministic external excitation, � is a vector of
all system parameters with known (or assumed) PDF reflecting the uncertainty in
excitation or physical properties. This assumed uncertainty could be in the material
intensity, applied force’s frequency andmagnitude, or even in the type of the external
force function or any other kind of other properties of the structure such as material
density [45]. M and C are mass, and damping matrices of the system, respectively,
and f(·) is the restoring (elastic) force vector (for a linear system, it can be written
as K�(θq) X where K is the stiffness matrix).

If we assume a fixed vector of �, Eq. (1) becomes a deterministic equation and if we
assume a PDF for the vector of random variables,�,Eq. (1), turns into a probabilistic
equation that can be solved through different simulation schemes such as MCS
and importance sampling. Nevertheless, when considering the past plus changes in
the probability of � versus time, we will face a stochastic equation. To solve the
equations of motion in a stochastic form, we need to set up the relationship between
the initial PDF of the system’s random factors and the instantaneous PDFs of the
same parameters at the desired time interval [46]. That relationship can be concluded
from the principle of the preservation of probability. Based on the principle of the
preservation of probability [46], if no new random factors appear and the existing
random factors do not disappear, the probability within the system will be preserved
[47]. The mathematical formulation of the principle of preservation of probability
and other necessary considerations for using that principle are provided in [46].
Now, based on the principle of preservation of probability, the PDEM equation for
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an MDOF system as given in Eq. (1), can be written as:

∂PX�(X, θ, t)

∂t
+

m∑

l=1

hX,l(θ, t)
∂PX�(X, θ, t)

∂Xl
= 0 (2)

Equation (2) is called the general evolution equation for calculating the joint
probability density of the specified dynamic response of a system with specified
system parameters. In this equation, m represents the number of dimensions, Xl is
the system response vector in the specified direction, and hX,l(θ, t) is the derivative
of the response vector. It should be noted that when a one-dimensional physical
quantity is of interest (e.g., mass or displacement in a specific direction), m = 1, and
the probability evolution equation reduces to:

∂PX�(X, θ, t)

∂t
+ hX(θ, t)

∂PX�(X, θ, t)

∂X
= 0 (3)

or in a more straightforward form:

∂PX�(X, θ, t)

∂t
+ Ẋ

∂PX�(X, θ, t)

∂X
= 0. (4)

The initial condition is:

∂PX�(X, θ, t)|t=t0 = δ(X − X0)p�(θ) (5)

where X0 is the initial vector of the physical response variable. Now, using the
finite differencemethod, the PDEMpartial differential equation (Eq. 4) can be solved
together with the physical equation (Eq. 1). In other words, to solve the PDEM
equation (Eq. 4), we need to find Ẋ and substititue it into the PDEM equation (Eq. 4),
then using the introduced initial condition (Eq. 5), the joint PDF of the system
response and uncertain system parameters, θ will be concluded. it should be noted
that there is no limitation in the means to find Ẋ, it can be calculated via solving
the system’s equations of motion and simulating the system response or it can be
directly fed back to the PDEM equation from a condition monitoring system.

The detailed steps to calculate the PDEM equation using the principle of the
preservation of probability can be found in [6, 45].

2.2 Physical Interpretation of the PDEM

The probability density evolution method was developed from physics-based
dynamic equations, and, as noted before, its theory is based on the probability preser-
vation principle. There are other conservation laws in nature, such as the conservation
of mass and the conservation of energy. The probability of a random event is also
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conserved, which is the perspective of the principle of probability conservation. Li
and Chen [47] explained that principle from the perspective of random event descrip-
tion [48]. The critical assumption for using the probability preservation principle is
that the existing random factors do not disappear, and no new random factor is
added to the random system. If we go far back through the physical interpretation of
the principle of preservation of probability, this principle, and its key assumptions
emanate from the first law of thermodynamics, known as the Law of Conservation of
Energy. The law of conservation of energy states that “energy can neither be created
nor destroyed; energy can only be transferred or changed from one form to another”
[49].

From the PDEM equation and due to the randomness propagation, the proba-
bility density function (PDF) of any random event will be different at any time in
the processes of evolution. The change of the PDF will result in a specific proba-
bilistic response of the system at any specific point in time. The significant difference
between the PDEMmethod and other reliability calculations methods is that the PDF
of system response is not a constant function, and it can change versus time based on
all random factors associated with the system and environment. The other methods
that can account for randomness propagation in physical systems are methods such
as the Fokker-Plank equation [50], which is very hard to solve for real systems and
structures.

2.3 Dynamic Reliability Assessment Using PDEM

Generally, assuming a safe domain of system response,�s, and having the probability
of system response at the time τ , as P(X(τ )), the system reliability can be stated as:

R(t) = P{X(τ ) ∈ �s; τ ∈ [0, t]} (6)

Equation (6) indicates that the reliability is related to the probability of the random
event’s response stating in the safe operation domain over the operational time
interval [0, t]. Here, ΩS is directly related to the definition of the failure criteria
by a designer or an operator, and it can be concluded from primary numerical anal-
yses or tests. For example, in a structural system,�S represents themaximumallowed
displacement that is the failure threshold, or in a mechanical component such as a
bearing or gearbox, �S denotes the maximum allowed vibration amplitude.

Upon solving the PDEM equation, the time-varying joint probability density of
the system response and uncertain parameters,PX�(X, θ, t), will be calculated. “For
example, if the system response of a structure is displacement, and the uncertain
parameter is structural stiffness, the joint probability density of the displacement and
the structural stiffness can be calculated via the PDEM as a function of time.”

If the solution of this equation is considered as P̃X�(X,�) at time t, (denoted
below as P̃X� (X, �, t)), then the total PDF of structure response can be estimated
by integration over the uncertain parameter’s domain of variation, ��, as:
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P̃X(X, t) =
∫

��

P̃X�(X,�, t)d� (7)

Finally, the equation for the PDEM-based reliability assessment method (PRAM)
considering predefined failure criteria (or the safe domain) can be given by:

R(t) =
∫

��

P̃X(X, t)dX (8)

In other words, Eq. (8) integrates over the probable structural responses before
reaching the failure state (�s boundaries).As it is evident from Eq. (8), the estimated
reliability via the PRAM is not a constant value anymore, and it is a function of time,
which ismore suitable for assessing the reliability of a dynamic system. The complete
procedure of using the aforementioned steps towards estimating reliability through
the PRAM is presented in the flowchart of Fig. 1. Regarding this flowchart, it can be
seen that the user needs to find a system model at first, based on a measured system

Discretize Random 
Distribution of 
Uncertainties as 

Points θq

Find System Parameters  and 
Apply Uncertainty to Them

Solve the PDEM Equation

Integrate Over Physical Parameter Domain 

Integrate Over Safe Domain of  Structural Response 

q < Nq

kΘ(θq)

Structural Reliability 

NO

Yes
q=q+1

Identify 
Parametric 

System Model  

Measure System Response 

Find Ẋ  via Solving Eq. (1) or directly via SHM

Fig. 1 Proposed algorithm for the PDEM-based reliability assessment method
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response or an analytical method. Then, the user has to assume a probability density
for the model parameter (s), to generate discretized parameters to be substituted to
the system equation, Eq. (1), for further calculation of the system response and also
solving the PDEM equation (Eq. 3). The PDEM results in a joint probability density
function of the system response and the uncertain parameter (P̃X� (X, �, t) ). After
integrating over the physical parameter’s domain of variation, a time-varying proba-
bility density function for the system response will be calculated, which can be used
for the calculation of the reliability, as in Eq. (8).

Afterward, in Sects. 3 and 4, two examples are presented to demonstrate the
applications of the PDEM. The first example (Sect. 3) is the application of PDEM
for structural reliability analysis, and the second example (Sect. 4) is dedicated to
the dynamic reliability assessment of a bearing.

3 Dynamic Reliability Assessment of Structures

One of the most useful applications of stochastic response analysis of mechanical
and structural systems via the PDEM is to make a foundation to improve the safety,
reliability, and serviceability of engineering systems in their expected service life. As
mentioned before, Reliability is defined as “the probability of a system or component,
performing its intended functions under specified operating conditions for a specified
period of time.” Hence, an accurate reliability estimation depends on the definition
of three important factors: (1) intended function (which also results in the definition
of failure criteria), (2) operating condition, and (3) the time that is connected to the
service life. For a dynamic structure, the factor mentioned above can change versus
time. Thus the reliability can also change.

Regarding that background, the main objective of reliability analysis is to esti-
mate the probability of the system response not exceeding the failure criteria. For a
dynamic reliability assessment, the dynamic system response can be concluded from
the PDEM. In this section, two approaches for using the PRAM are introduced, and
a cantilevered beam is also experimentally tested as a case study to demonstrate the
applicability of the PRAM for dynamic reliability assessment of structures.

3.1 Offline PDEM-Based Reliability Assessment Method

There are two key steps towards performing the PRAM that are constructing the
PDEM equation (Eq. 4) and solving the PDEM equation. Comprehensive expla-
nations about the method of solving the PDEM equation are provided in [19, 51].
Here in this chapter, we are introducing two different approaches for constructing
the PDEM equation that are the offline and online PDEM methods.

In order to construct the PDEM equation, we need to substitute into Eq. (4). If we
are in the design phase, or we are not able to run the system for a long time to monitor
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and collect Ẋ values for all the expected service life, we can solve the system equation
ofmotion to simulate Ẋ and then substitute it into thePDEMequation (Eq. 4).Herewe
call this method “offline PRAM” because we do not require real-time feedback from
the system condition to estimate the reliability. Another alternative for assembling
and solving the equations of motion is using a system identification technique to
identify the system response function. The latter technique can be applied to both
linear and nonlinear systems. There are various methods for system identification,
such as classical regression methods and neural networks, mostly used for nonlinear
systems.

3.1.1 Application of the Offline PRAM

In many systems with high safety and reliability demands, the design is optimized
based on the reliability requirements. For example, imagine a satellite system that is
supposed to be fully functional for twenty years in the space. It is not feasible to use
high safety factors when designing that satellite, because a large safety factor burdens
higher weight to the system and probably makes that satellite too heavy for being
launched through a launch vehicle. Therefore, systems like that exemplary satellite
are usually designed based on their service life reliability. On the other hand, for a
system that is going to be used for many years, it is not feasible to perform a real
lifetime test in order to collect the lifetime data and calculate the system reliability.
In such cases, using the offline PRAM would help engineers and designers to use a
simulation scheme for finding the dynamic reliability of the system for its service
life.

3.2 Online PDEM-Based Reliability Assessment Method

As explained in the previous section, we must calculate or monitor the Ẋ value in
order to substitute it into Eq. (4) to perform the PRAM. It is explained that how Ẋ can
be calculated with a computer simulation to achieve an offline reliability estimation
via the PRAM. The offline PRAM provides a potent tool for design optimization and
safety analysis of engineering systems. However, when online monitoring data from
the current state of structural and mechanical systems are available, the accuracy of
the PRAM can be further improved by directly substituting Ẋ from the condition
monitoring unit into Eq. (4). Here, the latter technique is called online PRAM.

3.2.1 Application of the Online PRAM

With the help of modern condition monitoring systems, gathering the information
of actual system response has become feasible. This information can be used to
improve reliability estimation. Based on an accurate and near-to-actual reliability
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value, operational staff can be informed ahead of any critical operation state. For a
large engineering systemwith numerous set of components, maintenance scheduling
is a critical task which can affect many factors such as safety and cost. An accurate
online reliability assessment method such as online PRAM would greatly help to
maintain a system with an optimum cost and appropriate safety.

In the next section, we will perform both offline and online PRAM for a structural
system, which is a composite piezo-laminated cantilevered beam.

3.3 Case Study: Cantilevered Beam

In this book chapter, the PDEM-based reliability assessment method (PRAM) is
introduced in two different manners. One of the most common applications of the
PRAM is the reliability assessment of structural systems. Here, in this section, the
application and accuracy of the PRAM for reliability assessment of a cantilevered
beam structure is experimentally investigated. Cantilevered beam structure is one of
the simplest andmost used structural components in engineering systems; hence it can
be an excellent example for verifying the PRAMapplicability for structural reliability
assessment. The experimental test and the presented case study are previously studied
by Afshari et al. [13], and it is also presented here for a better understanding of the
PDEM-based reliability assessment method.

3.3.1 Experimental Setup

As presented in Fig. 2, a cantilevered composite (E = 20 GPa, ρ = 1197 kg/m3), is
used for the experimental study of the online and offline PRAM. Two piezoelectric
actuators are bonded on both sides of the composite beam for applying the necessary
actuation force as an external loading. A piezo-sensor is also attached at the fixed
end of the beam for strain acceleration sensing. The thicknesses of the beam and
piezoelectric patches are 2 mm and 0.6 mm, respectively. Additional details about
the dimensions are provided in Fig. 3, and a schematic diagram of the experiment is
shown in Fig. 4. In this experiment, all piezo-patches are surface-bonded at the fixed
end of the beam. A PIEZO SYSTEM INC. 20X amplifier is used to excite the piezo-
actuator, and PicoScope® 5000 Series data logger is utilized as an analog–digital
converter.

3.3.2 System Identification

In Sect. 3.1, it is explained that in order to perform an offline PRAM, first, a math-
ematical model of the system is required. The mathematical model will be used to
simulate the system response during its expected service life for further construc-
tion of the PDEM equation. Here, the frequency response function (FRF) of the
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Fig. 2 Experimental setup: a cantilevered beam structure with bonded piezoceramic sensors and
the actuation system

30

400
5

2.35
9

Fig. 3 The beam schematic and its dimensions (mm) [14]

cantilevered beam is used to extract a numerical model for the cantilevered beam.
The utilization of the FRF to estimate a system model is known as nonparametric
system identification, and it is a common approach in structural systems [52].

Here, FRF data is obtained by applying a sinusoidal sweep excitation to the beam
to excite the natural modes of the beam within the desired frequency domain. The
excitation is performed by exciting the piezo-actuators. The piezoceramic sensor
measures the resulting strain-induced voltage. The sampling frequency is 1000 Hz
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Fig. 4 Schematic of experimental reliability testing system [14]

and a digital low-pass filter to avoid capturing unnecessary signals. The calculated
FRF is demonstrated in Fig. 5 using the black curve, which presents the magnitude
of system response as a function of frequency.

The next step is to find a parametric (mathematical) system model that can be
extracted from the calculated FRF. Here, using the procedures outlined in [53], a
suitable parametric system representation is identified via the so-called “prediction
error method (PEM).” In this regard, we have tried different model orders (from
order 6 to order 25) to see which model complies the best with the real data in their
frequency response function. The best model order to fit the real response is found
to be of order 8; therefore, the final parametric model to be used is an order-8 model.
The final mathematical parametric model is presented in Fig. 4, using the red curve.
For example, for a similar cantilevered beam structure, an analytical solution has
been presented in [53], and it is shown that both models are performing well for
simulating the system response.
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Fig. 5 Comparison between experimental FRF and a parametric model [14]
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3.3.3 Accelerated Reliability Test

In this study, in order to validate the results of the PRAM, accelerated reliability tests
are also carried out to calculate the real reliability of the beam structure experimen-
tally. In this regard, a test is designed to accelerate the failures while replicating field
performance. To assess the effectiveness and accuracy of the PRAM, it is also neces-
sary to apply proper loadings, define suitable failure criteria, and use an excellent
progressive damage type. Here, to make progressive damage type, artificial delami-
nationwas embedded in the test samples by implementing awaxed thin plate amid the
plies during the process of structure prototyping. In the presence of artificial damage,
the structural stiffness will decrease, and this reduction should be manifested in the
structural response. Here, with the purpose of evaluating structural strength degra-
dation during repeated external loadings, a sinusoidal excitation force with random
frequency and intensity is applied to the damaged structure for a time period of 120 s.
Depending on the uncertainties associated with the physical parameters and the exci-
tation force, and the predefined failure criteria, the structuremight fail anytime during
the test. For an accelerated test, the failure criteria must be chosen appropriately to
define failures during the specified time of the experiment. It has been proven that
the output of attached piezoelectric sensors during the beam excitation is directly
related to the yield stress at the cantilevered end of the beam [53, 54]. Considering
this point, here, pre-experimental tests and analyses were taken first, and they have
revealed that when the piezoelectric sensor output is more than 3.2 V, the system
should be considered “failed” because the stress at the end of the beam will be more
than the yield stress.

3.3.4 Offline and Online PRAM for the Cantilevered Beam

The PRAM approach for reliability assessment has been described in Sect. 3. Here,
both offline and online PRAM have been applied for the beam structure to evaluate
the effectiveness of PRAM via a comparison with experimental reliability results. In
order to perform the offline PRAM method on the introduced beam, first, a normal
distribution has been assumed for the structural stiffness and the random excitation.
Using those assumptions together with Eq. (1), the system response can be concluded
versus time. The calculated response is substituted in Eq. (4) to estimate the joint
PDF of the response and structural stiffness. In order to solve the PDEMequation, the
initial condition is assumed as in Eq. (5) where a normal distribution for the uncertain
parameter,p�(θ), (here θ the identified stiffness) is assumed with the coefficient of
variation of 10%, this assumption depends on the accuracy of the measurement and
modeling process. The estimated joint PDF is then used in Eqs. 7 and 8 to estimate
the dynamic reliability of the beam versus time.

For the online PRAM, an updated Ẋ, that is obtained from a condition monitoring
sensor has been used in the PDEM equation (Eq. 4) to upgrade the accuracy of the
reliability evaluation. An evolution of the PDF of the system response estimated
via the PDEM equation is presented in Fig. 6. Figure 7 presents the results of both
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Fig. 6 Evolution of the probability versus time
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Fig. 7 Dynamic reliability curves using different approaches [14]

offline and online PRAM for reliability assessment of the beam as compared with
experimental reliability results. It is realized that both offline and online methods
result in similar trends; however, the online PRAMcurve is closer to the experimental
reliability curve. The procedure for calculating the experimental reliability curve is
discussed in the next section.

3.3.5 Experimental Dynamic Reliability of the Beam

Aiming to experimentally evaluate the accuracy of the PRAM, more than a hundred
duplicate samples were made. All samples were exposed to the same damage and
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loading condition in a similar environment, and the experimental time responses of
all samples were gathered for 120 s. For the calculation of the experimental reliability
curve, each time when the response of the sample under excitation crosses the failure
criteria, it decreases the reliability value at that point in time. The calculated reliability
that is calculated using the reliability evaluation tests is also imported in Fig. 7.

It should be noted that if we increase the number of samples in the reliability tests,
a smoother experimental curve can be established [13]. However, from the trends,
it is evident that the PRAM performs with acceptable accuracy in this experiment,
and the online PRAM is more accurate than the offline PRAM. One major reason for
the less accuracy of the offline PRAM is the probable variations and sudden changes
of the material physical parameters versus time. In other words, the mathematical
model used for offline PRAM is not proper for modeling sudden changes in the
system. This results in an imprecise result for the offline PRAM. On the other hand,
in the online PRAM, we are using real data as the input of the PDEM equation; thus,
the final result of the online PRAM will be more accurate.

4 Dynamic Reliability Assessment of Machines

As discussed in the previous sections, the PDEM equation is founded on the ground
of mathematical and physical concepts. Hence, the PRAM can be used for any engi-
neering system such as structures and machines. In this section, first, some necessary
considerations are explained for using the PRAM for dynamic reliability assessment
of machines; then, a rolling bearing is used as a Case study to show the applicability
of PRAM for reliability assessment of machinery.

4.1 Extra Considerations for Dynamic Reliability Assessment
of Machines

Here, we list some considerations when using the PRAM for dynamic reliability
assessment of machinery:

1) For a structural system, stiffness and/or damping is usually used as the uncer-
tain physical parameter, �. However, for a bearing, several other parameters
can construct the vector of �. In addition to the stiffness and damping, some
parameters that can be used for bearings are ball diameter, contact angle, and
load rating.

2) When there are several physical or performance parameters of the system that
are of interest or measurable, one can take them all into the PDEM equation by
defining a new variable vector, as in Eq. (9):

Z(t) = 	[X(t),Y(t)] (9)
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where 	 in Eq. (9) is an operator in which transforms different uncertain state
variables into only one uncertain vector. Using this transformation, the state
vector, X, in Eq. (3) can be replaced by Z. Such a transformation may result in
a multidimensional PDEM equation, which can be solved via the methods such
as finite-difference, which is represented in [51]. For example, in a bearing,
the vector of Z, can be constructed using all the data from horizontal vibration
sensors, vertical vibration sensors, and temperature sensors.

3) If our focus is one failure mode or one performance parameter, it is reasonable
to take the most critical failure mode or the failure criteria that results in an
earlier failure.

4) In the PDEM equation, the state or displacement, X, is a function of system
uncertain parameters (�). The uncertain parameter does not necessarily need
to have a direct physical meaning; in other words, they can be representative of
a physical parameter. However, the PDF of � must have a measurable value.
For example, the uncertain parameter can be the voltage output of a sensor with
a normal distribution.

Considering the above explanations, in Sect. 4.2, the reliability of a rolling element
bearing is investigated using offline and online PRAM.

4.2 Case Study: Bearing

To investigate the applicability of the PRAM for reliability assessment of machinery,
as an example, data of accelerated degradation tests for fifteen rolling element
bearings are used in this section. The same as the previous section, the data are
initially used to find a mathematical model for the system to perform offline PRAM.
Then using real-time data, the online PRAM is also performed, and the results are
compared.

4.2.1 Data Description

Here, rolling element vibration data that are presented in [55] are used for the evalua-
tion of the PRAM.A schematic of the experimental setup is shown in Fig. 8. Acceler-
ated degradation tests of fifteen bearings (type: LDK UER204) are performed using
this platform, and data collected as presented in Table 1. Different loading forces and
frequencies have been applied to the bearings, and different failure modes took place
as demonstrated in [55]. Additional details about the dataset are also presented in
[55]. The uncertainties associatedwith the datamust be known before performing the
PRAM. The selection of system uncertainty characteristics depends on the system
characteristics and the testing facilities as well as environmental factors. In order
to find the joint probability density of the response, we need to have a distribu-
tion domain for the uncertain parameter, θ , to use in Eq. (7). This distribution can
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Fig. 8 Schematic of the
bearing experimental testing
setup [55]

Table 1 Tested bearings
datasets

Loading
condition

Bearing
number

Bearing lifetime
(min)

Fault element

35 Hz
12 kN

1–1 123 Outer race

1–2 161 Outer race

1–3 158 Outer race

1–4 122 Cage

1–5 52 Inner and
Outer race

37.5 Hz
11 kN

2–1 491 Inner race

2–2 161 Outer race

2–3 533 Cage

2–4 42 Outer race

2–5 339 Outer race

40 Hz
10 kN

3–1 2538 Outer race

3–2 2496 Inner and
Outer race,
ball, cage

3–3 371 Inner race

3–4 1515 Inner race

3–5 114 Outer race

be concluded from the accuracy of the measurement system or the uncertainty of
the system’s physical parameters related to the manufacturing quality or any other
possible uncertainties associated with that parameter. Here, we have used an existing
dataset (the experimentswere not conducted by us); therefore, we do not have enough
information to estimate the parameter uncertainties. We assumed that the θ , which is
the bearing contact angle, follows the normal distribution with a coefficient of varia-
tion of 10%. The coefficient of variation is to account for the possible uncertainties in
the measurement/identification of the uncertain parameter. For sure, a more accurate
estimation of this coefficient of variation will result in a more accurate reliability
estimation. In our future work, we will improve our method by accurately estimating
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Fig. 9 Horizontal vibration signal for bearing 1–1

the parameter uncertainties. It should be noted that θ in this case study is assumed
to be the bearing contact angle.

Asdepicted inFig. 9, the vibration increase versus time in the phase of degradation.
This shows that the vibration amplitude can be taken as a failure criterion [56]. Wang
et al. have taken the vibration amplitude as the failure criteria in their research [55].
Here, based on the presented PRAMmethod, wewill estimate the dynamic reliability
of the bearings using the same failure criteria as in [55].

4.2.2 System Identification

Similar to the structural reliability assessment, in order to perform the offline PRAM
for dynamic reliability assessment of rolling element bearings, a system model is
needed to simulate the response. For the bearing data, there is no sweep frequency
excitation data, but as presented in Table 1, data for 15 excitations with three different
loading and frequencies are available. Thus, we can use a multi-input-multi-output
(MIMO) system identification method to find a proper mathematical model for the
rolling element bearing system. For this purpose, we use the first 50 min of all time
responses as the output of the MIMO system identification technique.

Here, a MIMO neural network is used to estimate the bearing model, using the
time response data listed in Table I. The bearing speed and load are used as the
input of the network, and the vibration amplitude is used as the output. Therefore the
model can be used to predict the system response based on the input speed and load.
In order to find a mathematical model of the bearing, we split the experimental data
of the bearings time responses into three sets, 9 for the training, 3 for the verification,
and 3 for the test in the BPNN model. Ten hidden layers with 15 neurons in each
layer established the model. It was found that 10,000 epochs can be considered as an
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Fig. 10 The frequency response of the rolling element bearing

adequate number for the training process. The frequency response calculated using
the experimental data and also the frequency response of the mathematical model
are both illustrated in Fig. 10. Although the FRF of the mathematical model is not
accurately matching with the experimental FRF, there is a proper matching at the
frequencies that we are going to simulate the system numerically. As mentioned
before, the uncertainty assumptions will also account for some possible errors in the
mathematical model. Now, as the next step, the identified system can be utilized with
Eq. 4 in order to solve the PDEM equation to perform the offline PRAM.

4.2.3 Offline and Online PRAM for the Rolling Bearing

Here, both offline and online PRAMhave been applied to investigate the applicability
of the presented method for reliability assessment of a bearing. To perform the
PRAM, a normal distribution for both the bearing vibration signal and the excitation
has been presumed. All the steps for offline and online PRAM are the same as the
steps carried out for structural reliability. The only difference is that here, the bearing
contact angle (initially = 0°) is used as the uncertain physical parameters instead of
the structural stiffness. It is worth mentioning that wear is one of the reported failure
types in this set of experiments, and the changes of contact angle are related to the
wear as a failure mode [57]. Here, initially, we assumed a normal distribution for the
contact angle. The updated values of the contact angle can be updated versus time
using the updated system response. Detailed mathematical relations between these
parameters and bearing vibration response are explained in [58].

Figure 11 presents the results of the two methods. The experimental reliability
curve is also included in Fig. 11. The experimental curve is calculated using 5 datasets
that are collected for the same bearing under the same working condition (loading
characteristics: 35 Hz and 12 kN). For example, in the experimental curve, at t
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= 113 min, the reliability value is 0.6, which means that amongst all five tested
bearings, two of the bearings have failed before t = 113 min. It is worth recalling
that the existing experimental data for the investigated bearing are not sufficient to
plot a trustworthy experimental reliability curve, and we just provided this curve here
to make a rough comparison. Our investigation on the problem of bearing reliability
is still preliminary work, and it is only used as an example of the PRAM application
for machinery. This study will be further improved in the future after performing
more experimental investigations.

5 Discussion and Future Research Directions

In this chapter, the probability density evolution method (PDEM) is presented to
evaluate the dynamic reliability of a structure or a machine. It is shown that the
PDEM equation has proper flexibility, and it can be applied in different frameworks
that are offline and online PDEM-based reliability assessment (PRAM). However,
the accuracy of the PRAM is strongly dependant on the following assumptions or
inputs: failure criteria, the accuracy ofmeasured or simulated Ẋ, the initially assumed
PDFs for the system uncertain parameters, and uncertain parameters to be included
in the vector of �. Also, for the offline PRAM, it is crucial that the system does not
go under a sudden or rapid change.

For example, from Fig. 11, it can be realized that both offline and online reliability
curves for the bearings are representing a pretty similar trend. However, as compared
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to the dynamic reliability curves for a cantilevered beam (Fig. 7), the difference
between the offline and online curves is more significant for the rolling element
bearings. It is the occurrence of a rapid failure in the rolling element bearing that
makes the offline prediction to be less accurate. This shortcoming in the use of PDEM
for systems with rapid or sudden failures can open a new direction for future studies
in the field of dynamic reliability analysis of degrading systems via the PDEM.

The definition of proper failure criteria is also a critical point in reliability estima-
tion. In order to define proper failure criteria, failure modes must be recognized first.
For every failure mode, distinct failure criteria can be defined. Each failure crite-
rion corresponding to a failure mode can be dependent, partially dependent, or even
independent from other failure modes. For example, the failure criteria for a bearing
can be defined based on its temperature, vertical vibrations, horizontal vibrations,
etc. In mechanical systems, the types of failure modes are more diverse than the
structural system because the failure criteria of a mechanical system can be defined
based on both structural characteristics of a mechanical component and the dynamic
performance of that component.

5.1 Future Research Directions

Regarding the abovementioned notes, the following research directions are suggested
in the future to enhance the accuracy of the PRAM:

• For the offline PRAM, novel approaches for modeling degrading systems can be
used together with the PDEM to increase the accuracy of degrading systems.

• For highly time-variant systems, some classification methods can be applied to
combine correlative failure modes.

• The failure criteria can be defined as a dynamic variable, and it can be updated
versus time. Another PDEM equation can also be defined to find an estimate for
the dynamic failure criteria.

• The primary uncertainty distribution for parameters is also a determinative factor,
and its accuracy will affect the performance of the PDEM. Further studies on
improving the accuracy of uncertainty distributions can be a good area of study
in PDEM applications.

• There are many uncertainties associated with a system, both in the system param-
eters and loading characteristics. Because of the high computational effort, it is
inefficient to take all uncertainties into account while performing the PDEM.
Therefore, it is determinative to study the proper set of uncertainties to be taken
in the PRAM procedure.

• The PDEM is not able to model sudden failures, but it can be used together with
data analysis techniques to account for sudden failures. This can be an interesting
topic for future studies.

• For the systems that are highly degrading with time, different correction factors
can be added to the PRAM, and it should be studied in the future.
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Rotating Machinery Condition
Monitoring Methods for Applications
with Different Kinds of Available Prior
Knowledge

Stephan Schmidt and P. Stephan Heyns

Abstract Intelligent (or smart) condition monitoring methods make it possible to
automatically infer the condition of the machine. However, the performance of the
intelligent condition monitoring methods is much dependent on the available histor-
ical data. Different applications may have different levels of historical data available.
Intelligent condition monitoring methods allow automatic detection and overcome
the need for feature engineering. However, feature engineering is often misconstrued
as being equivalent to engineering knowledge. In this chapter, it is proposed that the
available engineering knowledge and intelligent condition monitoring methods need
to be combined to obtain effective condition monitoring methods, i.e. where reliable
fault detection, identification and trending can be performed. Engineering knowledge
and historical data are referred to as prior knowledge in this work and methods are
proposed to utilise it for fault diagnosis. An investigation is performed on gearbox
data generated under time-varying operating conditions, with the importance of using
prior knowledge highlighted.

Keywords Intelligent condition monitoring · Gearbox fault diagnosis

1 Introduction

The development of intelligent condition monitoring methods is important for indus-
tries where the safety and reliability of expensive equipment are important (e.g. wind
turbine gearboxes, steam turbines). Intelligent condition monitoring methods make
it possible to automatically infer the condition of the machine by using the available
historical data for training (or optimising) the models.
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Intelligent condition monitoring methods typically make use of state-of-the-art
machine learning and deep learning models developed in the computer science field
[6, 19]. Unsupervised learning methods can be used to infer the salient information
in the data without supplying condition labels, while supervised learning methods
can be used for automatic condition inference (e.g. what is the condition of the
machine) [9]. However, many computer vision problems can be approximated as
closed set recognition or classification problems, while condition monitoring prob-
lems are inherently open set in most practical applications (especially for expensive
machines) [12]. An open set condition recognition problem refers to the case where
historical data of only some of the damage modes that can be encountered are avail-
able. Therefore, care should be usedwhen applying closed set recognition algorithms
in the condition monitoring field [12].

Even though the intelligent condition monitoring methods aim to overcome the
need for engineering knowledge, much research has been conducted to understand
the statistical characteristics of vibration signals (i.e. cyclostationary) and how fault
informationmanifest in vibration signals (e.g. changes in instantaneous power) [1, 2].
In discrepancy analysis, data-driven models of a healthy machine are combined with
signal analysis methods that exploit the knowledge about the nature of fault signals
(e.g. faults are cyclostationary with a known period) for more effective novelty detec-
tion [5]. Utilising the available engineering knowledge becomes especially important
when the historical data are scarce. Hence, in this work, we identify different levels
of prior knowledge and suggest methods to utilise the available prior knowledge for
performing effective condition monitoring.

The layout of the chapter is as follows: In Sect. 2, the availability of different kinds
of prior knowledge is discussed, whereafter an investigation is performed in Sect. 3
to illustrate how prior knowledge can be used for effective condition monitoring.
Finally, the work is concluded and recommendations are made in Sect. 4.

2 Prior Knowledge in Condition Monitoring

Many condition monitoring methods have been developed over the past few decades
and the methods typically range from purely engineering knowledge-based methods
(e.g. signal processing) to deep learning methods, capable of automatically identi-
fying and extracting the salient information from the data [3, 6, 9]. The applicability
and the performance of the methods inherently depend on the available prior knowl-
edge. Prior knowledge in this context refers to information that is available before
the condition is inferred or before the data are analysed.

Much research has been performed on understanding the statistical properties
of the vibration signals acquired from common rotating machine components (e.g.
bearings and gears). However, this engineering prior knowledge (e.g. the statistical
properties of the signal, bearing fault frequencies, drive-train layout) can be difficult
to utilise for automatic fault diagnosis. In contrast, classification-based data-driven
methods (e.g. statistical learning to deep learning methods) can perform automatic
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condition inference, but historical data from a healthy machine and different failure
modes are needed a priori. This can result in a class imbalance problem and an open
set recognition problem.

In this work, we suggest that all of the available prior knowledge (i.e. engineering
knowledge and historical data) need to be utilised to ensure that effective condition
monitoring (i.e. reliable fault detection, fault identification and fault trending) can
be performed. This is illustrated in Fig. 1.

We divide the rest of this section in terms of engineering knowledge and
knowledge that can be extracted with machine learning methods.

Fig. 1 Effective condition monitoring by utilising the available prior knowledge
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2.1 Engineering Knowledge

Vibration signals acquired from rotatingmachines are typically angle cyclostationary
[2] and the impulses become angle-time cyclostationary under time-varying oper-
ating conditions [1]. This makes it possible to utilise advanced signal analysis tech-
niques such as the spectral coherence, the squared envelope spectrumand the instanta-
neous power spectrum for extracting or highlighting fault information in the vibration
data. Antoni and Borghesani [3] developed a statistical methodology to design condi-
tion indicators by performing hypothesis tests under different assumptions of the
statistical nature of the vibration signals. Gryllias and Antoniadis [4] used a physics-
based model (i.e. engineering knowledge) to generate data which were subsequently
used to train support vector machines to infer the condition of failures not observed
in the past.

It is possible to enhance the fault information by identifying informative frequency
bands and using this to design an appropriate bandpass filter. Smith et al. [17]
found that targeted methods that utilise the prior knowledge about the kinematics
of the machine perform much better than blind methods that do not utilise the
information. Wang et al. [18] developed the SKRgram,a method that combines the
kurtogram and historical data from a healthymachine to detect informative frequency
bands. Niehaus et al. [11] generalised the methodology for time-varying operating
conditions. Schmidt et al. [14] developed a methodology that combines informative
frequency band identification methods with historical data from a healthy machine to
enhance the fault information. By combining the engineering knowledge (i.e. faults
manifest as impulsive components in narrow frequency bands) with historical data,
it is possible to find more robust procedures to enhance the fault information.

Gear damage manifests synchronously with the connected rotating shaft. The
synchronous average of the vibration signal is capable of highlighting synchronous
changes in the signal due to gear damage, while attenuating the non-synchronous
components. [5], proposed a methodology where a discrepancy signal is generated
fromamodel of the healthy historical vibration data. Thediscrepancy signalmeasures
the time-localised anomaly information in the signal. Thereafter, the synchronous
average of the discrepancy signal is calculated to visualise the anomalous compo-
nents. This representation is very effective to visualise the condition of the gears
in the gearbox. Therefore, the synchronous average, which is common in signal
processing-based condition monitoring, was combined with a data-driven model for
more effective condition monitoring. Schmidt et al. [15] extended this discrepancy
analysis approach for bearings,where the spectrum of the discrepancy signal high-
lighted the periodicity of the anomalous components and therefore can be used to
identify the component that is damaged. Hence, the signal analysis methods (e.g.
synchronous averaging) makes it possible to interpret the outputs from discrepancy
analysis-based data-driven models for more effective condition monitoring.

Under time-varying speed conditions, the frequency and amplitude modulation
impede the application of conventional methods. It is therefore desirable to analyse
the signal in the angle domain and to attenuate the amplitude modulation due to
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varying operating conditions. In some applications, the rotational speed is not avail-
able and therefore the speed need to be estimated from the vibration signal. Leclere
et al. [8] developed a multi-order probabilistic approach for speed estimation that
utilises prior knowledge about the kinematics of the machine as well as prior knowl-
edge about the operating condition range of the machine. The authors found that by
utilising this prior knowledge, more reliable speed estimates can be obtained.

However, to ensure that effective condition monitoring can be performed, it is
important to combine this engineering knowledge with the available historical data.

2.2 Knowledge Extracted from Machine Learning
Algorithms

The different kinds of historical data availability are illustrated in Fig. 2. The popu-
lation of damage modes refers to all possible damage modes that can be encountered
for the machine and the different levels of available historical data are regarded as
prior knowledge.

It is important to be cognizant about the difference between common computer
vision problems and the condition monitoring problem; in condition monitoring,
there is a continuous transitionwithin a specific damagemode from an approximately

Fig. 2 Different Data Availability Levels (DAL) that can be encountered in condition monitoring
illustrated with a two-dimensional feature space
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healthy condition to a failure state. In computer vision, there are usually discrete states
(e.g. a number that needs to be identified, the animal) without any transitions between
the discrete classes and therefore the conventional classification algorithms may not
address the underlying physics that govern the transition in the data [12].

Different models can be used to extract information from the data and/or can be
used tomodel the data (e.g. statistical models to multi-layered neural networks), with
only a short discussion given here. Often in condition monitoring, statistical models
such as kernel density estimators, Gaussian mixture models and hidden Markov
models are used to model processed data [5, 16]. Multi-layered neural networks can
automatically extract the salient information from the data and therefore raw data are
often supplied to the models. This reduces the need for performing manual feature
extraction and feature selection. Some recent discussions on machine learning and
deep learning for condition monitoring applications are given by Zhao et al. [19] and
Lei et al. [10].

In the next subsections, we provide an overview of the problem encountered in
different Data Availability Levels (DALs). Even though there are many potential
methods to combine different kinds of prior knowledge for effective condition moni-
toring (e.g. [5, 14, 18]), a simple method is proposed in this work to illustrate the
important concepts.

2.2.1 Data Availability: Level (DAL) 0

In DAL 0, there are no historical data to train a data-driven method. And even though
unsupervised learning methods may be used to extract the underlying structure of the
data, engineering knowledge is required to interpret the results. Schmidt and Heyns
[13] proposed a divergence analysis method that can be used for automated localised
gear damage detection by utilising the available prior knowledge about the statistical
characteristics of vibration signals generated by localised faults.

In this work, we first calculate the standardised Squared Envelope Spectrum (SES)
with the procedure used by Kass et al. [7]. Thereafter, we apply a method to auto-
matically select the threshold for detection. By assuming that the kinematics of the
gearbox and rotational speed are available a priori, we monitor specific components
(e.g. bearing defect frequencies, gear defect frequencies). If an amplitude exceeds
the threshold, it indicates that there is a strong periodicity in the data, which could be
indicative of damage. By monitoring the signal component over time, it is possible
to determine whether the mechanical component is deteriorating.

2.2.2 Data Availability: Level (DAL) 1

In DAL1, it is possible to utilise the healthy historical data to train a model to
perform automatic novelty detection, but also to identify the frequency of the novelty
components with discrepancy analysis [5]. Another method is to enhance the novel
frequency bands for fault diagnosis [14] which results in an enhanced vibration
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signal. Schmidt et al. [16] developed a method that combines the spectral coherence,
historical data from a healthy machine, and knowledge about the fault frequencies
of the important mechanical components for novelty detection under time-varying
operating conditions.Bycombining engineeringknowledgewith data-drivenmodels,
it is possible to perform automatic fault diagnosis.

In this work, we extended the DAL 0 procedure to include historical data from a
healthy machine as follows:

1. Calculate the SES and standardise it as performed in DAL 0.
2. Extract the harmonics of the critical mechanical components as performed in

DAL 0.
3. Train a Gaussian model on the harmonics extracted from a healthy machine.
4. Calculate the Mahalanobis distance for the harmonics extracted from the new

data. The Mahalanobis distance is a scalar quantity that captures the condition
of the gearbox and it allows for more effective monitoring.

2.2.3 Data Availability: Level (DAL) 2

In DAL 2, it is assumed that healthy historical data are available as well as the
failure data associated with some of the damage modes that can be encountered
in the machine. Since the machine condition monitoring problem is an open set
recognition problem, with continuous transitions from a healthy state to a failure
state, careful consideration needs to be given to the model. In Schmidt and Heyns
[12] it was indicated that the data follows a stochastic transition during the condition
degradation process. Gaussian Mixture Models (GMMs), hidden Markov models
and mixture density networks are capable of capturing the expected distributions in
the data.

In this work, we propose the following procedure:

1. Follow the procedure in DAL 1 to fit the model associated with the healthy data.
2. Extract the amplitudes of the fundamental components of the mechanical

components-of-interest from the historical fault data.
3. For each available historical fault data case (e.g. outer race bearing damage,

inner race bearing damage), train a separate GMM on the datasets. The GMM
therefore captures the whole transition of the machine and the latent states of
the GMM capture the underlying state of the machine (e.g. incipient damage,
intermediate damage, severe damage).

4. Use the posterior probability of the condition

P(Ci |x) = p(x |Ci )P(Ci )

p(x)
(1)

where Ci denotes the ith class and x denotes the features, to infer the condition of
the machine. However, if the likelihood of the models is too small, then the class
label is rejected and a novelty is detected. Hence, the label (or condition) is only
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assigned to the machine if there is strong evidence that this is true. In this work,
the prior probability P(Ci) of the healthy class is made five times larger than the
healthy machine. This also reduces the probability of false alarms. A more detailed
discussion of the open set recognition problem is given by Schmidt and Heyns [12].

2.2.4 Data Availability: Level (DAL) 3

In DAL 3, it is assumed that the historical data from all damage modes are available
for determining the condition of the machine. This reduces the condition recognition
problem, to a condition classification problem (i.e. it is only necessary to determine
the most probable class). Many methods are proposed in the literature that directly
addresses this problem. However, many of these approaches assign class labels to
specific machine conditions (e.g. an outer race bearing defect of 0.007 inches is
assigned a different class label than an outer race bearing defect of 0.014 inches).
This raises two questions:

1. How can these class labels be obtained on industrial machines where the defect
size typically cannot be measured during the operation of the machine?

2. What is the class label if the machine condition is between two classes (e.g. if
the actual defect size is 0.010 inches in the previous example)? Often, the deep
learning methods are trained to optimally separate the classes (or conditions)
available during training. This optimal separation is usually performed with a
non-linear mapping to a new latent space. It is unreasonable to assume that the
data would lie exactly between the two classes in the feature space if a general
non-linear mapping is performed by deep learning methods.

Instead of using the conventional approaches, it proposed that in aDAL3 scenario,
the proposed DAL 2 approach is used as well. This ensures that the class label can be
consistently assigned to the machine as it deteriorates and it is more effective since
it utilises the models trained in DAL 2.

3 Case Study

The phenomenological gearbox data investigated in the paper by Schmidt et al. [14]
are considered in this work for a gearbox where it is possible to have distributed gear
damage, inner race bearing damage and outer race bearing damage. We assume that
the kinematics of the gearbox is known and accurate rotational speed measurements
are available. Of course, it is possible to use themulti-order probabilistic approach [8]
if rotational speedmeasurements are not available. All measurements were generated
by simulating a ramp-up scenario as follows:

w = 5t + 10 (2)



Rotating Machinery Condition Monitoring Methods … 111

where w is the speed of the shaft in Hz and 0≤ t < 5. The purpose of this investigation
is to illustrate some important concepts related to the different data availability levels.

3.1 Data Availability: Level 0

In this section, the method proposed in Sect. 2 is used to infer the condition of
the numerical gearbox. The gear, which is connected to the reference shaft, has
distributed damage, which would manifest as a random component in the signal at
one shaft order and its harmonics. Firstly, the standardised SES of the order tracked
vibration signal is calculated, whereafter a threshold is determined for automatic
fault detection. The percentage of Points Exceeding the Threshold (PET) in the
standardised SES is compared against the threshold in Fig. 3a with the selected
threshold being shown. The resulting threshold is superimposed on the standardised
SES in Fig. 3b, with the signal components associated with the fundamental Shaft
Order (SO), Ball-Pass Order of the Outer race (BPOO) and the Ball-Pass Order of
the Inner race (BPOI) shown as well.

It is evident from the results in Fig. 3b that only the distributed gear component
exceeds the threshold. This procedure is performed for 150 measurements, with the
gear deteriorating over time with the result presented in Fig. 3c. If the different
signal components are compared against the threshold, it is seen in Fig. 3d that
the gear exceeds the threshold, with one false alarm in the BPOI. This false alarm is
easily removed if the alarm is only triggered when several consecutive measurements

Fig. 3 An illustration of a DAL 0 approach for fault diagnosis
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exceed the threshold. Hence, when comparing the raw amplitude (Fig. 3c) to the
processed amplitude (Fig. 3d), we see that it is possible to automatically monitor
specific components in the gearbox with this approach.

3.2 Data Availability: Level 1

In the DAL 1 investigation, only the BPOO and the DGD aremonitored to ensure that
the concept can be easily visualised. In this case, it is assumed that measurements of
the healthy gearbox are available, whereafter the gear deteriorated and the bearing
developed outer race bearing damage in two separate cases. The resulting features of
the healthy and the damaged gearboxes are shown in Fig. 4a and b. The DGD case
contains the same data as the previous investigation.

The stochastic transition from the healthy state to the failure states, discussed in
the paper by Schmidt and Heyns [12], is evident for the two cases. The Mahalanobis
distance is calculated over the measurement number for the gear and the bearing,
with the results presented in Fig. 4a and b. The healthy gearbox data were used to
select the appropriate threshold for detection. The results indicate that it is possible
to only monitor the Mahalanobis distance, and if anomalous behaviour is detected,
it is possible to investigate the different features to determine the condition of the
gearbox.

Fig. 4 The features acquired from a deteriorating gear and bearing and the corresponding
Mahalanobis distances are presented
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Fig. 5 The log-likelihood of the distributed gear model for the case where the gearbox had
distributed gear damage (a) and a damaged bearing (b)

Fig. 6 The logarithm of the unnormalised posterior distribution, calculated with the numerator of
Eq. (1), are presented for a gearbox with distributed gear damage (a) and a damaged bearing (b)

3.3 Data Availability: Level 2

In the DAL 2 investigation, it is assumed that healthy historical data and historical
fault data, acquired from a gearbox that suffered from a damaged gear, is available.
The log-likelihood of the GMM of the damaged gear is presented in Fig. 5a and b.

Since the bearing damage does not form part of the historical dataset, the GMM
of the damaged gear has very small likelihood values in Fig. 5b.

In Fig. 6, the logarithm of the unnormalised posterior probability is presented (i.e.
the numerator of Eq. 1) for the healthy model and the model of the damaged gear for
the deteriorating gear and bearing. In Fig. 6a, the gear deteriorated over measurement
number, which is the reasonwhy theDGDmodel has amuch larger log unnormalised
probability. In Fig. 6b, the bearing suffered from outer race damage. Since historical
data of this damage mode is not available in the training dataset, both the healthy
model and the distributed gear models are incapable of inferring the condition and
therefore very small values are obtainedbybothmodels. Thismeans that the predicted
class (distributed gear damage) should be rejected, which means that the data comes
from a new class, i.e. the gearbox is not healthy and does not have distributed gear
damage. By using the DAL 2 approach, it is therefore possible to recognise that the
gearbox is unhealthy and to recognise that a new machine condition is encountered.
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4 Conclusions and Recommendations

In this work, different kinds of prior knowledge are considered and an investigation is
performed to illustrate how conditionmonitoringmethods can be usedwhen different
levels of prior knowledge are available. Engineering knowledge enables good indi-
cators to be obtained and makes it possible to sensibly interpret the data, while
data-driven methods make it possible to extract and learn the salient information in
the data for making predictions. The literature study and the results indicate that by
combining engineering prior knowledge (e.g. cyclostationarity, order tracking) with
historical data (which can be utilised with intelligent algorithms), more effective
condition monitoring can be performed.

It is recommended that different methods for performing open set recognition
need to be investigated and compared in future work. Ultimately, the performance of
themethods depends on the extracted or learned features and the ability to capture the
underlying densities of the known conditions. Deep learning models could improve
our ability to model the densities of rotating machine data. The performance of
the methods significantly depends on the threshold selection procedure and there-
fore different threshold selection procedures must be investigated and compared for
conditionmonitoring applications.Model re-calibrationmethods (e.g. ifmaintenance
was performed on the machine) need to be investigated as well.
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Model Based Fault Diagnosis in Bevel
Gearbox

Palash Dewangan, Dada Saheb Ramteke, and Anand Parey

Abstract Bevel gearboxes are used in many industrial, automotive, and aerospace
applications for transmission purposes. A gearbox should operate without any
malfunction to achieve smooth andhighperformance.Any incipient fault in a gearbox
may grow severe, which may lead to high noise and vibration of the gearbox and
subsequently lead to failure of the gearbox. It is, therefore, essential to detect the
incipient faults at the earliest to avoid premature failures. The effect of the tooth fault
is reflected in gear mesh stiffness. In this paper, a mesh stiffness model of missing
tooth fault in a bevel gear is proposed. The dynamic response of one stage bevel
gearbox with a missing tooth fault is computed to identify the fault feature character-
istics of the bevel gearbox. The simulation results show some distinct time domain
and frequency domain characteristics for the identification of faults. The simulation
results are compared with the vibration responses obtained from the experiment in
both the time and frequency domain. The comparison of experimental and simulation
results show that the proposed model successfully identifies the missing tooth fault
in a bevel gearbox.

Keywords Bevel gear modeling · Missing tooth fault · Time-varying mesh
stiffness · Dynamic response

1 Introduction

Modeling of faults in a gearbox is a promising way to understand the dynamic
response characteristics of a gearbox under malfunctioning [1]. Tooth breakage is
a tooth surface failure of gears. Partial tooth breakage (chipping) or complete tooth
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breakage (missing tooth) occurs when sudden extremely large stresses develop at the
tooth surfaces [2]. Tooth breakage may also occur due to high tooth impact loads [3].
Gear mesh stiffness is the primary source of excitation in the gear transmissions and,
consequently, is the reason for noise and vibrations. In addition, the presence of any
fault in gears, which is reflected as the change in the gear mesh stiffness, makes the
dynamic behavior of the gears more complex. Thus, it is imperative to understand
the dynamic behavior of the gear systems under the presence of faults.

In the last two decades, a few works [4–9] have been published on the modeling
of bevel gears without considering faults. These works are mainly focused on the
modeling of teeth deformation due to contact, static, and dynamic analysis and effects
of assembly and manufacturing error on the dynamic response. A comprehensive
review of the modeling of gear faults is presented by Liang and co-authors [10].
However, from their review paper, it was revealed that there is a scarcity in the
literature on the modeling of faults in bevel gears, especially straight bevel gears.
Therefore, literature considering the modeling of faults in bevel gears is summarized
here. Karray and co-authors [11] presented a dynamic model of one-stage spiral
bevel gear for calculating dynamic response with tooth crack defect. Yassine and co-
authors [12] developed a three dimensional dynamic model of a two-stage straight
bevel gearbox with manufacturing and tooth crack defect. Recently, Karay and co-
authors [13] performed a dynamic response analysis of a spiral bevel gear system
under nonstationary operations in the presence of a tooth crack defect. In a recent
paper by Ramteke and co-authors [14] worked on the identification of micron-level
wear in bevel gears.

In addition, tooth surface failure such as wear and tooth breakage occurs under
high dynamic loads and uncertain loading conditions [15–17]. Tooth breakage (chip-
ping and missing of the tooth) is a severe damage condition and may lead to rapid
failure of the gearbox. In the available literature, modeling of missing tooth fault and
its effects on the dynamics of bevel gears has not been addressed. This motivates
the authors to study the dynamic behavior of bevel gearbox with missing tooth fault.
However, modeling of missing tooth faults in spur gears can be found in the work
of Tian and co-authors [3]. They proposed that the teeth will have only a single
tooth pair contact (STPC) instead of double tooth pair contact (DTPC), and there
will be no contact instead of STPC. However, the results were not validated through
the experiments. More recently, a few researchers [18–20] have presented a mesh
stiffness model for missing tooth fault for spur and planetary gears using potential
energy method. In these papers, the time varying mesh stiffness obtained is similar
to the Tian’s (2004) model.

In this study, a time-varying mesh stiffness (TVMS) model of straight bevel gears
to account for a missing tooth fault is proposed based on the approach of Tian
and co-authors [3] for simplicity. The TVMS model is incorporated in the dynamic
model of a one-stage bevel gearbox to calculate dynamic responses. Experiments are
conducted to validate the simulation results. It is shown that the model is capable of
diagnosing the missing tooth fault in a one-stage straight bevel gearbox.
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2 Dynamic Modelling of One Stage Straight Bevel Gearbox

In this study, a dynamic model of a straight bevel gearbox is adopted from [12]
as shown in Fig. 1. The modeling of the gearbox has the following assumptions.
The stiffness due to meshing of the gears is represented as the linear springs and
mesh damping is neglected. Effect of friction force during meshing is ignored. Any
assembly and manufacturing errors are ignored. Transmission error is not consid-
ered. The model consists of a bevel gear pair with each gear (pinion/wheel) having
five degrees of freedom, i.e., three translations and two rotations. The translational
displacements are defined by x j , y j , z j , ( j = p, w) and angular displacements are
defined as φ j andψ j . The pinion is connected to the motor for input, and the wheel is
connected to the receiver (load). The rotations of the pinion shaft and wheel shaft are
defined as θ j ( j = p, w). The rotations of motor and receiver shafts are defined as θm
and θr respectively. k(t) is the time-varying mesh stiffness, k jx and k jy( j = p, w)

are the radial bearing stiffness, k jz is the axial bearing stiffness, k jφ and k jψ are the
bearing tilt stiffness, and k jθ is the torsional stiffness of the shaft containing gears j .

The tooth deflection during meshing is given by [12]

δ = {L}T {q} (1)

where

Fig. 1 A dynamic model of
a one-stage bevel gear
system
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Table 1 Tooth deflection coefficients [12]

c1 = b1 sin(a1u1)

c2 = a1 cos(u1) sin(a1u1) − sin(u1) cos(a1u1)

c3 = a1 sin(u1) sin(a1u1) + cos(u1) cos(a1u1)

c4 = b2 sin(a2u2)

c5 = a2 cos(u2) sin(a2u2) − sin(u2) cos(a2u2)

c6 = a2 sin(u2) sin(a2u2) + cos(u2) cos(a2u2)

c7 = c2vb1 cos(a1u1) − c1v[a1 cos(u1) cos(a1u1) + sin(u1) sin(a1u1)]
c8 = c1v[a1 sin(u1) cos(a1u1) − sin(u1) sin(a1u1)] − c3vb1 cos(a1u1)

c9 =
c3v[a1 cos(u1) cos(a1u1) + sin(u1) sin(a1u1)] − c2v[a1 sin(u1) cos(a1u1) + cos(u1) sin(a1u1)]
c10 = c4v[a2 cos(u2) cos(a2u2) + sin(u2) sin(a2u2)] − c5vb2 cos(a2u2)

c11 = c4v[a2 sin(u2) cos(a2u2) − cos(u2) sin(a2u2)] − c6vb2 cos(a2u2)

c12 =
−c6v[a2 cos(u2) cos(a2u2) + sin(u2) sin(a2u2)] + c5[a2 sin(u2) cos(a2u2) − cos(u2) sin(a2u2)]

{L} = {c1, c2, c3, c4, c5, c6, c7, c8, c10, c11, 0, c9, c12, 0} (2)

and

q = {
xp, yp, z p, xw, yw, zw, φp, ψp, φw,ψw, θm, θp, θw, θr

}T
(3)

The coefficients c j ( j = 1, 2, ...12) are given in Table 1. q is the generalized
displacement vector, where subscripts p, w, m and r refers to the pinion, wheel,
motor, and receiver respectively.

In Table 1, vi is the radius of the spherical circle of the bevel gear geometry and
ui is parameter of the lead line, where i = 1, 2, 1− pinion, and 2−wheel, ai and
bi are the parameter of the bevel gear geometry and can be defined as [4]

ai = sin(δbi ), and bi = cos(δbi ) (4)

where
(δbi ) is the half top base cone angle.
The equation of motion of the system is obtained by Lagrange’s Method and is

written as [12]

Mq̈(t) + Cq̇(t) + [Ks + K (t)]q(t) = F(t) (5)

In Eq. (4), M is the mass matrix of the system and can be written as

M = diag
(
mp,mp,mp,mw,mw,mw, Ipx , Ipy, Iwx , Iwy, Im, Ipθ , Iwθ , Ir

)
(6)
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where m j ( j = p, w) is the lumped mass and Ii j (i = x, y; j = p, w) is the mass
moment of inertia of the gear bodies. Im , Ipθ , Iwθ , and Ir are the mass moment of
inertia of motor, pinion shaft, wheel shaft, and the load respectively.

The time-varying mesh stiffness matrix is given by [12]

K (t) = k(t){L}{L}T (7)

The bearing stiffness matrix is given by [12]

Ks =
[
KT 0
0 KR

]
(8)

where

KT = diag({kpx , kpy, kpz, kwx , kwy, kwz}) (9)

KR =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

kpφ 0 0 0 0 0 0 0
0 kpψ 0 0 0 0 0 0
0 0 kwφ 0 0 0 0 0
0 0 0 kwψ 0 0 0 0
0 0 0 0 kpθ −kpθ 0 0
0 0 0 0 −kpθ kpθ 0 0
0 0 0 0 0 0 kwθ −kwθ

0 0 0 0 0 0 −kwθ kwθ

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(10)

The proportional Rayleigh damping C can be defined as

C = 0.05M + 10−4Km (11)

where Km is the mean mesh stiffness matrix.

3 Modelling of Mesh Stiffness Function

3.1 Mesh Stiffness Model of a Healthy Bevel Gear

In this paper, TVMSof a bevel gear pair ismodeled as the squarewave approximation.
The mesh stiffness calculation is based on the Tredgold assumption [21], which says
that the straight bevel gears can be approximated as spur gears when projecting on
a plane tangent to the back cone. The approximated spur gear will have the pitch
radius equal to the back cone, and the pitch will be the same as the bevel gear. A
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Fig. 2 Model of
time-varying mesh stiffness
(TVMS)

typical TVMS model of a gear pair is shown in Fig. 2. Here k(t) is the variation of
mesh stiffness with respect to time. kmax, kmin and km are maximum, minimum, and
mean value of the gear mesh stiffness. Tm is the meshing period. The maximum and
minimum values of mesh stiffness can be calculated as

kmin = km

(
1 − 1

2εα

)
(12)

kmax = km

(
1 + 2 − εα

2εα(εα − 1)

)
(13)

where εα is the contact ratio and defined as

εα =
√
R2

va1 − R2
vb1 +

√
R2

va2 − R2
vb2 − (Rv1 + Rv2) sin(α)

πm cos(α)
(14)

where Rv Rva Rvb are the back cone distance, the outer radius of an equivalent spur
gear and, base circle radius of an equivalent spur gear respectively. m and α are the
module and pressure angle, respectively.

The time evolution ofmesh stiffness of a healthy bevel gear pair for two revolutions
of the tooth is shown in Fig. 3. The speed of the pinion shaft is taken as f p = 7.04 Hz .
Therefore, the gear mesh frequency obtained is fm = 126.7 Hz , and the mesh period
obtained is Tm = 0.0079 s.
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Fig. 3 TVMS of a healthy bevel gear pair

3.2 Mesh Stiffness Model of Bevel Gear with a Missing Tooth
Fault

A missing tooth fault is considered on the pinion of a straight bevel gear pair. To
model the missing tooth fault, an approach proposed by Tian and co-authors [3] is
adopted. During the meshing period of teeth, gear mesh stiffness fluctuates between
DTPC and STPC for gears (1 < contact ratio < 2). A missing tooth fault can be
modeled by assuming there is only STPC in the region of DTPC, and there will be
no contact between teeth in the region of STPC for one particular mesh period, i.e.,
a time period when the missing tooth part (mating part) in a pinion comes in contact
with a tooth of a wheel.

The time evolution of mesh stiffness of a straight bevel gear pair with missing
tooth fault for two revolutions of a shaft is shown in Fig. 4. The starting point of the
meshing is assumed at the position where the missing tooth part of the pinion starts
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Fig. 4 TVMS of straight bevel gear with a missing tooth fault
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mating with the tooth of the wheel. Therefore, for one mesh period of the gears, the
contact is assumed to be STPC instead of DTPC, and there is a loss of contact (i.e.,
zero mesh stiffness) instead of single tooth pair contact. This phenomenon repeats
for every revolution of the shaft.

4 Simulation and Results

For simulation purposes, bevel gear parameters of an experimental test rig are consid-
ered. The values of the parameters are shown in Table 2. The inertia of the motor
and receiver are Im = 0.0055 kg/m2 and Ir = 0.1 kg/m2.

4.1 Dynamic Response of a Healthy Bevel Gear System

For calculating the dynamic response, as described in Sect. 3.1, the pinion speed is
taken as 7.04 Hz, and the corresponding gear mesh frequency is 126.7 Hz. Figure 5a
and b shows the time response of a healthy bevel gear computed at the pinion bearing
and the wheel bearing respectively, for two rotations of the shaft.

Figure 6a and b shows the time response of a healthy bevel gear computed at
the pinion bearing and the wheel bearing respectively for two mesh periods. The
time response of healthy bevel gear for two-shaft rotations does not provide any
useful information. However, transition regions of STPC and DTPC can be explicitly
observed between mesh periods from Fig. 6a and b. Here,TDT PC and TST PC are
periods of DTPC and STPC, respectively and the sum of these two time periods is
the total mesh period, i.e., TDT PC + TST PC = Tm .

Table 2 Parameters of the one-stage straight bevel gear system

Parameters Pinion Gear

Module (mm) 2 2

Mean mesh stiffness (N/mm) 2 × 108

Pressure angle (º) 20°

Number of teeth 18 27

Mass (kg) 0.03 0.05

Inertia (kg - m2) 3 × 10−6 1.15 × 10−5

Bearing Stiffness (N/m) kx = 1 × 108ky = 1 × 108kz = 1 × 108

kφ = 1 × 108

kψ = 1 × 108

Torsional Stiffness (Nm/rad) kpθ = 1 × 104kwθ = 2 × 104
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Fig. 5 Time response of healthy bevel gear for two rotations of the shaft at a pinion bearing and,
b wheel bearing

Fig. 6 Time response of healthy bevel gear for two mesh periods at a pinion bearing and, b wheel
bearing

4.2 Dynamic Response of a Bevel Gear System with Missing
Tooth Fault

The time response of one stage straight bevel gear system with missing tooth fault
computed at the pinion bearing and the wheel bearing respectively for two rotations
of the shaft is shown in Fig. 7a and b respectively. For two mesh periods, the time
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Tn

Tn

Fig. 7 Time response of the bevel gear with missing tooth fault for two rotations of the shaft at
a pinion bearing and, b wheel bearing

response computed at the pinion bearing and the wheel bearing is shown in Fig. 8a
and b, respectively. In Fig. 7a and b, the impact due to missing tooth fault can be
seen at every rotation of the shaft when the wheel mates with missing tooth part on
the pinion. The corresponding accelerations are also higher compared to that of a
healthy one. Here Tn is the period of one rotation of pinion shaft.

Tm

Tm

Fig. 8 Time response of the bevel gear withmissing tooth fault for mesh periods at a pinion bearing
and, b wheel bearing
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Similarly, a higher value of impact is also observed in Fig. 8a and b after eachmesh
period compared to that of a healthy one. It can be noted that the higher acceleration
values (order of 104) obtained only at pinion bearing, in contrast to thewheel bearing,
because the fault has been introduced in the pinion.

5 Experimental Validation

For the validation of simulated results, an experimentwas conducted on a single-stage
straight bevel gearbox with a healthy and missing tooth fault case. A bevel gearbox
mounted on machinery fault simulator was used as a test rig (see Fig. 9). The healthy
bevel gear and bevel gear with a missing tooth fault used in the experiment are shown
in Fig. 10a and b, respectively.

AC Motor

Tachometer
Display

Data acquisition
Laptop Motor con-

troller Rotor shaft
Bevel gearbox

Fig. 9 Experimental test-rig with a zoomed view of the accelerometer

Fig. 10 Bevel bears with
different health conditions
a healthy and, b with
missing tooth
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The vibration signals are acquired using the tri-axial accelerometer. The motor
speed is chosen as 18 Hz and after reduction through a belt-drive, the gearbox input
(pinion) shaft speed obtained was 7.04 Hz. The input speed was measured using a
tachometer. The acceleration signals were acquired at a sampling rate of 6.4 kHz.
The acceleration measurements were done in all three directions at pinion bearing, as
shown in the zoomed viewof accelerometer in Fig. 9. The specification of the gearbox
is shown in Table 3. After acquiring time-domain signals, it was then processed in
MATLAB to obtain the Fourier transform of the signal.

The experimental time response of a healthy gearbox for two rotations of the shaft
shown in Fig. 11a does not provide any useful information. However, if the response
is observed for two mesh periods shown in Fig. 11b, the transition of DTPC and
STPC can be inferred as an increase in amplitude. The simulated frequency response
of the healthy bevel gear at pinion bearing is shown in Fig. 12. The gear mesh
frequencies and its harmonics in the frequency domain can be explicitly observed.
The experimental frequency response of a healthy bevel gear is shown in Fig. 13.
The gear mesh frequency and some of its harmonics are observed.

The responses for bevel gear with missing tooth fault are acquired using the same
input conditions and sample rates that were used in the case of healthy bevel gears.
The time responsewithmissing tooth fault for two rotations of the shaft and twomesh
periods are shown in Fig. 14a and b, respectively. From Fig. 14a, an impact caused
bymissing tooth fault at each rotation of the shaft is observed. The acceleration value
in Fig. 14a is also higher than that of a healthy one. Figure 14b does not provide any

Table 3 Specifications of the
bevel gear

Parameters Value

Gear ratio 1.5:1

Wheel pitch angle 56°19′

Pinion pitch angle 33°41′

Pressure angle for wheel and pinion 20°

Number of teeth in pinion 18

Number of teeth in the wheel 27

Fig. 11 Experimental time
response of healthy bevel
gear at pinion bearing a for
two rotations of the shaft.
b For two mesh periods

TDTPC TSTPC
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Fig. 12 The frequency response of healthy bevel gear at pinion bearing
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Fig. 13 The experimental frequency response of healthy bevel gear at pinion bearing

clear information about the impact. However, the measurement of two crests equal
to the mesh period suggests the variation in the amplitude at the transition region.

Figure 15 shows the simulated frequency response at pinion bearing with missing
tooth fault. In the frequency domain, the fault frequencies appear as the sidebands
around themeshing frequency as fm± f p where f p is the frequency of the pinion. The
sidebands due to fault also appear around the harmonics of the gear mesh frequency
as 2 fm ± 2 f p, 3 fm ± 3 f p and so on.
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Fig. 14 Experimental time
response of bevel gear with
the missing tooth at pinion
bearing a for two rotations of
the shaft. b For two mesh
periods

Tn

Tm

Fig.15 Simulated frequency
response of bevel gear with
missing tooth fault at pinion
bearing

The experimental frequency response of the bevel gearbox with missing tooth
fault at pinion bearing is shown in Fig. 16. The fault frequencies around sidebands
equal to 2 fm ± 2 f p are observed. Other harmonics of the fault frequencies can also
be observed from Fig. 16 but not indicated. However, due to some reason fm ± fp is
not appearing in the experimental response.

Figure 17 shows the zoomed view of the simulated frequency response (see
Fig. 15), where gear mesh frequency and its second harmonic can be seen clearly

Fig. 16 The experimental
frequency response of bevel
gear with the missing tooth
at pinion bearing
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Fig. 17 Zoomed view of the simulated frequency response of bevel gear with missing tooth fault
at pinion bearing

with sidebands around them.A zoomed viewof the experimental frequency response,
shown in Fig. 16, is presented in Fig. 18.

Comparison of second harmonic of Fig. 17 with Fig. 18 yields a good agree-
ment between simulation and experimental results. Also, a comparison between
time responses of Figs. 8a and 14a show good agreement between simulation and
experimental results for missing tooth fault.

Fig. 18 Zoomed view of the experimental frequency response of bevel gear with missing tooth
fault at pinion bearing
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6 Conclusion

In the present study, a gear mesh stiffness model of bevel gear with missing tooth
fault is proposed using square wave approximation. The mesh stiffness model is
incorporated into the dynamic model of a one-stage straight bevel gearbox, and the
dynamic response is calculated. The dynamic characteristics due to missing tooth
fault are described as follows:

• The impacts caused by missing tooth faults are observed in time response of the
simulated signal at each shaft rotation. Some distinct characteristics can also be
inferred from the time response betweenmesh periods, for example, the transition
of teeth pairs.

• The fault frequencies are observed as sidebands around the gear mesh frequencies
in the simulated frequency response.

To validate the simulation results, experiments are performed using a test-rig
having a straight bevel gearbox mounted on it. The response is taken for both the
healthy and the missing tooth fault cases. The experimental results agree well with
the simulation results both in time and frequency domain. Therefore, it is concluded
that the proposed model successfully identifies the fault in a single stage straight
bevel gearbox.
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Investigating the Electro-mechanical
Interaction Between Helicoidal Gears
and an Asynchronous Geared Motor

Safa Boudhraa, Alfonso Fernandez del Rincon, Mohamed Amine Ben Souf,
Fakher Chaari, Mohamed Haddar, and Fernando Viadero

Abstract Gears are widely used in different domains, aeronautics, automotive
and machines tools manufacturing etc. … Therefore, monitoring these mechanical
systems have been a huge scientific and industrial trend recently. Different studies
were orientated to its investigating using different techniques in order to study the
sensitivity of each. Motor Stator Current Analysis (MSCA) was one of the high-
lighted techniques for its easy accessibility and accuracy. The mechanical system
generates torque oscillations which leads to a frequency and amplitude modulation
effects on the stator current in the asynchronous machine. Within this context, this
study was done on an experimental test bench composed of a geared motor and a
helicoidal gears. The current signal was recorded using clamp meter and presented
on LMSTestLab. The electromagnetic interaction starts to get visible in the mechan-
ical frequencies seen in the sidebands around the motor frequency. In this paper,
some of the results would be present to illustrate the electro-mechanical interaction
between the mechanical system and the electrical part, which is itself composed of
an asynchronous motor and an integrated gearbox.

Keywords Geared motor · Helicoidal gears · Stator current · Electromechanical
interaction

1 Introduction

The gearboxes are widely used in different industrial domains such as automotive,
aeronautics and machinery manufacturing tools. Hence, because of its critical role,
the condition monitoring of these mechanisms has been in permanent progress by
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involving different physical phenomena. Researchers had been orientated to experi-
mental tests also to developing numerical models in order to facilitate the detection of
any anomaly, localize it and mainly to avoid the high price of mounting, dismounting
and manufacturing. Over the past two decades, using the vibration signals dominate
the condition monitoring of rotating machinery in different operating conditions
[1, 2].

However, the stator motor current is one of the leading methods in this field today,
mainly for its easy accessibility. Such as Kia et al. [3] who had referred to the impact
of the torsional vibrations on the stator current. In a more advanced work Ottewill
et al. [4] in their paper hadworked onmonitoring a tooth defect in epicyclic gearboxes
using numerical modelling pursued by experimental validation.

It has been shown also [5, 6], that due to the torsional vibration resulted from
the load oscillation in the output wheels and the stiffness variation of the gear teeth
contact, the gearbox adds the rotation and mesh frequency components into the
torque signature. By means, this impact makes the stator current multi-component
phase modulated. The amplitude of each gearbox-related frequency component in
the stator current spectrum depends on its respective modulation index value. In [7,
8] Kia et al. found that the rotating frequencies related to the motor can be clearly
seen in the current spectrum for different amplitudes. This impact was first studied
on a single frequency effect on the current signal by Yacamini [9] and developed
later by Kar et al. [10] on a multistage of gears. Within this context, this work aims
to present the electro-interaction between a geared motor and a stage of helicoidal
gears.

This paper is structured as followed, besides to the introduction, a second section
to describe the experimental system composed of a pair of helicoidal gears driven by
a geared motor. Also, describing the emplacement of the sensor along the test bench.
In the third section, different experimental measurements are presented in both time
domain and frequency domain. Finally, a fourth section states conclusions beyond
the previous work.

2 Experimental Set Up

The objective of this paper is to investigate the impact of differentmechanical compo-
nents connected to an electrical machine on its behaviour. Therefore, this study is
accomplished on an experimental test bench as illustrated in Fig. 1.

The test bench is composed of two parts:

• Agearedmotor: a Bauer gearedmotor (Type: BG50-11D099A4-Tk-K311) shown
in the Fig. 2. The driving system is composed by a three-phased asynchronous
motor (4 poles, 1.1 kW, Fe = 50 Hz, 1400 rpm) and a double-stages gearbox.
Both stages are composed of helicoidal gears (Table 1)

• A pair of helicoidal gears: (Z1 = 60, and Z2 = 30) where Zi is the number of
gear’s teeth.
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Fig. 1 The experimental test rig

Besides the motor and gears, the load is introduced by a compressed air brake
connected the output shafts as explained in the Fig. 3. Also, in order to record the
electrical signal of we used an electrical clamp connected to LMSTestLab. Later all
the results will be plotted and analysed on MATLAB.

For a deep qualitative study, the system in monitored to 840 rpm where all the
key frequencies of the system are presented as followed in Table 2

3 Results

Two configurations were taken into consideration in this study. A first one illustrated
in Fig. 4, is studying the current signals for a free motor in order to establish a
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Fig. 2 The geared motor
structure

Table 1 The gears
characteristics

Teeth number Reduction ratio

First stage Second stage

The motor Z11 = 10 Z21 = 62 47.02

Z12 = 91 Z22 = 12

Mechanical
system

Z1 = 60 2

Z2 = 30
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Fig. 3 The global schema of the test bench

Table 2 Key Frequencies

Key frequency

The motor Fe= 30 Hz 1st stage 14 1.3 141.12

2nd stage 2.6 0.3 18.6

Mechanical system 0.3 0.1 6

Fgi is the frequency of the ith gear, Fmi is the meshing frequency of the ith stage in the motor, Fe
is the electrical frequency

reference situation and identify all the electrical system related frequencies in the
current frequency spectrum.

• Free motor:

After applying the Fast Fourier Transform on the temporal signal, the Fig. 5a illus-
trates the stator current spectrum for a free motor. It is seen that the current spectrum
is dominated by the supply frequency given by 50 Hz. With lateral sidebands related
the mechanical rotating frequency. Meanwhile in order to accentuate the appearance
of the mechanical system’s signature in the measured current Fig. 5b showing the
same results in the logarithm scale. It is totally seen the appearance of additional
frequency besides to the previous one explained.

Figure 6 presents the current frequency spectrumwith emphasizing the electrome-
chanical contact.

It is seen in Fig. 6 that the connection of the gearbox to the motor impacts the
current signal by the presence of the gearmeshing frequency of each stage.Whenever
there is a load fluctuation, a change in speed occurs thus changing the per unit
slip, which subsequently causes changes in sidebands across the line frequency (fe).
Figure 6c presents highlights the appearance of the mechanical impact of the gears
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Fig. 4 The current signal

through the gear meshing frequency. The peaks seen in the figure are presenting the
relate gear meshing frequency as given in the expression:

fri = | fe ± m fmi | (1)

where: i refers to whether the 1st or the 2nd stage of the integrated gearbox and
m ∈ N .

Even though, with a weak amplitude, even related mechanical frequencies can be
seen in the Fig. 6b, and those frequencies are given by:

∣
∣ fe ± m fm1 ± n fm2 ± p fg1

∣
∣ (2)

where:m, n, p ∈ N .
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(a) 

(b) 

Fig. 5 The frequency spectrum of the current signal for free motor a linear scale, b logarithmic
scale

• Connected to the gears:

Figure 7 presents a brief compaison between the frequency spectrum of the current
signal for free motro (in blue) and for a motor connected to the mechanical system,
pair af helicoidal gears (in green). It is tottaly freseen the appearance of additional
frequencies related to the rotating frequencies and the meshing frequency as well.

Fms1 is the meshing frequency of the mechanical system. Figure 7b presents the
appearance of peaks in the significant frequencies Fe + Fms1 and Fe +2Fms1. In fact,
the illustration of this last measurement is for objective to emphasize the sensitivity
of the electrical signals in mechanical connections detection as shown in Fig. 7c.
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Fig. 6 The current frequency spectrum highlighting the impact of the gearbox connected to the
motor
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Fig. 7 The current spectrum while the motor is connected to the helicoidal pair of gears



144 S. Boudhraa et al.

Also, it is seen the increase of the amplitude of all the peaks related the related-
mechanical frequencies which was related to the high load introduced for the second
configuration.

4 Conclusion

The motor current gives a significant proof of the electromechanical interaction
between the mechanical system, seen in this work as a gearbox and the asynchronous
motor. In this paper we studied the impact of the gears’ contact on the electrical
system by analysing the current signals obtained experimentally. These measure-
ments were at first place treated using FFT to transform the averaged time signal in
to the frequency domain, in order to highlight the presence of the mechanical impact.

Themotor used is already connected to an integrated gearbox thereforewe explain
the appearance of related mechanical frequencies in the current spectrum even for
a free motor configuration. These results were more visible and highlighted after
connected the motor to a couple helicoidal gears. For coupled motor to the gearbox,
we noticed the appearance of additional related frequency in the current spectrum.
In fact, the appearance of the gear meshing frequency is translating the impact of the
load fluctuation due to the contact between teeth on the current signal. Hence, for a
loaded system it is more seen the impact of the mechanical contacts whether due to
the meshing phenomena or simply to gears rotation. This paper is a reface for future
investigation which will study the impact of different conditions on the monitoring
of gearboxes.
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Algebraic Estimator of Damping Failure
for Automotive Shock Absorber

Maroua Haddar, Riadh Chaari, S. Caglar Baslamisli, Fakher Chaari,
and Mohamed Haddar

Abstract One of the challenges for automotive industry is online fault identification
and elimination of vehicle interior vibration. The effectiveness of semi-active shock
absorbers can be threatened by additive and multiplicative perturbations. In fact,
these perturbations are able to cripple the dynamics and complicate shock absorber
operation. In particular, the ride comfort criteria shouldbe insensitive to unpredictable
troubles. Moreover, mechanical systems must operate in healthy conditions. Getting
online-information about failures can be achieved by a simple algebraic estimator.
These algebraic tools are based on operational calculus. The algebraic estimator has
the fastest detection time and non-asymptotic behavior. In literature, the algebraic
observers shown better robustness to vehicle mass uncertainties. Additionally, this
estimator requires a lower number of sensors andhas a lower computational overhead.
Motivated by the above analysis, a simple quarter car model was used to test this
approach. A restricted model is sufficient for identifying the hysteresis behavior
of Magneto rheological damper. Only a sliding window needs to be tuned by the
operator for obtaining a good estimation. Furthermore, just vehicles displacements
are needed for identifying damping force online. The numerical simulations illustrate
the effectiveness of proposed identification tool under different kind of perturbations.

Keywords Online identification · Semi-active · Hysteresis · Monitoring
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1 Introduction

Semi-active suspensions get the interest of automotive designers because it uses low
energy at low cost compared to active controllers. The control power depends greatly
on the choice of the appropriate control schemes of the adaptable shock absorber. A
Magneto-Rheological damper (MR) that contains smart fluid with magnetic particles
surrounded in a type of synthetic oil is used.

Wider range of semi-active controllers implements condition monitoring devices
to diagnose unpredictable failures that affect the effectiveness of MR damper. There
are different forms of nonlinearities that can affect the dynamic behaviour of vertical
motion of suspension system. However, in real application, these nonlinearities are
present but the knowledge of precise mathematical model of this kind of perturbation
is difficult.

Researchers have proposed several solutions to enhance the semi-active suspen-
sion system performance. Fault Detection and Isolation [1], the Unknown Input
Observer [2] and a pseudo inverse actuator estimation [3] are different techniques for
identifying semi-active actuator defects.Most of these strategies are based on vehicle
model and asymptotic observer. Based on the previous analysis, this paper suggests
an online algebraic estimator to estimate the damping force of MR damper including
its abnormale behavior. Based on algebraic and operational rules, a restricted model
for monitoring the health of damping force online is formulated.

The choice of the differential–algebraic theory for estimation is based on char-
acteristic features of finite-time algebraic estimators (non-asymptotic state estima-
tion).In fact, the influence of the initial conditions is indeed removed as claimed
by Fliess and Sira-Ramirez [4]. This truly is an improvement over the classical
observers, which need the right initial conditions. Unknown or incorrect initial condi-
tions invariably entail slow convergence of recursive type of observers. In addition,
the presence of integrals in the estimation procedure acts like a low pass filter, which
naturally reduces the influence of noise and external perturbation and hence is good
at estimating the damping force of MR damper from a noisy signal. Combined with
algebraic tools, in the future, a new active disturbance rejection control law can be
formulated for achieving a good performance with excellent tracking accuracy and
while offering insensitivity to unpredictable disturbance.

The organization of the paper is as follows: a simple car model and the description
of its mathematical equations are presented in Sect. 2. Section 3 describes the alge-
braic estimator and its principle rules for implementation process. The effectiveness
of the proposed estimator in diagnosing MR damper failure is illustrated in Sect. 4.
Finally, the conclusion is given in Sect. 5.
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2 Vehicle Model

A model of vehicle with two degrees of freedom is considered as the most basic
model that could describe automotive suspension (Fig. 1). It consists of an assump-
tion based on considering that the total mass of vehicle is equally distributed among
the fourwheels. Only verticalmovements are considered.Dampers or springs prevent
the amplification of disturbances caused by road profile while maintaining good
road contact. The selected simplified model is helpful, for a first study, to vali-
date the proposed estimator. Failures of damping system can be caused by various
factors: unpredictable leak of fluid ofMR, breakage of assembly support, looseningof
joints, under-inflation or over-inflation of tires, wear of the tire etc. [2]. The dynamic
behavior of a quarter-car model with a semi-active suspension is described by:

ms ẍs = −Fd − ks(xs − xu) (1)

muẍu = ks(xs − xu) + Fd − kt (xu − xr ) (2)

where, xs , xu and xr are the sprung mass displacement, unsprung mass displacement
and road profile excitation, respectively; the chassis is represented by ms , the wheel
and the tire are represented by mu . ks is the suspension stiffness and kt is the tire
stiffness. The damper in this case, called “controllable damper”, is able to generate
a control force for providing the adequate ride comfort. This damping force with
hysteresis effect can be expressed by different ways following different laws such
those given by Bingham, Bouc-Wen, LuGre and Dahl models. In this study, the
plastic model, that is the simplest one known by “Bingham model”, is used. It is
expressed as following:

Fig. 1 Semi-active quarter
car model
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Fd = β
[
kp(xs − xu) + dp(ẋs − ẋu) + fcυ tanh[av(ẋs − ẋu) + ad(xs − xu)]

]
(3)

The viscous damping coefficient is dp. The stiffness coefficient is kp.An electric
variable is given by υ (control input). The hysteretic behavior is characterized by av

and ad . The direction of control force depends on the change of suspension deflection
velocity (ẋs − ẋu) and position (xs − xu). fc is offset force.

3 Proposed Algebraic Estimator

As cited in Sect. 1, there are failures that can threat the operation of shock absorber.
Our objective is to identify and estimate it. Non-asymptotic algebraic estimator
proposed by Haddar et al. [5] for identification of road profile showed interesting
effectiveness. It is selected for the present paper. The differential algebra and oper-
ational techniques are the key elements of the proposed scheme. The proposed esti-
mator can be integrated for many semi-active control system implementations [6].
In Eq. (1), which relates damping force and vehicle dynamics response, Fd signal
can be temporarily approximated by a step function φ [7]. Under this assumption,
for a short time period, the damping force can be given as follows:

φ = −ks(xs − xu) − ms ẍs (4)

Regarding the structure of the estimation algorithm, different steps should be
followed:

Step 1. Transition from time domain to the Laplace domain:

φ

s
= −ks(Xs(s) − Xu(s)) − ms

(
s2Xs(s) − sXs(t0) − ẋs(t0)

)
(5)

Step 2. Elimination of initial conditions based on double differentiation of Eq. (5):

2
φ

s3
= −ks

(
d2Xs(s)

ds2
− d2Xu(s)

ds2

)
− ms

(
2Xs(s) + 4s

dXs(s)

ds
+ s2

d2Xs(s)

ds2

)

(6)

Step 3. Cancelling out the positive power (it is defined by the highest degree of
s) Both sides are multiplied by s−3:

2
φ

s6
= −ks

(
1

s3
d2Xs(s)

ds2
− 1

s3
d2Xu(s)

ds2

)

− ms

(
2
Xs(s)

s3
+ 4

1

s2
dXs(s)

ds
+ 1

s

d2Xs(s)

ds2

)
(7)
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Step 4. Back to time domain.

Based on the previous steps, the algebraic estimator of damping force may be
expressed in terms of verticals displacements xs(t) and xu(t) as follows:

F
∧

d(t) = − 30

L5

t∫

0

ks(L − τ)2τ 2(xs(τ ) − xu(τ ))dτ

− 60

L5

t∫

0

ms
(
L2 − 6τ L + 6τ 2

)
xs(τ )dτ (8)

The presence of damper defect is modeled as following:

F
∧

d(t) = Fd(t) − Fδ(t) (9)

where healthy damper is presented by a nominal force Fd(t) and the loss of
effectiveness due the additive perturbation (induced by sensors noise) is given by
Fδ(t).

For multiplicative default, such as oil leakage fault, β can be modeled with a
simple relation as following:

Fd(t) = F
∧

d(t)

β
(10)

The effectiveness of the damper is described by β (A healthy damper is given by
β = 1 and 0 ≤ β < 1 describes a damper failure). For estimating β and in order
to avoid the problem of singularities (for more details see: Alvarez-Sánchez [8] and
Beltran-Carbajal et al. [9]), we will use β̂ which is expressed as:

β̂ =
˜

t2F
∧

d(t)
˜

t2Fd(t)
(11)

4 Results of Simulation

The quarter car parameters are presented in Table 1.

Scenario 1: Additive noise in sprung mass sensor
The road profile excitation is given by xr (t) = 0.0375 sin(2π(7.77)t). The sprung

mass sensor was affected by white Gaussian noise (Fig. 2). The imposed algorithm
can detect this kind of perturbation as depicted in Fig. 3. The Hysteresis behavior
damping force from estimated signal has a similar behavior of real hysteresis.
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Table 1 Vehicle parameters
[2]

Parameters Value

ms 315 kg

mu 37.5 kg

ks 29,500 N/m

kt 230,000 N/m

kp − 10,239 N/m

dp 1500 Ns/m

fc 441 N

υ 2 A

av 7.89 s/m

ad − 13.8 m−1

Fig. 2 Additive failure in sprung mass acceleration sensor

Fig. 3 Estimated Hysteresis behavior damping force with different values of L
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Fig. 4 Hysteresis behavior of Bingham model with multiplicative failure

However, in the case of algebraic estimator, the size of sliding windows L can
affect the precision of estimation. In fact a large length of L will filter noise and
a delay can appear in the simulation. This delay is observed by the largest dynamic
of hysteresis loop shape (Blue curve).These information can be used in classical
control scheme as PID control for getting an error value e(t) as the difference between
a desired response Fd(t) and a estimated process variable F

∧

d(t) for applying a
correction based on proportional, integral, and derivative terms.

Scenario 2:Multiplicative perturbations
Themultiplicative damper fault is modelled as a step change at t= 5 s from β = 1

(healthy case) to β = 0.5 (unhealthy case). Figure 4 shows how the multiplicative
perturbation influences the dynamic of hysteresis loop shape and damping force. So,
it is important to detect this kind of failure in shock absorber. Figure 5 describes a
satisfactory estimation of the β coefficient after a short time ε = 0.1s.This kind of
information can be considered as novelty detection to detect abnormal behavior in
suspension system.

5 Conclusion

Thisworkproposes an algebraic estimator ofMRdamping force. It is a simple scheme
able to identify the additive and multiplicative failures that affects the precision in
hysteresis. According to operational rules, an algebraic estimator was implemented
based on the assumption that the damping force is a constant piecewise function.
Hence, this work is helpful to get more information about vehicle behavior online
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Fig. 5 Algebraic estimation of multiplicative failure

for semi-active controller evaluation purposes. The main finding can be summarized
the following:

• The introduced scheme exploits only the vertical displacements of the suspension
system.

• One scaling parameter is needed for setting the estimator and achieving a good
fault estimation.

• Additive and multiplicative failures can be identified in the same time.

After this condition monitoring, the estimated disturbances can be rejected online
to an intelligent controller that will be the subject of future work.
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On the Use of Jerk for Condition
Monitoring of Gearboxes
in Non-stationary Operations

Fakher Chaari, Stephan Schmidt, Ahmed Hammami, P. Stephan Heyns,
and Mohamed Haddar

Abstract Diagnostics of rotating machinery is very important to preserve their effi-
ciency. Defects should be detected at an early stage in order to plan maintenance
and avoid a stop in production. In this chapter the use of jerk, the derivative of
acceleration, is used to diagnose a gearbox with a local tooth defect. A dynamic
gearbox model is presented, which includes time-varying mesh stiffness and non-
stationary operating conditions modeled as variations of load and speed. In order
to model the tooth defect, a reduction in mesh stiffness is introduced proportionally
to the severity of the defect. Two case studies are presented. The first one concerns
stationary operating conditions and different severity of defects. For this case, the
jerk shows good ability to diagnose the presence of the local defect. For the second
case, variable loading condition was modeled as a sawtooth shape, whereafter the
jerk was used to detect the presence of a defect. The amplitude modulation cause in
increase in the vibration level that does not allow the identification of defect using
only the acceleration signal. The jerk allows this identification even for significant
load variability. The performance of jerk for signals with additive Gaussian noise is
discussed, highlighting its limitations.

Keywords Jerk · Diagnostic · Gear system · Defect ·Modelling

1 Introduction

Gearboxes play an important role in power transmission from a driving unit to a
receiver. They are characterized by their high efficiency and robustness. However,
overloads, variable loads and speeds can be a serious threat for their good operation
causing harmful damages. Condition monitoring of such gearboxes using vibration
analysis becomes more difficult and requires advances signal processing techniques.
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Many papers discussed such techniques and highlighted the modulation effects that
appear when both load and speed conditions vary. Chaari et al. [1] proposed a
dynamic model of a single stage gearbox running under time varying loading condi-
tions. The authors correlate speed and load and showed the simultaneous amplitude
and frequency modulation. Amplitude modulation is induced by load variation and
frequency modulation is caused by speed variation. Other works were interested in
the modulation sidebands [2] that are present in the vibration spectra of planetary
gearboxes.

When a local defect affects one tooth of transmission, and in the presence of non-
stationary operating conditions, the monitoring task will be more complicated. Time
frequency analysis is one of the most commonly used signal processing techniques
that can be used in such situation [3]. But when the modulation effect is dominant
the vibration signature of the defect will be lost, which impedes the detectability of
the damage.

In recent years, jerk, which is defined as the first derivative of acceleration, drew
the attention of the scientific community in the field of condition monitoring of
rotating machinery. This was first observed for bearing diagnostics. One of the first
works donewas by Smith [4]who compared vibration responses obtained from shock
pulse, acoustic emission and jerkmeasurements emitted fromadamagedbearingwith
different levels of speed. He concluded that jerk is more efficient in detecting bearing
defects than the other sensors, with the jerk improving the signal-to-noise ratios of
the damage. However, it is more sensitive to the rate of rise of acceleration. Zhang
et al. [5] implemented data mining algorithms and statistical methods to investigate
jerk vibration signal measured on a wind turbine gearbox. They were able to detect
defects in the intermediate- and high-speed stages of the gearbox which, however,
was driven in stationary conditions. Ismail and Klausen [6] used jerk to localise and
quantify bearing defects through the use of an autonomous fault detection technique
that also includes multiple defects.

Ismail et al. [7] investigated bearing defect severity by proposing a jerk energy
gradient which was applied on the synchronous average of fault impact signal. This
method was successfully applied for bearings operating under low speeds. Ismail
et al. [8] tested an automated vibration-based technique to predict the size of a spall
defect in a bearing. This was performed by extracting from the jerk time instants.
When the ball enters and exits the spall. The aim of this chapter is to confirm the
ability of jerk to monitor the health status of a gearbox in the presence of both
non-stationary operations and local tooth defect.

A dynamic model of a bevel gear will be presented allowing the consideration of
variable operating conditions and local defect. A parametric study will be performed
to investigate the efficiency of jerk for diagnostic purposes.
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2 Dynamic Model

A single spiral bevel gearbox is studied. Theoretical background for the modelling
procedure of this gearbox can be found in [9]. The model includes 10 degrees of
freedom (6 translational and 4 rotational). The main excitation source of the gearbox
is the time varying mesh stiffness which characterize the time succession 1 pair/2
pairs of teeth in contact. The geometry of the gearbox causes the shape of this mesh
frequency to be trapezoidal as shown in Fig. 1. In the presence of a local defect
which is chosen to be a crack, a periodic reduction of the mesh stiffness is operated
proportionally to the severity of the defect. Since the transmission is driven by an
asynchronous motor, load and speed are intimately related. Increase of load causes
reduction of motor speed and vice versa. This will affect the periodicity of the mesh
stiffness function as shown in Fig. 1 [10]

The differential equation of motion is solved using the Newmark algorithm. This
algorithm provides displacement, velocity and acceleration for each time instant for
the different degrees of freedom.

The jerk expresses the rate of change of the acceleration and is considered as a
good indicator of vibration impulses caused by damage. For acceleration computed
for continuous time, the jerk can be expressed by:

J = da

dt

where a is the acceleration and t is time.When the difference between two consecutive
time instants become small, this expression can be expressed by:

J = ai+1 − ai
ti+1 − ti

= ai+1 − ai
Ts

Fig. 1 Mesh stiffness evolution in case of local defect
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where ai and ai+1 are two successive computed accelerations for the two time instants
ti and ti+1 time instants. Ts is the sampling time.

3 Numerical Simulations

For stationary conditions, where speed and load are constant, the mesh frequency
fm is equal to 308 Hz. A sawtooth loading condition as applied to the output of the
transmission with a frequency of 5 Hz is shown in Fig. 2. Three loading amplitude
rates of increase are considered: 0, 10, 25 and 50%. For the local defect different
sizes of defect are considered. They correspond to the 0% (healthy case), 1, and
5%, decrease in the mesh stiffness function corresponding to increased severity of
defect. In all presented simulations, comparisons will be made between acceleration
response and jerk calculated using the response of the pinion bearing.

3.1 Stationary Operating Conditions

In this section, the dynamic response of the transmission is simulated considering
constant loading conditions. Figure 3 shows the acceleration for different size defects.

From the simulated acceleration, it is well noticed that acceleration allows the
detection of the defect starting from 5% severity. Peaks shown for this level confirm
clearly the presence of defects with visible periodic behavior since speed is constant.
However, for the case of incipient defect (1%), the acceleration signal does not allow
us to detect the presence of the defect. Figure 4 shows the jerk for the cases with 1
and 5% defect sizes.

Fig. 2 Load fluctuation
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Fig. 4 Jerk for constant load and two levels of defects

It is well noticed that jerk allows the identification of the defect since its incipient
form. For 1% defect severity spikes relative to the defect are well identified and they
have higher amplitudes especially for the case of 5% severity.

3.2 Non-stationary Operating Conditions

Now the transmission is subjected to the sawtooth varying load as specified in Fig. 2.
We will focus on 5% defect size case. Figure 5 show the acceleration simulated for
10, 25 and 50% increase of the load.

From the acceleration signals, it is not possible to find a clear impulse to confirm
the presence of the defect. The amplitude modulation induced by the load variation
dominates the dynamic response. Figure 5 shows the jerk computed for the last
acceleration response (Fig. 6).
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Fig. 5 Acceleration for 5% severity defect and different loading conditions
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Fig. 7 Jerk evolution for 5%defect severity, 25% loadvariation and three cases of standarddeviation

It is clear that jerk allows the identification of defect very early. The amplitude of
the spikes is varying with high amplitude when the defected tooth mesh and the load
is maximum and vice versa.

3.3 Influence of Noise

In this part, the robustness of using jerk as a condition monitoring parameter when
noise is present in the signal is investigated. White Gaussian noise is used with three
cases of standard deviations which are 0.001, 0.01, 0.02 and 0.05. The noise is added
to simulated acceleration for the case 25% load variation and 5% defect severity.
Figure 7 shows the jerk plotted for the three cited cases.

It is noticed that jerk is sensitive to the increase of noise. If the value of 0.02 in
standard deviation is exceeded, the efficiency of detection is lost. This is attributed to
the central difference operator used in the estimation of the jerk from the measured
vibration signal. For example, the subtraction of two zero mean Gaussian random
variables results in a new zero mean Gaussian variable with a variance larger than
the individual Gaussian components, i.e. the variances are additive. This fact was
highlighted by [6] who stated that due to strong background noise, spikes caused by
faulty bearings cannot be identified accurately in the raw vibration jerk signal.

4 Conclusion

The objective of this chapter is to check the efficiency of using jerk as a condition
monitoring tool to identify the presence of local defects in gear systems. To this
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effect, a numerical model of a bevel gear transmission was proposed. Several loading
conditions were studied. A local tooth defect was modeled as a reduction in the mesh
stiffness function. A parametric study was conducted by combining three cases of
loading conditions and two cases of defect severity.

Accelerations were simulated and compared to jerk. Some interesting findings
can be summarized as follows:

• For constant loading conditions and by checking acceleration signals, it is difficult
to identify the presence of defect in its incipient stage. However, the jerk time
signal allows the identification of the defect at a very early stage.

• For time-varying loading conditions, the acceleration signal is unable to reveal
the presence of the defect because of the important amplitude modulation caused
by the load increase. Jerk is sensitive to the presence of the defect starting from
very small severity of defect and for high fluctuation of load.

However, presence of noise can alter the identification of defects. It is recom-
mended to de-noise the signal. It is interesting to investigate more the implementa-
tion of jerk in signal processing by checking more case studies and implementing
more deep frequency and time–frequency analysis.
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this research.
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Dynamic Remaining Useful Life
Estimation for a Shaft Bearings System

Mohamed Habib Farhat, Fakher Chaari, Xavier Chiementin,
Fabrice Bolaers, and Mohamed Haddar

Abstract Condition-based maintenance of rotating machines has become a subject
of growing interest in 4.0 industry. Significant failures in industrial equipment are
directly related to bearing degradation.Many techniques have been used successfully
for diagnosing and forecasting bearing failures. However, accurately estimating the
remaining useful life (RUL) of a bearing in operation remains a challenge. In indus-
trial applications, the difficulty is usually related to the lack of available historical
degradation signals. Therefore, in this chapter, a prognostic approach addressing the
shortcomings of historical degradation data is presented. The latter bases on real-
time acquired signals to build an adaptive predictive model for bearing degradation.
Initially, diagnostic features associated to bearings are extracted from the available
vibration signals. Then, an unsupervised DBSCAN classifier is used to detect degra-
dation. As new degradation data become available, the extracted features are inter-
actively ranked according to a defined selection criterion. The relevant feature is
chosen as health indicator (HI). The degradation evolution and the RUL are esti-
mated by an applied adaptive exponential degradation model, dynamically updated
with each acquired sample. The applied strategy has been validated against vibration
data acquired from a real wind turbine’s shaft bearings system.

Keywords Bearing · Prognostic · RUL · Degradation

1 Introduction

Following the 4th industrial revolution, conventional maintenance strategies (condi-
tional, preventive) have gradually givenway to amore futuristic and intelligent vision
of maintenance, namely: the predictive maintenance. This approach allows real-time
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monitoring of failures and provides reliable RUL prediction [1]. Bearings are recog-
nized among the most critical components of industrial machinery. An uncontrolled
degradation in its state could be the cause of catastrophic damages. Correspondingly,
tracking bearing failures and forecasting its RULhave become a subject of significant
interest. In the literature, RUL prediction methods are divided into two categories:
data-based methods and model-based methods [2]. Data-based approaches derive
machines degradation processes based on the available measurement signals without
the need to model the actual physical equipment (case of the model-based approach).
These latter are based on the assumption of relatively consistent statistical charac-
teristics in machines vibration in case of normal operation conditions. Data-driven
method has proven to be an increasingly promising approach for bearing’smonitoring
and RUL prediction [3]. The degradation trend is first identified by analyzing the
condition-monitoring signals. Then, future evolutions are anticipated using a predic-
tion model. Unsupervised machine learning methods have proven to be effective in
the detection of bearing defects [4]. Unlike supervised classifiers, the use of unsu-
pervised clustering algorithms requires no prior knowledge about the operation data.
Among density-based clustering algorithms, Kerroumi et al. [5] tested and validated
the efficiency of DBSCAN in the diagnosing of bearing vibration signals. The RUL
estimation methods are used to assess the equipment’s degradation and to predict
impending failure. To do so, an appropriate degradation feature must be carefully
selected. There are many conventional features associated to bearing degradation,
including time domain [6], frequency domain [7], and time–frequency domain [8].
Subsequently, an optimal prediction model must be developed to forecast the evolu-
tion of the HI through time. Many data-based prediction methods were proposed in
the literature, namely, the artificial neural network [9], the adaptive neural fuzzy inter-
ference [10], the support vector machine and relevance vector machine (RVM) [11].
Nevertheless, exponential regression models remain one the simplest and efficient
techniques used for bearing (RUL) estimation [12]. In most of the RUL prediction
work proposed in the literature, the HI is selected based on the run-to-failure data.
However, in real-world applications, these data are generally not available. In this
work, a preventive defect detection approach is investigated to deal with the lack
of bearings degradation data. Real run to failure shaft bearings system dataset are
used to validate the proposed approach. 13 associated bearing diagnostic features are
extracted from the considered vibration data. Kernel principal componentKPCA [13]
is used to reduce the extracted features dimension. The resulting principal compo-
nents are used to feed a DBSCAN classification model, used to defect the defects.
The features extracted from healthy data are arranged according to a selection crite-
rion and the selected feature is chosen as the HI. As new degradation data become
available, the extracted features are re-ranked according to the selection criterion.
Each time, the selected feature is chosen as HI, which is used to build an adaptive
exponential degradation model, allowing the estimation of the RUL.

The paper is organized as following. The proposed maintenance methodology is
detailed in Sect. 2. The validation of the proposed approach is carried out in Sect. 3.
Conclusions are performed in Sect. 4.
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2 Methodology

RUL refers to the residual lifetime of the machine before it loses the ability to operate
based on its current state and its past operating history. The RUL is generaly checken
through a conditional random variable specified in relative or absolute time units.
This variable is the HI. The machine is said to be at the end of its life if the HI reaches
a limit value called the failure threshold.

Figure 1 present the predictive maintenance strategy proposed in this work for a
ball bearing system. The latter is composed of two main phases: Defects detection
and RUL prediction.

In order to solve the problem of limited historical data, the proposed approach is
designed to perform with real-time acquired data. It is assumed to be implemented
when the machine is in a healthy state. For both phase 1 and phase 2, each new
acquired signal is subjected to a features extraction step. This aims to identify the
relevant characteristics of the vibration signal that are sensitive to systemdegradation.

During phase 1 (deterioration detection phase), KPCA is first applied to all the
extracted characteristics in order to extract the optimal combination that best presents
the signal through the elimination of redundancy. The chosen combination is used as
input to theDBSCANclassifier. The choice of this classifier ismotivated by its ability
to be used without prior knowledge about historical signals, dealing with historical
data limitation problems. The latter makes a decision about the new acquired data
by checking if it’s corresponding to a healthy or a degradation state. For more detail

Fig. 1 Details of the proposed maintenance approach
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about DBSCAN see the work of Kerroumi et al. [5]. While no defect is detected, the
previous steps will be repeated for each new acquired data.

Phase 2 (RUL prediction) triggers directly once a degradation is detected. The
prediction of the HI evolution will be assured in this work by an exponential predic-
tion model defined initially based on the available healthy data. The choice of an
exponential model for the RUL prediction is made according to the work of Si
et al. [16], which assumes an exponential evolution for bearing degradation. The HI
is selected interactively with each new acquired degradation signal. Based on the
available data, a selection criterion is used to make a decision about most relevant
HI.

The selection criterion adopted in this work consists in checking two main carac-
teristic of the features, namely: motonicity and trendability. These two metrics are
confined in the range [0–1], subject to change according to the available observations
and are positively correlated with the performance of the features.Therefore they are
suitable to be used for theHI selection. Formore detail about these two caracterestics,
see [14]. The selection criterion adopted consists in summing the motonocity and
trendability scores of each feature. The feature obtaining the highest score is chosen
as HI:

SCriterion = Motonocity + Trendability

The parameters of the prediction model are progressively rectifying as more data
become available. The RUL is estimated each time by the active model according
to a pre-defined failure threshold. The latter is generaly estimated based on some
available failure data or it can also be set by an expert in the field. In this work,
the features from the last measurement sample are taken as failure threshold. All
the features are normalized between [0–1], where 1 correspondant to the failure
threshold.

3 Validation of the Proposed Approach

This part studies the effectiveness of the proposed approach in estimating the RUL
of a bearing. All the steps explained in the previous section are performed on a real
bearing degradation data.

3.1 Experimental Setup

Referring to [15], the degradation data considered in this work are acquired from
a shaft bearing system. The latter is implemented in a commercial wind turbine
supplied by Green Power Monitoring Systems (GPMS) in the United States. This
data is used to verify the proposed method for bearing signals diagnosis and RUL
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Fig. 2 Collected vibration signals

prediction. It includes a set of run to failure data. The vibration signals are recorded
every day at a sampling rate of 97,656 Hz. The duration of each recorded signal is
6 s. 50 measurements are considered in total.

The raw degradation signals of the considered shaft bearing are shown in Fig. 2.
In accordance with the hypothesis of Si et al.[16], the degradation of the shaft bearing
is reflected by an exponential shape vibration amplitude evolution.

3.2 Results and Discussion

To prove the effectiveness of the proposed maintenance approach, the steps detailed
in Sect. 2 are carried out for the shaft bearing system under consideration.

3.2.1 Features Extraction

Referring to their efficiency in diagnosing bearing vibration signals, 13-time domain
features are chosen to be extracted from each degradation sample. The expressions
of these features are given in Table 1. Figure 3 shows the evolution of some of the
extracted features respectively with the degradation of the bearing.

It is clear from Fig. 3 that among the extracted features, some are more in line
with the deterioration trend. Indeed, depending on their expression, some features
are more sensitive to degradation, confirming the need for the HI selection step. As
explained in Sect. 2, DBSCAN classifier is used to detect degradation and trigger
the prognosis process. Referring to [5], the DBSCAN imputation parameters Eps
and Minpts are set to 10 and 4 respectively.

The result of the DBSCAN classification is shown in Fig. 4, where the green
points correspond to healthy measurements and the red points to the degradation
data. Based on DBSCAN the first 10 measurements are considered as healthy.



174 M. H. Farhat et al.

Table 1 The computed features, x represents the digitized signal, xi is the sample number. i ∈
(1,2… N). RMS0 represents the RMS value of the fault-free system that is recorded at the start of
the vibration monitoring
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Fig. 3 Some computed features evolution (before and after smoothing)

3.2.2 RUL Estimation

Refering to [16], an exponential model is adopted to forecast the HI evolution in the
shaft bearing system. The exponential degradation model is defined as:

HI(i) = φ + θ exp(β i + ε)
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Fig. 4 DBSCAN
classification result. KPC:
Kernel Principal Component

HI(i) is the value of the HIcorreponding to the measurement i (day i). φ is an
intercept term considered to be constant. θ and β are the parameters that determine
the slope of the model, θ is supposed to be lognormal-distributed and β is Gaussian-
distributed. ε is a Gaussian white noise. The parameter of the model are initialised
according to the healthy data and are thenupdated interactively according to the
available degradation data.

Refering to Sect. 3.2.1, the first 10 samples (measurement) of the data are
related to a healthy state operation. The RUL prediction will thus be triggered from
measurement 11.

As explained in Sect. 2 the HI is chosen interactively with the available data.
Table 2 gives the characteristics with the highest score that are considered as a HI
according to the selection criteria during the degradation days of the bearing shaft
system under consideration.

According to Table 2, the features Std, Skewness, Mean and Kurtosis are used
as HI to ensure the RUL estimation progressively as the system degrades. The RUL
estimation is performed using the defined prediction model. In order to prove perfor-
mance of the proposed dynamic HI selection method, the model is applied in two
ways. Firstly, using static health indicators. Here, Fig. 5 shows the actual and the
constructed model estimated RUL when using the 4 best features (selected using all
degradation data) respectively as a HI, Table 3. Subsequently, the dynamic selection
approach of the HI is applied. In this case, Fig. 6 shows the real RUL versus the RUL
estimated using dynamic HI selection method. The RUL is given as the difference
in time between the theoritical time of failure fixed in function of the chosen failure
threshhold and the present time ti , (day i).

A simple examination of Figs. 5 and 6 confirms the effectiveness of HI’s dynamic
selection method for estimating the system RUL. Indeed, according to Fig. 6, the

Table 2 Selected HI

Chosen HI Std Skewness Mean Kurtosis

Day 11–18 19–20 21–22 23–50
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Thikat Shape factor

Impulse factor Kurtosis

Fig. 5 Predicted RUL based on static HI

Table 3 Selection rank of the features with all degradation data available

Rank Feature Selection score Rank Feature Selection score

1 Kurtosis 1.765 8 RMS 0.743

2 Shape factor 1.631 9 Energy 0.740

3 Impulse factor 1.311 10 Std 0.729

4 Thikat 1.175 11 Peak to peak 0.725

5 Crest factor 1.071 12 Skewness 0.607

6 Talaf 0.997 13 Peak 0.482

7 Mean 0.770

Dynamic health indicator

Fig. 6 Predicted RUL based on the dynamic HI
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model based on the dynamic HI succeeded in estimating the RULwith a fairly high
accuracy from day 27 (based only on 26 degradation data), whereas with the static
indicators, the accuracy started to be reasonable only from day 36. This improvement
stems from the ability of the proposed dynamic HI selection method to choose the
best feature that reflects the degradation trend based on the available data.

4 Conclusion

In this chapter, an interactive data-based prognostic approach is presented to over-
come the limitations of historical degradation data of industrial machineries. A
DBSCAN classifier is used to detect the degradation of a real shaft bearings system
installed in a wind turbine. An original approach is used to estimate the RUL of the
system. The RUL prediction is performed using an exponential degradation model.
The latter is carried out based on a dynamically selected HI, chosen according to the
available degradation data. The proposed approach proved to be efficient compared
to the traditional static HI based prognostic approach.

In the following works, the proposed approach will be tested in a more
sophisticated way against degradation data of higher complexity.
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