
Chapter 7
An Overview of Carbonic
Anhydrase-Related Neoplasms

Martina Takacova and Silvia Pastorekova

Abstract Aberrant control of acid–base homeostasis is an emerging cancer hall-
mark that results from adaptation to oncogenic metabolism and tumor microenvi-
ronment. It has dramatic consequences, contributing to acquisition of aggressive
tumor phenotype and disease progression. Regulation of pH is executed by trans-
porters, exchangers, and pumps mediating ion fluxes in rates dictated by actual
physiological needs of tumor cells. However, full performance of the pH-regulation
machinery requires carbonic anhydrases (CAs) catalyzing a reaction key to acid-
base balance: reversible conversion of carbon dioxide to bicarbonate ion and proton.
Here, we provide an overview of known and predicted links of the human CA
isoforms to various types of neoplasms and summarize the mechanisms, through
which they functionally contribute to cancer. We use the approach, in which data
from published papers are complemented by publicly available metadata processed
by the GEPIA2 instrument. This allows not only for aligning bioinformatics to exper-
imental evidence (supporting a prominent position of CA IX), but also for prediction
of novel correlations that remain to be experimentally proven (such as for CA XIV).
With a continuous accumulation of the knowledge, it is now becoming clear that
CAs are broadly expressed in tumors and actively participate in cancer development
and/or progression.
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IDH isocitrate dehydrogenase
IHC immunohistochemistry
MCT monocarboxylate transporter
MET hepatocyte growth factor receptor
NF1 neurofibromatosis 1
NHE sodium-proton exchanger
NSCLC non-small cell lung carcinoma
PG proteoglycan
RTK receptor

tyrosine kinase
RAS c-Ras oncoprotein
TPM transcripts per million
VHL von Hippel Lindau

7.1 Introduction

Vital functions of cells, tissues, and organs in the human body crucially depend,
among other factors, on proper pH regulation, especially in situations of high
metabolic performance, gas exchange, and/or fluid production. Such processes occur
under physiological conditions in virtually all organs and are particularly intense in
stomach, intestine, liver, pancreas, kidney, lung, and brain. However, many patholog-
ical conditions including cancer are characterized by aberrant control of acid–base
homeostasis as a result of perturbed ion transport and abnormal metabolism. Espe-
cially in cancer cells, this has very dramatic consequences, supporting acquisition of
an aggressive tumor phenotype and contributing to disease progression (Corbet and
Feron 2017).

Regulation of pH is executed by a number of ion transporters, exchangers, and
pumps that carry out ion extrusion and/or ion import in a rate dictated by actual physi-
ological needs of the cell and by status of its intracellular and extracellularmicroenvi-
ronment. Among these, lactate and proton exporters, and bicarbonate importers play
a major role as pH-modulating mediators of ion fluxes across the plasma membrane,
while proton pumps also control pH of certain intracellular organelles (endosomes,
lysosomes). However, in addition to these “ion transport managers,” full perfor-
mance of the pH regulation machinery requires enzymes of the carbonic anhydrase
family catalyzing the reaction that is fundamental for acid-base balance, namely, the
reversible conversion of carbon dioxide to carbonic acid that spontaneously disso-
ciates to bicarbonate ion and proton (Supuran 2016). The human body contains
15 carbonic anhydrase (CA) isoforms of the α-CA family, namely CA I-IV, CA VA
and CAVB, CAVI-XIV. Twelve isoforms are active enzymes, with catalytic activity
ranging from low to very high (CA II andCA IXbelonging to themost active enzymes
in the nature), while three isoforms are inactive (CAVIII, X, and XI). CAs also differ
by subcellular localization: CA I-III, VII, VIII, X, XI, XIII are cytoplasmic, CA VA
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and VB are mitochondrial, CA IV, IX, XII, XIV are membrane-associated, and CA
VI is secreted (Pastorekova et al. 2004; Mboge et al. 2018). The diversity of the
human CAs is further widened by their variable expression levels and heterogeneous
expression pattern in organs and tissues ranging from almost ubiquitous (e.g., CA
II and CA XIII), to limited to certain tissue (e.g., CA VA and CA VI). This makes
their complex understanding very difficult and development of general statements
very challenging.

It has been long believed that the nature “invented” these enzymes primarily to
drive pH-related physiological processes in normal tissues, since the initial efforts to
link CAs to cancer did not bring any clear-cut data. However, everything changed in
the early 90 ’s of the twentieth century, with the discovery of two, at that time novel,
CA isoforms. First it was CA IX, which showed strong association with a broad
range of tumors contrasting to limited expression in normal tissues (Pastorek et al.
1994) followed by CA XII, which was detected in many normal tissues, but showed
overexpression in certain tumors (Tureci et al. 1998). Later on, thorough examination
of some of the “old” isoforms (CA I, II, IV) revealed that their expression patterns
exhibit either positive or negative correlations with cancer within specific contexts.
Moreover, inactive isoforms CA X and CA XI, have also been implicated in tumor
phenotype. In fact, with continuous accumulation of data, it is now becoming clearly
apparent that CAs can actively participate in cancer development and/or progression.

Here we present an overview of known and predicted links of CA isoforms to
various types of neoplasms and summarize the mechanisms through which they
functionally contribute to cancer. In this overview, data from published papers are
complemented by publicly available RNA-seq metadata from TCGA and GTEx
databases processed by the GEPIA2 instrument, which uses Transcripts Per Million
(TPM) values of transcription levels normalized to transcript’s length and divided by
the scaling factor to allow for comparison of gene expression levels among different
types (Tang et al. 2019). This combined approach allows not only for aligning bioin-
formatics to experimental evidence, but also for prediction of some correlations
that still remain to be experimentally proven. In this way, it is also possible to
demonstrate that the cancer-related expression pattern, in some cases, does not neces-
sarily translate to clinically relevant information, suggesting that the experimental
evidence including functional studies is an imperative prerequisite for understanding
the roles of genes/proteins including carbonic anhydrases in cancer biology and of
their potential usefulness for clinical applications. Note that CA genes are written in
italic style with Arabic numbers, while CA proteins are written in normal style with
Roman numbers, in line with the official nomenclature, and that abbreviations used
to designate different cancer types were used according to GEPIA2 (Table 7.1).

7.2 Expression of Cytoplasmic CA Isoforms in Neoplasms

Metadata analysis revealed that all of the five genes encoding the cytoplasmicCAs are
primarily expressed in normal tissues, with CA2 exhibiting the highest transcription
levels followed by CA1, CA3, CA7, and CA13 (Fig. 7.1). Notably, CA II protein
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Table 7.1 An overview of TCGA/GTEx data available within GEPIA2 that were used for the
expression and survival analysis of carbonic anhydrase genes

TCGA Detail Tumor Normal GTEx Num

ACC Adrenocortical carcinoma 77 - Adrenal Gland 128

BLCA Bladder Urothelial Carcinoma 404 19 Bladder 9

BRCA Breast invasive carcinoma 1085 112 Breast 179

CESC Cervical squamous cell
carcinoma and endocervical
adenocarcinoma

306 3 Cervix Uteri 10

CHOL Cholangio carcinoma 36 9 - -

COAD Colon adenocarcinoma 275 41 Colon 308

DLBC Lymphoid Neoplasm Diffuse
Large B-cell Lymphoma

47 - Blood 337

ESCA Esophageal carcinoma 182 13 Esophagus 273

GBM Glioblastoma multiforme 163 - Brain 207

HNSC Head and Neck squamous cell
carcinoma

519 44 - -

KICH Kidney Chromophobe 66 25 Kidney 28

KIRC Kidney renal clear cell
carcinoma

523 72 Kidney 28

KIRP Kidney renal papillary cell
carcinoma

286 32 Kidney 28

LAML Acute Myeloid Leukemia 173 - Bone Marrow 70

LGG Brain Lower Grade Glioma 518 - Brain 207

LIHC Liver hepatocellular carcinoma 369 50 Liver 110

LUAD Lung adenocarcinoma 483 59 Lung 288

LUSC Lung squamous cell carcinoma 486 50 Lung 288

MESO Mesothelioma 87 - - -

OV Ovarian serous
cystadenocarcinoma

426 - Ovary 88

PAAD Pancreatic adenocarcinoma 179 4 Pancreas 167

PCPG Pheochromocytoma and
Paraganglioma

182 3 - -

PRAD Prostate adenocarcinoma 492 52 Prostate 100

READ Rectum adenocarcinoma 92 10 Colon 308

SARC Sarcoma 262 2 - -

SKCM Skin Cutaneous Melanoma 461 1 Skin 557

STAD Stomach adenocarcinoma 408 36 Stomach 175

TGCT Testicular Germ Cell Tumors 137 - Testis 165

THCA Thyroid carcinoma 512 59 Thyroid 278

(continued)
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Table 7.1 (continued)

TCGA Detail Tumor Normal GTEx Num

THYM Thymoma 118 2 Blood 337

UCEC Uterine Corpus Endometrial
Carcinoma

174 13 Uterus 78

UCS Uterine Carcinosarcoma 57 - Uterus 78

UVM Uveal Melanoma 79 - - -

displays also the highest catalytic activity, while the activity of CA III is the lowest
among all active CA isoforms (Mboge et al. 2018). In line with these facts, most
of the research related to cytoplasmic CAs in cancer has been focused on CA II as
described in more detail further below.

As shown in Figs. 7.1 and 7.5, CA1 gene transcription is relatively low, reaching
TPMvalues of around 30 in normal colon, B-cells, and T-cells, and is not expressed in
their neoplastic counterparts. However,CA1 expression is increased in acutemyeloid
leukemia (LAML,TPM40.57) compared to normalmyeloid cells (TPM7). In spite of
this differential expression, GEPIA2-performed Mantel-Cox Log-rank test of meta-
data from LAML failed to show a significantly better overall survival in the highCA1
expression cohort, irrespective of whether cutoff was set to median (50%) or whether
cutoff-high was set to 75% and cutoff-low to 25% (Fig. 7.6). Nevertheless, the liter-
ature contains dozens of papers dealing with the relationship of CA1 to cancer.
CA I protein expression was demonstrated by immunohistochemistry (IHC) in both
normal and malignant endocrine tissue of pancreas, with intense positive staining
observed particularly in the cells expressing glucagon (Parkkila et al. 1995b). IHC
comparison of CA I distribution in normal large intestine versus colorectal tumors
showed high CA I expression in normal colon, decreased intensity in benign lesions,
and very weak staining in malignant tumors (Kivela et al. 2001). This finding was
confirmed by an independent proteomic study suggesting that downregulation of
CA I is an early event in colorectal carcinogenesis (Wang et al. 2012). In contrary,
no CA1 expression-based difference in overall survival was predicted by log-rank
test of COAD cohorts from TCGA database. CA I protein was also detected by
proteomic methods in sera of patients with non-small cell lung carcinoma (Wang
et al. 2016). Noteworthy, sera of patients suffering from both acute myeloid leukemia
and chronic lymphocytic leukemia were found to contain CA I (and CA II) autoan-
tibodies (Mentese et al. 2017, 2018). Lakota and colleagues observed elevated CA I
autoantibodies in sera of patients with spontaneous regression of tumors developing
an aplastic anemia-type syndrome after a high-dose therapy with autologous stem
cell transplantation (Skultety et al. 2010; Jankovicova et al. 2013). Silencing of CA
I in prostatic (PC3) tumor cells was shown to change the composition of exosomes
secreted by these cells indicating their enhanced malignant potential (Banova Vulic
et al. 2019). However, due to many open questions and generally inconsistent data, it
is currently impossible to make any conclusion on the relationship of CA I to cancer.
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Fig. 7.1 Expression of genes coding for the cytoplasmic carbonic anhydrases in tumors and normal
samples.Data extracted fromTCGA/GTExdatabaseswere analyzed and converted to graphics using
GEPIA2 instrument (Tang et al. 2019). Data in the graphs relate to TPM units and intensities of
colors in the bodymaps correspond to Log/TPM+1 Scores in particular tissues. Numbers above the
columns highlight the highest TPMs for each CA isoform. Kcat/KM values in the upper left corners
inform about the catalytic efficiency of CA isoforms {adopted from (Mboge et al. 2018)}
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TheCA3 gene is mostly transcribed in several normal tissues (mainly breast, lung,
and uterus), with a TPM value up-to 15 (Fig. 7.1). It is generally not expressed in
tumors, except relatively low expression in glioblastoma (GBM, TPM 8.8), which is
about 8-times higher than in normal brain (Fig. 7.5). However, this does not translate
into the correlation to overall survival of GBM patients, but such correlation exists
in LAML (Fig. 7.6). Interestingly, there are only two published studies dealing with
CA III expression or function in cancer. Despite metadata showing only very low
expression of CA III in liver and liver-derived neoplasms (1 TPM vs 0.1 TPM), an
immunohistochemical analysis suggests that CA III is expressed in normal hepato-
cytes and that it is reduced in hepatocellular carcinoma (Kuo et al. 2003). The second
study explored the effects of manipulated CA III expression on invasiveness of HCC
(in TCGA abbreviation LIHC) cell line SK-Hep1 (Dai et al. 2008). The authors
found that CA III suppression decreases, while CA III overexpression increases cell
invasiveness possibly via activation of FAK signaling and extracellular acidification.
Taking into account that there is no extension/confirmation of this observation and
that CA III activity is very low, biological relevance of that observation remains
elusive.

CA7 transcription is detectable only in normal tissues (namely intestine, brain,
and testes, TPM up to 8.5) but not in neoplasms (Figs. 7.1 and 7.5). Albeit absent
or low, CA7 levels in tumors derived from these tissues (COAD, READ, GBM,
LGG) do not correlate with overall survival in any group of patients. In the published
study of Yang and colleagues (Yang et al. 2015), reduced CA7 mRNA and protein
expression in colorectal carcinoma was significantly correlated with poor differ-
entiation, positive lymph node metastasis, advanced TNM stage, and unfavorable
clinical outcome. However, no such correlation was confirmed by immunostaining
of colorectal carcinoma specimens from an independent cohort of patients, when
both extent and intensity of staining were taken into account (Viikila et al. 2016).
Thus, further studies are needed to resolve these conflicting results.

CA13 gene transcription is detected both in normal tissues and in tumors, although
it appears to be increased in some normal tissues and decreased in other ones when
compared to tumors (Figs. 7.1 and 7.5). The significance of this differential expres-
sion remains unknown, but taking into account the fact that the levels of CA13
transcription are rather low (up to 9 TPM), differences are too minor to have a
biological relevance. There is only a single paper using immunohistochemistry to
detect CA XIII protein expression in colorectal carcinoma (Kummola et al. 2005).
The study results suggest that the expression of CA XIII is downregulated in tumor
cells compared to the normal tissue, which is actually opposite to RNA-seq data
acquired from TCGA database where significant correlation to overall survival was
found in KIRC, LAML, LGG, and SKCM.

Lastly, the apparently most important cytoplasmic isoform is encoded by the CA2
gene. The catalytic activity of CA II is among the highest not only within the CA
family but also generally among all known enzymes. Its expression assessed by
immunodetection was found to correlate with intracellular CA activity measured in
a range of intact human cancer- and fibroblast-derived cells and in their membrane-
free lysates. Moreover, genetic knockdown of CA II in HCT116 colon carcinoma
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cells demonstrated that majority of intracellular CA activity was attributable to CA
II. These data support the view that CA II is a crucial intracellular CA isoenzyme
(Hulikova et al. 2014). Studies based on manipulated CA II expression and on use of
small molecule inhibitors suggested that CA II activity participates in intracellular
pH regulation (irrespective of normal or tumor cell phenotype) through cooperation
with ion transporters, namely, by facilitating proton or bicarbonate transport across
membranes, ormediating proton diffusion in cytoplasm. Initially, itwas proposed that
CA II forms a transport metabolon with chloride/bicarbonate exchangers that exploit
the CA catalytic activity (Sterling et al. 2001). Later on, this concept was extended to
the sodium/proton exchanger NHE1 (Li et al. 2002) and to the sodium/bicarbonate
co-transporter (Villafuerte et al. 2014). CA II was also shown to cooperate in a non-
catalytic manner with the monocarboxylate transporter MCT1, acting as an antenna
collecting and transferring protons toMCT1 in order to facilitate its transport activity
(Becker et al. 2005; Noor et al. 2018).

However, these scenarios are partly questioned by the finding of Swietach and
colleagues who demonstrated that intracellular CA activity in cancer cell lines does
not correlate with resting intracellular pH (pHi), NHE1 flux, or bicarbonate trans-
porter flux measured in these cells, and that proton and bicarbonate fluxes produced
by cells over the physiological pHi range are not of sufficient magnitude to require
intracellular CA catalysis, with the exception of acid loading by bicarbonate export
at high pHi (over 7.4) that is not typical for cancer cells (Hulikova et al. 2014).
This study also suggests that high intracellular CA activity (mostly attributable to
CA II) is associated with faster and larger pHi oscillations, larger pH-dependent
intracellular calcium ion oscillations, and stronger inhibition of mTORC1 pathway
in response to extracellular pCO2 fluctuations (Hulikova et al. 2014). In contrast,
pHi of cells exhibiting low intracellular CA activity is less responsive to pCO2 fluc-
tuations, which might be of key importance for cells’ survival especially in tumor
tissues with dynamic temporal and/or regional changes of blood flow, delivery of
oxygen and nutrients as well as removal of metabolic waste due to aberrant tumor
vasculature (Gillies et al. 2018).

Actually, the above-described view can explain why expression of the CA2 gene
(as well as the levels of other genes encoding the cytoplasmic CAs with lesser contri-
bution to overall intracellular CA activity) is primarily detected in non-cancerous
tissues (with TPM values up to 245) and downregulated in related tumors. In line
with this, TCGA/GTEx databases processed by GEPIA2 show that CA II levels are
decreased in KIRC, KIRP, SARC, STAD, and TGCTwhen compared to their normal
counterparts. In contrary,CA2 expression is increased in GBMandKICH (with TPM
of 126 and 495, see Figs. 7.1 and 7.5). While this increased tumor expression does
not predict overall survival of cancer patients in case of GBM and KICH, reduced
CA2 transcription is significantly associated with reduced overall survival in patients
with KIRC and SARC (Figs. 7.6 and 7.7), but not KIRP, STAD, and TGCT. Interest-
ingly, significantly worse overall survival predicted by GEPIA2 is also linked with
decreased CA II levels in COAD (with cutoff-high 75% and cutoff-low 25%) that is
principally in line with IHC and proteomic studies of independent patients’ cohorts
showing that loss of expression of CA II (and CA I) accompanies progression to
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malignant phenotype (Kivela et al. 2001; Wang et al. 2012). Moreover, CA II is
the most widely distributed isoform in the central nervous system, and its expres-
sion was also detected by IHC in different brain tumors (Parkkila et al. 1995a),
medulloblastomas and neuroectodermal tumors (Nordfors et al. 2010), hematolog-
ical malignancies (Leppilampi et al. 2002), esophageal carcinoma (Nortunen et al.
2018), pancreatic tumors (Parkkila et al. 1995b), gastrointestinal stromal tumors
(Parkkila et al. 2010; Liu et al. 2013), hepatocellular carcinomas (Kuo et al. 2003),
uterine tumors (Hynninen et al. 2012), and urinary bladder cancers (Tachibana et al.
2017). In meningiomas, CA II was found in endothelial cells in association with
increasing malignancy grade and tumor proliferation rates (Korhonen et al. 2009).
CA II expression also was observed in tumor vessel endothelia of melanoma and
esophageal, renal, and lung cancers (Yoshiura et al. 2005).

There are also several papers describing the functional aspects of CA II. It was
shown that forced CA II expression in colorectal cancer cells remarkably suppresses
tumor cell growth both in vitro and in vivo (Zhou et al. 2013). Similarly, CA II
overexpression inhibits cell migration and invasion by reversing EMT in hepa-
tocellular carcinoma cells, while its downregulation promoted invasiveness and
metastasis (Zhang et al. 2018). Thus, the link of CA II to neoplastic phenotype is
tumor tissue- and cell type-dependent and may also reflect the physiology of tumor
microenvironment.

7.3 Expression of Mitochondrial CA Isoforms in Cancer

Mitochondrial CA isoforms are encoded by two phylogenetically-related genes
CA5A and CA5B. Since mitochondria are impermeable to bicarbonate ions, activity
of CA VA and CA VB enzymes is required for production of bicarbonate that
is utilized by mitochondrial enzymes for metabolic processes, namely, by pyru-
vate carboxylase for gluconeogenesis and carbamoyl phosphate synthase I for
ureagenesis. Targeted disruption of the murine Car5A and Car5B genes and their
double knock-out implicated both enzymes in ammonia detoxication and glucose
metabolism (Shah et al. 2013). Despite glucose metabolism being of high impor-
tance for tumor biology, so far there are no thorough studies linking CA5A and/or
CA5B to cancers, except a single paper identifying the CA5A gene within a signa-
ture of genes predicting decreased overall survival in patients with head and neck
carcinoma (Bornstein et al. 2016).

Thus, publicly available RNA-seq metadata can provide at least basic insight into
possible relationships of CA5A and CA5B expression to human tumors. GEPIA2
testing showed that CA5A gene is transcribed in normal liver (in accord with expec-
tation) at the TPM level of 23.2 and was slightly decreased in liver neoplasms (TPM
16.3). In addition, CA5A expression was detected in bile ducts, but not in cholan-
giocarcinoma (Figs. 7.2 and 7.5). In contrary, CA5B is transcribed in many normal
tissues (namely in the breast, ovaria, uterus, cervix, testes, TPM up to 9.9) and at
lower levels also in the corresponding cancers. The highest CA5B expression is
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Fig. 7.2 Expression of genes coding for the mitochondrial carbonic anhydrases in tumors and
normal samples. Data extracted from TCGA/GTEx databases were analyzed and converted to
graphics using GEPIA2 instrument (Tang et al. 2019). Data in the graphs relate to TPM units
and intensities of colors in the bodymaps correspond to Log/TPM+1 Scores in particular tissues.
Numbers above the columns highlight the highest TPMs for each CA isoform. Kcat/KM values in
the upper left corners inform about the catalytic efficiency of CA isoforms {adopted from (Mboge
et al. 2018)}

present in acute myeloid leukemia (Fig. 7.2), but it has no impact on overall survival
(Fig. 7.6). However, these data do not take into consideration the potential role of CA
VA/CA VB catalytic activities, which might be involved in adaptation to metabolic
demands of tumor cells. Clearly, additional studies are warranted to resolve whether
mitochondrial CAs are involved in tumor biology.

7.4 Expression of Membrane-Bound and Secreted CA
Isoforms in Cancer

Fourmembrane-bound isoforms (CA IV, IX, XII, andXIV) and one secreted isoform
(CA VI) are active enzymes with the catalytic sites facing the extracellular space.
Their catalytic performance is relatively high, with CA IX exhibiting the highest
activity (similar to CA II), then followed by CA VI, CA IV, CA XIV, and CA
XII, activity of which is approximately 4-times lower than that of CA IX. All these
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enzymes appear to support extracellular CO2 diffusion, and the membrane-bound
isoforms also participate in bicarbonate import and proton extrusion.

While CA IV is bound to the plasma membrane by the GPI anchor, three other
exofacial CAs are type I membrane proteins, with the N-terminal side at the cell
surface and C-terminal side in the cytoplasm (Pastorekova et al. 2004). In addition,
CA IX has an extra N-terminal proteoglycan-like domain (PG) linked by the hinge
region to the CA domain (Opavsky et al. 1996). This PG domain contains a repetitive
stretch of proline-perturbed basic amino acids, and has an intrinsically disordered
structure with conformational flexibility that is implicated in non-catalytic functions
of CA IX relevant for tumor biology (Zavada et al. 2000; Langella et al. 2018).
CA IX isoform was shown to cooperate with extracellular structures of bicarbonate
transporters and sodium/proton exchangers facilitating ion transport via its catalytic
activity (Morgan et al. 2007; Orlowski et al. 2012; Svastova et al. 2012), and with
monocarboxylate transporters MCT1 and MCT4 via a non-catalytic mechanism,
in which the PG domain serves as a proton-conducting antenna interacting with
MCT4 chaperone CD147 (Jamali et al. 2015; Ames et al. 2018, 2019). Similar
model was demonstrated for CA IV, which facilitates lactate export via interaction
with chaperons of MCTs (Klier et al. 2014; Forero-Quintero et al. 2019).

TCGA/GTEx metadata-derived expression patterns of the membrane-bound and
secreted CAs provided by GEPIA2 instrument are very distinct and remarkable
(Figs. 7.3 and 7.5), and generally have a lot of support in the published papers,
albeit some previously unknown and potentially interesting connections have also
been disclosed as described below.

Noteworthy, the CA4 gene is mostly expressed in normal tissues, and only occa-
sionally and at a low level in some tumors (Figs. 7.3 and 7.5). The highest TPM
values of CA4 transcription (up to 81.7) are exhibited by normal counterparts of
LUAD, LUSC, THCA, BRCA, SARC, DLBC, KIRP, KIRC, KICH, and THYM.
However, only KIRC and LUAD show a highly significant correlation between high
expression of CA4 and better overall survival, with hazard risk reduced up to 3-times
compared to tumors with low CA4 (Figs. 7.6 and 7.7). Interestingly, these significant
correlations exist independently of whether the analysis includes all CA4 transcript
variants together, or only individual protein-coding transcript variants identified by
GEPIA2, namely,CA4-001,CA4-005 (both inKIRC andLUAD), andCA4-006 (only
in KIRC). In addition, both median and quartile cutoffs produced similar probability
values.

Experimental data are in agreement with predictions based on bioinformatics.
In patients with renal clear cell carcinoma, decreased expression of CA4 mRNA
in tumors was associated with poor survival (Takenawa et al. 1998). Loss of CA4
was also proposed as a biomarker distinguishing follicular thyroid carcinomas from
follicular adenomas (Davidov et al. 2014). CA4 expression determined by Q PCR
was also found to be significantly downregulated in non-small cell lung carcinomas
(NSCLC) as well as in six NSCLC-derived cell lines, and lower CA4 levels were
correlatedwith lymph nodemetastasis and shorter overall survival (Chen et al. 2017).
Importantly, CA4 was proposed to be a novel tumor suppressor in colorectal cancer
(CRC). This proposal was based on the observation that CA4 gene is silenced in
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Fig. 7.3 Expression of genes coding for the membrane-bound and secreted carbonic anhydrases
in tumors and normal samples. Data extracted from TCGA/GTEx databases were analyzed and
converted to graphics using GEPIA2 instrument (Tang et al. 2019). Data in the graphs relate to
TPM units and intensities of colors in the bodymaps correspond to Log/TPM+1 Scores in particular
tissues. Numbers above the columns highlight the highest TPMs for each CA isoform. Kcat/KM
values in the upper left corners inform about the catalytic efficiency of CA isoforms {adopted from
(Mboge et al. 2018)}
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more than 90% of CRC tumors primarily by the promoter hypermethylation (Zhang
et al. 2016). In support of the tumor suppressor concept, re-expression of CA4 in
CRC cells inhibits cell proliferation and induces apoptosis via downregulation of the
WNT pathway and degradation of β-catenin (Zhang et al. 2016).

Based on GEPIA2 analysis, CA6 expression is confined to normal skin (TPM 17,
Figs. 7.3 and 7.5), and its reduced level in SKCM predicts worse overall survival
(Figs. 7.6 and 7.7). In the published literature, CA VI isoform is primarily known
as a component of saliva expressed in serous acinar cells of human salivary glands.
Immunostaining revealed its potential diagnostic utility for discrimination of acinic
cell carcinoma from mammary analogue secretory carcinoma of the salivary gland
(Hsieh et al. 2016). No further information on the relationship of CA VI to cancer is
available to date.

In contrast to the other CA genes, CA9 is predominantly expressed in tumor
tissues (CESC, CHOL, COAD, ESCA, GBM, HNSC, KIRC, LUSC, OV, PAAD,
READ,UCEC, UCS, TPMup to 305.3) and virtually not in their normal counterparts
(Figs. 7.3 and 7.5). According to RNA-seq data from TCGA/GTEx databases, the
only normal tissues that exhibit CA9 transcription levels higher than tumors are
stomach (TPM 216) and testes (TPM 35.7), albeit published IHC studies detected
CA IX protein also in the epithelia of pancreas, gallbladder, intestinal crypts, and
basal skin cells (Pastorekova et al. 1997; Kivela et al. 2001).

In tumors, expression of CA9 is directed primarily by a HIF-1 transcription factor
composed of an oxygen-regulated α subunit and a constitutive β subunit. The α

subunit is degraded in proteasome following hydroxylation of its critical prolyl
residues and recognition by pVHL tumor suppressor protein acting as E3 ubiquitin
ligase, in conditions of normal oxygen delivery (Kaelin and Ratcliffe 2008). When
metabolic and proliferative demands of tumor cells exceed the availability of oxygen,
which is reduced due to aberrant tumor vasculature, resulting hypoxia inhibits prolyl
hydroxylases (including the asparaginyl hydroxylase that hampers HIF-α transcrip-
tional activity) and leads to escape of an α subunit from pVHL recognition and
degradation. As a consequence, HIF-α is stabilized and activated, accumulates in
the cytoplasm, enters the nucleus, dimerizes with HIF-β, and forms a competent
transcription factor that induces expression of hundreds of genes coding for proteins
involved in adaptation of tumor cells to hypoxia (Ratcliffe 2013; Semenza 2012).
CA9 is one of the key targets of HIF-1 that drives its transcription in hypoxic tumor
cells to a very high magnitude through binding closely to the transcription initiation
site of theCA9 gene (Wykoff et al. 2000). Thus, expression ofCA9 in the majority of
tumor types is heterogeneous and regionally distributed in hypoxic or post-hypoxic
areas. However, in some cancer entities, CA9 expression is induced due to activation
of pathways driven by oncogenes (such as SRC or RET, Takacova et al. 2010, 2014).

The situation is rather different in KIRC, which express the highest levels of CA9
transcript as well as CA IX protein (this can be observed both in metadata and IHC
studies). These renal clear cell carcinomas are characterizedby inactivatingmutations
ofVHL tumor suppressor gene, resulting in constitutive stabilizationofHIF-α subunit
and sustained activation of the HIF-governed hypoxia-related pathways even in the
absence of physiological hypoxia (Wiesener et al. 2001). Since CA9 is one of the
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most highly HIF-1-induced genes, it is expressed in a very high percentage of VHL-
defective renal cancer clear cells (Ivanov et al. 1998; Bui et al. 2003; Stillebroer et al.
2010).

When including all four CA9 alternative transcripts (two protein-coding and two
non-translated) into GEPIA2 survival analysis, CA9 expression shows significant
associations with overall survival of patients with several types of cancers, namely,
GBM, LUAD, PAAD, and SKCM (Fig. 7.6). However, when solely the full-length
transcript CA9-001 is taken into account, the spectrum of tumor types is extended
to KIRC and SARC (Fig. 7.7). CA9-001 is the only full-length transcript, which is
inducedbyhypoxia and translated to a functional and activeCAIXprotein (Barathova
et al. 2008).

In all mentioned tumor types except KIRC, higher CA9 expression is related to
significantly poorer prognosis (Figs. 7.6 and 7.7). In the case of KIRC, higher CA9-
001 levels (but not totalCA9 levels) show correlation with significantly better overall
survival (Figs. 7.6 and 7.7). This appears to be a consequence of a shift from HIF-1
that principally governs the CA9 transcription in early stages of this disease, towards
HIF-2, which drives a kidney cancer progression and determines malignant tumor
phenotype in renal clear cell carcinoma, but induces CA9 to much lower degree
(Raval et al. 2005).

Numerous immunohistochemical studies of various tumor tissue specimens
suggest significant relationships to clinical variables in a broad spectrum of tumors
other than those revealed by GEPIA2 analysis, including BRCA, ESCA, COAD,
MESO, OV, READ, STAD, UCEC, etc. {reviewed in (Pastorek and Pastorekova
2015; Pastorekova and Gillies 2019)}. Thorough meta-analysis of the results of 147
publicly available clinical studies (excluding KIRC) reveals a strong significant asso-
ciation between CA IX expression and all survival endpoints: overall, disease-free,
loco-regional, disease-specific, metastasis-free, and progression-free survival (van
Kuijk et al. 2016). Absence of correlations of TGCT/GTEx CA9 data to survival
in these additional cancer types can be explained by a regionally and temporally
heterogeneous, hypoxia-induced CA9 gene expression pattern, as well as by rela-
tively short half-time of the CA9 transcripts contrasting with very long half-time of
the CA IX protein (Rafajova et al. 2004). Moreover, the CA IX ectodomain can be
cleaved by metalloproteinases and released to extracellular space and body fluid,
which can affect the CA IX protein expression in tumors (Zatovicova et al. 2005).

In addition to the value of CA9 gene and/or CA IX protein expression as a surro-
gate marker of tumor hypoxia {which is the topic of extensive translational research,
e.g., for bioimaging (Tafreshi et al. 2012)}, a lot of attention has been paid to the
role of CA IX protein in tumor biology. Numerous studies employing genetic manip-
ulation or pharmacologic inhibition of CA IX show that it is a key component of
the pH-regulating machinery that enables tumor cells to survive hostile hypoxic
and acidotic conditions in the tumor microenvironment and to gain invasiveness
and metastatic propensity (Svastova et al. 2004, 2012; Swietach et al. 2009; Chiche
et al. 2009; Radvak et al. 2013; Csaderova et al. 2013; Chafe et al. 2015; Swayam-
pakula et al. 2017; Lee et al. 2018; Debreova et al. 2019). In addition, CA IX was
found to contribute to stemness and chemoresistance (Ledaki et al. 2015; Vidlickova
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et al. 2016; Gibadulinova et al. 2020). Interestingly, CA IX has been associated
with invasive phenotype pioneering in a novel and sometimes hostile environment
(Lloyd et al. 2016). Moreover, CA IX interacts or communicates with a number of
regulatory proteins (besides ion transportersmentioned above), which are involved in
important cellular processes, such as β-catenin, α2β1 integrin, CD98hc,MMP14, and
other actin-regulatory proteins, hERG1 potassium channel, NCX1 sodium/calcium
exchanger, PKA, PI3 kinase, etc. (Svastova et al. 2003; Swayampakula et al. 2017;
Debreova et al. 2019; Lastraioli et al. 2019; Liskova et al. 2019; Ditte et al. 2011;
Dorai et al. 2005). These interactions can have profound effects on enzymatic and
signaling functions of CA IX and also on its accessibility to antibodies and small
molecules.

The expression pattern in a broad range of tumors as well as functional involve-
ment of CA IX in tumor biology have raised enormous interest in the development of
CA IX-targeting drugs, including inhibitors and specific monoclonal antibodies for
immunotherapeutic applications {reviewed in (Neri and Supuran 2011; Oosterwijk-
Wakka et al. 2013; Pastorek and Pastorekova 2015; Singh et al. 2018; Pastorekova
and Gillies 2019)}. These efforts are continuously ongoing and novel combination
strategies are being investigated (McIntyre et al. 2012; Dubois et al. 2013; Boyd et al.
2017; Chafe et al. 2019).

CA12 expression evaluated byGEPIA2 is present in several tumor types including
KICH,KIRC,BRCA, andHNSC, but also in the normal counterparts ofKIRC,KIRP,
KICH, SARC, and SKCM (Figs. 7.3 and 7.5). The highest level is detected in KICH
(TPM 572), but the relationship of a high CA12 level to better overall survival is
significant only in SKCM (both for sum of all three protein-coding transcripts and
solely for CA12-001 transcript) (Fig. 7.6). In KIRC, only the CA12-002 transcript
relates to better overall survival while the other transcript variants do not show any
significant correlations. Based on the available experimental data, CA12 expression
is regulated by hypoxia, albeit to a lower magnitude thanCA9, and a direct role of the
HIF transcription factor in its regulation has not been clearly defined (Wykoff et al.
2000). However, CA12 expression appears to be driven by differentiation factors at
least in some tumor types (Barnett et al. 2008; Waheed and Sly 2017; Franke et al.
2019). In invasive BRCA, CA XII protein expression assessed by IHC is associated
with a lower grade, a lower relapse rate, and a better overall survival (Wykoff et al.
2001; Watson et al. 2003; Li et al. 2019). The link between CA XII expression
and better prognosis was demonstrated also in cervical cancer {in association with
superior disease-free survival, (Yoo et al. 2010) and resectable NSCLC (Ilie et al.
2011)}. In contrast, IHC staining for CA XII increases with increasing grade of
colorectal tumors (Kivela et al. 2000), high CA XII expression is linked to lower
survival rate of patients with esophageal squamous cell carcinoma (Ochi et al. 2015).
Interestingly, a shorter, alternatively splicedCA12 transcript has been associatedwith
poor prognosis of patients with diffusely infiltrating astrocytic gliomas (Haapasalo
et al. 2008). In cell culture models with genetically manipulated expression, CA
XII was shown to participate in pH regulation, tumor growth, and chemoresistance
(Chiche et al. 2009; Kopecka et al. 2015). Based on these relationships, also CA XII
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is investigated as therapy target for CA inhibitors and monoclonal antibodies (Gondi
et al. 2013; Kopecka et al. 2015; Boyd et al. 2017).

Expression of CA14 has not been experimentally linked to cancer so far, but
GEPIA2 analysis disclosed its increased levels in GBM, LGG, and SKCM (TPM up
to 34.3), Figs. 7.3 and 7.5. Even more interestingly, higher CA14 expression (for all
transcript variants together and also separately for CA14-001 and CA14-005) shows
a significant correlation to worse overall survival of patients with LGG and SKCM,
but to better prognosis in case of GBM (Figs. 7.6 and 7.7). This is an unexpected
finding that does not have any supporting clinical data in the published literature.
Additional links of CAXIV to cancer coming from other publicly available databases
are described by Mboge and colleagues (Mboge et al. 2018), but those data also
require experimental/clinical validation.

7.5 Expression of Inactive CA Isoforms in Cancer

Three genes coding for inactive CA isoforms, namely,CA8,CA10, andCA11 contain
mutations affecting the critical residues involved in the coordination of a zinc ion,
which is crucial for the CA catalytic activity. This precludes participation of these
isoforms in the canonic pH regulation-related metabolons involving bicarbonate
transporters and sodium/proton exchangers. However, the non-catalytic cooperation
with MCTs can still be feasible and was recently demonstrated for all three proteins
CA VIII, CA X, and CA XI (Aspatwar et al. 2019). The authors suggest that the
inactive CAs may function as a proton antenna for MCT1, to drive proton-coupled
lactate transport across cell membranes.

GEPIA2 shows that the CA8 gene is differentially transcribed particularly in
LAML and TGCT (TPM up to 30.3) where it is strongly decreased in comparison to
normal counterparts, but does not show any relationship to overall survival (Figs. 7.4,
7.5, 7.6). On the other hand, CA8 transcription is elevated in tumor versus normal
tissues in UCEC, THYM, OV, PAAD, and PCPG (TPM up to 9.4). Out of these
tumor types, only in SKCM higher CA8 relates to poor prognosis, whereas in UCEC
and PAAD (with quartile cutoffs), higher CA8 expression is linked to better overall
survival (Fig. 7.6). This is corresponding to the observation that CAVIII immunopos-
itivity in 13%of astrocytomas and 9%of oligodendrogliomas is associatedwithmore
benign behavior (Karjalainen et al. 2018). However, the opposite relationship was
found in colorectal and lung carcinomas (Miyaji et al. 2003; Akisawa et al. 2003),
and experiments using cell models suggest that CA VIII promotes progression and
invasiveness of lung cancer cells (Lu et al. 2004; Ishihara et al. 2006) and growth of
colon cancer cells (Nishikata et al. 2007).

CA10 gene expression is increased in PCPG (TPM 19.7) and decreased in GBM,
LGG, TGCT,KIRC,KIRP, SARC, andKICH,with no association to overall survival,
except a significant correlation of high CA10 transcription with a better overall
survival in LGG patients (Figs. 7.4–7.7). The CA11 gene expression pattern (tumor
vs normal) is similar to CA10 and includes increased levels in PCPG (TPM 83) and
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Fig. 7.4 Expression of genes coding for the inactive carbonic anhydrases in tumors and normal
samples. Data extracted from TCGA/GTEx databases were analyzed and converted to graphics
using GEPIA2 instrument (Tang et al. 2019). Data in the graphs relate to TPM units and intensities
of colors in the bodymaps correspond to Log/TPM+ 1 Scores in particular tissues. Numbers above
the columns highlight the highest TPMs for each CA isoform

decreased levels in GBM, LGG, OV, UCEC, and UCS (Figs. 7.4,7.5). A significant
relationship between high CA11 level and better overall survival was observed only
in LGG (Fig. 7.6). In line with this, levels of CA X and CA XI isoforms (that are
secreted synaptic proteins inhibiting the growth of glioma cell lines) were reduced
in clinical glioma samples and negatively associated with high histological grade
(Tao et al. 2019). In preclinical experiments of the same study, CA11 knockdown
promoted cell growth, clone formation and migration, and increased tumor size in
xenografted mice. In contrast, CA XI immunostaining was observed in the small
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Fig. 7.5 Heatmap visualizing differential expression of the genes coding for CA isoforms in all
GEPIA2-analyzed tumors compared to normal samples. Tumor/normal ratio is expressed in color
scale shown on the right side, with tumor-related expression illustrated in red shades and normal
sample-related expression in grey shades. Lack of expression in both tumor and normal samples is
represented by white color and similar expression level in tumor versus normal samples is repre-
sented by dotted pattern. The differential expression does not automatically translate to prognostic
value as specified in the body text for each CA isoform

fraction of the astrocytic and oligodendroglial tumor specimens, but not in the most
benign pilocytic astrocytomas (Karjalainen et al. 2018). These scarce data indicate
that our knowledge related to expression and functions of inactive CA isoforms is
still limited.

7.6 Carbonic Anhydrase-Related Neoplasms

Taking together all the information extracted from the TCGA/GTEx datasets by the
GEPIA2 tool, we can identify few tumor entities that are characterized by expression
of carbonic anhydrases, which also show relationship to overall survival (Figs. 7.6
and 7.7).

GBM (Glioblastoma multiforme) is a malignant brain tumor that accounts for
about 15% of all brain tumors in adults. GBM patients have a poor prognosis and
survive less than 15 months following diagnosis (information extracted from The
Cancer Genome Atlas (TCGA), National Cancer Institute at the National Institutes
of Health, USA). Recent integrated analysis of genetic alterations in main signaling
pathways in tumors suggests that the most frequent alterations in GBM affect the
pathways of RTK/Ras, cell cycle, PI3K, and p53 which control cell proliferation
and survival and affect diverse aspect of tumor phenotype including metabolism
and adaptation to stresses (Sanchez-Vega et al. 2018; Vander Heiden et al. 2009).
Moreover, GBM tumors are characterized by hypoxia and acidosis, and thus, it is not
surprising that these tumors express several carbonic anhydrases (Figs. 7.5 and 7.6),
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Fig. 7.6 Selection of carbonic anhydrase-related neoplasms with depicted expression levels of
CA isoforms (expressed as TPM) in the particular cancer type. Graphs do not show expression of
the genes in the corresponding normal samples. Data extracted from TCGA/GTEx databases were
analyzed using GEPIA2 instrument (Tang et al. 2019). Stars indicate significant relationship to
overall survival (* p < 0.05, **p < 0.01, ***p < 0.001) without discriminating positive and negative
correlations

of which increased expression of CA14 is linked to better prognosis, and increased
expression of CA9 is linked to poor prognosis, while the other isoforms’ genes
(including the highly expressed CA2) do not show any significant relationship to
overall survival (Fig. 7.6).

LGG (Low grade glioma). Glioma develops in the brain’s glial cells, which
support the brain’s nerve cells and keep them healthy. Tumors are classified into
grades I, II, III, or IV based on standards set by theWorldHealthOrganization. Lower
grade glioma consists of grades II and III. Regardless of grade, growing glioma tumor
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Fig. 7.7 Selected examples of Kaplan-Meier survival plots generated by the analysis of overall
survival performed by GEPIA2 instrument (Tang et al. 2019) based on expression of CA genes.
GEPIA2 uses Long-rank test (Mantel-Cox test) for hypothesis test. The Cox proportional hazard
ratio (HR) and the 95% confidence interval are included in the survival plot

compresses the normal brain tissue, frequently leading to disabling or fatal effects
(The Cancer Genome Atlas, NIH, USA). There are three molecular subtypes of LGG
with distinct clinical outcomes depending on presence of mutations in IDH1/IDH2
genes and a co-deletion of a short arm of chromosome 1 and longer arm of chromo-
some 19. The subtypewith the poorest outcomes containswild-type IDH and appears
to be a precursor of the more aggressive GBM. IDH (isocitrate dehydrogenase) is an
NADP+-dependent enzyme that catalyzes a conversionof isocitrate toα-ketoglutarate
and CO2. It is a tumor suppressor protein that functions at a crossroad of cellular
metabolism in lipid synthesis, cellular defense against oxidative stress, oxidative
respiration, and oxygen-sensing signal transduction (Reitman and Yan 2010). IDH
mutations cause stabilizationofHIF transcription factor andhypoxic reprogramming.
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Glioma development in IDH-mutant and IDHwild-type tumors is driven by different
oncogenic pathways that includemainlyRTK/RASpathway (IDHwt), p53 andHippo
pathways (IDHmut), and Wnt, TGFβ, and Hippo (IDHMut-codel), as illustrated in
integrative analysis performed by Sanchez-Vega and colleagues (Sanchez-Vega et al.
2018). Interestingly, compared to IDHwt gliomas, IDHmut gliomas have distinct
metabolic and microenvironmental characteristics correlated with tumor acidity and
hypoxia (Yao et al. 2019). This might be one of the reasons, why LGG display vari-
able expression of CA genes, includingCA2, CA4, CA5B, CA8, CA10, CA11, CA12,
CA13, and CA14 (Fig. 7.5) and all of them, except CA8, are significantly associated
with prognosis (Fig. 7.6). Tumor-related increases ofCA4,CA10, andCA11 correlate
with better overall survival, increases of CA2, CA5B, CA12, CA13, and CA14 corre-
late with worse prognosis. Because LGGs are strongly related with carbonic anhy-
drases, these neoplasms might be a suitable target for anticancer strategies exploiting
CA inhibitors.

KICH (Chromophobe renal cell carcinoma) is a rare type cancer that originates
in the distal regions of kidney and forms in the cells lining the small tubules, which
help filter waste from the blood, making urine. It accounts for 5% of all kidney cancer
cases and can have either hereditary or sporadic basis (The Cancer Genome Atlas,
NIH, USA). Pathways altered in KICH relate to cell cycle, PI3K, and p53 and often
translate to oncogenic metabolism and adaptation to hypoxia and acidosis (Sanchez-
Vega et al. 2018; Linehan and Ricketts 2013). Only two CA isoforms show high
expression in KICH and decreased expression in the corresponding normal tissues:
CA2 and CA12, but none of them is significantly associated with overall survival.

KIRC (Renal cell carcinoma) is themost common typeof kidney cancer that forms
in the cells lining the small proximal tubules in the kidney, which filter waste from
the blood and make urine. When detected early, most cases of KIRC can be treated
effectively, but survival rates are low when the cancer has spread from the kidney to
other parts of the body. About 92% of KIRC are clear cell carcinoma (The Cancer
Genome Atlas, NIH, USA). According to analysis of Sanchez-Vega and colleagues
(Sanchez-Vega et al. 2018), altered pathways includeRTK/RAS, cell cycle, andPI3K,
but the primary genetic event is an inactivating mutation in VHL gene, which affects
cellular oxygen sensing and leads to constitutive activation of the HIF pathway even
in the absence of physiologic hypoxia (Kaelin and Ratcliffe 2008; Wiesener et al.
2001). This also includes metabolic changes associated with poor outcomes. Since
CA9 andCA12 are upregulated by hypoxia, it is not surprising that these are the main
isoforms present in this type of tumor, accompanied by CA2. As explained above,
due to a HIF-1 to HIF-2 shift in the course of cancer progression, a higher level of
HIF-1-regulated CA9 is associated with a better prognosis, albeit its expression in
later stages still remains relatively high and suitable for immunotherapeutic targeting
(Bui et al. 2003). CA12 exhibits a similar relationship, but only when CA12-002
splicing isoform is tested, otherwise there is no clear relationship to overall survival.
Similarly, increasedCA2 expression is associated with a better prognosis, whileCA4
shows a highly significant association with longer overall survival when absent or
low (Figs. 7.6 and 7.7).
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LAML (Acutemyeloid leukemia) is a cancer of the blood and bonemarrow,which
can quickly worsen and result in death within months, when untreated. Survival
decreases with older age because standard treatments are less tolerated (The Cancer
Genome Atlas, NIH, USA). LAML cancers carry relatively fewmutations compared
to other frequently occurring solid tumors. About a half of AMLs include activation
of the RTK/RAS pathway, and about one-sixth is affected in the cell cycle and Notch
pathways (Sanchez-Vega et al. 2018). CA1, CA2, and CA5B are the most highly
expressed CA genes in LAML, but they do not display any link to prognosis in
contrast to less expressed CA3 as well as CA13, both being positively associated
with poor prognosis (Figs. 7.6 and 7.7).

SKCM (Skin cutaneous melanoma) is a cancer of melanocytes, skin cells that
produce melanin. Melanoma is most often discovered because it has metastasized,
or spread, to another organ, such as the lymph nodes. There are four major subtypes
of cutaneous melanoma: BRAF mutant (most common), RAS mutant, NF1 mutant,
and Triple Wild-Type. Mutations in each of the identified driver genes, BRAF, RAS,
and NF1 lead to uncontrolled cell growth (The Cancer Genome Atlas, NIH, USA).
According to integrated analysis of genetic alterations in cancer, RTK/RAS and cell
cycle oncogenic pathways predominate in SKCM (Sanchez-Vega et al. 2018). Based
on experimental data, hypoxia and acidosis appear to be important components of
melanoma progression (Moellering et al. 2008; Marino et al. 2012). Out of CA
isoforms, only CA14 exhibits a tumor-related expression linked to worse prognosis
in SKCM (Figs. 7.6 and 7.7). The other CAs (CA2, CA3, CA4, CA6, CA9, CA11,
CA12, andCA13) are expressed at higher levels in normal tissues compared to tumors.
In a survival analysis, higher levels of CA8 and CA9 predict worse overall survival,
while CA12 and CA13 show opposite relationships (Fig. 7.6).

Additional CA-related tumor types can be recognized on the basis of immuno-
histochemical staining of human tumor tissues that were published in hundreds of
studies. These include, for example, breast carcinomas that express CA IX as a poor
prognostic factor and CAXII as a good prognostic factor; colorectal carcinomas that
express CA I, CA II, CA VII, CA XIII (all decreasing as cancer progresses), CA
VIII, CA IX, CA XII (increasing with cancer progression); lung carcinomas (mainly
NSCLC) expressing CA I and CA IV as good prognostic factors, CAVIII and CA IX
as poor prognostic factors, and CAXII as a good prognostic factor (see the references
related to the particular CA isoforms).

7.7 Conclusions

Both genomic metadata and immunohistochemical studies discussed here and
described elsewhere in the literature indicate that there is virtually no cancer devoid
of carbonic anhydrase, apparently because CA-facilitated pH regulation, ion trans-
port, and/or CO2 diffusion are really fundamental for cell survival, proliferation,
and metabolic processes in tumor tissues {see also (Mboge et al. 2018)}. Naturally,
histological and mutational diversity combined with all abnormalities characteristic
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for malignant cancer, including oncogenicmetabolism, aberrant proliferation, dereg-
ulated signaling, and adaptations to stresses in tumor microenvironment cause that
the expression patterns of diverse CA isoforms in tumor tissues differ from those
in normal tissues and are generally very complicated and context-dependent. This
complexity of CA isoforms is further elaborated by the differences in the expression
dynamics and stability of their transcripts compared to proteins, by the existence of
alternative splicing variants of CA transcripts (with only some variants coding for
functional proteins), by the posttranslational modifications of CA proteins affecting
their functions, subcellular localizations, and regional tissue distribution, etc.Another
level of complexity is added by a diversity of CA activities and interactomes. These
numerous factors are behind the lack of full agreement between the data from RNA-
seq, IHC/proteomic analyses, and clinical parameters. Despite this intricate picture,
there are few clearly evident and undisputable relationships between certain CA
isoforms and particular tumor types. Out of them, the most prominent position
belongs to CA IX, which indicates an aggressive phenotype, poor prognosis, and
poor response to therapy in a broad range of tumors (except renal clear cell carci-
nomas, as explained above), followed by CA XII (in a majority of cases indicating
good prognosis), and CA IV that was proposed to be a tumor suppressor. Since these
relationships are not new, the bioinformatic data included here can serve to support
the existing studies.

In contrast, data mining and their integrated analysis using GEPIA2 instrument
brought up very interesting and novel relationships, such as for CA XIV, which has
not been previously linked to cancer through other than bioinformatic approaches
(Mboge et al. 2018). In this case, but also regarding other in silico identified rela-
tionships of CAs to cancer, it is clearly evident that the RNA-seq data have to be
supplemented and supported by the experimental evidence in order to obtain reliable
and clinically useful information. To fulfill such requirement, the field of carbonic
anhydrases requires further exploration followed by translation of knowledge to
meaningful anticancer strategies.
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