
Chapter 12
Targeting Carbonic Anhydrase IX
in Tumor Imaging and Theranostic
Cancer Therapy

Joseph Lau, Kuo-Shyan Lin, and François Bénard

Abstract Carbonic anhydrase IX (CA-IX) is an endogenousmarker for hypoxia and
is regulated by the von Hippel-Lindau/hypoxia-inducible factor (VHL/HIF) oxygen-
sensing pathway. CA-IX is overexpressed inmany solidmalignancies where aberrant
vasculature and limited perfusion create lowoxygennicheswithin the tumormicroen-
vironment. Dysregulation of the VHL/HIF signaling pathway can lead to constitutive
expression of CA-IX—a phenotype associated with clear cell renal cell carcinomas
(ccRCCs). As a cell-surface metalloenzyme, CA-IX works in tandem with other
proteins to regulate intracellular pH in response to hypoxia-induced metabolism. In
recent years, there has been evidence implicating CA-IX in potentiating cancer inva-
sion and metastasis. Accordingly, the inhibition of CA-IX catalytic activity repre-
sents an attractive option for the management of ccRCC and other solid tumors.
In this chapter, we discuss the development of CA-IX radiopharmaceuticals and
their roles in delineating tumoral CA-IX expression through imaging in preclin-
ical and clinical settings. We will also review agents that have been repositioned as
endoradiotherapeutic agents for theranostic application.
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12.1 Introduction

Tumor hypoxia, a salient feature of solid tumors, is a negative prognostic marker for
many cancers (Harris 2002; Walsh et al. 2014). Low oxygen availability depresses
the efficacy of conventional radiation therapy and chemotherapy (Harris 2002;Walsh
et al. 2014). Moreover, a hypoxic tumor microenvironment exerts selection pressure
for resistant and aggressive clonal populations, increasing the predisposition for
metastasis (Wilson and Hay 2011). Hypoxia-activated prodrugs, tumor vasculature
remodeling agents, and modulators of hypoxia-induced metabolism are attractive
anti-cancer agents (Wilson and Hay 2011). Carbonic anhydrase IX (CA-IX) is a
biomarker for tumor hypoxia and a promising target for treating solid malignan-
cies (Supuran 2008; McDonald et al. 2012). CA-IX regulates intracellular pH and
mediates survival under hypoxic conditions. CA-IX acidifies the tumor microenvi-
ronment and primes it for invasion and distant metastasis (McDonald et al. 2012).
The pharmaceutical inhibition of CA-IX activity by small molecule pharmaceuticals
is being investigated in clinical trials (Supuran 2017). The success of these agents
will depend on appropriate patient stratification.

Single photon emission computed tomography (SPECT) and positron emission
tomography (PET) represent nuclear imagingmodalities that can quantify drug-target
expression in primary and metastatic lesions to predict drug sensitivity to hypoxia-
based treatments (Weissleder and Mahmood 2001; Jadvar et al. 2018). In addition to
identifying potential responders, SPECT and PET can be used to assess pharmacoki-
netic parameters and drug-target engagement, and to monitor treatment responses in
a non-invasive manner (Weissleder and Mahmood 2001; Jadvar et al. 2018). Some
imaging radiopharmaceuticals used to target CA-IX have been converted to endora-
diotherapeutic agents. In this chapter, we will discuss the suitability of CA-IX as a
druggable biomarker underpinning tumor hypoxia. We will review the development
of CA-IX radiopharmaceutical agents (antibodies, peptides, and small molecules) in
clinical and preclinical settings. Finally, we offer our perspectives for the translation
and integration of these radiopharmaceuticals in nuclear medicine.

12.2 Targeting CA-IX as a Biomarker of Tumor Hypoxia

Cancer cells in solid tumors are constantly exposed to fluctuating oxygen levels
within the tumor microenvironment. The process of developing hypoxia is indepen-
dent of a tumor’s size, stage, grade, or histology (Bennewith and Dedhar 2011).
When oxygen tension is low (pO2 value < 10 mmHg), most cancer cells undergo
metabolic reprogramming regulated by the von Hippel-Lindau/hypoxia-inducible
factor (VHL/HIF) oxygen-sensing pathway (Bennewith and Dedhar 2011; Parks
et al. 2011). HIF-activated cancer cells reduce their reliance on oxidative phospho-
rylation, and instead shift to glycolysis to produce adenosine triphosphate (ATP)
(Parks et al. 2011). Glycolysis provides the requisite ATP and biosynthetic building
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blocks for survival, but concurrently lowers intracellular pH (pHi) (Parks et al. 2011).
In response to this new stressor, cancer cells overexpress CA-IX to modulate pHi.
CA-IX is a member of the carbonic anhydrase α-family (Alterio et al. 2012; Wykoff
et al. 2000). As a zinc metalloenzyme, CA-IX catalyzes the interconversion of water
and carbon dioxide to bicarbonate and hydrogen ions (H2O+CO2 ↔HCO3

− +H+)
(Hilvo et al. 2008). The HCO3

− ions enter the cell through transporter systems to
re-establish an alkaline pHi. The H+ ions from the reaction go on to acidify the tumor
microenvironment, promoting invasion and metastasis. Researchers often measure
pH change in culture medium as a means to assay CA-IX catalytic activity in cancer
cell lines (Lou et al. 2011).

CA-IX is the most upregulated protein in response to HIF-1α activation; thus, it is
a well-regarded endogenous marker of cellular hypoxia (Wykoff et al. 2000). While
most biomarkers in oncology are specific to cancer subtypes, CA-IX overexpression
is broadly observed in solid malignancies including but not limited to head and neck,
breast, lung, ovarian, and renal cancers (McDonald et al. 2012). In normal tissues,
CA-IX expression is restricted to the small intestine, pancreas, and male efferent
epithelial ducts (McDonald et al. 2012). The differential expression of CA-IX in
cancer and normal tissues allows for adequate signal-to-noise ratios and therapeutic
indices for imaging and treatment, respectively. The stability of CA-IX, its acces-
sibility as a cell-surface protein, and the plethora of potent binders are additional
merits that support CA-IX targeting strategies.

It is imperative for researchers to understand that there are situationswhereCA-IX
expression does not correlatewith the oxygen levelwithin a tumor.DiscordantCA-IX
and HIF-1α expression levels have previously been reported in vivo (Li et al. 2015).
In transient hypoxia, leveraging CA-IX expression to interpolate tumor hypoxia may
lead to overestimation of the hypoxic subvolume. This observation was attributed
to the disparate biological half-lives in re-oxygenated cells (hours for CA-IX and
minutes for HIF-1α) (Rafajová et al. 2004; Moroz et al. 2009). As communicated by
Kulaz et al., the expression of CA-IX correlates better with the transcriptional activity
of HIF-1α rather than HIF-1α expression (Kaluz et al. 2009). At the other extreme,
there are instances where CA-IX expression is conspicuously absent in hypoxic
conditions. Loss-of-function mutations in HIF-1α have been observed in cell lines
(Morris et al. 2009), and there are cancers that preferentially expressHIF-2α andHIF-
2α-regulated genes in response to hypoxia (Li et al. 2009; Holmquist-Mengelbier
et al. 2006).

12.3 Methods for Detecting Tumor Hypoxia

The polarographic electrode is the current gold standard for determining oxygena-
tion levels in live tissues (Walsh et al. 2014). The methodology requires the insertion
of electrodes in superficial/accessible tumors. It is limited by sampling bias and an
inability to differentiate between hypoxia and necrosis. Given the extensive role of
PET imaging in diagnosis, staging, and diseasemonitoring, an area of active research
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has been the development of hypoxia imaging agents (Lopci et al. 2014; Fleming et al.
2015). FMISO, FAZA, EF5, and HX4 are examples of radio-fluorinated nitroimida-
zole derivatives being evaluated in the clinic. Following passive diffusion into cells,
these agents are reduced by one-electron-transfer reactions to form reactive inter-
mediates. In a normoxic cell, the nitro-radical anions undergo oxidation to reform
the parent compounds, which then permeate out of the cell. In a hypoxic cell, the
nitro-radical anions undergo additional reduction and bind to macromolecules. The
binding to proteins or nucleic acids ‘traps’ the radioactivity inside hypoxic cells.
FMISO is the most heavily investigated nitroimidazole in the clinic (Rajendran and
Krohn 2015). However, the routine clinical use of FMISO and other derivatives
is hampered by their slow clearance from normal tissues. Because of pharmacoki-
netics and mechanism of uptake, image acquisition is performed several hours post-
injection (p.i.) and typically results in low-contrasted images. The hypoxia cut-off
value for FMISO is institution- and scanner-dependent. For instance, Rajendran and
colleagues set a tumor-to-background ratio of ≥1.2 at 2 h p.i. to delineate hypoxic
tumors for sarcoma patients (Rajendran et al. 2003). The need to identify radiophar-
maceuticals with higher sensitivity and faster pharmacokinetic has put a focus on
targets like CA-IX.

12.4 CA-IX Expression in Clear Cell Renal Cell Carcinoma

The development of CA-IX radiopharmaceuticals is also prompted by the patho-
physiology of clear cell renal cell carcinomas (ccRCCs), a subtype that comprises
approximately 75% of all renal cell carcinomas (Hsieh et al. 2017). It is estimated
that up to 92% of ccRCCs harbor genetic or epigenetic abnormalities that lead to
the inactivation of the von Hippel-Lindau (VHL) tumor suppressor gene (Clark
2009; Zhang and Zhang 2018). VHL is a negative regulator and a binding partner
of HIF-1α. Under normoxic conditions, VHL binds to HIF-1α to form a complex
that is poly-ubiquitinated and targeted for proteasomal degradation (Pastorekova et al.
2008). This process inhibits HIF-1α activation and CA-IX transcription (Pastorekova
et al. 2008). The dysregulation of VHL/HIF-1α pathway induces the constitutive
expression of CA-IX, making it a rational target for ccRCC (Fig. 12.1).

When ccRCC is localized and treatable with surgery, the five-year survival rate for
ccRCC is favorable at 91.7% (Ridge et al. 2014). However, diagnosis for ccRCC is
not trivial with most cases being discovered as incidental findings (Gorin et al. 2015).
Most anatomical imaging modalities are unable to differentiate between malignant
and benign lesions as well as histological subtypes (Gorin et al. 2015). PET imaging
with 18F-FDG is better-suited for metastatic disease than primary lesion detection
due to the renal excretion of imaging agent (Gorin et al. 2015; Escudier et al.
2016). A substantial portion of patients with benign masses, approximately 20%,
receive surgical intervention when active monitoring would suffice (Gorin et al.
2015). CA-IX imaging enables radiologists and oncologists to accurately diagnose
ccRCC and provide standard of care. Patients with late stage metastatic disease have
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Fig. 12.1 Functional activity of HIF-1α and its regulation by oxygen. In normoxia, HIF-1α is
post-translationally modified by proline hydroxylases (PHDs). These enzymes use oxygen as a
substrate and Fe(II) and 2-oxoglutarate (2-OG) as cofactors. When HIF-1α is hydroxylated by
PHDs, it binds with the VHL tumor suppressor protein. The VHL/HIF-1α complex becomes rapidly
ubiquitinated and degraded. In hypoxia, HIF-1α escapes hydroxylation and VHL binding, accu-
mulates in cytoplasm, translocates to the nucleus, and dimerizes with HIF-1β. HIF-1α/β binds to
hypoxia-response elements (HREs) in the promoter region of the target genes like CA-IX, recruits
transcriptional co-activators to initiate transcription. Figure adapted with permission from Supuran
(2012) in accordance with the Creative Commons Attribution (CC BY-NC 4.0) license

few available treatments. Currently, first-line therapy for metastatic ccRCC consists
of targeted therapies against rapamycin and the vascular epidermal growth factor
receptor (Hsieh et al. 2017). Unfortunately, the five-year survival rate for ccRCC
patients with distant metastasis is dismal at 12.3% (Ridge et al. 2014). The poor
prognosis for metastatic ccRCC is the major impetus for developing CA-IX-targeted
treatments like radioimmunotherapy (RIT).
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12.5 Monoclonal Antibodies

Monoclonal antibodies (mAbs) are a class of biologics that are used in targeted ther-
apies. Known for their stability, binding affinity, and target selectivity, mAbs can
abrogate cell-signaling, inhibit angiogenesis, regulate osteoclast function, or modu-
late immune response (Chiavenna et al. 2017). mAbs can also recruit immune cells
to activate antibody-dependent cell-mediated cytotoxicity, complement-dependent
cytotoxicity, or antibody-dependent cell phagocytosis (Scott et al. 2012). Finally,
they can be modified to selectively deliver cytotoxic drugs or ionizing radiation
(Sharkey and Goldenberg 2009).

Many mAbs have been developed for CA-IX targeting (Chrastina et al. 2003;
Čepa et al. 2018; Ahlskog et al. 2009), but girentuximab (cG250) remains the most
clinically investigated agent (Oosterwijk-Wakka et al. 2013). The first generation of
cG250was isolated asmurineG250byOosterwijk et al. byhybridoma screening after
immunizing mouse splenocytes with renal cancer homogenates (Oosterwdk et al.
1986). The proteoglycan (PG)-like domain of CA-IX is the epitope site for cG250.
This domain is exclusive to CA-IX compared to other members of the CA family
(McDonald et al. 2012). cG250 can induce antibody-dependent cellular cytotoxicity
(Oosterwijk-Wakka et al. 2013). In a phase III study, cG250 was evaluated as an
adjuvant monotherapy in patients with localized high-risk ccRCC after nephrectomy
(Chamie et al. 2017). Patients treated with cG250 did not show improvement for
disease-free survival (DFS) and overall survival (OS). Patients whose tumors showed
higher DFS, but this was not statistically significant compared to placebo. Histology
scoring was obtained bymultiplying intensity of staining (1–3) by percent of positive
cells (0–100) to yield a range of 0 to 300. In the subsequent section, we will review
radiolabeled derivatives of cG250 for theranostic applications (Table 12.1).

12.5.1 Imaging with G250/cG250

The first clinical study with radiolabeled G250 (131I-mAbG250) was conducted by
Oosterwijk et al. at the Ludwig Institute for Cancer Research (Oosterwijk et al. 1993).
The primary objective of this phase I study was to assess safety and biodistribution of
131I-mAbG250. Sixteen patients suspected of having RCC received 131I-mAbG250
intravenously 7 or 8 d before scheduled nephrectomy. Twelve patients had positive
scans from whole-body planar imaging at 3 d p.i. Histology of the biopsied tissues
showed that 11 patients had ccRCC and 1 patient had RCC of the granular subtype.
CA-IX expression in the scan-positive lesions ranged from <5% to 100% based on
immunohistochemistry. For the 4 negative scans, 3 patients had RCC of the granular
or spindle subtype and 1 patient had a benignmass. 131I-mAbG250waswell-tolerated
in patients and accumulated specifically in CA-IX expressing lesions.

131I-cG250 was used as part of RIT protocols to identify responders and monitor
treatment response; however, the high energy gamma emissions of 131I and reliance
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Table 12.1 Clinical studies with radiolabeled G250/cG250 for imaging or therapy. Adapted from
Lau et al. (2017) in accordance with the Creative Commons Attribution (CC BY-NC 4.0) license

Imaging

Agent # Patients
enrolleda

Indication Detection Sensitivity
and
selectivity

Clinical
stage

Refs.

131I-mAbG250 16 Primary
RCC

11/11
ccRCC pts

NR Phase I dose
escalation

Oosterwijk
et al. (1993)

124I-cG250 26(25) Primary
RCC

15/16
ccRCC pts

94 and
100%

Phase I
single dose

Divgi et al.
(2007)

124I-cG250 226(195) Primary
RCC

124/143
ccRCC pts

86 and
76%

Phase III Divgi et al.
(2013)

111In-cG250
131I-cG250

5 Metastatic
ccRCC

47 lesions
30 lesions

NR Phase I/II
intrapatient
comparison

Brouwers
et al. (2003)

111In-cG250 29(22) Metastatic
ccRCC

15/15
ccRCC pts

NR Partly
retrospective

Muselaers
et al. (2013)

89Zr-cG250 30(29) RCC/
ccRCC

18/19
ccRCC pts

NR Phase I/II Hekman
et al.
(2018a)

Therapy

Agent # Patients
enrolleda

Indication Response Duration
of
response

Clinical stage Refs.

131I-mAbG250 33 Metastatic
ccRCC

17 SD 2–3 mo Phase I/II
dose
escalation

Divgi et al.
(1998)16 PD

131I-cG250 12(8) Metastatic
ccRCC

1 PR 9 + mo Phase I dose
escalation

Steffens
et al. (1999)1 SD 3–6 mo

6 PD
131I-cG250 15(14) Metastatic

ccRCC
7 SD 4–13 mo Phase I dose

fractionation
Divgi et al.
(2004)7 PD

131I-cG250 29(15) Metastatic
ccRCC

5 SD 3–12 mo Phase I/II
two doses

Brouwers
et al. (2005)10 PD

177Lu-cG250 23 Metastatic
ccRCC

1 PR 9 + mo Phase I dose
escalation

Stillebroer
et al. (2013)12 SD 3 + mo

10 PD
177Lu-cG250 16(14) Metastatic

ccRCC
1 PR NR Phase II Muselaers

et al. (2016)7 SD; 3 + mo

6 PD

aNumber in bracket represents the number of patients that satisfied evaluation criteria G250: murine
monoclonal G250 antibody; cG250: chimeric monoclonal G250 antibody; ccRCC: clear cell renal
cell carcinoma; RCC: renal cell carcinoma; SD: stable disease; PD: progressive disease; PR: partial
response; pts: patients; NR: not reported
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on collimators for detection are not ideal for image quantification (Rault et al. 2007).
Subsequently, another iodine isotope 124I was used to radiolabel cG250 (Divgi et al.
2007). 124I-cG250 uses PET imaging, a modality that uses coincidence detection for
enhanced sensitivity and resolution. Divgi et al. evaluated 124I-cG250 in a phase I
study for preoperative characterization of RCC with indeterminate masses (Divgi
et al. 2007). Twenty-six patients received an imaging dose of 185 MBq/10 mg 1
wk prior to surgery. PET/CT imaging was performed within 3 h prior to surgery.
When the tumor-to-kidney (T:K) ratio was >3, the scan was designated as positive.
Sixteen cases of ccRCC were confirmed by histology and 15 of those had positive
PET scans. Patients (n = 9) who had a negative PET scan did not have ccRCC. One
patient was excluded from analysis because of an immunologically inactive infusion
of 124I-cG250. Overall, the sensitivity and specificity of 124I-cG250 were 94% and
100%.

124I-cG250 advanced to a phase III study, where its average sensitivity and selec-
tivity for ccRCC was compared with contrast-enhanced CT (CECT) (Divgi et al.
2013). In total, 226 patients were enrolled, and 195 patients were assessable. Patients
received 185 MBq/13.7 mg 124I-cG250, and PET/CT acquisitions were performed
2-6 d following administration. CECTs were performed within 48 h of the PET/CT
session. 124I-cG250 showed better average sensitivity (86% vs. 76%) and selectivity
(76% vs. 47%) than CECT for differentiating ccRCC from non-ccRCC. Positive
predictive value (PPV), negative predictive value (NPV), and accuracy were calcu-
lated as secondary efficacy variables. 124I-cG250 had an accuracy value of 86%, a
PPV of 94%, and an NPV 69%. The results suggest that 124I-cG250 PET can guide
management and surgical decisions for patients with indiscriminate renal lesions.
A secondary phase III study was recommended by the Food and Drug Adminis-
tration, but commercial development appears stalled. Potential limitations for the
clinical adoption of 124I-cG250 include high cost of 124I production, and in vivo
dehalogenation.

One of the first radiolabels used for SPECT imaging with cG250 was indium-
111 (111In). cG250 was conjugated with the bifunctional chelators 1,4,7,10-
tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) or diethylenetriaminepen-
taacetic acid (DTPA) for 111In-labeling. 111In-DOTA-cG250was used as a companion
imaging agent for 177Lu-DOTA-cG250 RIT studies. Five ccRCC patients that were
part of a phase I/II RIT study with 131I-cG250 were recruited for an intrapatient
comparison of 111In-DTPA-cG250 versus 131I-cG250 scintigraphy (Brouwers et al.
2003). 111In-DTPA-cG250 enabled the visualization of more metastatic lesions than
131I-cG250 at 4 d p.i. (n = 47 vs. n = 30). Radioactivity accumulation in 25 lesions
were quantified; 111In-DTPA-cG250 had higher uptake in 20 lesions and yielded
better tumor-to-blood ratios. In a subsequent study, 111In-DTPA-cG250 was evalu-
ated in a cohort of 29 patients, of which 22 presented with a renal mass (Muselaers
et al. 2013). Some of the patients were part of a secondary imaging study in which the
effect of sorafenib on 111In-DTPA-cG250 was studied. 111In-DTPA-cG250 showed
uptake in 16 patients, with 15 cases confirmed to be ccRCC by histopathology. The
remaining patient had a type 2 papillary RCC that was also CA-IX positive.



12 Targeting Carbonic Anhydrase IX in Tumor Imaging … 261

Fig. 12.2 89Zr-cG250 imaging in a patient who previously underwent a radical nephrectomy but
presented with (a) a new renal tumor and a solitary adrenal metastasis on CT. (b) Uptake of 89Zr-
cG250 was observed in the primary renal mass, the adrenal lesion, and a previously unidentified
lesion in the proximal radius. Patient had surgery and also radiotherapy for the bone lesion. Of
note, the proximal radius was not in the field of view of the initial conventional imaging (CT-
thorax/abdomen). Figure adapted with permission from Hekman et al. (2018a)

Recently, Hekman et al. reported the evaluation of 89Zr-cG250 in a phase I/II
study (Fig. 12.2) (Hekman et al. 2018a). Thirty patients suspected with ccRCC were
recruited for the study and divided into two groups. The first group consisted of 16
patients with an indistinct renal mass, while the second group consisted of 14 patients
with suspected recurrent/metastatic ccRCC. For the first group, six patients had a
positive PET scan. Five of the 6 underwent surgery confirming ccRCC, and the patient
with VHL syndrome had additional positive lesions and underwent cyroablation for
debulking.One patient had two lesions, one positive and one negative onPET, butwas
not treated due to complex surgical history. Nine patients with negative PET scans
were followed by active surveillance; none progressed within the follow-up period
(13 ± 4.9 mo). In the second group, 89Zr-cG250 was used to determine treatment
intent. A change in clinical management occurred for 5 patients, with 3 patients
avoiding biopsies due to positive PET scans. The decisions to change management
was not solely dependent on 89Zr-cG250-PET but included consideration of other
clinical parameters.

As demonstrated through these studies, mAbs are powerful targeting vectors for
imaging applications. The prolonged residence time of mAbs in blood allows for
increased exposure to the target of interest, facilitating more binding events and
increasing tumor uptake. However, the slow pharmacokinetics of mAbs often neces-
sitates a clearance period of several days before optimal imaging contrast can be
achieved. Antibody fragments generated from enzymatic cleavage by papain or
pepsin maintain affinity for their target of interest but are structurally smaller (~55
and 110 kDa for Fab and F(ab’)2) (Sharkey and Goldenberg 2009; Freise and Wu
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2015). The removal of the fragment crystallizable region reduces the likelihood of
immunogenicity. Using these fragments as imaging agents would reduce radiation
exposure and enable same-day imaging, providing logistical and clinical advantages.
Predictably, cG250 antibody fragments, cG250-Fab, and cG250-F(ab’)2, have been
investigated as imaging agents.

Carlin et al. compared the uptake of 111In-DOTA-cG250, 111In-DOTA-F(ab’)2-
cG250, and 111In-DOTA-Fab-cG250 in athymic mice bearing HT-29 human
colorectal cancer xenografts (Carlin et al. 2010). This tumor model is considered
a hypoxic cancer model. Biodistribution studies were performed at 2, 4, and 7 d
p.i. for 111In-DOTA-cG250, and at 6 and 24 h p.i. for 111In-DOTA-F(ab’)2-cG250
and 111In-DOTA-Fab-cG250. The harvested tumors were fluorescently stained for
CA-IX, hypoxia (pimonidazole), and blood perfusion (Hoechst). The tumor uptake
of 111In-DOTA-cG250 at 7 d p.i. was 26.4 ± 5.7%ID/g, which corresponded to
tumor-to-blood (T:B) and tumor-to-muscle (T:M) ratios of 6.6 and 69. 111In-DOTA-
F(ab’)2-cG250 and 111In-DOTA-Fab-cG250 showed focal but lower uptake (9.3 ±
2.1%ID/g and 3.5 ± 1.7%ID/g at 24 h p.i.), and lower T:B (4.6 and 16.6) and T:M
ratios (8.9 and 6.7). 111In-DOTA-F(ab’)2-cG250 and 111In-DOTA-Fab-cG250 are
capable of targeting CA-IX in hypoxic niches with a shorter distribution phase, but
this comes at the expense of absolute uptake and contrast ratios.

Hoeben et al. used 89Zr-cG250-F(ab’)2 for imaging hypoxia-mediated CA-IX
expression in the SCCNij3 human head and neck squamous cell carcinoma model
(Hoeben et al. 2010). 89Zr-cG250-F(ab’)2 was administered intravenously into tumor
bearing mice. The tumor xenografts were clearly visible in PET images acquired at
4 and 24 h p.i. Based on biodistribution studies, the tumor uptake of 89Zr-cG250-
F(ab’)2 was 3.71± 0.97%ID/g and 1.66± 0.48%ID/g at 4 h and 24 h p.i. The T:B and
T:M ratios were 8.7 and 7.4 at 24 h p.i., respectively. The uptake in tumor correlated
to pimonidazole staining (r = 0.46–0.68) and CA-IX expression (r = 0.57–0.74).
Recently, Huizing et al. evaluated 111In-DTPA-cG250-F(ab’)2 in two other head
and neck squamous cell carcinoma models: SCCNij153 and SCCNij202 (Huizing
et al. 2019). There was good concordance between SPECT image, autoradiography,
and immunofluorescence. The uptake of 111In-DTPA-cG250-F(ab’)2 in SCCNij153
tumors was 3.0 ± 1.5%ID/g and 3.0 ± 1.8%ID/g at 4 h and 24 h p.i., respectively.
At 24 h p.i., T:B and T:M ratios were 19 ± 15 and 8.7 ± 1.9.

12.5.2 Radioimmunotherapy with G250/cG250

Divgi et al. conducted a phase I/II RIT dose escalation study with 131I-mAbG250
(Divgi et al. 1998). Thirty-three patients with metastatic ccRCC were intravenously
administered 131I-mAbG250 (1110, 1665, 2220, 2775, or 3330 MBq/m2; 10 mg) as
a single dose. At doses above 1665 MBq/m2, transient elevation of hepatic enzymes
indicating impaired liver function was observed but not considered dose-limiting.
The maximum tolerated dose (MTD) was determined to be 3330 MBq/m2, based on
hematological toxicity. Disease stabilization lasting more than 2 mo was observed
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in 17 patients; patients were subsequently transferred to other therapies precluding
follow-up. The development of human anti-mouse antibody (HAMA) response at 4
wk post-infusion in patients prevented retreatment.

G250 was chimerized to yield cG250, enabling a phase I study of 131I-cG250 in
patients with metastatic RCC (Steffens et al. 1999). Twelve patients were enrolled
in the study, with each patient receiving a diagnostic dose (222 MBq; 0.5 mg). 131I-
cG250 showed similar biodistribution to 131I-mAbG250, but less hepatic uptake was
observed. Eight patients who had a positive scan received a therapeutic dose ranging
from1665 to 2775MBq/m2 (0.5mg). TheMTDwas determined to be 2200MBq/m2,
with dose-limiting hematological toxicity. One patient had stable disease for 3–6mo,
while another had partial response (50% reduction in lesion sizes) that lasted for at
least 9 mo. The remaining 6 patients exhibited progressive disease. Of note, 1 patient
who received two prior doses of 5 mg cG250 as part of an earlier clinical trial
developed human anti-chimeric antibodies (HACA) in this study.

Divgi et al. explored the use of a dose fractionation approach for administration of
131I-cG250 to prevent myeloablation and to improve response (Divgi et al. 2004). In
this phase I trial, 15 metastatic RCC patients were enrolled and divided into groups
of three. The first group was prescribed an average whole-body absorbed dose of
0.50 Gy, with succeeding groups receiving increased doses of 0.25 Gy increments.
The first fraction of 131I-cG250 was administered at 1110 MBq/5 mg, with subse-
quent fractions given at 2–3 d intervals. Imaging was used for dosimetry analysis.
Patients who had no disease progression and demonstrated recovery from treatment
toxicity were eligible for additional cycles; 5 patients qualified. Following treatment,
7 patients had stable disease, and 7 had disease progression. One patient developed
sepsis during the study and was unable to continue treatment. HACA reactivity
was observed in 2 patients. The fractionated approach did not significantly improve
hematological toxicity or clinical outcomes.

Twenty-nine patients with metastatic RCC were recruited for a phase I study,
in which participants received two sequential high doses of 131I-cG250 (Brouwers
et al. 2005). Baseline imaging identified 27 patients with adequate antibody accu-
mulation in tumors for treatment. These patients were given a therapeutic dose of
2220MBq/m2, which was previously determined as the MTD. Patients were eligible
for further treatment if they did not have grade 4 hematological toxicity or HACA
response. Nineteen patients received another cycle of low dose diagnostic infusion
and high dose therapeutic infusion of 131I-cG250 (1110 MBq/m2 to 1665 MBq/m2).
Fifteen patients completed treatments and were deemed assessable; 10 patients had
progressive diseasewhile 5 had stable disease ranging from3–12mo.Consistentwith
previous studies, the therapeutic efficacy of 131I-cG250 was limited. The authors
postulated that RIT with cG250 using metal radionuclides would improve tumor
accumulation and retention.

Given the lack of clinical efficacy for 131I-cG250, preclinical research on cG250
quickly shifted to other beta emitters 90Y, 177Lu, and 186Re (Brouwers et al. 2004).
90Y and 177Lu are residualizing radionuclides and will remain inside the cell if
internalized. Biodistribution and RIT studies were performed in mice bearing SK-
RC-52 human ccRCC xenografts. 88Y/125I and 90Y /131I isotopes were used for
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biodistribution and RIT studies, respectively. Depending on the chelator used, the
cG250 conjugates radiolabeled with 88Y and 177Lu had approximately 8–10 times
higher tumor accumulation than those labeled with 125I or 186Re. Tumor uptake
for 177Lu-SCN-Bz-DTPA-cG250, 177Lu-DOTA-cG250, 88Y-SCN-Bz-DTPA-cG250,
88Y-DOTA-cG250, 125I-cG250, and 186Re-MAG3-cG250 (MAG3: mercaptoacetyl-
triglycine) were 87.3± 14.0, 74.5± 10.5, 70.9± 8.4, 55.3± 10.7, 9.1± 2.0, and 7.9
± 2.0%ID/g, respectively. At their respective MTDs, the calculated absorbed tumor
dose for 177Lu-SCN-Bz-DTPA-cG250 was 807 Gy, while other radioimmunoconju-
gates delivered between 76 and 104Gy. 177Lu-SCN-Bz-DTPA-cG250 delayed tumor
growth by 186.4 ± 34.7 d compared to 26.6 ± 10.2 d for 131I-cG250. The respective
median survivals for the two groups were 294 d and 164 d, respectively.

177Lu-DOTA-cG250 (177Lu-cG250) was subsequently evaluated in a phase I trial
by Stillebroer et al. (Fig. 12.3) (Stillebroer et al. 2013). DOTA was selected as it
formed amore stable 177Lu-chelator complex than DTPA according to the preclinical
study. Twenty-three patients with progressive metastatic RCC were recruited for the
study and divided into groups of three ormore. Thefirst dose levelwas 1110MBq/m2,

Fig. 12.3 Visualization of ccRCC metastases in lung, abdomen, and pelvis in a patient by
immunoscintigraphy. a 111In-DOTA-cG250 immunoscintigram of a patient with metastatic ccRCC
acquired 7 d after injection of 185 MBq. b 177Lu-cG250 immunoscintigram of the same patient
acquired 6 d after injection of 1887 MBq. Figure adapted with permissions from Stillebroer et al.
(2013)
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and successive groups received increased dose increments of 370 MBq/m2. MTD
based on hematological toxicity was 2405 MBq/m2. Similar to previous trials,
patients were retreated if no disease progression was observed and recovery from
hematological toxicity was demonstrated. Subsequent dose(s) was given at 75% of
the previous dose level. Nine patients received 2 cycles and 4 patients received 3
cycles of 177Lu-cG250. Three months after the first cycle, 17 patients had stable
disease, but several patients progressed after receiving a second or third cycle. One
patient showed partial response lasting 9 mo after two cycles of 177Lu-cG250.

The latest evaluation of 177Lu-cG250 was a phase II study by Muselaers et al.
(2016). Fourteenpatients received an infusionof 2405MBq/m2 177Lu-cG250. Similar
to the phase I study, patients received additional cycles of RIT at 75% of the previous
dose if they have no progressive disease and show recovery from toxicity. Only 6
patients received two cycles of RIT and none received a third cycle due to prolonged
thrombocytopenia and/or neutropenia. After the first cycle, 8 patients had stable
disease and 1 had partial response. Although 177Lu-cG250 was able to stabilize
disease progression, further reduction of treatment-associated toxicity is needed
before it can be integrated into clinical practice.

12.5.3 Dual Modality Imaging with cG250

Muselaers et al. reported the synthesis and evaluation of 111In-DTPA-cG250-
IRDye800CW, a cG250 derivative that can be used for dual SPECT and near infrared
fluorescence (NIRF) imaging (Muselaers et al. 2015). The radioactivity allows for
preoperative localization of disease by SPECT imaging and for intraoperative detec-
tion of residual disease after resection by hand-held gamma probes. NIRF imaging
helps surgeons to delineate surgical margins, supplementing the auditory cues from
gammadetection. 111In-DTPA-cG250-IRDye800CWwas intravenously injected into
nude mice bearing intraperitoneal SK-RC-52 ccRCC xenografts. Image acquisi-
tion was performed 48 h after tracer administration. Peak uptake in tumor, 58.5 ±
18.7%ID/g, was observed in those established 1 wk post-administration. The good
concordance between SPECT and fluorescence images supports the utility of this
dual-modality agent.

In a phase I study, Hekman et al. evaluated the safety and feasibility of 111In-
DOTA-G250-IRDye800CW for intraoperative dual-modality imaging (Fig. 12.4)
(Hekman et al. 2018b). This cG250 derivative differs from the one studied by Muse-
laers et al. as it employs DOTA as the chelator instead of DTPA. Fifteen patients
were included in this study, and different dose levels (5, 10, 30, or 50 mg, n ≥ 3)
of 111In-DOTA-G250-IRDye800CW were administered intravenously. SPECT/CT
imaging was performed 4 days p.i., and surgery was performed 6–7 d p.i. with the
assistance of a gamma probe and a NIRF camera. No severe study-related adverse
events were observed indicating safety of this agent. All cases of ccRCCwere visible
on SPECT/CT and localizable by gamma probe (T:K ratio of 2.5 ± 0.8). In contrast,
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Fig. 12.4 Dual modality imaging after injection of 111In-DOTA-cG250-IRDye800CW. a Preop-
erative SPECT/CT confirming presence of a CA-IX expressing ccRCC. b Intraoperative NIRF
showed hyperfluorescence of tumor. c Assessment of the resected tumor specimen with NIRF
suggested tumor within the surgical margin (square), which was subsequently confirmed by
histopathology. d NIRF demonstrated that further resection contained vital tumor, again confirmed
by histopathology. e NIRF was used to assess presence of tumor (square) in additional resected
tissues. Histology confirmed that the fragment consisted mostly of fibrotic tissue, but also a 2 mm
tumor. Scale bars are approximations. Figure adapted with permissions from Hekman et al. (2018b)
in accordance with the Creative Commons Attribution (CC BY-NC 4.0) license

the T:K ratio for CA-IX non-expressing tumors was 1.0 ± 0.1. NIRF greatly aided
in tumor delineation and assessing residual disease in surgical cavity.

12.6 Peptides and Affibodies

Peptides are commonly used in nuclear medicine as delivery vectors to target recep-
tors overexpressed in various cancer subtypes (Fani and Maecke 2012). Peptides
can bind rapidly to tumor and clear from non-target tissues. The pharmacokinetics,
stability, and targeting of peptides can be optimized by using different combinations
of radionuclides, linkers, amino acids, and structural configurations. Phage display
peptide libraries were used to identify CA-IX binders. Askoxylakis et al. identified a
dodecapeptide,YNTNHVPLSPKY(CaIX-P1), that binds to the extracellular domain
of CA-IX (Askoxylakis et al. 2010). The N-terminal tyrosine was used for 125I/131I
radiolabeling. 131I-CaIX-P1 was evaluated in ccRCC SK-RC-52 xenograft mice.
From biodistribution study, tumor uptake at 1 h p.i. was ~2.5%ID/g and decreasing
thereafter. The highest contrast for 131I-CaIX-P1 was at 1 h p.i., when T:B and T:M
ratios were 0.65 ± 0.24 and 4.11 ± 2.44, respectively. The peptide was unstable in
plasma, and had a half-life of 25 min.

To optimize stability and targeting properties of CaIX-P1, Rana et al. performed
alanine panning and peptide truncation studies (Rana et al. 2012). They identified
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NHVPLSPy (CaIX-P1-4-10) as the minimal sequence necessary for CA-IX binding.
A D-tyrosine residue was added at the C-terminus for radiolabeling purposes. In
vitro, CaIX-P1-4-10 showed serum stability of 90 min, and 5.8 times higher uptake
in cells compared to CaIX-P1. However, this peptide was unable to delineate SK-RC-
52 xenografts from background tissues despite showing good uptake (~2.5%ID/g at
1 h p.i.). The IC50 value for CaIX-P1-4-10 against CA-IX was later determined to be
in the micromolar range. Recently, Jia et al. synthesized an 18F-fluorine derivative
of CaIX-P1 and evaluated its uptake properties in the hypoxia HT-29 tumor model
(Jia et al. 2019). An 18F-labeled azide prosthetic group was used for click chemistry
with the terminal alkyne group for radiolabeling (18F-CA-IX-P1-4-10). PET imaging
studies were conducted, but minimal uptake was observed in tumor.

The Heidelberg group which isolated CaIX-P1 performed a secondary phage
display to isolate another dodecapeptideNMPKDVTTRMSS (PGLR-P1) (Rana et al.
2013). To improve isoform selectivity, the PG-like domain of CA-IX was used as the
bait in this set up. Once again, a D-tyrosine residue was added to the C-terminus for
radiolabeling with 125I/131I. In vitro studies indicated that binding affinity for CA-IX
was in the micromolar range. SK-RC-52 tumor xenografts showed low uptake (0.48
± 0.20%ID/g at 1 h p.i.), and no contrast was observed. While these short peptides
have limited application for CA-IX targeting, another class of peptide-based probes
(affibodies) have been far more successful.

Affibodies are protein scaffolds developed from the immunoglobulin G binding
domain of staphylococcal protein A (Feldwisch and Tolmachev 2012). An affibody
molecule is ~ 6–7 kDa in molecular weight depending on the composition. Each
affibody contains 58 amino acids, of which 13 are responsible for mediating nano or
picomolar binding to a target of interest. Affibodies are less sensitive to temperature
and pH and have faster pharmacokinetics than mAbs. Honarvar et al. used an affi-
body library to identify a CA-IX targeting affibody (ZCAIX:1) for imaging ccRCC
(Honarvar et al. 2015). ZCAIX:1 was radiolabeled with 99mTc and 125I for compar-
ison. SPECT imaging and biodistribution studies were performed in mice bearing
SK-RC-52 xenografts. The binding affinity of 99mTc-(HE)3-ZCAIX:1 for SK-RC-52
cells was determined to be 1.3 nM. Following intravenous injection, 99mTc-(HE)3-
ZCAIX:1 showed high and rapid uptake in tumor (22.3 ± 3.2%ID/g at 1 h p.i.). The
uptake in tumor dropped to 9.7 ± 0.7%ID/g and 7.3 ± 3.0%ID/g at 4 h and 8 h p.i.,
respectively. The highest T:B and T:M ratios were 53 ± 10 and 104 ± 52 observed
at 4 h p.i. Kidney uptake was >100% ID/g at all timepoints. With a non-residualizing
radionuclide, renal uptake of 125I-(HE)3-ZCAIX:1 was significantly lower (2.7 ±
1.4%ID/g at 6 h p.i.); however, this was accompanied by a decrease in tumor uptake
(2.2 ± 1.4%ID/g at 6 h p.i.). The data suggests that 99mTc-(HE)3-ZCAIX:1 has the
potential for imaging extrarenal lesions that express CA-IX.

Garousi et al. performed a comparison study with ZCAIX:1 and three novel affi-
body variants (ZCAIX:2, ZCAIX:3, and ZCAIX:4) for CA-IX imaging (Fig. 12.5)
(Garousi et al. 2016). The new variants showed nanomolar binding affinity (KD: 1.2–
7.3 nM) for SK-RC-52 cells. The affibodies were radiolabeled with 99mTc and 125I.
The uptake in SK-RC-52 tumors ranged from 4.3± 0.7%ID/g to 16.3± 0.9%ID/g at
4 h p.i. for the 99mTc-labeled derivatives. At this time point, 99mTc-(HE)3-ZCAIX:2
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Fig. 12.5 Maximum
intensity projections of
microSPECT/CT using
CA-IX targeting affibodies at
4 h p.i. a Imaging using
99mTc-(HE)3-ZCAIX:2. The
linear color scale was
adjusted to provide clear
visualization of a tumor. b
Imaging using
125I-(HE)3-ZCAIX:4. Full
linear color scale was
applied. Figure adapted with
permission from Garousi
et al. (2016). Copyright 2016
American Chemistry Society

showed the highest contrast ratios (T:B of 44 ± 7 and T:M of 109 ± 11). Consistent
with previous study, high renal retention (>100%ID/g) was observed for all time
points. On the other hand, the 125I-labeled derivates showed 5–50 times less uptake
(4–22%ID/g at 4 h p.i.) in kidneys. 125I-ZCAIX:2 had the highest tumor uptake (19
± 2%ID/g) at 4 h p.i., which corresponded to T:B and T:M ratios of 21 ± 5 and
129± 42, respectively. The authors concluded that the pairing of a non-residualizing
radionuclide with an affibody may be useful for imaging primary ccRCC.

12.7 Small Molecule Inhibitors

Small molecule inhibitors are the most diverse group of antigen recognition
molecules for CA-IX targeting. Most small molecule inhibitors that have been
explored for imaging/therapy are sulfonamide derivatives. Sulfonamides inhibit CA-
IX by forming coordination with the zinc ion and displacing water in the catalytic
domain (Supuran et al. 2001). The major challenge for developing small molecule-
based theranostic agents for CA-IX is selectivity since the catalytic domain is rela-
tively conserved between isoforms (Alterio et al. 2012). There are three extracel-
lular CA isoenzymes: CA-IX, CA-XII, and CA-XIV. To confer CA-IX selectivity,
successful radiopharmaceuticals generally have features that render them cell imper-
meable (Alterio et al. 2012). Even when selectivity is achieved, some tracers have
been hampered by low uptake or instability (Lau et al. 2014).
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12.7.1 Net Charge

18F-VM4-037 is an ethoxzolamide derivative developed for CA-IX PET imaging
and remains the only small molecule inhibitor to advance to clinical studies (Doss
et al. 2014). 18F-VM4-037 has a free carboxylate group that is deprotonated at phys-
iological pH. When this occurs, the negative charge restricts entry of the molecule
into the cell conferring selectivity for CA-IX. Doss et al. reported the biodistribution
and dosimetry of 18F-VM4-037 in healthy volunteers in a phase I study (Doss et al.
2014). From PET images, 18F-VM4-037 was immediately taken up by the liver and
kidneys with minimal clearance (4% through kidneys) during the 133 min study
period. Almost 50% of the dose were sequestered by these two organs. Based on a
370 MBq dose, the predicted effective dose for a patient was 10 ± 0.5 mSv. The
kidneys would receive 101 ± 11 mGy, while the liver would receive 89 ± 25 mGy.

Turkbey et al. evaluated 18F-VM4-037 in a phase II study with 11 RCC patients
(Turkbey et al. 2016). Ten patients had histology-confirmed ccRCC, and 2 patients
had metastatic lesions. Primary lesion detection of 18F-VM4-037 (tumor SUVmean:
3.04) was obscured by high uptake in normal renal parenchyma (kidney SUVmean:
35.4).While primary lesionswere difficult to ascertainwithout CT, extrarenal lesions
in patients with metastasis were readily identified (SUVmax: 5.92). Since preclinical
data for 18F-VM4-037 was previously unpublished, Peeters et al. synthesized 18F-
VM4-037 and evaluated its ability to image CA-IX expression in the U373 human
glioma and HT-29 human colorectal xenograft models (Peeters et al. 2015). Consis-
tent with the clinical studies, 18F-VM4-037 showed high accumulation in the liver
and kidneys. However, no uptake was observed in either tumor model raising ques-
tions about the sensitivity of 18F-VM4-037 for targeting CA-IX in vivo. In this study,
the Ki of 18F-VM4-037 for CA-IX was found to be 0.12 μM.

Our research group reported the synthesis and evaluation of an 18F-labeled cationic
sulfonamide derivative (Zhang et al. 2017). The cationic quaternary ammonium
group maintains a net positive charge, conferring selectivity for CA-IX. Biodis-
tribution and PET imaging studies were performed in HT-29 tumor xenograft mice.
Tumor uptake was 0.41 ± 0.06%ID/g at 1 h p.i., and corresponded to T:B and T:M
ratios of <2. HT-29 tumors were visible in PET images despite the low absolute
uptake. Although contrast was less than that of the other sulfonamides, results were
encouraging considering the modest affinity for CA-IX. The compound had a Ki

value of 0.22 μM for CA-IX.

12.7.2 Multivalence and Size

In addition to incorporating net charge, our group successfully leveraged a multiva-
lent approach to confer in vivo selectivity for CA-IX (Lau et al. 2015). We hypoth-
esized that a trimeric sulfonamide inhibitor would have sufficient bulk (>1 kDa)
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to restrict intracellular entry. To achieve this, we first prepared azide deriva-
tives of two CA inhibitors, 4-(2-aminoethyl)benzenesulfonamide (AEBS) and 4-
aminobenzensulfonamide (ABS). These inhibitors were subsequently conjugated to
a radio-prosthetic group containing three alkyne groups and an ammoniomethyltriflu-
oroborate (AmBF3) moiety to form 18F-AmBF3-(AEBS)3 and 18F-AmBF3-(ABS)3.
Biodistribution and PET imaging studies were performed in HT-29 tumor-bearing
mice. For the two compounds, tumor uptake was 0.30–0.33%ID/g at 1 h p.i., which
was 5 times higher than the activity in blood (0.07–0.09%ID/g). CA-I and CA-II are
off-target isoenzymes that are expressed in the cytosol of red blood cells. Tumors
were clearly visible in PET images, and the T:B (3.93 ± 1.26) and T:M (9.55 ±
2.96) ratios were the highest reported small molecule-based imaging of CA-IX at
the time of publication. 18F-AmBF3-(AEBS)3 and 18F-AmBF3-(ABS)3 hadKi values
of 35.7 nM and 8.5 nM, respectively.

12.7.3 Radiometal Chelator Complex

Rami et al. demonstrated that sulfonamides conjugated to polyaminocarboxylate
chelators (e.g., DTPA and DOTA) are unable to penetrate red blood cells (Rami et al.
2008). This observation spurred our group to synthesize three 68Ga-labeled sulfon-
amide derivatives with different chelators (Fig. 12.6) (Lau et al. 2016). Monomeric
(Ga-DOTA-AEBSA), dimeric (Ga-DOTA-(AEBSA)2), and trimeric (Ga-NOTGA-
(AEBSA)3; NOTGA: 1,4,7-triazacyclononane-1,4,7-tris-(glutaric acid)) derivatives
were prepared. Biodistribution and PET imaging studies were performed in HT-29
tumor xenograft mice. Tumor uptake ranged from 0.81 to 2.30%ID/g at 1 h p.i. and
positively correlated to the number of targeting moieties and molecular weight. The
monomer cleared predominantly through the kidneys, while the dimer and trimer
were cleared by the renal and hepatobiliary pathways. 68 Ga-DOTA-AEBSA exhib-
ited the lowest tumor uptake but had the highest contrast (T:M ratio: 5.02 ± 0.22)
due its favorable pharmacokinetics. Good-contrast PET images were generated by
all three derivatives. 68 Ga-DOTA-AEBSA showed heterogeneous distribution in
tumors and areas of focal uptake. The Ki values of the three compounds ranged from
7.7 nM to 25.4 nM.

Following a similar strategy, Sneddon et al. synthesized a monomeric 68Ga-
DOTA-sulfonamide derivative (Sneddon et al. 2016). Instead of directly conjugating
the sulfonamide group to one of the carboxylic groups in DOTA, the authors inserted
a polyethylene glycol linker as a pharmacokinetic modifier. In vivo evaluations were
conducted in mice bearing HCT116 human colorectal cancer xenografts. Tumors
were visible in PET images at 1 h p.i.; however, the uptake was not retained and there
was washout of signal by 2 h p.i. Absolute uptake values were not reported, but the
T:B ratio was reportedly 2.36 ± 0.42 at 1 h p.i. Compared to 68 Ga-DOTA-AEBSA,
the Ki value of this monomeric compound was higher at 63.1 nM.

Krall et al. reported the synthesis and evaluation of a 99mTc-labeled acetazolamide
derivative (Krall et al. 2016). The tracer contained an acetazolamide derivative, a
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Fig. 12.6 Maximal intensity projection images of PET/CT and PET with 68Ga tracers at 1 h
p.i. a 68Ga-DOTA-AEBSA; b 68Ga-DOTA-AEBSA preblocked with 10 mg/kg of acetazolamide;
c 68Ga-DOTA-(AEBSA)2; d 68Ga-NOTGA-(AEBSA)3. Tumor uptake was observed for all three
compounds with 68Ga-DOTA-AEBSA displaying highest contrast. t = tumor; l= liver; k= kidney;
bl = bladder. Figure adapted with permissions from Lau et al. (2016). Copyright 2016 American
Chemistry Society

triazine-based linker, and aLys-Asp-Cysmotif for 99mTc-labeling. In vivo evaluations
were performed in the SK-RC-52 ccRCC model that overexpresses CA-IX. Based
on biodistribution studies, tumor uptake peaked at 3 h p.i. at 22.1 ± 0.16%ID/g with
a T:B ratio of 69.9 ± 0.21. Unlike other small molecules that washout from tumor,
uptake was well retained by 6 h p.i. (19.8 ± 0.13%ID/; T:B ratio of 100 ± 0.94).
SPECT images showed clear delineation of tumors from background tissues. While
not directly measured, it was assumed that the compound had nanomolar binding
affinity to CA-IX since acetazolamide was used as the targeting pharmacophore.

Wichert et al. identified a novel dual motif CA-IX inhibitor from a DNA encoded
chemical library (Wichert et al. 2015). This inhibitor consists of an acetazolamide
and a 4,4-bis(4-hydroxyphenyl)valeric acid; the binding site of the latter remains
unknown. The Pomper group radiolabeled this inhibitor by adding either an 111In-
DOTAor 64Cu-NOTA(NOTA:1,4,7-triazacyclononane-1,4,7-triacetic acid) complex
for ccRCC imaging (Yang et al. 2015;Minn et al. 2016). Biodistribution and imaging
studies were performed in mice bearing SK-RC-52 xenografts. For 111In-XYIMSR-
01, maximal tumor uptake was observed at 8 h p.i. (34.0 ± 15.2%ID/g) with corre-
sponding T:B and T:M ratios of 77.0 ± 32.5 and 34.2 ± 16.0. Tumor uptake of
111In-XYIMSR-01 decreased slightly to 25.6 ± 17.7%ID/g at 24 p.i., while T:B and
T:M ratios improved to 178.1 ± 145.4 and 68.4 ± 29.0. For 64Cu-XYIMSR-06,
maximal tumor uptake was observed at 4 h p.i. (19.3 ± 4.51%ID/g) with corre-
sponding T:B and T:M ratios of 57.7 ± 9.3, and 29.4 ± 9.9. Similarly, tumor uptake
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decreased to 6.23 ± 1.41%ID/g by 24 h p.i., but T:B and T:M ratios improved to
142.6± 115.8 and 261.3± 47.3. Based on imaging modality and faster pharmacoki-
netics, 64Cu-XYIMSR-06 is likely more favorable for translation despite the lower
absolute tumor uptake.

More recently, Yang et al. synthesized 64Cu-XYIMSR-06 and evaluated its ability
to image the orthotopic U87 MG glioblastoma model (Fig. 12.7) (Yang et al. 2019).
Due to lower expression of CA-IX in this hypoxia model, maximal tumor uptake
was 3.13± 0.26%ID/g with T:B and T:M ratios of 7.67± 1.08 and 3.01± 0.68. The
tumor-to-brain ratio was 4.46± 0.86. From PET images, orthotopic xenografts were
readily visualized at 2 h and 8 h p.i. While initial results look promising, the ability
of 64Cu-XYIMSR-06 to effectively cross the blood–brain-barrier (BBB) needs to be
further assessed. The BBB is generally disrupted during the establishment of glioma
models. The binding affinity of 64Cu-XYIMSR-06 for the U87 MG cell line was
determined to be 4.22 nM.

Iikuni et al. developed three ureidosulfonamide-based inhibitors for SPECT
imaging and radioligand therapy (Iikuni et al. 2018). Ureidosulfonamides have
better binding affinity for CAs compared to unsubstituted sulfonamides. The authors
synthesized a monovalent inhibitor conjugated to a DOTA chelator for 111In-labeling
(111In-US1), and a bivalent inhibitor conjugated to DOTA for 111In/90Y-labeling
(111In/90Y-US2). Biodistribution studies were performed in mice bearing both HT-29
colorectal cancer (high CA-IX expression) and MDA-MB-231 (low CA-IX expres-
sion) breast cancer xenografts. 111In-US2 showed higher uptake in both models
compared to 111In-US1. HT-29 tumor uptake of 111In-US2 peaked at 1 h p.i. at 4.57
± 0.21%ID/g (T:B and T:M ratios of 1.11 ± 0.16 and 2.86 ± 0.43) and decreased
gradually over the course of the study. The uptake inMDA-MB-231 tumor was lower
thanHT-29 tumor at all time points. Radioligand therapywith 90Y-US2 (1.85, 3.7 and
7.4 MBq) was performed in mice bearing only HT-29 tumors. The administration of
90Y-US2 led to inhibition of HT-29 tumor growth, in a dose-dependent manner. This
is one of the first endoradiotherapy studies targeting CA-IX using a small molecule
inhibitor.

12.8 Perspectives and Conclusion

CA-IX represents as a theranostic target for all solid tumors, especially for ccRCCs
where CA-IX expression is mainly driven by genetic aberrations in lieu of oxygen
availability.According to the 2018GLOBOCANreport, therewere over 400,000 new
incidences of ccRCCworldwide with over 175,000 associatedmortalities (Bray et al.
2018). cG250 and its derivatives are promising for targeting ccRCCs because they
clear through the hepatobiliary system. This reduces background when attempting
to image primary or recurrent lesions. A multi-center phase III study to investigate
the sensitivity and specificity of 89Zr-cG250 for ccRCC has begun recruitment (Clin-
icalTrials.gov Identifier: NCT03849118). It is anticipated that this compound will
displace 124I-cG250 as the imaging agent of choice. In terms of RIT with cG250,
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Fig. 12.7 PET images of orthotopic U87 MG xenografts after injection of 64Cu-XYIMSR-06. a,
b Detection of the intracranial tumor at 2 and 8 h after injection. Arrows indicate the tumor. c SUV
values for selected organs based on drawn ROIs. d Orthotopic glioma and immunohistochemistry.
(D1) Tumor in the right cerebral hemisphere in red circle. (D2) CA-IX immunohistochemical
staining. (D3) CA-IX expression is absent in normal brain tissue. (D4) CA-IX expression tumor
tissue (40 × magnification of original micrographs). Figure adapted with permissions from Yang
et al. (2019). Copyright 2016 American Chemistry Society
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myelotoxicity must be safely mitigated or controlled. Since 177Lu has imageable
photons, personalized dosing based on imaging dosimetric analyses is one way to
reduce toxicity. Merkx et al. recently disclosed the development of 225Ac-cG250 at
a conference proceeding (Merkx et al. 2019). 225Ac is an alpha particle emitter and
is able to induce more dsDNA breakages in cancer cells than 177Lu, which is a beta
particle emitter (Kozempel et al. 2018). At the same time, the particle range of 225Ac
is limited which helps to reduce off-target toxicity.

While the other classes of CA-IX radiopharmaceuticals can also be used for
ccRCC, they are more ideal for targeting hypoxic niches. The barriers for small
molecule inhibitors have been low uptake and subsequent retention in tumors.
However, recent work byKrall et al. andYang et al. demonstrate that these challenges
can bemet by structure–activity relationship optimization. Asmore potent and selec-
tive inhibitors are discovered (Dudutiene et al. 2014), we anticipate that there will be
continued interest in advancing small molecule-based agents for CA-IX. Hypoxic
tumors are difficult to treat with monotherapy; therefore, combinatorial treatments
are necessary especially for disseminated disease. Small molecule inhibitors can
be used to target CA-IX in combination with other agents like tyrosine kinase
inhibitors (Oosterwijk-Wakka et al. 2011) or immune checkpoint inhibitors (Chafe
et al. 2019). Radiotherapeutic agents derived from small molecules are likely to be
less toxic because they have faster clearance and are non-immunogenic, compared to
RIT. In summary, given the multifaceted role CA-IX has in cancer biology, CA-IX
theranostic agents have the potential to ameliorate cancer management and patient
outcomes.
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